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Abstract
The flow of a liquid film over a horizontal spinning disc has numerous industrial

applications including coating, microlithography, atomization etc. In spin coating

process, a drop of liquid spreads under the influence of centrifugal force to form a flat

thin film at the center and a capillary ridge near the contact line which eventually

leads to the formation of so-called fingering instability. Fingering instability

for the spreading of a single Newtonian viscous liquid with a free surface is very well

understood in the literature. However, contact line instability in centrifugal spreading

of two-layered flows and flow of suspension films is essentially unexplored. This study

assesses the impact of the presence of an outer liquid interface and particles on the

spreading of a drop of liquid, shape of the capillary ridge, and contact line instability.

This work is significant not only from a fundamental perspective, but also due to its

applications, viz., in multi-layer coating and micro-encapsulation processes.

The evolution of a two-layer film on a spinning disc is investigated using an ax-

isymmetric 1D model. The governing Navier-Stokes equation for the flow is simplified

using lubrication approximation. A precursor layer model is used to relieve the con-

tact line singularity. The evolution equations are solved numerically employing a

novel Galerkin finite element method (G/FEM) based approach. Simulation results

reveal that with increase in the viscosity ratio, bulkiness of the capillary ridge in-

creases. Further, sharpness of capillary ridge increases with decrease in the surface

to interfacial tension ratio. The uniformity of the two-layer film formed, however,

was found to be independent of the initial volume ratio of the two liquids used. The

axisymmetric simulations, however, do not account for the development of instability

in spreading liquid films.

An experimental study on simultaneous spreading of superposed drops (drop-on-

drop) of two Newtonian liquids on top of a horizontal spinning disc is, thus, carried out

to understand the contact line instability. The flow dynamics is captured using high-

i



speed camera imaging. The quantitative results of the image analysis are presented

for varying volume ratios of the two liquids keeping the inner liquid volume fixed, and

compared to the single liquid spreading. For all the volume ratios studied, the inner

liquid spreads to a larger extent and breaks into more number of fingers as compared

to corresponding single fluid, which is expected due to the lowering in the interfacial

tension. The number of fingers Nf observed experimentally is compared to that of

the value predicted using available theory for single fluid just by replacing the surface

tension of the inner fluid with the liquid-liquid interfacial tension. It is found that

the theory over predicts the value of Nf for the inner liquid while it is covered by

an outer liquid. A new theory is derived by using linear stability analysis for small

but finite surface tension ratio of the two liquids, and it is found that the presence of

the outer interface brings down the value of wave number which is equivalent to the

decrease in the number of fingers observed in our experiments.

A detailed investigation on the spreading and fingering of thin film of a density-

matched non-Brownian suspension spreading on a spinning disc is carried out using

high-speed flow visualization experiments. The effect of volume fraction of particles

(φp) on the spreading, onset and evolution of the instability was investigated in detail

with the help of image analysis. The results were compared to the spreading in case

of Newtonian liquids of similar viscosity or wetting properties. The critical radius for

the onset of instability shows an increase with increase in the particle fraction (φp)

before decreasing slightly at the highest value of φp studied. However, the instability

wavelength (λ) exhibits a non-monotonic dependence in this small range of φp. The

behavior is close to a partially wetting liquid for a lower φp, decreases with increasing

φp eventually showing behavior close to that of a wetting liquid for the largest φp. This

peculiar behavior of λ is governed by the spatial variation of the particle concentration

within the capillary ridge.

Keywords: Density-matched suspension, high-speed imaging, Mathematical mod-

eling, Spin coating, Thin-film flow, Two-layer flow
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Chapter 1

Introduction

1.1 Motivation

Thin liquid films are predominant in nature and technology. They find applications in

diverse areas of science including physics, biology, geology as well as engineering. Thin

films are encountered in numerous industrial applications such as coating, soldering,

printing, photolithography, and microfluidic device fabrication. Further applications

of the spreading thin films are discussed in the reviews by Oron et al. [1] and Craster

et al. [2] Often, their flow behavior plays a crucial role in such applications. A fun-

damental understanding of thin film flow is, therefore, of paramount importance in

design of relevant applications.

Flow of thin films under the influence of body forces such as gravity or centrifugal

acceleration often exhibit fascinating dynamics. The examples include wave propaga-

tion, wave modulation and transition from periodic to chaotic structure depending on

the liquid flow rate, pattern formation, thin-film rupture and hole formation, spread-

ing of fronts, droplet formation at the leading edge of the film as well as development

of fingers. The radial flow of a thin liquid film on a rotating horizontal disc is encoun-

tered in many industrial processes such as spin coating and spinning disc atomization.

Spin coating process is used in the manufacturing of compact discs, TV screens, op-

tical mirrors, anti-reflective coatings in solar cell applications, microlithography and

many others. [3–9] These thin film flows are prone to exhibit instability behavior result-
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ing in the formation of non-uniform films, which is undesirable in coating applications.

However, as mentioned later on, the instability is desirable in certain applications.

1.1.1 Thin film flow on a spinning disc

A drop of liquid placed on the axis of rotation of a spinning substrate spreads under

the influence of centrifugal force to form a flat thin film at the center and a capillary

ridge near the air-liquid-substrate contact line, which eventually leads to the forma-

tion of instability. The centrifugal force acting on the fluid pushes it in the radially

outward direction while, the viscous force tends to resist its motion in the so called

“outer” region away from the contact line. In the capillary ridge near the contact

line, known as “inner” region, the flow is governed by a balance between surface ten-

sion and centrifugal force. As the flow evolves with time, the capillary ridge becomes

unstable to perturbations in the azimuthal direction, leading to the development of

fingers at the liquid-substrate contact line. These fingers then, spread radially to-

wards the periphery of the disc, wherein they break into fine droplets. A schematic

of the various stages of a drop spreading process on a spinning disc is shown in Fig.

1.1.

  

Thin film spreading Waves formation Finger formation

Droplet


Initial Drop

  

Thin film spreading Waves formation Finger formation

Droplet


Initial Drop

Figure 1.1: Different stages of spreading of a drop of liquid in spin-disc flow.

If the viscosity of fluid is low, Coriolis force comes into play and bending of the

fingers is observed [10]. Due to the azimuthal deflection and merging of fingers at the

base, the spreading area and critical time for the onset of instability increases.

In coating applications, apart from the requirement of a uniform thin film, the role

of evaporation becomes increasingly important in determining the rate of thinning of
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the film during the final processing stage. However, the rate of evaporation remains

constant, independent of the film thickness. This takes over as the dominant process

until the fluid gets completely dried up.

Thin film flow finds application in pharmaceutical industries to form drug micro-

spheres for encapsulation in drug delivery. Spinning disc atomization is the predom-

inant method to form these micro-spheres of desired shape, size and density [11–14].

In a spinning disc atomizer, a nozzle introduces fluid at the center of a spinning

disc rotating at a very high speed. Centrifugal force carries the fluid in the radially

outward direction. Once it reaches the edge of the disc, the fluid gets thrown off

from the disc. The liquid forms fingers (or ligaments) which eventually break up due

to the surface tension of the liquid to form fine droplets. Depending on the inlet

flow rate and rotational speed of the disc, three distinct droplet disintegration modes

have been observed [15–18]: (i) direct drop formation, (ii) ligament formation, and (iii)

sheet formation. At low flow rates, direct droplet formation is observed at the edge

of the disc where discrete drops of uniform size are formed. With increasing flow

rates, there is a transition from direct droplet formation to ligament formation. The

drops formed are smaller in this mode than the earlier mode and are generated by

break up of long jets. Film disintegration emerges at even higher flow rates and the

surface of the atomizing disc is covered by a continuous film moving from the center

to the circumference of the disc and extending beyond, which eventually disintegrates

creating a wide spectrum of drop sizes.

Another application of radial thin film flow is the spinning disc reactor (SDR)

technology which is employed to produce drug crystals (API) in pharmaceutical in-

dustries [19,20]. In a SDR, the film is subjected to very high shear stress (τ), promoting

very high heat-transfer rates between the film and the disk, and high mass-transfer

rates between the liquid streams or between the film and the gas in the surrounding

atmosphere. High rotational speed offers reaction optimization, resulting in better

mixing, and shorter residence times. The SDR is, in principle, capable of producing

fine crystals with a very narrow size distribution.
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1.1.2 Challenges in the Study of Thin Film Flow

Thin films flows on the scales ranging from nano- to macro have been extensively

studied through experiments, simulations, and, mathematical analysis. The spreading

of a drop of liquid on a spinning disc is a free surface problem with a moving contact

line. These flows are complex in nature. Theoretical investigation of this type of

problem requires finding the location of the free surface as part of the solution of the

non-linear equation; making it more complex.

The thickness and uniformity of thin films which are important parameters for

their technological applications, depend on experimental conditions including the

rotation time and speed, physical properties of the fluids, and evaporation rates,

concentration of the suspension, and characteristics of the substrate surface. The

flow behavior as a function of the fluid properties in thin film spreading helps to

recognize its efficient performance in practical applications and has been investigated

for single-layer Newtonian fluids by many research groups through different theory

and experiments. One of the outstanding and practically relevant problem is to

understand the spreading behavior of multi-layered films. Additionally it is also

important to understand the behavior of thin film flow of non-Newtonian fluids like

polymeric fluids and suspensions which are encountered in practical applications.

The fundamental investigation of thin film flow in above-mentioned system forms the

overall objective of this work.

1.2 Organization of the Thesis

The outline of the thesis is provided in Fig. 1.2. The left column in Fig. 1.2 represents

the particular problem being investigated and corresponding key result is shown on

the right side.

The remainder of this thesis is organized as follows. In chapter 2, previous ex-

perimental studies as well as modeling efforts are summarized in a comprehensive

literature survey. The gaps in the existing literature are identified and detailed ob-

jective of the thesis is presented.
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Chapter 3 discusses about the 1D axisymmetric mathematical modeling of a two-

layer spin coating process. The governing equations for the flow of one fluid on top

of the other on a spinning disc are solved numerically to investigate the effect of

various fluid property ratios (i.e., viscosity ratio, interfacial tension ratio) and also,

other process parameters such as volume ratio of the two fluids and precursor layer

thicknesses. Fig. 1.2(a) depicts the effect of viscosity ratio of the two fluids on the

formation of two-layer film.

In chapter 4, an experimental study on superposed drops of two liquids spreading

on a spinning disc is discussed in detail. The experiments are carried out for varying

volume ratios of the two fluids keeping the inner liquid volume fixed. The flow

dynamics is captured using high speed imaging. The quantitative experimental results

are presented for the two-fluid case and compared to the single fluid spreading in each

case. The comparison between the number of fingers predicted using available theory

and observed experimentally are presented in Fig. 1.2(b). A new theory is derived in

the limit of small surface tension ratio to explain the effect of presence of outer liquid

interface on the finger formation.

Chapter 5 describes a detailed experimental investigation on the spreading and

fingering of thin film of a suspension spreading on a spinning disc. High speed imaging

technique is used to capture the spreading of the suspension drops. The effect of

volume fraction of particles on the spreading, onset and evolution of the instability is

investigated in detail. The results are compared to the spreading in case of Newtonian

liquids of similar viscosity or wetting properties. Fig. 1.2(c) depicts the wavelength

of instability (λ) as a function of the increasing particle volume fraction.

Finally, in Chapter 6, the major findings and conclusions are summarized. Various

outstanding issues are identified and suggestions for future research are provided.
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Chapter 2

Review of Literature

Centrifugal drop spreading on a solid substrate finds multitude of applications in

industrial processes as discussed in the previous chapter. Therefore, extensive research

has been carried out in this area to understand the film spreading dynamics and

instability. In this chapter, an overview of the research on thin film flow on a solid

substrate under an external forcing (gravity or centrifugal) is presented. Yet, the

primary focus will be on centrifugally driven thin films. Nevertheless, due to inherent

similarities between the spreading mechanisms in case of films driven by gravity and

centrifugal force, we will review the previous research work in the former case wherever

necessary. Overall, the existing literature on thin film flow can be broadly divided

into two major categories i.e. thin film spreading and fingering instability. In the

subsequent sections, we will explore the existing experimental as well as theoretical

work in the above two categories based on the type of fluid used i.e. Newtonian,

non-Newtonian or suspension.

2.1 Thin Film Spreading

Preparation of uniform films of desired thickness by spin coating has been widely

studied in the past. In these flows, typically, the characteristic length scale in the di-

rection perpendicular to the plane of the flow (i.e. the film thickness), is much smaller

than the characteristic length scale in the direction of flow. Generally, the existence
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of the small aspect ratio (small parameter, ε) is exploited to expand the governing

Navier-Stokes equations in a perturbation series in powers of ε. This approximation

is known as “Lubrication Approximation” or “Long-wave Approximation”. It has been

used extensively in the modeling of thin-film flow due to the thinness of the coating

film. It reduces the governing equations as well as boundary conditions to a much

simplified system consisting of a non-linear partial differential equation still capable

of capturing the dominant physics.

2.1.1 Flow of Viscous Newtonian Fluids

The pioneering analysis of spin coating flow was performed by Emslie et al. [21] (1958).

The authors considered the spreading of a thin axisymmetric film of Newtonian fluid

on a planar substrate rotating with a constant angular velocity. They modeled the

flow by applying lubrication theory on Navier-Stokes equation and obtained an equa-

tion determining the evolution of the film thickness due to purely centrifugal and

viscous forces:
∂h

∂t
= −ρω

2

3η
1
r

∂

∂r
(r2h3), (2.1)

where, ρ is the density of the fluid, η is the viscosity of the fluid, ω is the rotational

speed of the disc, r is the radial coordinate and h is the height of the free surface. The

model ignored the effect of inertia, gravitational, capillary, and Coriolis forces. Using

the method of characteristics, they were able to examine the evolution of a variety of

known initial surface contours. The solution shows that spin coating process always

yields a uniform flat film for any given initial profile.

Although, Emslie et al. [21] made a seminal contribution in this field, their study

was not quite general to be applicable to practical coating situations. One of the lim-

itations of their study was the assumption that the flow is governed by the balance

between centrifugal and viscous force and all other forces are relatively unimportant.

As we will discuss later, the outer rim (contact line) of a spreading film is always sus-

ceptible to instability which arises when the surface tension force becomes important.

Hence, neglecting the surface tension force is not a valid assumption and thus produces
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undesirable results. Secondly, the model is valid only for Newtonian fluids, whereas

materials used for practical coating applications are generally non-Newtonian.

Subsequent authors have generalized the work of Emslie et al. [21] to include various

additional physical effects, including surface tension [22,23], surface shear [24], surface

roughness [25], Coriolis effects [10,26–29], fluid inertia [30], evaporation and absorption [31].

Later, Moriarty et al. [32] (1991), presented a solution for the evolution of the free

surface profile for a thin liquid film flowing under gravity using asymptotic analysis.

The study was carried out assuming surface tension to be small in the lubrication

equation. These authors divided the flow domain into an outer region (region far

away from contact line), and an inner region (region close to contact line). The

composite solution applicable throughout the flow domain was found by matching

outer and inner region solutions that were obtained separately. In order to verify

the accuracy of the asymptotic solutions, they also simulated the model numerically

by using a finite difference time marching scheme which solves the whole lubrication

equation, without making any small surface tension assumptions. The composite

solution matched very well with their numerical solution of the governing lubrication

equation obtained using precursor film model for the contact line (See 2.1.2), for

small surface tension values. The analysis was extended for two different types of

flow namely spin coating flow, and the flow caused by blowing a jet of air. Their

analysis manifested that all these flows share a common mechanism which led to the

instability at the front of the propagating film. The authors’ analysis was based on

the assumption of low Reynolds number flow as was done by Emslie et al. [21] The

method of asymptotic expansion used in their study can also be used to analyze the

solution for arbitrary Reynolds number flows which was successfully carried out by

Brian Higgins. [33]

2.1.2 Contact Line Paradox

As discussed in Chapter 1, when a contact line is driven by a constant force, the fluid

interface becomes unstable and breaks into fingers. In particular, a moving contact

line coupled with “no-slip” boundary condition at the solid surface leads to divergence
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of stresses as well as viscous dissipative forces which is known as the so-called “contact

line paradox”. In general context of partially wetting fluids, this stress singularity is

relieved by either relaxing the no-slip boundary condition, or by accounting for the

effects of the long range intermolecular van der Waals force (disjoining pressure). In

the former case, the contact line is allowed to slip with a velocity proportional to the

stress at that point. [34–37] However, in case of completely wetting fluids, experimental

evidence has revealed the presence of a microscopic film in front of the apparent

contact line. In a precursor layer model, it is assumed that the liquid is never in

direct contact with the solid surface. It allows no-slip condition to be applicable

everywhere; thereby removing the contact line singularity. [38–43] Diez et al. [44] have

studied the contact line motion using global models where either precursor film or

slip are allowed and have concluded considerable computational advantage of the

precursor film model over slip model.

McKinley et al. [45], in 1999, formulated a general model depicting the evolution of

free surface for the flow of a viscous Newtonian liquid on a rotating disc. The authors

used a generalized Tanner Law to include the dynamics of contact line (See 2.1.2)

and obtained a dimensionless equation for a Newtonian fluid spreading on a rotating

disc:

Cht + 1
r

[
rh3

3

((
1
r

(rhr)r −G2h

)
r

+ Jr

)]
r

= 0 , (2.2)

where, J = ρω2L3/σθ0 is the measure of centrifugal force, C = κη/σθ3
0 (κ being the

characteristic horizontal velocity scale) is the capillary number, which measures the

competition between the viscous force and surface tension force (capillary force) and

G2 = ρgL2/σ is the Bond number, which is the ratio of the gravitational force to the

surface tension force.

The above model is helpful in understanding the dynamics of the flow of thin films

in various conditions just by a simple modification in the dimensionless parameters.

Also, by appropriate adjustment of the constants in the above equation, it is possible

to recover the model equations derived in previous studies. For example, replacing

G = 0 in the above equation results in the equation provided by Moriarty et al. [32]

10



Moreover, the governing equation in terms of dimensionless groups helps in relating

the spin coating flow with other flows like draining of a liquid drop under gravity and

spreading of a liquid drop by a jet of air. These authors analyzed the flow in the limits

of small capillary number (C → 0), in which the flow can be treated as quasi-static,

which essentially means that the contact line moves very slowly relative to the bulk

of the fluid. The drop profiles are predicted by changing the initial condition in the

simulation. Further, they carried out a linear stability analysis of these profiles to

small perturbations which is discussed in the next section.

