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ABSTRACT 

The chemical industry is facing daunting challenges arising from factors 

such as global competition, strict environment protection laws, complexity of 

modern processes, and maintaining high and consistent product quality. This has 

compelled chemical engineers to design and operate chemical processes in an 

efficient, safe, environment-friendly and optimal manner. Modeling, simulation, 

monitoring, and optimization of chemical reactions/processes/systems assist the 

chemical engineers and plant personnel in this difficult task. Accordingly, a 

number of strategies and tools are being continuously developed in chemical 

process engineering for optimal design and operation of chemical processes. 

Modeling of a chemical process/reaction is essential for a number of tasks 

such as control, monitoring, optimization and, fault detection and diagnosis. 

Commonly, reaction/reactor/process models are constructed using 

phenomenological and empirical approaches. The first approach requires 

complete understanding of the thermodynamics, heat and mass transport 

phenomena, and kinetics underlying the chemical process. Often, the said 

knowledge is difficult, time-consuming, costly and tedious, to acquire and 

invariably needs extensive experimentation. The second i.e., empirical approach, 

entails development of linear/nonlinear regression models and requires extensive 

guesswork of the structure (form) of the data-fitting function and its parameters, 

especially for nonlinear systems.  

Optimization is another important task in process engineering. It is 

conventionally performed using deterministic gradient-based methodologies. 

These have a prerequisite that the objective function to be maximized/minimized 

must be smooth, continuous and differentiable. Another major shortcoming of the 

deterministic gradient-based methods is that they invariably get stuck in to a local 

optimum, thus producing a sub-optimal solution. 

 The limitations of phenomenological and conventional empirical 

modeling and deterministic gradient-based optimization methods necessitated a 

paradigm shift in the approach to modeling and optimization of chemical 
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reactions/processes/systems. In recent years, various Computational Intelligence 

(CI) based methodologies have offered attractive avenues for modeling and 

optimization of chemical reactions/reactors/processes as well as other process 

engineering tasks such as process monitoring, control and fault detection and 

diagnosis. Often, the CI-based modeling and optimization methods have been 

found to be more efficient, cost-effective, and easier to implement than their 

conventional counterparts. Accordingly, the primary focus of the work presented 

in this thesis is the design and development of computational intelligence based 

modeling and optimization methodologies for chemical engineering applications. 

The specific CI methodologies used in conducting the modeling studies are 

artificial neural networks (ANNs), genetic programming (GP), fuzzy logic (FL), 

and support vector regression (SVR), while the CI-based optimization methods 

employed are artificial immune systems (AIS) and genetic algorithms (GA). 

The thesis is organized in nine chapters and the studies presented in each 

chapter are described below in brief. 

Chapter 1 first introduces the concept of computational intelligence along 

with its importance and applications to chemical engineering and technology 

systems. The main categories of CI with methodologies included in each category 

are discussed in brief along with their applications. The specific chemical 

engineering tasks performed using CI-based methods along with the 

corresponding conventional approaches are discussed next. The following CI-

based methodologies employed in this thesis are next elaborated along with their 

pertinent applications.  

1. Modeling Methodologies: Multilayered perceptron neural network 

(MLPNN), Genetic programming based symbolic regression (GPSR), 

Support vector regression (SVR) and Fuzzy c-means clustering (FCC). 

2. Optimization Methodologies: Clonal selection algorithm (CLONALG) 

based on Artificial immune systems (AIS) strategy, and Genetic 

algorithm (GA). 
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Lastly, this chapter describes a dimensionality reduction methodology, namely 

principal component analysis (PCA) as also a statistical test namely Steiger’s z-

test used in comparing the models. 

The higher heating value (HHV) is an important property of solid fuels 

such as coal and biomasses. It is used extensively in designing and developing 

combustion and gasification processes using coal and/or biomass as fuels. In 

Chapter 2, we introduce development of CI-based methodologies for modeling the 

HHV of solid biomass fuels from their proximate or ultimate analyses. The HHV 

of a biomass fuel is determined experimentally using a high pressure bomb 

calorimeter. This involves tedious calorimetric experiments. A detailed literature 

survey indicates that commonly, linear regression based models have been 

developed for the prediction of HHV of biomass fuels from their proximate or 

ultimate analyses, although in reality nonlinear dependencies are witnessed 

between the HHV and a few components of the corresponding proximate and 

ultimate analyses. Accordingly, novel CI-based methodologies namely, genetic 

programming (GP) and ANNs has been introduced for the nonlinear modelling of 

the HHV of solid biomass fuels using a large database of the proximate and 

ultimate analyses of biomasses and their corresponding HHVs. A total of four CI-

based biomass HHV models—two each using GP and ANN methods—were 

constructed. All the four CI-based biomass HHV prediction models produced 

higher prediction and generalization performance than their existing counterparts 

as observed from high correlation coefficients (CCs) (>0.96) and low mean 

absolute percent errors (MAPEs) (<4.5%). 

Chapter 3 presents design and development of computational intelligence 

based modeling methodologies for predicting the elemental composition of solid 

biomass fuels from their proximate analysis. The said elemental composition 

comprises carbon (C), hydrogen (H) and oxygen (O) as major components and is 

an important measure of the biomass fuel‘s energy content. Its knowledge is 

important in the efficient design and operation of combustion and gasification 

systems using these fuels, and pollution control thereof. As done conventionally, 

determining the elemental composition of a biomass fuel through its ultimate 

analysis is time-consuming and expensive. In comparison, proximate analysis, 
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which determines fixed carbon, ash, volatile matter and moisture content of a 

biomass fuel is easier to perform and can be  related to the ultimate analysis of the 

fuel. A few linear models predicting the said elemental composition are available 

in the literature. However, often the weight percentages of C, H, and O as a 

function of the weight percentages of the constituents of the proximate analysis, 

indicate nonlinear relationships between them. Accordingly, this study utilizes 

three computational intelligence (CI) formalisms, namely, GP, ANN and SVR, for 

developing nonlinear models for the prediction of C, H, and O percentages of 

solid biomass fuels. All the developed nonlinear CI-based models predicting the 

elemental compositions of biomass significantly and consistently outperformed 

their linear counterparts in terms of higher prediction accuracies and 

generalization capabilities.  

In Chapter 4, genetic programming has been introduced for the 

development of high performing models for the prediction of higher heating value 

of coals of different ranks, and from diverse geographies of the world. There exist 

mostly linear regression based models correlating the constituents of a coal‘s 

proximate and/or ultimate analysis to its HHV as also a few CI-based models 

based on the ANNs, co-active neuro-fuzzy adaptive networks (CANFIS), 

alternating conditional expectation (ACE), and SVR formalisms. A literature 

search indicates a continuing effort in developing HHV correlations for coals, 

with its emphasis on coals of a specific rank and/or from specific geographical 

regions; mostly these efforts were based on limited amounts of data. Towards 

developing generalized correlations encompassing several ranks of coal, the 

genetic programming based symbolic regression (GPSR) formalism has been 

introduced for modeling HHV of coals based on a large-sized dataset comprising 

coals of various ranks and from diverse geographies in the world. Specifically, 

five GPSR-based coal HHV predicting nonlinear correlations have been 

developed and each one of them possesses following notable features: (i) higher 

prediction accuracy and generalization performance with high correlation 

coefficients (CCs > 0.99) and root mean squared error (RMSEs < 0.8) as compared 

to the existing HHV models based on proximate or ultimate analyses (on as-

received basis), (ii) much wider applicability for different rank coals from diverse 
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geographies, and (iii) due to their lower complexity, GPSR-based models are 

easier to understand and deploy in a practical setting than the other CI-based 

models. 

In Chapter 5, a GPSR-based approach has been proposed for the 

development of a soft-sensor model for styrene polymerization process and its 

application in a model predictive control scheme. A soft-sensor essentially is a 

mathematical model that relates the key process variables, which are difficult to 

measure online, to those process variables whose continuous online measurement 

is easy and accurate. In general, polymerization reactions are difficult to model as 

they involve complex nonlinear reaction phenomena with numerous kinetic 

parameters, multiple phases, nonlinear thermodynamics and heat and mass 

transfer mechanisms, possible non-homogeneity of the reaction mass due to non-

ideal mixing, and non-uniform polymer particle size and molecular weight 

distribution. The styrene polymerization reaction exhibits all these traits and, 

therefore, poses difficulties to model accurately using conventional 

phenomenological approach. Generally, the final polymer product quality is 

evaluated in terms of its average molecular weight based on the molecular weight 

distribution (MWD). The molecular weight and consequently the yield and quality 

of the polymer are highly sensitive to the reaction conditions. Determination of 

MWD is commonly done offline in a quality control laboratory and is costly, and 

time consuming. Development of a soft-sensor model using adequate historical 

process data is expected to overcome the said difficulties since the prediction of 

the difficult to measure variable/parameter is almost instantaneous. Accordingly, 

two GPSR-based soft-sensor models were developed for identification of an 

industrial continuous styrene polymerization process. These models dynamically 

predict the molecular weight of the effluent polystyrene product and possess very 

high prediction and generalization capability. Next, the best performing GPSR 

model was successfully utilized in designing a model predictive control (MPC) 

scheme for the styrene polymerization process with an objective to accurately 

control the effluent polymer product quality. When compared with an 

appropriately tuned proportional-integral-derivative (PID) controller, the MPC 
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scheme utilizing the GPSR-based model was found to yield improved 

performance for set-point tracking and disturbance rejection tasks. 

Chapter 6 reports a study, wherein experimental data, from the co-

gasification (COG) experiments conducted in a pilot-plant scale fluidized bed 

gasifier located at Council of Scientific and Industrial Research‘s (CSIR), Central 

Institute for Mining and Fuel Research (CIMFR) Laboratory, Dhanbad, India, 

were utilized for the design and development of CI-based models for the COG 

process. Specifically, co-gasification experiments were conducted using a number 

of blends of high ash Indian coals and biomasses (rice husk, saw dust and press 

mud) separately. The CI-based models utilizing the ANN, GP and SVR 

methodologies were developed to predict the effect of thirteen variables 

describing COG process conditions and feed characteristics on the four key 

process performance variables, namely total gas yield (TGY) (kg/kg fuel), carbon 

conversion efficiency (CCE) (%), heating value of product gas (HV) (MJ/Nm
3
), 

and cold gas efficiency (CGE) (%). The original experimental dataset consisting of 

thirteen input variables was compressed to obtain four linearly uncorrelated inputs 

using principal component analysis (PCA) and this PCA transformed dataset was 

used for developing the models. All the developed CI-based COG process models 

exhibit good prediction accuracy and generalization performances. Finally, a 

statistical test termed ―Steiger’s z-test‖ was performed to compare CI-based 

models and identifying the best ones predicting the four COG performance 

variables. 

In Chapter 7, a CI-based hybrid approach for modeling and optimization of 

a reaction involving adsorptive removal of chromium ions from waste water using 

gallic acid-formaldehyde-ammonia (GFA) synthetic polymer resins has been 

proposed. In the first step, the experimental data consisting of the resin synthesis 

reaction conditions, adsorption pH, and the corresponding percent adsorption of 

Cr(VI) were used to develop an optimal multilayer perceptron neural network 

(MLPNN) model; this model shows an excellent prediction and generalization 

performance. Next, the artificial immune systems (AIS)-inspired clonal selection 

algorithm (CLONALG) was used for optimizing the 3-dimensional input space of 

the above-stated MLPNN model with the objective of maximizing the Cr(VI) 
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adsorption on the resin. For the purpose of comparison, optimized resin 

composition and reaction conditions were also obtained using a widely used CI-

based stochastic optimization method, namely genetic algorithm (GA). Finally, 

the optimized resin composition and reaction conditions obtained using the 

MLPNN-AIS hybrid modeling-optimization strategy were validated 

experimentally; the results obtained thereof matched closely with the optimized 

solution predicted by the hybrid strategy. The MLPNN-AIS hybrid optimization 

strategy presented in this chapter can be gainfully utilized for modeling and 

optimization of similar waste-water treatment reactions/processes. 

Chapter 8 presents a study, wherein the CI-based fuzzy c-means clustering 

(FCC) algorithm has been successfully used for fault detection of a biochemical 

process. Specifically, occurrences of various types of faults in a controlled 

continuous bioreactor generating biomass were accurately detected by the FCC 

methodology. Specifically, four types of faults in the bioreactor were simulated, 

namely increase/decrease in the bioreactor feed and jacket fluid flow rates. The 

resultant data consisting of bioreactor operating conditions and the related state 

variables, namely the bioreactor biomass concentration, bioreactor temperature 

and the jacket fluid temperature, were used to develop a model using fuzzy c-

means clustering (FCC) algorithm. This method uses an unsupervised learning 

algorithm and depending upon the type of the occurred fault, groups the 

corresponding data into one of four possible clusters (one each for four types of 

faults). The results of the application of the developed FCC model clearly indicate 

that it is capable of accurately identifying all four types of the faults as also the 

normal process behavior. 

Finally Chapter 9 concludes and summarizes the research studies 

conducted and presented in the thesis and provides suggestions for the future 

work.   

Notable Features of Studies Presented in the Thesis  

 Computational intelligence-based methodologies, namely ANN, GP and 

SVR have been comprehensively applied for modeling of important fuel 
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properties. Specifically, high performing CI-based models were designed 

and developed for predicting the higher heating value (HHV) and 

elemental composition of a wide variety of biomass fuels. Also, GP-based 

highly accurate models have been developed for predicting the HHV of 

coals of different ranks and from diverse geographies. 

 Genetic programming based soft sensors were designed and developed for 

process identification of styrene polymerization process, and the resulting 

best model was successfully implemented in a model predictive control 

(MPC) scheme for controlling the polymer quality. 

 Computational intelligence-based methodologies have been introduced for 

modeling of a fluidized bed co-gasification (COG) pilot plant. The COG 

process uses blends of high ash coals and three types of biomasses from 

India. The CI-based models that predict four COG performance variables 

possess excellent prediction and generalization performance.  

 A hybrid CI-based strategy, integrating artificial neural networks and an 

artificial immune system (AIS) has been introduced for modeling-

optimization of the reaction conditions of a synthesis reaction involving  

polymer resin based adsorptive removal of hexavalent chromium ions 

from waste water. 

 A novel CI-based clustering methodology, namely fuzzy c-means 

clustering (FCC) has been successfully applied for fault detection of a 

biochemical process.   
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INTRODUCTION TO COMPUTATIONAL INTELLIGENCE 

BASED METHODOLOGIES 

 

ABSTRACT 

Due to factors such as global competition, strict environmental protection 

laws, and customer-demand for high and consistent product quality, it has 

become a must for process engineers to design and operate chemical 

processes in an efficient, safe, environment-friendly, and optimal manner. 

Modeling, simulation, and optimization of chemical 

reactions/reactors/processes assist the process engineers in this difficult 

task. Conventional modeling and optimization approaches have several 

limitations, which can be overcome by utilizing the contemporary 

computational intelligence (CI) based approaches for the mentioned 

process engineering tasks. Accordingly, in the present thesis several CI-

based methodologies such as artificial neural networks (ANNs), fuzzy 

logic (FL), genetic programming (GP), support vector regression (SVR), 

genetic algorithms (GA) and artificial immune system (AIS) have been 

successfully employed for developing various chemical 

engineering/technology applications. This chapter gives a brief overview 

of computational intelligence along with a detailed discussion of the above 

mentioned CI-based formalisms thus forming a conceptual framework for 

the subsequent chapters. Additionally, the dimensionality reduction 

method namely principal component analysis (PCA), which has been often 

used in the CI-based modeling studies reported in this thesis, is discussed. 

Finally, a statistical method for identification of the best model from a set 

of the competing models is discussed.      
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1.0. COMPUTATIONAL INTELLIGENCE (CI) AND 

MACHINE LEARNING 

Computational intelligence (CI) is a branch of computer science and 

comprises a collection of mathematical algorithms based on various kinds of 

intelligent behaviour exhibited by biologically evolving species (nature-inspired); 

it aims at providing novel and efficient solutions to complex real-life problems in 

science, engineering, technology, and even finance and economics. The most 

common intelligent behaviour exhibited by biologically evolving species involves 

learning, perception, logical reasoning, and decision making in uncertain and 

complex environments (Engelbrecht, 2007). 

 

Figure 1.1: A CI-based system imitating biological intelligence in supervised 

learning mode. 

Figure (1.1) shows a general architecture and working of a typical CI-

based system (commonly known as ―intelligent agent‖) imitating biological 

intelligence. The intelligent agent perceives and models its environment 

reasonably well even in the presence of uncertainties and computes appropriate 
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(optimal) actions by anticipating their effects. For doing this, the targets/goals 

acting as set-points towards which the system is working for, are compared with 

the outputs given by the intelligent agent. This is known as supervised learning in 

the CI paradigm. The CI-based formalisms also encompass a range of machine 

learning methodologies based on the intelligence exhibited through other 

mechanisms such as statistical learning. 

 Around 1940s Alan Turing first devised the theory of computation 

suggesting a machine (now known as computer) that exhibits logical operations 

(Berlinski, 2000). The concurrent advancements in neurology and information 

theory made researchers to think on the possibility of the concept of an electronic 

brain (McCorduck, 2004). So the first work that came up and was recognized as 

exhibiting intelligence was the McCullouch‘s formal design for Turing-complete-

artificial neurons in the year 1943. Artificial intelligence was a term coined by 

John McCarty at the Dartmouth conference in 1956 (Russell and Norvig, 2009), 

where the first AI program was presented. Although, the notion of computational 

intelligence was introduced by the IEEE Neural Networks Council in 1990, 

Bezdek (1994) (Siddique and Adeli, 2013), gave the formal definition of 

Computational Intelligence and defined CI as a subset of AI. Prior to 1970‘s the 

AI/CI research was slow. However, thereafter due to the tremendous 

advancements in computing power and availability of large datasets, the CI 

research gained momentum by way of advancements in CI-based generalized 

methods and those for solving specific problems. Over the years, CI-based 

methodologies have become an essential part of the engineering and technology 

industry, helping to solve many challenging problems in the field of engineering 

and other domains (Russell and Norvig, 2009). 

The computational intelligence based methodologies address complex real-

world problems, where traditional approaches may become useless for either or all 

of the following reasons for a system/process under study (Siddique and Adeli, 

2013). 

 The system/process might be too complex for traditional mathematical 

reasoning or the traditional approaches may prove to be difficult and time 

consuming to model the system/process. 

https://en.wikipedia.org/wiki/Peter_Norvig
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 The system/process might contain various uncertainties. 

 The system/process might be stochastic in nature. 

A wide variety of engineering problems face such difficulties, wherein the CI 

based approaches can deliver speedy and efficient solutions since (i) they can 

model any nonlinear complex process with reasonable accuracies, (ii) being robust 

they can handle the system/process uncertainties (noise) robustly, and (iii) being 

nature-inspired these have some portion of stochastic behavior in-built which 

enables them to efficiently handle systems possessing stochastic nature.   

The CI-based paradigms used in this thesis are:  

 Artificial neural networks (ANN) 

 Evolutionary computation (EC) 

 Artificial immune systems (AIS)  

 Fuzzy logic (FL) 

There exists a much broader range of methodologies under the CI umbrella, and 

encompass theories based on statistical learning (support vector machines 

(SVM)), probabilistic reasoning (Bayesian networks) and intelligent agents 

(Engelbrecht, 2007) sometimes also termed as machine learning theories. Each of 

these CI-based formalisms used in the studies reported in this thesis is described 

in sufficient detail in the forthcoming paragraphs. 

(A)  Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are highly parallel information-

processing formalisms based on the mechanisms mimicking the working of the 

highly interconnected cellular structure of human brain (Freeman and Skapura, 

1991; Zurada, 1992; Tambe et al., 1996). ANNs, with their diverse architectures 

form the most widely utilized CI-based methodologies for various engineering 

tasks such as modeling of steady state and dynamical systems, classification, 

clustering, feature extraction, noise reduction, nonlinear principal component 

analysis, and pattern recognition. The most popular ANN architecture, namely 

multi-layer perceptron (MLP) used in nonlinear function approximation utilizes a 

generic nonlinear transfer function in its building block and thus the troublesome 
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task of pre-specifying the form of the fitting function gets eliminated (Tambe et 

al., 1996). In this thesis we have utilized the multi-layer perceptron neural 

network (MLPNN) exhaustively for modeling of chemical engineering and 

technology systems. Accordingly, MLPNN is described in sufficient depth in the 

forthcoming section 1.2.1 (A). 

(B)  Evolutionary Computation (EC) 

The evolutionary computational methodologies are stochastic iterative 

algorithms mimicking processes from natural evolution, wherein the main 

objective is based on the Darwinian‘s theory of the ―survival of the fittest‖. In 

natural evolution, survival of a species occurs through reproduction. Offspring,   

containing the genetic material of the parents survives only if it can successfully 

face the challenges posed by the environment and produces a new generation of 

offspring. This way nature creates generations that are fitter than their parent 

generation. EC algorithms employ these principles of evolution. Generally they 

begin with a randomly created population of individuals (referred to as 

chromosomes) and iteratively evolve to the final generation composed of the 

fittest individuals by performing stochastic genetic operations on the individuals 

such as fitness evaluation, selection, reproduction and mutation. Several classes of 

EC algorithms are in use: 

 Genetic algorithms (GA) (Holland, 1975): This is a popular stochastic 

optimization technique. 

 Genetic programming (GP) (Koza, 1992): It performs symbolic regression 

whereby the form and parameters of a data-fitting function are 

automatically searched and optimized.  

 Differential evolution (DE) (Storn and Price, 1997): DE is similar to GA 

with a difference in the reproduction mechanism. 

 Cultural evolution (CE) (Campbell, 1960): CE models the evolution of 

culture of a population of individuals. 

EC methodologies have been used (with GA being used most commonly used) 

successfully in diverse engineering applications, for example, numerical and 

combinatorial optimization, scheduling and planning, and in fault detection and 

diagnosis. In this thesis work, we have extensively used the genetic programming 
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method for modeling of chemical engineering and technology systems. In spite of 

its several attractive features, GP which has been elaborated in Section (1.2.2) has 

rarely been used in chemical engineering/technology applications. In this thesis, 

GA has been applied for the optimization of chemical engineering system and the 

detailed working of GA is given in Section (1.4.1).  

(C)  Artificial Immune Systems (AIS)  

Artificial immune systems (AIS) is a relatively new CI-based paradigm 

inspired from various mechanisms exhibited by the biological immune system 

(BIS) of the vertebrates to counter with the foreign pathogen cells entering the 

body (referred to as antigen) (Farmer et al., 1986). BIS creates antibody cells 

specific to the antigen to counter the antigen and, thus, the infection as a whole. 

BIS exhibits several attractive features such as parallel processing, noise 

tolerance, robustness, diversity, memory, multi-layered architecture and adaptive 

nature. As the BIS encounters an antigen, its adaptive nature starts creating 

antigen-specific antibodies. The antibodies evolve into better antigen-specific 

antibodies through a parallel multilayered mechanism. Once the antigen attack is 

successfully counteracted upon, few of the antibodies remain in the system as 

memory cells for faster future response of the same or a similar antigen. The 

clonal selection algorithm (CLONALG) of the AIS paradigm has been utilized in 

the thesis work for optimization of a reaction for maximizing the adsorptive 

removal of chromium ions using synthetic polymer resins. The CLONALG 

algorithm is described in sufficient details in the Section (1.4.2 (A)). 

(D)  Fuzzy Logic (FL) 

Fuzzy Logic (FL) is a systematic mathematical formulation based on the 

human reasoning (intelligence) for solutions of problems involving uncertainties 

(Zadeh, 1965). Human reasoning is almost always, not exact and the decisions 

taken by us under uncertain conditions are based on weighting—to a certain 

extent—each option available for decision making. This is mimicked by FL 

through a fuzzy set theory as opposed to the Boolean logic (binary-valued logic). 

A Boolean logic set, although precise, comprises of only two values, represented 

by 0 and 1 and it does not adequately represent an imprecise information. The 
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fuzzy set theory uses membership functions having values between 0 and 1 to 

represent weighing of an option under uncertainties. The degree of membership in 

the fuzzy set theory allows an object (option) in the fuzzy set to be anywhere in 

the range of 0 (completely not in the set) to 1 (completely in the set), thus 

permitting to deal with uncertainties in a natural way (Bose, 1994). The values of 

fuzzy variables are expressed in terms of linguistic objects, e.g. based on the 

height, a person may be graded as short, medium or tall, with each of them 

defined by a suitable membership function. The common membership functions 

are, triangular, trapezoidal and Gaussian, which allow for gradual variations in 

the variables as opposed to the abrupt changes in the case of Boolean logic. For 

example, the temperature control of a domestic heater will have the following 

fuzzy set, 

},,,,{ HVWWCVCT     (1.1) 

where, T = temperature (variable to be fuzzified), and the linguistic terms 

applicable to the set are, VC = very cold, C = cold, W = warm, VW = very warm, 

H = hot. Membership function µ(T) quantify the input variables in the range 0 to 1 

to represent them in a fuzzy set graphically. Figure (1.2) shows the possible fuzzy 

membership function distribution of temperature using the triangular membership 

function. The variable to be fuzzified on the x-axis is called the universe of 

discourse (in the FL terminology) and y-axis depicts the degree of membership, 

one for each linguistic term defined for the temperature variable. 

 

 

 

 

 

Figure 1.2: Fuzzification of temperature variable using triangular membership 

function. 
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Figure 1.3: Information flow in a fuzzy logic system. 

Figure (1.3) shows the working of a typical fuzzy logic system, wherein the task 

of FL is to map an input space to an output space, with the mechanisms of 

fuzzification, rule-base scrutiny, fuzzy inference and defuzzification. The 

fuzzification module transforms the inputs, which are crisp numbers, into fuzzy 

sets using relative measures of the variable to be fuzzified. The rule-base is a set 

of if-then rules provided by expert knowledge about the system. The fuzzified 

inputs are scrutinized by these rules and the results are inferred by the fuzzy 

inference engine. Finally the defuzzification module transforms the resulting 

fuzzy set obtained from the inference engine into a crisp value as required by the 

system output.       

 Fuzzy logic is most suitable to model real life problems where the process 

knowledge/data is imprecise and noisy. FL provides an easy and faster way to 

arrive at a definite conclusion based upon vague, imprecise, noisy or incomplete 

input information. 

Following are the attractive features of fuzzy logic: 

 FL is conceptually easy to understand and apply as it is based on human 

reasoning. 

 FL is tolerant of imprecise and noisy data. 

 FL is able to model nonlinear functions of arbitrary complexity. 

 FL can be built using the experience of experts. 

 FL can be applied in combination with traditional control techniques. 

Due to these multiple attractive features, FL has been increasingly applied in 

various fields of engineering for tasks such as modeling, fault detection and 
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diagnosis and designing robust control systems and the table below, lists the most  

recent chemical engineering/technology applications of fuzzy logic.  

Table 1.1: Recent chemical engineering/technology applications of fuzzy logic 

Sr. 

No. 

Application 

area 
Specific study Reference 

1. 
Process 

modeling 

Process identification of reactive distillation 

by fuzzy-logic modeling for acetic acid 

recovery 

Araromi et 

al. (2014) 

Neuro-fuzzy modeling of microbial fuel cell 

for the investigation of power density and 

columbic efficiency 

Esfandyari et 

al. (2016) 

Predictive model for biomass pyrolysis based 

on fuzzy logic 

Lerkkasemsa

n (2017) 

2. 

Process 

fault 

detection/di-

agnosis 

Fault tree analysis   study of a distillation 

tower unit in a oil refinery process 

using fuzzy logic 

Omidvari et 

al. (2014) 

Investigation of fault diagnostic capabilities 

of fuzzy clustering of the Tennessee Eastman 

process 

Tóth and 

Hangos 

(2016) 

Fuzzy logic method used for the estimation 

of corrosion failure probability of oil and gas 

pipeline  

Zhou et al.  

(2016) 

Failure mode and effect analysis of 

supercritical water gasification system for 

sewage sludge treatment using fuzzy logic 

method 

Adar et al. 

(2017) 

 

Fuzzy logic used for fault diagnosis of a 

proton exchange membrane fuel cell 

Benmouna et 

al. (2017) 

3. 
Process 

control 

Distillation column control design using 

fuzzy logic method  

Vasičkanino

vá et al. 

(2016) 

Design of fuzzy logic controller for freeze 

drying system 

Fissore 

(2016) 

 

4. 
Process 

monitoring 

Process monitoring for the improvement of 

data reliability using fuzzy logic method for 

outlier detection 

Tanatavikorn 

and 

Yamashita 

(2015) 
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The fuzzy c-means clustering (FCC) algorithm, based on the concepts of 

FL has been used in this thesis for fault detection and diagnosis application of a 

continuous bioreactor generating biomass.  

Today‘s technology is competent enough to collect and store large 

amounts of data, from peta-bytes to zetta-bytes; however today‘s (or 

conventional) analytical approaches have limitations of data-size. With the 

generation of an astounding amount of data in industries, customer services, R&D 

institutes, and government departments and agencies, the main problem is making 

sense of these data and using it for prediction. This is in the realm of ―big data,‖ 

and new and novel approaches are being devised to compress and analyze (extract 

important knowledge from) the monitored and archived huge data. Newer CI-

based techniques such as deep learning neural networks are proposed to 

classify/model big data emanating from images and speech. Such upcoming 

applications range from healthcare to astronomical surveys. As an example in an 

upcoming application of astronomical surveys, wherein the ―Large Synoptic 

Survey Robotic Telescope‖ will be operational in Chile from 2022 and will scan 

the entire southern hemisphere sky every three days, taking images of 50 billion 

objects, generating 2 tera-bytes of data per hour, and in-effect accumulating a 150 

peta-byte imaging dataset in the next 10 years, the newer CI-based approaches 

will prove useful for feature extraction, feature selection, clustering, visualization, 

and classification for discovering important knowledge from the huge data. 

Another newer arena requiring intelligent tools is the Internet of Things (IoT), a 

network of physical objects (intelligent devices and smart objects) provided with 

sensors and actuators wherein, again the CI-based methods will prove their 

potential (Estevez, 2016). 

While the individual CI-based methodologies have been successfully 

applied to solve real-world problems, there also exist numerous cases of 

successful solutions obtained by applying hybrid CI-based techniques. Using the 

hybrid approach we gain the advantages of multiple CI systems. 

In commercial applications, the CI-based algorithms are now commonly 

used in video games, character recognition, image recognition, speech 

recognition, and ―data-mining.‖  Several leading software/information technology 
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such as Google, Facebook and Microsoft, are investing heavily in developing 

AI/CI based technologies. Although it's hard to predict the exact path that AI/CI 

will take in the future, however as seen from the increasing number of AI/CI 

based startups and the increasing amounts of funding for such firms it is clear that 

AI/CI will lead the technology industry of the future (Fortune, 2017). Following 

are the few commercial areas in which the AI/CI methods will dominate and make 

their mark in the future.     

 Business Intelligence and Analytics 

 Security: Cyber security and biometrics 

 Automobile Technology: Autonomous driving automobiles 

 Internet of Things 

 Health care industry 

An increasing use of AI/CI methodologies is also seen in chemical engineering 

and technology practice, which mainly include tasks such as process modeling and 

optimization, process fault detection and diagnosis, nonlinear process 

identification and control, QSPR (Quantitative Structure-Property Relationships) 

and QSAR (Quantitative Structure-Activity Relationships). The CI-based methods 

offer several attractive features over the conventional methods, while performing 

these tasks. The forthcoming sections describe these tasks in context with the 

conventional and CI-based methodologies applied for such process tasks.    

1.1. PROCESS MODELING 

Modeling is a process of establishing relations between the set of system 

variables to describe the behavior of the system. It essentially consists of 

development of mathematical relation(s) between the dependent (also termed 

―output‖ or ―response‖) and independent (also termed ―input‖ or ―predictor‖) 

variables in a manner such that these are capable of predicting accurately the 

value(s) of the former. Chemical process models are of two types: steady-state 

and dynamic models. The former describe the time-invariant behavior of a 

chemical reaction/reactor/process. Steady state process models are important 

during the process design and operation phases of the plant as they form the basis 

for the normal operation of the plant. On the other hand, dynamic models describe 
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the time-dependent behavior of the process and are more complex than the steady-

state models. These models are used in the control system design for analyzing the 

process response in case of disturbances, set-point changes, etc. as also for tuning 

the controllers. Commonly, reaction/reactor/process models are constructed using 

phenomenological and empirical approaches. 

(A) Phenomenological Modeling Approach 

The phenomenological modeling (also termed ―first principles‖ modeling) 

modeling rigorously describes the physico-chemical mechanisms underlying a 

reaction/process and thus requires a complete understanding of the heat and mass 

transport phenomena, kinetics, and thermodynamics thereof. First principles 

models have several advantages such as, 

 They provide an insight into the system/process behavior. 

 They are capable of both interpolation and extrapolation of the 

system/process behavior. 

 They are useful in scale-up of processes/equipment. 

Acquiring the required information for developing these phenomenological 

models is in general time-consuming, costly and tedious due to the following 

reasons, 

 Most real-life chemical systems/processes are inherently nonlinear and 

complex and thus difficult to model phenomenologically. 

 Often, multiple nonlinear interactive dependencies exist between 

system/process variables and parameters in a chemical process. 

 Modern day processes are complex and, therefore, there exists insufficient 

knowledge of the underlying physicochemical phenomena (e.g., heat and 

mass transfer mechanisms, reaction mechanisms and kinetics and the 

thermodynamics) thus requiring extensive efforts to arrive at a reasonable 

model. 

(B)  Empirical Modeling Approach 

The empirical approach to process modeling entails development of single 

or multi-variable linear/nonlinear regression models. In here, a random or an 

informed guess is made regarding the structure of the data-fitting function and its 
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parameters are determined using process data and a suitable linear/nonlinear 

parameter estimation method. This approach is relatively less tedious than the 

phenomenological modeling although guessing an appropriate fitting function and 

subsequent parameter estimation does involve a trial and error procedure. Among 

these, the first task of specifying the fitting function requires multiple trials 

especially for nonlinear systems since a large number of fitting functions compete 

for fitting the data. Also, the domain over which an empirical model is valid may 

be limited since it is determined by the ranges of the data used in building the 

model. The other disadvantages of empirical modeling are that a statistically well 

distributed data is required to develop a good empirical model of the process, and 

empirical models are in general poor at extrapolation. The principal advantage of 

empirical modeling is that a detailed knowledge of the underlying 

physicochemical phenomena of the process is not required. 

The above-stated limitations of phenomenological and empirical modeling 

approaches created a need for a paradigm shift in the approach towards modeling 

of chemical processes. Specifically, an approach, with following attributes is well-

suited when phenomenological and empirical modeling are infeasible. 

 A method that doesn‘t require an in-depth knowledge of the underlying 

physicochemical phenomena of a process (i.e., it should be data-driven). 

 The modeling formalism doesn‘t require pre-specifying the form of the 

data-fitting function. 

 The method should be capable of developing models possessing good 

prediction accuracy and equally important an excellent generalization 

capability. 

In recent years, Computational Intelligence (CI) based approaches possessing 

above-stated attributes have offered a number of attractive avenues for modeling 

and optimization of chemical systems/processes. The studies presented in this 

thesis have employed these CI-based approaches extensively. 
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1.2. COMPUTATIONAL INTELLIGENCE BASED 

MODELING METHODOLOGIES 

The CI-based methodologies have found a large number of modeling 

applications in every branch of science and engineering. The most commonly used 

CI-based modeling methodologies are artificial neural networks (ANNs), fuzzy 

logic (FL), and support vector regression (SVR), while genetic programming 

(GP) despite possessing some attractive properties has been rarely used method 

for modeling of chemical systems/processes. 

1.2.1. Artificial Neural Network (ANN) 

Artificial neural network (ANN) is a information-processing formalism 

based on the mechanisms followed by highly interconnected networks of the 

cellular structure of a human brain. The billions of cells forming the network in 

the human brain are known as neurons. Figure (1.4) shows the basic structure of a 

biological neuron. It is well known that the complex network of the neurons gives 

humans their intelligent characteristics. Individually, a neuron performs simple 

signal processing, however the neural network formed by billions of neurons 

possesses immense information processing capability which forms the basis of 

human intelligence. This intelligence imparting ability of the neural network is 

utilized in an artificial neural network, which is basically a computational 

algorithm mimicking the behavior of a biological neural network for 

accomplishing various tasks such as classification, regression, clustering, pattern 

recognition, memory associations etc.  

The artificial neuron works in an analogues way as does a biological 

neuron. As shown in Figure (1.4), signals coming in through various inlet 

connectors known as dendrites, are summed in the central nucleus of the cell. The 

summed signal is further propagated through the axon connectors to downstream 

neurons. The axons of a neuron are connected to downstream neurons through a 

separating nerve cell gap called the synapse. A synapse acts as an activation 

function for the electrochemical signals transferred. Information 

processing/transfer occurs in the network through electrochemical signals. The 

signal is then received by the connected downstream neuron and processed in a 
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similar fashion. These numerous neurons working in conglomeration in the 

network finally generate the processed signal at the output nodes of the network.   

 

Figure 1.4: A biological neuron. 

 

Figure 1.5: A computational neuron. 

The information flow (via signals) in a computational (artificial) neuron, 

commonly known as a ‗node‘, is shown in Figure (1.5). As represented in the 

figure, if an N-dimensional input vector, x = [x1, x2, x3,…xN-1, xN]
T
, is presented to 

the neuron, each of the input xi is weighed by a weight wi and is passed to the 

summing junction. A unity input with a weight ‗b‘, known as bias is also fed to 

the summing junction. Here, all the weighed inputs are summed according to Eqn. 

(1.2) and the resulting output ‗z‘ is transformed by an appropriate transfer function 

(known as an activation function in the ANN terminology) to produce the desired 

output (target) ‗y‘.     

Synapse 
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It is the use of nonlinear transfer functions that impart ANNs their ability of 

nonlinear classification/regression. The commonly used transfer functions are:  

i. Logistic Sigmoid Function: 
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iii. Linear Function: zzf )(      (1.5) 

iv. Gaussian Function: )exp()( 2zzf      (1.6) 

This nonlinear transformation and multivariable problem handling capabilities of 

ANNs has been extensively utilized by various researchers over the years by 

modifying the basic architecture of the ANNs for solution of specific problems 

under consideration. Thus, there exist various types of ANNs suitable for various 

tasks such as regression, classification, clustering, pattern recognition etc. Table 

(1.2) lists various types of ANNs along with their information flow and learning 

modes (Tambe et al., 1996). 

Table 1.2: Classification of commonly used ANN architectures 

Feed-forward information flow Feed-backward information flow 

Learning Approach 

Supervised Unsupervised Supervised Unsupervised 

Perceptron  Kohonen Self- 

organizing 

Feature  

Map (SOFM) 

Fuzzy Cognitive  

Map (FCM) 

Discrete  

Bidirectional  

Associative  

Memory (BAM) 

Multilayer  

Perceptron 

(MLP) 

Linear 

Associative  

Memory (LAM) 

Brain-State in-a- 

Box (BSB) 

Additive 

Grossberg  

(AG) 

Counter- Learning Vector   Analog Adaptive  
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Feed-forward information flow Feed-backward information flow 

Learning Approach 

Supervised Unsupervised Supervised Unsupervised 

propogation  

(CP) 

Quantizer (LVQ) Resonance 

Theory  

(ART2) 

Radial Basis  

Function1 

 (RBF) 

  Discrete 

Hopfield  

(DH) 

Boltzmann  

Machine (BM) 

  Continuous 

Hopfield  

(CH) 

Radial Basis  

Function1 

 (RBF) 

   

Cauchy  

Machine (CM) 

   

(A)  Multi-Layer Perceptron Neural Network (MLPNN) 

The most widely used ANN architecture for steady-state process modeling is 

the fully interconnected feed-forward multi-layer perceptron (MLP) hereafter 

termed as the multi-layer perceptron neural network (MLPNN) architecture. A 

MLPNN has proven capabilities for nonlinear modeling of a full multiple input-

multiple output (MIMO) system (Tambe et al., 1996). Given an example MIMO 

data set consisting of independent (input), and the corresponding dependent 

(output) variables of a system/process, an MLPNN has the ability of learning and 

generalizing the nonlinear relations that exist between the dependent and the 

independent variables. The attractive features of MLPNN based modeling are 

(Tambe et al., 1996): 

 MLPNNs can approximate any complex, nonlinear MIMO relations in a 

given process/system dataset by performing supervised regression. 

 MLPNNs use a generic nonlinear function for regression/classification 

and thus it is not necessary to pre-specify (as required to be pre-specified 
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for empirical modeling) the exact form of the data-fitting function 

explicitly.  

 A well-trained MLPNN process/system model possesses good prediction 

accuracy and generalization performance, due to which it performs well, 

while predicting a test example set that, does not belong to the training 

dataset. 

 

Figure 1.6: Architecture of a typical multi-layer perceptron neural network 

trained for a MIMO dataset. 

The MLPNN‘s architecture consists of an input layer, one or more 

intermediate layers known as hidden layers and an output layer. The nodes in a 

layer are fully interconnected with nodes in the consecutive layers, as shown in 

Figure (1.6). The interconnections are weighed by weights {wij}, where ‗i‘ 

represent the i
th

 node in previous layer and ‗j‘ represents the j
th

 node in the current 

layer. Bias nodes are present (with a unity output) in its input and hidden layers. A 

bias node is connected to all the nodes in the subsequent layer through appropriate 

weights. The output of a MLPNN modeling a multiple input-single output (MISO) 

system is given by, 

)(ˆ
oo zfy      (1.7) 
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where, ŷ = predicted output, fo = output transfer function, zo = output of the 

summing junction, wio = weight between the node ‗i‘ in the hidden layer and the 

output node ‗o‘, xio = input from node ‗i‘ to the output node ‗o‘, bo = bias weight 

for the output node ‗o‘ and n = number of nodes in the hidden layer. Thus, we can 

express the output of a single hidden layer MLPNN as, 
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where, fi = transfer function of the i
th

 node in the hidden layer, subscript ‗H‘ 

indicates the hidden layer and N = number of input layer nodes (equal to the 

number of inputs). 

The MLPNN consisting of two hidden layers for modeling a full MIMO 

system is shown in Figure (1.6). In general, the number of input layer nodes is 

equal to the number of independent variables (inputs: x1, x2,…xN) in the N-

dimensional input space while the number of nodes in the output layer is equal to 

the number of ‗S‘ dependent variables (outputs: y1, y2,…yS). The number of 

intermediate hidden layers and the number of nodes in each hidden layer are the 

parameters of the MLPNN architecture and these are determined heuristically 

based on the model‘s desired prediction accuracy and generalization performance. 

Any ANN and so the MLPNN works in the following two modes: 

1. Training Mode: In the first step, known as the training or learning mode of 

a MLPNN, the dataset (inputs and the corresponding outputs/targets) to be 

modeled is presented to the MLPNN in either batch mode or on-line mode. 

Training involves adjustment of the interconnecting weights in the 

MLPNN to drive the network towards desired regression abilities with 

good prediction accuracy and generalization capability. Typically in the 

on-line training mode a single data-point is presented to the MLPNN at a 

time; then the errors are calculated and weights are updated and this is 

done repeatedly for all the data-points till the termination criteria is met. In 

the batch mode all the data-points are presented sequentially to the 

MLPNN, an average error is calculated and weights are updated. This is 
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done repeatedly till the termination criteria is met. The popular training 

algorithm for a MLPNN is the error-back-propagation (EBP) algorithm as 

devised by Rumelhart et al. (1986). 

2. Prediction Mode: After successful training of the MLPNN, the developed 

MLPNN model can then be used to predict the outputs for a given input 

set, which is not a part of the original training set. Thus now the developed 

MLPNN model can be used for prediction.  

Error-back-propagation (EBP) Training 

As mentioned previously the error back propagation (EBP) algorithm by 

Rumelhart et al. (1986), has been the most popular MLPNN training algorithm.  

Consider a given MISO example dataset, 

    )},{( jj yxD 
    

(1.10) 

consisting of P number of patterns (j = 1, 2,…,P) with each input pattern xj 

containing N inputs (x1, x2, …, xN) and the corresponding single output (yj). When 

an input pattern from this dataset is presented to the MLPNN, the EBP algorithm 

calculates the prediction error and minimizes it by adjusting the interconnecting 

weights of the network. A pseudo-code of the EBP algorithm for a single hidden 

layer MLPNN architecture is listed in Figure (1.7). The error minimization is done 

in two passes. Starting with randomly initialized weights, in the forward pass the 

MLPNN predicts the output
jŷ  for a presented input pattern ‗xj‘. This predicted 

output is then compared with the actual or target output to determine the 

prediction error as, 

 jjj yye ˆ
    

(1.11)
 

In the backward pass this error is minimized in steps. In the first step the weights 

connecting the nodes in the output and the hidden (previous to output) layer are 

updated according to the EBP algorithm using the gradient-descent technique 

known as ‗delta rule‘ as, 

 jjkk xeww   )1(1    
(1.12) 

where, Δwk = weight change in current iteration ‗k‘, Δwk–1 = weight change in the 

previous iteration, η = learning rate, μ = momentum coefficient, and xj = input to 

the node ‗j‘, ej = error for the j
th

 node, xj = input to the j
th

 node. Next the weights 

interconnecting the input and the hidden layer are updated using the same delta 
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rule (see Eqn. 1.12), using the error that is propagated back from the next layer. 

The learning rate, η (0 < η < 1) and the momentum coefficient, μ (0 < μ < 1) are 

EBP specific parameters that are tuned heuristically to obtain the best 

performance. Once the whole dataset is presented to the network an average error 

metric such as the root mean squared error (RMSE) as given in Eqn. (1.13) is 

computed, which is minimized iteratively to determine the optimal network 

weights.  

 
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(1.13) 

where, yj denotes the desired (or target) values and 𝑦 j refers to the MLPNN model 

predicted values corresponding to the j
th

 pattern. A pseudo-code of the EBP 

algorithm for the training of a single hidden layer MLPNN model is listed in 

Figure (1.7). 

 

Figure 1.7: Pseudo-code of error-back-propagation (EBP) algorithm for a single 

hidden layer MLPNN. 

ANN Training Issues 

To develop an optimal MLPNN model, following factors are critical, 

 Architectural factors:  the number of hidden layers, the number of nodes in 

each hidden layer, and the transfer function at hidden layer nodes. 

 EBP algorithm-specific factors: learning rate (η) and momentum 

coefficient (μ). 
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For design and development of an optimal MLPNN model the effect of these 

parameters must be rigorously investigated. This is commonly done using 

heuristics; the details of which can be found in, for example, Freeman and 

Skapura (1991), Zurada (1992), Bishop (1994) and Tambe et al. (1996). 

During the training of an MLPNN, its, output prediction accuracy is 

monitored in terms of  two statistical quantities, namely, coefficient of correlation 

(CC) and  root mean squared error (RMSE) between the model predicted output 

and its target (desired) value from the training dataset; in general, as CC increases, 

RMSE decreases as the number of training cycles increases. Although, in general 

as training cycles increase the prediction accuracy of the model increases, above a 

certain number of cycles, the generalization ability of the model starts decreasing. 

Such a model is known to be over-trained or over-fitted. An over-trained ANN 

model captures the micro details of the dataset such as noise, at the expense of 

learning smooth trends in the dataset. Such an over-trained model is useless since 

it makes inaccurate predictions for a new set of inputs resulting in poor 

generalization. To avoid the problem of over-training of an ANN, the dataset is 

divided into training and test subsets. While the training set is used for training 

the network, the test set is used for validating the generalization ability of the 

network undergoing the training. Training is stopped at the point, when the 

network starts over-fitting of the dataset. A complete procedure for determining an 

optimal MLPNN architecture and the training (EBP) parameters is summarized 

for example in Bishop (1994); and Tambe et al. (1996). MLPNNs have been used 

successfully in several chemical engineering and technology applications and a 

partial list of such most recent applications is given in the following table. 

Table 1.3: Recent chemical engineering/technology applications of multi-layered 

perceptron neural network 

Sr. 

No. 

Application 

area 
Specific study Reference 

1. 
Process 

Modeling 

A modified multilayer perceptron model 

for gas mixture analysis 

Moore et al. 

(1993) 

Modelling of an Industrial Fluid 

Catalytic Cracking Unit Using Neural 

Networks 

Michalopoul

os et al. 

(2001) 

Hybrid process modeling and Nandi et al. 
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Sr. 

No. 

Application 

area 
Specific study Reference 

optimization strategies integrating neural 

networks/support vector regression and 

genetic algorithms: study of benzene 

isopropylation on Hbeta catalyst 

(2004) 

Artificial neural network based modeling 

of activated sludge process 

Moral et al. 

(2008) 

Estimation of thermal conductivity of 

ionic liquids 

Hezave et al. 

(2012) 

Experimental investigation, modeling 

and optimization of membrane separation 

using artificial neural network and multi-

objective optimization using genetic 

algorithm 

Soleimani et 

al. (2013) 

Prediction of carbon dioxide solubility in 

ionic liquids using MLP and radial basis 

function (RBF) neural networks 

Tatar et al. 

(2016) 

Correlating thermal conductivity of pure 

hydrocarbons and 

aromatics via perceptron artificial neural 

network (PANN) method 

Lashkarbolo

oki et al. 

(2017) 

2. 

Process fault 

detection and 

diagnosis 

Optimum parameters for fault detection 

and diagnosis system of batch reaction 

using multiple neural networks 

Tan et al. 

(2012) 

Designing supervised local neural 

network classifiers based on EM 

clustering for fault diagnosis of 

Tennessee Eastman process 

Rad and 

Yazdanpanah 

(2015) 

3. 
Soft sensor 

development 

Soft sensor for continuous product 

quality estimation (in crude distillation 

unit) 

Rogina et al. 

(2011) 

Development of soft sensor with neural 

network and nonlinear variable selection 

for crude distillation unit process 

Sun et al. 

(2016) 

4. 
Data 

classification 

Designing supervised classifiers 

for multiphase flow data classification 

Tarca et al. 

(2004) 

Comparison of Fisher's linear 

discriminant to 

multilayer perceptron networks in the 

classification of vapors using sensor 

array data 

Pardo et al. 

(2006) 

Luciferase-based bioassay for rapid Denisov 
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Sr. 

No. 

Application 

area 
Specific study Reference 

pollutants detection and classification by 

means of multilayer artificial neural 

networks 

(2017) 

5. 
Model based 

process control 

Neural modelling, control and 

optimization of an industrial grinding 

process 

Govindhasa

my et al. 

(2005) 

System identification and model 

predictive control for a flotation column 

Mohanty 

(2009) 

6. 

Quantitative 

Structure- 

Activity/Proper

ty 

Relationships 

(QSAR/QSPR) 

Elicitation of the most important 

structural properties of ionic liquids 

affecting ecotoxicity in limnic green 

algae; a QSAR approach 

Izadiyan et 

al. (2013) 

Development of QSAR model to predict 

the ecotoxicity of Vibrio fischeri using 

COSMO-RS descriptors 

Ghanem et 

al. (2017) 

 

The ANN algorithms are provided by various software packages, out of which 

some are open source packages. Following are the popular ANN software 

packages. 

 

1. RapidMiner (Mierswa et al., 2006): It is a freeware from ―Technical 

University of Dortmund‖, consisting of various CI-based algorithms such 

as ANNs, SVR, GA, etc. for engineering and business applications 

involving machine learning, data mining, text mining and predictive 

analytics. 

2. IBM-SPSS® (2011): IBM-SPSS Statistics is mainly a statistical analysis 

software, that also includes MLPNN based ANN learner with various 

training facilities (batch/online) and algorithms (conjugate 

gradient/Levenberg Marquardt). 

3. MATLAB Neural Network Toolbox™ (MALTAB, 2000): MATLAB is a 

commercial mathematical/numerical computational software, widely used 

in research and industries. Built on top of MATLAB are various toolboxes, 

specially developed for specific domains. The neural network toolbox™ is 

such a commercial toolbox providing algorithms for different ANN 

architectures for accomplishing tasks such as regression, classification, 
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clustering, dimensionality reduction, time-series forecasting, and modeling 

of dynamical systems. 

1.2.2. Genetic Programming (GP) 

Genetic programming (Koza, 1992) is an evolutionary, population-based 

methodology possessing stochastic search and optimization features. It is inspired 

from the Darwinian theory of biological evolution as an extension of genetic 

algorithm (GA) (Holland, 1975) methodology. It was originally proposed to write 

computer programs doing pre-specified tasks. Additionally, GP is also capable of 

symbolic regression. Given a data-driven modeling problem, GP-based symbolic 

regression (GPSR) can automatically search and optimize the form and parameters 

of an optimally fitting linear/nonlinear function. (see Figure (1.8)).  

 

Figure 1.8: The symbolic regression concept of GP. 

In the GPSR procedure, random expressions are generated initially and 

these are evolved over multiple generations according to the principles of genetic 

evolution. Although novel and potentially attractive, the GP methodology has 

been rarely used to solve chemical engineering problems as compared to the use 

of other CI-based methodologies.       
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GP Implementation 

For a given multiple input-single output (MISO) example dataset (see Eqn. 

(1.10)) consisting of P number of patterns (k = 1, 2,…,P), where each input 

pattern xk contains N inputs (x1, x2, …, xN) and the corresponding  single output 

(y), the task of the GPSR is to determine the best combinations of the library 

symbols l = {x, c, o}, so as to obtain the best-fit function ‗f‘ for the given dataset, 

  ),...,,,...,( 2121 RN cccxxxfy 
   

(1.14) 

The library symbols consist of the following sets, x = [x1, x2, …,xN] is the vector 

of independent variables, c = [c1, c2, … cR]
T
 is the vector of constants/parameters 

and o = [o1, o2,…oS]
T
 is the vector of operators, e.g. {+, –, *,/, ^, exponentiation, 

logarithm, square root}. 

The objective function that GPSR minimizes for arriving at the best 

expression ‗i‘ is of a form, 

 idiii nRMSEF   *    (1.15)
 

where, RMSEi = root mean squared error for the candidate expression ‗i‘  

evaluated over the entire dataset, α  = parsimony pressure, ndi = number of nodes 

in the candidate expression ‗i‘, βi = penalty coefficient for expressions without 

variables. To achieve the above-stated modeling task, the GPSR iterates over a 

population of candidate expressions to evolve into best-fitting expressions through 

a sequential process of genetic operations such as selection, reproduction by 

crossover and mutation, over the generations.  

For an efficient operation, GPSR requires specific data structures to 

express the candidate expressions/models such as the tree-structured GP, linear 

GP, Cartesian GP and stack-based GP. The most popular data structure commonly 

employed by GPSR is the tree structure. It is a hierarchical structure with a root 

node and branches extending from the root, forming different sub-branches, 

joining the leaves (nodes) at different levels. A leaf (node) is either of the two 

types, namely ―operator/function‖ and ―terminal‖ node. The operator node 

consists of a mathematical operator from the library set ‗o‘ as mentioned 
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previously. A terminal (operand) node consists of either a constant (ci) from the 

constants library set ‗c‘ or an input variable (xi) from the input variable library set 

‗x‘. A tree is traversed from the left-bottom to right-top direction for a sub-branch, 

to get the represented expression, as shown in the basic tree structure in Figure 

(1.9). Figure (1.9) also shows the common genetic operations GPSR performs on 

such tree structures. 

 

Figure 1.9: Schematic of genetic programming: (a) Basic tree structure, (b) 

Crossover operation, (c) Mutation operation. 

The trees of variable depths allow construction of expressions of varying lengths 

and complexity. GPSR being a stochastic procedure, it is likely that repeated 

GPSR runs—for instance, using different random initializations—will lead to 

different solutions. So to arrive at an acceptable model a set of several GPSR runs 

is required. A GPSR pseudo-code is given in Figure (1.10) and the steps are 

explained next. The stepwise procedure for the implementation of a typical GPSR 

run is given below. 

Initialization (Step 1): Initially the user has to specify the library sets of input 

variables, operators and constants for the GPSR to select randomly from the 
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specified set. An initial population of candidate trees (expressions) is generated 

randomly. 

Fitness evaluation (Step 2): In this step the fitness of each candidate tree is 

determined, e.g. according to Eqn. (1.15), by determining the RMSE over the 

entire dataset. The fitness function assigns a higher fitness to expressions making 

better predictions.  

Selection (Step 3): In this step a ―mating‖ pool of candidate expressions is created 

by selecting the best candidate expressions, based on their fitness. The occupants 

of this mating pool forming the parents, take part in the most important mating 

operation by crossover (step 4), to produce the offspring candidate tree 

expressions. The selection step allows the best candidate expressions to form the 

mating pool to undergo crossover. Several selection procedures exist, such as the 

Roulette-wheel selection (De Jong, 1975), tournament selection (Goldberg, 1990), 

truncation selection (Crow and Kimura, 1979) as used in GA are also used for 

GPSR. 

Crossover (Step 4): Here, two candidate expressions (parents) from the mating 

pool are randomly selected to undergo crossover. The crossover operation 

between a parent pair occurs by exchanging of sub-branches between the parent 

tree expressions to create off-spring expressions. Figure (1.9(b)) shows an 

illustration of such a crossover operation on the tree structures. 

Mutation (Step 5): In this step, the population of the selected parent and generated 

offspring tree expressions are subjected to random mutation. In mutation, the 

content (symbol) of a node is replaced with other content from the same library 

set. The mutation is carried out randomly with a small probability to maintain 

diversity in the population and prevent the trees from getting stuck in a local 

minimum. Figure (1.9(c)), shows a mutation operation on a tree structure wherein 

a randomly selected ‗addition‘ operator node is replaced randomly to a ‗division‘ 

node. The mutated population representing a new generation is now ready for the 

next iteration cycle and thus the generation index is incremented.  

Termination (Step 6): At this stage the termination criteria is checked to ascertain 

if the stopping criteria has met. The stopping criterion as specified by the user 
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could be either a specified number of generations or no significant change in the 

fitness value over the successive generations. If the set termination criteria is not 

met, steps 2 to 5 are repeated till the convergence is reached. 

The whole GP based symbolic regression procedure is summarized in the form of 

a pseudo-code below. 

 

Figure 1.10: Pseudo-code of genetic programming algorithm for symbolic 

regression (GPSR). 

In this way, GPSR works on the given dataset without making any 

assumptions about the form and coefficients of the fitting-function. Despite of its 

several attractive features, GP has been rarely utilized in chemical 

engineering/technology applications. The following Table (1.4) lists a few recent 

GP applications in chemical engineering/technology domain. Further details of 

GPSR can be found in, e.g., Vyas et al. (2015). 
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Table 1.4: Recent chemical engineering/technology applications of genetic 

programming 

Sr. 

No. 

Application 

area 
Specific study Reference 

1. 
Process 

modeling 

Prediction of the minimum spouting 

velocity in a conical base spouted bed 

Hosseini et 

al. (2014) 

Genetic Programming method used for 

modeling and optimization of 

surfactant/polymer flooding 

 
Bahrami 

et al. 

(2016)
 

Modeling of supercritical CO2 thermal 

conductivity using genetic programming 

 Rostami 

et al. 

(2017a) 

Genetic programming based modeling 

of adsorption of phenols and 

nitrophenols by activated carbon  

Emigdio et al. 

(2017)
 

Prediction of hydrocarbon/water 

interfacial tension using 

genetic programming  

Rostami et al. 

(2017b) 

2. 

Process fault 

detection/diagn

osis 

Fault diagnosis of centrifugal pump 

using genetic programming  

Sakthivel et al. 

(2012) 

Fault propagation analysis of a 

simulated hydrogen production plant 

using genetic programming 

Gabbar et al. 

(2014) 

3. 

Quantitative 

Structure- 

Activity/Proper

ty 

Relationships 

(QSAR/QSPR) 

Quantitative structure–retention 

relations for the prediction of Kovats 

retention indices based on 

Genetic programming symbolic 

regression 

Goel et al. 

(2015) 

Development of QSPR model for 

predicting solubility parameters of 

polymers using genetic programming  

Koç and Koç 

(2015) 

4. 
Soft sensor 

development 

Soft sensor based process identification 

of analyte-specificity using a non-

specific whole-cell biosensor using 

genetic programming 

Podola and 

Melkonian 

(2012) 

Development of soft sensor models for 

biochemical processes 

using genetic programming 

 Sharma and 

Tambe (2014) 

5. Process control 
Genetic Programming  as a tool for 

control system design  

Balandina 

(2017) 
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A number of GP-based software tools are currently available; a few prominent 

ones are described below in brief. 

1. Eureqa Formulize (Schmidt and Lipson, 2009): This commercial software 

package is optimized to provide ―parsimonious‖ (low complexity) 

solutions to a given regression problem. It has the facilities to pre-specify a 

seed function, adjust the amount of split between the training and test 

datasets, pre-specify the mathematical/relational/logical operators and pre-

specify the error metric to be minimized for the GP run.       

2. pySTEP (Khoury, 2009): This is an open source Python based GP software 

package from Massachusetts Institute of Technology (MIT) and its 

abbreviation stands for ‗Python Strongly Typed gEnetic Programming‘. It 

can easily evolve populations of tree structures with precise grammatical 

and structural constraints. To run the pySTEP application the user needs to 

pre-specify the population size, minimum tree depth, maximum tree depth, 

maximum number of generations, crossover probability, mutation 

probability and reproduction probability.  

1.2.3. Support Vector Regression (SVR) 

Support vector machine (SVM) is a statistical/machine learning methodology, 

originally devised for performing supervised linear classification (Vapnik, 1995; 

Burges, 1998). By introducing nonlinear feature or kernel functions in SVM, it is 

possible to perform nonlinear classification as well. Support vector regression 

(SVR) is an adaption of SVM that performs regression. To do this, SVR, first 

nonlinearly maps the inputs into a high dimensional ―feature/kernel‖ space (Φ), 

wherein these are correlated linearly with the output. Support vector regression 

follows the structural risk minimization (SRM) principle, as opposed to the 

empirical risk minimization (ERM) commonly employed by the standard learning 

methods, such as MLP neural network. The SRM approach creates an optimized 

SVR model such that, both the prediction errors and model complexity are 

concurrently minimized. This is done by considering both the prediction error and 

model complexity in the loss function to be minimized. Owing to this attribute an 

SVR model possesses a higher potential to generalize the learned input-output 

relations.  
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To solve a nonlinear regression problem for a given dataset (see Eqn. (1.10)), the 

SVR methodology considers the following linear estimation function,  

    bxwx  ))(()(fy     (1.16) 

where, w denotes the weight (parameter) vector; x is the input vector, b is the bias 

(constant) vector; (x) is the kernel function and ( ( ))xw describes the dot 

product in the feature/kernel space. Although, Eqn. (1.16), is linear, nonlinear 

regression is performed by first nonlinearly mapping the input data vector, x into a 

high-dimensional feature space, Φ and performing linear regression in that space. 

Thus, the problem of nonlinear regression in the lower dimensional input-space is 

transformed into a linear regression problem in a higher dimensional 

feature/kernel space.  

Following kernel functions are commonly used with SVM/SVR formalisms, 

i. Simple dot product kernel function: 

  
)(),( jiji xxxx 
    (1.17) 

where, xi and xj are the variables on which the operation (here dot product) 

is performed. 

ii. Simple polynomial kernel function: 

  
d

jiji xxxx ))(1(),( 
   (1.18) 

where, d = degree of the polynomial. 

iii. Radial basis kernel function: 

  
)||exp(),( 2

jiji xxxx  
  (1.19) 

where, γ = kernel gamma. 

iv. Anova kernel function:  
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where,  = scale parameter, N = number of examples. 

There are a number of loss functions available, such as the Laplacian, Huber‘s, 

Gaussian, and -insensitive for the SVR formulation. Among these, the most 

common is the robust -insensitive loss function (Vapnik, 1995) (see Figure 

(1.11)) given as, 

  





 


otherwise0

|)(|for|)(|
))((

 yxfyxf
yxfL

  (1.21) 

where , commonly known as epsilon is a precision parameter representing the 

radius of the tube located around the nonlinear regression function, f(x) (see 

Figure (1.11)).  

 

Figure 1.11: Schematic of SVR using the ε-insensitive loss function (ε: tube 

radius, ξ, ξ‘: soft margins). 

The region within this tube is known as ‗-insensitive‘ zone, since the loss 

function ‗L‘ is formulated such that it assumes a zero value in this zone and as a 

result it does not penalize the prediction error with magnitudes smaller than ‗‘. 

Ideally, the tube diameter depicts the amount of noise in the data. The 

optimization criterion in SVR penalizes those data points, whose 'y' values lie 
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more than ‗ε‘ distance away from the regression function f(x). The basic 

symmetric loss function (defined in Eqn. (2.21)) is modified for minimization of 

the empirical risk by adding the slack variables, ξj, and ξj‘, j = 1, 2, …, P, into the 

function for a set of linear constraints. The slack variables, ξj, and ξj‘ are a 

measure of the deviation (yj – f(xj)) from the boundaries of the -insensitive zone. 

Thus, the overall loss function using the -insensitive loss function and 

introducing the regularization constant, ‗C‘, the objective function to be 

minimized becomes, 


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   (1.23) 

The SVR optimizes the position of the -insensitive tube around the data so as to 

get the best regression fit (see Figure (1.11)). Specifically, the optimization 

criterion in Eqn. (1.23) penalizes those training data points whose output values 

‗y‘ lie more than ‗‘ distance away from the fitted function, f(x). The stated excess 

positive () and negative (‘) deviations are represented in terms of the slack 

variables in Figure (1.11). These slack variables assume non-zero values outside 

the -insensitive region. While fitting the function f(x) to the training data, the 

SVR minimizes the training set prediction error by minimizing both the slack 

variables (j and ξj‘) and also 
2

w  for increasing the flatness of the function or 

penalizing its over-complexity. This avoids the problem of under-fitting and over-

fitting of the training data to the fitting function and thus increases the 

generalization capability of the SVR model. Finally the dot product in Eqn. (1.16) 

is replaced with an appropriate kernel function to write the SVR-based regression 

function in its general form as, 
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where, the weight vector ‗w‘ is expressed in terms of the Lagrange multipliers λ 

and λ*. The values of these multipliers are obtained by solving a convex quadratic 

programming problem generated by combining the constraints with the objective 

function as in Eqn. (1.24). On solution of the optimization problems in terms of 

the Lagrange multipliers, we get only few of the coefficients, (λ − λ*), tobe non-

zero and the corresponding input vectors, xj, are known as ―support vectors 

(SVs)‖. The SVs are the most informative data points, which compress the 

information content of the training set spanning the whole training dataset to only 

a few example data-points in the training set. Cherkassky and Ma (2004) suggest 

important guidelines for the judicious selection of SVR parameters. A more 

detailed description of SVR is provided, for example by, Vapnik (1995) and 

Nandi et al. (2004). 

Distinctive features of SVR are: 

 SVR uses the principles of structural risk minimization, which penalizes 

the model complexity while minimizing the training dataset error, thus 

resulting in parsimonious models with lesser complexity and good 

generalization capability. 

 The loss function minimized by SVR is quadratic function, which 

possesses a single minimum and, thus, it provides a globally optimum 

solution. 

 SVR allows for a robust regression function with sparse solutions. 

The SVM/SVR methodologies, due to their robustness and automatic control of 

the solution complexity, have been used in various process engineering tasks as 

listed in the table below. 

Table 1.5: Recent chemical engineering/technology applications of support vector 

regression 

Sr. 

No. 
Application area Specific study Reference 

1. Process modeling 

A bayesian inference based two-stage 

support vector regression framework 

for soft sensor development in batch 

bioprocesses 

Yu  (2012)  

 

Modelling and predictive control of a  Ławryńczuk 
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Sr. 

No. 
Application area Specific study Reference 

neutralisation reactor using 

sparse support vector machine wiener 

models 

(2016) 

 

Predictive model of chemical flooding 

for enhanced oil recovery purposes: 

application of least square 

support vector machine 

Ahmadi and 

Pournik 

(2016) 

 

2. 
Process fault 

detection/diagnosis 

Simultaneous fault diagnosis using 

multi class support vector machine in 

a dew point process 

Pooyan et al. 

(2015) 

SVM and PCA based 

fault classification approaches for 

complicated industrial process 

Jing and 

Hou (2015) 

 

Fed-batch fermentation 

penicillin process fault diagnosis and 

detection based 

on support vector machine 

Yang and 

Hou (2016) 

3. 
Soft sensor 

development 

Soft-sensor development for fed-batch 

bioreactors 

using support vector regression 

Desai et al. 

(2006) 

A soft sensor based on adaptive fuzzy 

neural network 

and support vector regression for 

industrial melt index prediction 

Zhang and 

Liu (2013) 

 

4. 

Quantitative 

Structure- 

Activity/property 

Relationships 

(QSAR/QSPR) 

A new kernel function 

of support vector regression combined 

with probability distribution and its 

application in chemometrics and the 

QSAR modeling 

Xue and Yan 

(2017) 

 

5. Data classification 

Application of support vector machine 

to rapid classification of uranium 

waste drums using low-resolution γ-

ray spectra 

 Hata et al. 

(2015) 

The SVM/SVR algorithms are a part of various software packages. Following are 

the popular SVM/SVR based software packages, 

1. RapidMiner (Mierswa et al., 2006): Along with numerous other data-

driven modeling and optimization routines, RapidMiner Studio includes 
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SVM and SVR modules for conducting classification and modeling, 

respectively.  

2. LIBSVM (Chang and Lin, 2001): LIBSVM is a free open source software 

with codes available in both C++ and Java and has facilities to perform 

support vector classification, (C-based and nu-based), regression (epsilon-

based and nu-based) and distribution estimation (one class-based SVM).  

1.3.  PROCESS OPTIMIZATION 

Optimization is the task of obtaining the best solution(s) from among 

multiple possible ones while satisfying pre-defined constraints. A typical 

optimization goal consists of maximization of profits expressed, for instance, as 

minimization of raw materials and/or resources used, or maximization of the 

product quantity along with the quality. For example, a typical reactor operation 

optimization involves determination of the optimum reactor operating and feed 

conditions so as to get maximum product yield from minimum amount of 

reactants, energy, catalyst, etc. Optimization requires an accurate model of the 

system under study. The objective function to be maximized/minimized using an 

optimization algorithm pertaining to a real life industrial optimization problem 

involves multiple variables and constraints.    

1.3.1. Conventional Optimization Approaches 

The conventional optimization approaches are based on deterministic 

methods with main emphasis on the gradient ascent/descent methods. Following 

conventional optimizations approaches are commonly used for unconstrained 

multi-variable optimization problems (Edger et al., 2001; Deb, 2012), 

 Direct search methods: Pattern search, Conjugate direction, Simplex 

search. 

 Gradient based methods: Cauchy‘s steepest descent method, Newton‘s 

method, Levenberg Marquardt (LM) method, Generalized Reduced 

Gradient (GRG) method, Nelder-Mead algorithm simplex method, 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, sequential linear 

programming (SLP), sequential quadratic programming (SQP).  
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The most commonly used gradient based methods are iterative methods in 

which first order (and second order) gradients of the objective function (to be 

minimized/maximized) with respect to the decision (independent) variables are 

determined at successive steps. For example, the Newton‘s method requires 

computing the first order as well as the second order gradients (in the Hessian 

matrix form: a matrix of second order partial derivatives) of the objective function 

with respect to the individual decision variables involved in the objective of the 

optimization problem. Other gradient based methods are variations of the 

Newton‘s method, with main focus on elimination of the computation of the 

second order gradients (Hessian matrix) at each step. The above stated 

conventional optimization approaches, commonly exhibit following 

limitations/disadvantages, 

 The objective function needs to be smooth, continuous, and differentiable 

over the feasible region. 

 The feasible region of a constrained optimization problem must form a 

convex region. 

 The gradient based methods require determination of the second and/or 

first order derivatives, which involve a large amount of computations at 

each step. 

 A major shortcoming of the conventional methods is that they invariably 

get stuck in a local optimum, thus leading to a sub-optimal solution. 

 The convergence of conventional optimization depends on the chosen 

initial conditions (guess). 

 The gradient based optimization methods are inefficient in handling 

discrete search space problems. 

   In most of the real-life industrial optimization problems, the objective 

function is non-smooth, noisy and discontinuous and, thus, conventional 

deterministic optimization approaches are not able to solve the problem 

efficiently. 
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1.4. COMPUTATIONAL INTELLIGENCE BASED 

OPTIMIZATION METHODOLOGIES 

Computational intelligence includes a class of population based stochastic 

optimization methodologies such as genetic algorithms (GA), swarm intelligence 

(SI), and the newer artificial immune systems (AIS) (Engelbrecht, 2007), 

possessing some unique advantages over the conventional gradient based 

deterministic optimization methodologies. Specifically the CI-based optimization 

methodologies offer the following advantages, 

 Being stochastic and population based, the CI-based methods generally 

don‘t get stuck in local optimum. 

 The computationally intensive gradient calculations are not required in the 

CI-based methods. 

 They can operate on any non-smooth, non-differentiable and noisy 

functions successfully. 

 They can work with highly multi-variable and also multi-objective 

systems (pareto optimization) with ease. 

 They can work with discrete search space problems, for e.g. using the 

binary versions. 

In this thesis we have utilized the GA and AIS optimization methodologies, which 

are explained in detail in the next sections. 

1.4.1. Genetic Algorithm (GA) 

 Genetic a1gorithms (GAs) (Holland, 1975; Goldberg, 1989) are the basic 

evolutionary computing algorithms used for stochastic optimization. Like GP, 

GAs are also based on the Darwin‘s principle of the ―survival of the fittest‖ 

followed in biological evolution and the genetic propagation of characteristics 

over multiple generations. GAs are the most popular population based stochastic 

optimization formalisms used with a great success in solving problems involving 

very large search spaces (Goldberg, 1989). The process of natural evolution of 

biological species involves survival of the most adaptive organisms to changes in 

their environment and propagation of their genetic characteristics to the next 

generation by reproduction. In reproduction, genetic material of parents is passed 
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over to offspring via crossover, recombination and mutation operations. Mutation 

leads to combinatorial diverse characteristics in the subsequent generations, thus 

resulting in new (novel) characteristics in the offspring. The combined effects of 

selection, crossover, recombination and mutation lead to fitter individuals in the 

next generation, while also creating diversity of the population characteristics. 

Diversity is necessary for the generation of novel characteristics that may lead to 

even better generations. GA broadly works in this framework, wherein it 

considers the environment as an objective function to be maximized/minimized 

and the individuals in the environment as candidate solutions in the search space. 

The CI-based stochastic optimization methodologies including GAs 

exhibit a remarkable capability of handling nonlinear and noisy objective 

functions as also solving multi-objective functions. Currently, several variations 

of GAs such as the parallel-GA (Pettey et al., 1987) and the adaptive-GA 

(Srinivas and Patnaik, 1994) are available for specific problems. In the parallel-

GA several GA runs for a problem are implemented in parallel and migration of 

the best solutions among the individual parallel runs are allowed for better 

performance. While the adaptive-GA works using adaptive parameters in which 

the probabilities of crossover (pc) and mutation (pm) are adaptively adjusted during 

each iteration (generation) utilizing the population information in each generation 

in order maintain the population diversity as well as to sustain the convergence 

capacity. 

GA Implementation 

A typical multi-variable objective function for process optimization is 

given as, 

);,()(minmax/ cxx fy 
   

(1.25)
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(1.26) 

where, y is the process output (dependent) variable to be optimized (minimized or 

maximized), x = [x1, x2,…xi,…,xN]
T
 is the vector of process input (independent) 

variables and c is the vector of constants/parameters of the function ‗f‘ relating the 

input variables to the output variable of the process. The optimization problem is 

subject to variable constraints with a variable xi limited to a range between its 
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lower limit xi
L
 and upper limit xi

U
. The task of an optimizer is to determine the 

best value (maximum or minimum) of the process output ‗y‘ by searching the 

optimal values for the input (decision) variables. 

GA encodes the input variable values (commonly known as candidate 

solutions or chromosomes in the GA parlance) in different ways, according to 

which we have binary encoded GA, gray encoded GA or real value encoded GA. 

Binary Encoded GA: In a binary valued GA, the candidate solutions 

(chromosomes) are represented by binary strings comprising of bits of 0 or 1. 

Shown below is a binary encoding of the input vector with two variables, wherein 

each variable is encoded as an 8-bit string and the chromosome becomes a 16-bit 

string.   

Variable x1 x2 

Genes (Bit strings) 01101101 10101011 

 

 

Thus a variable, xi can be encoded into binary strings by first normalizing 

according to, 
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(1.27) 

where,xn = normalized value of variable ‗x‘, x
L
 and x

U
 = lower and upper value of 

the variable x respectively, and then converting to binary digits. Binary GA works 

on these binary strings to give the optimized results in binary form, which are then 

quantized to decimal values. These decimal values are finally de-normalized to get 

the optimized input variable values.  

Real Value Encoded GA: The encoding of the variables in this type of GA is as 

usual done using real floating point numbers as shown below. The advantage of 

using real value encoded GA is that it is possible to use large domains for the 

decision variables, which is difficult to achieve in the binary-coded GA 

Chromosome 
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implementation where increasing the domain means sacrificing precision for a 

fixed length of the chromosome. 

Variable x1 x2 

Genes (Real valued numbers) 18.34 0.28 

 

 

The general step-wise procedure for a typical GA run is explained below. 

Initialization (Step 1): To begin, the user has to specify the variable encoding, the 

population size (N) and the fitness function according to the 

minimization/maximization criteria and the objective function. An initial 

population of candidate solutions is either generated randomly or is based on 

careful choosing of candidates based on user‘s experience. 

Fitness evaluation (Step 2): In this step, the fitness of each candidate solution is 

determined based on the optimization criteria. Various forms of fitness functions 

are in use depending on the problem under study, with the well-known being the 

proportional fitness function, wherein the fitness Fi (in percentage) of a candidate 

solution (individual) for the maximization of an objective function fi is calculated 

as: 
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(1.28) 

where, Np is the number of parent pairs in the mating pool. The fitness function 

assigns a higher fitness to better solutions. The handling of constraints in GA is 

accomplished by augmenting the objective function with a penalty term that gives 

more weightage to solutions in the feasible regions. 

Selection (Step 3): In this step a ―mating‖ pool of candidate solutions is created by 

selecting the top-ranking candidate solutions, based on their fitness. The 

occupants of this mating pool forming the parents, take part in the most important 

mating operation namely crossover (step 4), to produce the offspring candidate 

Chromosome 
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solutions. The selection step allows the best candidate solutions to form the 

mating pool to undergo crossover. Several selection procedures exist, such as the 

Roulette-wheel selection (De Jong, 1975), tournament selection (Goldberg, 1990), 

truncation selection (Crow and Kimura, 1979), elitist selection, etc. Figure (1.12) 

represents an example of selection operation by the Roulette-wheel method, 

wherein four individuals with their objective function and fitness values are 

indicated in the upper table. It shows the Roulette wheel representation of the 

example problem, which if rotated at a random speed, will stop with the pointer 

selecting the most probabilistic value (the 55% region in the example) for the 

selection of individuals. The Roulette wheel selection method with varying 

selection probability over the generations is also used (Back and Schwefel, 1993). 

 

Figure 1.12: Schematic showing the Roulette wheel selection operation. 

Crossover (Step 4): Here, two candidate solutions (parents) from the mating pool 

are randomly selected to undergo crossover. The crossover operation between a 

parent pair occurs by exchanging of sub-portions between the parent candidate 

solutions to create off-spring solutions. Figure (1.13) shows an illustration of such 

a one-point crossover operation on the candidate solutions represented by binary 

strings. The crossover point is chosen probabilistically. Two-point and multi-point 

crossovers are also common. 
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Figure 1.13: Schematic showing the one-point crossover operation. 

The most common type of crossover operation for a real value encoded GA is 

given by Eshelman and Schaffer (1993), who introduced a blend crossover 

operator. For two parent candidate solutions yp1 and yp2, the crossover operator 

randomly picks a real number as offspring in the given range as, 

21)1( PPO yyy  
   

(1.29) 

where, yo is the real valued offspring, α = (1 + 2β)r – β, r is a random number in 

between 0 to 1 and β is a constant (generally 0.5). 

Mutation (Step 5): In this step, the population of the selected parent and generated 

offspring tree solutions are subjected to probabilistic mutation. In mutation, the 

bits in an individual string are flipped, e.g. 0 to 1 or vice versa. The mutation is 

carried out randomly with a small probability, with an important motive to 

maintain diversity in the population and prevent the population from getting stuck 

in a local minimum. Figure (1.14) shows a mutation operation on an individual 

candidate solution represented by a binary string wherein a ‗0‘ in the original 

individual is replaced randomly to ‗1‘. The mutated population representing a new 

generation is now ready for the next iteration cycle and thus the generation index 

is incremented.  

 

Figure 1.14: Schematic showing the mutation operation. 
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For the case of real valued GA the most common mutation operator is random 

mutation (Michalewicz, 1992), wherein the mutation operator generates a random 

solution within the entire variable range (xmin to xmax). 

Termination (Step 6): At this stage the termination criteria is checked to ascertain 

if the stopping criteria has met. The stopping criterion as specified by the user 

could be either a specified number of generations or no significant change in the 

fitness value of the population over the successive generations. If the set 

termination criteria is not met, steps 2 to 5 are repeated till the convergence is 

reached. 

Finally, the binary string coded optimum variables are decoded back to 

real numbers for the computation of the max/min objective function (output) 

value. Similar to a GP run, it is necessary for the GA to repeat several times using 

different random initializations to arrive at best optimum values of the objective 

function. A generalized pseudo-code of GA is given in Figure (1.15).  

 

Figure 1.15: Pseudo-code of genetic algorithm (GA) for optimization. 

In this thesis, we have applied GA in comparison with the artificial 

immune system (AIS) to a 3-dimensional input search space to determine the 

optimum reaction and process conditions for maximum percent adsorption of 

hexavalent chromium ions in waste water on a synthetic polymer resin. To 

perform the GA-based optimization an excel add-in tool, namely MendelSolve 

(2016) was used in excel to optimize the objective function along with the 
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constraints. MendelSolve offers to prespecify the following GA parameters before 

executing the algorithm: (i) ranges of input varaibles, (ii) cross-over probability, 

(iii) mutation probabilty and (iv) number of generations. The following table lists 

the most recent applications of GA for various process-related task as also for 

molecular modeling. 

Table 1.6: Recent chemical engineering/technology applications of genetic 

algorithms 

Sr. 

No. 

Application 

area 
Specific study Reference 

1. 
Process 

Optimization 

Reaction modeling and optimization of 

synthetic resin for the adsorptive 

removal of arsenite and arsenate ions 

from wastewater  

 Patil-Shinde 

et al. (2016) 

Genetic algorithm applied for the 

optimization of chemical reactors 

network 

Leong et al. 

(2016) 

Genetic algorithms and simulated 

annealing applied for the optimization of 

type-4 composite pressure vessel  

Alcántar et al. 

(2017) 

2. 
Process 

Modeling 

Genetic algorithm based modeling of 

hot flow behavior of API-X70-micro-

alloyed steel using  design of 

experiments 

Abarghooei 

et al. (2017)  

Hybrid  approach using 

genetic algorithm for rate constant 

prediction using structures of reactants 

and solvent for Diels-Alder reaction 

 Datta et al. 

(2017) 

3. Process control 
Genetic algorithm used for optimal 

control of batch cooling crystallizer 

Amini et al. 

(2016) 

4. 

Process 

flowsheet 

synthesis 

Genetic algorithm applied for automated 

process flowsheet synthesis for 

membrane processes 

Shafiee et al. 

(2016) 
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Sr. 

No. 

Application 

area 
Specific study Reference 

5. 
Molecular 

Modeling 

Molecular design by 

combining genetic algorithms and 

COSMO-RS 

Scheffczyk et 

al. (2016) 

 

1.4.2. Artificial Immune System (AIS) 

There are various AIS formalisms based on different mechanisms of the 

working of the biological immune system (BIS) system to attack and kill the 

invading pathogenic microorganisms (antigens) by producing antigen-specific 

antibodies entering a biological body. Currently, the following theories 

(mechanisms) of AIS are popularly used in the form of computational 

methodologies to solve the engineering tasks of optimization, clustering and 

pattern recognition for fault detection: 

 Clonal selection theory (De Castro and Zuben, 2002): It is mainly based on 

the mechanism of the active B-cells producing antibodies through the 

cloning process which are mutated to maintain diversity. 

 Negative selection theory (Forrest et al., 1994): This is based on the 

mechanism of the BIS, which provides for the ability of the T-cells to 

provide tolerance for self-cells. 

 Danger theory (Matzinger, 2001): The main mechanism in this method has 

the ability to distinguish between the dangerous and non-dangerous 

antigens. 

 Network theory (Jerne, 1974): In this theory it is assumed that the B-Cells 

form a network and when a B-cell encounters an antigen it becomes 

activated and stimulates all other B-cells connected in the network. 

 For accomplishing its objectives, the BIS system, mainly originating from the 

bone marrow starts generating lymphocytes as a result of an immune response. An 

immune response is the body‘s reaction to antigens to prevent them from 

damaging the body. Figure (1.16) indicates the important cells created in sequence 

in the immune response system.  



 
 

 49 

 

Figure 1.16: Types of cells generated by the immune response system. 

Some of these cells develop into large white cells known as phagocytes (Schindler 

et al., 2002), which include sub-cells such as monocytes, macrophages and 

neutrophils. The macrophages cells secrete important chemicals that are useful in 

activation of T-Cells. Other cells secreted in the bone marrow develop into small 

white cells known as lymphocytes. Antibodies are formed when the antigen come 

into contact with lymphocytes. The T-cells and B-cells are the type of 

lymphocytes created in the bone marrow. On the invasion of a foreign substance 

(pathogens), delayed hypersensitivity T-cells (TDH, a type of T-cells) recognize 

the infection and in response start producing cytotoxic factor (protein 

messengers). This helps macrophages (a type of phagocytes) to reach the 

infection. The TDH cells then produce the migration inhibitory factor, which stop 

the macrophages from leaving their sites. The macrophages engulf the pathogenic 

microorganisms and then break into short chains of amino acids known as 

―peptides‖. The peptides are held on the surface of the macrophages, where the 

helper T-cells recognize them. The T-cells then undergo maturation, wherein they 

undergo a selection process to ensure that they are able to recognize the pathogens 

(termed as non-self) held on the macrophages and also the macrophages (termed 

as self cells). If a T-cell recognizes itself, it is retained in the system else 
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discarded. This mechanism provides inspiration for the ―positive selection‖ 

algorithm (Forrest et al., 1994) of the AIS class. As opposed to this the ―negative 

selection‖ (Forrest et al., 1994) algorithm is based on the ability of the T-cells to 

provides tolerance for self-cells. Further the B-cells undergo important 

transformations to improvise the immune response to its final state and this forms 

the basis for an important class of AIS mechanism used mainly for stochastic 

optimization commonly known as the ―clonal selection‖ (Burnet, 1978).   

The clonal selection algorithm (CLONALG) of the AIS paradigm has been 

utilized in this work for process optimization and thus it is described in detail 

next. 

(A)  Clonal Selection Algorithm (CLONALG) 

The clonal selection algorithm (CLONALG) as proposed by Burnet 

(1978) is a newer CI-based stochastic optimization methodology from the AIS 

paradigm. It is based on the working of a specific part of the immune response 

system of the BIS, known as the ―clonal selection‖ mechanism. This mechanism 

starts after the recognition of the antigen, after which the antigen-activated T-cells 

secrete lymphokines. After the recognition of an antigen by the B-cells in 

presence of lymphokines secreted by the T-cells, the B-cells surface receptors 

bind to the antigen. These stimulated B-cells then start proliferating and 

differentiating. Proliferation mainly includes the generation of multiple copies of 

the stimulated B-cells with variations, which is known as cloning. The generated 

B-cells are diverted as to either memory cells or plasma cells. The plasma cells 

secrete a large amount of Y-shaped antigen-specific antibodies that bind 

themselves with the antigen, while the task of the memory cells is to ensure that if 

the same antigen attacks again the BIS receives a much faster response. 

 In the initial phase of the immune response, the affinity between the 

antibodies and antigens is low. However, in the intermediate phases the B-cells 

undergoing the process of ―clonal selection‖, clone and mutate repetitively to 

improve these binding affinities. The mutation process in which the poor 

antibodies (with lower affinities towards the antigens) are mutated with higher 

probabilities is known as ―somatic hyper-mutation‖ and the entire process of 

creation of new antibodies with higher affinities to the antigens is called affinity 
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maturation (Dasgupta and Nino, 2009). Finally, the process of affinity maturation 

leads to the production of a pool of antibody-secreting B-cells, differentiated as 

the plasma cells and the memory cells (Dasgupta and Nino, 2009). The antigen 

coated with the matured antibody is ultimately killed by the Killer T-cells to 

combat the antigen attack. Cloning diverts CLONALG faster towards 

convergence, while hyper-mutation maintains diversity to achieve the global 

optimum and so CLONALG can achieve faster convergence towards the global 

optimum as compared to GAs. The working of a typical clonal selection process is 

shown schematically in Figure (1.17). 