More recently, Wilson et al. [23] studied the axisymmetric spreading of Newtonian

fluid on a spinning disc for a constant angular speed. Using asymptotic methods,

they were able to capture the qualitative features of the flow (prior to instability

formation) in the asymptotic limit of small surface tension. However, quantitative

agreement with the experimental results [46,47] was obtained by numerically solving the

governing equations using slip model (See 2.1.2) employing both static and dynamic

contact angle conditions, including finite surface tension effects.

Although a majority of work over the past few decades has focused on the anal-

ysis of a single evolution equation, in recent years the field has moved towards the

study of thin film flows governed by a system of coupled evolution equations for the

film thickness. More recently, McIntyre Brush [48] used lubrication theory to derive

an axisymmetric model for the spin coating of two immiscible vertically stratified

Newtonian thin films which included gravitational, van der Waals, capillary and vis-

cous forces, differences in liquid layer properties and evaporation/condensation effects.

However, the simulation results were reported without considering the effect of cap-

illary force and for films which are infinite in extent. The authors showed that the

disturbances to the lower layer have a greater impact on the upper layer than those

of disturbances of the upper layer on the lower layer and the disturbances along the

upper gas-liquid free surface propagate outward more rapidly than those along the

lower liquid-liquid interface. Dandapat and Singh [49] have established the role played

by viscosity, initial film thickness and density ratio (of two different liquids) on final

film thickness (for films which are infinite in extent) at large time for large Reynolds
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number. The initial rate of film thinning was found to increase for smaller thickness

of the top layer. However, the overall effect of the various parameters was insensitive

to the final film thickness at large time. In a recent article by Dandapat and Singh [50],

the authors presented long time scale solution for an unsteady two-layer liquid film

flow on a horizontal rotating disc analytically and explained the findings, physically

for small Reynolds number. It was observed that the final film thickness attains an

asymptotic value at large time. Their results established that viscous force dominates

over centrifugal force and upper layer thins faster than lower layer at large time.

2.1.3 Flow of Non-Newtonian Fluids

Considering the fact that the fluids used for for practical applications are mostly non-

Newtonian, Acrivos et al. [51] (1960) extended the analysis of Emslie et al. [21] for the

flow of a non-Newtonian power-law fluid on a rotating disc. Using similarity transfor-

mation, the authors were able to examine the effect of spinning on the uniformity of

the film for varying power-law indices. The study concluded that centrifugation of a

non-Newtonian fluid film that is initially uniform tends to destroy the uniformity and

this departure from uniformity is particularly noticeable for fluids with significant

non-Newtonian behavior. In fact, the results showed a central spike followed by a

sloping region dependent on the power-law index. Thus, the study suggested that, it

is challenging to develop a uniform coating film of complex materials like polymers

which show non-Newtonian characteristics.

Later, Jenekhe et al. [52] (1984), showed that this central spike was an artifact

of the power-law (viscosity) constitutive model. Using Carreau model, they were

able to show that spin coating results in thin uniform flat films for any given initial

profiles. Therefore, they concluded that the power-law fluids are an improper choice

for modeling of axisymmetric free surface flows. Subsequently, there have been a

few numerical and analytical studies of such flows. [53,54] However, almost all of these

studies have investigated the flat film formation away from the contact line neglecting

the effect of surface tension.

Very recently, Charpin et al. [55] have numerically studied the axisymmetric spin
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coating flows of shear thinning fluids including surface tension effect. The authors

used power-law and Ellis constitutive models to depict the rheology of the fluid.

The movement of contact line was modeled using a precursor layer condition, i.e.

the fluids are fully wetting. The authors showed that including the surface tension

term removes the spike in the central part of the film as reported in few previous

studies. [51,52] Moreover, the study established that shear thinning power-law fluids,

in general, spread faster than the Newtonian fluids only except for few cases close to

Newtonian fluids where the trend was found to be reversed.

Apart from the above studies, Hu and Kieweg [56] studied the capillary ridge for-

mation in the flow of power-law fluids down an inclined plane. The authors have

shown that the height of capillary ridge increased with larger value of surface tension,

steeper inclination angle, higher initial thickness, and more Newtonian nature of the

fluids. Moreover, their study provided initial insights into the effect of process pa-

rameters on the formation and shape of the capillary ridge in non-Newtonian fluids.

However, the study lacks in depicting the dynamics of fingering instability.

Most recently, Arora et al. [57] performed a numerical study to examine the effect

of non-Newtonian nature of the fluid on the film evolution and associated contact line

instability using lubrication theory. The movement of the contact line was modeled

using a constant angle slip model. Numerical results revealed that spreading rate

of the fluid strongly depends on power-law exponent (n). It was found to increase

with the increase in the shear thinning nature of the fluid and decreases with the

increase in shear thickening nature of the fluid. Moreover, the shape of the capillary

ridge was found to becomes sharper with an increase in the value of n. The fingering

instability for shear thinning and shear thickening fluids carried out in this work will

be discussed in the next section.

2.2 Fingering Instability

Typically. for a liquid drop spreading on a solid substrate, the contact line refers to

the boundary where the three phases (solid- liquid-air) meet. Fingering instability
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describes how the moving contact line at the front develops perturbations during flow.

Forced spreading of a straight or circular contact line, due to gravity or centrifugal

force, respectively, is unstable to the formation of instability (fingers) in a direction

transverse to the flow direction. The examples of such flows include flow of a viscous

liquid flowing down an inclined plane, liquid drop spreading on a rotating disc etc.

These flows are associated with accumulation of liquid at the flow front (contact line)

leading to the development of instability in the cross-flow direction. The coating fluid

preferentially flows through the fingers and bypasses some portions of the substrate

leaving a defective end product. This instability in thin-film flow has been studied

extensively in the literature to understand the underlying mechanism behind finger

formation, which is discussed below in detail.

2.2.1 Flow of Liquids

The mechanism behind this fingering instability was first studied experimentally by

Huppert [58], who described the instability of a driven contact line for fixed volume

of a liquid flowing down an inclined plane experimentally. The author presented an

expression for the wavelength of the fingers, which depends on the surface tension

of the fluid but independent of the viscosity of the liquid. Surface tension becomes

important near the contact line which is shown by scaling arguments. The experi-

mental data of Huppert suggested that the formation of rivulets occur on capillary

length scale. Thus, for the first time it was confirmed that the fingering instability

in coating flows is hydrodynamic in origin.

A linear stability of the Newtonian capillary ridge for a film flowing down an

inclined plane was first carried out by Troian et al. [59] using a precursor layer model.

Their stability analysis of the quasi-static solution in the inner region showed that,

it is always unstable to sufficiently long-wavelength disturbances in the cross-flow

direction. Moreover, the instability was found to be the largest near the contact line,

where the surface tension force becomes comparable with the viscous and gravitational

force. The dimensionless growth rate of the most unstable mode was found to be

approximately 0.5, depending weakly on the thickness of the precursor film. The most
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unstable mode is defined as the wavelength at which the initial disturbance grows most

rapidly and is the most likely initial spacing between ridges for a randomly imposed

perturbation. The mechanism of this instability has been discussed by Bertozzi and

Brenner and Spaid and Homsy. [22,60]

A more general analysis of the stability of these thin-films was carried out by

McKinley et al. [61] for arbitrary capillary cumber (C) values. It was found that for

both the cases (C = 0 and C 6= 0), the drop was found to be unconditionally unsta-

ble to perturbations in cross-flow direction resulting into finger formation (discussed

in the upcoming section). Overall, the eq. 2.2 describing the spin coating flow is

highly non-linear and results into various instabilities such as sudden jumps and for-

mation of fingers. The study established that for producing a uniform thin film of

desired thickness by spin coating, finger formation is an undesirable phenomenon,

yet inevitable, and thus, needs to be controlled. The following section highlights the

previous research work in this field to understand the underlying mechanism behind

the fingering instability associated with thin film flows.

Experimental studies using viscous Newtonian liquids under external forcing have

demonstrated that the film height profile is nearly flat except near the advancing

front where liquid gets accumulated to form a capillary ridge eventually leading to the

formation of instability [46,62,63]. Capillary ridge refers to the bump formation at the

front of the spreading fluid. First ever experimental study on the fingering instability

in case of a spinning drop was carried out by Melo et al. [62] They have performed

experiments using silicone oils for a range of viscosities (very high viscosity), rotation

speeds, and fluid volumes on a silicon substrate and measured the time evolution of

the drop profile, critical radius for the onset of instability and the fastest growing

instability wavelength. The authors introduced theoretical scaling parameters for

which the dimensionless spreading radius as well as the film thickness data for various

experimental parameters collapsed onto two separate master curves when plotted

against dimensionless time. In other words, the spreading radius (R(t)) and the

film thickness (h) followed the power law dependence (R ∝ t1/4 and h ∝ t−1/2),

as predicted by the lubrication theory, irrespective of the experimental conditions
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considered.

It was confirmed that the existence of a bump in the profile, which gives rise to

capillary pressure gradient in a direction transverse to the main flow, is the main

cause of instability that occurs in thin films which was also shown by Troian et al. [59].

The authors analyzed the occurrence of instability by introducing a dimensionless

parameter, β, defined as a ratio between capillary forces and centrifugal force. It was

found that for small β, indicating large centrifugal force, the critical radius for the

onset of instability (Rc) as well as the wavelength of instability (λ) are functions of

β. It was experimentally also shown that for β < 0.01, both the above quantities

increase. Hence, they concluded that the model based on lubrication approximation

is invalid for smaller β (β<0.01), i.e. when centrifugal forces become large. The

study, thus, provided the range of applicability of the lubrication theory.

A large number of experimental studies have been carried out later on, to study

initial instability characteristics by varying experimental parameters like rotational

speed, drop volume, wetting properties of the fluid (surface tension and contact angle),

and the rheology of the fluid. Fraysse and Homsy [46] performed experiments for both

Newtonian and non-Newtonian fluids to study the instability characteristics with the

change in the fluid properties and process parameters mentioned above. The ultimate

objective was not only to study the wavelength of instability at the onset of fingering,

but also to predict the growth rate of these instabilities. It was observed that the

wetting properties of the liquid play an important role in determining Rc and λ.

For the liquids which have poor wetting properties (high surface tension), onset of

instability occurs much earlier as compared to liquids with good wetting properties.

Comparison of these experiments with the linear stability theory of Troian et al. [59]

showed good quantitative agreement for both the wavelength and growth rate of

the instability, the values for onset time and critical radius being taken from the

experiment. Their analytical expression for calculating the number of fingers has

been verified by several experimental as well as theoretical studies. Although, Fraysse

and Homsy [46] were successful in predicting the effect of surface tension, they failed

to show the dependence of instability characteristics on the rotational speed, volume
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of the fluid and even on the viscoelastic nature of the fluid.

Both Melo et al. [62] and Fraysse and Homsy [46] have shown that the most unstable

wavelength was independent of the drop size as well as rotation speed of the disc in

the range of their experimental parameters considered. In addition, they both have

reported slight discrepancy between the theory and experiment, for the asymptotic

spreading rate before instability (slope of 1/3 instead of predicted theoretical slope of
1/4 ). This discrepancy occurred due to the assumption of a flat film shape in the

theory, which in practice, evolves with time.

Recently, de Bruyn and co-workers [63] reported an experimental study on the

centrifugal drop spreading in which they went beyond the instability onset and showed

how the fingers grow once the instability occurs in the system. In order to study the

growth rate of fingers, they have performed a series of experiments using a drop of

low-viscosity silicone oil by varying the rotational speed and initial volume of the fluid.

Their experimental results showed that the scaling used for non-dimensionalization in

the analysis of Frasse and Homsy was inappropriate causing the discrepancy between

theory and experiments for the evolution of the drop radius. Furthermore, they have

shown that the instability wavelength as well as growth rate of instability depend on

the rotational frequency as well the liquid volume, in contrast to the observations

reported by Fraysse and Homsy. [46] In fact, the growth rate was found to increase

linearly with the initial volume of the fluid while the relation between the growth

rate and rotational speed was highly non-linear.

The previous work was then further extended by Spaid and Homsy [22] to study the

instability characteristics of viscoelastic fluids in comparison to that of the Newtonian

fluids. They used linear stability analysis and energy analysis method to study the

instability of different fluids. It was found that the capillary ridge is more stable in

case of viscoelastic fluids as compared to Newtonian fluid. This is expected given the

fact that the viscoelastic fluid which possesses a finite restoring force when stretched

will always tend to attain its stable free surface profile. Thus, contact line in case

of viscoelastic fluid when perturbed will always tend to stabilize the advancing front.

It was shown that Rc in case of viscoelstic fluid was larger as compared to that of
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Newtonian fluid. Moreover, viscoelastic material having a finite relaxation time, thus,

will take longer to respond to the modulations of the contact line. The authors also

studied the dynamics of the contact line for two different kinds of models namely slip

model and precursor layer model, and found that the dynamics of the viscoelastic fluid

was sensitive to the type of contact line model used. However, for Newtonian fluids,

the study revealed that instability characteristics is weakly dependent on the contact

line model. The above work, thus, proved that the instability will always occur in

spin coating process immaterial of the fluid used, the only difference lies in the values

of Rc and Nf . All these studies reported in the past address the study on instability

characteristics confined to low Re flow (i.e., low rotational speed) which verifies the

assumptions of negligible Coriolis force. In an another work, Spaid and Homsy [47]

studied the effect of viscoelasticity on the onset and evolution of fingering instability.

They have found that elastic force stabilizes the drop by increasing the critical radius

and delaying the onset time of instability. They also showed that increase in the

rotational speed has more pronounced effect on the stabilization.

Recently, probably the most advanced 3D model for the spreading of a drop to

understand the fingering instability in spin coating process was reported by Schwartz

and Roy. [28] Numerical simulation of the model was found to be in accord with the

previous experiments. [46] The study also investigated the effect of Coriolis force in a

spin coating process. Several theories have been reported in the literature to study

the effect of Coriolis force. The effect of Coriolis force can be observed by increasing

the flow Re. They used properties of Boger fluid as reported in the experiments

by Homsy and co-workers [46], and simulated the system by reducing the viscosity

by a factor of 14, thus increasing Re to 0.2. It was observed that due to Coriolis

force, the fingers deflected in the clockwise direction while the disc rotates in the

counter-clockwise direction. In other words, Coriolis force results in bent fingers in

which tip of the fingers move in the direction opposite to the direction of rotation of

the spinning disc. By invoking a disjoining pressure model for relieving the contact

line singularity, the authors also demonstrated that imperfect wetting behavior is the

primary reason behind the fingering instability during spin coating.
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The most recent work on fingering instability for power-law fluids was carried

out by Arora et al. [57] using a linear stability theory. The dispersion relationship

depicting the growth rate for a given wave number was reported and compared for

different power-law fluids. The study established that growth rate of the instability

decreases as the fluid becomes more shear thinning in nature, whereas it increases for

more shear thickening fluids.

2.2.2 Flow of Suspensions

In recent years, several studies have been carried out on particle-laden thin film flows

on an inclined plane geometry owing to its applicability in diverse contexts. [64–70] In

general, the flow of suspensions is similar to that of pure liquids, which allows the

flow to be modeled using Navier-Stokes equation just by replacing the viscosity of the

liquid by appropriate constitutive relation accounting for the non-Newtonian nature

of the fluid. Lubrication theory is also used in modeling these flows due to thinness

of the film.

Timberlake and Morris [71] measured the velocity and concentration profiles in such

flow of a concentrated suspensions down an inclined plane for various inclinations and

concentrations. The data was successfully compared with the predictions of a particle-

migration model. They observed that the free surface became more deformed with

increasing concentration or inclination.

Fingering instability at the contact line of a yield stress clay suspension flowing

down an inclined plane was studied by de Bruyn et al. [72]. They derived an expression

for the wavelength of the instability for a Herschel-Bulkley fluid. Their experimental

data using clay suspensions agreed well with their theoretical predictions.

Zhou et al. [64] carried out experimental as well as theoretical study to explain the

emergence of particle-rich ridge on an inclined plane flow of particle-laden film. The

particle volume fraction (φp) and inclination angle (α) were varied over a wide range

and three distinct regimes were observed. When φp and α are small, settled regime

results. For larger φp and α the ridged regime occurs and finally for intermediate

values of the above quantities, the suspension remains well-mixed and fingering in-
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stability occurs. The authors have found that the ridge formation occurs due to two

shocks arising from differential transport rates of fluid and particles. Their study was

focused on the ridged regime. Moreover, it was observed that finger formation was

somewhat suppressed in the experiment by the formation of the particle-rich ridge

suppressing the advancing contact line with respect to the transverse perturbations.

However, they have not addressed anything about the fingering instability.

Tabuteau et al. [73] studied the spreading of a yield stress fluid on a spinning disc

both experimentally and theoretically. They calculated the critical angular veloc-

ity for the yielding of the material for varying geometrical conditions of the drop.

The effect of angular acceleration, yield stress, and substrate roughness on the drop

spreading was also investigated experimentally. Although, the work mainly deals with

spreading, finger formation was also observed in their work at high enough angular

velocity.

Balmforth et al. [74] investigated the fingering instability in a thin layer viscoplastic

fluid flowing down an inclined plane. The authors derived the governing equations

for the flow including the effect of surface tension and yield stress using lubrication

theory. A linear stability analysis of the base state solution was carried out to model

finger growth to understand the effect of yield stress. The instability wave number

(q) corresponds to the instability wavelength (λ = 2π/q) and refers to actual number

of fingers observed in experiments. It was found to decrease with the increase in

concentration of suspension which was in qualitative agreement with their analytical

results, when the concentration corresponds to the yield stress.

Ward et al. [65] carried out experiments with particle concentrations ranging from

35 to 55%. Various input parameters (particle size, fluid viscosity, initial volume,

plane inclination) were varied. Among other variables, they measured the evolution

of the front position xf (t). They showed that, even though departures from the

xf ∝ t1/3 theoretical trend were observed, this scaling was the correct approximation

at long times. This trend was also reported by Huppert [58] for a clear liquid flowing

down an inclined plane.