 

Figure 1.17: Mechanism of the clonal selection process. 
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CLONALG Implementation 

For optimization of a pre-specified objective function, such as Eqn. (1.25), 

the binary version of CLONALG commonly operates over binary strings and a 

collection of the binary strings of all the inputs forms a candidate solution 

(antibody). The fitness score (affinity between the antibody and antigen) of an 

antibody is evaluated in terms of the objective function, e.g. as given in Eqn. 

(1.28). In case of optimization, the antigen forms the final desired value of the 

objective function. A collection of fittest (best) antibodies from the population are 

selected and further processed iteratively according to the algorithm shown as a 

pseudo-code in Figure (1.18) till a stopping criteria such as the number of 

generations or the error tolerance of the solutions is satisfied (whichever happens 

earlier). Namely after creation of the initial random population, a sub-population 

containing the best solutions is selected and cloned to create multiple copies, with 

the number of copies proportional to the affinities of individual solutions 

according to the equation, 








 


i

N
roundNc



    (1.30) 

where NC is the number of clones generated for ‗i
th

‘ candidate solution (i = 1, 

2,…NS), NS is the number of selected antibodies,  is the cloning factor ( 1) 

(Aragón et al., 2007) and N is the population size. Thus, here the selected 

antibodies proliferate for the overall average population to move towards the best 

antibodies in the selected sub-population. The resulting sub-population is then 

hyper-mutated to introduce diversity. The probability of hyper-mutation, ‗hP‘ of a 

antibody is given by,  

 f
P

h *exp 
    (1.31) 

where,   = hyper-mutation coefficient, f  = normalized fitness function (affinity) 

of the anti-bodies. A sub-population of the resulting population containing the best 

solutions is combined with a randomly generated population and forms the next 

generation. 
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Figure 1.18: Pseudo-code of the clonal selection algorithm (CLONALG). 

With the increasing use of various AIS-based formalisms for cyber security (fault 

detection applications in computer science/engineering), the use of CLONALG 

methodology is also on the rise for chemical process optimization and fault 

detection applications and the table below, listing the most recent applications of 

CLONALG also indicate the same.    

Table 1.7: Recent chemical engineering/technology applications of clonal 

selection algorithm 

Sr. 

No. 
Application area Specific study Reference 

1. 
Process 

optimization 

Optimization of distillation 

resources based on neighborhood-

clonal selection learning algorithm. 

Yang and Shi 

(2012) 

Biodegradable iron chelate for H2S 

abatement: modeling and 

optimization using artificial 

intelligence strategies. 

Hamid et al. 

(2014) 

Process real-time optimization 

using CLONALG algorithm applied 

to the Tennessee Eastman process. 

 Zhong et al. 

(2015) 

2. Process modelling 

Evolutionary hybrid configuration 

applied to a polymerization process 

modeling. 

Curteanu et al. 

(2015) 

 

3. 
Process fault 

detection/diagnosis 

A new fault classification approach 

applied to Tennessee Eastman 

D‘Angelo et al. 

(2016) 
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benchmark process based on the 

association of CLONALG immune 

systems with the kohonen neural 

network. 

 

4. Process control 

Research on tuning parameters for a 

model predictive controller based 

on CSA in CSTR process. 

 Jiang et al. 

(2015) 

In this thesis work, CLONALG has been used for optimization of adsorptive 

removal reaction of chromium ions from waste water using synthetic polymer 

resin. For this, a MATLAB code was developed in-house, which is listed in 

Appendix 7.A of Chapter 7. 

1.5. PROCESS FAULT DETECTION AND DIAGNOSIS 

APPROACHES 

In process industries safety is of utmost importance and accidents are 

mostly caused due to faulty working of equipment(s)/device(s)/controller(s) 

and/or human error. Today‘s process industry is highly automated and thus 

equipment(s)/device(s)/controller(s) faults are the major reason behind industrial 

accidents and financial losses. A process fault indicates those process symptoms 

that result from the undesired physical changes in the process. Over the years, on-

line fault detection and diagnosis have been given a serious attention by 

researchers and chemical engineers (Caccavale and Pierri, 2009). In a fault 

detection and diagnosis (FDD) task, the first objective is to recognize the 

deviations (from normal operation), disturbances or equipment/sensor/actuator 

malfunction followed by investigating the fault cause-effect relationship. 

 

The FDD methods mostly rely on modeling methodologies that can 

accurately model the faulty and normal operations of a process. Such methods are 

either based on the dynamical process models or clustering/pattern recognition 

models. The former types of models are either based on the phenomenological 

modeling approach of the process in case the complete knowledge of the process 

(under normal and faulty operating conditions) is available or empirical (including 

CI-based) modeling approaches, wherever such a detailed knowledge is not 

available.  The clustering/ pattern recognition modeling approaches work on the 
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fact that during a fault the important process variables start indicating abnormal 

readings, deviating from the normal variable values, often forming 

clusters/groups/patterns according to the type and magnitude of the fault. Thus 

cluster analysis/pattern recognition of a process dataset composed of the important 

process variable values as operating in the normal and various faulty conditions 

helps in the accurate detection and diagnosis of faults generated in the process. 

Clustering 

A cluster is a collection of similar objects and clustering involves 

classification of similar objects into different groups/classes/categories according 

to some common trait such as the ―proximity‖ to each other assessed using some 

distance measure. Clustering identifies common patterns in the dataset and groups 

them in clusters thus generating different clusters according to the presence of 

different similar patterns. In this thesis, clustering methods are used for fault 

detection and diagnosis of a biochemical process generating biomass. 

In mathematical terms, clustering tries to subdivide a data set X into c 

subsets (clusters), with each subset containing similar objects. Figure (1.19) 

illustrates the concept for a 2-dimensional dataset D = {x1, x2}, wherein three 

groups (marked with different shape icons) of close data-points is clearly 

observed. 

 

Figure 1.19: Schematic of clustering of a 2-dimensional input space. 
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1.5.1. Conventional Clustering Methodologies 

Conventionally following are the classes of clustering methods commonly 

employed for various applications which mainly include fault detection and 

diagnosis, voice and image analysis, bimolecular recognition etc., 

 Connectivity-based clustering: this includes hierarchical clustering which 

build the clustering model using the distance connectivity. 

 Centroid-based clustering: in these methods a cluster is represented by a 

single average vector of inputs known as the centroid. The popular k-

means algorithm falls under this class of methods. 

 Distribution-based clustering: in these methods the clusters are modeled by 

statistical distributions. The expectation-maximization algorithm lies under 

this class. 

 Density-based clustering: as the name implies these methods form clusters 

based on connected dense regions in the data space. Common methods 

include DBSCAN (Ester et al., 1996) and OPTICS (Ankerst et al., 1999).  

 

k-means (also known as c-means) is one of the popular conventional 

centroid based hard clustering algorithms (MacQueen, 1967) that follows a simple 

procedure to classify a given data set into a certain number of clusters (assuming k 

clusters) fixed a priori. The algorithm starts with k centroids, placed randomly, 

one for each cluster and iterates to refine the locations of these centroids so as to 

minimize the average distance between the data-points in a cluster and the 

centroid representing that cluster. Although the k-means algorithm can be proved 

to converge to appropriate k-centriods, it does not necessarily find the most 

optimal configuration, corresponding to the global objective function minimum. 

Another disadvantage of this algorithm is that it is highly sensitive to the initial 

randomly generated cluster centroid locations. 

1.6. COMPUTATIONAL INTELLIGENCE BASED 

CLUSTERING METHODOLOGIES 

Computational intelligence offers various clustering methodologies that 

can determine complex clusters in a multi-dimensional dataset. Cluster modeling 

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/K-means_algorithm
https://en.wikipedia.org/wiki/K-means_algorithm
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/OPTICS
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is provided by most of the regression CI-based formalisms such as ANNs 

(MLPNN using a hard threshold transfer function in the output layer nodes) 

(Charalampidis and Muldrey, 2009), self organizing maps (SOM) based on the 

ANNs (Pandit et al., 2011), GP (Boric and Estevez, 2007), SVMs (Ben-Hur et al., 

2001) and fuzzy-logic based clustering method (Bezdek et al., 1984). 

1.6.1. Fuzzy c-Means Clustering (FCC) 

Fuzzy c-means clustering (FCC) (Bezdek et al., 1984) is a soft clustering 

methodology that uses unsupervised learning for classifying the data-points to one 

of the c-clusters. FCC tries to determine soft (i.e., fuzzy) c-partitions of a dataset 

X. Figure (1.20) indicates the hard and soft clustering concepts of a dataset. 

 

 

 

 

 

 

 

 

Figure 1.20: Schematic showing clustering types in a 2-dimensional space: (a) 

hard clustering, (b) soft clustering. 

The idea behind the working of fuzzy clustering was laid by Zadeh (1965), which 

is to represent the similarity a point shares with each cluster with a function 

(known as membership function). The membership functions as discussed 

previously in Section (1.0 (D)) have values (called memberships) between 0 and 

1. Each data-point in the dataset will have a membership in every cluster, and a 

data-point is assigned to a cluster having its membership value close to unity for 

that cluster, signifying a high degree of similarity. The membership values close 

to zero imply little similarity between the sample and that cluster. It was Bezdek 

et al. (1984) who formulated the idea to produce fuzzy c-partitions of a given 

dataset. A fuzzy c-partition of the dataset X, characterizes membership values of 

each data-point in all the clusters by membership values ranging between 0 to 1. 

 

(a) (b) 
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The sum of the membership values for each data-point in the dataset must be 

unity. For a given dataset X = {x1, x2,…,xP} containing P observations in N-

dimensional space, a conventional hard clustering algorithm will cluster it into c-

clusters of X in a c-tuple (X1, X2,…Xc) of subsets of X. FCC constructs a U (c×N) 

matrix, representing the partition {Xi}, with membership function values ui: X → 

{0,1} whose values ui(xp)  [0,1] are interpreted as the grades of membership of 

the individual xk in the fuzzy subsets ui of X.  

A centroid vk is calculated from the cluster membership values uik as 

assigned to all the data-points (xi) in the dataset according to the equation, 
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where, m = weighing exponent factor (1  m <).

 
Next the fuzzy membership values of each point (uik) with respect to each cluster 

is calculated as,   
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where, the subscript ‗j‘ stands for the j
th

 cluster. 

The criteria proposed to cluster the dataset is the generalized least-squared error, 

2)(

1 1

||||)(),( i

j

k

P

k

c

i

m

ik vxuVUJ 
     

(1.34) 

where, c = number of clusters in X, U = fuzzy c-partition of X, V = [v1, v2,…vc]
T
 

is a matrix of the vector of centroids and vi = [vi1, vi2,…viN]
T
 is the centroid 

location vector of cluster ‗i‘. Figure (1.21) indicates the pseudo-code of the FCC 

algorithm for the determination of c-centroid locations representing the c-clusters 

of the dataset. 
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Figure 1.21: Pseudo-code of the fuzzy c-means (FCC) clustering algorithm. 

Since its invent, the applications of fuzzy logic and various methodologies based 

on FL are on the rise. Table (1.8) indicates some recent process engineering 

applications of fuzzy clustering. 

Table 1.8: Recent chemical engineering/technology applications of fuzzy 

clustering 

Sr. 

No. 

Application 

area 
Specific study Reference 

1. 

Process fault 

detection and 

diagnosis 

Sequential fuzzy clustering based 

dynamic fuzzy neural network for fault 

diagnosis and prognosis more efficient 

high speed milling (HSM) processes  

Jahromi et al. 

(2016) 

 

A novel fault diagnosis scheme 

applying fuzzy clustering algorithms 

for nonlinear continuous stirred-tank 

reactor. 

Rodriguez et al. 

(2017) 

Structural analysis based sensor 

measurement fault diagnosis in cement 

industries used fuzzy clustering 

algorithm for fault detection and 

isolation in cement kilns. 

Gomathi et al. 

(2017) 

 

Expert diagnosis of polymer electrolyte 

fuel cells a fuzzy logic diagnostic 

algorithm for polymer electrolyte fuel 

cells is proposed. 

Davies et al. 

(2017) 

2. 
Cluster 

Analysis 

A modified fuzzy c-means 

clustering algorithm and its application 

on carbonate fluid identification 

Liu et al. 

(2016) 

 

Hybrid chemical reaction based Nayak et al. 
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metaheuristic with fuzzy c-means 

algorithm for optimal cluster analysis 

(2017) 

 

3. 

Quantitative 

Structure- 

Activity/Propert

y 

Relationships 

(QSAR/QSPR) 

Fuzzy clustering as rational partition 

method for QSAR 

Pérez-Garrido 

et al. (2017) 

 

The FCC algorithm for data clustering is provided by the following software 

packages, 

1. MATLAB Fuzzy Logic Toolbox (MathWorks and Wang, 1998): It includes 

tools for modeling, classification and clustering of data in a given dataset 

using the fuzzy logic formalism. The toolbox includes a fuzzy c-means 

clustering facility, using which a large dataset can be clustered into a given 

number of ‗c‘ clusters. Given a dataset the FCC algorithm returns back the 

U-matrix and a matrix of the optimal ‗c‘ centroids. 

2. Online Fuzzy Clustering (Aydos, 2015): This is an online webpage that 

offers the fuzzy c-means clustering facility, wherein we can upload our 

dataset, choose the fuzzy parameters (c, m, ) and then the calculations are 

done on-line to return the results as the cluster centroids using the FCC 

methodology. 

1.7. DIMENSIONALITY REDUCTION METHODOLOGY: 

Principal Component Analysis (PCA) 

 In a chemical process, huge amounts of data comprising values of the 

important process (input-output) variables and parameters are generated and 

recorded continuously for process analysis. These data inherently contain 

instrumental and measurement noise. Also, often, the variables are correlated 

linearly/nonlinearly giving rise to redundancy. Thus, it is necessary to preprocess 

the data to remove correlated variables and the noise and retain only the important 

features in the dataset thus reducing its dimensionality. Dimensionality reduction, 

aids in constructing parsimonious process models possessing good generalization 

capabilities. 
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Following are the popular linear dimensionality reduction techniques, while the 

nonlinear PCA can be performed, for example, using auto-associative and 

Sammon‘s neural networks (Lerner et al., 1999). 

 Principal component analysis (PCA) 

 Kernel PCA 

 Linear discriminant analysis (LDA) 

 Generalized discriminant analysis (GDA) 

 Auto-associative Neural Network (AANN) 

 Curvilinear Component Analysis (CCA) 

Principal component analysis (PCA) (Pearson, 1901; Geladi and Kowalski, 1986) 

is the most widely used linear dimensionality reduction technique that extracts 

linear relationships existing among the variables of a dataset. PCA was first 

introduced by the statistician, Pearson (Pearson, 1901) for the formulation of the 

analysis of determining the closest fitting lines and planes for a system of points in 

a given space. Thereafter PCA was found to be more suitable for the analysis of 

variance for modeling of response data (Fisher and MacKenzie, 1923). Later the 

percentage concept in PCA was developed by Hotelling (1933). PCA determines 

the linear mapping between the variables in the original dataset in a low 

dimensional space in such a way that the variance of the data in the low 

dimensional representation is maximized. This is done by decomposing the 

original dataset comprising the linearly correlated variables into a PCA 

transformed variable set defining the eigenvectors of the covariance of the data. In 

practice, a correlation matrix of the dataset is constructed and the eigenvectors of 

this matrix are determined. The eigenvectors corresponding to the largest 

eigenvalues (termed as the principal components (PCs)) are used to reconstruct a 

large fraction of the variance of the original data. Thus PCA generates PCs as a set 

of pseudo-variables (also known ‗latent variables‘), which are linearly 

independent (uncorrelated) orthogonal variables. The importance of PCs is that 

the first few latent variables capture maximum amount of variability in the data 

and are thus used to represent the original dataset variables in a compressed way. 

Mathematically, for a two dimensional matrix, A(RC), with R rows containing 
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the data-points for C columns of variables, PCA decomposes, A, into matrices of 

latent variables and the associated parameters (known as ―loadings‖) as given by: 

 A = TP‘ + E    (1.35) 

where, matrix A is a normalized matrix with zero mean and variance scaled so that 

the standard deviation of elements of each column is unity. T (RC) denotes the 

matrix of C principal component (PC) scores with each column of matrix T 

signifying a principal component, while P’ refers to the transpose of the loading 

matrix, P(CC), and E indicates the residuals. The first ‗G‘ principal component 

scores capture a large amount of variance in the dataset, and thus the original 

matrix can also be written as, 

    
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where, sk = R-dimensional k
th

 score vector, lk = transpose of the k
th 

J-dimensional 

loading vector lk, and E= residual matrix. Thus the original (R×C) dimensional 

dataset matrix, A, is now represented in terms of a smaller number ‗J’ of I-

dimensional score vectors. The sum of squares of elements of the score vector sk is 

related to the eigenvalue of that vector, which forms a measure of the variance 

captured by the k
th

 PC. Thus a larger eigenvalue indicates more significance of the 

respective PC. This feature of data reduction of the PCA has been utilized in 

various process engineering tasks as listed below.  

Table 1.9: Recent chemical engineering/technology applications of principal 

component analysis 

Sr. 

No. 

Application 

area 
Specific study Reference 

1. 
Process fault 

detection and 

diagnosis 

Fault detection in time-varying chemical 

process through incremental principal 

component analysis 

Gao et al. 

(2016) 

 

On the structure of dynamic principal 

component analysis used in 

statistical process monitoring 

Vanhatalo et 

al. (2017) 

 

Fault propagation path estimation in NGL Ahmed et al. 
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Sr. 

No. 

Application 

area 
Specific study Reference 

fractionation  

process using principal component analys

is 

(2017) 

Fault discriminant enhanced kernel 

principal 

component analysis incorporating prior 

fault information for monitoring 

nonlinear processes 

Deng et al. 

(2017) 

 

2. 

Quantitative 

Structure- 

Activity/Proper

-ty 

Relationships 

(QSAR/QSPR) 

Combining DFT and QSAR studies for 

predicting psychotomimetic activity of 

substituted phenethylamines using 

statistical methods 

Aouidate et 

al. (2016) 

 

Structure activity relationship modelling 

of milk protein-derived peptides with 

dipeptidyl peptidase IV (DPP-IV) 

inhibitory activity 

Nongonierm

a and 

Fitzgerald 

(2016) 

Biological activities of triazine 

derivatives;  combining DFT 

and QSAR results 

Larif et al. 

(2017) 

 

1.8. STATISTICAL SIGNIFICANCE TEST 

METHODOLOGY: Steiger’s z-Test 

In a variety of situations multiple models are been developed for a 

common task for the sake of comparison, and identification of the best model 

unambiguously, is a difficult task as more often the models perform equally well 

with minor chance errors. This task of the identification of the best model in terms 

of statistical comparisons between correlation coefficients of the models is eased 

by a statistical test known as the Steiger‘s z-test (Steiger, 1980), wherein each CC 

is converted to a z-score using the Fisher's r-to-z transformation and then they are 

compared statistically. Specifically, this test while comparing the performances of 

two competing models, examines whether the two CCs corresponding to the 

predictions of the models are significantly different or same. It tests for the null 
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hypothesis (H0) that statistically two correlation coefficient magnitudes are same, 

i.e. CCAB = CCAC, where CCAB is the correlation coefficient for the model B when 

compared with the experimental target values (A) and so is CCAC for the model C. 

For the comparison, initially the z-scores are computed using the Fisher's r-to-

z transformation equation, 












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
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ij
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(1.37) 

where, rij = correlation coefficient between readings ‗i‘ and ‗j‘.  
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where, cov(x,y) is a function that determines the covariance between the readings 

x and y, zAB and zAC are the Fisher‘s z-transformations of rAB and rAC respectively, 

NR is the number of readings and rBC is the correlation coefficient between the 

model predicted values of models ‗B‘ and ‗C‘. Finally the p-value is computed as,  

)))((1(2 zabsnormdistp 

   

(1.40) 

where, normdist(x) is a function that determines the normal distribution function 

of ‗x‘, abs(x) is a function that determines the absolute value of ‗x‘. If the p-values 

obtained are less than 0.05, then it suggests for the rejection of the null hypothesis 

(with 95% confidence level) inferring that the models being compared are 

significantly distinct. Thus ultimately, from the results of the Steiger‘s z-test for a 

pair of models, it is possible to identify the model possessing higher prediction 

accuracy and generalization capability. This test has been utilized in chapter 3, 4 

and 6 to compare the developed CI-based models with existing non-CI based 

models as well as among themselves to identify the best performing CI-based 

model.   

1.9. CONCLUSION 

The CI-based methods offer a range of advanced, convenient and effective 

tools for conducting a number of important process engineering tasks such as 

modeling, optimization, control, monitoring, identification, and fault detection. 
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When compared with the conventional approaches, the CI-based modeling 

methodologies such as artificial neural networks, genetic programming, support 

vector regression and fuzzy c-means clustering, and optimization methodologies, 

namely, genetic algorithm, and clonal selection algorithm among others offer 

several advantages. Accordingly, this chapter provides a rather detailed overview 

of the computational intelligence discipline, and a number of CI-based modeling 

and optimization paradigms that are used in conducting the studies presented in 

this thesis. The chapter also highlights the attractive features of CI-based methods 

vis a vis their conventional counterparts. The chapter also provides details of the 

PCA and a statistical test that have been extensively used in performing 

dimensionality reduction of the input space of the models and comparing model 

performance, respectively. The various methods detailed in this chapter and their 

chemical engineering applications described in subsequent chapters are as 

follows: 

 Chapter 2: In this chapter the CI-based methodologies, namely, multilayer 

perceptron neural network (MLPNN) belonging to the ANN class of 

methods and the GP-based symbolic regression (GPSR) have been 

introduced to develop nonlinear models predicting the higher heating value 

(HHV) of solid biomass fuels from the constituents of their proximate or 

ultimate analysis as inputs. 

 Chapter 3: The CI-based methodologies, namely, MLPNN, GPSR and 

SVR have been applied to model the elemental composition of solid 

biomass fuels using the constituents of their proximate analysis as inputs. 

 Chapter 4: The HHV of coal being its most important property has been 

previously modeled by linear/nonlinear regression-based as well as CI-

based methods (except GP). In this chapter the modeling of coal‘s HHV 

using the GPSR methodology has been introduced to develop high 

performing coal HHV predicting correlations that are applicable for coals 

of various ranks and from different geographic locations of the world. 

 Chapter 5: In this chapter GPSR-based soft-sensor models are developed 

for the process identification of styrene polymerization process. Here, the 

best GPSR-based model has been shown to perform successfully in a 
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model predictive control scheme to accurately control quality of the 

effluent polystyrene product.  

 Chapter 6: Co-gasification is a newer gaseous fuel producing technology 

that mitigates the problem of pollution and adds operational flexibility to 

gasification processes. The MLPNN, GPSR and SVR methodologies have 

been introduced for performance modeling of a pilot plant scale fluidized 

bed co-gasifier utilizing different coal-biomass blends as feedstock. Prior 

to the CI-based modeling, PCA was performed on the experimental co-

gasification process dataset to reduce the dimensionality of the dataset for 

easing the task of CI-based models development. 

 Chapter 7: In this chapter a hybrid CI-based modeling-optimization 

strategy has been proposed to model and optimize the chromium ion 

removal process from contaminated water by utilizing a synthetic polymer 

resin. Specifically, the CI-based stochastic optimization methodology, 

namely, ―clonal selection algorithm‖ (CLONALG) belonging to the 

artificial immune system (AIS) class of formalisms has been utilized to 

optimize the process, which is modeled by another CI-based methodology, 

namely, MLPNN. The CI-based genetic algorithm (GA) has also been 

utilized for the said optimization for the purpose of comparison with 

CLONALG.  

 Chapter 8: Biochemical processes are highly sensitive to faults and an 

accurate fault detection and diagnosis (FDD) model can be useful in 

preventing extreme faulty situations by taking immediate corrective 

actions once minor faults are detected by the model. Accordingly, the CI-

based clustering methodology, namely fuzzy c-means clustering (FCC) has 

been successfully applied to accurately model faults in an appropriately 

controlled, continuous bioreactor generating biomass. In comparison to 

FCC, the conventional k-means clustering method has also been applied to 

the said FDD problem.  
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NOMENCLATURE 

 

A Normalized dataset matrix in PCA 

b Bias 

c Constant/Cluster in FCC 

D Data-set 

d Degree of polynomial 

e Error (difference between actual and target output value) 

E Residual matrix in PCA 

f Linear/nonlinear function 

F Objective function in GA-based optimization 

G Principal component score in PCA 

H Activation function in ANN/Null hypothesis in Steiger‘s test 

h Hyper-mutation parameter 

J Least-squared error objective function 

l Library symbol in GP-based regression  

L Number of first hidden layer nodes in MLPNN/Loss function in 

SVR 

l Loading vector in PCA 

M Number of second hidden layer nodes in MLPNN 

m Weighing exponent factor in FCC 

N Number of inputs/data-points/Number of input layer nodes in 

MLPNN/Population size in CLONALG 

o Operator symbol in GP-based regression 

P Loading matrix in PCA 
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p Probability  

L Number of nodes in first hidden layer of an MLPNN 

M Number of nodes in second hidden layer of an MLPNN/Random 

number in crossover operator in GA/ Correlation coefficient 

S Number of nodes in output layer of MLPNN/Score vector in PCA 

T Temperature/Matrix of principal components in PCA 

u Fuzzy membership value 

U Fuzzy c-partition matrix 

v Centroid of a cluster 

w Connection weight in an ANN 

x Input/independent variable 

x Input vector 

X Dataset matrix 

y Output/dependent variable 

z Output of summing junction in an ANN node/ Standardized 

normalized variable 

 

Greek letters 

µ Fuzzy membership function/Momentum 

coefficient in the EBP algorithm 

 Epsilon, a precision parameter in SVR 

 Hyper-mutation coefficient 

 Scale parameter in SVR 

α Parsimony pressure in GPSR objective function 
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β Penalty coefficient in GP/cloning factor in 

CLONALG 

η Learning rate in the EBP algorithm 

γ  Kernel gamma of radial basis function in SVR 

λ Lagrange multiplier 

ξ Slack variable in optimization 

Φ Kernel function 
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COMPUTATIONAL INTELLIGENCE BASED MODELING OF 

HIGHER HEATING VALUE OF SOLID BIOMASS FUELS 

Abstract 

The renewable nature of biomass fuels has made them an important environment-

friendly energy source of the future. The higher heating value (HHV) of a 

biomass fuel is its most important property, as it reflects the energy producing 

potential of the biomass fuel. The HHV of a fuel is closely correlated with its 

composition. The composition of solid fuels is expressed in terms of their 

proximate and ultimate analyses. The existing biomass HHV models based on the 

proximate or ultimate analysis are mostly based on the conventional empirical 

linear regression analysis although nonlinear relations have been observed 

between the biomass HHV and some components of the proximate and ultimate 

analyses. This observation suggests that nonlinear correlations are expected to fare 

better than the linear ones for HHV prediction. Accordingly, computational 

intelligence (CI) based methodologies such as genetic programming based 

symbolic regression (GPSR) and multilayer perceptron artificial neural network 

(MLPNN) have been  introduced for the development of nonlinear correlations for 

the prediction of biomass HHV from the components of their proximate or 

ultimate analyses. The prediction accuracies of the developed CI-based models 

were compared with the existing high-performance biomass HHV models. This 

analysis shows that, the GPSR and MLPNN based models are better in terms of 

possessing prediction accuracies than that of their existing counterparts. Further, 

range-wise HHV comparisons were also performed between the CI-based and the 

existing high-performance models. The CI-based biomass HHV models 

introduced here, due to their excellent prediction and generalization performances 

possess the potential to replace the conventional linear/nonlinear regression based 

models. 
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2.0. INTRODUCTION 

Solid biomasses are the second largest energy source after coal. Although 

coal has a higher energy producing capacity (energy efficiency) as compared to 

the biomass fuels, its‘ fast depleting reserves has made biomass as a potential 

source of energy for the future. The major advantage of biomass fuels is that they 

are renewable and environment-friendly as compared with the currently dominant 

energy sources. The sources of biomasses include all once living materials such as 

plants and organic matter derived from plants. The common usage of solid 

biomass is either in the form of raw/dried wood/crop or as processed biomass 

cakes/pellets after removal of moisture. Although the disadvantage of biomasses 

is their seasonal availability, their huge diversity makes them a potential source 

for energy generation (Schenk et al., 2008).The major contents of a biomass are 

the carbohydrates (around 75 wt%) and lignin (around 25 wt%). The former 

consists of cellulosic or hemicellulosic fibers, imparting strength to the plant 

structure. Plant-based biofuels are produced mainly from their lignocellulosic 

components such as stems, fruits, barks, branches, and leaves, which are further 

processed thermally/biochemically to obtain the biofuels. The diverse biomass 

resources used in producing the wide variety of bioenergy are derived from 

(Boundy et al., 2011), 

i. Primary lignocellulosics: These are obtained from the basic resources 

(plants), such as grasses, trees, and stalks of food crops. 

ii. Secondary lignocellulosics: These are obtained from all the byproducts 

formed by processing the primary lignocellulosics (pulping black liquor 

from the paper and pulp industry, sawdust, food waste, manure, etc.). 

In order to use the solid biomasses as energy sources (fuel), it is necessary to 

determine its energy producing capacity in terms of the higher heating value, 

which forms a necessary exercise before designing combustion/gasification 

devices. 

2.0.1. Higher Heating Value 

The higher heating value (HHV) of a solid fuel is the amount of heat 

produced by complete combustion of fuel including the energy leaving with the 
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water vapors in the flue gases. It is also termed gross calorific value or gross 

energy and is commonly expressed in MJ/kg in the SI units. The composition and, 

thus, the heat content of biomasses vary significantly with the geographic and 

environmental conditions in which they are grown (Ciolkosz, 2010; Tahir et al., 

2011). 

 The composition of a biofuel is expressed in terms of its proximate and 

ultimate analyses. The former a raw measure of the composition of the biomass 

and is expressed as the weight percentages of moisture (M), ash (ASH), volatile 

matter (weight of matter evaporated when heated to 950˚C) (VM) and free carbon 

(matter left at 950˚C) (FC). The ultimate analysis is a finer measure of 

composition than the proximate analysis and provides its composition (in wt%) in 

terms the major elemental components, namely, carbon (C), hydrogen (H), and 

oxygen (O), and minor components sulfur (S) and nitrogen (N). The experimental 

determination of HHV of a biomass is done using an instrument known as Bomb 

calorimeter, and is time-consuming and tedious. The said calorimeter is a high-

pressure batch equipment that requires a caution for its safe operation. It has been 

found that there exist relationships between the heating value of a biomass and its 

composition. Thus, if this functional relationship is known, then the knowledge of 

the proximate/ultimate analysis can be used gainfully to compute the HHV of 

biomass fuels (Parikh et al., 2005). The key advantages of such correlations are as 

given below. 

i. Efforts in the experimental determination of the HHV of a new biomass 

sample are saved if its proximate/ultimate analysis is known. 

ii. The correlations provide a fast and easy way of obtaining the biomass 

HHV. 

iii. These help in the performance modeling and optimal design and operation 

of combustion and gasification processes involving biomass fuels. 

For their wide applicability, the biomass HHV correlations must have excellent 

prediction accuracy and generalization capability. Accordingly, this chapter 

presents CI-based correlations with high prediction and generalization 

performance for predicting the HHV of biomasses. 
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 The next section begins with a brief literature survey of the existing 

biomass HHV models and explains the need for nonlinear correlations. It is 

followed by the details of the model development and a comparison of their 

prediction and generalization performance. Lastly, the main findings of the study 

are presented. 

2.1. SURVEY OF BIOMASS HHV MODELS 

2.1.1. Need for Nonlinear Models 

Over the years, various attempts have been made to develop biomass HHV 

models from their proximate or ultimate analysis. Numerous proximate or 

ultimate analysis based regression models are currently available for the 

prediction of HHV of a wide range of biofuels (Milne et al., 1990; Jimennez and 

Gonzales, 1991; Cordero et al., 2001; Channiwala and Parikh, 2002; Parikh et al., 

2005; Sheng and Azevedo, 2005; Friedl et al., 2005; Yin, 2011; Daya and Abdul, 

2012); a majority of these are linear. The only nonlinear biomass HHV models 

currently available are those proposed of Friedl et al. (2005) and Daya and Abdul 

(2012). For developing new CI-based models, a large-sized dataset of 382 

proximate and 536 ultimate analyses of biomass samples, and the corresponding 

HHVs was compiled. This data-set was obtained from the standard research 

articles and open-source databases (ECN Phyllis, 2012; Hofbauer and BIOBIB, 

2012; IEA Bioenergy Task, 2013). The compiled datasets are available on-line at 

the following address: https://static-

content.springer.com/esm/art%3A10.1007%2Fs12155-013-9393-

5/MediaObjects/12155_2013_9393_MOESM1_ESM.docx. The prediction 

accuracies of the existing biomass HHV models for the compiled biomass dataset 

were evaluated in terms of three statistical metrics, viz correlation coefficient 

(CC), root mean squared error (RMSE), and mean absolute percent error (MAPE) 

and it was found that the models developed by Parikh et al. (2005) (Eqn. 2.1), 

Channiwala and Parikh (2002) (Eqn. 2.2), Milne et al. (1990) (Eqn. 2.3) and 

Freidl et al. (2005) (Eqn. 2.4), possess relatively high biomass HHV prediction 

accuracies. 

 ASHVMFCkgMJHHV *0078.0*1559.0*3536.0)/(   (2.1) 
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021100151010340

100501783134910





 (2.2) 

 
ASH*.S*.

HO*.H*.C*.kg/MJHHV

0153006860

)(12032213410)(





 (2.3) 

 
20600131251

2230232553)( 2
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N*H*C*.

H*C*C*.kg/KJHHV
   (2.4) 

where, FC = fixed carbon, VM = volatile matter, ASH = ash, C = carbon, H = 

hydrogen, O = oxygen, N = nitrogen and S = sulfur, with all variables referring to 

the weight percentages of respective quantities on dry basis. 

 The HHVs of the biomass fuel samples from the compiled data-set were 

plotted against the individual components of the proximate and ultimate analyses; 

these are shown in Figure (2.1) as scatter-plots. From observation of the scatter-

plots, it is found that linear relations exist between the HHV and weight percent 

composition of the C, FC and ASH, while nonlinear dependence is observed in the 

scatter-plots of HHV versus weight percentages of VM, H, O, N and S. Thus, 

linear HHV correlations for biomass fuels from their proximate and ultimate 

analyses seem to be inappropriate, and nonlinear models may prove to be better in 

capturing the underlying nonlinearities, resulting in better prediction accuracies. 

 The main difficulty in regression based modeling of the HHV from the 

components of the proximate and ultimate analyses is that the exact forms of the 

correlations are unknown. This limitation can be overcome by using the CI-based 

exclusively data-driven nonlinear modeling formalisms such as genetic 

programming (GP) and artificial neural network (ANN). An ANN such as 

multilayer perceptron artificial neural network (MLPNN), through the use of a 

pre-specified nonlinear transfer function in its hidden layer, can efficiently capture 

input-output nonlinear relationships. 
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Figure 2.1: Scatter-plots of biomass HHV versus weight percentages of various 

components of the proximate and ultimate analysis on dry basis. 

 

 The relatively newer CI-based symbolic regression performing 

methodology, namely genetic programming (GP) (Koza, 1992; Poli et al., 2008) 

possesses an added advantage over ANNs (as also the conventional regression 

methods), that they do not require to pre-specify the form and the parameters of 
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the fitting function to model the input-output  relations (see Chapter 1, Section 

(1.2.2)). This attractive feature of GPSR (GP-based symbolic regression) has been 

exploited to develop the nonlinear biomass HHV predicting models possessing 

high prediction and generalization performance. Additionally, multi-layer 

perceptron neural network (MLPNN) (Freeman and Skapura, 1991; Tambe et al., 

1996) has been used to develop the corresponding nonlinear biomass HHV 

predicting models. 

Following are the notable features of this study: 

 CI-based methodologies introduced for modeling of HHV of solid biomass 

fuels. 

 A wide range of biomasses (refer Section (2.0) and the dataset available 

online) has been considered for the CI-based model development. 

 Large-sized datasets covering a variety of biomasses have been used in the 

CI-based model development.  

 The ultimate analysis dataset used in the CI-based biomass HHV model 

development has been the largest employed so far when compared with 

similar studies conducted previously. 

The prediction accuracies and generalization performances of the developed CI-

based biomass HHV predicting models were rigorously compared with the 

existing best models and it was found that the CI-based HHV models performed 

much better than their existing counterparts. 

2.2. CI-BASED BIOMASS HHV MODEL DEVELOPMENT 

The proximate analysis dataset contains three biomass property attributes 

namely, fixed carbon (FC), volatile matter (VM) and ash (ASH), while the 

ultimate analysis dataset consists of five attributes namely, carbon (C), hydrogen 

(H), oxygen (O), nitrogen (N) and sulfur (S).For model development the datasets 

were partitioned into training and test sets in the 85/15 ratio. 

2.2.1. GPSR-Based Model Development 

The GPSR-based biomass HHV prediction models were developed using 

Eureqa Formulize software package (Schmidt and Lipson, 2009). The set of 



 
 

 93 

operators used in generating candidate solutions are: {+,,/,*,const, exp, sqrt, 

power}. Several GPSR-based modeling runs were performed to study the effect of 

variations in the GPSR parameters on the converged models and the best 

performing GPSR models were retained for further scrutiny. 

To choose the best GPSR-based biomass HHV models, the CC, RMSE and 

MAPE magnitudes of the predicted biomass HHV values in respect to both the 

training and test sets were compared. The generalization capabilities of the GPSR-

based models were verified by evaluating the referred statistical metrics of the test 

sets. Finally, the GPSR-based models that gave the best prediction accuracies (in 

terms of high CC values and low RMSE and MAPE values) for both the training 

and test sets were retained as the final biomass HHV models. Alongside it was 

also ensured that the model complexities of the chosen GPSR-based models are 

low. The retained best GPSR-based biomass HHV (MJ/kg) predicting models are 

given below: 

 Proximate analysis based GPSR model (GPSR-Model 1): 

 

    ASHFCASHFC

VM

FC
VMFCHHV

**863.6**531.0138.10283

*568.328

397.1
*131.0*365.0

23




  

    (2.5) 

where, FC, VM and ASH denote weight percentages of fixed carbon, volatile 

matter and ash respectively on dry basis.  

 Ultimate analysis based GPSR model (GPSR-Model 2): 
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88353
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(2.6)
 

where, C, H, O, N and S denote the weight percentages of carbon, hydrogen, 

oxygen, nitrogen and sulfur respectively on dry basis. 
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2.2.2. MLPNN-Based Model Development 

The same biomass dataset as used in constructing the GPSR-based 

biomass HHV model as was used in the MLPNN-based model development. The 

two best MLPNN-based biomass HHV models based on the proximate and 

ultimate analyses were designed and developed using RapidMiner software 

package (Mierswa et al., 2006). Various MLPNN architectures and the EBP 

training specific parameters were analyzed heuristically and the best performing 

models were chosen, based on the highest CCs and lowest RMSEs corresponding 

to the model prediction of HHV magnitudes. The design of both the MLPNN 

models consisted of two hidden layers in their architecture and these models were 

trained using the EBP training algorithm (Rumelhart et al., 1986) available in the 

package. The dataset was normalized in the [-1, +1] range, prior to MLPNN 

training, while the predicted output HHV was in the de-normalized form. The 

architectural design details and the EBP-specific parameters chosen for the 

development of an optimal MLPNN-based biomass HHV models are given in 

Table (2.1). 

Table 2.1: Architectural details of developed MLPNN-based biomass HHV 

models 

Model 

No. 
Model-inputs 

Data-

set 

Training-

set 
Test-set N L M 

1 
FC,  VM and 

ASH 
382 322 60 3 5 3 

2 
C, H, O, N and 

S 
536 456 80 5 6 4 

N = number of input layer nodes, L = number of nodes in first hidden layer, M = 

number of nodes in second hidden layer. 

Both the MLPNN models consisted of log-sigmoid transfer function in the 

hidden layer nodes and linear transfer function in the output layer nodes. 

2.3. RESULTS AND DISCUSSION 

A comparison of the HHV prediction accuracy and generalization 

performance possessed by the developed CI-based models with that of the existing 

best performing models was carried out on the basis of three statistical metrics viz. 

CC, RMSE and MAPE. 
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2.3.1. Biomass HHV Models Based on the Proximate Analysis 

The magnitudes of CC, RMSE and MAPE in respect of the CI-based 

biomass HHV models as also the best performing biomass HHV model of Parikh 

et al. (2005) (Eqn. 2.1) are listed in Table (2.2), wherein it is observed that both 

the CI-based models (GPSR-Model 1 and MLPNN-Model 1) have performed 

better as compared to the biomass HHV model of Parikh et al. (2005). Especially, 

it is noticed that the CC values for the HHV predictions for the training (>0.96) 

and test (>0.95) sets by the CI-based models are higher (0.955, 0. 954) than that 

for the predictions by the model by Parikh et al. (2005). Also, the RMSE and 

MAPE magnitudes in respect of the training (test) set HHV predictions by the CI-

based models are significantly lower than the corresponding RMSE and MAPE 

magnitudes of the model by Parikh et al. (2005). 

Table 2.2: Comparison of biomass HHV prediction performances of GPSR-

Model 1, MLPNN-Model 1 and Parikh et al‘s model based on the 

proximate analysis as input 

Model 
Training-set Test-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst 

GPSR-Model 1  0.97 0.94 4.01 0.96 0.97 4.37 

MLPNN-Model 1  0.97 0.93 3.80 0.96 0.99 4.43 

Parikh et al. (2005) 0.95 1.25 5.20 0.95 1.12 4.45 

 

Similar observations can be inferred from the parity plots in Figure (2.2), wherein 

it can be observed that the plots for the HHV predictions of the CI-based models 

show a much lower scatter (indicating higher prediction accuracies) as compared 

to the corresponding plot of predictions made by the model of Parikh et al. (2005). 
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Figure 2.2: Parity plots of the experimental HHVs versus those predicted by the 

proximate analysis based following models: (a) GPSR-Model 1, (b) 

MLPNN-Model 1 and (c) Parikh et al. (2005). 

 A comparison of the HHV prediction accuracies and generalization 

performances of the CI-based models with the competing linear models was also 

performed to verify their prediction and generalization performance in different 

(low, medium and high) HHV ranges. The results of this comparison are given in 

Table (2.3). The three experimental HHV (MJ/kg) ranges considered are (were the 

model predicted HHVs were compared with the experimental HHV values) are: 0-

16 (low), 16-25 (medium), and 25-35 (high).  
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Table 2.3: Range-wise comparison of biomass HHV prediction accuracies and 

generalization performances of proximate analysis based models 

 

Model 

HHV (MJ/kg) range  

0-16 16-25 25-35 

CC RMSE MAPE CC RMSE MAPE CC RMSE MAPE 

GPSR-

Model 1 
0.95 1.03 7.87 0.76 0.92 3.66 0.89 1.05 2.98 

MLPNN-

Model 1 
0.95 1.11 7.50 0.76 0.90 3.50 0.89 1.10 3.04 

Parikh et 

al. (2005) 
0.92 1.54 8.98 0.69 1.18 4.74 0.89 1.19 3.11 

The results of the mentioned range-wise comparison are as follows: 

 In the low HHV range, the prediction and generalization performance of 

the CI-based models is better than that of the competing linear model 

(Eqn. 2.1). 

 In the medium HHV range, the CI-based HHV models as well as the 

competing linear model possess lower values of CCs as compared to those 

observed for the low HHV range. However, as inferred from the CC, 

RMSE and MAPE magnitudes, the HHV prediction accuracy and 

generalization performance of both the CI-based models is superior than 

the competing linear models. 

 In the high HHV range, all biomass HHV prediction models depicted 

comparable performance, with the CI-based models performing marginally 

better with lower values of RMSEs and MAPEs as compared to the linear 

competing model.  

2.3.2. Biomass HHV Models Based on the Ultimate Analysis 

Here, the CI-based biomass HHV models were compared using the same 

statistical metrics (CC, RMSE and MAPE) with the three competing models 

proposed by Channiwala and Parikh (2002) (Eqn. 2.2), Milne et al. (1990) (Eqn. 

2.3) and Friedl et al. (2005) (Eqn. 2.4). The results of these comparisons are listed 

in Table (2.4); it is observed in this table that the CC values relative to the 

experimental HHVs in training and test sets and the corresponding magnitudes 

predicted by the CI-based models are higher than those computed by the three 
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competing models. Also, RMSE and MAPE values pertaining to the HHV 

predictions by the CI-based models are lower when compared with the 

corresponding HHV predictions by the three non-CI based empirical models. The 

results are clearly indicative of the fact that the CI-based models using elements of 

the ultimate analysis as inputs for the prediction of biomass HHV exhibit better 

prediction accuracies and generalization performance than their competing non-CI 

based models. Figure (2.3) also supports these conclusions by revealing a lower 

scatter in the parity plots corresponding to the HHV predictions by the CI-based 

models than that existing in the plots related to the predictions of the non-CI 

models.  