Cook et al. [75] performed a linear stability analysis of particle-laden thin-film flows
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on an inclined plane and their study demonstrated that the particle settling moder-

ately reduces the growth rate of unstable modes, while increasing the most unstable

wavelength.

Grunewald et al. [76] explained the self-similarity occurring in case of constant

volume inclined plane flow based on lubrication model. Their major focus was on the

effect of precursor layer thickness on the model prediction. The front position in this

case agreed to the t1/3 scaling law.

Recently, Murisic et al. [66] studied the particle-laden thin-film flow on an inclined

plane. They have performed experiments for a range of particle volume fraction and

fluid viscosity. The authors have studied the effect of particle volume fraction and

inclination angle on the flow and found that viscosity affects the time scale on which

particles settle or remain well-mixed. In another study by these authors, [67] they have

studied the settled regime experimentally and observed that particle settle due to

gravity and shear-induced migration helps in particle re-suspension. The theoretical

model agreed well with their experimental data.

In a very recent study by Ancey et al. [68] on neutrally buoyant non-colloidal sus-

pensions, they have simultaneously measured the local properties far from side wall

as well as macroscopic flow features like front position and flow depth profile. For

45% suspension, flow behavior does not differ much from pure Newtonian case. For

52 − 56% particle volume fraction the flow depth and front position were fairly well

predicted by lubrication theory. For volume fraction > 56% the flow reached a steady

state.

2.3 Gaps in the Existing Literature

As discussed above, the existing literature on spin disc flow has focused almost ex-

clusively on the spreading and instability of a single Newtonian viscous liquid with

a free surface. Recently, film spreading in case of two-layer coating flows has been

explored, which endeavors to study film thinning behavior and interfacial instability

between the two layers, which are assumed to be infinite in extent. Moreover, exper-
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imental studies on two-layer spin coating flow does not exist. In fact, there exist no

theoretical/experimental study which focuses on the contact line instability in case of

two-layer spin coating flow. Also, experimental/theoretical studies on particle-laden

flow of thin films are primarily restricted to inclined plane geometry, where the sus-

pending medium used is a fully wetting liquid. Therefore, deciphering the mechanism

behind the contact line instability in above-mentioned systems, to address the above

gaps in the existing spin coating literature sets the stage for this thesis work. The

contribution of this thesis and the objectives of this study are presented below.

2.4 Objective of the Thesis

The overall objective of the thesis is to investigate:

1. the spreading behavior and contact line instability in case of a liquid spreading

in presence of another liquid on top, and to compare with that of a single fluid

spreading with a free air-liquid interface by performing experiments.

2. the effect of physical properties of liquids and other process parameters on film

thickness and contact line evolution, and the shape of the capillary ridge in the

above case using numerical simulation.

3. the effect of presence of particles on the overall spreading dynamics and contact

line instability using experiments.

2.5 Contribution of this Thesis

In this work, we seek to study the spreading and instability behavior of a liquid by

perturbing the contact line from both inside and outside. This can be achieved in

the following two ways: (1) by adding another liquid on the outside, (2) by adding

particles (solid phase) in the liquid. The latter case refers to the spreading of a

suspension. This work is significant not only from a fundamental perspective, but
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also due to its applications, viz., in multi-layer coating (thin film of co-flowing fluids)

and micro-encapsulation processes (flow of suspensions).
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Chapter 3

Numerical Simulation of

Axisymmetic Two-layer spin

coating flow of Newtonian liquids

3.1 Introduction

In recent years, materials having a multi-layered coating have gained considerable

attraction because of their gamut of applications. For example, multi-layer coatings

are used to make CDs, DVDs, optical mirrors, semiconductors and biodegradable

polymeric films. One of the applications in electronic industry is to fabricate organic

solar cells using a bi-layer coating [77]. Depending upon the application, multi-layer

films can have thicknesses ranging from nanometers scale as for Langmuir films [78] to

several microns as for semiconductors. These layers can be of common liquids such

as oil or water, or can be of complex materials such as polymer melts or suspensions.

Each of the layers provide a unique functionality to the material which enhances its

properties and transforms it into an advanced material. For example, coatings of

mono-nitride and mono-carbide are applied on numerous materials to improve the

mechanical strength and corrosion behavior, respectively.

In the multi-layer spin coating process, two or more liquids are placed on one
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another on a rotating disc, which spread and thin to form a multi-layer film of fi-

nite thickness. Spin coating process for depositing a single-layer of material on a

flat substrate has been studied widely in the past through several experimental and

theoretical studies which have been reviewed in detail in Chapter 2. Unlike the

single-layer coating, spin coating process for depositing multiple layers of liquid on a

flat substrate has received lesser attention in the literature. Two-layer film flow on

a rotating disk was first studied theoretically by Sisoev and Shkadov [79]. Recently,

McIntyre and Brush [48] used lubrication theory to investigate the spin coating flow

of two immiscible vertically stratified Newtonian thin films. Their study focused on

examining the interfacial instabilities associated with the liquid-air and liquid-liquid

interfaces present in the thin two-layered film. In their investigation, effects of viscous

forces and condensation/evaporation of the upper layer was considered to study the

spreading and thinning of the film. It was observed that the disturbances in any of

the layer thicknesses affect the uniformity of the other, however, the disturbances to

the lower layer thickness have greater effect on the upper layer thickness as compared

to vice-versa. More recently, Dandapat and Singh [49] have established the role played

by viscosity, initial film thickness and density ratio (of the layered fluids) on final film

thickness for large Reynolds number at long times. In a recent article by Dandapat

and Singh [50], they have analytically presented long-time solution for an unsteady

two-layer liquid film flow on a horizontal rotating disk, and explained the findings

physically for small Reynolds number. It was observed that the final film thickness

attains an asymptotic value after a long time duration. They have also established

that viscous force dominates over centrifugal force and upper layer thins faster than

lower layer at long times.

Similar to the single-layer spin coating process, in two-layer spin coating process

each of the fluid layers spread to form thin flat film at the center and a capillary ridge

at the respective outer boundary. The formation of multiple capillary ridges affects

the uniformity of the final film and can lead to significant loss of the coating liquids.

The uniformity of the film depend upon numerous process parameters such as disc

rotation speed and initial volume of each fluid. Furthermore, ratios of the physical
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properties of the layered fluids significantly affect the evolution of film profiles. All

the studies for two-layer spin coating process reported so far examined the effect of

interfacial instabilities on the final film profile. However, the effect of surface tension

on the uniformity of the film and the formation of capillary ridges has not been studied

yet.

This chapter reports a numerical study on axisymmetric two-layer thin film flow

on a spinning disc. The focus is on the formation of capillary ridges close to the two

contact lines. The axisymmetric (1D) model equations governing the two-layer spin

coating flow are simplified using lubrication approximation. Precursor-layer model is

used to relive the singularity of the contact line. A Galerkin finite element method

(G/FEM) based approach is used to solve the equations numerically. The effect of

various fluid property ratios such as viscosity ratio, surface to interfacial tension ratio

and process parameters like volume ratios of fluids present in both the layers and

ratio of precursor layer thicknesses are studied.

3.2 Axisymmetric Model

This section describes the formulation of the governing equations describing the ax-

isymmetric flow of two-layer thin film on a rotating disc. The axisymmetric model

of spin coating flow assumes that the height of the free surface varies only with the

radial distance r and is independent of the transverse direction.

3.2.1 Mathematical Formulation

The system under consideration consists of two incompressible and immiscible New-

tonian fluids; fluid I having density ρ̃1, surface tension σ̃1, and dynamic viscosity η̃1,

and fluid II having density ρ̃2, surface tension σ̃2, and dynamic viscosity η̃2, respec-

tively. The layer of fluid II is placed on the layer of fluid I and both are placed on a

disc which is rotating with a constant angular velocity ω̃ as shown in Fig. 3.1. The

layer of fluid II is surrounded by air which is at a constant ambient pressure but exerts

no shear stress on the fluid-air interface. Throughout this chapter, the dimensional
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Figure 3.1: Schematic illustration of two-layer thin-film flow on a spinning disc. Dimen-
sional notations are used. The precursor layer thicknesses are greatly exaggerated.

variables have tilde, (̃.), over them whereas the corresponding dimensionless variables

are denoted without tilde, (.) and vector quantities are represented in bold italics.

Hereafter, the layer of fluid present in fluid II is referred to as upper layer, and fluid

I is referred to as lower layer. For mathematical convenience, we use the cylindrical

coordinate system (r̃, θ̃, z̃) as shown in the Fig. 3.1. Since the flow is axisymmet-

ric, at any point along the radial direction, the shape of the liquid-liquid interface

and the liquid-air interface are denoted by z̃ = h̃(1)(r̃, t̃), and z̃ = h̃(2)(r̃, t̃), respec-

tively [see Fig. 3.1]. The isothermal flow of fluid in each of the layers is governed by

Navier-Stokes equation and continuity equation:

ρ̃i

(
∂ũ(i)

∂t̃
+ ũ(i).∇̃ũ(i)

)
= −∇̃P̃ (i) + η̃i∇̃2ũ(i) −

ρ̃i[2ω̃ × ũ(i) + ω̃ × (ω̃ × r̃) + g̃], (3.1)

∇̃ · ũ(i) = 0, (3.2)

where ũ(i) = (ũ(i), 0, ṽ(i)) is the velocity of the fluid in the ith layer, ω̃ is the angular

velocity and g̃ is the gravity vector pointing downwards as shown in the Fig. 3.1.

On the right hand side of Eq. (3.1), the third term represents the Coriolis force

and the fourth term represents the centrifugal force. Equations (3.1) and (3.2) are

27



non-dimensionalized with appropriate scales as follows: disc radius, R0 is the length

scale in the radial direction; initial mean film thickness, H0 is the length scale in the

vertical direction; U0 is the velocity scale in the radial direction; V0 is the velocity

scale in the vertical direction, and P0 is the scale for pressure. The scale for density

and viscosity are ρ0 and η0, respectively, which for convenience are taken to be the

parameters of one of the layer fluids. Since, the flow is axisymmetric, the terms in

the radial-direction momentum balance equation that involve azimuthal velocity are

negligible [55]. Moreover, the momentum balance equation in azimuthal direction is

neglected. The non-dimensional form of the equations (3.1) and (3.2) in the relevant

directions are:

ε ·Re
(
∂u(i)

∂t
+ u(i) · ∇u(i)

)
=− ∂P (i)

∂r
+ ε2ηi

∂

∂r

[
1
r

∂(ru)
∂r

]
+ ηi

∂2u(i)

∂z2 + r, (3.3)

ε3 ·Re
(
∂v(i)

∂t
+ u(i) · ∇v(i)

)
=− ∂P (i)

∂z
+ ε2ηi

∂2v(i)

∂z2

+ ε4ηi

[
1
r

∂

∂r

(
r
∂v

∂r

)]
−B +O(ε2), (3.4)

1
r

∂(ru(i))
∂r

+ ∂v(i)

∂z
= 0, (3.5)

where ηi = η̃i/η0, and ρi = ρ̃i/ρ0 are the dimensionless viscosity and density, respec-

tively. The velocities in the radial and vertical directions are ũ(i) and ṽ(i), respectively.

Re = ρ0U0H0/η0 is the Reynolds number, B = ρ0gH
3
0/η0R0U0 is the Bond number,

and ε = H0/R0 is the aspect ratio. In each of the layers, flow is governed by the bal-

ance between the centrifugal force and the viscous force that gives the radial velocity

scale as U0 = ρ0ω
2R0H

2
0/η0, and the vertical velocity scale as V0 = U0H0/R0. Here,

∇ = R0.∇̃ is the dimensionless gradient operator. The pressure scale is P0 = ρ0ω
2R2

0,

and the time scale is T = R0/U0.

The Reynolds number associated with the flow is assumed to be very small so that

inertial effects are negligible. It has been shown previously [27] that coriolis force drives
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the flow in azimuthal direction and is negligible for the axisymmetric flow considered

here. Moreover, we assume that the film height is small and the gravitational effects

are negligible (B ≈ 0). The spreading film is sufficiently thin that allows use of the

standard lubrication assumptions: ε� 1 and Re.ε� 1. A more general discussion on

the lubrication theory for n-layer thin film flow with applications to multilayer coating

can be found in Anturkar et al. and Renardy [80,81]. Using lubrication assumption,

Eqs. (3.3)-(3.5) are simplified as:

0 = −∂P
(i)

∂r
+ ηi

∂2u(i)

∂z2 + r, (3.6)

0 = −∂P
(i)

∂z
−B, (3.7)

0 = 1
r

∂(ru(i))
∂r

+ ∂v(i)

∂z
. (3.8)

These equations are subjected to the following boundary conditions:

u(1) = 0 at z = 0, (3.9)

u(1) = u(2) at z = h(1)(r, t), (3.10)

η1
∂u(1)

∂z
= η2

∂u(2)

∂z
at z = h(1)(r, t), (3.11)

∂u(2)

∂z
= 0 at z = h(2)(r, t), (3.12)

P (1) = p0 − C1∇2h(1) − C2∇2h(2) at z = h(1)(r, t), (3.13)

P (2) = p0 − C2∇2h(2) at z = h(2)(r, t), (3.14)

where Ci = ε3σi/η0U0 is the inverse Capillary number, p0 is the atmospheric pressure,

and ∇2 = 1
r
∂
∂r

(r ∂
∂r

). Equation (3.9) represents the no-slip condition at the planar

substrate. Equations (3.10) and (3.11) represent the continuity of velocity and tan-

gential stress at liquid-liquid interface, respectively. Equation (3.12) represents the

zero tangential stress at the liquid-air interface, and Eqs. (3.13) and (3.14) repre-

sent the normal stress condition that incorporates the surface tension force at the
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respective surface.

From here on wards, the scales ρ0 = ρ1, and η0 = η1 are chosen to be the properties

of the lower layer fluid. The radial velocities u(1) and u(2) are obtained by integrating

Eqs. (3.6) and (3.7) for both the layers and applying boundary conditions given by

Eqs.(3.9)-(3.14).

u(1) =−
(
σ̂C

∂

∂r
(∇2h(2)) + C

∂

∂r
(∇2h(1)) + r

)
z2

2

+
(
C
∂

∂r
(∇2h(1)) + (1− ρ̂)r

)
zh(1) +

(
σ̂C

∂

∂r
(∇2h(2)) + ρ̂r

)
zh(2), (3.15)

u(2) =−
(
σ̂

η̂
C
∂

∂r
(∇2h(2)) + ρ̂

η̂
r

)[
z2

2 − zh
(2)
]

+
(
σ̂C

∂

∂r
(∇2h(2)) + C

∂

∂r
(∇2h(1)) + r +

[
σ̂C

∂

∂r
(∇2h(2)) + ρ̂r

][
2− 1

η̂

])
h(1)2

2

+
(
σ̂

η̂
C
∂

∂r
(∇2h(2)) + ρ̂

η̂
r

)
(η̂ − 1)h(1)h(2), (3.16)

where σ̂ = σ2/σ1, η̂ = η2/η1, ρ̂ = ρ2/ρ1 and C = ε3σ1/η1U1. Integrating the

continuity equation Eq. (3.8) for both the layers and using the kinematic condition

gives the usual mass balance as

∂h(1)

∂t
+ 1
r

∂(rQ(1))
∂r

= 0 , (3.17)

∂h(2)

∂t
+ 1
r

∂(r[Q(1) +Q(2)])
∂r

= 0 , (3.18)

where

Q(1) =
∫ h(1)

0
u(1)dz and Q(2) =

∫ h(2)

h(1)
u(2)dz . (3.19)

The quantities Q(1) and Q(2) are the fluxes in radial direction across the layer of fluid

I and fluid II respectively. Using Eq. (3.15) and Eq. (3.16), the fluxes Q(1) and Q(2)

are obtained as
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Q(1) =
(
σ̂C

∂

∂r
(∇2h(2)) + C

∂

∂r
(∇2h(1)) + r

)
h(1)3

3

+
(
σ̂C

∂

∂r
(∇2h(2)) + ρ̂r

)
h(1)2

2 (h(2) − h(1)), (3.20)

Q(2) =
(
σ̂C

∂

∂r
(∇2h(2)) + ρ̂r

)[
(h(2) − h(1))3

3η̂ + h(1)(h(2) − h(1))2
]

+
(
σ̂C

∂

∂r
(∇2h(2)) + C

∂

∂r
(∇2h(1)) + r

)
h(1)2

2 (h(2) − h(1)). (3.21)

Substituting the value of Q(1) and Q(2) in Eq. (3.17) and (3.18), the two equations

describing the evolution of internal surface and free surface, respectively are obtained

as

∂h(1)

∂t
+ 1
r

∂

∂r

[
r

{(
σ̂C

∂

∂r
(∇2h(2)) + C

∂

∂r
(∇2h(1)) + r

)
h(1)3

3

+
(
σ̂C

∂

∂r
(∇2h(2)) + ρ̂r

)
h(1)2

2 (h(2) − h(1))
}]

= 0, (3.22)

∂h(2)

∂t
+ 1
r

∂

∂r

[
r

{(
σ̂C

∂

∂r
(∇2h(2)) + ρ̂r

)[
(h(2) − h(1))3

3η̂ + h(1)(h(2) − h(1))
(
h(2) − h(1)

2

)]

+
(
σ̂C

∂

∂r
(∇2h(2)) + C

∂

∂r
(∇2h(1)) + r

)
h(1)2

2

(
h(2) − h(1)

3

)}]
= 0.

(3.23)

Now, defining ĥ1 = h(1) and ĥ2 = h(2) − h(1), so that ĥi represents the thickness

of the ith layer, the two equations describing the time evolution of the thicknesses of

the two layers with respect to spatial coordinate r are obtained as

∂ĥ1

∂t
+ 1
r

∂

∂r

[
r

{
ĥ3

1
3

(
σ̂C

∂

∂r
(∇2[ĥ1 + ĥ2]) + C

∂

∂r
(∇2ĥ1) + r

)
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+
(
σ̂C

∂

∂r
(∇2[ĥ1 + ĥ2]) + ρ̂r

)
ĥ2

1ĥ2

2

}]
= 0, (3.24)

∂ĥ2

∂t
+ 1
r

∂

∂r

[
r

{
ĥ2

1ĥ2

2

(
σ̂C

∂

∂r
(∇2[ĥ1 + ĥ2]) + C

∂

∂r
(∇2ĥ1) + r

)

+
(
σ̂C

∂

∂r
(∇2[ĥ1 + ĥ2]) + ρ̂r

)(
ĥ3

2
3η̂ + ĥ1ĥ

2
2

)}]
= 0. (3.25)

Equation (3.24) determines the film thickness ĥ1(r, t) of the lower layer while Eq.