Table 2.4: Comparison of biomass HHV prediction accuracies and generalization 

performances of the GPSR-Model 2 and MLPNN-Model 2 with the 

models of Channiwala and Parikh (2002), Milne et al. (1990) and 

Friedl et al. (2005) based on ultimate analysis 

 

Model 

Training-set Test-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst 

GPSR-Model 2  0.95 1.08 3.62 0.95 0.94 3.63 

MLPNN-Model 2  0.97 0.86 3.33 0.95 0.98 3.67 

Channiwala and 

Parikh (2002)  
0.89 1.88 4.99 0.93 1.32 4.86 

Milne et al. 

(1990) 
0.88 1.97 5.35 0.92 1.45 5.25 

Friedl et al. 

(2005) 
0.93 1.38 4.50 0.95 1.03 4.01 

  

As conducted for the proximate analysis based biomass HHV prediction models, 

the performance of the ultimate analysis based models was also compared in three 

ranges of HHVs. Here, the prediction and generalization potential of the CI-based 

models was compared with their three competing models, viz. Channiwala and 

Parikh (2002) (Eqn. 2.2), Milne et al. (1990) (Eqn. 2.3) and Friedl et al. (2005) 
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Figure 2.3: Parity plots of the experimental HHVs versus those predicted by the 

ultimate analysis based following models: (a) GPSR-Model 2, (b) 

MLPNN-Model 2, (c) Channiwala and Parikh (2002), (d) Milne et al. 

(1990) and (e) Friedl et al. (2005). 

 (Eqn. 2.4). Table (2.5) lists the results of this comparison in terms of the three 

statistical metrics, viz. CC, RMSE and MAPE, and the key findings thereof are 

given below. 
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 The CI-based models show significantly higher prediction accuracy and 

lower generalization error (also termed ―out-of-sample‖ error) in the low 

HHV range than the competing models that are not CI-based. The largest 

improvement is observed while comparing MLPNN-Model 2 and the 

model of Milne et al. (1990), with the former outperforming the latter 

model‘s CC by 100%.  

 In the medium HHV range, both the CI-based models exhibit better 

prediction and generalization performance when compared with that of the 

non-CI models, with both CI models exhibiting closely matching HHV 

prediction performance.  

 In the high HHV range (25–36 MJ/kg), both the MLPNN-Model 2, and the 

competing presently high performing models show comparable HHV 

prediction and generalization capabilities with the GPSR-Model 2 

performing sub-optimally when  compared with  the rest of the models. 

Table 2.5: Range-wise statistical analysis of HHV prediction accuracy and 

generalization performance of ultimate analysis based models 

 

Model 

HHV (MJ/kg) range  

0-16 16-25 25-36 

CC RMSE MAPE CC RMSE MAPE CC RMSE MAPE 

GPSR-

Model 2 
0.84 1.16 6.38 0.82 0.84 3.15 0.75 2.55 5.77 

MLPNN-

Model 2 
0.90 0.90 5.21 0.84 0.81 3.13 0.83 1.55 3.89 

Channiwala 

and Parikh 

(2002) 

0.50 2.78 7.94 0.63 1.66 4.76 0.82 1.83 3.38 

Milne et al. 

(1990) 
0.45 3.10 9.21 0.63 1.71 5.00 0.83 1.99 4.04 

Friedl et al. 

(2005) 
0.64 2.13 13.17 0.73 1.10 3.41 0.81 2.22 4.75 

 The MLPNN models in this study employed the sigmoid transfer function 

to compute the outputs of the nodes in their hidden layers. Thus, these models are 

inherently nonlinear. Also, the GPSR-based biomass HHV models (Eqn. (2.5) and 

(2.6)) are nonlinear. The fact that all CI-based nonlinear models possess an 

improved biomass HHV prediction performance as compared to the existing best 
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competing linear models, clearly suggests that for the prediction of HHV of 

biomass fuels using the constituents of proximate or ultimate analyses, nonlinear 

models are indeed more suitable than the linear models. 

2.4.  CONCLUSION 

 An extensive literature survey of biomass HHV predicting models 

revealed that a majority of the existing models are based on the conventional 

empirical regression approaches. Also, most of the high-performing biomass HHV 

models based on the components of the proximate and/or ultimate analyses are 

pre-dominantly linear. A thorough analysis of the proximate and ultimate analyses 

and the corresponding HHV values reveals that the HHVs are nonlinearly related 

to a few of the proximate/ultimate analysis components. Accordingly, two 

computational intelligence (CI) methodologies namely genetic programming 

assisted symbolic regression (GPSR) and multi-layer perceptron neural network 

(MLPNN) were utilized to design and develop models predicting HHV of solid 

biomass fuels. A total of four CI-based models, with two GPSR-based and two 

MLPNN-based biomass HHV models were developed, which respectively used 

the components of the proximate and ultimate analyses, as their inputs. The GPSR 

methodology has a major attractive feature that given the example dataset, it is 

capable of generating optimized linear/nonlinear fitting function and associated 

parameters that best fit the data. In spite of this attractive feature, GP based 

symbolic regression has rarely been explored for modeling in fuel 

science/engineering. The prediction and generalization performance of both the 

CI-based models was compared with the competing high-performance models. 

The said comparison revealed that all CI-based models have an excellent HHV 

prediction performance as compared to the competing conventional models. In the 

conducted exercise  of comparison of the models‘ prediction ability in three 

specific ranges of HHV (i.e., low, medium and high), the GPSR-Model 2 with 

ultimate analysis constituents as inputs, has yielded excellent performance in the 

low and medium HHV ranges; it, however, faired sub-optimally in the high HHV 

range (25-36 MJ/kg). The CI (GPSR and MLPNN) based nonlinear biomass HHV 

models developed in this study since possess an excellent prediction and 
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generalization performance have the potential to replace the existing biomass 

HHV correlations.  

 

NOMENCLATURE 

L Number of first hidden layer nodes in MLPNN 

M Number of second hidden layer nodes in MLPNN 

N Number of input layer nodes in MLPNN 
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PREDICTION OF ELEMENTAL COMPOSITION OF SOLID 

BIOMASS FUELS FROM PROXIMATE ANALYSIS USING 

COMPUTATIONAL INTELLIGENCE BASED MODELS 

Abstract 

The elemental composition of a biomass fuel is an important measure of its energy 

content and its information is valuable in designing of combustion processes for 

efficient and clean utilization of the fuel. Obtaining the elemental composition 

(termed ―ultimate analysis‖) via standard laboratory procedures is expensive, 

time-consuming, and requires a skilled analyst. The proximate analysis of a fuel 

represents its ash, fixed carbon and volatile matter content and relatively easy to 

conduct. Currently, two linear models are available for the prediction of elemental 

composition of solid biomass fuels from their proximate analysis. These show 

applicability over a limited range of percentage compositions of the elements and 

the constituents of proximate analysis of the fuel. Accordingly, this study utilizes 

three computational intelligence (CI) methodologies, namely genetic 

programming (GP), artificial neural network (ANN), and support vector 

regression (SVR) for modeling the elemental composition of a large variety of 

biomass fuels using the constituents of their proximate analysis as inputs. The 

models developed are applicable over wider ranges of the constituents of the 

proximate analysis, and provide much better prediction and generalization 

performance as compared with the existing linear models. 
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3.0. INTRODUCTION 

Biomass fuels, due to their renewable nature are seen as a promising ―Green‖ 

source of energy for the future. Considering the tremendous importance being 

attached to the sustainable energy, the usage of biomass in energy production is 

expected to rise exponentially. Biomass fuels are obtained from the remains of 

plants and animals such as dried leaves, stems, dried plant-fruits and also various 

forms of fossil fuels originating from the long-term natural processing of buried 

remains of animals and plants. The ultimate analysis of a biomass fuel expresses 

its composition on an elemental basis representing the weight percentages of ash, 

carbon, hydrogen, nitrogen, sulfur, and (by difference) oxygen. The major 

components of the ultimate analysis include carbon (C), hydrogen (H) and oxygen 

(O), while nitrogen and sulfur are the minor elements. The knowledge of the 

ultimate analysis of a biomass fuel is helpful in the efficient design and operation 

of the biomass fuel utilizing facilities (Parikh et al., 2007). It is directly related to 

the energy content of the fuel and plays an important role in:  

(a) The mass and energy balance calculations of the biomass-utilizing 

processes such as gasification, combustion and pyrolysis. 

(b) The calculation of the stoichiometric requirement of air for the complete 

combustion of the biomass fuel for achieving enhanced combustion 

efficiency. 

(c) The optimal design of combustion equipment for maintaining appropriate 

biomass fuel-to-air ratio. 

 A relatively cruder characterization of a biomass fuel is performed in 

terms of its proximate analysis, which constitutes weight percentages of fixed 

carbon (FC), volatile matter (VM), ash (ASH), and moisture. The standard 

analytical ASTM procedures are available for the sample preparation and 

measurement of components of the proximate and ultimate analyses of solid fuels 

(ASTM D5142-04, 2004; ASTM D3176-09, 2009).   

The experimental determination of the elemental composition of a fuel 

requires very expensive equipment and skilled analysts (Cordero et al., 2001), 

while the proximate analysis can be easily done using standard laboratory 



 
 

 108 

equipments by any engineer/researcher (Parikh et al., 2007). Thus, correlations 

predicting the elemental composition of a biomass fuel from the constituents of its 

proximate analysis would be a convenient and cost-effective alternative to 

ultimate analysis. From an extensive literature survey, it is observed that there are 

only two such models by namely Parikh et al. (2007) and Shen et al. (2010). Both 

the models are linear and the average absolute error of their predictions of C, H 

and O (in weight percentages) are greater than 3%, 4%, and 3%, respectively. 

Also, the applicability of these conventional models is limited to lower ranges of 

the inputs (weight percentages of the components of the proximate analysis). In 

order to develop models with improved performance in predicting the elemental 

composition of biomass fuels and applicability over wider ranges of the inputs, a 

large and diverse biomass property dataset was compiled. This dataset consists of 

the proximate analysis and the corresponding elemental composition records of 

830 biomass samples of a variety of biomasses. Using the dataset, nonlinear 

models were developed using CI-based genetic programming (GP) (Koza, 1992; 

Poli et al., 2008), multilayer perceptron neural network (MLPNN) (Freeman and 

Skapura, 1991; Bishop, 1995) and support vector regression (SVR) (Vapnik, 

1995; Ivanciuc, 2007) methodologies. Notably, the usage of the relatively new and 

infrequently used GP based symbolic regression (GPSR) method resulted in 

simpler correlations that are easier to use in practice (see Section (1.2.2) for more 

details of GPSR methodology). In this study, a total of nine CI-based models 

(three each of GPSR, MLPNN and SVR) have been developed for the prediction 

of weight percentages of carbon, hydrogen and oxygen (all on dry basis), 

respectively of biomass fuels using the components of the corresponding 

proximate analysis as inputs.  

Thus, the notable features of this study are: 

 CI-based modeling has been introduced for the prediction of elemental 

composition of solid biomass fuels. 

 The dataset compiled for the development of the said CI-based models has 

been the largest so far utilized in the development of similar type of 

models. 
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 The compiled dataset of the biomass samples includes a wide variety of 

biomass types such as waste sludge, paper and pulp waste, processing 

wastes, various grades of coal, chars, plants, crops and forest trees.  

 The CI-based models developed have wider applicability in terms of their 

ranges of the model inputs as compared to the competing linear non-CI-

based models (see Table (3.1)). 

Table 3.1: Details of the proximate and ultimate analyses dataset of biomass fuels 

Component 
Training-set (620)* Test-set (125) Validation-set (85) 

Range Mean Range Mean Range Mean 

Proximate analysis 

Fixed Carbon 5.04-89.6 20.73 6.43-87.17 20.70 10.8-82.2 22.47 

Volatile Matter 7.4-94.73 70.43 9.93-87.9 73.81 11.6-85.65 73.98 

Ash 0.1-56.1 8.81 0.18-47.5 5.48 0.29-25.5 3.53 

Ultimate analysis 

Carbon 22.35-92.86 47.98 24.4-91.85 49.49 36.81-81.7 50.77 

Hydrogen 0.52-11.42 5.60 0.73-6.37 5.47 1.33-6.75 5.60 

Oxygen 2.32-52.06 36.17 4.25-44.99 38.61 5.55-45.13 39.41 

*indicates number of data-points in the set; all values are in weight percentage on  

dry basis 

The prediction performances of the CI-based models has been compared 

with the existing, linear models of Parikh et al. (2007), and Shen et al. (2010). The 

rest of this chapter is organized as follows. In the forthcoming sections, the 

methodologies used to develop the respective CI-based models are discussed. In 

the ―Results and Discussion‖ section, a  comparison of the prediction performance 

of the CI-based models and competing linear models is done. For identifying the 

best models for the prediction of the elemental composition of solid biomass fuels, 

standard statistical tests have been performed, the results of which are also 

discussed in the same section. Finally, the ―Conclusion‖ section provides the 

concluding remarks. 

3.0.1. Need for Non-Linear Elemental Composition Models 

Presently, there are only two linear regression-based models available for the 

prediction of the elemental composition of solid biomass fuels from the 
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components of their proximate analysis. These correlations proposed by Parikh et 

al. (2007) (Eqns. 3.1–3.3) and Shen et al. (2010) (Eqns. 3.4–3.6), are given below: 

VMFCC 455.0637.0      (3.1)              

VMFCH 062.0052.0      (3.2)                                                                                

VMFCO 476.0304.0      (3.3) 

ASHVMFCC 095.0460.0635.0    (3.4) 

ASHVMFCH 010.0060.0059.0    (3.5) 

ASHVMFCO 023.0469.0340.0    (3.6) 

where, FC = fixed carbon, VM = volatile matter, ASH = ash, C = carbon, H = 

hydrogen and O = oxygen are the weight percentages (on dry basis) of the 

respective components of solid biomass fuels. In order to examine the nature of 

the relationships (whether linear or nonlinear) existing between the individual 

biomass composition elements and the corresponding components of the 

proximate analysis, scatter-plots were generated by plotting the individual 

components of the proximate analysis against each component of the elemental 

composition as shown in Figure (3.1). 

 



 
 

 111 

 
Figure 3.1: Scatter-plots of components of the elemental composition versus 

components of the proximate analysis of biomass fuels; C: wt% 

carbon, H: wt% hydrogen, O: wt% oxygen, FC: wt% fixed carbon, 

VM: wt% volatile matter and ASH: wt% ash in biomass fuels. 

From the scatter-plots, it is observed that the relations between some of the 

components of the proximate analysis and the corresponding elemental 

composition of biomass fuels are nonlinear. For instance, a strong nonlinear 

dependence is witnessed (see Figure 3.1(a)) between the C and FC values in the 

first half of their ranges while the variables, C and ASH show a weak nonlinear 

interdependency.  The hydrogen weight percentage also shows a strong nonlinear 

relation with FC, and weak nonlinear relationships with VM and ASH (see Figures 

3.1(d), (e) and (f)). Oxygen in the biomass too shows a mild nonlinear correlation 

with fixed carbon (see Figure 3.1(g)). From these observations, it can be 

unambiguously  inferred that the models considering the above-stated  nonlinear 
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dependencies are most likely to display a better prediction and generalization 

performance in predicting the weight percentages of the individual constituents of 

the elemental composition (C, H and O) of biomass fuels from the components 

(FC, VM and ASH) of their proximate analysis. 

3.1. CI-BASED MODELS FOR THE PREDICTION OF 

ELEMENTAL COMPOSITION OF BIOMASS FUELS 

The CI-based (GPSR, MLPNN and SVR) elemental composition 

predicting models for solid biomass fuels were developed using proximate 

analysis data and the corresponding elemental composition values of a wide 

variety of biomass fuels. A majority of the dataset was compiled from the open 

access database, i.e., ECN‗s Phyllis database (ECN Phyllis, 2012) and a few data 

were obtained from the published research papers, totaling 830 data-points. The 

compiled dataset is available on-line at the following address: https://static-

content.springer.com/esm/art%3A10.1007%2Fs13198-014-0324-

4/MediaObjects/13198_2014_324_MOESM1_ESM.doc.  

For the development of CI-based models, the dataset was partitioned into 

training, test and validation sets in  percentages 75%, 15% and 10%, respectively; 

the statistical analysis of the data are provided in Table (3.1). The dataset was pre-

processed by normalizing (except for the development of the SVR based models) 

the inputs (proximate analysis constituents) in the range [-1, +1]. The outputs 

(targets) were supplied to the GPSR and MLPNN based learners in normalized 

form in the same range as the inputs. The normalized outputs obtained from these 

models were de-normalized to generate the rescaled outputs. The performances of 

each of the developed CI-based models were evaluated in terms of three statistical 

metrics, namely, coefficient of correlation (CC), root mean square error (RMSE), 

and mean absolute percent error (MAPE)  relative to the experimental and model 

predicted weight percentage values of C, H and O. These predicted outputs from 

the constructed CI-based models were compared with those computed using the 

competing linear models of Parikh et al. (2007) and Shen et al. (2010). Finally, to 

identify the best performing CI-based model from among the three GPSR, 

MLPNN and SVR based models for predicting the weight percentages of C, H and 
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O individually, a statistical test known as the Steiger‘s z-test (Steiger, 1980) was 

conducted. This test using coefficient of correlation (CC) values of competing 

models unambiguously identifies the best model (see Section (1.8) for a detailed 

description of the test).  

3.1.1. Development of GPSR-Based Biomass Elemental Composition 

Predicting Models 

The Eureqa Formulize (Schmidt and Lipson, 2009) software package was 

used to develop the GPSR-based models. This package has several attractive 

features (see Section (1.2.2)) for developing models possessing an excellent 

generalization capability. Several runs were conducted, by systematically varying 

GPSR parameters thus obtaining multiple expressions with different structures. 

The identification of the best GPSR-based biomass elemental composition models 

was done based on the lower complexity of the expression and its higher 

prediction and generalization performance. The best GPSR-based models 

satisfying the stated criteria for the prediction of carbon, hydrogen and oxygen 

weight percentages are given below: 

(a) Carbon content (wt%) predicting optimal model (GPSR-Model 1): 
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(b) Hydrogen content (wt%) predicting optimal model (GPSR-Model 2): 
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(c) Oxygen content (wt%) predicting optimal model (GPSR-Model 3): 
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where, 𝑥 1, 𝑥 2 and 𝑥 3 are the normalized variables of percentages of fixed carbon 

(FC), volatile matter (VM) and ash (ASH) in the biomass on dry-basis 

respectively, expressed as, 
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3.1.2. Development of MLPNN-Based Biomass Elemental Composition 

Predicting Models 

 Three MLPNN models for the prediction of weight percentages of carbon, 

hydrogen and oxygen, respectively were developed using Rapid Miner software 

package (Mierswa et al., 2006). Each of the optimal MLPNN models have two 

hidden layers in its architecture, the details of which are given in the Table (3.2).  

The table also lists the parameter values of the Error-Back-Propagation (EBP) 

algorithm used in training the three optimally performing MLPNN models.  

Table 3.2: Dataset partitioning and architectural details of the developed 

MLPNN-based biomass elemental composition models 

Model 

No. 
Model inputs 

Data-set  

N L M η µ Training

-set 

Test

-set 

Validation

-set 

1 
FC,  VM and 

ASH 
620 125 85 3 5 3 0.2 0.35 

2 
FC,  VM and 

ASH 
620 125 85 3 5 3 0.4 0.15 

3 
FC,  VM and 

ASH 
620 125 85 3 5 3 0.2 0.3 

N = number of nodes in the input layer, L = number of nodes in the 1st hidden 

layer, M = number of nodes in the 2nd hidden layer, TF = Transfer function, η = 

Learning rate, µ = Momentum coefficient. 

3.1.3. Development of SVR-Based Biomass Elemental Composition 

Predicting Models 

The optimal SVR-based models for the prediction of weight percentages of 

C, H and O, respectively were also developed using RapidMiner software package 
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(Mierswa et al., 2006). Table (3.3) shows the details of these SVR-based models 

along with the parameter values pertaining to the ―ANOVA‖ kernel function used 

in the SVR formulation. The epsilon-insensitive loss function was used in the 

SVR model formulation. The SVR parameters as listed in the table were chosen 

heuristically to obtain the optimal SVR models. 

Table 3.3: Dataset partitioning and parameter details of the developed SVR-based 

biomass elemental composition models 

Model 

No. 

Model 

inputs 

Data-set 

γ ε SVs Training

-set 
Test-set 

Validation-

set 

1 
FC, VM 

and ASH 
620 125 85 0.1 5 104 

2  
FC, VM 

and ASH 
620 125 85 0.05 0.7 116 

3 
FC, VM 

and ASH 
620 125 85 0.1 5 126 

γ = Gamma (Kernel parameter), ε = Epsilon (tube-width), SVs = Number of 

support vectors; Kernel used: Radial Basis Function (RBF) 

3.2. RESULTS AND DISCUSSION 

 The prediction and generalization performances of the CI-based models in 

predicting the weight (%) magnitudes (on dry basis) of C, H and O, was 

rigorously compared with that exhibited by the linear models of Parikh et al. 

(2007) and Shen et al. (2010). The latter two models are valid over the following 

narrow ranges of the proximate and ultimate analyses constituents (on dry basis) 

of the biomass samples. 

 FC: 4.7-38.4 wt%, VM: 57.2-90.6 wt%, ASH: 0.1-24.6wt%, C: 36.2-53.1 wt%, 

H: 4.36-8.3 wt% and O: 31.37-49.5 wt%.  

In contrast, the present modeling study utilizes a large number of biomass samples 

that are valid over the following wider ranges of the components of the proximate 

and ultimate analyses. 

 FC: 5.04-89.6 wt%, VM: 7.4-94.73 wt%, ASH: 0.1-56.1 wt%, C: 22.35-92.86 

wt%, H: 0.52-11.42 wt% and O: 2.32-52.06 wt%. 

Specifically, in a dataset of 830 biomass samples considered in this study, a close 

to 200 samples lie outside the ranges considered by the models proposed by 
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Parikh et al. (2007) and Shen et al. (2010). Accordingly, we have evaluated 

performance of each CI-based model in two ranges that is, ―within‖ and ―outside‖ 

the ranges considered by the models of Parikh et al. (2007) and Shen et al. (2010). 

This performance assessment is conducted using 614 (―within range‖) and 216 

(―outside range‖) number of sample data. Finally, the CI-based models were 

compared with each other using Steiger‘s test (Steiger, 1980) for testing the 

hypothesis that two correlation coefficient magnitudes relative to the predictions 

of a pair of models are statistically equal. The null hypotheses (H0: CCAB = CCAC) 

is rejected if ‗p’ value is lesser than 0.05, else it is accepted. Here subscript, ‗A’ 

denotes the experimental values, while ‗B‘ and ‗C‘ indicate output values 

predicted by models ‗B‘ and ‗C‘, respectively. 

3.2.1. Comparison of Models Predicting Carbon (wt%) 

 Table (3.4) shows a comparison of the prediction and generalization 

performance of the three CI-based and the two existing linear models for carbon 

(wt%). From the table listing CC, RMSE and MAPE values, it is evident that, the 

prediction and generalization performance of the CI-based models is clearly much 

better than the linear models. This can be seen in terms of higher CCs (>0.9) 

corresponding to the predictions of almost all CI-based models when compared 

with the CC magnitudes (<0.85) returned by the linear models‘ predictions of 

carbon (wt%). The major improvement by the CI-based models over the existing 

linear models is seen through the much lower RMSEs (nearly two times reduction, 

as compared to the existing linear models), and MAPEs. A range-wise comparison 

of the models as seen in Table (3.5), reveals that the CI-based models developed  

here show marginally better performance than the linear models for within range 

data and much better performance for ―out-of- range‖ data. The result of the 

Steiger‘s statistical test (see Table (3.6)) for testing of the null hypothesis of 

equivalence of correlation coefficients indicates that the MLPNN and SVR 

models fair comparably well, while when compared with the GPSR-based model 

they fair better. Figure (3.2) shows the parity plots of comparison of the prediction 

of the carbon (wt%) values by the CI-based and the existing best linear model of 

Parikh et al. (2007). A larger scatter in the parity-plot for the carbon (wt%) 

predictions pertaining to the model of Parikh et al. (2007) is observed as compared 

to the plots of predictions done by the CI-based models. 
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Table 3.4: Comparison of model performances of CI-based and existing linear-regression models for the prediction of carbon (wt%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 

Training-set Test-set Validation-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst CCVln RMSEVln MAPEVln 

GPSR-Model 1 0.89 4.24 6.38 0.98 1.37 1.82 0.98 1.91 2.42 

MLPNN- Model 1 0.91 4.20 6.59 0.98 2.10 3.30 0.98 1.72 2.50 

SVR-Model 1 0.91 3.96 6.17 0.98 1.64 2.56 0.99 1.28 1.81 

Parikh et al. (2007) 0.75 6.98 7.96 0.81 6.76 4.99 0.84 6.84 4.71 

Shen et al. (2010) 0.72 7.38 8.89 0.74 7.02 5.14 0.75 7.09 4.66 
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Table 3.5: Range-wise comparison of the performance of CI-based and existing linear-regression models for prediction of carbon (wt%) 

 

Model Range 

Training-set Test -set Validation-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst CCVln RMSEVln MAPEVln 

GPSR-Model 1 

WR 0.66 2.89 4.76 0.94 1.00 1.57 0.90 1.15 2.01 

OR 0.92 6.28 9.95 0.99 3.07 4.04 0.96 4.61 5.51 

MLPNN-Model 1 

WR 0.70 2.82 4.95 0.95 1.69 3.11 0.93 1.29 2.29 

OR 0.93 6.26 10.24 0.98 4.20 4.95 0.97 12.62 4.04 

SVR-Model 1 

WR 0.68 2.68 4.60 0.94 1.31 2.35 0.92 0.92 1.64 

OR 0.93 5.87 9.63 0.99 3.33 4.40 0.97 2.77 3.04 

Parikh et al. (2007) 

WR 0.68 2.75 4.74 0.93 1.52 2.77 0.90 1.11 1.94 

OR 0.86 11.83 15.10 0.97 20.48 24.11 0.96 19.71 25.49 

Shen et al. (2010) 

WR 0.69 2.78 4.83 0.94 1.40 2.51 0.91 1.00 1.69 

OR 0.84 12.56 17.87 0.96 21.39 27.82 0.95 20.49 26.94 

         WR: Within range data, OR: Outside range data.  
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Figure 3.2: Parity-plots of model-predicted and the corresponding experimental 

values pertaining to the carbon (wt%) predicting following models: 

(a) GPSR-Model 1, (b) MLPNN-Model 1, (c) SVR-Model 1, and (d) 

Parikh et al. (Parikh et al., 2007). 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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 Table 3.6: Results of the statistical comparison of the correlation coefficients 

pertaining to CI-based models predicting the weight percent of 

carbon 

Model pair  

(B-C) 
CCAB CCAC CCBC df p H0 

GPSR-MLPNN 0.91 0.93 0.98 829 2.56e-9 Reject 

GPSR-SVR 0.91 0.93 0.98 829 8.85e-8 Reject 

MLPNN-SVR 0.93 0.93 0.99 829 0.428 Accept 

df: degrees of freedom, p: probability, H0: null hypothesis proposed 

3.2.2. Comparison of Models Predicting Hydrogen (wt%) 

 The prediction and generalization performances of the hydrogen (wt%) 

predicting models are indicated in Table (3.7), wherein the CI-based models 

consistently exhibit better performances (CCs>0.74 for all the sets) as compared 

to the existing linear models (CCs<0.67). The prediction performance of the 

MLPNN-Model 2 is slightly better among the developed CI models (CCs~0.76, 

RMSEs <0.87 and MAPEs <11.36) and is also the best overall. Same is indicated 

in Figure (3.3), which shows the parity plots of comparison of the prediction of 

the hydrogen (wt%) values by the CI-based and the existing best linear model of 

Parikh et al. (2007). Similar to the case of carbon (wt%) predictions for ―within 

range‖ and ―out of range‖ data, the CI-based models predicting Hydrogen (wt%) 

magnitudes exhibit much better prediction performance (see Table (3.8)) for out-

of-range data while they produce comparable results for within-the-range data. 

The Steiger‘s statistical test (Table (3.9)) for significant differences between the 

correlation coefficients reveal that among the CI-based models, the MLPNN and 

SVR-based models predicting the hydrogen weight percentages fair marginally 

better than the GPSR-based Model 2. 
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Table 3.7: Comparison of model performances of CI-based and existing linear-regression models for prediction of hydrogen (wt%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 

Training-set Test-set Validation-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst CCVln RMSEVln MAPEVln 

GPSR-Model 2 0.76 0.64 9.61 0.75 0.83 12.89 0.75 0.84 9.73 

MLPNN-Model 2 0.76 0.68 9.99 0.77 0.82 11.35 0.76 0.86 9.14 

SVR-Model 2 0.77 0.64 10.04 0.76 0.82 12.90 0.74 0.82 10.99 

Parikh et al. (2007) 0.66 0.75 11.84 0.50 1.08 19.73 0.56 1.06 14.63 

Shen et al. (2010) 0.59 0.80 13.11 0.35 1.16 22.27 0.36 1.15 16.46 
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Table 3.8: Range-wise comparison of the performance of CI-based and existing linear-regression models for prediction of hydrogen (wt%) 

Model Range 

Training-set Test- set Validation-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst CCVln RMSEVln MAPEVln 

GPSR-Model 2 

WR 0.45 0.47 5.67 0.20 0.61 5.28 0.10 0.51 4.08 

OR 0.64 1.12 27.32 0.80 1.65 61.27 0.88 1.78 41.05 

MLPNN-Model 2 

WR 0.44 0.54 6.38 0.21 0.64 5.73 0.14 0.57 5.08 

OR 0.66 1.13 26.21 0.83 1.52 47.03 0.89 1.74 31.67 

SVR-Model 2 

WR 0.46 0.49 6.76 0.21 0.66 7.23 0.13 0.55 6.31 

OR 0.68 1.07 24.74 0.82 1.47 48.88 0.85 1.65 36.90 

Parikh et al. (2007) 

WR 0.45 0.52 6.05 0.17 0.66 5.10 0.10 0.55 4.17 

OR 0.42 1.38 37.84 0.35 2.40 112.64 0.89 2.37 72.52 

Shen et al. (2010) 

WR 0.44 0.50 5.91 0.16 0.64 5.26 0.10 0.53 4.03 

OR 0.33 1.56 45.41 0.16 2.71 130.32 0.72 2.66 85.32 

         WR: Within range data, OR: Outside range data. 
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Figure 3.3:  Parity-plots of model-predicted and the corresponding experimental 

values pertaining to the hydrogen (wt%) predicting following 

models: (a) GPSR-Model 2, (b) MLPNN-Model 2, (c) SVR-Model 

2, and (d) Parikh et al. (Parikh et al., 2007). 
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Table 3.9: Results of the statistical comparison of the correlation coefficients 

pertaining to CI-based models predicting the weight percentage of 

hydrogen 

Model pair  

(B-C) 
CCAB CCAC CCBC df p H0 

GPSR-MLPNN 0.75 0.76 0.99 829 0.013 Reject 

GPSR-SVR 0.75 0.76 0.98 829 0.012 Reject 

MLPNN-SVR 0.76 0.76 0.98 829 0.382 Accept 

   df: degrees of freedom, p: probability, H0: null hypothesis proposed 

3.2.3. Comparison of Models Predicting Oxygen (wt%) 

 The performance of models predicting oxygen (wt%) values in biomass 

fuels (see Table (3.10)) shows that the CI-based models outperform (as indicated 

by the corresponding higher CCs (>0.89) of the CI-based models) the existing 

linear models. The most marked reduction is seen in the RMSEs relative to the  

predictions by the CI-based models (~4.0 for the training set and ~2.0 for the other 

sets) as compared to higher RMSEs relative to the predictions by the existing 

linear models (>6). The range-wise comparison of the predictions of the 

developed CI-based models for the prediction of oxygen (wt%) (see Table (3.11)) 

shows same trends as witnessed in the similar comparison of models predicting 

carbon and hydrogen weight percentages. The statistical significance (Steiger‘s 

test) test for the evaluation of differences in CC magnitudes in respect of 

predictions by pairs of CI-based models reveals that the MLPNN-based model 

performs better than the remaining two models. This is seen in Figure (3.4), 

wherein a marginally smaller scatter is observed in the parity-plot of the MLPNN 

model predicted values as compared to the parity-plots of other models.  
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Table 3.10: Comparison of model performances of CI-based and existing linear-regression models for prediction of oxygen (wt%) 

 

Model 

Training-set Test-set Validation-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst CCVln RMSEVln MAPEVln 

GPSR-Model 3 0.89 4.56 7.11 0.99 1.36 1.80 0.98 2.10 2.33 

MLPNN-Model 3 0.90 4.84 15.14 0.99 2.13 8.45 0.98 2.14 5.71 

SVR-Model 3 0.89 4.45 12.18 0.98 1.53 5.24 0.98 1.56 4.20 

Parikh et al. 2007 0.79 7.69 30.93 0.89 6.30 26.37 0.94 6.50 21.09 

Shen et al. 2010 0.75 7.99 32.14 0.82 6.83 28.30 0.91 7.12 23.01 

 

Table 3.11: Range-wise comparison of the performance of CI-based and existing linear-regression models for prediction of oxygen (wt%) 

 

Model Range 

Training-set Test-set Validation-set 

CCTrn RMSETrn MAPETrn CCTst RMSETst MAPETst CCVln RMSEVln MAPEVln 

GPSR-Model 3 
WR 0.56 3.10 5.82 0.93 0.91 1.66 0.91 1.02 1.87 

OR 0.84 6.74 27.20 0.92 3.29 29.18 0.92 5.47 40.58 

MLPNN-Model 3 
WR 0.61 3.26 6.71 0.92 1.81 4.03 0.90 1.30 2.69 

OR 0.85 7.19 33.80 0.92 3.92 46.60 0.86 5.14 28.35 

SVR-Model 3 
WR 0.62 2.95 5.75 0.93 1.16 2.11 0.91 1.00 1.76 

OR 0.84 6.65 26.39 0.90 3.29 32.22 0.85 3.64 22.49 

Parikh et al. 2007 
WR 0.60 3.10 6.27 0.93 1.36 2.95 0.89 0.94 1.76 

OR 0.65 12.98 85.49 0.21 19.12 228.13 0.87 18.79 166.10 

Shen et al. 2010 
WR 0.62 3.06 6.19 0.93 1.34 2.91 0.91 0.91 1.72 

OR 0.58 13.58 89.56 0.01 20.83 247.06 0.72 20.62 182.70 

          WR: Within range data, OR: Outside range data. 
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Figure 3.4: Parity-plots of model-predicted and the corresponding experimental 

values pertaining to the oxygen (wt%) predicting following models:  

(a) GPSR-Model 3, (b) MLPNN-Model 3, (c) SVR-Model 3, and (d) 

Parikh et al. (Parikh et al., 2007). 
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Table 3.12: Results of the statistical comparison of the correlation coefficients 

pertaining to CI-based models predicting the weight percent of 

oxygen 

Model pair  

(B-C) 
CCAB CCAC CCBC df p H0 

GPSR-MLPNN 0.91 0.92 0.99 829 4.12e-7 Reject 

GPSR-SVR 0.91 0.92 0.99 829 0.037 Reject 

MLPNN-SVR 0.92 0.92 0.99 829 5.59e-4 Reject 

df: degrees of freedom, p: probability, H0: null hypothesis proposed 

 

 Overall it is seen that all the developed CI-based models give much better 

prediction and generalization accuracies as compared to the existing linear-

regression-based conventional models.  

3.3. CONCLUSION 

There exist only two models for quantitatively estimating the elemental 

composition, (mainly carbon, hydrogen and oxygen) of solid biomass fuels from 

the components of their proximate analysis. These models are linear in character 

and are applicable over limited weight percentage (wt%) ranges of the 

components involved. It is observed from the scatter plots that some of the 

individual components of the elemental composition of biomass fuels exhibit 

low/high nonlinear dependencies with respect to the components of their 

proximate analysis. Accordingly, nine CI-based nonlinear models (that is three 

GPSR-based, three MLPNN-based and three SVR-based) were developed in this 

study for the estimation of elemental composition of biomass fuels from 

proximate analysis constituents. The CI-based model development was done using 

a large dataset comprising of 830 samples encompassing a much wider range of 

percent elemental and proximate analysis composition. The results of the 

elemental composition estimation clearly suggest that all the developed CI-based 

(GPSR, MLPNN and SVR) models possess excellent prediction accuracy and 

generalization performance with the MLPNN and SVR models yielding the best 

results for the prediction of carbon and hydrogen weight percentages, and the 
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GPSR and MLPNN models faring better in predicting oxygen weight percentage. 

When the developed CI models were compared with the existing linear models 

using ―within the range‖ data— that was considered in the previous studies—they 

were found to provide marginally improved performance, while for ―out-of-range‖ 

data (that is those falling outside the ranges considered in earlier studies), the CI 

models outperform the existing models. This result clearly points towards a wider 

applicability of CI-based models. All the CI-based models are found to estimate 

the elemental composition magnitudes with better accuracies when compared to 

the prevailing linear models. The Steiger‘s statistical significance test for 

correlation coefficients (CCs) reveals that for the prediction of carbon (wt%) and 

hydrogen (wt%) the MLPNN and SVR-based models, and for oxygen (wt%) the 

MLPNN-based model are more appropriate. More importantly, all CI-based 

models perform equally well compared to the existing linear models. This study 

clearly shows that CI-based formalisms provide an attractive strategy for the 

estimation of elemental composition of solid biomass fuels from the components 

of their proximate analysis. The proposed CI-based modeling approach can further 

be extended gainfully for the prediction of other useful properties of wide variety 

of solid, liquid and gaseous fuels.   

 

NOMENCLATURE 

H0 Null hypothesis in Steiger‘s test 

L Number of first hidden layer nodes in MLPNN 

M Number of second hidden layer nodes in MLPNN 

N Number of input layer nodes in MLPNN 

p Probability  

x̂  Normalized variable 

Greek letters 

µ Momentum coefficient in the EBP algorithm 

 Epsilon (tube width); a precision parameter in SVR 
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η Learning rate in the EBP algorithm 

γ  Kernel gamma of radial basis function in SVR 
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DEVELOPMENT OF HIGH PERFORMING MODELS FOR 

THE PREDICTION OF HIGHER HEATING VALUE OF 

COALS OF DIFFERENT RANKS AND FROM DIVERSE 

GEOGRAPHIES USING COMPUTATIONAL INTELLIGENCE 

BASED METHODOLOGY 

 

Abstract 

The higher heating value (HHV) directly reflects the energy producing potential 

of coal and, therefore, it is an important property of coal. Its magnitude can be 

estimated using coal‘s proximate and/or ultimate analyses. Speedy and accurate 

estimation of HHV is important for energy calculations involved in the design and 

operation of coal‘s combustion and gasification processes. As the analytical 

determination of coal‘s HHV is tedious, and costly, numerous correlations for 

estimating the HHV of coal from the constituents of its proximate and/or ultimate 

analyses have been proposed over the years; even now efforts to propose 

correlations predicting HHV of coals more accurately continue. Accordingly, this 

study proposes five proximate/ultimate analyses based nonlinear models for the 

prediction of HHV of coals. The principal attributes of these models are: (i) a 

relatively newer computational intelligence based methodology, namely, genetic 

programming based symbolic regression (GPSR) possessing a number of 

attractive features has been introduced for developing the models, (ii) a huge 

number (7682) of data pertaining to a variety of coals from several countries have 

been utilized in the model development, (iii) the prediction accuracy and 

generalization abilities of the GPSR-based models is excellent, and (iv) the 

models possess much lower complexity when compared with the other 

computational intelligence (CI) based HHV prediction models. A comparison of 

the prediction and generalization performance of the individual GPSR-based 

models developed in this study with that of the currently available coal HHV 

models indicate that the models in the former category have consistently 

outperformed the existing models and therefore possess a high potential to replace 

the existing models. 
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4.0. INTRODUCTION 

On a quantitative basis, coal is the world‘s largest consumed solid fuel for 

energy production. Its high energy content and abundant availability makes coal a 

vital energy source for the present and future. The total heat content of a unit mass 

of coal is determined in terms of the higher heating value (HHV), also known as 

gross calorific value. It is defined as the amount of heat evolved when a unit 

weight of the fuel is burnt completely and the combustion products cooled to a 

standard temperature of 298 K.  

The HHV of a coal sample is experimentally determined using a bomb 

calorimeter as per ASTM standard procedures (ASTM, 2011). Similar to solid 

biofuels (see Chapter 2), the HHV of a coal sample is highly correlated with its 

proximate and/or ultimate analyses. The proximate analysis determines the 

content of  coal‘s four important individual components, namely moisture, volatile 

matter, ash, and fixed carbon while the ultimate analysis measures contents of the 

following basic elements: carbon, hydrogen, nitrogen, sulphur, and, oxygen. 

These analyses are initially performed on the ―as received‖ basis and, 

subsequently, can be converted to different bases such as the ―dry‖ and ―dry ash-

free (DAF)‖. The HHV of coal, being its energy content indicator, is used widely 

in the optimal design and operation of coal-based combustion and gasification 

processes, their pollution compliance assessment, and, determining the coal‘s rank 

(Singh and Kakati, 1994). 

4.1. SURVEY OF COAL HHV MODELS 

Attempts to develop coal‘s HHV prediction models started in the early 

nineteenth century, wherein the elemental composition of a fuel was directly 

related to its HHV. Later, empirical coal‘s HHV correlations (mostly linear 

regression based) proved to exhibit improved results in terms of higher accuracies 

of prediction (Grummel and Davis, 1933; Selvig and Gibson, 1945; Mason and 

Gandhi, 1983; Neavel et al., 1986; Urkan and Arikol, 1989; Mazumdar and 

Konovalov, 2002; Sheng and Azevedo, 2005; Majumder et al., 2008; Mesroghli et 

al., 2009; Yin, 2011; Kavńek et al., 2013). These attempts were predominantly 

directed towards the development of models for coals of specific rank(s) and/or 
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from specific geographic locations (Selvig and Gibson, 1945; Neavel et al., 1986; 

Urkan and Arikol, 1989; Küçükbayrak et al., 1991; Cordero et al., 2001; 

Mazumdar and Konovalov, 2002; Parikh et al., 2005; Patel et al., 2007; Majumder 

et al., 2008; Akkaya, 2009; Kavńek et al., 2013). Thus, these models, although 

showed high prediction and generalization abilities for the coal samples under 

study, however, exhibited poor performance at predicting HHV of coals of 

different ranks and/or from different regions. Recently, CI-based models have 

been developed to predict the HHV of coal and other solid biomasses. 

Specifically, these nonlinear models possessing high prediction and generalization 

performance are based on artificial neural networks (ANN) (Patel et al., 2007; 

Mesroghli  et al., 2009; Verma et al., 2010; Kavńek, 2013; Akkaya, 2013; Feng et 

al., 2015), co-active neuro-fuzzy inference system (CANFIS) (Verma et al., 2010), 

alternating conditional expectation (ACE) (Feng et al. 2015), and support vector 

regression (SVR) (Feng et al., 2015; Tan et al., 2015) methodologies. 

Simultaneously, the recent emphasis is also on the development of generalized 

HHV correlations comprising several ranks of coal as also unified HHV models 

for a wide range of biomass fuels including coal (Channiwala and Parikh, 2002). 

A good review of the coal HHV correlations developed over-the-years is given by 

Mathew et al. (2014);  an elaborated list of the HHV correlations for solid biomass 

fuels (including coals) is given by Garcia et al. (2014a, 2014b).  A list of HHV 

predicting correlations is provided in Table (4.1), with their bases of development. 
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Table 4.1: A comprehensive list of the correlations for predicting HHV of coal 

Eqn. 