(3.25) determines the film thickness ĥ2(r, t) of the upper layer. Both the governing

equations are fourth order non-linear PDEs which are subjected to the following initial

and boundary conditions:

ĥ1 = ĥ10(r) and ĥ2 = ĥ20(r) at t = 0, (3.26)

ĥ1r = 0 and ĥ2r = 0 at r = 0, (3.27)

ĥ1rrr = 0 and ĥ2rrr = 0 at r = 0, (3.28)

ĥ1 = b1 at r = R1(t) and ĥ2 = b2 at r = R2(t), (3.29)

ĥ1r = 0 at r = R1(t) and ĥ2r = 0 at r = R2(t). (3.30)

Equation (3.26) represents the initial conditions, i.e., the surface profiles ĥ10(r), and

ĥ20(r) at t = 0 are known. Equation (3.27) maintains the uniformity of the film

at the center and Eq. (3.28) ensures that no flux is added to the system at that

point. Equation (3.29) represents that the films ĥ1(r), and ĥ2(r) touch the precursor

layer of height b1 and b2, respectively. Here, R1(t) and R2(t) are the contact radius

for the lower and upper layer, respectively. Equation (3.30) enforces that the film

thicknesses touch the respective precursor layer by decaying the derivatives at that

point. A similar derivation but taking into account the additional effect of van der

Waals force and evaporation/condensation can be found in McIntyre and Brush [48].
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3.2.2 Numerical Method

The governing equations [see Eq. (3.24) and Eq. (3.25)] are solved numerically by

a method of lines that uses the Galerkin/finite element method (G/FEM) [82] for

spatial discretization and an adaptive finite difference method for discretization in

time [83]. In order to achieve high accuracy, quadratic basis functions φi(r) are used to

approximate the unknowns ĥ1, ĥ2 and r. The unknowns are then expanded in terms

of a series of basis functions z(r, t) = ∑N
i=1 zi(t)φi(r), where z = h or r with zi = ĥi or

ri as the corresponding nodal value that needs to be determined. The quantity N is

the total number of nodes. Since quadratic basis elements are used, the total number

of nodes is N = 2NE + 1, where NE is the number of elements in the system.

The numerical domain is defined as a line of length L that is divided into N

segments of equal length initially. At each node in the domain, Galerkin weighted

residuals are calculated by multiplying Eq. (3.24) and Eq. (3.25) by basis function

φi(r) and integrating the resulting expressions over the numerical domain. Weighted

residuals of third and fourth order derivatives are integrated by parts and simplified

using the boundary conditions [see Eqs. (3.27) and (3.28)]. Consequently, the residual

equations at the first and last nodes are discarded and replaced by the Dirichlet

boundary conditions [see Eq. (3.30)].

3.2.2.1 Galerkin weighted residuals

The weighted residual equations for the four unknowns (ĥ1, ĥ2, F and G) are:

Ri
1 =

∫
Ω

φi
∂ĥ1

∂t
dΩ

−
∫
Ω

∇φi ·
[(
ĥ3

1
3

)(
∇F +∇G+ r

)
+
(
ĥ2

1ĥ2

2

)(
∇F + ρr

)]
dΩ = 0, (3.31)

Ri
2 =

∫
Ω

φi
∂ĥ2

∂t
dΩ
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−
∫
Ω

∇φi ·
[(
ĥ3

2
3η + ĥ1ĥ

2
2

)(
∇F + ρr

)
+
(
ĥ2

1ĥ2

2

)(
∇F +∇G+ r

)]
dΩ = 0,

(3.32)

Ri
F =

∫
Ω

φiF dΩ + Cσ
∫
Ω

∇φi · ∇ĥ2 dΩ = 0, (3.33)

Ri
G =

∫
Ω

φiGdΩ + C
∫
Ω

∇φi · ∇ĥ1 dΩ = 0. (3.34)

where, Ω is the unknown computational domain, F = Cσ∇2h2, and G = C∇2h1.

3.2.2.2 Time Integration

The Galerkin/finite element weighted residuals are a set of nonlinear time-dependent

ordinary differential equations. The time derivatives appearing in the residuals are

discretized at each time step using one of the two finite-difference methods: (1)

backward-difference integrator and forward- difference predictor (BDI/FDP) which

is a first-order accurate method, or (2) trapezoid-rule integrator and Adams-Bashforth

predictor (TRI/ABP), which is a second-order accurate method.

Spinning disc flow is a type of time dependent free surface flow problem, where

the boundary of the finite element mesh moves with time. This is accounted for

by transforming the time derivative of any physical quantity (say, h) appearing the

governing equation as:
∂h

∂t
= ḣ− ẋ · ∇h (3.35)

where, ḣ is the time derivative in a fixed time frame and ẋ is the mesh velocity. In

the above equation, the time derivative of a physical quantity is obtained as:

ḣ = c1

Δtn

(
hn − hn−1

)
− c2ḣn−1 (3.36)

where, c1 and c2 are constants, c1 = 1 and c2 = 0 in case of backward Euler corrector

and c1 = 2 and c2 = 1 for trapezoidal rule corrector.
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3.2.2.3 Solution Method

At every time step, the resulting system of 4N non-linear equations representing four

unknowns (ĥ1, ĥ1rr, ĥ2, ĥ2rr) is solved using Newton’s method with an analytically

computed Jacobian.

Analytical Jacobians:

The Jacobians are calculated analytically for each of the residual equation with respect

to the four unknowns are:

Jacobian of R1 residual:

∂Ri
1

∂ĥj1
=
∫
Ω

φiφj
c

Δt dΩ

−
∫
Ω

∇φi ·
[
φj
(
ĥ2

1

(
∇F +∇G+ r

)
+ ĥ1ĥ2

(
∇F + ρr

))]
dΩ, (3.37)

∂Ri
1

∂ĥj2
= −

∫
Ω

∇φi ·
[
φj
ĥ2

1
2

(
∇F + ρr

)]
dΩ, (3.38)

∂Ri
1

∂F j
= −

∫
Ω

∇φi ·
[
∇φj

(
ĥ3

1
3 + ĥ2

1ĥ2

2

)]
dΩ, (3.39)

∂Ri
1

∂Gj
= −

∫
Ω

∇φi ·
[
∇φj ĥ

3
1

3

]
dΩ. (3.40)

Jacobian of R2 residual:

∂Ri
2

∂ĥj1
= −

∫
Ω

∇φi ·
[
φjĥ2

2

(
∇F + ρr

)
+ φjĥ1ĥ2

(
∇F +∇G+ r

)]
dΩ, (3.41)

∂Ri
2

∂ĥj2
=
∫
Ω

φiφj
c

Δt dΩ

−
∫
Ω

∇φi ·
[
φj
((

ĥ2
2
η

+ 2ĥ1ĥ2

)(
∇F + ρr

)
+ ĥ2

1
2

(
∇F +∇G+ r

))]
dΩ, (3.42)
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∂Ri
2

∂F j
= −

∫
Ω

∇φi · ∇φj
[(
ĥ3

2
3η + ĥ1ĥ

2
2 + ĥ2ĥ

2
1

2

)]
dΩ, (3.43)

∂Ri
2

∂Gj
= −

∫
Ω

∇φi ·
[
∇φj ĥ

2
1ĥ2

2

]
dΩ. (3.44)

Jacobian of RF residual:

∂Ri
F

∂ĥj1
= 0, (3.45)

∂Ri
F

∂ĥj2
= Cσ

∫
Ω

∇φi · ∇φj dΩ, (3.46)

∂Ri
F

∂F j
=
∫
Ω

φiφj dΩ, (3.47)

∂Ri
F

∂Gj
= 0. (3.48)

Jacobian of RG residual:

∂Ri
G

∂ĥj1
= C

∫
Ω

∇φi · ∇φj dΩ, (3.49)

∂Ri
G

∂ĥj2
= 0, (3.50)

∂Ri
G

∂F j
= 0, (3.51)

∂Ri
G

∂Gj
=
∫
Ω

φiφj dΩ. (3.52)

Each Newton iteration involves finding the solution of the equation:

J.Δx = −R (3.53)
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where, Δx is the vector used to update the solution vector (x + Δx) at the end of

each iteration. J is the Jacobian matrix Jij = ∂Rj

∂xi which is obtained analytically. The

updated x value is used to calculate the J and R for the next iteration. This process

is repeated until the L2-norm of both the vector of residuals (R) and the updates

(Δx) fall below the specified input tolerance (i.e., 10−6).

The correctness of the Jacobian is demonstrated by the quadratic convergence

of Newton’s method. This algorithm for computing the transient surface profiles

is programmed in FORTRAN which uses Hood’s [84,85] frontal solver with Walter’s

modification [86] to solve the large system of algebraic equations at each Newton’s

iteration, efficiently.

3.2.3 Grid Convergence Study
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Figure 3.2: Grid convergence study showing the contact line evolution for the lower layer
(R1(t)) using three different number of elements NE = 1500, 2000 and 2500.

A grid convergence study was performed by running the numerical simulation for

three different grid sizes i.e., for total number of elements as 1500, 2000 and 2500.

The results for all the three cases are plotted in Fig. 3.2 and it shows that the curves

for varying number of elements fall on top of each other and the relative error for the
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time of crossover is ∼ 0.02. This ensures that the results (observed crossovers) are

independent of grid size (or number of elements), and are not any numerical artifacts.

3.2.4 Code Validation

The numerical scheme is validated for the single-layer spin coating process of Newto-

nian fluids with Wilson et al. [23] and for power law fluids with Charpin et al. [55]. The

corresponding results for both the cases are presented in a previous work from our

group [57]. The numerical procedure for the two-layer system considered here is vali-

dated with the results reported in McIntyre et al. [48]. The planar solution trajectories

for the evolution of upper layer thickness, h(2) − h(1), as a function of the lower layer

thickness, h(1), reported by McIntyre and Brush [48] has been accurately reproduced

in Fig. 3.3.

3.3 Results and Discussion

All the results reported in this section are obtained using a numerical procedure

described in the previous section with 1500 equally spaced quadratic elements. If not

mentioned, all the profiles are obtained using a density ratio ρ2/ρ1 = 1 and volume

ratio V2/V1 = 1, where V2 and V1 are the volume of the fluid present in the upper

and the lower layer, respectively. Appropriate values of dimensionless precursor layer

thicknesses b1 and b2 are also specified. Results presented will include the effect of

the fluid properties, and the process parameters on the the flow dynamics, uniformity

of the layered films, and shape of capillary ridge for each layer. All the results are

given in terms of dimensionless quantities.

3.3.1 Effect of initial condition

Fig. 3.4 illustrates the differences in the evolution of both the layers when subjected to

different initial conditions. Each column corresponds to the spreading evolution for a

particular initial condition while each row corresponds to the snapshots of spreading at
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a particular instant (embedded in each snapshot) during the spreading evolution. The

initial shapes for both the drops are parabolic in column 1 and of the form a(b− r2).

In column 2, 3, and 4, the shapes are of the form a(b− r4), a(b− r6) and a(b− r8),

respectively. In order to compare the effect of initial condition on the evolution of

both the layers, the volume of liquids in each of the layers are assumed to be the same

as in column 1. The initial shapes (parameters a and b) are provided accordingly.

The flatness of the initial shapes increases as we move towards right (column 2 to 4)

(See row 1 of Fig. 3.4). Fig. 3.4 makes it plain that although the initial evolution

looks slightly different for different initial conditions, the long time evolution (i.e., at

t = 20) are pretty much the same for all cases considered here. Overall, it can be said

that the initial shape of the layers affect the spreading for a very short initial period.

However, the effect of initial shape plays a minor role in determining the spreading

evolution and shape of the capillary ridges at long times. Hence, as reported in most

of the previous studies on spinning disc flow, [23,28,32,55] in all the simulations reported

in this chapter, parabolic drops are provided as initial shape for the two films. The

shape of the parabola for the lower layer is: ĥ10(r) = 1− r2, and for the upper layer

is: ĥ20(r) = a− r2 − ĥ10(r), where a =
√

2,
√

3, and 2 for volume ratio = 1, 2 and 3,

respectively.

3.3.2 Effect of viscosity ratio

3.3.2.1 Film thickness profiles

The effect of viscosity ratio on the time evolution of film profiles is explored by

computing the profiles for three different values of the viscosity ratios, η2/η1 = 0.1, 1,

and 10, respectively. Figure 3.5 depicts the evolution of the film thickness profiles

for the two layers separately for 0 ≤ t ≤ 100. For all the three cases, the lower

layer profiles are similar at long times (t = 100); i.e. flat, thin film at the center

and capillary ridge at the periphery. However, their evolution is observed to be quite

different. At t = 15, a comparison between the corresponding profiles in Figs. 3.5(a)-

3.5(c) shows that the ridge becomes bulkier as the viscosity ratio increases. For

41



Figure 3.5: Film thickness profiles for three different viscosity ratios (a) 0.1, (b) 1, and
(c) 10, for the lower layer (left) and upper layer (right). The profiles are computed for
σ2/σ1 = 1, C = 2.7× 10−2 and b1 = b2 = 0.01.
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η2/η1 = 10, the viscous upper layer offers resistance to the flow of lower layer. Thus,

the only way the fluid in the lower layer can flow is by pushing the liquid in the upper

layer outwards, thereby forming a bulky capillary ridge.

Figures 3.5(d)-3.5(f) show the time evolution of the upper layer profiles for dif-

ferent viscosity ratios mentioned above. Similar to the lower layer, the upper layer

profiles are also flat at the center, producing a thin film after a long time duration.

However, the film evolution for the three cases proceeds in a different manner. For

η2/η1 = 0.1 [see Fig. 3.5(d)], two distinct regions are clearly delineated. The upper

layer fluid which resides on top of the lower layer is referred to as region A whereas the

fluid residing beyond the inner contact line is referred to as region B. The dynamics

of fluid in region A is primarily controlled by flow of fluid in the lower layer, resulting

in slower rate of spreading and thinning. However, the fluid which resides in region

B responds readily to the centrifugal force, resulting in faster spreading and thinning

of the upper layer film in that region. The situation is reversed for η2/η1 = 10, as

shown in Fig. 3.5(f). Here, the flow of fluid in the region A is still governed by the

flow of fluid in the lower layer. But, most of the fluid flowing out from region A gets

accumulated in region B. The lower layer fluid also flows outwards due to centrifugal

force. However, the viscous fluid present in the region B is slow in its response to

centrifugal force, thereby forming a bulky capillary ridge. From Figs. 3.5(d)-3.5(f), it

is evident that the spreading of the upper layer decreases with the increase in viscos-

ity ratio. Hence, ratio of the viscosity of two fluids has significant effect on the final

two-layer film.

To re-emphasize the dynamics discussed above, snapshots of the two-layer profiles

and the corresponding velocity streamline patterns at t = 15 are shown in Fig. 3.6.

Since the flow is axisymmetric, the profiles in Fig. 3.6(a-c) are computed by creating

mirror images of the corresponding profiles in Fig. 3.5. In Fig. 3.6(a), when η2/η1 =

0.1, a large single-layer film is formed surrounding a uniform two-layer film at the

center. When both the fluids have same viscosity (η2/η1 = 1), a two-layer film is

formed at the center surrounded by the capillary ridge of the upper layer as depicted

in Fig. 3.6(b). When η2/η1 = 10, a small two-layer film at the center is formed which
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is surrounded by bulky capillary ridges at the contact line as described in the previous

section. Moreover, the streamline patterns for both the layers are illustrated in Fig.

3.6(d-f), which explain the observed shape of the capillary ridges for both the layers.

It shows that the lower layer fluid moves in the radially outward direction due to the

applied driving force for all the viscosity ratios studied. However, the upper layer

fluid shows interesting flow structures in the capillary ridge region. For η2/η1 = 0.1,

the upper layer fluid surrounding the lower layer simply flows in radially outward

direction. For η2/η1 = 1, the upper layer fluid just above the lower layer ridge, move

in the upward direction, thereby accumulating the fluid in the ridge of the upper

layer. This upward movement of the fluid in the upper layer becomes pronounced

when η2/η1 = 10, leading to the formation of bulky capillary ridge. Figure 3.6 makes

it plain that with increase in viscosity ratio bulkiness of the capillary ridge also

increases.

3.3.2.2 Contact line evolution

Figure 3.7 shows the effect of viscosity ratio on the contact line evolution for both

the layers. From Fig. 3.7(a), it is clear that for t < 24.7, the contact radius for the

lower layer increases as the viscosity ratio goes down. This can be explained by the

reason that the resistance offered by the upper layer fluid decreases as the viscosity

ratio decreases. However, at a later time (t > 24.7), there is a crossover of the contact

radii for viscosity ratios of 0.1 and 1.
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Figure 3.7: Numerically calculated values of (a) R1(t) and (b) R2(t) for lower and upper
layer, respectively, plotted as a function of time, for three different viscosity ratios. Here,
σ2/σ1 = 1, b1 = b2 = 0.01 and C = 2.7× 10−2.
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This crossover happens because the spreading rate of the lower layer fluid for

η2/η1 = 0.1 is reduced due to the quick formation of large single-layer fluid surround-

ing it, while the lower layer fluid for η2/η1 = 1 continues to spread at the same rate.

For even longer time they evolve almost at the same rate. Figure 3.7(b) shows the

evolution of the outer contact radius, R2. It is observed that spreading rate of the

upper layer fluid increases with the decrease in viscosity ratio.

3.3.2.3 Film thickness at the center
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Figure 3.8: Numerically calculated values of the film thickness at the center h(1) and
h(2) − h(1) for the lower (solid lines) and upper layer (dotted lines), respectively, plotted as
a function of time, for three different viscosity ratios. Here σ2/σ1 = 1, b1 = b2 = 0.01 and
C = 2.7× 10−2.

Figure 3.8 depicts the film thickness at the center versus time for both the layers.