No. 
Model Reference HHV Correlation Material HHV Basis N 

4.1 Majumder et al. (2008) HHV (MJ/kg) = −0.03 ASH − 0.11 M + 0.33 VM + 0.35 FC Coal Wet, Proximate 250 

4.2 Mesroghli  et al. (2009) HHV (MJ/kg) = 37.777 − 0.647 M − 0.387 A − 0.089 VM Coal Wet, Proximate 4540 

4.3 Kavńek et al. (2013) HHV (MJ/kg) = − 3.57 + 0.31 VM  + 0.34 FC Coal Wet, Proximate 64 

      

4.4 
Dulong (Selvig and 

Gibson, 1945) 
HHV (Kcal/kg) = 81 C+342.5 (H − (O/8)) + 22.5 S − 6 (9 H − M) Coal Wet, Ultimate  

4.5 Mesroghli  et al. (2009) HHV (MJ/kg) = −26.29 + 0.275 ASH + 0.605 C + 1.352 H + 0.840 N + 0. 321 S Coal Wet, Ultimate 4540 

4.6 Mesroghli  et al.(2009) 
HHV (MJ/kg) = 6.971 + 0.269 C + 0.195 N – 0.061 ASH – 0.251Oex +  

1.08 Hex – 0.21 M 
Coal Wet, Ultimate 4540 

      

4.7 Cordero (2001) HHV (MJ/kg) = 0.3543 FC + 0.1708 VM Biomass Dry, Proximate  

4.8 Parikh et al.(2005) HHV (MJ/kg) = 0.3536 FC  + 0.1559 VM − 0.0078 ASH Biomass Dry, Proximate 550 

4.9 Ghugare et al.(2014) 
HHV (MJ/kg) = 0.365 FC + 0.131 VM + (1.397 / FC) + (328.568 VM / (10283.138 + 0.531 

FC
3 
ASH − 6.863 FC

2 
ASH)) 

Biomass Dry, Proximate,  

      

4.10 Neavel et al. (1986) HHV (BTU/lb) = 145.9 C + 569.6 H − 53.89 O + 43.08 S − 6.3 ASH Coal Dry, Ultimate 120 

4.11 
Mason and Gandhi 

(1983) 
HHV (BTU/lb) = 198.11 C + 620.31 H + 80.93 S +44.95 ASH −5153 Coal Dry, Ultimate 775 

4.12 IGT (1978) HHV (BTU/lb) =146.58 C + 568.78 H+29.4 S −6.58 A −51.53(O + N) Biomass Dry, Ultimate 700 

      

4.13 Boie (1953) HHV (MJ/kg) = 0.3517 C + 1.1626 H + 0.1047 S − 0.111 O Organics DAF, Ultimate  

4.14 
Dulong (Selvig and 

Gibson, 1945) 
HHV (MJ/kg) =0.3383C + 1.443 (H − (O/8)) + 0.0942 S Coal DAF, Ultimate  

4.15 
Grummel and Davis 

(1933) 
HHV (MJ/kg) = (0.0152 H + 0.9875)((C/3) + H − ((O − S)/8)) Coal DAF, Ultimate  

N: Number of coal samples in the respective study, M: Moisture (%), FC: Fixed carbon (%), VM: Volatile matter (%), ASH: Ash (%), C: Carbon (%), H: Hydrogen (%), Hex: 

Hydrogen (%) (external), O: Oxygen (%), Oex: Oxygen (%) (external), N: Nitrogen (%), S: Sulphur (%),DAF: Dry ash-free basis (proximate/ultimate analysis constituents  

are based on the weight (%) and the respective basis of computation is  indicated in the ―HHV Basis‖ column)
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4.1.1. Need for Nonlinear Coal HHV Models 

As observed in Table (4.1), most of the earlier coal HHV prediction 

correlations based on the proximate/ultimate analysis are linear. Recently, a few 

studies, such as by Patel et al. (2007) and Ghugare et al. (2014) have examined the 

nonlinearities existing between the HHV of coal/biomass and the constituents of 

the corresponding proximate and ultimate analyses. For capturing the stated 

nonlinear dependencies, Patel et al. (2007) developed ANN based nonlinear HHV 

prediction models for coals used in Indian thermal power stations; these models 

indeed possess better HHV prediction and generalization abilities than their linear 

counterparts. Using a large data set, Ghugare et al. (2014) also developed 

computational intelligence based nonlinear models for the prediction of HHV of 

solid biomass fuels; these models have been found to possess much better 

prediction accuracy and generalization capability when compared with the linear 

models. A small portion of the large dataset utilized by Ghugare et al. (2014) in 

the development of the CI-based models pertained to coals. It can thus be seen 

that there exists a need to develop exclusively coal-specific nonlinear models 

possessing high HHV prediction accuracy and generalization performance. 

Accordingly, genetic programming based symbolic regression (GPSR) (Koza, 

1990; Poli et al., 2008) methodology has been introduced in this study to develop 

high performing models for predicting the HHV of coals of different ranks and 

from different geographical locations. Compared to ANNs and SVR, the GPSR is 

an infrequently used computational intelligence (CI) based data-driven modeling 

method, and being used for the first time for developing coal-specific HHV 

models. The GPRS-based models have several advantages, which have been 

detailed in Chapter 1, Section (1.2.2). For the development of the GPSR-based 

coal HHV models a huge dataset of coal samples from several geographical 

regions and of various ranks has been utilized. This data set consists of the 

constituents of coals‘ proximate and ultimate analyses (model inputs) and the 

corresponding HHVs.  

The next section in this chapter discusses the development of the GPSR-

based coal HHV models. The developed GPSR-based models are further 
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compared with their existing high-performance counterparts. Finally, in the 

―conclusion‖ section the outcomes of the study are summarized. 

4.2. GPSR-BASED COAL HHV MODEL DEVELOPMENT 

The extensive data set used in the development of GPSR based models 

was compiled from the open coal databases available on-line from, (i) U.S. 

Geological Survey Coal Quality (U.S.G.S. COALQUAL) database (Brag et al., 

2009), (ii) World coal database from the U.S.G.S. (Tewalt et al., 2010), and (iii) 

Kentucky coal database (Kentucky Geological Survey, 2015). It consists of 

property data of 7682 coal samples encompassing all ranks of coal. A majority of 

the compiled coal database contained data of coal samples from various sub-

regions of the U.S. (~85%) and the remaining (~15%) from the major coal mining 

countries of the world from various continents. For modeling, the dataset was 

partitioned into training, test and validation sets in the ratio 7.5:1.5:1, ensuring 

uniform distribution of the data in all the sets. The training set was used for 

developing the models and the test and validation sets were respectively used to 

evaluate and validate the generalization capabilities of the developed models. The 

prediction accuracies of each model were estimated in terms of three statistical 

measures, namely, coefficient of correlation (CC), root mean square error 

(RMSE) and mean absolute percent error (MAPE) computed using the measured 

and model predicted coal HHV values. 

Five different GPSR-based models predicting the HHV of coals were 

developed using Eureqa Formulize (Schmidt and Lipson, 2009) software package 

(see Section (1.2.2) for details). Here, several GPSR runs were conducted by 

extensively varying the seed function and other GPSR algorithmic options to 

generate parsimonious models with high prediction accuracies. In this study, five 

different GPSR-based models have been developed for predicting the HHV of 

coal using different analysis bases as given below. 

(i) Proximate analysis based model using data on ―as-received‖ basis  

(ii) Ultimate analysis based model using data on ―as-received‖ basis  

(iii) Proximate analysis based model using data on ―dry‖ basis 

(iv) Ultimate analysis based model using data on ―dry‖ basis  
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(v) Ultimate analysis based model using data on ―dry ash-free‖ basis 

The corresponding five overall best performing GPSR-based models for the 

prediction of coal HHV are as given below.   

(a) GPSR-Model 1 (proximate analysis based model using ―as-received basis‖ 

data) 

 
2

2

003026.008.34*002808.0

004835.02786.07008.0816.0

VMASHM

MASHFCVMHHV




 (4.16)

 

(b) GPSR-Model 2 (ultimate analysis based model using ―as-received basis‖ 

data) 

 
O..

ASH.S.N.C.H.HHV

121705481

000227701048025050360801781 2




 (4.17) 

(c) GPSR-Model 3 (proximate analysis based model using ―dry basis‖ data) 

 
359.5

004573.0006441.0397.0





Dry

DryDryDryDry

ASH

VMVMFCFCHHV

  
(4.18) 

(d) GPSR-Model 4 (ultimate analysis based model using  ―dry basis‖ data) 

 
DryDry

DryDryDryDry

OASH

SNCHHHV

09964.0628.10001834.0

108.01501.03597.0215.1

2 
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  (4.19) 

(e) GPSR-Model 5 (ultimate analysis based model using ―dry ash-free basis‖ 

data) 

 
22 07857.0002338.0282.7001805.0

002221.04011.0882.1

DAFDAFDAFDAF

DAFDAFDAFDAF

HOSC

NCCHHHV





 (4.20)
 

where, M = moisture, FC = fixed carbon, VM = volatile matter, ASH = ash, C = 

carbon, H = hydrogen, O = oxygen, N = nitrogen and S = sulphur are the input 

(predictor) variables expressed in weight percentages (on ―as received‖ basis).  

The corresponding quantities on ―dry‖ basis are denoted as, FCDry, VMDry, ASHDry, 

CDry, HDry, ODry, NDry and SDry while the quantities on ―dry ash-free‖ basis are 

referred to  as, CDAF, HDAF, ODAF, NDAF and SDAF. 

4.3. RESULTS AND DISCUSSION 

 In this section, the results of a comparison of the HHV prediction and 

generalization performance of five GPSR-based models (Eqns. (4.16)–(4.20)) and 

the existing high-performance models are presented. For this comparison, CC, 
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RMSE and MAPE values pertaining to the HHV predictions by all the stated 

models were evaluated using the same training, test and validation set data as used 

in the development of five GPSR models. 

4.3.1. Comparison of Proximate Analysis Based Models (“as received” basis) 

It may be noted that currently, only a few models are available for the 

prediction of coal HHV from their proximate analysis conducted on ―as-received‖ 

basis, although usage of such models would be more convenient and cost-effective 

than the ultimate analysis based models. The performances of GPSR-Model 1was 

compared with that of the three prevailing models by Majumder et al.(2008), 

Mesroghli et al. (2009), and Kavńek et al. (2013), and the results are shown in 

Table (4.2). It is observed from the table that the CC magnitudes pertaining to the 

HHVs predicted by the GPSR-Model 1 are quite high (~0.99). Also, the Model 1 

exhibits much lower RMSE and MAPE values. These results clearly indicate the 

superiority of the GPSR-Model 1 in providing an excellent HHV prediction 

accuracy and generalization performance. Same conclusion can be also drawn 

from the lower scatter (when compared with the predictions of the best existing 

model of Majumder et al. (2008)) seen in the parity plots (see Figure (4.1)) 

portraying  the GPSR-Model 1 predicted coal HHV values and  the experimental 

HHV values. 

Table 4.2: Comparison of prediction performances of proximate analysis based 

coal HHV models using ―as-received‖ basis data 

 

Model 

Training-set Test-set Validation-set 

CC RMSE MAPE CC RMSE MAPE CC RMSE MAPE 

GPSR-Model 1 0.99 0.79 2.52 0.99 0.70 2.20 0.99 0.69 1.99 

Majumder et al. 

(2008) 
0.98 1.27 4.38 0.98 1.19 3.99 0.98 1.11 3.51 

Mesroghli et al. 

(2009) 
0.97 2.63 9.46 0.97 2.68 9.22 0.97 2.38 7.88 

Kavńek et al. (2013) 0.97 4.39 14.67 0.98 4.42 14.87 0.98 4.51 15.28 
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Figure 4.1: Comparative parity plots of model-predicted and the corresponding 

experimental values pertaining to coal HHVs based on proximate 

analysis on an as-received basis (a) GPSR-Model 1, (b) Majumder et 

al. (2008). 

4.3.2. Comparison of Ultimate Analysis Based Models (“as received” basis) 

The performance monitoring statistical measures pertaining to the HHV 

predictions made by GPSR-Model 2 and three other existing models by Dulong 

(Selvig and Gibson, 1945) and Mesroghli et al. (2009) are given in Table (4.3). 

From the table, minor differences are observed among the CC values of 

competing models, and  major differences are noticed in the corresponding RMSE 

and MAPE values; here, among all competing models, marginally lower RMSE 

and MAPE magnitudes pertaining to the predictions of the GPSR based model 

indicates its superiority (albeit borderline) over other models. This inference is 

also corroborated by the slightly lower scatter (see Figure (4.2)) exhibited by the 

HHV predictions made by GPSR-Model 2. 

Table 4.3: Comparison of prediction performances of ultimate analysis based coal 

HHV models using ―as-received‖ basis data 

 

Model 

Training-set Test-set Validation-set 

CC RMSE MAPE CC RMSE MAPE CC RMSE MAPE 

GPSR-Model 2 0.99 0.27 0.85 0.99 0.27 0.81 0.99 0.26 0.79 

Dulong (Selvig and 

Gibson, 1945) 
0.99 0.82 3.04 0.99 0.81 2.99 0.99 0.80 2.87 

Mesroghli et al. 

(2009) 
0.98 2.48 9.26 0.98 2.45 8.89 0.98 2.21 7.70 

Mesroghli et al. 

(2009) 
0.96 5.11 18.54 0.96 5.06 17.62 0.96 4.47 14.62 
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Figure 4.2: Comparative parity plots of model-predicted and the corresponding 

experimental values pertaining to coal HHVs based on ultimate 

analysis on an as-received basis (a) GPSR-Model 2, (b) Dulong 

(Selvig and Gibson, 1945). 

4.3.3. Comparison of Proximate Analysis Based Models (“dry” basis) 

 A comparison of GPSR-Model 3 and three existing models, namely, by 

Cordero et al. (2001), Parikh et al. (2005), and Ghugare et al. (2014) in predicting 

accurately the HHV of coals and generalizing the learned knowledge to ―out-of-

sample‖ data, is provided in Table (4.4). It may be noted that the model by 

Ghugare et al. (2014) is essentially for computing the HHV of solid biomasses. Its 

inclusion here as a competitive model stems from the fact that the large dataset 

used for its development contained a small subset of coal data. From the tabulated 

values, it is observed that the prediction and generalization performance of GPSR-

based model 3 is much better than the existing three models with the CC 

magnitudes greater than 0.9 for all the three datasets. This is also reflected in the 

substantially lower values of RMSEs and MAPEs pertaining to the HHV 

predictions made by the GPSR-Model 3. In Figure (4.3), predictions of the GPSR-

based and the existing model with best prediction accuracy by Cordero et al. 

(2001) are compared, in which the GPSR-Model 3 shows a lower scatter 

indicating better performance. 
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Table 4.4: Comparison of prediction performances of proximate analysis based 

coal HHV models using ―dry‖ basis data 

 

 

  

Figure 4.3: Comparative parity plots of model-predicted and the corresponding 

experimental values pertaining to coal HHVs based on proximate 

analysis on dry basis (a) GPSR-Model 3, (b) Cordero et. al. (2001). 

4.3.4. Comparison of Ultimate Analysis Based Models (“dry” basis) 

A number of correlations are available for the prediction of HHV of coal 

from its ultimate analysis on the dry basis (Mathew et. al., 2014; Garcia et al., 

2014a; 2014b). In Table (4.5), a comparison of the GPSR-Model 4 has been made 

with the stated prevailing three high performing models. From the CC, RMSE and 

MAPE magnitudes listed in this table, it is noticed that all four models possess 

comparable HHV prediction and generalization capabilities with GPSR-Model 4 

performing marginally better than its three competing models. The parity plots in 

Figure (4.4) also depict the closely comparable performance of the GPSR-based 

model and its closest competing model by Neavel et al. (1986).  

 

Model 

Training-set Test-set Validation-set 

CC RMSE MAPE CC RMSE MAPE CC RMSE MAPE 

GPSR-Model 3 0.91 1.74 5.01 0.90 1.62 4.62 0.91 1.58 4.58 

Cordero et al. 

(2001) 
0.87 4.76 14.80 0.88 4.89 15.51 0.88 5.04 16.07 

Parikh et al. 

(2005) 
0.87 5.36 17.00 0.87 5.51 17.80 0.88 5.67 18.42 

Ghugare et al. 

(2014) 
0.85 5.49 17.49 0.86 5.66 18.3 0.86 5.83 18.89 
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Table 4.5: Comparison of prediction performances of ultimate analysis based coal 

HHV models using ―dry‖ basis data 

 

 

  

Figure 4.4: Comparative parity plots of model-predicted and the corresponding 

experimental values pertaining to coal HHVs based on ultimate 

analysis on dry basis (a) GPSR-Model 4, (b) Neveal et al. (1986). 

4.3.5. Comparison of Ultimate Analysis Based Models (“dry ash-free” basis) 

 Similar to the ultimate analysis (―dry‖ basis) based models (Mathew et al., 

2014; Garcia et al., 2014a; 2014b) a number of models are available for the 

prediction of HHV of coal/biomass from the constituents of their ultimate 

analyses on dry ash-free basis. In this study, three such models endowed with 

superior HHV prediction performance by, namely, Grummel and Davis (1933), 

Boie (1953), and Dulong‘s equation (Selvig and Gibson 1945) were used for 

comparison with the GPSR-Model 5. The results of this comparison are presented 

in Table (4.6), which shows that the GPSR-based model possesses marginally 

improved prediction accuracy and generalization ability compared with that 

possessed by each of the three competing models. The said observation is also 

 

Model 

Training-set Test-set Validation-set 

CC RMSE MAPE CC RMSE MAPE CC RMSE MAPE 

GPSR-Model 4 0.99 0.29 0.78 0.99 0.29 0.76 0.99 0.27 0.75 

Neavel et al. 

(1986) 
0.99 0.31 0.85 0.99 0.31 0.82 0.99 0.29 0.78 

Mason and 

Gandhi (1983) 
0.99 0.32 0.87 0.99 0.32 0.86 0.99 0.31 0.84 

IGT (1978) 0.99 0.32 0.87 0.99 0.32 0.86 0.99 0.31 0.84 
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corroborated by the lower scatter seen in the parity plot of the HHV predictions 

made by GPSR-Model 5 in Figure (4.5(a)) when compared with that 

corresponding to the predictions by the model of Boie (1953). 

Table 4.6: Comparison of prediction performances of ultimate analysis based coal 

HHV models using ―dry ash-free‖ basis data 

 

 

  

Figure 4.5: Comparative parity plots of model-predicted and the corresponding 

experimental values pertaining to coal HHVs based on ultimate 

analysis on dry ash-free basis (a) GPSR-Model 5, (b) Boie  (1953). 

4.3.6. Statistical Comparison of Coal HHV Models 

 From the above-described results of comparisons, it is observed that the 

GPSR-based models have outperformed the existing linear models. However, in 

some cases the difference between the performance of the GPSR-based model and 

the corresponding competing model is small. Thus, the Steiger‘s statistical test 

(Steiger, 1980) was performed for unambiguously identifying the best model 

among the competing ones. This test compares the CC values pertaining to the 

predictions of two competing models to assess whether there exists a statistically 

 

Model 

Training-set Test-set Validation-set 

CC RMSE MAPE CC RMSE MAPE CC RMSE MAPE 

GPSR-Model 5 0.99 0.35 0.77 0.99 0.35 0.77 0.98 0.35 0.77 

Boie (1953) 0.99 0.68 1.80 0.98 0.63 1.69 0.98 0.64 1.68 

Dulong (Selvig and 

Gibson 1945) 
0.98 0.57 1.39 0.98 0.57 1.40 0.98 0.56 1.32 

Grummel and 

Davis (1933) 
0.98 0.53 1.22 0.98 0.53 1.26 0.98 0.54 1.25 
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significant difference between them (see Section (1.8) for details). The results of 

this test are presented in Table (4.7), indicating that the p-values of the test for all 

the five GPSR-based models, when compared with their counterparts are zero. 

Thus, there exists a statistically significant difference between the HHV prediction 

performances of the GPSR-based models and their prevailing counterparts. Since 

all the GPSR-based models possess higher prediction and generalization 

performance than their counterparts (as indicated by their higher CC values), it 

can be inferred that GPSR-based models predicting the HHV of coals have 

outperformed the corresponding existing models. 

Table 4.7: Results of the statistical comparison of the prediction performances 

pertaining to GPSR-based coal HHV models 

Model pair  

(B-C) 
CCAB CCAC CCBC df p H0

*
 

GPSR-Model 1–Majumder et al. (2008) 0.990 0.983 0.992 7681 0 Reject 

GPSR-Model 2–Dulong (Selvig and Gibson 1945) 0.998 0.998 0.999 7681 0 Reject 

GPSR-Model 3–Cordero et al. (2001) 0.911 0.878 0.972 7681 0 Reject 

GPSR-Model 4–Neveal et al. (1986) 0.997 0.997 0.999 7681 0 Reject 

GPSR-Model 5–Boie (1953) 0.991 0.990 0.998 7681 0 Reject 

df: degrees of freedom, p: probability 

4.4. CONCLUSION 

In the past, several correlations have been proposed for predicting the 

HHV of coals from their proximate and/or ultimate analyses. These are mostly 

linear, rank and geography-specific, and were developed using a limited amount 

of data. It is well-proven that HHV of a coal sample and some constituents of its 

proximate and ultimate analyses exhibit nonlinear interdependencies. Thus, 

nonlinear models are expected to exhibit better HHV prediction accuracies than 

the linear ones. Accordingly, this study employed the relatively newer 

computational intelligence methodology, namely genetic programming based 

symbolic regression (GPSR) for developing a number of models for the prediction 

of HHV of coals. In particular, five GPSR-based HHV predicting models were 

developed by employing a huge dataset of 7682 coal samples belonging to 

multiple ranks and from major coal-mining geographic regions from the world. 

The data set contains proximate/ultimate analyses conducted using  ―as received‖, 

―dry‖ and ―dry-ash-free‖ basis and these were used as inputs to the GPSR-based 
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models. All five models were found to possess excellent prediction accuracies and 

generalization capabilities. Additionally, the HHV prediction and generalization 

performance of each GPSR-based model was compared with that of the existing 

high performance yielding models. The results obtained thereof using the 

statistical Steiger‘s test clearly indicate that the GPSR-based models outperform 

the existing models. In summary, the high performing GPSR-based models 

presented here owing to their lower complexity, and superior HHV prediction and 

generalization abilities exhibit the potential to replace the existing models for 

HHV prediction of coals.  

NOMENCLATURE 

p Probability  

H0 Null hypothesis for Steiger's test 
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DEVELOPMENT OF COMPUTATIONAL INTELLIGENCE 

BASED SOFT-SENSOR MODEL FOR STYRENE 

POLYMERIZATION PROCESS AND ITS APPLICATION IN A 

MODEL PREDICTIVE CONTROL SCHEME 

 

Abstract 

A mathematical model relating the key process variable, which is tedious and 

difficult/impossible to measure online, to the process variable that can be 

measured online easily, is termed as a soft-sensor. Soft-sensors are valuable 

alternatives to the conventional hardware sensors in chemical process industries. 

They majorly assist in the tasks of process monitoring and control. The quality of 

the final polymer product in a typical polymerization process is characterized by 

its average molecular weight, whose online measurement is difficult, and time-

consuming. Also, the modern polymerization processes involve multiple reactions 

occurring in series and parallel along with complex heat and mass transfer 

phenomena. These features create difficulties for process modeling by 

conventional approaches such as phenomenological modeling. Genetic 

programming based symbolic regression (GPSR) is a computational intelligence-

based exclusively data-driven modeling methodology that has rarely been used for 

soft-sensor development and identification of polymer processes. Thus, in this 

work a GPSR-based soft-sensor modeling approach is proposed for the process 

identification of an industrial scale continuous styrene polymerization reactor 

process. The developed GPSR-based soft-sensor models relate the average 

molecular weight of the effluent polystyrene product—which is difficult to 

measure online—to the input parameters of the reactor. Specifically, two soft 

sensor models were developed possessing high prediction and generalization 

performance. The best GPSR-based model was advantageously used in the design 

of a model predictive control (MPC) scheme for the styrene polymerization 

reactor process.  
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5.0. INTRODUCTION 

 The modern chemical processes often operating at high production rates 

need sophisticated control systems to tackle various issues related to the safety 

and environmental regulation in addition to the basic needs of optimizing 

operating costs and maintaining highest standards of product quality. This, in turn, 

motivated new developments in automatic process control technology. The 

universal drive for consistent high product quality, efficient use of energy, and an 

increasing environmental awareness impose far stricter demands on chemical 

process control systems. This has paved the way for modern research, resulting in 

significant advancements in control technologies. In the last few decades, the 

industry has seen successful applications of innovative control technologies based 

on model predictive control (MPC) and more recently intelligent control 

(Ogunnaike and Ray, 1994). 

 Soft-sensor is a recent and novel approach that has greatly assisted in 

process identification and control. It is a model that mathematically captures the 

relation between the key process variables, which are tedious and 

difficult/impossible to measure online, to the process variables that can be 

measured easily. Computational intelligence (CI) based methodologies such as 

artificial neural networks (ANNs) (Jos de Assis and Maciel Filho, 2000; Meleiro 

and Finho, 2000; Devogelaere et al., 2002; Li et al., 2005; Desai et al., 2006) and 

support vector regression (SVR) (Feng et al., 2003; Yan et al., 2004; Desai et al., 

2006) have been used in the development of soft-sensors for process monitoring 

and control applications. The relatively newer CI-based exclusively data-driven 

modeling methodology, namely, genetic programming based symbolic regression 

(GPSR) (Koza, 1994) though possesses some attractive characteristics (see 

Section (1.2.2)), has been rarely used in soft-sensor development. Accordingly, in 

this study we demonstrate the capabilities of GPSR for developing dynamic soft-

sensor models of a continuous styrene polymerization reactor; next, the model has 

been effectively utilized for implementing model based control (MPC) for the 

stated polymerization process. 
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5.1. PROCESS IDENTIFICATION OF POLYMERIZATION 

PROCESSES 

 Process identification is essentially the development of mathematical 

models of a process/system to accurately capture its dynamic (unsteady-state) 

behavior. It relates the process outputs to its inputs. Such a process model is 

mainly required for different process tasks such as process optimization, 

monitoring, and simulation to appropriately design the relevant control system. 

Often, empirical modeling approaches are employed for process identification, as 

these can model any linear/nonlinear process behavior from process input-

output/stimulus-response data. In general, polymerization processes are difficult to 

model due to following reasons (Yoon et al., 2004): 

 They involve multiple sequential/parallel reactions with associated 

mechanisms and kinetics (including parameters) that are hard to determine 

accurately. 

 The reactions are multi-phase and the underlying thermodynamics, and heat 

and mass transfer phenomena are complex. 

 Due to the multiphase reactions and/or non-ideal mixing, non-

homogeneities may occur in the reaction mass, thus creating additional 

modeling difficulties. 

 The quality of the polymer product is characterized by structural properties 

of the final polymer such as molecular weight, copolymer composition, and 

sequence length distribution, which are difficult to measure accurately 

online. 

Due to all the difficulties/limitations mentioned above the empirical modeling 

approaches have been increasingly used for the modeling and identification of 

polymerization processes, a good review of which can be found in Yoon et al. 

(2004) and Richards and Congalidis (2006). In addition to the conventional 

empirical modeling approaches such as the step and impulse response modeling, 

the newer modeling strategies such as Volterra series modeling, bilinear modeling, 

Hammerstein modeling, Wiener modeling, and autoregressive moving-average 

(ARMA) modeling have gained popularity for modeling of polymerization 
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reactions (Na and Rhee, 2000). However, the models developed using such 

modeling strategies are mostly linear and computationally expensive to execute 

due to their complexities. In recent years, computational intelligence (CI) based 

exclusively data-driven modeling formalisms such as ANNs, SVR, and fuzzy 

logic (FL) are becoming popular in various engineering applications due to their 

ability of representing the behavior of complex and nonlinear processes with an 

excellent accuracy. However, the transfer functions in an ANN model, the kernel 

function in an SVR model, and the membership functions in an FL model is 

required to be appropriately pre-specified to obtain a suitably accurate process 

model. In comparison, the GPSR-based models are easier to develop and it can 

automatically model linear/nonlinear relations between process input-output 

variables. The details of GPSR method and its advantages are given in Section 

(1.2.2).  

In this study, the GPSR methodology was utilized for the process 

identification of an industrial scale continuous styrene polymerization process. 

Specifically, two GPSR-based soft sensor models were first developed from the 

input-output data of the polymerization reactor for capturing the dynamics of a 

―difficult-to-measure‖ controlled variable. Next, the best GPSR-based soft-sensor 

model was used for the implementation of an MPC strategy for controlling the 

polystyrene quality produced by the styrene polymerization reactor. 

 

5.2. MODEL PREDICTIVE CONTROL OF  

POLYMERIZATION PROCESSES 

 The traditional proportional-integral-derivative (PID) feedback control 

schemes are often found to perform un-satisfactorily for complex chemical 

processes due to the presence of high nonlinearities with strong interactions 

among the process variables. Another common problem with the use of PID 

control systems is that they require frequent tuning to optimally set their 

parameters for achieving best control performance. This need stems from the 

variations in the dynamics of chemical processes which make the previously tuned 

parameters invalid, thus deteriorating the control performance over time. 
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Polymerization processes commonly exhibit such characteristics and thus 

numerous advanced control schemes have been implemented to satisfy the various 

desirable controller properties such as accuracy, consistency, robustness and 

adaptive nature. With the advancement in computing hardware, software and 

networking technologies, achieving these goals have become relatively easier. The 

model predictive control (MPC) strategy is one such approach built on modern 

day digital technologies that utilizes a software-based model of the process to 

predict the process behavior and thereby implementing most appropriate control 

action. This is especially useful in adapting to the changing process conditions.  

 Polymerization processes—due to their previously mentioned 

difficulties—offer numerous challenges for process measurements, and accurate 

and robust process control. Such processes hardly run smoothly and minor 

disturbances in any input(s) or state variables can easily upset the process 

behavior. For smooth operation of such processes and thereby obtaining a 

consistent product quality at the desired rate, a set of influential process variables 

(termed ―controlled variables‖) must be maintained/changed appropriately over 

the duration of the polymerization reaction. The MPC scheme is one of the most 

efficient and appropriate strategies for controlling a polymerization process (Hur 

et al., 2003; Richards and Congalidis, 2006; Bindlish, 2015). 

 For styrene polymerization reaction, linear and polynomial ARMA models 

were developed and utilized in the MPC framework for the reactor control (Na 

and Rhee, 2000, Na and Rhee, 2002). The main disadvantage of the ARMA 

models is their higher complexity, which makes them computationally expensive 

to execute in software. Recently, ANN-based models were used for the predictive 

control of batch polystyrene reactor (Hosen et al., 2011); however, due to their 

complex structures, even the ANN-based models create high computational loads 

during their evaluation. In comparison, the GPSR-based models are less complex 

and thus easier to execute. MPC has been applied satisfactorily to several 

polymerization processes of varying complexities utilizing models ranging from 

the linear regression based on the recently developed CI-based models. A detailed 

review of such research work is given by Richards and Congalidis (2006). 
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Figure 5.1: Conceptual block-diagram of an MPC scheme. 

 The block diagram of the MPC scheme applied here for controlling the 

styrene polymerization process is shown in Figure (5.1). The process model is 

used to predict the current value of the controlled (output) variable using the 

current and past input and state information. The process model is often 

implemented in the form of discrete equations. The variation in set-point of the 

controlled variable is calculated from the objectives of economic optimization of 

the process. In general, the economical optimization objectives include 

minimization of manufacturing cost by reducing the utilization of costly raw-

materials or maximization of production rates/profits. Using the current and past 

values of the manipulated and controlled variables in the identified process model 

the MPC block computes a sequence of the future (multi-step-ahead) controlled 

variable values and the optimizer calculates optimized values of the manipulated 

variable so as to closely follow the set-point trajectory of the controlled variable. 

Essentially, the MPC computes the current move of the manipulated input variable 

(ui) to achieve the control goal. 

 The error to be minimized by the optimizer for achieving the control goal 

is the difference between the reference set point and the value of the control 

variable predicted by the model at each time step. For following the reference set-

point trajectory the MPC minimizes an objective function, ‗J‘ of the form: 
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where, yk,r = reference trajectory values of the control variable at the k
th 

time 

instant, kŷ = model predicted value of the control variable at the k
th

 time instant, 

and Hp = prediction horizon. The control moves, Δuk, Δuk+1, …Δuk+Hc–1, are the 

optimum future (at discrete time intervals) changes in the input (manipulated) 

variable ‗u’ so that the controlled variable ‗y’ closely follow the reference 

trajectory, where, Hc = control horizon. The equation is applicable for a single 

input-single output (SISO) process, wherein, ‗γ’ and ‗λ’ are the penalizing 

constants for excess error and control moves respectively, which take into account 

the physical limitations of control system hardware. More details of the MPC and 

its implementations are given by Ogunnaike and Ray (1994) and Seborg et al. 

(2004). 

 

5.3.    STYRENE POLYMERIZATION PROCESS 

 The polymerization reactor is usually the heart of the polymer production 

process and very often is tedious to model due to reasons explained earlier. The 

continuous styrene polymerization reactor is a typical example of such a difficult-

to-model chemical process. In order to develop GPSR-based models for the 

reactor, process input-output data were generated by employing the ―first-

principles‖ process model of an industrial scale styrene polymerization reactor 

(Sotomayor and Odloak, 2005). Figure (5.2) shows a schematic of the styrene 

polymerization reactor, wherein an exothermic, free-radical solution 

polymerization reaction is carried out in a jacketed continuous stirred tank reactor 

(CSTR). The CSTR is fed with the monomer (pure styrene), an initiator 

(azobisisobutyronitrile) and a solvent (benzene), at their constant steady-state 

rates. 



 
 

159 

 

 

Figure 5.2: Schematic of the continuous polystyrene reactor process. 

The initiator initiates a sequence of reactions to produce the polystyrene 

molecules, which are characterized by their average molecular weight. The 

equations describing the dynamics of the styrene polymerization reactor are given 

below. 
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where, t = time and all the parameters/ steady-state variables and their values used 

in the simulation are listed in Table (5.1).  

Table 5.1: Process parameters/variables of the phenomenological styrene 

polymerization reactor model 

Sr. 

No. 
Variable Description 

Parameter/Stead

y-state variable 

value 

Unit 

1 C I 
Initiator concentration in 

reactor 
6.683210

-2
 mol/L 

2 C If Initiator feed concentration 0.5888 mol/L 

3 C M 
Monomer concentration in 

reactor 
3.3245 mol/L 

4 C Mf Monomer feed concentration 8.6981 mol/L 

5 D0 
Concentration of the dead 

polymer chains (moles) 
2.754710

-4
 mol/L 

6 D1 
Concentration of the dead 

polymer chains (mass) 
16.110 g/L 

7 EI 
Activation energy for initiation 

reaction 
14897 

K 

8 EP 
Activation energy for 

propagation reaction 
3557 

K 

9 ET 
Activation energy for 

termination reaction 
843 

K 

10 fi Initiator efficiency 0.6  

11 FI Initiator feed flowrate 108 L/hr 

12 FJ Jacket fluid feed flowrate 471.6 L/hr 

13 FM Monomer feed flowrate 378 L/hr 

14 FS Solvent feed flowrate 459 L/hr 

15 k0I 
Arrhenius equation frequency 

factor for initiation reaction 
2.142×10

17
 

h
-1

 

16 k0P 
Arrhenius equation frequency 

factor for propagation reaction 
3.816×10

10
 

L/mol 

hr 

17 k0T 
Arrhenius equation frequency 

factor for termination reaction 
4.50×10

12
 

L/mol 

hr 

18 Mw Monomer molecular weight 104.14 g/mol 

19 T Reactor mass temperature 323.56 K 

20 Tf Feed temperature 330 K 

21 TJ Jacket fluid temperature 295 K 

22 UA 

Overall heat transfer 

coefficient×heat transfer area 

of reactor 

2.52×10
5
 

cal/K 

hr 

23 -ΔHR 
Heat of polymerization 

reaction 
16700 cal/mol 

24  
Intrinsic viscosity of polymer 

solution 
2.9091 L/g 
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Sr. 

No. 
Variable Description 

Parameter/Stead

y-state variable 

value 

Unit 

25 Cp 

Mean density of reactor fluid × 

mean heat capacity of reactor 

fluid 

360 cal/K L 

26 JCpJ 

Density of cooling jacket 

fluid×heat capacity of cooling 

jacket fluid 

966.3 cal/K L 

The effluent polymer molecular weight (Mw) is the most important indicator of the 

final polymer product quality and, thus, need to be controlled tightly in any 

industrial polymerization process (Yoon et al., 2004). However, due to the 

multiple sequential and simultaneous reactions occurring in polymerization 

processes the final polymer product is composed of chains of polymer molecules 

of varying molecular weights. Thus, the quality of the final polymer product is 

estimated from its average molecular weight. The traditional analytical methods of 

estimating the molecular weight distribution and, thus, the average molecular 

weight of a polymer product include gel-permeation or size-exclusion 

chromatography, which require costly instruments and time-consuming 

procedures; thus, their readings are available off-line (Richards and Congalidis, 

2006). The average molecular weight of the resultant polymer and, the 

corresponding polymer yield and quality are highly sensitive to the polymerization 

operating conditions. The most important operating parameter that significantly 

affects polymerization is the reaction temperature (Richards and Congalidis, 

2006). Accordingly, we have developed GPSR-based soft sensor models relating 

the molecular weight of the polystyrene polymer produced Mw, to the coolant feed 

flowrate, FJ. 

5.3.1. Process Identification of Styrene Polymerization Process Using GPSR 

Methodology 

 For capturing the dynamics of the styrene polymerization process using the 

GPSR methodology, a discrete time single input-single output (SISO) model of 

the following form was used.  

  ),,,,,( 2,1,,2,1,,1,   kJkJkJkWkWkWkW FFFMMMfM

  

(5.14) 
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where, MW,k+1 is a one-step ahead predicted value of the effluent polymer 

molecular weight (controlled/output) variable, subscript ‗k‘ is the sampling 

instant, FJ,k is the current/past values of the coolant flowrate (manipulated/input 

variable) to the jacket, f denotes the functional relationship between the current 

and past (time lagged) values of the input and the future predicted output variable 

value.  

 

Figure 5.3: Stimulus-response profiles of the polystyrene reactor process, (a) 

random sequence in input (coolant feed-flowrate), (b) response of 

effluent polymer molecular weight and the GPSR-Model 1 

predicted polymer molecular weight (inset: enlarged view). 

A large-sized dataset, composed of 10000 data-points were generated by 

imparting a pseudo-random sequence in FJ with a sampling time of 1 hr and 

switching probability of Ps = 0.5 to the process model. It may be noted that in real 

practice, the process dataset should be collected by physically disturbing the 
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process in open loop mode. In the absence of such data, in the present study, the 

phenomenological model of styrene polymerization has been used for process data 

generation and demonstrating the GPSR based soft-sensor‘s utility in 

implementing an MPC. A small portion of the input and the resulting output 

sequences are shown in Figure (5.3). The total dataset was partitioned into training 

and test sets in the ratio 3:1 for the development of the GPSR-based models. The 

GPSR-based model was built using Eureqa Formulize software (Schmidt and 

Lipson, 2009). A number of variants of GPSR-based soft-sensor models were 

generated by systematically varying the GPSR algorithmic parameters. The 

performance evaluation of these models was done using standard statistical 

parameters namely, coefficient of correlation (CC) and root mean squared error 

(RMSE) between the model-predicted molecular weight values and their desired 

magnitudes. Among the several GPSR models generated, the two best models 

(i.e., possessing highest CC and lowest RMSE magnitudes) are as follows: 

GPSR-Model 1:  
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where, MWn and FJn are the normalized forms of MW and FJ respectively, 

expressed as: 

   min,max,

min,

WW

WW

Wn
MM

MM
M






     

(5.17)

 

   min,max,

min,

JJ

JJ

Jn
FF

FF
F






     

(5.18)

 

 

 

where, MW,min = 57362, MW,max = 63201, FJ,min = 400.05, and FJ,max = 699.95 are the 

scaling parameters. Figure (5.3) shows the random input step sequence of the 

manipulated variable, FJ, and the resulting trajectory of the controlled variable, 
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Mw (represented by a continuous line), and its GPSR-Model 1 (Eqn. 5.15) 

predicted values (represented by a dashed line). 

5.4. RESULTS AND DISCUSSION 

5.4.1. Performance Analysis of the GPSR Based Soft Sensor Models 

 The GPSR-based soft sensors (Eqns. 5.15 and 5.16) relate the current and 

lagged values of average molecular weight of the effluent polymer (that is 

difficult-to-measure online), to the current and lagged values of the coolant feed 

flowrate. Both the GPSR models exhibit good prediction and generalization 

performances, thus accurately modeling the dynamic behavior of the styrene 

polymerization process. Especially, the GPSR-Model 1 shows the best 

performance with a CC of more than 0.999 and RMSE of around 910
-4

 (see Table 

(5.2)) for both the training and test sets. Same can also be inferred from Figure 

(5.3(b)) in which it is observed that the predicted (by the GPSR-based soft sensor 

model) ‗Mw‘ trajectory (indicated by dashed line) closely follows the actual 

molecular weight time-trajectory (indicated by continous line). This clearly 

demonstrates that the GPSR based model has been able to accurately and 

effectively identify the strong nonlinear dynamics possessed by the continuous 

styrene polymerization process. The notable feature of GPSR-based process 

models is that they represent mathematical relations in a simpler form as 

compared to other CI-based models such as ANNs, SVR and FL. The use of such 

simple models considerably reduces the computational load on the MPC during its 

implementation. 

Table 5.2: Prediction performance of the GPSR-based soft-sensor models for 

styrene polymerization process 

Model 
Training-set Test-set 

CCTrn RMSETrn CCTst RMSETst 

GPSR-Model 1 0.999 9.210
-4

 0.999 910
-4

 

GPSR-Model 2 0.999 3.610
-3

 0.999 3.510
-3
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5.4.2. Model Predictive Control of Styrene Polymerization Process Using 

GPSR-Based Soft-Sensor Model 

 The MPC scheme designed for the industrial-scale styrene polymerization 

process (see Figure (5.2)) was implemented for controlling the molecular weight, 

MW, of the effluent polystyrene (which is difficult to measure online) by adjusting 

the coolant feed-flowrate FJ to the jacket. The jacket coolant feed-flowrate (FJ) is 

found to directly affect the reactor temperature and, consequently, the effluent 

polystyrene molecular weight. The molecular weight of the effluent polystyrene 

has a strong relationship with the intrinsic viscosity of the effluent polymer 

solution, according to the equation (Hur, 2003), 

    
71.00012.0 WM      (5.19) 

The intrinsic viscosity, η (L/g), of the effluent polystyrene solution can be easily 

estimated online using a continuous viscosity analysis instrument and, thus, it is 

used as a direct measure of MW and, consequently, as the controlled variable. The 

MPC scheme uses GPSR-Model 1 (Eqn. 5.15) for predicting the future values of 

Mw (η) over the prediction horizon of Hp = 10; this is done using values of η and 

FJ at the current and past time instants. The MPC then determines an optimized 

sequence of the future moves of FJ, over the control horizon Hc = 4. The 

prediction and the control horizons are the number of time steps in the near future 

over which the respective predictive calculations are done. The weight factors of 

the MPC objective function were heuristically determined to be γ = 1 and λ = 

0.015. From all the future calculations, only the first control move was 

implemented following which the future model predictions and control moves 

were re-computed based on the new conditions. The MPC scheme utilizing the 

GPSR-based process model was simulated for two case studies, namely set-point 

tracking, and disturbance rejection. The control performance of the GPSR-based 

model utilizing MPC scheme was compared with that of an appropriately tuned 

PID controller. The PID controller was fine-tuned using the Cohen-Coon settings 

(Cohen and Coon, 1953) for stable operation. 
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Figure 5.4: Controlled variable profiles of the simulated MPC and PID control 

schemes for the polystyrene reactor process, (a) Set-point tracking, 

(b) Disturbance rejection. 

 

(a) Set-point Tracking  

Polymer grade-transitions during the operation of continuous polymerization 

reactors are often required to produce polymers of different grades. In the 

transitory period, the nonlinear process behavior becomes more pronounced 

(Srinivasan et al., 2005). Such grade transition phases can be followed quite 

well by an MPC scheme. An MPC-based grade transition scheme has been 

implemented using the GPSR-based soft-sensor model. This was done by 

simulating sudden changes in the process set-point over time as shown in 

Figure (5.4(a)). The set-point value of the intrinsic viscosity (controlled 

variable) of the effluent polymer was increased from its steady state value of 
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2.9091 L/g to 3 L/g and then decreased to 2.8 L/g over time. From the actual 

intrinsic viscosity profile, it is seen that the MPC has taken appropriate 

action to accommodate the set-point changes by adjusting FJ, thereby 

following the imparted set-point. The PID controller takes a shorter time to 

reach the higher set-point magnitude; however, it exhibits greater 

fluctuations in doing so. In the case of a lowered set-point also, the PID 

controller shows high fluctuations in the values of the controlled variable 

while reaching the desired set-point. In comparison, the MPC controller 

follows a smooth path towards the set-point in both cases. 

(b) Disturbance Rejection 

In the disturbance rejection case study, the feed monomer concentration was 

abruptly increased (step input) from its steady state value of 3.3245 mol/L to 

3.7 mol/L at 20 hr as shown in Figure (5.4(b)). This step input caused a 

disturbance in the process behavior in the form of a sudden rise in the 

intrinsic viscosity of the effluent polymer at that time instant (see Figure 

5.4(b)). In response, the MPC takes immediate action to suppress the 

disturbance by appropriately manipulating FJ over time so as to bring back 

the process to its set-point (steady-state) allowing only minor oscillations. In 

comparison, the PID controller drives the controlled variable to its set value 

in a highly oscillatory manner spread over a longer period of time. 

 

5.5. CONCLUSION 

 A novel approach of using the CI-based genetic programming based 

symbolic regression (GPSR) methodology for process identification of a complex, 

nonlinear dynamic chemical process system is presented in this work. Styrene 

polymerization is such a complex, nonlinear process that is difficult to model 

phenomenologically. Accordingly, GPSR-based soft sensor dynamic models for 

an industrial scale styrene polymerization reactor were developed. The developed 

soft-sensor models dynamically relate the ―difficult to measure‖ output variable 

(average molecular weight of the effluent polystyrene) to the important input 

variable (jacket coolant flowarte) of the process. The GPSR-based soft sensor 

models possesses excellent prediction and generalization performances as 
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indicated by the high CCs of 0.999 and low RMSEs (<9.310
-4

) for both the 

training and test sets. The best GPSR-based model (possessing highest prediction 

and generalization performance) was used in a simulated model predictive control 

(MPC) scheme for the continuous styrene polymerization reactor. The MPC 

scheme was found to perform better in both set-point tracking and disturbance 

rejection tasks than an appropriately tuned PID controller. The proposed approach 

of GPSR-based modeling can be gainfully applied to model any linear/nonlinear 

phenomena for utilization in model based control of nonlinear chemical processes. 

NOMENCLATURE 

A Heat transfer area of reactor 

C I Initiator concentration in reactor 

C If Initiator feed concentration 

C M Monomer concentration in reactor 

C Mf Monomer feed concentration 

Cp Mean heat capacity of reactor fluid 

CpJ Heat capacity of cooling jacket fluid 

D0 Concentration of the dead polymer chains (moles) 

D1 Concentration of the dead polymer chains (mass) 

EI Activation energy for initiation reaction 

EP Activation energy for propagation reaction 

ET Activation energy for termination reaction 

fi Initiator efficiency 

FI Initiator feed flowrate 

FJ Jacket fluid feed flowrate 

FM Monomer feed flowrate 

FS Solvent feed flowrate 
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J Least squared objective function  

k0I Arrhenius equation frequency factor for initiation reaction 

k0P Arrhenius equation frequency factor for propagation reaction 

k0T Arrhenius equation frequency factor for termination reaction 

Mw Monomer molecular weight 

t Time 

T Reactor mass temperature 

Tf Feed temperature 

TJ Jacket fluid temperature 

u Input (manipulated) varaible 

U Overall heat transfer coefficient 

-ΔHR Heat of polymerization reaction 

y Output (controlled) varaible 

 

Greek letters 

 Mean density of reactor fluid 

J Density of cooling jacket fluid 

η Intrinsic viscosity of polymer solution 

γ Penalizing constants for excess error 

λ Penalizing constants for excess control moves 
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COMPUTATIONAL INTELLIGENCE BASED 

PERFORMANCE MODELING OF CO-GASIFICATION 

PROCESS USING DIFFERENT COAL-BIOMASS BLENDS 

Abstract 

Biomass, a renewable fuel is a cleaner and partial alternative to coal. Compared to 

commonly used combustion, Co-gasification (COG) is a relatively new 

technology that uses a binary fuel (coal-biomass) blend for generating a product 

gas mixture (syngas). It has found numerous industrial applications. A majority of 

currently mined Indian coals contain high ash percentages. To evaluate their 

efficacy for co-gasification, a rigorous experimental program was undertaken in a 

fluidized-bed co-gasifier (FBCOG) pilot plant operated at a gasification 

temperature between 850 and 1014°C. The high ash coals were blended with three 

types of biomasses, namely, rice husk, sawdust, and press-mud. Since it uses a 

blend of two naturally occurring solid fuels the FBCOG operation involves 

numerous solid and gas phase reactions, and associated complex and nonlinear 

mass and heat transfer phenomena. Thus, the process is difficult to model 

phenomenologically. Accordingly, process data as generated from the pilot-plant 

experiments were used for developing computational intelligence (CI)-based 

models, using three formalisms namely, genetic programming based symbolic 

regression (GPSR), multilayer perceptron neural network (MLPNN), and support 

vector regression (SVR). Each of these methods, was employed to predict four co-

gasification performance variables, namely, the total gas yeild (kg/kg fuel), 

carbon conversion efficiency (%), heating value of the product gas (MJ/Nm
3
) and 

cold gas efficiency (%). The developed CI-based models possess excellent 

prediction accuracy and generalization performance. The experimental data and 

the CI-based models developed in this study can be gainfully employed in the 

design and operation of the co-gasifiers using high ash coals.  
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6.0. INTRODUCTION 

 Coal is the most widely used fossil fuel for the production of thermal and 

electrical energies. However, its overconsumption is leading to increasing 

emissions of greenhouse gases and soil and water body contamination due to the 

storage and release of huge amounts of ash (post-combustion residue). This is 

affecting the climate and environment enormously (Zhou et al., 2016). In 

comparison, biomass, a renewable energy source, is considered to be a carbon-

neutral fuel and thus has a significant potential to fulfill the future energy needs. 

Co-gasification takes advantages of the synergy between coal and biomass 

gasification, wherein the process not only leaves a low carbon footprint on the 

environment, but also improves the hydrogen-to-carbon monoxide generation 

ratio in the product gas as desirable for liquid fuel synthesis (Andre et al., 2005). 

Additionally, the inorganic matter (mainly alkaline earth metals) present in the 

biomass is known to catalyze the gasification of coal to produce clean gaseous 

fuels. 

 The tendency of producing higher carbon footprint, fast depleting reserves 

of fossil fuels, and accumulation of biomass wastes augmented by the growing 

energy requirements have created an urgent need for the development of clean 

coal technologies (CCTs). Such newer approaches to coal gasification basically 

aim at innovative, efficient and cleaner techniques by means of: 

 Changes in the feed materials: The use of alternative fuel (non-coal) 

feedstock for gasification includes the use of biomasses and carbonaceous 

wastes or its blends with coal. 

 Changes in the processing techniques: The main focus here is on 

modifications in the fuel firing techniques and bed operating techniques. 

Co-gasification utilizes biomass-blended coal fuels as feedstock. Additionally, the 

fluidized bed operation of a co-gasification process ensures more control on the 

gasification reactions thereby contributing to increased efficiencies and reduced 

pollutions as discussed in the next sub-section.  
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6.0.1. Co-gasification (COG) 

Co-gasification (COG) is a technology that thermally (at elevated 

temperatures) and chemically (under oxygen-starved conditions) converts the feed 

hydrocarbon materials into a product gas mixture (syngas) comprising mainly 

hydrogen, carbon monoxide, methane, carbon dioxide and nitrogen (when the air 

is used as gasifying agent) (Stevens, 2011). The process of conversion of the 

carbonaceous solid material to the desired gaseous mixture can be written in terms 

of material in and out as, 

 

Solid hydrocarbon fuel + Air + Steam  Clean gaseous fuels (CH4, H2) + CO + 

CO2 + H2O + Char + Ash + Tar       (6.1) 

 

Co-gasification adds operational flexibility to the traditional coal-gasification 

process by enabling the use of biomass or other carbonaceous materials (industrial 

waste, sludge etc.) in varying proportions. Additionally, the COG process to some 

extent mitigates the problem of air and water pollution/contamination due to 

reduced release of the volatile organic compounds (VOCs) and less generation of 

tar as in the case of coal gasification (Rezaiyan and Cheremisinoff, 2005). 

In a number of countries such as India, China, Australia, and Turkey large 

deposits of coals containing high percentages of ash (and in turn mineral matter) 

are present. The Indian thermal power stations invariably receive such type of 

coals and the pollution problems associated with them have become a major 

concern. For achieving the stringent pollution control targets, changes in the coal 

utilization practices have become imperative. Accordingly, co-gasification of 

coal-biomass blends is suggested to tackle the stated problematic issues. These 

measures are expected to result in a high conversion efficiency and lower 

environmental impact (Takematsu and Maude, 1991). 

The use of fluidized bed gasifier for co-gasification has several advantages 

(Patil-Shinde et al., 2014; Chavan, 2012): 

 The fluidized bed co-gasifier (FBCOG) allows flexibility of handling a 

wide range of coals and biomass materials (such as those obtained from 
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agricultural/industrial/forest sources including wastes, as well as their 

blends). 

 It provides good mixing and contact between the fuel and gasifying agent 

leading to better heat and mass transfer in the reactor. 

 Reduced formation of tar and phenols as compared to coal gasification. 

 Allows usage of bigger particle sizes with higher residence times of the 

solid fuel particles. 

 It is capable of handling high-sulfur coals without a need for a separate 

flue-gas desulfurization process, which increases the capital and 

operational costs. 

 The FBCOG process operates at relatively lower temperatures, thus 

emitting lower amounts of nitrogen oxides (NOx) and providing more 

energy efficiency. 

Due to these several advantages, there are continuously increasing research 

studies involving COG processes in fixed/fluidized bed gasifiers utilizing region-

specific coals and biomasses/carbonaceous materials/wastes (Jong et al., 1999; 

Sjostrom et al., 1999; Pan et al., 2000; Pinto et al., 2003; McLendon et al., 2004; 

Andre et al., 2005; Velez et al., 2009; Mastellone et al., 2010; Aigner et al., 2011; 

Sulaiman et al., 2017; Zhang and Bi, 2010). Such a large number of co-

gasification studies are indicative of its emergence as a potential technology for 

the new generation of power plants in terms of higher efficiencies, lesser pollution 

and use of alternate fuels in replacement to the fast depleting fossil fuels. 

The performance of a typical co-gasification process is strongly affected 

by co-gasification process operating conditions (mainly gasifier temperature and 

flow patterns), feed material flow-rates (fuel feed-rate, air feed-rate, steam feed-

rate), and physical and chemical properties of the feedstock. The important 

performance measure parameters of the co-gasification process are: 

(i) Total gas yield (TGY): This is an indicator of the fuel mass conversion 

efficiency of the process as given by the equation, 
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(kg/h) rate feed fuel Solid

(kg/h) produced gas product Total

fuel kg

kg
TGY 








  (6.2)

 

 

(ii) Carbon conversion efficiency (CCE): As the name specifies this parameter 

measures the percent conversion of carbon in the process and is given by the 

expression, 

 

  100
feed fuelin Carbon 

ash cyclone and bottomin Carbon 
1% 
















CCE  (6.3)              

 

(iii) Heating value (HV): This performance parameter is a measure of the energy 

content of the product gas as given by equation, 

 

    








 3

13 i
ii CVw

Nm

MJ
HV    (6.4)       

 

where, wi denotes the weight percentage of the gas component ‗i’, (i = 1 for H2, 2 

for CO and 3 for CH4) and CVi indicates the calorific value of the respective gas 

component.  

 

(iv) Cold gas efficiency (CGE): This performance parameter ultimately measures 

the energy efficiency of the process as given by the expression, 

     100% 











 


F

P

CV

CVTGY
CGE   (6.5)              

where, TGY is the total gas yield (Eqn. 6.2), CVP and CVF are the calorific values 

of product gas and feed solid fuel respectively.  

6.0.2. Co-gasification Modeling for Process Performance Evaluation: Need 

for CI-Based Models 

 The performance analysis of the FBCOG process can be done through the 

use of appropriately validated process models. Commonly, a phenomenological 

(―first principles‖ or ―mechanistic‖) process model is developed based on a 
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thorough understanding of the underlying physicochemical phenomena. In 

general, phenomenological modeling of co-gasification processes is difficult due 

to following reasons: (i) nonlinear interplay of numerous process variables, (ii) 

complex throughput dependent process dynamics, (iii) exhaustive and cost-

intensive experimentation is required for studying the effects of influential feed 

and operating parameters, (iv) unavailability of an in-depth knowledge of the 

underlying physicochemical phenomena (e.g., kinetics, heat and mass transport 

mechanisms), and (v) the fluidization effects in a fluidized bed co-gasification 

(FBCOG) process lead to complex momentum transfer effects, which are difficult 

to understand in totality (Żogała, 2014). Despite these difficulties, a few attempts 

were made for phenomenological modeling of the COG (see Table (6.1)) process 

by making some simplifying assumptions. In general, two types of simplified 

phenomenological models, namely thermodynamic (equilibrium) and kinetic 

(rate), have been developed for fluidized bed coal gasifiers (Lee, 2007). The 

models based on the process thermodynamics are independent of the gasifier type 

as they assume complete oxygen consumption. Being independent of the gasifier 

type, these models are not useful for examining the effects of the operating 

parameters on the gasifier performance. The kinetic models comprise mainly of 

the kinetics of various reactions occurring in the gasification operation. Given a 

set of gasifier operating conditions its kinetic model is capable of predicting the 

process performance in terms of, for instance, product composition, and 

temperature profiles. Some notable representative studies as also reviews 

pertaining to the phenomenological modeling of fluidized bed gasifiers are given 

by Rhinehart et al. (1987), Sett and Bhattacharya (1988), de Souza-Santos (1989), 

Gururajan et al. (1992), Donne et al. (1998), Moorea-Taha (2000), Villanueva et 

al. (2008), Mazumder (2010), Armstrong et al. (2011), Yang  et al. (2012), 

Xiangdong et al. (2013) and Singh et al. (2014). Based on the simplified 

phenomenological modeling approaches described previously few researchers 

have attempted to develop co-gasification process models, the details of which are 

listed in Table (6.1). 
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Table 6.1: Existing phenomenological models of co-gasification processes 

Author Type of Model Gasifier Feedstock Objective 

Yuehong 

et al. 

(2006) 

Thermodynamic 

Model- 

Minimization of 

Gibbs free energy 

Shaft 

furnace type 

gasifier 

Coke and 

natural gas 

Composition of 

Syngas 

Perez-

Fortes et 

al. (2009) 

Aspen-Hysys 

Pressurized 

Entrained 

Flow 

Gasifier 

Petroleum 

Coke and 

Olive Pomace 

(Orujilo) 

Feasibility of 

COG, Gas 

Composition 

and Power 

Generation 

Shen et 

al. (2012) 

Aspen Plus 

(Minimization of 

total Gibbs free 

energy-

Equilibrium 

Model) 

Entrained 

bed gasifier 

Coal (Sub-

bituminous, 

Bituminous) 

and Petroleum 

coke 

Concentration 

distribution of 

CO, H2 and CO2 

Gartner 

et al. 

(2012) 

1-D Kinetic Model 

Entrained 

Flow 

gasification 

Australian coal 

and char 

Carbon 

conversion and 

cold gas 

efficiency 

Cormos 

(2013) 

ChemCAD and 

Thermoflex 

(Minimization of 

Gibbs Free 

energy-

Equilibrium 

Model) 

Siemens 

gasifier 

(entrained-

flow type) 

Coal 

(Romanian 

type) and 

biomass/solid 

waste 

Co-gasification 

Performance 

indicators 

namely H2, 

SNG and Liquid 

fuels 

 Commonly, empirical modeling in the form of linear/nonlinear regression 

is employed when phenomenological modeling is difficult. The empirical 

modeling approaches mainly include regression-based modeling strategies that 

avoid difficulties of first principles based modeling as they are exclusively based 

on the process data (data-driven modeling). The regression-based black-box 

modeling methods conventionally utilize common linear/nonlinear fitting 

functions such as linear, polynomial, power equations etc. A major difficulty in 

empirical modeling is pre-specification of an appropriate data-fitting function, 

which poses tremendous difficulties and requires a huge trail and error approach 

that very often doesn‘t succeed, especially for nonlinear and complex systems 
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such as FBCOG. The difficulties and complexities involved in the 

phenomenological and classical empirical modeling of FBCOG necessitate 

exploration of alternative nonlinear modeling strategies that do not require full 

details of the underlying physicochemical phenomena. Such an alternative has 

become available in recent years in the form of computational intelligence (CI) 

based exclusively data-driven modeling approaches. Earlier, several gasification 

(coal or biomass) modeling studies using CI-based methodologies (mostly ANNs) 

have been performed (Nougues et al., 2000; Mjalli and Al-Mfargi, 2008; Chavan 

et al., 2012; Puig-Arnavat et al., 2013; Patil-Shinde et al., 2014). Despite 

possessing attractive properties, CI-based methods have not been used in COG 

process modeling. Accordingly, this study presents results of FBCOG modeling 

using three CI-based methods, namely, genetic programming based symbolic 

regression (GPSR) (Koza, 1992), multilayer perceptron neural network 

(MLPNN) (Freeman and Skapura, 1991), and support vector regression (SVR) 

(Vapnik, 1995). Specifically, models have been developed using each of the stated 

CI-based method for predicting four FBCOG performance variables stated earlier. 

The CI-based models developed here, being inherently nonlinear, have accurately 

captured the complexities and nonlinearities involved in the fluidized bed co-

gasification process. 
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Figure 6.1: Scatter-plots of FBCOG performance variables (TGY, CCE, HV and 

CGE) versus important feed/process operating parameters 

(temperature, air/fuel ratio, steam/fuel ratio and fuel feed rate). 

Nature of Dependencies between Performance and Important Operating 

Variables 

Before conducting any data-driven modeling, it is advisable to examine the 

type of dependencies (linear/nonlinear) that exist between the dependent and 

independent (predictors) variables and parameters of the models. Accordingly, to 

analyze the relations between the four performance variables and the important 

independent (feed and operating) variables of the FBCOG process, scatter-plots 

were generated as shown in Figure (6.1) using the experimental dataset. 

Specifically, each of the four performance variables, namely TGY, CCE, HV and 

CGE was plotted vis-à-vis four important FBCOG process operating parameters, 

namely gasifier temperature (T), air/fuel ratio (RAF), steam/fuel ratio (RSF) and fuel 
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feed rate (f). From Figure (6.1) it is observed that TGY exhibits highly nonlinear 

behavior with respect to the reactor temperature and a mildly nonlinear behavior 

with respect to the fuel feed rate. From the variation of the remaining performance 

variables, namely, CCE, HV and CGE with respect to the four FBCOG process 

operating parameters considered while plotting the figure, high amount of 

nonlinear dependencies are observed (see Figure 6.1 panels (ep)) between them. 

The stated nonlinearities can be effectively captured by the CI-based inherently 

nonlinear modeling methodologies, namely genetic programming based symbolic 

regression (GPSR), multilayer perceptron neural network (MLPNN), and support 

vector regression (SVR). Additionally, these being exclusively data-driven 

modeling methods can develop accurate models using the experimental dataset, 

without requiring the full details of the underlying mechanisms/phenomena. 

Accordingly, the principal objectives of this study are: (i) performance assessment 

of a fluidized bed co-gasification process (FBCOG) conducted in a pilot plant 

using high ash Indian coal and different biomasses blended in various proportions, 

(ii) development of CI-based process models for the prediction of four COG 

performance variables, namely, TGY (kg/kg fuel), CCE (%), HV (MJ/Nm
3
) and 

CGE (%) using thirteen feed and process operating parameters (these are 

described in detail below), (iii) to study the effect of three types of  biomasses and 

their blending ratios with high ash coals on the performance of the FBCOG 

process. 

The significance of a total of thirteen process feed and operating 

variables/parameters considered in the CI-based modeling is described below: 

 Gasifier temperature (T) (°C) has a significant effect on the product gas 

generation per kg of fuel. Higher process temperatures result in faster 

pyrolysis, generating an increased amount of CO2 gas that gets converted to CO 

via the Boudouard reaction.  

 Coal feed rate (fc) (kg/h) and biomass feed rate (fb) (kg/h) define the flow rate 

of the carbonaceous constituents of the feed and, thus, affect the residence time 

of the feed solid fuel particles in the bed. 

 Four feed variables, namely, fixed carbon (FC), volatile matter (VM), ash (AS) 

and moisture (M), (all in weight percentages) belonging to the proximate 
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analysis, provide a primary assessment of the feed fuel‘s quality. While the 

extent of FC positively affects the quality of the product gas in the co-

gasification reaction, AS negatively affects the reaction; VM plays a significant 

role in determining the reactivity of the fuel. 

 Air-to-fuel ratio (RAF) (kg/kg fuel) is an important process parameter since the 

air-assisted oxidation of the carbon is one of the key reactions for attaining the 

desired co-gasification temperature; however, using a high air-to-fuel ratio 

decreases the heating value of the product gas thereby negatively affecting the 

performance of co-gasification process. 

 The importance of steam-to-fuel ratio (RSF) (kg/kg fuel) is that with its 

increase, the production of H2 increases due to the elevated partial pressure of 

H2O inside the gasification chamber, favoring the important water-gas, water-

gas shift, and methane reformation reactions.  

 The ultimate analysis of the feed represents the elemental composition of the 

organic portion of the solid fuel in terms of the weight percentages of major 

components, namely carbon (C), hydrogen (H), and oxygen (O), all in weight 

percentages. 

 Rate constant (k): According to the Arrhenius law, the rate constant is 

significantly dependent on the gasification temperature; its magnitude increases 

with rise in the gasification temperature (see the experimental dataset in 

Appendix (6.A.1) on page 201). 

 The next section presents experimental details of the COG conducted in a 

fluidized bed pilot plant. This is followed by a brief description of the 

methodologies adopted for the development of the CI-based models. In the 

―Results and Discussion‖ section, the prediction performance of the developed CI-

based models, predicting the four COG performance variables are compared 

numerically and graphically. Further, the best COG performance parameter 

predicting models were identified among the GPSR, MLPNN and SVR-based 

models. Finally, the ―Conclusion‖ section summarizes the important finding of the 

study. 
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6.1. EXPERIMENTAL 

6.1.1. Equipments and Materials 

The pilot plant fluidized bed gasifier installed at the Central Institute of 

Mining and Fuel Research CSIR-CIMFR, Dhanbad, was utilized for conducting 

the co-gasification experiments. The schematic of the plant is shown in Figure 

(6.2) and it consists of the following sub-systems: (1) hopper feeding system for 

feeding the solid fuel, (2) mixer and super-heater for preparing desired blends of 

air-steam gasifying agent for feeding to the gasifier, (3) fluidized bed gasifier 

reactor, (4) cyclone separator for separating the solid particles generated during 

the gasification, and (5) quencher and scrubber for cooling and cleaning the 

product gas. 

 

Figure 6.2: Schematic of the FBCOG pilot plant setup. 

High ash coals were obtained from the Talcher coalfield located at Angul, 

Odisha, India. Three types of biomasses, namely, rice husk, sawdust, and press-

mud, were obtained from the local sources. Prior to its use, the high ash coal, 

sawdust and press-mud were crushed and sieved to get a particle size of ~1 mm, 
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while the rice husk was obtained in the particle size of ~3mm. Steam and filtered 

air were used as obtained from an electric boiler and a compressor, respectively. 

6.1.2. Experimental Procedure 

The startup procedure of the FBCOG process involves feeding the solid 

fuel material (particles of a uniform size of 2 mm) into the gasifier and built-up of 

the bed in a fluidized form. The desired fluidization of the bed was attained by 

maintaining the up-flow of air at an adjusted rate. Next, the gasifier temperature is 

increased by an external electric heating system facility to conduct the co-

gasification reaction. 

To the FBCOG process, the feedstock containing the sieved binary blends 

of high ash coal and biomass (sawdust, press-mud or rice husk) were fed in 

varying proportions (10, 20 and 40 weight percent biomass except for rice husk). 

The same proportions for coal-biomass blends involving rice husk were 10, 20 

and 35 percent biomass (by weight). The bed was charged with this feedstock and 

fluidization was attained according to the standard gasifier operating procedure 

mentioned above. The gasifier temperature was raised to 500°C, after which the 

secondary gasifying agents, i.e. superheated steam (200-250°C) and the preheated 

fluidization air (200-250°C) were fed. The ash generated by the partial 

combustion was discharged from the bottom and cooled to 40°C prior to 

discharging it in an ash bin. Once the desired gasifier temperature was reached, 

the blended feedstock was continuously fed into the gasifier. Depending on the 

maintained feed and operating conditions, the co-gasification process attained a 

steady-state in time ranging between 15 to 30 minutes. The fuel gases containing 

entrained particulates, as generated in the co-gasification were cleaned stage-wise 

by passing through (i) cyclone separator, and (ii) quenching and scrubbing 

column, as shown in the schematic in Figure (6.2). The composition of the 

resulting pure gas was analyzed by collecting the gas samples in glass pipettes and 

performing off-line gas chromatography (GC) of the samples. The final effluent 

clean gas was flared from the flare stack. The co-gasification rate constants and 

the corresponding activation energies were estimated using the laboratory scale 
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thermo-gravimetric analyzer (TGA). The procedure of the said determination can 

be found in Cakal et al. (2007). 

Based on the stated procedure, 56 experimental runs were conducted in the 

FBCOG pilot plant by (i) systematically varying the process operating parameters, 

namely, fuel feed rate and process temperature, (ii) using three different 

biomasses namely, rice husk, press-mud and sawdust in the blend, and (iii) 

varying the blending ratios of the coal/biomass in the feedstock. 

The main operating parameters of the FBCOG along with their ranges are 

listed in Table (6.2) and the complete experimental dataset of the 56 runs is given 

in Appendix (6.A.1) on page 201 of this chapter. Table (6.3) indicates the 

proximate and ultimate analyses of the solid fuels used in the experiment. 

Table 6.2: Operating parameters of the FBCOG process 

Operating Parameters Variation Range 

Fuel Feed rate 5.7-9.6 kg/h 

Bottom Ash Discharge rate 2.8-4.6 kg/h 

Temperature of the gasifier 850-1014°C 

Air flow rate 200±20 LPM 

Steam flow rate 2.5±0.2 kg/h 

Bed Height 10 cm 

 

Table 6.3: Analysis of the solid fuel feed samples 

FC: Fixed carbon, VM: Volatile matter, AS: Ash, M: Moisture, C: Carbon, H: 

Hydrogen, O: Oxygen, N: Nitrogen, S: Sulphur all are in weight percentages, 

HHV: Higher heating value (Kcal/Kg) 

 

 

 

 

Sample 
Proximate Analysis Ultimate Analysis 

HHV 
FC VM AS M  C H O N S 

Coal 27.8 26.7 40.8 4.7 39.43 3.54 10.25 0.78 0.5 3700 

Rice 

husk 

11.8 63.0 15 10.2 37.54 4.65 34.80 0.29 0.02 3480 

Press-

mud 

9.5 61.7 18.5 10.3 33.73 3.92 41.49 2.36 0.01 4051 

Sawdust 12.8 72.7 3.6 10.9 41.90 5.24 38.21 0.08 0.07 4000 
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6.2. RESULTS AND DISCUSSION 

6.2.1. Effect of Biomass Types on the FBCOG Performance 

Figure (6.3) shows the effect of variation in the coal-biomass ratio on the 

four FBCOG performance variables. Figure (6.3(a)), shows that for all three types 

of blends the TGY increases linearly as coal:biomass ratio increases although the 

slope of increase differs with the biomass used. Specifically, TGY shows a higher 

rise as the weight percentage of rice husk increases in the blend compared to other 

biomass blends. Demirbas (2004) has reported that a higher quantity of biomass in 

the coal-biomass blends enhances the reactivity of the co-gasification reaction 

leading to higher gas production. The stated higher reactivity may be attributed to 

the higher amount of hydrocarbons and lower ash content in biomasses as 

compared to the coal. 

 

Figure 6.3: Effect of biomass type and its composition in coal-biomass feed 

blends on the co-gasification process, (a) TGY versus biomass 

percentages, (b) CCE versus biomass percentages, (c) HV versus 

biomass percentages, and (d) CGE versus biomass percentages. 
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There are also synergistic effects occurring between the biomass and coal 

owing to which the transfer of hydrogen radicals from biomass to coal causes 

more decomposition of coal leading to increase in the amount of gases (Zhang et 

al., 2007). Similar trends are witnessed in the behavior of carbon conversion 

efficiency (CCE) (see Figure 6.3(b)), due to the changes in the coal-biomass 

blending ratio wherein increasing biomass content in the blend  causes an increase 

in CCE, albeit with varying slopes. 

The behavior of the heating value (HV) of the effluent product gas towards 

changing coal-biomass ratio is different (see Figure 6.3(c)) than that displayed by 

TGY and CCE. Here, it is observed that HV decreases gradually with increasing 

biomass content of the blended fuel. This can be attributed to the reduction in 

generation of CO, H2, and CH4 in the product gas (Alzate et al., 2009). 

A very different effect is seen in the behavior of CGE (cold gas efficiency) 

when coal:biomass ratio is changed (see Figure 6.3 (d)). Specifically, for coal-rice 

husk and coal-saw dust blends, CGE rises continuously as biomass content 

increases. However, CGE declines with increasing press-mud content in the 

blended feed. The increase in CGE witnessed for the coal-rice husk/sawdust 

blends is likely due to the increase in the CCE and TGY (see Eqn. 6.5) with 

increasing biomass content. The decrease in CGE, in the case of  increasing press-

mud content in the blend, may be due to higher oxygen content and lower carbon 

and hydrogen contents (see Table (6.3)) in the coal–press-mud blends. Also, the 

feed-rates of air and steam per kg of fuel were maintained high for conducting 

proper fluidization inside the gasifier for the higher press-mudcontents. This 

reason may also be attributed to the generation of oxygen based non-

fuelcompounds in the effluent gas leading to a decline in CGE. 

6.2.2. CI-Based FBCOG Process Modelling 

(A)  Principal Component Analysis 

Principal component analysis (PCA) is a technique that performs 

dimensionality reduction of a multivariate linearly inter-correlated dataset (see 

Section (1.7) for details). This reduced dimensionality of the input space lowers 
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the computational load during GPSR, MLPNN and SVR-based model 

development. The FBCOG process contains several (here thirteen) feed and 

operating parameters that strongly affect the key performance variables of the 

process. In order to capture the variability in the process data set in a few linearly 

un-correlated variables and thereby reduce the thirteen-dimensional input space of 

the FBCOG process, PCA was performed using RapidMiner software package 

(Mierswa et al., 2006). For the PCA process, the FBCOG experimental dataset 

was normalized. The statistical normalization was done on the input and output 

variables using ―z-score‖ technique given as, 

i

iji

ji

xx
x






,

,
ˆ     (6.5) 

where, 𝑥 𝑖,𝑗  denotes the normalized value of i
th

 input/output variable (i  = 1, 2,...13) 

and j
th

 data-point (j = 1, 2,…56), with xi,j being the corresponding un-normalized 

element of a data-point. The variables 𝑥 i and σi denote the mean and standard 

deviation of the i
th

 input/output variable. These values for the FBCOG process 

variables are listed in Table (6.4). 

Table 6.4: Mean and standard deviation of thirteen inputs and four outputs 

Variables  Mean (𝑥 ) Standard Deviation () 

Independent Variables 

T 933.696 37.304 

fc 5.938 1.346 

fb 1.66 0.712 

FC 24.128 1.808 

VM 35.479 4.024 

AS 34.398 3.057 

M 5.994 0.593 

RAF 2.475 0.33 

RSF 0.335 0.045 

C 39.073 0.853 

H 3.787 0.151 

O 16.436 3.082 

k 0.0072 0.0035 

Dependent Variables 

TGY 2.908 0.281 

CCE 88.065 6.287 

HV 3.658 0.7 

CGE 58.839 12.901 
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The first four principal components (PCs) yielded by PCA captured a large 

amount of variance of about 99.3% in the normalized FBCOG process data to be 

used as inputs during modeling. Thus, only first four PCs—instead of the original 

thirteen—were considered for the development of the CI-based models, thereby 

reducing the dimensionality of the models‘ input space from thirteen to four. The 

four principal components (P1, P2, P3 and P4) are related to the original thirteen 

FBCOG process/feed variables according to the following expressions, 

kOHCR

RMAVFffTP

SF

AFSMCbc
ˆ108.0ˆ335.0ˆ251.0ˆ077.0ˆ22.0

ˆ22.0ˆ356.0ˆ34.0ˆ355.0ˆ333.0ˆ32.0ˆ334.0ˆ133.01



  

          (6.6) 

kOHCR

RMAVFffTP

SF

AFSMCbc
ˆ113.0ˆ246.0ˆ407.0ˆ566.0ˆ357.0

ˆ357.0ˆ109.0ˆ1.0ˆ022.0ˆ254.0ˆ289.0ˆ107.0ˆ058.02



  

          (6.7)

kOHCR

RMAVFffTP

SF

AFSMCbc
ˆ599.0ˆ008.0ˆ109.0ˆ184.0ˆ324.0

ˆ325.0ˆ006.0ˆ098.0ˆ05.0ˆ053.0ˆ054.0ˆ199.0ˆ573.03



  

          (6.8) 

kOHCR

RMAVFffTP

SF

AFSMCbc
ˆ336.0ˆ065.0ˆ347.0ˆ403.0ˆ357.0

ˆ358.0ˆ098.0ˆ289.0ˆ189.0ˆ036.0ˆ138.0ˆ189.0ˆ399.04



  

          (6.9) 

The resulting PCA reduced dataset was split randomly in the training (75%) and 

test (25%) sets and was used for development of the CI-based models possessing 

good prediction accuracies and generalization capabilities as stated further. 

(B)  Development of GPSR-based FBCOG Process Models 

 The GPSR-based models, predicting the four FBCOG process 

performance variables (TGY, CCE, HV and CGE) were developed using Eureqa 

Formulize (Schmidt and Lipson, 2009) software package. The features and 

facilities offered by the Eureqa Formulize package can be found in Section 

(1.2.2). The prediction accuracies and generalization capabilities of the developed 

CI-based models were evaluated in terms of the coefficient of correlation (CC) 

and root mean squared error (RMSE), between the experimental and the 

corresponding model-predicted values of each performance variable. Several 

GPSR runs were conducted by varying the GPSR algorithmic and procedural 
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parameters and the best models were chosen, based on the overall highest and 

lowest magnitudes of CC and RMSE respectively for both training and test sets. 

The four GPSR-based models thus obtained are given below and the 

corresponding magnitudes of the training and test set CCs and RMSEs are listed in 

Table (6.5). 

(a) GPSR-Model 1 for TGY 
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  421

3241

4
3 323.0316.0209.0

405.0048.0078.0

011.0
379.0 PPP

PPPP

P
PTGY 




  (6.10) 

 

(b) GPSR-Model 2 for CCE 
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(c) GPSR-Model 3 for HV 
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(d) GPSR-Model 4 for CGE 
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 (6.13) 

 From CC and RMSE magnitudes listed in the table, it is clear the GPSR-

based TGY (CCs > 0.97, RMSEs < 0.06) and CCE (CCs > 0.95, RMSEs < 1.7) 

prediction models possess an excellent prediction accuracy and generalization 

capability. Similarly, the GPSR-based models predicting the HV and CGE 

performance variables also possess good prediction accuracies and generalization 

capabilities with high and comparable magnitudes of CCs and low RMSEs, 

although on a marginally lower scale compared to TGY and CCE predicting 

models. Figure (6.4) graphically depicts the prediction and generalization 

performances of the four GPSR-based models, wherein experimental versus the 

model-predicted values are plotted as parity plots in four panels (a−d). As can be 
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noticed from the panels that all the GPSR-based models exhibit low scatter; 

among the four parity plots those for TGY and CCE exhibit much lower scatter 

(than in the plots of HV and CGE) indicating better performance by the respective 

models. These plots support the CC and RMSE based observation that TGY and 

CCE predicting GPSR models have outperformed the remaining two models.  

Table 6.5: Comparison of CI-based models for the prediction of four FBCOG 

performance variables 

Performance 

Variables 

Model Training set Test set 

CC RMSE CC RMSE 

TGY (kg/kg fuel) 

GPSR-Model 1 0.98 0.05 0.99 0.02 

MLPNN-Model 1 0.99 0.03 0.99 0.02 

SVR-Model 1 0.99 0.03 0.99 0.02 

CCE (%) 

GPSR-Model 2 0.97 1.61 0.96 1.02 

MLPNN-Model 2 0.99 0.73 0.92 1.41 

SVR-Model 2 0.91 3.03 0.91 2.42 

HV (MJ/Nm
3
) 

GPSR-Model 3 0.95 0.20 0.95 0.25 

MLPNN-Model 3 0.94 0.22 0.93 0.28 

SVR-Model 3 0.97 0.15 0.95 0.25 

CGE (%) 

GPSR-Model 4 0.91 5.39 0.98 2.51 

MLPNN-Model 4 0.94 5.54 0.94 3.97 

SVR-Model 4 0.96 3.52 0.95 3.99 
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Figure 6.4: Parity plots of experimental versus GPSR-based model-predicted 

values of the FBCOG performance variables, namely TGY (kg/kg 

fuel) (panel a), CCE (%) (panel b), HV (MJ/Nm
3
) (panel c) and 

CGE (%) (panel d). 

(C)  Development of MLPNN-based FBCOG Process Models 

Similar to the GPSR-based models, four MLPNN based models were 

developed using RapidMiner software (Mierswa et al., 2006). Each of the 

developed MLPNN-based models has a single hidden layer in its architecture, 

which was trained by the EBP algorithm (see Section 1.2.1(A)). To obtain the 

optimal MLPNN-based models, the influence of the network‘s structural 

parameters (i.e., the number of hidden layers and number of nodes in each hidden 

layer) and two error-back-propagation (EBP) algorithm specific parameters 

(learning rate,  and momentum coefficient, ) on the model‘s prediction and 

generalization performance were systematically examined. The corresponding 

details of the optimal MLPNN models are given in Table (6.6). 
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Table 6.6: Architectural details of the MLPNN-based FBCOG models 

Model 

 

Output Input 

Nodes 

Hidden 

Layer 

Nodes 

η µ 

MLPNN-Model 1 TGY 4 6 0.16 0.02 

MLPNN-Model 2 CCE 4 5 0.19 0.09 

MLPNN-Model 3 HV 4 5 0.26 0.097 

MLPNN-Model 4 CGE 4 5 0.275 0.14 

 Hidden layer transfer function: Logistic Sigmoid, Output layer transfer 

function: Linear 

The magnitudes of the two statistical measures (CC and RMSE) in respect 

of the predictions of the four MLPNN models are listed in Table (6.5). From 

these, it is seen that in general the prediction and generalization performances of 

all the four models are good. Similar trends are observed in the four parity plots 

(Figure (6.5)) of the experimental values of the performance variables versus 

those predicted by the corresponding MPLNN models. Among the four MLPNN-

based models, the model predicting TGY (CC = 0.99 for both the training and test 

sets) possesses an excellent prediction accuracy and generalization ability. This 

can also be witnessed from the close match between experimental and model 

predicted values of the TGY in Figure (6.5) (panel (a)).  
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Figure 6.5: Parity plots of experimental versus MLPNN-based model-predicted 

values of the FBCOG performance variables, namely TGY (kg/kg 

fuel) (panel a), CCE (%) (panel b), HV (MJ/Nm
3
) (panel c) and 

CGE (%) (panel d). 

 (D)  Development of SVR-based FBCOG Process Models 

Utilizing the same datasets used in the development of GPSR and 

MLPNN-based modeling, four SVR-based optimal models were constructed for 

the prediction of four performance variables, namely, TGY, CCE, HV and CGE, 

using RapidMiner software (Mierswa et al., 2006). The epsilon (ε)-insensitive loss 

function was chosen for developing the best-performing SVR-based models; the 

SVR algorithm parameters leading to four optimal models are provided in Table 

(6.7). From the CC (high) and RMSE (low) values listed in Table (6.5), it can be 

observed that all four SVR-based models exhibit excellent prediction and 

generalization performance, although the SVR-Model 2 predicting the CCE is 

found to perform marginally inferior. Similar observations can be drawn by the 

lower scatter visible in the parity plots pertaining to the predictions of SVR-

models 1, 3 and 4 and a marginally higher scatter (Figure 6.6 (b)) in the parity plot 

in respect of the SVR-Model 2 predictions. 
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Table 6.7: Details of SVR-based FBCOG models 

Model Output
 Kernel 

function 

Kernel 

gamma 

(γ) 

Epsilon 

(ε) 

Number of 

Support 

Vectors (SVs) 

SVR-Model 1 TGY ANOVA 0.159 0.1 27 

SVR-Model 2 CCE ANOVA 0.196 0.245 25 

SVR-Model 3 HV ANOVA 0.707 0.01 38 

SVR-Model 4 CGE ANOVA 0.88 0.132 36 

 

 

Figure 6.6: Parity plots of experimental versus SVR-based model-predicted 

values of the FBCOG performance variables, namely TGY (kg/kg 

fuel) (panel a), CCE (%) (panel b), HV (MJ/Nm
3
) (panel c) and 

CGE (%) (panel d). 

6.2.3. Statistical Comparison of the CI-Based Models 

 The statistical test known as Steiger‘s z-test (Steiger, 1980) (see Section 

(1.8) for details) was conducted for identifying the best performing model from 

among the three CI-based models, constructed for predicting each of the four 

COG performance variables. Specifically, this test compares the z-scores 
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pertaining to the CC magnitudes resulting from the predictions of two competing 

models. 

 The Steiger‘s z-test was performed using CC values of different pairs of 

the CI-based models (GPSR, MLPNN, and SVR). Table (6.8) shows the results of 

this test, from which  following observations can be made about the best 

performing model for predicting the four FBCOG performance variables,  

 TGY: From the p-value (0.155) for the MLPNN-SVR pair of models (0.155) it 

can be inferred that both MLPNN and SVR models predicting TGY possess 

closely matching prediction and generalization performance which is better 

than that of the GPSR-Model 1. 

 CCE: The Steiger‘s z-test carried out for all three pairs of CI models reject the 

null hypothesis. This indicates that there are significant differences in the 

prediction performances of all the three CI-based models. From the 

magnitudes of the CCs, the MLPNN-Model 2 (CC = 0.99) is found to yield 

better prediction performances than the GPSR and SVR-based models. 

 HV: From the p-values, it is evident that the SVR and GPSR-based models 

have outperformed the MLPNN-Model 3.  

 CGE: SVR-Model 4 possesses better prediction accuracy than the MLPNN 

and GPSR-based models predicting the CGE. 

From this statistical comparison, it is clear that no single CI-based 

exclusively data-driven method from among GPSR, MLPNN, and SVR has 

consistently yielded best performance in predicting all the four FBCOG 

performance variables. Not withstanding, this fact it is evident that the model 

determined to be best (among the competing three) statistically for the prediction 

of a performance variable possesses excellent prediction accuracy and 

generalization capability. The GPSR-based models though provide marginally 

inferior results in terms of prediction and generalization performance than the 

corresponding MLPNN and SVR models, their much reduced complexity and 

ease of deployment make them ideal candidates for use in practical settings. 

However, when accuracy of predictions is the sole criteria of selection, the best 

models determined by the statistical test should be given priority. 
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Table 6.8: Results of Steiger's z-test comparing correlation coefficients pertaining 

to CI-based models for co-gasification performance variables 

Performa

nce 

Variable

s 

Model pair 

(B-C) 
CCAB CCAC CCBC df z p-value H0 

TGY 

 

GPSR–MLPNN 0.987 0.995 0.982 53 -3.4 5.4×10
-4 Reject 

MLPNN–SVR 0.995 0.993 0.994 53 1.4 0.155 Accept 

SVR–GPSR 0.993 0.987 0.983 53 2.2 0.023 Reject 

CCE 

GPSR–MLPNN 0.974 0.99 0.97 53 -3.5 0.0004 Reject 

MLPNN–SVR 0.99 0.894 0.894 53 8.4 0 Reject 

SVR–GPSR  0.894 0.974 0.867 53 -4.9 7.7×10
-7 Reject 

HV  

GPSR–MLPNN 0.949 0.94 0.945 53 0.6 0.493 Accept 

MLPNN–SVR 0.94 0.966 0.965 53 -2.7 0.006 Reject 

SVR–GPSR 0.966 0.949 0.938 53 1.5 0.127 Accept 

CGE 

GPSR–MLPNN 0.926 0.934 0.953 53 -0.5 0.574 Accept 

MLPNN–SVR 0.934 0.959 0.964 53 -2.3 0.017 Reject 

SVR–GPSR 0.959 0.926 0.942 53 2.5 0.012 Reject 

H0: CCAB=CCAC, where A denotes experimental values, B and C denote model-

predicted values, df refers to the degrees of freedom; reject H0 if p-value< 0.05. 