It is clear from the above figure that film thickness decreases monotonically with time

for both the layers reaching the respective value of the precursor layer thickness at

large time. Moreover, as the viscosity ratio decreases the film thickness for both the

layers decreases. It is due to the ability of the upper layer fluid to spread faster as

compared to the lower layer affecting the thinning rate of both the layers. However,

there is a crossover in the film thickness in the lower layer at t = 3.6, for η2/η1 = 0.1

and 1. This effect occurs because the upper layer fluid for η2/η1 = 0.1 moves outward

very fast. By the time the crossover happens, most of the liquid in the upper layer
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Figure 3.9: Film thickness profiles for three different ratios of interfacial tension (a)0.1,
(b)1, and (c)10, respectively, for the lower (left) and upper layer (right). The profiles are
computed for η2/η1 = 1, C = 2.7× 10−2 and b1 = b2 = 0.01.

is drained out resulting in an almost planar film at the center which hardly allows

any further thinning of the upper layer. Once the upper layer becomes thin enough,

the viscous resistance in the thin upper layer becomes increasingly more important

with the decreasing film thickness. Therefore, shear stress applied by the fluid in

the upper layer slows down the evacuation of fluid from the lower layer resulting in

the crossover. However, for η2/η1 = 1 both the liquids spread together due to equal

viscosity and continue to thin at the same rate even after the crossover.
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3.3.3 Effect of interfacial tension ratio

3.3.3.1 Film thickness profiles

The influence of interfacial tension ratio on the evolution of the two layers are inves-

tigated for three different ratios of interfacial tension, σ2/σ1 = 0.1, 1 and 10, respec-

tively, for 0 ≤ t ≤ 100. Figure 3.9 depicts the evolution of the film thickness profiles

separately for the two layers. All the profiles are observed to be similar at later times

even though their initial evolution is quite different. In Figure 3.9, a comparison of

the corresponding profiles show that both the layers tend to become flat as the ratio

of interfacial tension increases from 0.1 to 10. In other words, the sharpness of the

capillary ridge decreases with the increase in interfacial tension with both the lower

and upper layer films becoming almost flat for σ2/σ1 = 10. The flow dynamics in

the capillary ridge region is determined by the balance between the surface tension

force and centrifugal force. When the surface tension (σ) is small, the curvature term

(hrr) increases such that the surface tension force (σhrr) balances the centrifugal force

at the outer rim. Conversely, for a higher value of surface tension the curvature is

small, and film is almost flat and smooth. It is also clear from the above figure that

the spreading of fluid in both the layers increases as the ratio of interfacial tension

decreases.

The above dynamics is further re-emphasized by taking snapshots of the two-

layer film and the corresponding velocity streamline patterns formed at t=20 for

three different interfacial tension ratios, as shown in Fig. 3.10. It is evident from Fig.

3.10 that the variation in the interfacial tension ratio significantly affects the upper

layer profile while the lower layer remains almost unaffected. Moreover, Fig. 3.10(a)

shows an interesting double ridge type profile. The liquid that drains out from the

upper layer gets accumulated in the ridge region. However, the ridge becomes sharper

in order to balance the centrifugal force. As the interfacial tension ratio increases,

the film flattens out and the capillary ridge for the upper layer almost disappears

producing a uniform two-layer film in the case of σ2/σ1 = 10 [see Fig. 3.10(c)].

Moreover, the streamline patterns for both the layers shown in Fig. 3.10(d-f) explain
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the observed shape of the capillary ridges. It shows that the fluid in both the layers

move in the radially outward direction due to the applied driving force for all the

interfacial tension ratios studied. However, the upper layer fluid for σ2/σ1 = 0.1

shows an interesting flow structure in the capillary ridge region [see Fig. 3.10(d)].

The fluid in the ridge near the contact line circulates back forming the second capillary

ridge in between the two ridges formed in the upper layer.

3.3.3.2 Contact line evolution
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Figure 3.11: Numerically calculated values of (a) R1(t) and (b) R2(t) for lower and upper
layer, respectively, plotted as a function of time, for three different ratios of interfacial
tension. Here, η2/η1 = 1, b1 = b2 = 0.01 and C = 2.7× 10−2.

Figure 3.11(a) clearly shows that the contact radius for the lower layer increases

as the ratio of interfacial tension decreases. Figure 3.11(b) shows the evolution of

contact radius for the upper layer. In contrast to the lower layer, evolution of contact

radius for the upper layer is much more interesting with the occurrence of multiple

crossovers. The first crossover occurs between the contact radii for σ2/σ1 = 0.1 and

1 at t = 4.5, and the reason for this crossover is explained as follows. Initially,

for σ2/σ1 = 0.1 most of the fluid accumulate in the capillary ridge region and the

contact line does not move significantly. The bulky capillary ridge then experiences

a large centrifugal force pushing the contact line to move outward at a faster rate as

compared to the case of σ2/σ1 = 1. There are two other crossovers at t = 13 and

t = 23.5 between the contact radii for σ2/σ1 = 0.1 and 10, and σ2/σ1 = 1 and 10,

respectively. Both these crossovers occur because the upper layer for σ2/σ1 = 10,

does not form a sharp capillary ridge. Consequently, the liquid in the upper layer
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drains out very slowly resulting in slow spreading of the film.

3.3.3.3 Film thickness at the center

The numerical simulation indicates that film thickness at the center decays monoton-

ically with time for all the interfacial tension ratios studied [See Fig. 3.12]. For an

initial period of time (i.e., t < 30), film thickness for both the layers decreases with

a decrease in the interfacial tension ratio. At long times, it decays asymptotically to

attain the corresponding value of the precursor layer thickness for both the layers.
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Figure 3.12: Numerically calculated values of the film thickness at the center (a) h(1)(t)
and (b) h(2)(t) for lower and upper layer, respectively, plotted as a function of time, for three
different ratios of interfacial tension. Here, η2/η1 = 1, b1 = b2 = 0.01 and C = 2.7× 10−2.

3.3.4 Effect of precursor layer thickness

3.3.4.1 Film thickness profiles

The influence of dimensionless precursor layer thicknesses b1 and b2 on the final two-

layer film formed is investigated for three different values of thicknesses b1 = b2 =

0.001, 0.01 and 0.1, respectively, while the properties of the two fluids being the same.

Figure 3.13 depicts the profile of two-layer film computed for the cases above. In a

precursor layer model of contact line, it is assumed that the surface is already wetted

with a small film of the same fluid. In essence, a high value of precursor layer thickness

(b) implies high ability of the fluid to wet the surface. Figure 3.13 shows that the

spreading rate of both the layers increases with the increase in the thicknesses b1 and

b2. Figure 3.13(c) corresponding to b1 = b2 = 0.1 shows the maximum spreading
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Figure 3.13: Film thickness profiles for three different values of dimensionless precursor
layer thicknesses b1 = b2 = 0.001(a), 0.01(b), and 0.1(c) for the lower layer(left) and up-
per layer(right). Here, C = 2.7 × 10−2 and fluids in both the layers have same physical
properties.
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while Fig. 3.13(a) with b1 = b2 = 0.001 shows the least spreading. The variation in

the precursor thickness also affects the sharpness of capillary ridge. As shown in Fig.

3.13, the sharpness of capillary ridge decreases with the increase in precursor layer

thicknesses b1 and b2 as the fluid has a tendency to spread more for a larger value

of precursor layer thickness. The increase in the precursor layer thickness can be

considered similar to increase in slip velocity, thus increasing the rate of spreading.

The effect of change in the precursor layer thickness on the film profiles follows a

trend similar to the one observed for single-layer coating of Newtonian fluids [22,59].

3.3.5 Effect of initial volume ratio

3.3.5.1 Film thickness profiles

Figure 3.14 shows the snapshots of the film profile at t = 10 for three different ratios

of initial volume. It shows, when both the fluids have same initial volume V2 = V1,

most of the liquid material is used in forming a two-layer film. If the initial volume

of upper layer fluid increases V2 = 2V1, then the extra added fluid in upper layer

is wasted in forming a large single-layered film and produces a small two-layer film.

The trend is maintained on increasing the volume further V2 = 3V1, as shown in Fig.

3.14. The above analysis dictates that a proper balance of initial volume is required

to form a large two-layer film with minimum loss of the material of fluids in either

layer.

3.4 Conclusions

In this chapter, a systematic study of the two-layer spin coating process was carried

out using numerical simulations. The study was focused on observing the effect of

fluid property ratios and process parameters on the time evolution of film profile

and capillary ridge formation. The axisymmetric 1D model equations governing the

flow were developed and solved numerically using the G/FEM based approach. The

singularity of the contact line was resolved using a precursor layer model. The results
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reported include the effects of viscosity ratio, interfacial tension ratio, precursor-layer

thicknesses and initial volume ratio of the fluids present in the two layers. All the

ratios studied were defined as property of fluid II (upper layer) with respect to the

property of fluid I (lower layer).

It was observed that bulkiness of the capillary ridge increases with an increase in

the viscosity ratio. Also, the capillary ridge becomes sharper with the decrease in the

interfacial tension ratio. However, the final two-layer film formed in the former case

is small and non-uniform as compared to the later. Moreover, the sharp capillary

ridges so formed could affect the uniformity of the two-layer film. Nevertheless, the

results suggested that a uniform two-layer thin film can form when the fluid in the

upper layer is less viscous or when the upper gas-liquid surface tension is more than

the inner liquid-liquid interfacial tension.

In addition to the above parameters, precursor layer thickness and initial volume

ratio were also found to have significant effect on the uniformity of the two-layer film.

It was observed that the increase in the precursor layer thickness facilitated the film

to become uniform. It is important to note that the increase in the volume ratio

did not affect the uniformity of the film, rather the extra amount of fluid was used

in forming either a bulky capillary ridge or a large single-layer film surrounding the

two-layer film. Therefore, operating the process with an equal volume of the fluids

in both the layers will produce a uniform two-layer coating film with minimal loss of

the liquids.

Although this study was focused on Newtonian liquids, its procedure and results

may serve as a basis for extending the present model to study the two-layer spin

coating process of non-Newtonian fluids such as polymer melts, emulsions and sus-

pensions. The future work in this field will aim to develop a numerical algorithm to

study the stability of the capillary ridges to azimuthal perturbations.
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Chapter 4

Instability in liquid-liquid thin film

spreading on a spinning disc

4.1 Introduction

Simultaneous spreading of stratified layers of two thin liquid (Newtonian) films, on a

horizontal spinning disc, has been the subject of recent investigations, as discussed in

Chapter 3. The liquid layers considered in these studies were assumed to be infinite in

extent. Very recently, McIntyre and Brush [48] modeled the evolution of film thickness

in such a system by using lubrication theory. Their analysis revealed that the film

thickness of both the layers is much more sensitive to minute changes or disturbances

in the lower layer. Similar analysis was carried out to understand the effect of fluid

property ratios on the thinning evolution of two fluid layers of uniform thicknesses

at low and high Reynolds numbers [49,50]. However, all these studies have explored

the effect of fluid properties and process parameters on film thinning and interface

evolution, away from the two contact lines.

We, thus, incorporated the effect of capillary pressure in our 1D axisymmetric

two-layer flow model, to understand the contact line evolution as well as shape of

the capillary ridge in the above system. Our simulation results considering wetting

Newtonian liquids, as reported in the previous chapter, revealed that, for small enough

viscosity ratios, a two layered film is formed surrounded by a single layer film of outer
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liquid while for higher viscosity ratios, a two layer film is formed surrounded by bulky

capillary ridges. Also, decreasing the ratio of surface to interfacial tension resulted

in an increase in the sharpness of the capillary ridge for both the liquids. Most

importantly, varying the initial volume ratio of the fluids is found to have a negligible

effect on the two-layer film. Our study is different form the previous study [48] which

focuses on effect of initial disturbances on the evolution of interfacial instability in

both the layers.

As evident from above discussion, all the previous studies lack in explaining the

dynamics of contact line fingering instability in layered fluids, typically observed in

thin films of single liquid. [46,62,63] The instability appears at the contact line of the

spreading liquid, due to the formation of capillary ridge which is unstable to slight

perturbation in the angular direction leading to formation of fingers. The onset and

evolution of fingering instability in thin film flow of single liquids is observed to be

dependent on physical properties of the liquid and operating variables. However, the

effect of these variables on the instability is unknown for simultaneous spreading of

superposed drops of two liquids. In particular, it is not clear whether introducing

another liquid will suppress or enhance (control) the instability in such a system.

Indeed, such controlling of liquid-liquid interfacial instability, but driven by viscosity

differences, in a Hele-Shaw cell, has been reported recently [87] wherein, the instability

behavior was found to alter dramatically while using a cell with varying cross-section

(geometry) along the flow length instead of keeping it constant as in a typical Hele-

Shaw flow. Apart from the fundamental understanding and control of the instability

behavior for two fluid film flows, the flow dynamics observed in this work will sig-

nificantly aid in the understanding of processes dealing with multi-layer coatings

of surfaces. Such flow of layered films is also relevant for the processes involving

bi-layered or vertically segregated thin films [88]. The droplet formation phenomena

observed in this study will be of considerable interest for pharmaceutical processes

making microspheres using centrifugal atomization technique [11]. It can be applied

for the production of encapsulated microspheres of two different drug ingredients,

thereby expanding the range of options available for combination therapy.
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The objective of this Chapter is to experimentally investigate the spreading and

instability behavior during the simultaneous spreading of a two-liquid system (drop on

a drop) on a rotating substrate which will provide answers to some of the pertaining

issues cited above. The primary focus here is to find out the effect of variation in the

volume ratio of the two liquids on the instability behavior. This system also allows

us to study the interaction between the contact lines of both the liquids by a simple

variation in the volume ratio of the two liquids.

4.2 Experimental Details

4.2.1 Materials and Apparatus

The experimental system is shown in Fig. 4.1. It consists of a smooth, flat, alumini-

mum disc of diameter 15 cm rotated using a computer controlled DC stepper motor

in the speed range 50 − 10000 revolutions per minute (rpm). The disc attains the

desired speed from rest in less than 0.5 s using an acceleration of 1000 rpm/s. The

feedback controller mechanism ensures that the random fluctuations in the rotational

speed are within 2% for 250 rpm while they are within 5% for 1000 rpm.

Two Newtonian liquids were used in the experiment, the properties of which are

listed in Table 4.1. The two liquids were chosen to have the same viscosities and

nearly same densities, but with significant difference in the surface tension (hence

contact angle) values. This ensured that the observed behavior is primarily due to

the differences in the surface tension values. The surface tension of the two liquids and

their interfacial tension were measured using the well known pendant drop method.

The static contact angles for both the liquids with the aluminium disc in presence of

air was obtained by placing the drop of the liquid on the horizontal disc and imaging

by a camera placed sideways and in the plane of the disc. The resulting image was

analyzed using ImageJ software to obtain the static contact angle. The same imaging

technique was, however, not accurate enough to obtain the static contact angle made

by the liquid-liquid interface with the disc surface. The viscosity values for both the
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Figure 4.1: Schematic of the experimental set up. (a) Spinning disk assembly and image
acquisition system. Area colored blue represents liquid 1 while that colored red represents
liquid 2 (see Table 4.1). (b) Sample image taken at certain stage of spreading. (c) Same
image as in (b) but superimposed with the edge detected coordinates for the inner as well
as outer interfaces.

liquids were obtained using Brookfield digital viscometer employing a cone and plate

geometry.

4.2.2 Experimental Procedure

As shown in Fig. 4.1, the initial state comprised of a drop of liquid uniformly covered

by a drop of another liquid on top while confirming that their axes coincided with

Table 4.1: Physical properties of the liquids used in the spin-coating experiments and
equilibrium contact angle of the drop on aluminium substrate. The interfacial tension for
the castor oil-glycerol interface was measured to be 18.96 mN/m.

Liquids Density Viscosity Surface tension Static contact angle
(kg m−3) (Pa s) (mN/m) (deg)

Glycerol (Liquid I) 1260 0.654 64.20 ∼ 64
Castor Oil (Liquid II) 960 0.670 32.74 ∼ 31

59



each other and also with that of the substrate plate. A drop of liquid 1 (inner liquid)

of volume V1 was put onto the plate through a hollow, cylindrical tube placed verti-

cally and with its one end flushed with the substrate face and its axis coincident with

that of the plate. The drop remained on the substrate plate with minimum contact

with the tube edges. The tube was lifted very slowly using micrometer screw arrange-

ment and the drop was allowed to spread to its equilibrium shape corresponding to

its static contact angle, which took a few minutes. Following this, another tube, but

with a larger diameter was similarly placed over the plate while enclosing the first

drop. The second liquid of specified volume V2 was then poured onto the plate in

minute quantities near the inner edge of the tube so that all the liquid accumulates

and encloses the inner drop completely and uniformly. The pouring near the edge

was required to prevent the possible break-up of the inner drop of liquid when sec-

ond liquid was poured directly over it. The tube was then lifted very slowly using

the micrometer screw. This drop-on-drop conformation was allowed to reach their

equilibrium position, which required a few minutes. The lifting of the tubes, however

slowly, resulted in the adhering of small amounts of liquid to its edges which was

accounted for carefully. A well-defined enclosed drop configuration required the inner

liquid to have higher surface tension than that of the outer liquid (liquid 2). Reversing

the positions was not possible as the outer liquid, with higher surface tension, cannot

uniformly enclose the inner liquid drop. The final configuration resulted in an outer

liquid-air-solid contact line and inner liquid-liquid-solid contact line.

The volume (V1) of liquid 1 was kept constant at 0.5 ml, while volume (V2) of

liquid 2 was varied from 1 to 6 ml so as to have the value of V2/V1 in the range

2−12. The primary reason behind varying volume ratio was to elucidate the effect of

proximity of the two contact lines with respect to each other. Note that constant V1

yields constant initial radius of inner liquid while increasing V2 results in increasing

initial radius of outer liquid and hence pushes the outer contact line further away.

The lower limit of V2 was fixed so as to prevent the merging of the two contact lines,

if very close together, while upper limit was determined based on the fixed plate

diameter which allows for obtaining reasonable amount of data before the spreading
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liquid spills near the substrate edge.

The disc surface, before every experiment, was washed multiple times using soap

solution and rinsed with DI water followed by acetone to remove any traces of liquid

from previous experiments. This protocol ensured the reproducibility of the experi-

mental results. All experiments were carried out at a fixed angular speed of 400 rpm.

Each experiment was repeated 4 times and the results presented are averages over

these experiments.

4.2.3 Imaging and Analysis

The spreading dynamics was imaged using a high speed (CCD) camera (Teledyne

DALSA), interfaced to a computer which records images of the flow as it progresses at

specified intervals. The camera exposure was adjusted to acquire sharp images. The

disc surface was illuminated from above using a bright, halogen lamp. A small amount

of blue colored ink was added to liquid 1 so as to identify its spreading boundary (i.e.

interface between inner and outer liquid) very accurately (See Fig 4.1(b)). It was

verified that the addition of the ink does not alter the surface tension of the liquid.

The viscosity of liquid 1 was measured with ink added to it. The camera, as shown in

Fig. 4.1(a), is placed slightly inclined to the vertical. This is to prevent the reflection

of the camera from the optically flat substrate surface appearing in the images which

can create difficulty in image analysis.

The oblique positioning of the camera with respect to the plate surface makes the

drop and plate appear non-circular in the images due to unequal distance of different

regions on the plate from the camera. This spatial variation was taken into account by

imaging four concentric circles drawn on a similar plate, under similar camera, plate

and light positioning, spanning the whole area and obtaining the coordinates along

the circumference of each circle (See Fig. 4.2). The alternate positioning of white and

black bands as shown in the figure makes the detection of the circles much easier.

This procedure provided the ratio between the actual radius and the apparent radius

obtained from the images at different spatial locations which was then applied to the

fluid spreading images appropriately. Increasing more measurements (i.e. drawing
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Figure 4.2: Scale used for image calibration.

several more concentric circles) improved the correction by a negligible amount.

The acquired images were analyzed in ImageJ and MATLAB R© to track the po-

sition of the interface and extract its behavior. The sequence of steps involved in the

edge detection process is shown in Fig. 4.3. First, the raw image is converted to a

binary image. In the next step, the image is inverted and the connected component

(drop) having only white pixels (the required object) is identified. Any noise in the

required object image is then removed and finally, the edge is extracted using stan-

dard edge detection algorithm (‘sobel’ method) available in MATLAB’s inbuilt image

analysis tool. The edge detected coordinates were calibrated using the scale shown

in Fig. 4.2. The algorithms use the polar and Cartesian coordinate systems with the

origin at the center of the disc. The edges were detected to an accuracy of ±0.15 mm

(see Fig. 4.1(c)).

The edge detection data was used to calculate several quantities, viz., effective

radius (r) at different radial locations (i.e., different times), critical radius, spreading

rates, number of fingers, and evolution of the finger front position. The effective

radius at different times before the onset of instability, was obtained by fitting a

circle to the edge detected coordinates.

In order to find the finger front position as a function of time, the image data
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Original Image Grey to Binary Inverted Image

Required ObjectHoles FilledEdges Found

Figure 4.3: Sequence of operations involved in the processing of raw image to extract the
edge of a spreading drop.

was first converted to polar coordinates (r− θ) and the local maxima (finger tips) in

each image data was found out as shown in Fig. 4.5. Then, one particular finger tip

position was tracked in subsequent images to find out the position of the finger front

with time. Depending on the rotational frequency and the camera frame rate, the tip

position of a particular finger in the next image was obtained by searching within a

specified range of angular distance. After finding out the front position with time for

several fingers in a particular experiment, it was observed that the trends were not

much different for all the fingers as compared to the fastest growing finger. Therefore,

the data is reported only for the fastest growing finger in all the experiments. In the

following sections we will refer to liquid 1 and liquid 2 as inner and outer liquids,

respectively.
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Initial Drop Critical Radius Finger Growth

R0 Finger
R2

R1

Figure 4.4: Images showing the definition of quantitative parameters obtained using image
analysis.

4.3 Results and Discussion

In the following, the qualitative aspects of the spreading behavior for the system at all

times are discussed at first, followed by quantitative estimates about axisymmetric

spreading and fingering instability. Finally, some interesting early results on drop

formation in two-liquid system are presented.

4.3.1 Spreading behavior

Figure 4.6 shows the experimental images of the liquid spreading at different times

for an angular speed of 400 rpm. The first column represents spreading of the sin-

gle liquid (glycerol) with a free air-liquid interface, while columns 2 − 6 represent

spreading of the same drop of liquid (glycerol), but now with the outer liquid (cas-

tor oil) enclosing it for varying volume ratios. The first row in each case represents

the initial drop configuration when the disc is stationary. The outer liquid, with its

lower surface tension and higher volume spreads to a larger extent. However, single

fluid of glycerol with its higher surface tension and lower volume spreads to a lesser

extent. The apparent size of the drop for glycerol (inner liquid), looks a bit larger

64



(a) (b) (c)

Figure 4.5: Steps involved in tracking the finger front position. (a) Original experimental
image, (b) corresponding edge detected coordinates superimposed on the original image,
and (c) finger tip positions in (b) plotted in polar coordinates (r − θ).

(1-3%) when enclosed by the outer liquid than without. This can be attributed to

lower liquid-liquid interfacial tension, hence smaller contact angle (see caption of Ta-

ble 4.1), resulting in initial spreading to a larger extent. Unfortunately, our imaging

technique does not allow us to measure this interfacial contact angle accurately.

Once the disc starts to rotate, the liquids spread, form instabilities which even-

tually grow into fingers. The drop of glycerol spreading with an outer air-liquid free

surface (column 1), spreads to a certain extent before instability ensues (second row),

leading to the formation of fingers and further growth; through which the liquid flows

out. This instability inception (or critical radius Rc as referred to in the literature)

is captured in terms of the degree of deformation of the drop boundary of the liq-

uid. The degree of deformation is defined as [(R1 − R2)/R2] × 100, where R1 is the

largest radius of the drop (distance of the farthest point from the axis of rotation)

and R2 is the radius of circle centered on the axis of rotation and having same area

covered by the drop (See Fig. 4.4). The row 2 in Fig. 4.6 corresponds to a contact

line deformation of 10%. This spreading, instability formation and finger growth for

the spreading of a drop of glycerol (single liquid) depicted (in column 1) is very much

in accordance with the linear stability theory predictions for single liquid spreading

with air interface [46,62].

The spreading behavior of the same volume of the glycerol drop in presence of

the outer liquid (castor oil) is, however, qualitatively different as shown in Fig. 4.6.
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It spreads to a larger extent before instability ensues (second row). Further, the

instability ensues at a delayed time (notice the time stamps provided in each image

window in Fig. 4.6). These qualitative differences can be attributed to lower value of

liquid-liquid interfacial tension, hence higher affinity for spreading before instability.

This observed behavior is weakly dependent on the volume ratios V2/V1 studied,

which can be expected given that the interfacial angle will be dependent on liquid-

liquid interface. At later times (3rd row), it can be observed that the enclosed inner

liquid, breaks into more fingers as compared to that without, which also seems to be

weakly dependent on the volume ratios studied. The base radius for the inner liquid,

whether enclosed or otherwise, increases to a smaller extent post instability initiation

for all the cases studied.

With increasing volume ratios, the outer liquid, with much lower surface tension

and contact angle, spreads to a much larger extent and breaks into many more fingers.

Note that the spreading behavior of outer liquid is unaltered with or without inner

liquid (images not shown), for all volume ratios studied. This is expected as the

thin film spreading and instability is predominantly governed by the contact line

behavior, which for outer liquid will remain the same irrespective of the presence of

inner liquid. The spreading behavior of outer liquid is in close agreement with the

predictions of the linear stability theory [46] and previous experiments [62] for a single

liquid spreading in air [See Fig. 4.14]. The primary observation in two-liquid system

is, thus, the alteration of instability behavior of inner liquid by the outer liquid.

For the smallest volume ratio studied, with the outer contact line being closest to

the inner liquid-liquid contact line, the fingers emanating from inner liquid seem to

merge with those of the outer liquid, which we will show quantitatively later on. This

is more clearly seen in the magnified image shown in Fig.4.7 for the case of V1 =0.5

ml, V2/V1 = 2. The instability pattern of the inner liquid follows that of the outer

liquid with slight phase shift in the angular direction.

Further, at largest volume ratio studied and particularly at long spreading times,

the inner liquid starts to emit liquid droplets from the ensuing fingers. Both these

phenomena do not have any analogues in case of single liquid spreading and do not
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8

Figure 4.7: Magnified image at a particular instant of spreading for V1 =0.5 ml, V2/V1 = 2.
Here, the instability of inner liquid shows similar instability as the outer one with a minute
phase shift in the azimuthal direction.

come within the purview of theories established for thin film spreading.

The quantitative data extracted from the analysis of images is discussed next. The

evolution of drop radius for all cases, prior to instability initiation (i.e. traversing

from row 1 to row 2 in Fig. 4.6), is shown in Fig. 4.8. The red symbol in each

profile represents the time at which instability ensues. The drop radii (ri), are non-

dimensionalized by the corresponding initial radius, R0i of stationary drops, while the

spreading time t is non-dimensionalized using corresponding T0i = µi/(H2
0iρiω

2) as

used previously for single liquid spreading [46]. Here, the subscript, i = 1, 2, represents

inner liquid (liquid 1) and outer liquid (liquid 2), respectively. The symbols µi , ρi, H0i

are, respectively, the viscosity, density, initial height of the corresponding liquid and ω

is rotational speed of the plate. The initial height H0i is calculated, by considering the

drop to be of a flat disk (or cylindrical) shape whose volume is known and the radius

is obtained by image analysis. The spreading rate is predominantly governed by the

outer region (region away from the contact line), and the dimensionless parameters for

the outer region are chosen accordingly, which has been used widely in the literature.
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The length scale is chosen to be R0i, which is the initial radius of the drop while the

time scale, T0i, is chosen as the ratio of the length and velocity scale for the outer

region (i.e, R0i/U0i), where U0i is the height-averaged radial velocity obtained by the

balance between the centrifugal and the viscous force. The primary reason behind

this non-dimensionlization was to compare the single and two-liquid spreading rate

prior to the onset of instability. With this scaling, the dimensionless data (for both

inner as well as outer liquid) is expected to collapse if they correspond to identical

dimensionless initial conditions.
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Figure 4.8: Dimensionless time evolution of the drop radius for (a) single and inner- liquid
spreading for two-liquid case (for varying volume ratios of the two liquids keeping the inner
liquid volume constant), and (b) corresponding outer liquid, at 400 rpm. Radius is scaled
by the initial drop radius of the corresponding liquid (R01 or R02). Time is scaled by using
the corresponding characteristic time for the outer region (T01 or T02) [used by Fraysse and
Homsy (Phys. Fluids, 1994)]. The red symbol in each curve corresponds to the critical
radius of the drop as shown in 2nd row of each column in Fig. 4.6.

Figure 4.8(a) shows that the liquid 1 spreads to a larger extent before developing

the instability (i.e. critical radius) when engulfed by liquid 2 on the outside than

without. Further, the rate of increase in the spreading radius is also much higher

for liquid 1, when within the outer liquid than without. While the spreading rate is

nearly constant for the inner liquid for varying volume ratios, the extent of spreading

marginally increases with increase in the volume ratio. Note that this increase in the

rate of spreading for the inner liquid, cannot be solely attributed to the decrease in

the interfacial tension. Because, the interfacial tension for the liquid-liquid interface
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stays the same for all the experiments for varying volume ratio V2/V1. The fact

that the inner liquid spreading data for varying volume ratio cases does not collapse

in Fig. 4.8(a) suggests that there is some other parameter which plays a role in

determining the spreading rate. Moreover, one interesting thing to notice here is

that the spreading radius for the inner liquid starts to increase at an earlier time

as compared to the single liquid case. The dimensionless time at which it starts to

increase is close to that of the outer liquid (See Fig. 4.8(b)). This suggests that the

spreading rate of the inner liquid is affected by the presence of the outer liquid. The

increased spreading rate for the inner liquid can be attributed to two factors: (i) the

lower value of the interfacial tension and (ii) the drag experienced by the inner liquid

due to the faster moving outer liquid causing the inner liquid to move faster along

with. The relative contribution of these two factors in the observed increase in the

spreading rate is, however, not possible to estimate. This faster spreading rate of

inner liquid as compared to outer liquid leads to merging of the contact lines, and

therefore, the fingers, for the lowest volume ratio studied here (See Fig 4.7). On the

other hand, the data collapse observed for outer liquid in Fig. 4.8(b) is in accordance

with results observed for single liquid. [46]

The above experimental data was compared for the axisymmetric spreading of

inner liquid for two different V2/V1 with the corresponding data obtained from our

simulation (See Fig. 4.9). The fluid property ratios and rotational speed provided in

the simulation are the same as our experiments. Parabolic initial shapes matching

with our initial experimental condition are provided as initial condition for the simu-

lation. Both qualitative and quantitative discrepancies are observed in the spreading

rate. As stated earlier, our simulation assumes the liquids to be fully wetting which is

incorporated using a precursor layer model. Both the liquids used in our experiments

are, however, partially wetting resulting in the observed discrepancy.

Figure 4.10 shows the evolution of the width of the annular region between the

two contact lines ΔR (r2(t)−r1(t)), which is non-dimensionalized using the cube root

of the difference between the initial volumes of the two liquids. From Fig. 4.10, it is

clear that dimensionless ΔR decreases with time for the lowest possible volume ratio
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Figure 4.9: Comparison of axisymmetric spreading data obtained from experiments with
our simulation. The fluid property ratios and rotational speed are taken to be the same as
our experiments. Parabolic initial shapes matching with our initial experimental condition
are provided as initial condition for the simulation.

studied (V2/V1 = 2). This suggests that the inner liquid spreads faster as compared

to the outer liquid and eventually merges with the outer contact line, resulting in the

decrease in ΔR. In addition, with increase in V2/V1, the rate of decrease gets slower

till it becomes almost negligible for V2/V1 = 8. Furthermore, for the highest V2/V1,

as the outer contact line is much further than the inner one, it simply seems to move

away and the inner liquid cannot reach to that leading to the observed increase in

the value of ΔR.

4.3.2 Instability characteristics

The instability behavior for all cases is discussed next. Figure 4.11 shows the variation

of critical radius (Rc1), and the corresponding number of fingers (Nf1) (as counted

from the images) formed at the onset of instability for different volume ratios studied.

Also included is the data for inner liquid, but while spreading in air (red symbols in

Fig. 4.11). It does not spread to a larger extent due to its higher surface tension
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Figure 4.10: Dimensionless width of the annular region between the two contact lines,
ΔR (r2(t) − r1(t)) as function of time. ΔR is non-dimensionalized using the cube root of
the difference between the initial volumes of the two liquids. The data is presented for all
V2/V1 studied.

and, thus, develops instabilities at much earlier times and at a lower Rc1, leading

to the formation of very small number of fingers. The same liquid, when enclosed

by outer liquid, due to its lower interfacial tension, spreads to a larger extent (Rc1)

before developing instability and forms more number of fingers. Note that larger the

perimeter of the spreading drop, higher the number of fingers formed. Further, the

number of finger remain constant for all volume ratios, which is expected, given the

constant interfacial tension. The spreading of outer liquid without the presence of

inner liquid (not shown), yields identical behavior to that obtained with the presence

of inner liquid suggestive that the behavior is governed solely by its air-liquid surface

tension and not by the liquid it encloses.

We next discuss time evolution of fingers for different cases as shown in Fig. 4.12.

The number of fingers for outer as well as inner liquid continue to increase with

time, while keeping the base radius nearly constant (See images in Fig. 4.6, rows 2

to 3). This behavior has also been observed previously [46] and can be attributed to
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Figure 4.11: (a) Critical radius (Rc1), and (b) number of fingers (Nf1) of the inner liquid
as a function of volume ratio of the two liquids (V2/V1). Red circle represents liquid 1
(glycerol) spreading in air, i.e. when V2 = 0.

secondary fingers breaking from the liquid and growing eventually. For the lowest

value of V2/V1 studied, given the faster spreading rate of inner liquid, it approaches

the slowly spreading outer liquid and eventually its instability behavior follows that

of outer liquid with the number of fingers same for both cases. Actually, the fingers

from inner liquid protrude those of outer liquid with the two liquids now moving

outwards through the fingers together.

This whole transformation is very well captured through the images shown in

Fig. 4.13 taken at specific times for V2/V1 = 2 and represented, respectively, by red

symbols in Fig. 4.12(a). The images have been slightly modified to remove the back-

ground plate so as to emphasize only on the moving contact lines. Note that the wavy

nature of the inner liquid-liquid interface is nearly identical to the outer air-liquid in-

terface as shown in Fig. 4.13(e). Note also, that this merging is not instantaneous, but

very sequential with the instability behavior of inner liquid changing continuously so

as to eventually approach that of the outer liquid. With increasing volume ratio this

effect diminishes, that is the fingers of inner liquid keep on increasing, but the outer

liquid moves progressively further away so as to have lesser and lesser influence on the

instability of inner liquid. Eventually, the two liquids spread nearly independently of

each other at the largest volume ratio studied. Curiously though, for large enough

volume ratios, a very interesting behavior is observed which we discuss at the end of
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Figure 4.12: Nf as a function of time for V2/V1 = (a) 2, (b) 4, (c) 8, and (d) 12,
respectively, keeping V1 constant. Red symbols (*) in (a) represent the spreading state for
V2/V1 = 2 captured in terms of images shown in Fig. 4.13.

this section.

We now compare the experimentally observed Nf with the theoretical prediction

using the following expression based on linear stability analysis and which is well

established in the literature [46]

Nf ≈
π

7R
2
c

(
πρω2

γΩ

)1/3

(4.1)

where, ρ is the liquid density, ω is the disc angular speed, γ is the liquid surface tension

and Ω is the liquid volume. The value of Rc is determined from the experimental data.

The value of γ is taken to be the surface tension of the liquid when it is spreading

in air and its interfacial tension when enclosed and spreading within another liquid.

Figure 4.14 shows the comparison of the experimentally determined number of fingers
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Figure 4.13: Snapshots showing the fingering in both the liquids for V2//V1 = 2. The
time corresponding to each snapshot is also shown. The background (plate surface outside
the spreading area) is filled with white color to precisely demonstrate the spreading of the
two liquids.

(Nf ) with those predicted using the above equation.