 

6.3.    CONCLUSION 

Co-gasification (COG) is a newer fuel gas producing technology that to a 

significant extent mitigates the problems of air pollution and water-body 

contamination (caused by percolation/release of ash) due to coal combustion. It 

also reduces carbon foot-print since it uses a blend of coal and biomass, which is a 

renewable fuel. Moreover, use of biomass along with coal adds flexibility to the 

gasification process. As a result, co-gasification has emerged as an attractive 

technology for co-utilizing the available coal resources and cheaply available 

biomass resources. In this study, a difficult-to-model (using first principles) pilot 
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plant scale fluidized bed co-gasification (FBCOG) process exhibiting nonlinear 

behavior has been modeled using three computational intelligence (CI) based 

exclusively data-driven modeling approaches, namely, genetic programming 

based symbolic regression (GPSR), multi-layer perceptron neural network 

(MLPNN) and support vector regression (SVR). The extensive FBCOG 

experiments that were conducted, utilized blends of high coals (currently mined 

extensively in India) and three types of biomasses (available widely in India), 

namely sawdust, press-mud and rice husk. The resulting experimental dataset 

consisted of thirteen inputs (important FBCOG feed and operating parameters) 

and the corresponding four key process performance variables, namely, total gas 

yield, carbon conversion efficiency, heating value of product gas and cold gas 

efficiency. The thirteen-dimensional input space of the CI-based models was 

reduced to four dimensions by performing principal component analysis (PCA). 

This reduced dataset was then used to develop the CI-based models predicting the 

four performance variables. All the CI-based models developed possess good 

prediction and generalization performance as indicated by high training and test 

set correlation coefficient (0.908–0.996) and low root mean squared error (0.02–

5.54) magnitudes. The CI-based models developed in this study can be used to 

design and operate co-gasifiers utilizing blends of high ash coals and three 

specific types of biomasses as co-feeds. Also, the modeling approach proposed in 

this study is less tedious and time-consuming compared to the first principles 

modeling and therefore can be easily extended to model COG processes operating 

with different configurations and using a wide variety of fuel blends not 

considered in this study. 

 

 



 
 

201 

 

APPENDIX 6.A: Experimental dataset of the pilot plant fluidized bed co-gasification process 

Data T fc fb FC VM AS M RAF RSF C H O k TGY CCE HV CGE 

C90 RH10 

910 7.2 0.8 26.2 30.33 38.2 5.3 2.311 0.313 39.24 3.65 12.71 0.0047 2.554
 

67.75 3.227 44.59 

918 7.11 0.79     2.34 0.3164    0.0053 2.586 68.729 3.227
&
 45.172 

925 7.2 0.8     2.311 0.313    0.006 2.618
# 

72.318 3.789 56.155
*
 

950 7.2 0.8     2.311 0.313    0.0085 2.634
# 

74.987 4.012 59.964 

C80 RH20-1 

875 5.84 1.46 24.6 33.96 35.64 5.8 2.533 0.342 39.052 3.762 15.16 0.003 2.961 74.987 3.46 60.248
*
 

928 5.68 1.42     2.604 0.352    0.007 2.762 88.574 3.038
&
 61.003 

955 5.6 1.4     2.641 0.357    0.0094 3.074 89.648 3.425 61.699 

960 5.6 1.4     2.641 0.357    0.01 3.103
# 

93.631
$
 4.043 77.464 

968 5.28 1.32     2.801 0.379    0.0112 3.23 93.777 3.886 77.348 

970 5.2 1.3     2.845 0.384    0.0114 3.273
# 

94.5
$
 3.861

&
 77.75

*
 

990 5.2 1.3     2.845 0.384    0.014 3.27 94.623 3.876 78.165 

1014 5.12 1.28     2.889 0.391    0.0172 3.305 94.663
$
 3.867 78.952 

C80 RH20-2 

927 6.4 1.6 24.6 33.96 35.64 5.8 2.311 0.3125 39.052 3.762 15.16 0.0066 2.793 87.158 4.332 75.404 

942 7.68 1.92     1.926 0.26    0.008 2.501 89.245 4.923
&
 77.616 
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Data T fc fb FC VM AS M RAF RSF C H O k TGY CCE HV CGE 

950 6.4 1.6     2.311 0.313    0.0089 2.809
#
 89.959 4.227 72.311 

960 6 1.5     2.465 0.333    0.01 2.961 92.741 4.148
&
 74.786 

970 5.84 1.46     2.533 0.342    0.0112 3.014 92.781 4.062
&
 74.43 

C65 RH35-1 

856 4.03 2.17 22.2 39.405 31.76 6.63 2.982 0.403 38.77 3.93 18.843 0.0019 3.255 85.489 2.447 44.067 

920 4.03 2.17     2.982 0.403    0.0045 3.303
#
 89.862

$
 3.207

&
 62.283 

950 4.03 2.17     2.982 0.403    0.0082 3.309 90.086 3.231
&
 63.088 

C65 RH35-2 

924 3.705 1.995 22.2 39.405 31.76 6.63 3.244 0.439 38.77 3.93 18.843 0.0054 3.561 89.773 2.322 46.345
*
 

936 3.77 2.03     3.188 0.431    0.0068 3.539 91.84 2.448
&
 48.602

*
 

950 3.9 2.1     3.0816 0.417    0.0082 3.455 91.914
$
 2.35

&
 44.922 

C90 PM10 

915 8.01 0.89 25.97 30.2 38.57 5.26 2.077 0.281 38.86 3.58 13.374 0.0044 2.617
# 

90.113 4.075 56.883 

955 8.01 0.89     2.077 0.281    0.009 2.629 91.637 4.193 59.31
*
 

966 8.1 0.9     2.054 0.278    0.0108 2.617 92.439
$
 4.302 60.855

*
 

970 8.1 0.9     2.054 0.278    0.011 2.622 92.539 4.329
&
 61.559

*
 

972 8.01 0.89     2.077 0.281    0.0114 2.641 92.209 4.207 60.166 

C80 PM20 942 6.96 1.74 24.14 33.7 36.34 5.82 2.125 0.287 38.29 3.62 16.498 0.0066 2.655 90.771 3.925 54.663 
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Data T fc fb FC VM AS M RAF RSF C H O k TGY CCE HV CGE 

946 6.96 1.74     2.125 0.287    0.007 2.648 90.293 3.938 54.765 

958 6.4 1.6     2.311 0.313    0.0089 2.792
# 

90.09 3.353 47.534 

C60 PM40 

868 4.62 3.08 20.48 40.7 31.88 6.94 2.401 0.325 37.15 3.69 22.746 0.0021 2.775 83.589 2.273
&
 29.666

*
 

878 4.44 2.96     2.499 0.338    0.0029 2.854 83.265 2.082 27.823 

927 5.28 3.52     2.101 0.284    0.007 2.617 91.498 3.475 44.973 

945 4.62 3.08     2.401 0.325    0.01 2.889
#
 97.127 3.302 46.994 

946 4.56 3.04     2.433 0.329    0.0101 2.923
#
 95.941 3.0676 43.70 

948 4.68 3.12     2.37 0.321    0.0102 2.885 97.127 3.302 46.994 

C90 SD10 

935 7.74 0.86 26.3 31.3 37.08 5.32 2.15 0.291 39.68 3.71 13.046 0.0056 2.687 89.656 4.293 63.452 

940 7.56 0.84     2.201 0.298    0.006 2.738 90.186 4.489
&
 69.155

*
 

955 7.92 0.88     2.101 0.284    0.0076 2.679 91.755
$
 4.533 67.857 

983 8.01 0.89     2.077 0.281    0.0124 2.659 91.62
$
 4.57 67.969

*
 

C80 SD20-1 

850 5.76 1.44 24.8 35.9 33.36 5.94 2.568 0.347 39.9 3.88 15.84 0.0011 2.994 84.092
$
 3.31 52.299 

862 5.84 1.46     2.533 0.342    0.0016 2.96
#
 84.389 3.439 53.662

*
 

890 5.6 1.4     2.641 0.357    0.0026 3.025 83.867
$
 3.025 46.787 



 
 

204 

 

Data T fc fb FC VM AS M RAF RSF C H O k TGY CCE HV CGE 

920 5.52 1.38     2.68 0.362    0.0044 3.071 85.3
12$

 3.111 49.136 

936 5.36 1.34     2.76 0.373    0.0056 3.13
#
 85.883

$
 3.01 47.937

*
 

953 5.36 1.34     2.76 0.373    0.0076 3.133 86.466 2.98 47.552 

976 5.36 1.34     2.76 0.373    0.0112 3.142 87.162 3.015 48.204 

C80 SD20-2 

860 6.8 1.7 24.8 35.9 33.36 5.94 2.175 0.294 39.9 3.88 15.84 0.0015 2.582 78.828 3.892
&
 53.637 

865 6.96 1.74     2.125 0.287    0.0017 2.548 79.540 4.052 55.216 

940 6.96 1.74     2.125 0.287    0.006 2.603
#
 84.437 4.462 64.32 

950 6.96 1.74     2.125 0.287    0.0071 2.615 84.624 4.046 56.654 

970 5.44 1.36     2.719 0.368    0.01 3.094
#
 84.94 2.938 46.47

*
 

C60 SD40 

865 4.2 2.8 21.8 45.1 25.92 7.18 2.641 0.357 40.42 4.22 21.434 0.0019 3.033 87.595
$
 4.171 68.04 

920 4.2 2.8     2.641 0.357    0.005 3.063 90.744
$
 4.419 73.909 

933 4.2 2.8     2.641 0.357    0.0064 3.06 91.882 4.999 87.760 

 

where, C90 RH10 represents Coal (90%), Rice husk (10%), C80 RH 20 represents Coal (80%), Rice husk (20%) and C65 RH35 represents Coal (65%) and Rice husk (35%). 

Similarly, C90 PM 10 represents Coal 90% Pressmud 10%, C90 SD 10 represents Coal 90% and Sawdust 10% #, $, & and * - represents the test set of TGY, CCE, HV and 

CGE 
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NOMENCLATURE 

AS Ash (wt%) 

C Carbon (wt%) 

fb Biomass feed rate 

fc Coal feed rate 

FC Fixed carbon (wt%) 

H Hydrogen (wt%) 

k Rate constant 

M Moisture (wt%) 

O Oxygen (wt%) 

pi i
th

 principal component 

RAF Air-to-fuel ratio 

RSF Steam-to-fuel ratio 

T Gasifier temperature 

VM Volatile matter (wt%) 

x Un-normalized variable 

𝑥 𝑖,𝑗  Normalized variable input/output variable 

 𝑥 i  Mean of variable 'x' 

 

Greek letters 

µ Momentum coefficient in the EBP algorithm 

 Epsilon (tube width); a precision parameter in SVR 

η Learning rate in the EBP algorithm 
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γ  Kernel gamma of radial basis function in SVR 

σ Standard deviation 
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DESIGN AND DEVELOPMENT OF COMPUTATIONAL 

INTELLIGENCE BASED METHODOLOGIES FOR 

MODELING AND OPTIMIZATION OF ADSORPTIVE 

REMOVAL OF CHROMIUM USING SYNTHETIC POLYMER 

RESINS 

 

Abstract 

Chromium is a highly toxic heavy metal often present in an ionized form in the 

waste water of some industries. Thus, it is an environmental and health hazard. 

The Gallic acid-Formaldehyde-Ammonia (GFA) based synthetic polymer resin is 

an attractive substance for the treatment of contaminated waste water for the 

removal of chromium (Cr(VI)) ions by adsorption. Ammonia enhances the cross-

linked structure of the final polymer resin thus improving its adsorption capacity. 

Accordingly, various grades of the GFA resin were synthesized by reacting 

varying proportions of formaldehyde and ammonia with a fixed quantity of gallic 

acid. The synthesized resins were employed successfully for the adsorptive 

removal of Cr(VI) ions from the contaminated water. Next, a computational 

intelligence (CI) based hybrid approach was used to model and optimize the 

stated contaminated-water treatment reaction for securing optimal reaction 

conditions. The hybrid approach first uses an exclusively data driven modeling 

strategy, namely artificial neural network (ANN) to predict the adsorption (%) of 

Cr(VI) on the GFA resins. The input space of the ANN-based model consisting 

mainly of the resin synthesis conditions was optimized using a novel CI-based 

stochastic nonlinear optimization method based on the artificial immune system 

(AIS); the objective of the said optimization was is to maximize the adsorption 

percentage of Cr(VI) ions on the resin. Finally, the set of optimal resins provided 

by the ANN-AIS modeling-optimization hybrid strategy were experimentally 

verified, which resulted in an improvement of 3% in Cr(VI) ion adsorption on the 

GFA resins. The ANN-AIS hybrid strategy introduced here can be gainfully 

utilized for modeling and optimization of similar types of heavy metal ion 

removal processes. 
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7.0. INTRODUCTION 

Soil and water contamination by heavy metals in industrial effluents is one 

of the major contributors to environmental pollution. Most of these are transition 

metals with variable oxidation states and coordination numbers (Mohanty et al., 

2005). Efficient removal of the traces of such heavy metals from effluent water 

has been a major research topic in environmental engineering/science. Various 

treatment methods based on chemical, physical, and biological treatments have 

been devised till date for heavy metal removal especially from water. 

Chromium is a highly toxic heavy trace metal found in the waste water of 

certain industries such as electroplating, dichromate and basic chromium sulphate 

manufacturing, tannery, anodizing, cutting tools, and chrome mining (Mulani et 

al., 2013). In effluent, it is present in the ionized form in two oxidation states, 

namely, trivalent (III) and hexavalent (VI). The toxicity of the hexavalent Cr(VI) 

is approximately 100 times higher than that of the trivalent Cr ions. Also, the ionic 

state of Cr(VI) in water is found tobe more stable and this forms a major hazard to 

the environment as it persists in the water for a long duration if untreated. The 

chromium concentration commonly found in industrial waste water effluents 

range from less than 1 ppm to 10 ppm, while the recommended limit is upto 0.1 

ppm (American Water Works Association, 1990). 

Adsorption is found to be a cleaner, effective, and relatively cheaper 

physical method for the removal of chromium from waste water. Over the years, 

numerous studies have explored this technique using multiple adsorbents. The 

type of adsorbents utilized for the process can be broadly categorized into 

following areas. 

(i) Biomass materials as abundant and cheaply available bio-

sorbents(treated/untreated) have been exhaustively studied for heavy 

metal adsorption (Dakiky et al., 2002; Garg et al., 2007; Singh and 

Singh, 2012; Mulani et al., 2013; Shouman et al., 2013; Amiri et al., 

2014; Elangovan et al., 2015),  
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(ii) Recently the search has also shifted to use of specialized materials 

such as synthesized nano-sorbent materials (Huang et al., 2015), 

chelating reagents (Godea and Pehlivan, 2003) and metal oxides 

(Álvarez-Ayuso et al., 2007). 

(iii) Use of specially synthesized polymers using natural or synthetic 

materials as adsorbents (Wu et al., 2012; Vetriselvi and Santhi, 2015; 

Patil-Shinde et al., 2016). 

Synthetic polymer resins have a high potential in the separation of heavy 

metals by adsorption as they can be designed for an economical operation, by 

appropriately altering the synthesis process towards achieving the following 

objectives: (i) to get a polymer resin with highly porous cross-linked structure for 

maximum adsorption capacity of the heavy metal ions under mild conditions; this 

being done by adjusting the surface and structural chemistry of the adsorbent, (ii) 

to prepare a polymer resin with good structural stability, (iii) to obtain  a polymer 

resin with good regeneration capabilities for maximum reuse. Considering costs, 

structural and regeneration capability constraints the objective of maximum 

adsorption can be achieved by proper synthesis process design (Vetriselvi and 

Santhi, 2015). 

Synthesized gallic acid-formaldehyde resin (with ammonia as a cross-

linking agent) as an adsorbent was investigated for the removal of Cr(VI) ions 

from water (Mulani et al., 2013). Previously, gallic acid-formaldehyde resin was 

investigated for the adsorption studies of palladium (II) and rhodium (III), mainly 

for the determination of the underlying complex mechanisms (Can et al., 2012). 

The present study is aimed at optimization of the synthesis reaction of the 

polymeric resin, namely gallic acid-formaldehyde-ammonia (GFA), and the pH of  

adsorption for maximal pollutant (Cr(VI) ion) removal. 

7.0.1. Need of CI-Based Modeling and Optimization for Heavy Metal Ion 

Adsorption on Synthetic Polymer Resins 

Adsorption is a selective separation phenomenon involving surface forces 

in which the solute molecule gets attached physically to the surface of the solid 

http://www.sciencedirect.com/science/article/pii/S0304389403001109#AFF1
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adsorbent. The kinetic rate and final equilibrium amount of adsorption depends 

mainly on the following factors: 

 Adsorption process conditions: pH, temperature, turbulence, adsorbate 

concentration.  

 Adsorbent structural attributes: Surface area and porosity of the adsorbent as 

also its structural stability. 

Additionally, for the heavy metal pollutants in ionic form, such as Cr(VI), the 

charge effects between the solute ions and functional groups on the adsorbent also 

affect the adsorption mechanism (Can et al., 2012). Due to these multiple complex 

and nonlinear phenomena occurring during the adsorption of heavy metal ions, it 

is difficult task to capture the underlying mechanisms completely in a 

phenomenological model. To overcome the said difficulty, computational 

intelligence (CI)-based methodologies provide a good platform not only for the 

development of data-driven reaction models but also to optimize reaction 

conditions for achieving superior reaction performance. 

Most of the previous work on modeling and optimization of chromium 

adsorption on various adsorbents involved correlating and optimizing the 

adsorption conditions such as solution pH, temperature, adsorbent dose, and initial 

pollutant concentration with the percent adsorption. This was commonly done by 

utilizing statistical experimental design methods such as response surface 

methodologies (RSM) (Brasil et al., 2006; Kiran et al., 2007; Sahu et al., 2009; 

Aydın and Aksoy, 2009). Recently, an increasing trend of the usage of artificial 

neural networks (ANNs) for modeling the adsorption process is observed due to 

the ability of ANNs to accurately capture the complex phenomena underlying the 

adsorption/reaction. Table (7.1) shows a listing of the ANN-based modeling 

studies on Cr(VI) adsorption using different adsorbents. Being inherently 

nonlinear (and non-smooth functions), the ANN-based reaction models need 

stochastic strategies to optimize their input space. This requirement is also 

fulfilled by CI-based optimization formalisms such as genetic algorithm (GA), ant 

colony system, particle swarm, and more recent artificial immune system (AIS). 
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Synthetic polymer resins as adsorbents possess following adsorption-

affecting attributes (apart from the common process conditions mentioned 

previously):  

 The internal porous structure of the polymer resin,  

 Distribution of the functional groups (active adsorption sites) on the 

adsorbent polymer resin,  

 The exposed surface area and stability of the resin structure. 

Termed as ―architectural features‖, these mainly vary according to the type and 

amount of cross-linking in the polymer during its synthesis. In this study, a CI- 

based hybrid modeling-optimization strategy has been implemented successfully 

in two stages: 

(I) In the first stage the widely used multi-layer perceptron neural network 

(MLPNN) is used for modeling the reaction conditions of the GFA 

polymer resins, wherein the molar composition of ingredients used in the 

resin synthesis and the key adsorption process parameter, i.e., adsorption 

pH formed model inputs (predictors) to predict the percent adsorption of 

the Cr(VI) ions. 

(II)  A relatively recent and rarely used CI-based stochastic optimization 

methodology, namely clonal selection algorithm (CLONALG) belonging 

to the Artificial Immune Systems (AIS) class of algorithms is used for 

determination of the optimal GFA resin synthesis and resin-based 

adsorption conditions for the removal of Cr(VI) ions from contaminated 

waste-water (hereafter termed as the optimum synthesis-adsorption 

conditions). 

(III)  Simultaneously, to afford a comparison of the performance of the AIS 

method, the popular CI-based methodology, namely, genetic algorithm 

(GA) was utilized to conduct optimization of the resin synthesis-

adsorption conditions. 

The optimized resin synthesis-adsorption conditions given by AIS were 

comparable with those obtained using GA. The AIS-based optimized resin 

synthesis-adsorption conditions were also successfully validated experimentally. 
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The above-stated modeling-optimization effort resulted in synthesizing a GFA 

resin possessing maximum Cr(VI) ion adsorption capacity for a set of specified 

conditions.  

The next section discusses the resin preparation and experiments 

conducted for the resin-based adsorptive removal of Cr(VI) ions from 

contaminated water. The ―Results and Discussion‖ section first describes the 

results of the Cr(VI) adsorption experiments using various grades of GFA resin, 

followed by the development of the ANN-based model. The same section explains 

how the ANN-based model of the reaction-adsorption is used to determine the 

optimal resin synthesis conditions in the framework of AIS-based and GA 

optimization methodologies. The section ends with the results of the experimental 

validation of the AIS-based sets of the optimum resin synthesis conditions yielded 

by the ANN-GA and the ANN-AIS hybrid strategies. The final section, 

―Conclusion‖ summarizes the principal findings of the study. 
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Table 7.1: Existing ANN-based models for predicting the amount of Cr(VI) ions 

adsorption on different adsorbent materials 

Sr. 

No. 

Adsorbent 

Materials 
Objective Reference 

1 

Brown 

seaweed, 

Ecklonia 

Biomass 

Modeling of the adsorption breakthrough 

curves of packed bed adsorption column 

operations. 

Park et al. 

(2006) 

2 Zea mays 

Modeling of batch sorption processes for the 

prediction of Cr(III) and Cr(VI) removal 

efficiency. 

Kardam et 

al. (2011) 

3 Bacillus sp. 

Developing models predicting the biosorption 

efficiency for the removal of Cr, with inputs as 

pH, contact time and initial concentration of 

Cr. 

Masood et 

al. (2012) 

4 

Zeolite 

prepared 

from raw fly 

ash 

Modeling and optimization of the adsorption 

process of Cr(VI) ions using process variables 

such as the initial pH, adsorbent dosage, 

temperature and contact time. 

Asl et al. 

(2013) 

5 

Isolate 

Bacillus 

aryabhattai 

Optimization of the adsorption process 

variables (pH, temperature, biomass dose and 

initial Cr(VI) ion concentration) using the 

developed ANN-based model through genetic 

algorithm. 

Verma et 

al. (2014) 

6 

Activated 

granular 

carbon from 

coconut shell 

Process modeling of adsorptive removal of 

Cr(VI) from batch sorption experiments and 

optimization of parameters viz. pH, contact 

time, adsorbent dose, initial concentration, and 

temperature using response surface 

methodology. 

Halder et 

al. (2015) 

7 

Powdered 

activated 

carbon 

Process modeling of removal of Cr(VI) on 

powdered activated carbon with process 

parameters, namely the solution pH, adsorbent 

dose, initial pollutant concentration and 

contact time. 

Anupam et 

al. (2016) 
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7.1. EXPERIMENTAL SECTION 

7.1.1. Preparation of Gallic Acid-Formaldehyde-Ammonia (GFA) Resin 

For the preparation of various grades of the GFA resin, 4 g of gallic acid 

(LOBA CHEMIE, Pvt. Ltd. Mumbai, India) and required amount (2.5, 5 and 10 

mL) of 37% formaldehyde solution (QUALIGENS, India) were added and stirred 

for five minutes to achieve uniform mixing. To this mixture, 25 wt% ammonia 

solution of desired amount (10 and 20 mL) was added and stirring was continued 

for further five minutes. The resulting reaction mixture was kept for fifteen days, 

after which a precipitate was observed at the bottom of the plastic container. The 

reaction mixture was neutralized with 1 M hydrochloric acid solution and the 

resulting suspension was filtered through an ordinary filter paper. The precipitate 

was treated with 1.2 M hydrochloric acid to make it insoluble in both acidic and 

basic medium. Finally, hydrochloric acid solution was filtered and the residue was 

washed with de-ionized water, followed by drying at 80
o
C for 8 hours to obtain 

the insoluble GFA resin. The five resin grades along with the initial composition 

of the ingredients used for their synthesis are given in Table (7.A.1). These resins 

were then utilized for the adsorption of Cr(VI) ions from contaminated water in 

batch equilibrium adsorption experiments discussed next. 

7.1.2. Equilibrium Adsorption Experiments of Cr(VI) on GFA Resins 

Equilibrium batch adsorption experiments were conducted to investigate the 

adsorption of Cr(VI) ions by GFA resins. In these experiments, the effect of pH on 

Cr(VI) adsorption was rigorously studied. Here, 250 mg of resin was immersed 

into 10 mL (52.8 ppm) Cr(VI) stock solutions with differing pH values as 

indicated in Table (A.7.1). The stock solution of Cr(VI) was prepared by 

dissolving accurately weighed potassium dichromate (K2Cr2O7, LOBA CHEMIE 

Pvt. Ltd. Mumbai, India) in 100 mL deionized water. Milli-Q water purification 

system (MILLIPORE, USA) was used to get the deionised water. The test mixture 

was stirred at room temperature for 24 hours. The concentration of Cr(VI) ions in 

the effluent was determined spectrophotometrically by the development of a 

purple color with 1,5-diphenyl carbazide in an acidic solution as the complexing 

agent. A solution (0.025%) of 1,5-diphenylcarbazide (SIGMA-ALDRICH, USA) 
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was prepared by dissolving 25 mg of 1,5-diphenylcarbazide in 5 mL acetone 

(MERCK) and 10 mL, 5 M H2SO4. The resulting mixture was diluted to 100 mL 

with deionised water and stored in a glass bottle. The absorbance of the purple 

colored solution was observed at a wavelength of 540 nm after 20 minutes against 

a blank. Here, Beer‘s law holds well in the concentration range 0.08-0.51 mg/mL 

with the regression equation of a = 4.332 c, possessing a correlation coefficient of 

0.997, where, a is the absorbance and c is the concentration of the Cr(VI) ions in 

water. 

 

Figure 7.1: Variation of percent adsorption of Cr(VI) ions on various grades of 

GFA reins with pH of the solution. 

The results of the batch equilibrium adsorption experiments conducted for the 

removal of Cr(VI) from the aqueous solutions are tabulated in Table (7.A.1) for 

various grades of the GFA resin. This table indicates the grades in terms of the 

varying amounts (moles) of ammonia and formaldehyde (with a fixed amount of 

gallic acid) used in synthesizing the specific resin grade. Figure (7.1) shows the 

variation in the adsorption (%) of Cr(VI) ions on various grades of  GFA resins at 

different solution pH magnitudes. The figure clearly indicate a nonlinear trend in 

the adsorption of Cr(VI) ions for all grades of the resin and varying solution pH 

magnitudes. This nonlinear character creates a need to explore CI-based 

inherently nonlinear, data-driven methodologies such as ANNs for modeling of 

the resin-based Cr(VI) adsorption. 
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7.2. RESULTS AND DISCUSSION 

7.2.1. MLPNN Based Modeling of Adsorption of Cr(VI) on GFA Resins 

For ANN based modeling of the resin synthesis reaction and Cr(VI) 

adsorption the input (predictor) space consisted of following resin and adsorption 

variables/parameters: moles of formaldehyde (x1) and moles of ammonia (x2) used 

for the resin sytnthesis and the adsorption pH (x3), while the model output was the 

percent adsorption (y) of Cr(VI) ions on the resin. For developing the multilayer 

perceptron neural network (MLPNN)-based model, the GFA synthesis reaction 

and adsorption experimental data were randomly shuffled and divided into 

training and test sets in the ratio 75:25. The model was developed using 

Rapidminer software package (Mierswa et al., 2006). The architecture and 

parameters of the developed MLPNN model were optimized heuristically; the best 

model was selected on the basis of high values of coefficient of correlation (CC) 

and low values of root mean squared error (RMSE) corresponding to the model 

predictions with regard to both training and test set data. Table (7.2) lists the 

architectural details and the parameters used for developing the best MLPNN-

based model. The prediction performance and generalization capability of the 

model are listed in Table (7.3). The high CCs (0.93) and low RMSEs (2.88) 

magnitudes listed in the table are indicative of MLPNN model‘s good prediction 

and generalization performance. Figure (7.2) shows the parity plot of the 

experimental versus model predicted Cr(VI) adsorption (%) values in which a 

reasonably good match can be seen between the two adsorption quantities for both 

the training and test datasets.  

Table 7.2: Structural details of the developed MLPNN-based model predicting 

the percent adsorption of Cr(VI) ions on the GFA resin 

Input 

nodes 

Training 

cycles 

Hidden 

layer nodes 
 μ 

TF for 

hidden layer 

TF for 

output layer 

3 700 4 0.2 0.029 
Logistic 

Sigmoid 
Linear 

: Learning rate, μ: Momentum coefficient, TF: Transfer function 
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Table 7.3: Statistical performances of MLPNN-based model predicting the 

percent adsorption of Cr(VI) on the GFA resin 

Resin Type 
Training-set Test-set 

CCTrn RMSETrn CCTst RMSETst 

GFA 0.93 2.13 0.94 2.88 

 

 

Figure 7.2: Parity plots of experimental versus MLPNN model predicted values 

of the percent adsorption of Cr(VI)ions on various grades of the GFA 

resin at different pH. 

7.2.2. CI-Based Stochastic Optimization of Adsorption of Cr(VI) on GFA 

Resins 

The artificial immune system optimization algorithms are based on the 

functioning of biological immune system (BIS). The BIS involves several 

interrelated biological mechanisms capable of counteracting the invasion of 

pathogenic microorganisms (antigens) by producing antigen-specific antibodies in 

living beings. The ―clonal selection‖ mechanism of the BIS mainly comprises 

cloning and hypermutation of initially generated random antibodies to drive them 

to maturity—producing high-affinity antibodies—in an iterative manner. The AIS 

analog of the ―clonal selection‖ mechanism is termed clonal selection algorithm 

(CLONALG) (Burnet, 1978), and is used for performing stochastic optimization 

and pattern recognition (de Castro and Zuben, 2001). More details of the AIS and 

CLONALG can be found in Section (1.4.2 (A)). 
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The MLPNN-based Cr(VI) ion adsorption (percentage) predicting model 

was used as the objective function (to be maximized) in the AIS-CLONALG 

optimization scheme to secure the optimized values of the model inputs (moles of 

formaldehyde, moles of ammonia and pH) resulting in the  maximum adsorption 

of Cr(VI) ions on the resin. The binary AIS-CLONALG optimization algorithm 

developed in MATLAB
©

 (MATLAB, 2000) (see the Code 7.A.1 for the 

MATLAB code in Appendix 7.A on page 229) was designed specifically for the 

stated optimization. The optimization objective and the associated constraints are 

given as: 

Maximize y=  ),,( 321 xxxf     (7.1)
 

Subject to iUiiL xxxy  ;1000
   

(7.2) 

where, y = percent adsorption of Cr(VI) ions, x1 = moles of formaldehyde, x2 = 

moles of ammonia, x3 = pH, xiL = lower bound of variable xi (i = 1, 2, 3) and xiU = 

upper bound of variable xi. The function ‗f‘ represents the objective function that 

appropriately includes the MLPNN-based model of the process under study. The 

constraints for the optimization are: x1L = 0.0308 gmole, x1U = 0.1232 gmole, x2L = 

0.1467 gmole, x2U = 0.2935 gmole, x3L = 2, x3U = 6; output ‗y’ constrained 

between 0 and 100%. In order to compare the performance of CLONALG 

optimization method, the mentioned optimization task defined in Eqns (7.1) and 

(7.2) was also performed using the widely used CI-based stochastic optimization 

methodology, namely genetic algorithm (GA). The GA-based optimization was 

performed using a GA add-in for Microsoft excel, namely Mendelsoft 

(MendelSolve, 2016). For more details of the GA formalism please refer to 

Section (1.4.1). 

Several runs of both the CI-based stochastic optimization methods were 

performed in order to secure the best optimal values of the inputs. The parameter 

values used in the optimization runs using AIS-CLONALG and GA methods are 

given in Tables (7.4) and (7.5), respectively. Both AIS-CLONALG and GA 

yielded comparable optimized values of the three model inputs ),,( 321 xxx
 
that 

would lead to maximum percent adsorption of Cr(VI) ions (see Table 7.6). These 
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optimized solutions were subjected to experimental validation the results of which 

are also presented in Table (7.6). As can be seen, the AIS-CLONALG based 

optimum  values of the three inputs yielded  marginally better Cr(VI) percent 

adsorption value (99.2%) as compared to that given by the GA (99%). It is thus 

clear that the usage of ANN-AIS hybrid modeling strategy has resulted in 

improving the Cr(VI) adsorption percentage from 96.2 (experiment number 24 in 

Table 7.A.1 on page 227) to 99.2. 

Table 7.4: Selected parameters of AIS-CLONALG implemented for the grade 

optimization for Cr(VI) ions adsorption on GFA reins 

N Nkept Β  E G 

20 10 1 2 2 20 

N: Population, Nkept: Population Selected, β: Cloning factor, : Hypermutation 

coefficient, E: Elite count, G: Generations 

 

Table 7.5: Selected parameters of GA implemented for the grade optimization for 

Cr(VI) ions adsorption on GFA reins. 

N Trails Crossover rate Mutation rate G 

20 2 1 0.03125 25 

N: Population, G: Generations 

 

Table 7.6: Optimized grade conditions for the GFA resin synthesis and adsorption 

process pH for total adsorption of the Cr(VI) ions by the resin 

Formaldehyde 

moles (x1) 

Ammonia 

moles (x2) 

pH 

(x3) 
Experimentally validated 

Cr(VI) adsorption (%) 

AIS GA AIS GA AIS GA 

0.11 0.10 0.15 0.15 4 3.9 99.2 

*Adsorbent dose: 250 gm, Initial Chromium concentration in solution: 52.8 ppm 

7.3. CONCLUSION 

Chromium in the form of Cr(VI) ions creates a major pollution hazard due 

to its presence in the effluent water of some chemical industries. Adsorption is an 
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economical and clean treatment technique to tackle the said chromium pollution 

problem. It is known that cross-linking in the polymer resins improves the 

adsorption capacity of the resins by creating a highly porous internal structure 

with more active adsorption sites becoming accessible to the adsorbate. 

Accordingly, in the current study, various grades of the gallic acid-formaldehyde-

ammonia (GFA) polymer resins (having a cross-linked structure) were 

investigated for the adsorptive removal of Cr(VI) ions from the contaminated 

water. With ammonia as the cross-linking agent, the main emphasis was on 

modeling and optimization of the GFA synthesis reaction conditions for 

determination of the optimal GFA grade for maximum adsorption of Cr(VI) ions. 

For this purpose, a CI-based hybrid modeling-optimization approach was used to 

model and optimize the GFA resin synthesis reaction conditions, namely, molar 

composition of the ingredients used in the reaction, and pH of the Cr(VI) ion 

adsorption on the GFA resins. The CI-based modeling of the stated system 

resulted in an MLPNN-based model predicting Cr(VI) adsorption (%) with high 

prediction accuracy and generalization capability (CCs  0.93, RMSEs  2.88). 

The input space of the developed MLPNN-based nonlinear model consisting of 

three predictors namely moles of formaldehyde, moles of ammonia used in the 

GFA polymer synthesis and pH of the adsorption of Cr(VI) ions on the resin, was 

then optimized using two CI-based stochastic optimization schemes namely 

artificial immune system based clonal selection algorithm (AIS-CLONALG) and 

genetic algorithm (GA). The principal advantage of the two hybrid MLPNN-AIS 

and MLPNN-GA modeling-optimization approaches is that the optimization can 

be performed exclusively from the data pertaining to the resin synthesis reaction 

and Cr(VI) adsorption on the resin without invoking the detailed knowledge of the 

underlying physicochemical phenomena. Both the optimization methods yielded 

similar solutions. The optimized conditions when verified experimentally, resulted 

in 3% increase in the GFA-based adsorption (%) of Cr(VI) metal ions. These 

results notably demonstrate the potential of CI-based methodologies for (a) 

developing a single model representing resin synthesis and Cr(VI) adsorption, and 

(b) optimization of the reactant composition of the resin synthesis reaction and 

Cr(VI) adsorption conditions. The proposed modeling-optimization approach can 

be fruitfully extended to similar waste-water treatment processes. 
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APPENDIX 7.A 

Table 7.A.1: Experimental dataset of Cr(VI) adsorption on different grades of 

GFA resins 

Sr. 

no. 

Resin grade 

code* 

Formaldehyde 

moles
a
 (x1) 

Ammonia 

moles
b
 (x2) 

pH 

(x3) 

Cr(VI) 

Adsorption (%) 

(y) 

1 GFA-1 0.0308 0.2935 2 74.6 

2 GFA-1 0.0308 0.2935 3 83.8 

3 GFA-1 0.0308 0.2935 4 86.3 

4 GFA-1 0.0308 0.2935 5 84.7 

5 GFA-1 0.0308 0.2935 6 89.2 

6 GFA-2 0.0616 0.2935 2 73.7 

7 GFA-2 0.0616 0.2935 3 86.2 

8 GFA-2 0.0616 0.2935 6 80.8 

9 GFA-3 0.1232 0.2935 3 94.3 

10 GFA-3 0.1232 0.2935 4 91.3 

11 GFA-3 0.1232 0.2935 5 89.2 

12 GFA-3 0.1232 0.2935 6 88.8 

13 GFA-4 0.0308 0.1467 2 92.8 

14 GFA-4 0.0308 0.1467 3 81.8 

15 GFA-4 0.0308 0.1467 4 79.2 

16 GFA-4 0.0308 0.1467 5 79.5 

17 GFA-4 0.0308 0.1467 6 82.3 

18 GFA-5 0.0616 0.1467 2 77.3 

19 GFA-5 0.0616 0.1467 3 90.3 

20 GFA-5 0.0616 0.1467 4 87.6 
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Sr. 

no. 

Resin grade 

code* 

Formaldehyde 

moles
a
 (x1) 

Ammonia 

moles
b
 (x2) 

pH 

(x3) 

Cr(VI) 

Adsorption (%) 

(y) 

21 GFA-5 0.0616 0.1467 6 83 

22
#
 GFA-2 0.0616 0.2935 4 83.3 

23
#
 GFA-2 0.0616 0.2935 5 81.4 

24
#
 GFA-3 0.1232 0.2935 2 96.2 

25
#
 GFA-5 0.0616 0.1467 5 84.4 

*Gallic acid: 4 gm, 
a
Formaldehyde quantities used: 2.5, 5, 10 mL, 

b
Ammonia 

quantities used: 10, 20 mL, 
#
Test data; Adsorbent dose: 250 gm, Initial Chromium 

concentration in solution: 52.8 ppm. 
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Code 7.A.1: MATLAB code for CLONALG-based optimization of percent 

adsorption of Cr(VI) by GFA resin 

------------------------------------------------------------------------------------------------ 

Code Description: 

The following CLONALG-based MATLAB (version 7) code is written for the 

computation of the optimum adsorption conditions for maximum adsorption of the 

Cr(VI) ions by the GFA resins. The main function starts with the ―main_file.m‖ 

MATLAB file, which invokes a list of CLONALG-based functions in an iterative 

manner till the termination criteria is met.  

 

main_file.m 

-------------------------------------------------------------------------------------------------------- 

clear;            %AIS-CLONALG for optimization 

clc; 

global N_BITS N_VARS N_POP AB_LENGHT BETA N_C N_M N_R SEL_P 

HMUTATE_COEFF N_ROWS_KEPT N_ROWS_FILL N_ELITE X_MIN X_MAX 

X_RANGE X_DiffMin;   

N_BITS=10; N_VARS=3; N_POP=20;   %Naming convention: 

%n=number, bin:Binary, y,x,X=decimal col vector/matrix, 

%IC:Initial Conditions, _P:probability %number of bits per 

%variables 

SEL_P=0.4; CROSS_P = 0.8; HMUTATE_COEFF = 2.5;      

%SEL_P=Population kept 

AB_LENGHT = N_BITS * N_VARS; N_ROWS_KEPT = 

round(SEL_P*N_POP);  %N_ROWS_KEPT...high affinity antibodies 

N_M = N_ROWS_KEPT; 

BETA = 1; 

X_RANGE = [0.0308 0.1232;0.1468 0.2935;2 6];   

%<Enter this: Ranges for [x1(Formaldehyde); x2(Ammonia); 

%x3(pH)]  
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X_DiffMin = X_RANGE; 

X_DiffMin(:,1) = X_RANGE(:,2) - X_RANGE(:,1); 

X_DiffMin(:,2) = X_RANGE(:,1); 

N_ELITE=2;             

N_ROWS_FILL = N_POP - N_ROWS_KEPT;           

%N_pop_offsprings 

n_gen=20;                                        

IC_bin_pop_x=round(rand(N_POP,AB_LENGHT)); % Generate random 

       %initial population: 

next_gen_bin_x=IC_bin_pop_x; 

i=1; 

while i <= n_gen  

 X_DecBin=BintoDecColumns(next_gen_bin_x);   

 X_norm = X_DecBin/((2^N_BITS) - 1);        %Normalize  

     X=denormalize_matGA_Cr_Ads(X_norm); %DeNormailze 

    y=funcgenGA_Cr_MolarGFAANN(X); 

 yXXbin = [y X next_gen_bin_x]; 

 sorted_yXXbin = sortrows(yXXbin);            

 sel_rows_for_nextpopyXXbin = sorted_yXXbin(1:N_POP,:); 

 sel_rows_for_cloningyXXbin = 

 sel_rows_for_nextpopyXXbin(1:N_ROWS_KEPT,:);  % y,x, 

 [clonedABsXbin n_c] = 

 cloningABs(sel_rows_for_cloningyXXbin);    % returns 

 %the main matrix and number of clones  
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 maturatedClonesXbin = 

 hypermutateABs(sel_rows_for_cloningyXXbin, n_c, 

 clonedABsXbin);                  

 random_Xbin = round(rand(N_POP,AB_LENGHT)); % Generate 

      %random initial population 

 next_gen_bin_x = [maturatedClonesXbin;random_Xbin]; 

 i = i + 1 

 end 

gen = i - 1 

sel_rows_for_nextpopyXXbin(:,1:4) 

-------------------------------------------------------------------------------------------------------- 

 

BintoDecColumns.m 

------------------------------------------------------------------------------------------------------- 

function x=BintoDecColumns(pop,n)  %n=n_var 

global N_VARS, 

[M,N]=size(pop); 

bitlength=N/N_VARS;       

x(M,N_VARS)=0;            

for row=1:M            

 for col=1:N_VARS             

        k=bitlength*(col-1)+1;   %k=1,9,17,...for 8-bit  

      %length  

         y=0; 

         p=bitlength-1; 

  for i=k:1:k+bitlength-1   %increment bit-index  
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           y=2^p*(pop(row,i))+y;    

           p=p-1; 

  end 

 x(row,col)=y; 

 end 

end 

-------------------------------------------------------------------------------------------------------- 

 

denormalize_matGA_Cr_Ads.m 

-------------------------------------------------------------------------------------------------------- 

function Xcol = denormalize_matGA_Cr_Ads(X_norm)          

      %DeNormailze a col matrix 

global N_POP N_VARS X_DiffMin; 

[a,b]=size(X_norm); 

Xcol=zeros(a,b); 

for i=1:N_VARS 

 

Xcol(:,i) = X_norm(:,i).*X_DiffMin(i,1) + X_DiffMin(i,2); 

end 

-------------------------------------------------------------------------------------------------------- 

 

funcgenGA_Cr_MolarGFAANN.m 

-------------------------------------------------------------------------------------------------------- 

function [p c] = funcgenGA_Cr_MolarGFAANN(x)     

xsize=size(x); 
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p=zeros(xsize(1),1); 

OP=zeros(xsize(1),1); 

f=zeros(xsize(1),1);  

load Cr_GA_GFA_ANNDataLAT.mat  

x_norm=x; 

for i=1:xsize(1) 

 x_norm(i,1) = 2*(x(i,1) - 

 min(ds(1:21,1)))/(max(ds(1:21,1))-min(ds(1:21,1))) - 

 1; 

 x_norm(i,2) = 2*(x(i,2) - 

 min(ds(1:21,2)))/(max(ds(1:21,2))-min(ds(1:21,2))) - 

 1; 

 x_norm(i,3) = 2*(x(i,3) - 

 min(ds(1:21,3)))/(max(ds(1:21,3))-min(ds(1:21,3))) - 

 1; 

    y1=x_norm(i,:); 

    y1=[y1 1]; 

    y2=y1*L1; 

    y2=logsig(y2);         

    y2=[y2 1]; 

    y3=y2*L2; 

    y3=purelin(y3); 

OP(i,:)=y3; 

end 

p=postmnmx(OP,73.7,94.3);           

f = abs(100 - p);                 
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p = f; 

-------------------------------------------------------------------------------------------------------- 

 

cloningABs.m 

-------------------------------------------------------------------------------------------------------- 

function [p n_c] = cloningABs(sel_rows_for_cloningyXXbin)        

global AB_LENGHT N_VARS BETA N_POP N_C N_M N_R; 

ABs_selected = 

sel_rows_for_cloningyXXbin(:,(1+N_VARS+1):end); 

j=1; 

n = 1 + N_VARS + AB_LENGHT;  

AB_clones = 0.*ABs_selected; 

Nc=zeros(N_M,1); 

for i = 1:N_M 

 Nc(i) = round((BETA*N_POP)/i);               

end 

nnc = sum(Nc); 

AB_clones_all = zeros(nnc,AB_LENGHT); 

s = 0; 

for i = 1:N_M 

 for m = 1:Nc(i) 

 AB_clones(m,:) = ABs_selected(i,:);   %append all  

      %clones in single matrix 

 s = s + 1; 

 AB_clones_all(s,:)=AB_clones(m,:); 
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 end 

end 

p = AB_clones_all; 

n_c = Nc; 

-------------------------------------------------------------------------------------------------------- 

 

hypermutateABs.m 

-------------------------------------------------------------------------------------------------------- 

function p = hypermutateABs(sel_rows_for_cloningyXXbin, Nc, 

next_gen_xbinUM) 

global HMUTATE_COEFF AB_LENGHT N_ROWS_KEPT N_ELITE;     

[A,B] = size(sel_rows_for_cloningyXXbin); 

y = sel_rows_for_cloningyXXbin(:,1); 

n = N_ROWS_KEPT; 

m = 0;  

h = zeros(n,1); 

hmutp = zeros(n,1); 

ymin = min(y); ymax = max(y); range = ymax-ymin; 

for i = 1:n 

 h(i) = abs(1-((y(i)-ymin)/range)); 

 hmutp(i) = exp(-HMUTATE_COEFF*h(i)); 

end 

c = [sel_rows_for_cloningyXXbin h hmutp]; 

for i = 1:n                                                                     

 for j = 1:Nc(i) 
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        m = m + 1; 

        r = rand(1,1)*100;                                         

  if m > N_ELITE  

 if r > c(i,end)                                          

 rand_mutation_pt=ceil(rand(1,1)*AB_LENGHT);                         

 next_gen_xbinUM(m,rand_mutation_pt)=abs(next_gen_xbinU

 M(m,rand_mutation_pt)-1); 

 end 

end 

end 

end 

p=next_gen_xbinUM; 

-------------------------------------------------------------------------------------------------------- 

 

NOMENCLATURE 

 

N Population size 

Nkept Population Selected 

X Dependent variable 

G Generations 

Y Independent variable (here % adsorption of Cr(VI) ions) 

 

Greek letters 

µ Momentum coefficient in the EBP algorithm 

 Hyper-mutation coefficient 
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β Cloning factor in CLONALG 

η Learning rate in the EBP algorithm 
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DEVELOPMENT OF COMPUTATIONAL INTELLIGENCE 

BASED CLUSTERING MODEL FOR FAULT DETECTION 

AND DIAGNOSIS IN BIOCHEMICAL PROCESS 

Abstract 

Process fault detection and diagnosis (FDD) (i.e. identifying the normal 

and abnormal behavior of a process and causes thereof) are the major challenges 

in all types of chemical industries. In any process, a malfunction or a fault may 

develop due to significant deviations in the operating variables and/or parameters. 

The causes of these deviations are, for instance, malfunctioning sensors, and/or 

faulty equipment such as pumps, heaters, controllers, valves, etc. For conducting 

FDD, an accurate model is needed using which it is possible to differentiate 

between ―normal‖ and ―faulty‖ process behavior speedily. Biochemical processes 

are highly sensitive to the changes in the process operating conditions and even 

small changes in these may result in a process/batch failure. Accordingly, this 

study presents results of fault detection and diagnosis of a continuously stirred 

controlled bioreactor using a computational intelligence (CI)-based methodology, 

namely fuzzy c-means clustering (FCC) and the conventional c-means clustering 

methods. The process under study generates biomass from a substrate. The 

process data comprising the normal and faulty operations of the biochemical 

process was used to model four types of faults. The clustering methods use 

unsupervised learning and depending upon the type of fault, cluster the 

corresponding data into one of the five possible clusters (one each for four types 

of faults and the normal process operation). The results of this study clearly 

indicate that the FCC-based process model could successfully categorize the 

normal and faulty bioreactor behavior into appropriate clusters with better 

accuracy than the conventional c-means algorithm. 
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8.0.  INTRODUCTION 

A process fault indicates those process symptoms, which result from undesired 

physical changes in the process. In chemical process industries, occurrences of 

faults (equipment malfunctions/abnormal process conditions) may lead to 

unwanted situations such as deterioration in the process performance (e.g., lower 

product quality, reduced conversion/yield, etc.), damage to process equipment, 

increase in the environmental pollution, and in worst cases, catastrophic accidents 

coupled with injuries and/or loss of human life. These scenarios may potentially 

lead to severe financial losses and damage/injuries to the plant and even general 

public. Hence, over the years, online fault detection and diagnosis have been 

given a serious attention by researchers and chemical engineers (Caccavale and 

Pierri, 2009). In a fault detection and diagnosis (FDD) task, the first objective is to 

recognize non-permissible deviations from the set points, disturbances or 

equipment/sensor/actuator malfunction followed by investigating the fault cause-

effect relationship and extent of the malfunction. Overall, it is a three-step 

process: 

1. Recognition of the occurrence of a fault/malfunction. 

2. Locating the fault origin. 

3. Determination of the extent of fault. 

The first activity is referred to as fault detection, while the other two 

activities are part of fault diagnosis. Traditionally, process history data were used 

in statistical monitoring of the process with threshold checking and/or trend 

checking in the FDD task. Broadly, the FDD methods are classified as model and 

history based (Dash and Venkatasubramanian, 2000). During the past few 

decades, various CI-model based FDD methods have been extensively developed 

and successfully applied to engineering systems (Himmelblau, 1978; Pau et al., 

1981; Tambe et al., 1996; Sobhani-Tehrani and Khorasani, 2009). 

Model-based FDD techniques involve use of an accurate model of the 

process for monitoring the actual state of the process. It is based on the idea that if 

the inputs, as given to the process are also supplied to the process model, the 
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model and actual process outputs must match within a certain limit. A non-

permissible deviation between the model-predicted output values and the actual 

process values indicates a fault/malfunction. Traditionally, phenomenological and 

conventional empirical models (such as regression based) are used for the model 

based FDD. However, due to the lack of an in-depth understanding of the process 

under study (necessary in ―first principles‖ modeling) and the enormous heuristic 

effort needed in empirical modeling, these approaches are often found unwieldy 

for model-based FDD. Thus, the trend is shifting towards CI-based FDD 

approaches due to the numerous attractive features of the CI-based modeling 

methods (see Chapter 1). 

Once the fault is detected and identified, its intensity can be inferred from 

the measurement of the extent of deviation of the affected process variable from 

its normal (set) value. Typically, depending on the normal and faulty process 

behavior, the corresponding process variable values can be categorized into 

distinct ‗groups‘ or ‗clusters‘. This type of grouping is possible using 

unsupervised clustering (pattern recognition) modeling. Having identified the 

clusters corresponding to the normal process behavior and various faults, the 

constructed clustering model can be used in the prediction mode for detecting and 

diagnosing faults.   

8.0.1. Pattern Recognition/Clustering for Process FDD 

A pattern is a particular arrangement of objects under study. It can also 

consist of real-valued numbers. Pattern recognition involves identification of 

distinct patterns/groups/classes/categories of similar objects; in process FDD 

studies an object is a vector ‗x‘ of the process variable/parameter values, xi (i = 1, 

2,…., N). The representation space denoted by X is the set of all possible x. 

Mathematically, pattern recognition, defined as, : X  C is learning the mapping 

between the representation space X and the classification space C, where C = (c1, 

c2,…cM) is a set of all possible classes/clusters. A process malfunction is visible in 

the measurements of the plant‘s sensors, which show abnormal readings. These 

sensors could be hardware or software (known as ―soft-sensor‖) based. In the 

pattern recognition based FDD, the sets of plant sensor measurements are 
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associated with the corresponding process faults. The task of FDD then involves 

classifying the sets of symptoms (sensor readings) into various categories of faults 

and the ―normal‖ process behavior. One major benefit of such methods is that a 

phenomenological process model is not required for the associated FDD. Various 

clustering methods (conventional non-CI and CI-based) are used for process FDD 

by pattern recognition (see Section (1.5) and (1.6)). Conventionally, the c-means 

(also known as k-means) method is used for clustering in FDD applications. In the 

present study, the CI-based fuzzy c-means clustering (FCC) method is used for 

FDD of a biochemical process. For affording a comparison, the FDD problem has 

also been addressed using the conventional c-means clustering method. 

Fuzzy c-means clustering (FCC) (Bezdek et al., 1984) is a soft clustering 

methodology that uses unsupervised learning for classifying the data-points to one 

of the c-clusters. FCC tries to determine soft (i.e., fuzzy) c-partitions of a data-set 

X. The idea behind the working of fuzzy clustering was laid by Zadeh (1965), 

which is to represent the similarity a point shares with each cluster with a value 

ranging from 0 to 1 (known as membership value). Further details of the FCC 

methodology are given in Section (1.6.1). 

The c-means is a popular conventional centroid-based hard clustering 

algorithm that clusters a given data-set, X in to the pre-specified c-clusters. It does 

this by iteratively minimizing an objective function that includes the Euclidean 

distance of each data-point from the c-centroids, which are initialized randomly 

(MacQueen, 1967). The disadvantages of the c-means algorithm are that it does 

not necessarily find the most optimal configuration, corresponding to the global 

objective function minimum and it is highly sensitive to the initial randomly 

generated cluster centroid locations. For more details of the c-means clustering 

methodology the reader can refer the section Section (1.5.1). 

8.0.2. Fault Detection and Diagnosis of Biochemical Process 

The biochemical process considered here involves microorganisms or 

enzymes secreted by microorganisms that act as catalysts in the transformation of 

the high molecular weight organic raw materials (substrate) to low molecular 

weight organic products. Such a reaction, is written as, 
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Substrate + Micro-organisms/enzymes + Oxygen  Products + Micro-

organisms/enzymes          (8.1) 

Biochemical processes possess an important inherent advantage of mild 

operating conditions. A variety of important organic chemicals are now 

manufactured through a biochemical route rather than the traditional chemical 

route due to the stated reason, thus saving large energy costs required in typical 

unit processes (synthesis reactions). These mainly include pharmaceuticals, food, 

and beverage processes (Bequette, 1998; Levenspiel, 1999). 

Biochemical processes are sensitive to the changes in the operating 

conditions; even small changes in process conditions may result in a process 

malfunction or a complete failure. The major reason for this behavior is that the 

activity of most microorganisms/enzymes is highly temperature dependent and 

cannot sustain significant deviations in the reaction temperature. Thus, FDD 

studies of biochemical processes are important for avoiding batch/process 

malfunctions and complete failures. Table (8.1) lists a few recent FDD studies of 

bioprocesses using different methods. 
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Table 8.1: Existing fault detection and diagnosis studies pertaining to 

bioprocesses 

Sr.

No. 

Based 

on 
Method(s) used Objectives Reference 

1. 

 

Model-

based 

ANN 

FDD of a biotechnological 

process in waste water 

treatment 

Fuente and 

Vega 

(1999) 

Fuzzy logic 

FDD using fuzzy residual 

based module for a pilot-scale 

anaerobic digestion reactor 

Genovesi et al. 

(1999) 

High gain 

nonlinear 

observers 

High-gain nonlinear observer 

for FDD of a bioreactor 

Martínez-

Guerra et al. 

(2001) 

Adaptive 

observers 

Fault detection and isolation in 

an alcoholic fermentation 

process 

Kabbaj et al. 

(2001) 

Adaptive 

observer based 

process model 

FDD of ethanol production 

bioprocess with a two-stage 

bioreactor 

Aceves-Lara et 

al. (2012) 

Particle Swarm 

Optimization 

(PSO), DE, 

Covariance 

Matrix 

Adaptation 

Evolution 

Strategy (CMA-

ES) 

FDD of a nonlinear bioreactor 
Díazet al. 

(2016) 

2. 
History

-based 

Expert systems 
Use the enlarged state concept 

in FDD of bioreactors 
Halme (1989) 

PCA and ANN 
FDD of penicillin production 

and protein synthesis processes 

Kulkarni et al. 

(2004) 

PCA 
FDD of a Industrial Fed-Batch 

Cell Culture Process 

Gunther et al.  

(2007) 
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PCA, auto-

regressive PVA 

and multi-way 

PCA 

FDD of Biochemical batch 

process of penicillin 

fermentation. 

Van den 

Kerkhof et al. 

(2012) 

PCA, Partial 

least squares 

(PLS) and 

Principal 

Component 

Regression 

(PCR) 

FDD of batch and fed-batch 

bioreactor system for 

production of carotenoids via 

fermentation. 

Karim et al. 

(2015) 

Random forest 

(RF), ANN and 

SVR 

FDD of bioreactor for 

penicillin production process 

Shrivastava et 

al. (2017) 

The commonly used kinetic models for simple biochemical reactions are 

Michaelis-Menten (1913) and its simplified version by Monod (Monod, 1949). 

Both these are nonlinear and describe saturation growth kinetics of the biomass 

with respect to substrate concentration. In addition to the saturation-growth, 

phenomena such as competitive/non-competitive inhibition by a foreign 

substance, substrate inhibition and/or product inhibition also occur in biochemical 

reactions. These features often make the reactions complex in character and, thus, 

difficult to understand and model phenomenologically. Consequently, process 

data based FDD needs to be resorted to.  

8.1. BIOCHEMICAL PROCESS FOR BIOMASS 

GENERATION 

To generate process data comprising faulty and normal process operations, 

the phenomenological model of the bioprocess was simulated along with the 

control laws. It may be noted that in the absence of real process data, the process 

behavior has been simulated using a phenomenological model. In actual practice, 

data compiled from a real physical process operation should be used in FDD. 

The continuous stirred bioreactor operating under the substrate-inhibition 

kinetic mechanism, considered in this FDD study has been analyzed by Bequette 
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(1998). Figure (8.1) shows the block diagram of this bioprocess. As indicated in 

the figure, the biomass concentration (X) is the main variable of the process 

controlled by a proportional-integral-derivative (PID) controller; the 

corresponding manipulating variable is the feed flow rate (F0). The bioreactor 

temperature (T) is controlled by a proportional (P) controller (due to mild heat 

effects in the bio-reaction) by manipulating the jacket coolant flow rate (FJ0) 

(Coulson and Richardson, 1999). 

 

Figure 8.1: Block diagram of the continuous bioreactor generating biomass with 

controllers. 

The phenomenological process model based on the substrate-inhibition 

kinetics of the bio-reaction is given by the following dynamical equations 

(Bequette, 1998), 
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Table (8.2) describes the variables used in the above equations (Eqns. 8.2-8.6) 

along with their steady-state values used in the simulation. 

Table 8.2: Process parameters and variables of the phenomenological bioreactor 

model 

Sr. 

no. 
Variable Description 

Steady-

state value 
Unit 

1 A Heat exchange area 0.1 cm
2
 

2 Cp Heat capacity of reactor liquid 4.18 cal/g ºC 

3 CpJ Heat capacity of jacket liquid 4.18 cal/g ºC 

4 F0 Volumetric feedrate 0.3 L/hr 

5 FJ0 Jacket-side coolant flowrate 0.07177 L/hr 

6 k1 Inhibition kinetic constant 1 0.4545  

7 km Inhibition kinetic constant 2 0.12  

8 
S 

Substrate concentration in 

reactor 
0.175 g/L 

9 SF Substrate concentration in feed 4 g/L 

10 T Temperature of reactor mass 24.95 ºC 

11 T0 Feed temperature 25 ºC 

12 TJ Temperature of jacket-side fluid  23 ºC 

13 TJ0 Jacket-side feed temperature 23 ºC 

14 
U Heat transfer coefficient  350 

cal/cm
2
hr 

ºC 

15 V  Reactor liquid volume 1 L 

16 VJ Jacket liquid volume 0.25 L 

17 X Biomass concentration in 1.530163 g/L 
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Sr. 

no. 
Variable Description 

Steady-

state value 
Unit 

reactor 

18 Y Substrate yield factor 0.4 g/g 

19 Y Thermal yield factor 10000 g/cal 

20 α Temperature Coefficient 1.04  

21 ρ Density of reaction mass 1000 g/L 

22 ρJ Density of jacket fluid 1000 g/L 

23 
μmax 

Specific growth rate 

(maximum) of biomass 
0.53 hr

1
 

8.1.1. Simulation of the Phenomenological Model 

Kumar et al. (2008) have developed a robust PID controller scheme using 

genetic algorithm (GA) for the optimal feedback control of biomass generation 

process. The PID parameters proposed in the said study were used in the 

simulations for generating process data for FDD. Here, we have considered four 

representative single faults that can occur during the steady-state operation of the 

bioreactor when process parameters deviate from their normal (set) values. The 

specific faults which can majorly influence the steady-state bioreactor behavior 

are: (i) input flow rate (F0) high, (ii) input flow rate low, (iii) input flow rate of 

coolant to the jacket (FJ0) high, and (iv) input flow rate of coolant to the jacket 

low. It is assumed that these faults occur in a mutually exclusive manner; that is, 

only one of the four types of faults can occur at any given time. Any high/low 

deviation in the two process parameters (F0, FJ0) is considered to eventually affect 

the steady-state values of the bioreactor state variables (X, T and TJ); the 

magnitudes of these state variables are commonly measured during a typical 

process operation. 

For development of the FDD models of the bioreactor, a training set 

consisting of 601 data-points was generated by varying F and FJ0 separately in the 

[0.0 to ±15%] range from their nominal set values. The steady-state data were 

generated by successively incrementing (decrementing) the parameter value by 

0.1% from its nominal value, thus generating 150 data-points for each of the four 

faults. The data containing the parameter and steady state values corresponding to 

the normal bioprocess operation were added to this set containing 600 data points 
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making the training data set of size of 601 patterns. To test the generalization 

capabilities of the CI and non-CI based clustering methods a test set was 

generated by the same method by successively incrementing (decrementing) the 

parameter values (F0, FJ0) by 0.01% in the same [0.0 to ±15%] range. The data 

structure of the resultant sets is given in Table (8.3). The datasets consists of 601 

(training set) and 6001 (test set) patterns representing four single faults and the 

normal process behavior. Conventionally, the deviations in process 

variables/parameters within ±5% threshold are considered to be normal and are 

not treated as faults (Venkatasubramanian et al., 1990). Therefore, deviations up 

to 5% are assumed to be the cases of normal operation. Table (8.4) list the 

corresponding faulty/normal operation values of 5 and 15% deviations. Figure 

(8.2) shows a two-dimensional projection of the training dataset. The plots show 

the variation of the steady-state values of bioreactor output variables, namely X, T 

and TJ with respect to the deviations (faults) imparted in the F0 and FJ0 input 

variables.  
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 Table 8.3: Data structure for the training and test sets 

Sr. 

No. 
Nature of Fault Fault code 

Training-Data Test-Data 

Pattern no(s) Deviation(%)# Pattern no(s) Deviation(%)# 

1. Input flow rate low Fault 1 1-150 (–) 0.1-15.0 1-1500 (–) 0.1-15.0 

2. Input flow rate high Fault 2 151-300 (+) 0.1-15.0 1501-3000 (+) 0.1-15.0 

3. Coolant flow rate low Fault 3 301-450 (–) 0.1-15.0 3001-4500 (–) 0.1-15.0 

4. Coolant flow rate high Fault 4 451-600 (+) 0.1-15.0 4501-6000 (+) 0.1-15.0 

5. Normal operation Normal 601  6001  

# Training and Test data were generated at the deviation intervals of 0.1% and 0.01%, respectively. 

Table 8.4: Magnitudes of state variables in faulty and normal conditions 

Fault code 
Fault 

Type 
Fault magnitude, % 

Steady-state values of process variables 

X (g/L) T (ºC) TJ (ºC) 

Fault 1 F0 
5 1.539 24.949 23.205 

15 1.553 24.943 23.212 

Fault 2 F0+ 
5 1.5182 24.953 23.2 

15 1.4788 24.957 23.195 

Fault 3 FJ0 
5 1.53 24.952 23.213 

15 1.53 24.952 23.236 

Fault 4 FJ0+ 
5 1.53 24.951 23.195 

15 1.53 24.951 23.18 

Normal 
 

0 1.5302 24.9511 23.2024 
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Figure 8.2: Nonlinear projection of 3-dimensional steady-state bioreactor data in 

2-dimensions: (a) Biomass concentration (X) versus Jacket 

temperature (TJ), (b) Bioreactor temperature (T) versus Jacket 

temperature (TJ), (c) Biomass concentration (X) versus Bioreactor 

temperature (T). 

8.2. RESULTS AND DISCUSSION 

8.2.1. c-means Based FDD Modeling of the Biochemical Process 

The data consisting values of 601 training set data-points pertaining to 

faulty and normal process behavior were subjected to clustering using the c-means 

clustering feature offered by Rapidminer software package (Mierswa et al., 2006). 

Parameters and other settings of the algorithm used for developing the bioprocess 

FDD-based model are given in Table (8.5), while its results are presented in Table 

(8.7). As can be seen, the c-means method has clustered the training (93.67% 

classification accuracy) and the test (93.66% classification accuracy) sets with 

good accuracies. 

 

   

 

 

(a) (b) 

(c) 
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8.2.2. FCC Based FDD Modeling of the Biochemical Process 

The bioreactor datasets used in the c-means clustering exercise were also 

used to develop and assess the generalization capability of the FCC-based model 

using the FCC module available in the Fuzzy Logic toolbox of MATLAB software 

package (MATLAB, 2000). Table (8.6) lists the parameters used for the FCC-

based clustering of the bioprocess data-set (see Eqn. 1.33 in Section (1.6.1) for 

details). 

Table 8.5: Parameters and settings used for the c-means clustering of the 

bioprocess data-set. 

Dataset 
Data-points 

c
*
 

Divergence 

method 
Distance measure 

Training-set Test-set 

Bioprocess 601 6001 5 
Bregman 

divergence 

Squared 

Euclidean 

Distance 
*
c (no. of clusters) 

Table 8.6: Parameters used for the FCC-based clustering of the bioprocess data-

set. 

Dataset 
Data-points 

c
*
 m

*
 

Training-set Test-set 

Bioprocess 601 6001 5 2 

 

*
c (no. of clusters); m (weighing exponent) 

The true classification accuracy magnitude is calculated using the expression 

given below. 

100
datapointsTotal

clustersrespectiveintoclassifiedcorrectlyDatapoints
tionclassificaTrue  

(8.7) 
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Table 8.7: Comparative results of c-means and FCC-based clustering of the 

bioprocess data-set. 

Method 
True classification (%) 

Training-set Test-set 

c-means 93.67 93.66 

FCC 95.33 95.43 

 

The FCC-based clustering exercise for fault detection and diagnosis of the 

bioprocess generated a matrix of clustered data-points containing five cluster 

centers and U-matrix. The U-matrix contains membership values (in the range of 

0 to 1) of each of the 601 (6001) data-points. The U-matrix pertaining to the 

training and test datasets are plotted in Figure (8.3), wherein it can be observed 

that in each subsection there is a dominant membership curve. In all the four 

sections approximately first fifty points correspond to the ―normal‖ process 

behavior (indicated by blue curves); the said points have higher membership 

values than remaining points. After the first fifty points, the curve representing the 

faulty process behavior dominates. Specifically, green, red, light blue and violet 

colored curves dominate after around fifty points in sections (i), (ii), (iii), and (iv) 

respectively. These curves represent data pertaining to faults 1, 2, 3 and 4, 

respectively. Note that the individual lines in U-matrix plot represent a cluster. 

After clustering the training data, predictions for the test data were made. Figure 

(8.3(b)) shows the U-matrix pertaining to the test data. 
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Figure 8.3: Plots of membership values of the U-matrix of the developed FCC-

based bioreactor FDD model: (a) Training-set data, (b) Test-set data. 

The classification accuracy corresponding to the test data has been found 

to be 95.43 percent (see Table (8.7)). It can thus be seen that the FCC-based 

model detected the faulty (non-normal) or normal bioreactor operation as also 

identified (diagnosed) the type of fault based on the cluster to which the data-point 

belongs to. From the results presented in the table it is also clear that 

faulty/normal behavior classification and generalization accuracies of the FCC 

methodology (95.33% and 95.43%, respectively) are better than that (93.67% and 

93.66%) of the conventional c-means method. This indicates that the FCC-model 

has outperformed the conventional c-means clustering model in detecting and 

diagnosing four faults of the biochemical process. 

8.3. CONCLUSION 

Biochemical processes are typically run under mild operating conditions; 

generally these are also highly sensitive to the changes in their operating 

conditions. Thus, small offsets in the operating conditions/parameters caused by 

malfunctioning equipment/sensor/actuator may drive the bioprocess towards a 

(i) (ii) (iii) (iv) 

(i) (ii) (iii) (iv) 

(a) 

(b) 
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partial/complete failure. An early and accurate detection and diagnosis of such 

faults is necessary to avoid process failures. Accordingly, in this study, a CI-based 

methodology, namely fuzzy c-means clustering (FCC) has been successfully 

utilized to develop fault detection and diagnosis model for a continuous 

biochemical reactor operating under a substrate-inhibition kinetic mechanism. 

FCC is a clustering method based on the principles of fuzzy logic and clusters the 

data-points according to membership values assigned to each data-point in the 

dataset. To afford a comparison, the stated FDD task was also performed using 

standard c-means clustering algorithm. The FDD potential of both the methods 

was assessed using a simulated dataset comprising of faulty and normal operation 

of the bioreactor substrate-inhibition kinetic mechanism. The developed FCC-

based model could successfully identify four types of faulty regions (clusters) and 

the normal operating region (cluster) with 95.33% prediction accuracy and 

95.43% generalization accuracy. The corresponding figures for the c-means 

clustering method are 93.67% and 93.66%. It can thus be seen that the FCC 

method showed a improvement of around 2% in the prediction and 2% in the 

generalization performance over c-means method while performing FDD of the 

bioreactor. The results of this study suggest that the FCC is an attractive strategy 

for fault detection and diagnosis of nonlinear processes such as bioreactors and 

can be easily extended to similar type of complex processes. 

NOMENCLATURE 

 

A Heat exchange area 

c Class/Cluster 

C Classification space 

Cp Heat capacity of reactor liquid 

CpJ Heat capacity of jacket liquid 

F0 Volumetric feedrate 

FJ0 Jacket-side coolant flowrate 
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k1 Inhibition kinetic constant 1 

km Inhibition kinetic constant 2 

m Weighing exponent in FCC 

S Substrate concentration in reactor 

SF Substrate concentration in feed 

T Temperature of reactor mass 

T0 Feed temperature 

TJ Temperature of jacket-side fluid  

TJ0 Jacket-side feed temperature 

U Heat transfer coefficient  

V  Reactor liquid volume 

VJ Jacket liquid volume 

x Process variable 

x Vector of process variable values 

X Process variable representation space 

X Biomass concentration in reactor 

Y Substarte yield factor 

Y Thermal yield factor 

 

Greek letters 

α Temperature Coefficient 

ρ Density of reaction mass 

ρJ Density of jacket fluid 

μmax Specific growth rate (maximum) of biomass 
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THESIS CONCLUSION 

9.0 INTRODUCTION 

This chapter concludes the thesis with the presentation of principal results 

and conclusions reached thereof in the studies described in chapters 2 to 8. 

Finally, future scope of the research related to this thesis is discussed. 

Mathematical models are essential for numerous process-engineering 

related tasks such as monitoring, control, equipment design, operation, scale-up, 

optimization and, fault detection and diagnosis. The phenomenological (first 

principles/mechanistic) modeling approach is a traditional approach that is based 

on the complete knowledge of the physicochemical phenomena underlying the 

process. In this approach, the basic mass, energy and momentum balance 

equations governing the process are considered for modeling the process under 

study. Finally, such phenomenological models involve numerous parameters that 

are determined from an extensive experimentation. However, the modern day 

chemical processes invariably involve complex phenomena and a multitude of 

nonlinear interactions among the process variables, whose mechanisms are hard to 

determine. Thus, the phenomenological modeling of modern chemical processes 

is tedious, time-consuming and costly.  

The empirical modeling is an attractive alternative to the 

phenomenological modeling approach, wherein a pre-specified linear/nonlinear 

function (model) is fitted to the reaction/reactor/process data. Thus, in empirical 

modeling a detailed knowledge of the process is not required. However, it has its 

own limitations such as the requirement of an appropriately pre-specified 

linear/nonlinear function with known form and estimation of the function 

parameters. Generally, this is a demanding task since in many chemical processes 

multiple variables interact nonlinearly thus requiring a tremendous trial and error 

effort in pre-specifying the data-fitting model and estimating its parameters. 

In chemical engineering/technology optimization of process parameters is 

critical for maximization of conversion/yield, minimization of operating cost, etc. 

Conventionally, deterministic gradient-based methods are used in process 
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optimization. The basic requirement for these methods to work is that the 

objective function (to be maximized/minimized) must be continuous, 

differentiable and smooth. Among these, the requirement of objective function to 

be smooth is difficult to meet for exclusively data-driven reaction/process models 

developed using for instance, genetic programming, ANN and SVR methods. The 

final solutions determined by the gradient-based optimization methods are also 

highly sensitive to the initial guess specified for the decision variables appearing 

in the objective function. Often, improper initial guesses drive the solution 

trajectories to get stuck in a local optimum leading to sub-optimal solutions.  

Computational intelligence (CI) offers numerous state-of-the-art 

techniques for data-driven modeling and optimization of complex nonlinear 

processes/reactions/reactors. Notably, they overcome the above-stated limitations 

of phenomenological/empirical modeling and the deterministic optimization 

approaches. Accordingly, in this thesis computational intelligence (CI) based 

modeling methodologies, namely, artificial neural networks (ANN), genetic 

programming (GP), fuzzy c-means clustering (FCC), and support vector 

regression (SVR) have been employed for tasks such as property prediction, 

process identification and control, process/reaction modeling, process/reaction 

optimization, and process fault detection and diagnosis. The modeling studies 

conducted and presented in this thesis belong to the diverse fields, namely, fuel 

science and engineering, environmental engineering, process dynamics and 

control, and process safety. 

Process models are required in process optimization. Accordingly, for 

optimization of a resin based adsorptive pollutant removal the corresponding 

ANN model has been optimized by two stochastic CI-based optimization 

methodologies; these are artificial immune system (AIS) based clonal selection 

algorithm (CLONALG) and genetic algorithms (GA).  

Additionally, wherever the input space of the model was large, a 

dimensionality reducing linear algebra technique termed principal component 

analysis (PCA) has been utilized. Chapter 1 begins with a description of the need 

for process modeling and optimization as important process engineering tasks. 
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Next, it gives a detailed review of computational intelligence and its 

methodologies that have been used/have the potential of use for these process 

engineering tasks. Specifically, the CI-based methodologies applied to various 

chemical engineering and technology applications in the current study are 

elaborated in much detail along with their mathematical background, applications, 

advantages, disadvantages and software tools available for their implementation. 

The following section provides the rationale, salient features, and highlights of the 

research work reported in chapters 2 to 8. 

9.1 OVERALL CONCLUSION 

Chapter 2 introduces the development of models predicting the higher heating 

value (HHV) of solid biomass fuels using the CI-based methodologies namely 

multi-layer perceptron neural network (MLPNN) and genetic programming based 

symbolic regression (GPSR). The important/novel features of this study are as 

follows. 

 The stated CI-based modeling has been introduced for developing 

nonlinear models encompassing a large size proximate and ultimate 

analyses dataset consisting of 382 and 536 biomasses respectively, 

used in developing the models.  

 When compared with their existing counterparts, the four optimal CI-

based biomass HHV models exhibit excellent prediction and 

generalization capabilities.  

 The results of this study indicate the high potential of CI-based 

nonlinear modeling approach for property modeling in fuel science and 

engineering.  

The knowledge of elemental composition of a biomass fuel is important in the 

efficient design and operation of combustion and gasification systems using these 

fuels, and pollution control thereof. The ultimate analysis of biomass fuels is a 

finer analysis that includes this elemental composition expressed in terms of 

weight percentages of major elements, namely carbon (C), hydrogen (H), oxygen 
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(O) and some minor elements. The experimental determination of the elemental 

composition of a biomass fuel is time-consuming and expensive. The proximate 

analysis, which determines fixed carbon, ash, volatile matter and moisture content 

of a biomass fuel, is a cruder albeit easier to perform analysis. Accordingly, the 

objective of Chapter 3 was to present CI-based modeling approach for 

determination of the best correlations existing between the elemental composition 

of solid biomass fuels and their proximate analysis. The salient features of this 

study are as follows. 

 A literature survey indicated that only two linear models are available 

for the prediction of the said elemental composition although the actual 

relationships are nonlinear.  

 The present study utilizes three computational intelligence (CI) 

methods, namely, GPSR, MLPNN, and SVR, for developing nonlinear 

models for the prediction of C, H, and O percentages of solid biomass 

fuels. 

 All the nonlinear CI-based correlations predicting the elemental 

compositions of biomass significantly and consistently outperformed 

their linear counterparts in terms of higher prediction accuracies and 

generalization capabilities.  

Chapter 4 introduces genetic programming based symbolic regression (GPSR) 

for the development of high performing models for predicting the higher heating 

value of coals of different ranks, and from diverse geographies of the world. The 

principal features of this study are as follows. 

 An extensive literature survey indicated most of the previously 

developed coal HHV models are linear regression based models. Since 

a decade it was determined that the HHV of coal nonlinearly depends 

on few constituents of their proximate and/or ultimate analysis and 

thus nonlinear modeling of coal‘s HHV was emphasized. 

 Accordingly, CI-based nonlinear models were developed recently, 

based on the ANNs, co-active neuro-fuzzy adaptive networks 
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(CANFIS), alternating conditional expectation (ACE), and SVR 

formalisms. However, these modeling attempts were aimed at coals of 

a specific rank and/or from specific geographical regions based on 

limited amounts of data.  

 Accordingly, in this study five GPSR-based nonlinear, high performing 

models are developed for the prediction of coal HHV. The said models 

are developed using a huge-sized dataset comprising coals of various 

ranks and from diverse geographies of the world and thus the models 

are highly generalized.   

 When compared with their existing counterparts statistically, the five 

optimal GPSR-based coal HHV models exhibit excellent prediction 

and generalization capabilities.  

 The advantage of using GPSR-based models for this task is that due to 

their lower complexity, these models are easier to understand and 

deploy in a practical setting as compared to the previously developed 

CI-based coal HHV models. 

In Chapter 5, genetic programming based symbolic regression (GPSR)-based 

modeling approach has been suggested for process identification of a 

polymerization reactor in the form of soft sensor models. The notable features of 

this study are as follows. 

 The styrene polymerization process involves a sequence of reactions 

with complex mechanisms often dominated by heat, mass and 

momentum transfer effects, thus creating modeling difficulties by the 

traditional phenomenological approach.  

 In view of these difficulties, two GPSR-based soft-sensor models were 

introduced for dynamic modeling of the styrene polymerization 

reactor. The developed process models dynamically relate the polymer 

molecular weight (output) to the jacket coolant flowrate (input).  
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 Both the GPSR-based models predicting the effluent polystyrene 

molecular weight exhibit excellent prediction and generalization 

performances.  

 The best GPSR-based model is successfully implemented in a model 

predictive control (MPC) scheme to control the effluent polymer 

quality in terms of its molecular weight. When compared with the 

traditional proportional-integral-derivative (PID) controller the MPC 

scheme using the GPSR-based predictive model exhibited superior 

control performance in both set-point tracking and disturbance 

rejection cases.  

 The GPSR-based models owing to their simplicity impart much lesser 

computational load during the software-based MPC implementation. 

The proposed approach can be extended for process identification and 

control of industrial processes exhibiting similar difficulties.  

Co-gasification (COG) of coal with biomass is an important step towards 

clean coal technology as it operates with reduced pollution and possesses 

operational flexibility. Accordingly, in Chapter 6 for the performance analysis of a 

pilot plant fluidized bed co-gasifier (FBCOG), CI-based modeling of the process 

is proposed. The important/novel features of this study are as follows. 

 The FBCOG process comprises of multiple synergetic reactions, which 

poses phenomenological modeling difficulties due to the existence of 

complex nonlinear phenomena created by heat, mass and momentum 

transfer as also due to the multiple reaction effects. 

  Extensive FBCOG experiments using various blends of high ash 

Indian coal and biomasses (rice husk, press-mud and sawdust) were 

conducted and the resulting dataset was utilized in the CI-based 

modeling of the process.  

 Specifically, the three CI-based modeling methodologies, namely 

GPSR,MLPNN and SVR were used to develop FBCOG process 

models predicting the four significant co-gasification performance 

parameters, viz. total gas yield (TGY) (kg/kg fuel), carbon conversion 
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efficiency (CCE) (%), heating value of product gas (HV) (MJ/Nm
3
), 

and cold gas efficiency (CGE) (%). The models inputs were and as 

inputs, predict  

 The original experimental dataset consisting of thirteen inputs 

characterizing the feed characteristic and the process operating 

conditions was compressed to obtain four linearly uncorrelated inputs 

using principal component analysis (PCA). This compressed dataset 

was used for developing the CI-based models.  

 All the developed CI-based FBCOG process models exhibit good 

prediction accuracy and generalization performances. Finally, 

statistical Steiger‘s tests were conducted for comparing the developed 

CI-based models to identify the best ones predicting the four COG 

performance variables.  

 The stated approach can be used to model industrial scale fluidized bed 

co-gasifiers which can be gainfully employed in the optimal design and 

operation of such processes. 

In Chapter 7, the environmental problem of chromium contamination in 

ground water is addressed by utilizing a CI-based hybrid strategy. The salient 

features of this study are as follows. 

 Different grades of the gallic acid-formaldehyde-ammonia (GFA) 

polymer resin were synthesized and batch equilibrium adsorption 

experiments were conducted for evaluating adsorption capacity of 

chromium Cr(VI) ions on the resins at different pH. 

 Highly nonlinear relations were witnessed between the percent 

adsorption of Cr(VI) and adsorption pH while using  different grades—

dictated by the synthesis reaction conditions—of the GFA resin for 

adsorption.  

 Accordingly, the CI-based nonlinear methodology, multilayer 

perceptron neural network (MLPNN) is used to develop model 

predicting the percentage adsorption of Cr(VI) ions using the synthesis 
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reaction conditions of the polymer resin and pH of the adsorption 

process as inputs.  

 The developed nonlinear MLPNN-based model exhibit excellent 

prediction and generalization performance. For optimization of 

reaction conditions and the adsorption pH, CI-based optimization 

formalisms were used in a hybrid setting. Specifically, the CI-based 

stochastic optimizers based on the novel artificial immune system 

(AIS), namely, clonal selection algorithm (CLONALG) and genetic 

algorithm (GA) were used for the said optimization.  

 The CI-based hybrid approach—especially using the AIS-based 

optimizer—led to a 3% improvement in the resin based adsorptive 

removal of Cr(VI) ions over that observed in experiments before 

performing the reaction optimization.  

 The proposed CI-based hybrid strategy can be extended for mitigating 

similar environmental problems.   

Chapter 8 reports the use of CI-based fuzzy c-means clustering (FCC) 

algorithm for fault detection and diagnosis of a biochemical process. The FCC 

method is an unsupervised learning algorithm that uses the process history data to 

generate a model that appropriately clusters the dataset into a pre-specified 

number of clusters. The notable features of this study are as follows. 

 A continuous bioreactor generating biomass was simulated for four 

types of faults, namely increase/decrease in the bioreactor feed and 

jacket fluid flow rates. The resultant process history data was captured 

in terms of the bioreactor state variables, namely the bioreactor 

biomass concentration, bioreactor temperature and the jacket fluid 

temperature, which was used to develop the FCC-based model.  

 The developed FCC-based model is capable of accurately identifying 

all four types of faults as also the normal process behaviour.  
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 Simultaneously the conventional c-means clustering algorithm was 

also applied to model the faulty and normal operations of the 

bioreactor.  

 When compared with the c-means model, the FCC-based model 

exhibit better cluster prediction and generalization capability for the 

said fault detection and diagnosis application. 

 The proposed CI-based methodology can be extended for fault 

detection and diagnosis of any full-scale bioreactor from its process 

history data. 

9.2  FUTURE RESEARCH SCOPE 

The major research in artificial/computational intelligence (AI/CI) began 

around the middle of the nineteenth century and gained momentum in 1990s with 

the tremendous advancement of the computing hardware and software 

technologies. Since then new efficient methodologies are being continuously 

developed and old ones are modified for improved performance. Today AI/CI 

based methodologies are being successfully applied in almost all branches of 

engineering, technology and science and soon AI/CI will touch all aspects of our 

lives.  

While it is impossible to imagine futuristic applications of AI/CI in chemical 

engineering and technology, those which have a high probability of succeeding 

are given below.  

 Applications in modeling of huge/big datasets: Today‘s highly automated 

complex mega-scale processes generate process history data at high 

speeds. CI-based methods have capabilities to extract important 

features/knowledge of interest from such huge datasets. This is specifically 

required in process monitoring and fault detection. In this thesis the newer 

GPSR-based methodology have been successfully utilized to extract useful 

expressions from large datasets, such as for property predictions and 

process identification. Recent CI-based approaches can be gainfully 
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utilized for such tasks. For example, the recently researched evolutionary 

deep intelligence, wherein deep neural networks are evolved to generate 

highly efficient and powerful solutions to problems involving huge data 

can be utilized for process monitoring, fault detection and diagnosis as also 

fluid flow modeling. Deep neural networks (also termed as deep learning 

networks) are ―stacked‖ neural networks consisting of around thousands of 

processing nodes that are efficiently used for pattern (image, voice and 

motion) recognition in computer science/engineering. These can be 

utilized for image recognition/classification of flows 

(laminar/transitional/turbulent) in reactors. 

 Utilization of newer CI-based methodologies: Newer CI-based methods 

may give improved results when applied for process engineering tasks. 

The major modeling work in this thesis is based on the utilization of GP 

for chemical engineering and technology applications; the reason being its 

rare use, in spite of its numerous advantages over other CI-based 

formalisms. The use of GP can be further extended to multiple input – 

multiple output (MIMO) systems, i.e., for process identification, 

monitoring, and fault detection and diagnosis. Apart from process 

engineering tasks the GP-based methods have a huge scope in chemical 

engineering for applications in property prediction such as quantitative 

structure-property/activity relationship (QSPR/ QSAR) studies, molecular 

modeling for novel drug synthesis, modeling of multi-component 

equilibrium systems, etc.  

 Artificial Immune System (AIS) is a novel CI-based paradigm offering 

numerous modeling and optimization algorithms such as the clonal 

selection algorithm (CLONALG), negative selection algorithms (NSAs), 

and algorithms based on the danger theory and the immune network 

models for various process applications. Currently, it is been researched 

heavily for computer and internet security (cyber security) applications 

due to its several immune-based advantages. There is a vast scope of its 

utilization for fault detection and diagnosis of modern complex 

multivariable processes as also in process optimization.  
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 CI-based hybrid approaches: Use of CI-based hybrid approaches can give 

better performances as such an approach works on the strategy that the 

synergy between two methods can be harnessed usefully. In this thesis the 

AIS-based stochastic optimizer has been successfully used for 

reaction/process optimization as modeled by the highly nonlinear ANN-

based model. Similar hybrid approaches can be applied to get improved 

results.  

There exists a large number of modeling and optimization algorithms in CI 

that are based on the intelligent behavior seen in nature, such as ANNs, 

evolutionary algorithms, genetic programming, ant colony methods, particle 

swarm, bee algorithm, etc. There are many more intelligent processes in nature 

that are followed by trees, plants, animals (land and aquatic), birds, 

microorganisms, viruses. These can be simulated on computer to develop more 

efficient, fast and numerically light weight modeling, optimization, security and 

image/audio/video processing/recognition applications. 

To summarize, the increasing popularity of CI-based formalisms is alluded to 

their potential in efficient modeling, pattern recognition and optimization of 

highly complex and/or data intensive nonlinear processes/systems. The future 

smart process industries for their efficient and smooth operation will require a 

proper integration of the advancing computing technologies such as the process 

centric internet of things (IoT), cloud computing and computational intelligence 

based approaches/strategies. 
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