Glycerol (single fluid) while spreading in presence of air interface, develops fingers

at the outer circumference. The wavelength of instability (λ) and the number of fin-

gers (Nf ) are purely governed by the surface tension of the liquid, which is accounted

for in the linear stability theory (LSA). Therefore, the data for single liquid shows

linear correlation with the predictions of LSA, however, with an offset. The same

behavior is observed for the outer liquid (castor oil) which is spreading in presence of

air, though enclosing the inner liquid. This can be expected, given that eq. 4.1, as ob-

tained from linear stability analysis is valid only for completely wetting liquids, while

the liquids used in this work are partially wetting. However, the theory overpredicts

the number of fingers for the inner liquid (open symbols) when enclosed by the outer

liquid (i.e. for the liquid-liquid-solid contact line). The number of fingers obtained

from the experiments is equivalent to the wave number of instability. We provide a

theoretical justification for the observed decrease in the experimentally observed num-

ber of fingers (i.e. lowering in the wave number) as compared to the theory, when

a fluid spreads in presence of an outer liquid-liquid interface. We have performed a

theoretical linear stability analysis to derive an expression for the wave number, and

compare it with the wave number for single fluid instability, the analytical derivation

and proof for which is provided in the next section.
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Figure 4.14: Comparison of Nf observed in experiments with that of Nf obtained us-
ing linear stability theory provided by Fraysse and Homsy (Phys. Fluids, 1994). The
circle, square, diamond, downward-pointing triangle, and left pointing triangle correspond
to V2/V1 = 2, 3, 4, 8, and 12 respectively, for V1 = 0.5mL. Corresponding filled symbols
represent the data for outer liquid. The filled red circle correspond to the data for inner
liquid spreading in absence of the outer liquid. The star and the upward pointing triangle
(open symbols) correspond to the inner liquid data for V2/V1 = 12 at 300 and 500 rpm,
respectively.

4.3.3 Linear Stability Analysis (for small σ)

As discussed in Chapter 2, when a fluid flows on a spinning disc, it forms a small

capillary ridge near the contact line and a flat thin film at the center. The region

away from the contact line is called outer region and the region close to the contact

line is called inner region. The contact line instability for the inner region for thin

film flows involving single Newtonian liquids has been discussed in detail by several

authors. [22,59,62] Here, we discuss the case of inner liquid which is moving in presence

of another viscous liquid (not in air). A linear stability analysis is carried out to

study the stability of the inner liquid capillary ridge in two-layer spin coating flow.

The theory is valid under certain assumptions: (i) the surface to interfacial ratio

(σ = σ2/σ1) is assumed to be small, (ii) the liquids are assumed to be fully wetting
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and, thus, the contact line singularity is relieved by using a precursor layer model, (iii)

the capillary ridges of both the inner and outer liquid lay on top of each other, and the

contact line of the outer liquid and corresponding capillary ridge is assumed to be far

away, and (iv) the thickness of the upper layer liquid is assumed to be small so that

the capillary ridges of both the interfaces are close enough. Here, we have extended

the analysis of Spaid and Homsy [22] for two-layer thin film flow corresponding to

our experiments. The general equations governing the evolution of two layers on a

spinning disk are provided in Chapter 3. As discussed by several authors, the flow in

the inner region for thin film flow driven by centrifugal force is analogous to thin film

flow driven by gravity. Therefore, for a simplicity in the derivation of linear stability

equations, in the section below, evolution equations are presented for the two layers

flowing down an inclined plane. These governing equations will, then, be used for the

stability analysis.

4.3.3.1 Derivation of Two-layer Evolution Equations

y

z

x

g

α

Figure 4.15: Schematic of two-layer thin-film flow on an inclined plane.

The system under consideration consists of two incompressible and immiscible

Newtonian fluids; fluid 1 having density ρ̃1, surface tension σ̃1, and dynamic viscosity

η̃1, and fluid 2 having density ρ̃2, liquid-liquid interfacial tension σ̃2, and dynamic

viscosity η̃2, respectively. The layer of fluid 2 is placed on the layer of fluid I and both

are placed on an inclined plane and allowed flow under gravity as shown in Fig. 4.15.

The layer of fluid 2 is surrounded by air which is at a constant ambient pressure but
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exerts no shear stress on the fluid-air interface. Throughout this chapter, the dimen-

sional variables have tilde, (̃.), over them whereas the corresponding dimensionless

variables are denoted without tilde, (.) and vector quantities are represented in bold

italics. Hereafter, the layer of fluid present in fluid 2 is referred to as upper layer,

and fluid 1 is referred to as lower layer. For mathematical convenience, we use the

Cartesian coordinate system (x̃, ỹ, z̃) as shown in the Fig. 4.15. At any point along

the radial direction, the shape of the liquid-liquid interface and the liquid-air interface

are denoted by z̃ = h̃(1)(x̃, ỹ, t̃), and z̃ = h̃(2)(x̃, ỹ, t̃), respectively [see Fig. 4.15]. The

isothermal flow of fluid in each of the layers is governed by Navier-Stokes equation

and continuity equation:

ρ̃i

(
∂ũ(i)

∂t̃
+ ũ(i).∇̃ũ(i)

)
= −∇̃P̃ (i) + η̃i∇̃2ũ(i) + ρ̃ig̃, (4.2)

∇̃ · ũ(i) = 0, (4.3)

where ũ(i) = (ũ(i), ṽ(i), w̃(i)) is the velocity of the fluid in the ith layer, and g̃ is the

gravity vector pointing downwards as shown in the Fig. 4.15. The above equations

are non-dimensionalized with appropriate scales as follows: length of the inclined

plane, L is the length scale in the flow direction; initial mean film thickness, H0 is

the length scale in the vertical direction; U0 is the velocity scale in the flow direction;

W0 is the velocity scale in the vertical direction, and P0 is the scale for pressure. The

scale for density and viscosity are ρ0 and η0, respectively, which for convenience are

taken to be the parameters of one of the layer fluids. The non-dimensional form of

the above equations in the relevant directions are:

ε ·Re
(
∂u(i)

∂t
+ u(i) · ∇u(i)

)
=− ∂P (i)

∂x
+ ηi

∂2u(i)

∂z2 + 1 +O(ε2), (4.4)

ε ·Re
(
∂v(i)

∂t
+ u(i) · ∇v(i)

)
=− ∂P (i)

∂y
+ ηi

∂2v(i)

∂z2 +O(ε2), (4.5)
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ε3 ·Re
(
∂w(i)

∂t
+ u(i) · ∇w(i)

)
=− ∂P (i)

∂z
−B +O(ε3), (4.6)

∂u(i)

∂x
+ ∂v(i)

∂y
+ ∂w(i)

∂z
= 0, (4.7)

where ηi = η̃i/η0, and ρi = ρ̃i/ρ0 are the dimensionless viscosity and density, re-

spectively. The velocities in the flow and perpendicular directions are ũ(i) and ṽ(i),

respectively. Re = ρ0U0L0/η0 is the Reynolds number, B = ρ0gH
3
0/η0L0U0 is the

Bond number, and ε = H0/L0 is the aspect ratio. In each of the layers, flow is

governed by the balance between the centrifugal force and the viscous force that

gives the radial velocity scale as U0 = ρ0ω
2L0H

2
0/η0, and the vertical velocity scale

as W0 = U0H0/L0. Here, ∇ = L0.∇̃ is the dimensionless gradient operator. The

pressure scale is P0 = ρ0ω
2L2

0, and the time scale is T = L0/U0.

The Reynolds number associated with the flow is assumed to be very small so

that inertial effects are negligible. Moreover, we assume that the film height is small

and the gravitational effects are negligible (B ≈ 0). The spreading film is sufficiently

thin that allows use of the standard lubrication assumptions: ε � 1 and Re.ε � 1.

Using lubrication assumption, Eqs. (4.4)-(4.6) are simplified as:

0 = −∂P
(i)

∂x
+ ηi

∂2u(i)

∂z2 + 1, (4.8)

0 = −∂P
(i)

∂y
+ ηi

∂2v(i)

∂z2 , (4.9)

0 = −∂P
(i)

∂z
−B, (4.10)

0 = ∂u(i)

∂x
+ ∂v(i)

∂y
+ ∂w(i)

∂z
. (4.11)

These equations are subjected to the following boundary conditions:

u(1) = v(1) = w(1) = 0 at z = 0, (4.12)

u(1) = u(2) and v(1) = v(2) at z = h(1)(x, y, t), (4.13)
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η1
∂u(1)

∂z
= η2

∂u(2)

∂z
and η1

∂v(1)

∂z
= η2

∂v(2)

∂z
at z = h(1)(x, y, t), (4.14)

η(2)∂u
(2)

∂z
= 0 and η(2)∂v

(2)

∂z
= 0 at z = h(2)(x, y, t), (4.15)

P (1) = p0 − C1∇2h(1) − C2∇2h(2) at z = h(1)(x, y, t), (4.16)

P (2) = p0 − C2∇2h(2) at z = h(2)(x, y, t), (4.17)

where Ci = ε3σi/η0U0 is the inverse Capillary number, p0 is the atmospheric pressure,

and ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . Equation (4.12) represents the no-slip condition at the

planar substrate. Equations (4.13) and (4.14) represent the continuity of velocity

and tangential stress at liquid-liquid interface, respectively. Equation (4.15) repre-

sents the zero tangential stress at the liquid-air interface, and Eqs. (4.16) and (4.17)

represent the normal stress condition that incorporates the surface tension force at

the respective surface.

From here on wards, the scales ρ0 = ρ1, and η0 = η1 are chosen to be the properties

of the lower layer fluid. The velocities in the flow direction u(1) and u(2) are obtained

by integrating Eq. (4.8) for both the layers and applying boundary conditions given

by Eqs. (4.12)-(4.17). Similarly, the velocities in the direction perpendicular to the

flow v(1) and v(2) are obtained by integrating Eq. (4.9) for both the layers and applying

boundary conditions given by Eqs.(4.12)-(4.17).

Integrating the continuity equation Eq. (4.11) for both the layers and using the

kinematic condition gives the usual mass balance as

∂h(1)

∂t
+∇ ·Q1 = 0 , (4.18)

∂h(2)

∂t
+∇ ·Q2 = 0 , (4.19)

where, the flux vectors Q1 and Q2 are:

Q1 =
∫ h(1)

0
u(1)dz î+

∫ h(1)

0
v(1)dz ĵ, (4.20)
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Q2 =
∫ h(2)

h(1)
u(2)dz î+

∫ h(2)

h(1)
v(2)dz ĵ . (4.21)

The quantities Q1 and Q2 are the total fluxes across the layer of fluid 1 and fluid 2

respectively. Using Eq. (4.42) and Eq. (4.43), the x and y components of the fluxes

Q1 and Q2 are obtained as:

Q1x =h
3
1

3

(
C
∂

∂x

(
σ∇2h2 +∇2h1

)
+ 1

)

+ h2
1(h2 − h1)

2

(
σC

∂

∂x

(
∇2h2

)
+ ρ

)
, (4.22)

Q1y =h
3
1

3

(
C
∂

∂y

(
σ∇2h2 +∇2h1

))

+ h2
1(h2 − h1)

2

(
σC

∂

∂y

(
∇2h2

))
. (4.23)

Q2x =h
2
1(h2 − h1)

2

(
C
∂

∂x

(
σ∇2h2 +∇2h1

)
+ 1

)

+
(

(h2 − h1)3

3η + h1(h2 − h1)2
)(

σC
∂

∂x

(
∇2h2

)
+ ρ

)
(4.24)

Q2y =h
2
1(h2 − h1)

2

(
C
∂

∂y

(
σ∇2h2 +∇2h1

))

+
(

(h2 − h1)3

3η + h1(h2 − h1)2
)(

σC
∂

∂y

(
∇2h2

))
. (4.25)

Now, the two equations describing the time evolution of the liquid-liquid interface

and the free surface with respect to spatial coordinates x and y are obtained as:

∂h1

∂t
+ ∂

∂x

{
h3

1
3

(
C
∂

∂x

(
σ∇2h2 +∇2h1

)
+ 1

)

+ h2
1(h2 − h1)

2

(
σC

∂

∂x

(
∇2h2

)
+ ρ

)}
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+ ∂

∂y

{
h3

1
3

(
C
∂

∂y

(
σ∇2h2 +∇2h1

))

+ h2
1(h2 − h1)

2

(
σC

∂

∂y

(
∇2h2

))}
= 0, (4.26)

∂h2

∂t
+ ∂

∂x

{
h2

1(h2 − h1)
2

(
C
∂

∂x

(
σ∇2h2 +∇2h1

)
+ 1

)

+
(

(h2 − h1)3

3η + h1(h2 − h1)2
)(

σC
∂

∂x

(
∇2h2

)
+ ρ

)}

+ ∂

∂y

{
h2

1(h2 − h1)
2

(
C
∂

∂y

(
σ∇2h2 +∇2h1

))

+
(

(h2 − h1)3

3η + h1(h2 − h1)2
)(

σC
∂

∂y

(
∇2h2

))}
= 0. (4.27)

where, η = η2/η1, σ = σ2/σ1, and ρ = ρ2/ρ1. The quantity ε = H0/R0 is the aspect

ratio, where, H0, R0, are the length scales in z and x directions, respectively. U0 is the

velocity scale in the x direction, which is defined as U0 = ρ1gH
2
0/η1. The quantity,

Ci = ε3σi/η1U0, is the inverse Capillary number, and ∇2 is the two-dimensional

Laplacian operator in Cartesian coordinates.

Using equations 4.26 and 4.27, the equations for the evolution of inner liquid-liquid

interface, and free surface, in the inner region are obtained as:

Layer-1: h1τ + Ṙ1F

U1
h1ξ +∇.Q1 = 0, (4.28)

Layer-2: h2τ + Ṙ2F

U2
h2ξ +∇.Q2 = 0, (4.29)

where, hi(ξ, y, τ) is the non-dimensional height in the respective layers (i = 1, 2),

and ξ is the transformed x coordinate. In the above formulation, the inner liquid

contact line is set as the origin and the value of ξ increases as we move towards the

center of the spreading inner liquid. The quantity Qi is the flux in the inner region

of respective layers, that is re-scaled in ξ − y coordinate system. The factor ṘiF/Ui

represents speed at which the contact line moves relative to the average speed of the

inner region, in respective layers, and therefore depends on the contact line model.
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For a precursor layer model, it is given by:

Ṙ1F

U1
= 1− b3

1
1− b1

, and Ṙ2F

U2
= 1− b3

2
1− b2

(4.30)

where, b1 and b2 are the precursor layer thicknesses of the inner and outer liquid,

respectively. Setting the appropriate value of the factor ṘiF/U for precursor layer

condition from eq. 4.30, interface and free surface evolution equations, respectively,

for the Newtonian liquids in the inner regions are:

h1τ + 1− b3
1

1− b1
h1ξ

− ∂

∂ξ

{
h3

1

(
1
3 − σ

(
h2ξξξ + h2ξyy

)
− h1ξξξ − h1ξyy

)

+ 3h2
1(h2 − h1)

2

(
ρ

3 − σ
(
h2ξξξ + h2ξyy

))}

+ ∂

∂y

{
h3

1

(
σ
(
h2ξξy + h2yyy

)
+ h1ξξy + h1yyy

)

+ 3h2
1(h2 − h1)

2

(
σ
(
h2ξξy + h2yyy

))}
= 0, (4.31)

h2τ + 1− b3
2

1− b2
h2ξ

− ∂

∂ξ

{(
(h2 − h1)3

η
+ 3h1(h2 − h1)2

)(
ρ

3 − σ
(
h2ξξξ + h2ξyy

))

+ 3h2
1(h2 − h1)

2

(
1
3 − σ

(
h2ξξξ + h2ξyy

)
− h1ξξξ − h1ξyy

)}

+ ∂

∂y

{(
(h2 − h1)3

η
+ 3h1(h2 − h1)2

)(
σ
(
h2ξξy + h2yyy

))

+ 3h2
1(h2 − h1)

2

(
σ
(
h2ξξy + h2yyy

)
+ h1ξξy + h1yyy

)}
= 0. (4.32)

Now, the heights of the inner surface and free surface, respectively, are expanded
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as:

h1(ξ, y, τ) = h10(ξ) + εG1(ξ)eiq1y+β1τ

h2(ξ, y, τ) = h20(ξ) + εG2(ξ)eiq1y+β1τ . (4.33)

Here, h10 and h20 are base state profiles, q1 and β1, respectively, are the azimuthal

wave number and growth rate of the instability (i.e., eigen value, that is positive for

unstable modes). G1 and G2 are respectively, the eigen functions corresponding to

the amplitudes of perturbations in the respective layers. Now, substituting the above

expanded functional forms of heights from eq. 4.33 in eq 4.31, and collecting terms

of O(ε), we get linear stability equations for the capillary ridge in the inner liquid

(See eq. 4.34). As we are interested in finding out the reason behind the discrepancies

observed in the number of fingers obtained from theory and experiments, for the inner

liquid (with and without presence of an outer liquid interface), we will discuss the

stability equation only for the inner liquid.

β1G1 + 1− b3
1

1− b1
G1ξ

+ ∂

∂ξ

{(
G1ξξξ − q2

1G1ξ

)
h3

10 + σ

2

(
3h2

10h20 − h3
10

)(
G2ξξξ − q2

1G2ξ

)

+ 3G1h
2
10

(
σh20ξξξ + h10ξξξ −

1
3

)

+ 3
2

(
σh20ξξξ −

ρ

3

)(
2G1

(
h10h20 − h2

10

)
+ h2

10
2 (G2 −G1)

)}

+
(
q4

1G1 − q2
1G1ξξ

)(
h3

10 + σ
3
2h

2
10h20

)
+ σh3

10

(
q4

1G2 − q2
1G2ξξ

)
= 0. (4.34)

For the single fluid, the stability equation is provided by [22]. We provide this

equation below for an ease in the comparison.

β0G0 + 1− b3

1− b G0ξ
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+ ∂

∂ξ

{(
G0ξξξ − q2G0ξ

)
h3

0 − 3G0
[
h2

0

(
1− h0ξξξ

)]}

+ h3
0

(
q4G0 − q2G0ξξ

)
= 0. (4.35)

where, β0, G0, q and b are respectively, growth rate, eigen function corresponding

to the amplitude of perturbation, wave number and precursor layer thickness for the

single fluid spreading with a free surface.

From the governing linear stability equations, the dispersion relation can be ob-

tained by plotting data for growth rate and wave number. The dispersion relation

for single fluid case is provided by Spaid and Homsy [22]. Here, we intend to compare

the wave number corresponding to the most unstable mode in case of single liquid

spreading with a free surface and the same liquid spreading with an outer liquid-

liquid interface. This can achieved by finding the slope of the dispersion curve and

equating it to zero to find the wave number corresponding to maximum growth rate

(β). In order to obtain the slope of this curve, we, find the derivative of the stability

equation, with respect to the wave number.

Now, for the single liquid case, taking the derivative of stability equation (eq. 4.35)

with respect to the wave number (q) gives:

dβ0

dq = 1
G0

[
∂

∂ξ

(
2qh3

0G0ξ

)
+ h3

0

(
2qG0ξξ − 4q3G0

)]
. (4.36)

For the inner layer fluid taking the derivative of equation 4.34 with respect to q1

will give:

dβ1

dq1
= 1
G1

{
∂

∂ξ

(
2q1G1ξh

3
10 + σq1G2ξ

(
3h2

10h20 − h3
10

))

+ σh3
10

(
2qG2ξξ − 4q3G2

)

+
(
h3

10 + 3σh2
10h20

2

)(
2qG1ξξ − 4q3

1G1

)}
. (4.37)

To deduce the slope of the maxima point in the dispersion curve, we set the right

hand of eq. 4.36 and eq. 4.37 to zero and integrate the resulting equations over the
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entire domain (i.e from −∞ to +∞), for single-fluid and inner-fluid, respectively.

The resulting expression for wave number of instability for both single- and inner-fluid

are presented below.

For single fluid, the wave number (q) is found to be :

q2 = 1
2

+∞∫
−∞

h3
0G0ξξ dξ

+∞∫
−∞

h3
0G0 dξ

∼ 1
4 (4.38)

The above expression implies that:

+∞∫
−∞

h3
0G0ξξ dξ

+∞∫
−∞

h3
0G0 dξ

∼ 1
2 or

+∞∫
−∞

h3
0G0ξξ dξ ∼ 2

+∞∫
−∞

h3
0G0 dξ (4.39)

Equation 4.38 is equated to 1/4 because, the most unstable wave number for single

fluid case has been reported to be ∼ 0.5 (See FIG. 4 of Spaid and Homsy). [22]

For inner layer fluid, the expression for wave number is found to be:

q2
1 = 1

2

+∞∫
−∞

h3
10G1ξξ dξ + σ

+∞∫
−∞

(
3
2h

2
10h20G1ξξ + h3

10G2ξξ

)
dξ

+∞∫
−∞

h3
10G1 dξ + σ

+∞∫
−∞

(
3
2h

2
10h20G1 + h3

10G2

)
dξ

(4.40)

For small but finite surface tension ratio (σ), we expand the the base state and

eigen function of the perturbation for the inner layer liquid as:

h10 = h0 + σh11 + σ2h12 + . . .

G1 = G0 + σG11 + σ2G12 + . . . (4.41)

where, h0 and G0 are, respectively, the base state profile and amplitude of pertur-

bation (eigen function) for the stability analysis of single fluid, [22] and h11, h12, G11

and G12 are arbitrary positive functions.
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Inserting eq. 4.41 in eq. 4.40 and collecting terms of O(σ) and neglecting higher

order terms of O(σ2) and above, we get:

q2
1 = 1

2

+∞∫
−∞

h3
0G0ξξdξ + σ

+∞∫
−∞

[(
3
2h

2
0h20 + 3h2

0h11
)
G0ξξ + h3

0G2ξξ

]
dξ

+∞∫
−∞

h3
0G0dξ + σ

+∞∫
−∞

[(
3
2h

2
0h20 + 3h2

0h11
)
G0 + h3

0G2

]
dξ

(4.42)

The best check for the correctness is that as σ → 0, the expression (See eq. 4.42)

for the wave number of inner liquid (two-fluid case) reduces to the expression for q

(See eq. 4.38) for single fluid (liquid spreading in air), i.e.

As σ → 0, q2
1 → q2

Now, we expand the base state as well as eigen function of the outer liquid in the

form as below:

h20 = h10 + f(ξ)

= h0 + σh11 + σ2h12 + · · ·+ f(ξ)

G2 = G1 + g(ξ)

= G0 + σG11 + σ2G12 + · · ·+ g(ξ) (4.43)

where, f and g are arbitrary positive functions.

Now, the final expression for the wave number of instability for the inner liquid

corresponding to the maximum growth rate (the most unstable mode), is given by:

q2
1 = 1

2

+∞∫
−∞

G0ξξh
3
0dξ + σ

+∞∫
−∞

[(
5
2h

3
0 + 3

2h
2
0f + 3h2

0h11
)
G0ξξ + h3

0G11ξξ + h3
0gξξ

]
dξ

+∞∫
−∞

G0h3
0dξ + σ

+∞∫
−∞

[(
5
2h

3
0 + 3

2h
2
0f + 3h2

0h11
)
G0 + h3

0G11 + h3
0g

]
dξ

(4.44)

In the above equation for wave number of instability, we have shown that the

87



increase in the the additional terms present in the numerator (coefficient of σ) will

always be lesser than the increase in the additional terms present in the denomina-

tor. Note that, the coefficients of all these terms being equal in the numerator and

denominator and given the fact that the numerator contains derivative of the positive

functions present in the denominator (which will have a positive part and a negative

part), q2
1 for inner liquid in two-fluid spreading will be lesser than that of q2 for single

fluid (See eq. 4.38), i.e.

q1(inner liquid) < q(single liquid) (4.45)

In other words, this reduction in the wave number of most unstable mode of the

instability for two-fluid indicates a decrease in the value of Nf which is exactly what

we observe in our experiments as shown in Fig. 4.14. Having analyzed the incipience

of fingering instability, we will now discuss the growth rate of fingers post instability

formation.

Figure 4.16 depicts the growth of the fastest moving finger for the inner liquid

with the presence of the outer liquid for V2/V1 = 12 and for the single inner liquid

spreading in air (no outer liquid). It is clear that the growth rate of the finger for the

inner liquid in presence of outer liquid is slower as compared to the single inner liquid

with a free surface (spreading in air interface). This happens because the single fluid

(glycerol) is a partially wetting liquid and it likes to spread less and breaks into less

number of fingers. The liquid from the central drop, thus, move outward through

those fingers at a faster rate. However, for the case of inner fluid in presence of the

outer liquid, it spreads more and forms more number of fingers owing to the low

interfacial tension. Therefore, the liquid from the central drop of the inner liquid

move outward through those fingers, at a slower rate.

As mentioned earlier, for all volume ratios (especially large enough volume ratios)

at longer times, a very interesting behavior is observed. Figure 4.17 shows the snap-

shots of the two-liquid spreading for the largest volume ratio V2/V1 = 12 studied. At

intermediate times (second and third box), the tip of the fingers shows formation of
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Figure 4.16: Growth of the fastest moving finger as function of time. Open symbols
denote data inner liquid spreading in presence of outer viscous liquid for V2/V1 = 12. Filled
symbols correspond to the finger growth for the same inner liquid spreading in presence of
air interface.

drop like structures. At even further times (fourth and fifth box), these structures,

break away from the fingers, particularly secondary smaller fingers, to move radially

as droplets. A more clear picture of this finger break up and droplet formation in

case of is shown in Fig. 4.18.

This phenomenon is generally not observed in single liquid spreading and fingering,

and thus, seems to be a manifestation of two liquid system studied over here. As

noted in previous paragraph, the outer liquid contact line for larger volume ratios

is far away from the inner liquid. This allows for the inner liquid film and the

emanating fingers (primary as well as secondary) to spread to a significant distance

which eventually leads to drop break-up. This drop formation can be linked to the

outer co-flowing liquid shearing, pinching and finally squeezing out a drop from the

continuously thinning inner liquid or a finger. Such formation of drops with an outer

co-flowing liquid squeezing a drop from the inner liquid coming out of the nozzle is well

known in the literature and has been studied to a significant extent [89–93] which has

led towards analytical expressions for estimating the drop size distribution depending

on the liquid flow rates and physical properties. Quantitative estimates about droplet
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size distribution and their comparison with theoretical expressions is not possible in

our current set-up and will form the focus of future work. Comparison of the images

shown in Fig. 4.13 and Fig. 4.17 is suggestive of the interplay between two distinct

phenomena, viz. instability alignment and drop formation, both unique to a two-

liquid spreading system with one of them being dominant depending on the volume

ratios of the two liquids, i.e. the proximity between the outer and inner contact lines.

4.4 Conclusions

Simultaneous spreading and ensuing instability behavior of superposed drops of two

liquids with different surface tensions is studied experimentally and the results are

presented for varying volume ratios of the two liquids. Both qualitative as well as

quantitative differences in instability behavior for the single and two-liquids has been

observed for the experimental conditions considered here. It is found that the number

of fingers which form in case of the two-liquid spreading process for the inner liquid is

comparatively higher than the single liquid. Also, the spreading dynamics and onset

of instability are significantly altered by the presence of a liquid-liquid interface. After

comparison of the experimental results of the liquid spreading in presence of another

liquid with the available linear stability theory for predicting the Nf for single liquid

spreading, it is found that the the inner liquid data for two-fluid case does not agree

with the theory. In fact, the theory overpredicts the number of fingers observed in

experiments. A new theory has been derived by using linear stability analysis for

small but finite surface to interfacial tension ratio, and it has been found that the

presence of outer interface results in lowering in the value of most unstable wave

number as compared to single fluid case. This is equivalent to the observed decrease

in the number of fingers in our experiments. Furthermore, a newer effect of finger

break up and drop formation is also observed experimentally and is not reported

elsewhere.

The future work will include analysis of the size distribution of the droplets for

varying experimental parameters. However, the results obtained offer a better physi-
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cal insight into the phenomenon of two-phase thin film flow instability on a spinning

disc and may help to improve the modeling of such flow systems, which are usually

based on the simplified 1D axisymmetric transient two-liquid models.
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Chapter 5

Fingering instability of a

suspension film spreading on a

spinning disc

5.1 Introduction

The spreading of a suspension film on a solid surface under an external forcing plays

an important role in diverse applications, such as preparation of thin microporous

films, polymeric crystals, and micro-spheres for drug delivery etc. [11,94,95] The spread-

ing dynamics of such a film may vary depending on the driving force, viscosity and

wetting behavior of the suspending liquid, size of the particles present (colloidal, non-

Brownian suspension etc.), density of the particles (settling, buoyant and neutrally

buoyant), and concentration of particles present (dilute, semi-dilute, dense suspen-

sion). Depending on the particle concentration and the employed driving force, free

surface of the spreading film can either get deformed [71] or result in modification of

the shape of capillary ridge at the advancing front. [64] Furthermore, the presence of

particles in the suspending liquid can exhibit several complexities during spreading

and ensuing instability patterns. [64,72,96]

The emergence of a particle-rich ridge on an inclined plane flow of a non-buoyant

93



particle suspension is investigated using theory as well as experiments. [64,65] The

particle-rich ridge is observed to suppress the finger formation in the experiments. The

occurrence of this instability can be understood based on the balance between parti-

cle settling through gravity and re-suspension through shear induced migration. [66,67]

Similarly, for suspensions which exhibit yield stress behavior, the capillary ridge gets

stabilized by the innate yield strength of the fluid allowing the film to spread to a

larger extent before the instability ensues. [72,74] Linear stability analysis of the thin

film equations for such yield stress fluids, incorporating a suitable stress constitutive

equation, correctly predicts the observed behavior. [74] In certain cases, however, the

instability can be simply due to local yielding of the suspension [96] and not the usual

contact line instability along the advancing film front. An enhancement in the fin-

gering instability, compared to the base suspending liquid, is predicted using linear

stability analysis of thin film equations for hard sphere, non-Brownian, well-mixed

suspensions. [75] The dynamic heterogeneity in the particle concentration observed in

the spreading film is modeled using the thin film equations as for liquids, but with

appropriate contributions through particle settling and shear induced diffusion and

most importantly, spatially varying particle concentration dependent viscosity.

Despite the ubiquity and abundance of suspensions in several practical applica-

tions, the studies on particle-laden thin film flow are limited to inclined plane ge-

ometry. Systematic study of dependence of the instability and finger formation on

the particle volume fraction during the spreading of neutrally buoyant non-Brownian

suspensions on a spinning disc, which allows variations of the driving force amplitude

over a much wider range than gravity, is absent. Therefore, specific flow features

which are affected by the presence of particles are unknown. This information is

essential to understand the role which particles play in the onset and evolution of

instability as well as the overall spreading dynamics. Further, all of the previous

studies have been carried out with the suspending liquid of high wettability whose

spreading is shown to be inhibited by the presence of particles.

In this chapter, spreading of thin film of a suspension under centrifugal forcing is

investigated in detail using flow visualization experiments. Suspension drops of neu-
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trally buoyant non-Brownian hard sphere particles suspended in a partially wetting

liquid are used for the study. The objective is to investigate the effect of variation

of particle volume fraction (φp) and rotational speed on the overall spreading behav-

ior and instability characteristics. The results are also compared with the spreading

behavior of two Newtonian liquids of varying viscosity and wettability.

5.2 Experimental details 1

5.2.1 Materials and apparatus

The experimental assembly shown in Fig. 5.1 is the same as used for the two-fluid

experiments described in Chapter 4. It consists of a flat, aluminium disc of diameter

15 cm driven by a computer controlled DC stepper motor. The disc can be rotated

in the range 50− 10000 revolutions per minute (rpm). The desired speed is achieved

from rest using an acceleration of 1000 rpm/s. The feedback controller mechanism

ensures that the random fluctuations in the rotational speed are within 2% for 250

rpm while they are within 5% for 1000 rpm.

Three different fluids, two Newtonian liquids and a suspension, were used in the

experiments, the properties of which are given in Table 5.1. The suspension was

prepared by immersing glass beads (of an approximate normal size distribution with

mean diameter d = 52 µm and standard deviation 11 µm, and density 2.45 g/cc

as procured from Potters, Inc.) in a liquid of matching density prepared from a

mixture of LST liquid (density 2.85 g/cc) and glycerol (density 1.26 g/cc). The

density matching between particles and liquid is attained to the accuracy of three

decimal places. LST (Lithium heteropolytungstates) is a water soluble heavy mineral

liquid, typically used for particle separations. Suspensions of varying φp (0.1− 0.55)

were prepared by mixing different amounts of glass beads in the glycerol-LST mixture.

The viscosities of all the fluids, including suspensions, were obtained using the steady

1The experimental set-up, the streamlining of the entire experimental procedure and the exper-
imental data acquisition is credited to Mr. Mayuresh Kulkarni while the suspension rheology data
acquisition is credited to Mr. Sameer Huprikar, who were my labmates during the PhD duration.
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Figure 5.1: Schematic of the experimental set up. (a) Spinning disc assembly and image
acquisition system (b) Sample image (for PDMS) taken at certain stage of spreading (c)
Same image as in (b) but superimposed with the edge detected coordinates.

state rheology measurements carried out in a stress controlled rheometer. For all

values of φp studied, the suspensions exhibit a Newtonian behavior for shear rates

upto 103 s−1 (which are much more than those encountered in experiments). The

stress-strain curves for the suspensions of varying particle volume fractions are shown

in Fig. 5.2. Viscosity value for a particular fluid was calculated by fitting straight

line (power-law correlation for n=1, i.e., Newtonian fluid) to the data points shown

in Fig. 5.2 and obtaining the slope. The measured values of viscosity obey the well

known Krieger-Dougherty model [97] for hard sphere suspensions:

ηr =
[
1− φp

φmax

]−[ηint]φmax

(5.1)

where, ηr, φp, φmax, and [ηint] are the relative viscosity (η/η0, i.e., ratio of the viscosity
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Figure 5.2: Stress-strain curves for the varying volume fraction of suspensions studied.

of the suspension to the base suspending medium) of the suspension, volume fraction

of the particles, maximum packing fraction (taken as 0.64), and intrinsic viscosity

(usually taken as 2.5 for hard sphere particles). A comparison of the experimentally

measured viscosity of the suspension and the corresponding data fitting using Krieger-

Dougherty model is shown in Fig. 5.3.

To measure the static contact angle, a drop of fluid was placed on the horizontal

substrate. The drop was imaged by a camera placed sideways and in the plane of

the substrate. The image was analyzed using ImageJ software to obtain the static

contact angle. The values and corresponding errors reported in Table 5.1 represent

average over 20 independent measurements. The surface tension values of the liquids

used were measured using pendant-drop method. The surface tensions of PDMS,

Glycerol and suspending liquid (LST+glycerol) are, respectively, 19.2 dyn cm−1, 64.2

dyn cm−1 and 70 dyn cm−1. Unlike that for pure liquids, the surface tension value

for suspensions with φp ≥ 0.2 decreases continuously with time and never reaches a

steady value. This continuously decrease is, perhaps, due to particle rearrangement

causing the continuous deformation of the surface. This behavior gets accentuated

97



0 0.1 0.2 0.3 0.4 0.5 0.6
10

0

10
1

10
2

φ
p

R
el

at
iv

e 
V

is
co

si
ty

 (
 η

r )

 

 

K−D Model

Experimental Data

Figure 5.3: Experimentally measured relative viscosity as a function of the particle volume
fraction. The solid line is the prediction of Krieger−Dougherty model.

for higher particle volume fraction, precluding us from reporting the surface tension

values for suspensions. We simple report the static contact angle which has same

values as that for the suspending liquid.

5.2.2 Experimental procedure

In every experiment, a small drop of Polydimethylsiloxane (PDMS) (0.8 ml) or glyc-

erol (1.1 ml) or suspension (1.1 ml) of particular value of φp was placed at the center

of the disc. While micro-liter syringes operated using a mechanical and micrometer

assembly can be used to dispense exact volume of liquid precisely at the disk center,

the same method cannot be used for suspensions. The suspension was found to cling

significantly to the walls of the pipette tip resulting in the inaccuracy of 5% in the

added volume and about 5% in the volume fraction of the drop on the disk surface.

To overcome this issue as much as possible, a cylindrical hollow tube (3− 4 cm long

and 1 cm in diameter) was used, which was placed vertically at the center and flushed

parallel to the aluminium disc surface. Suspension was poured in a hemispherical cav-

ity of known volume. This cavity was emptied out very slowly in the hollow tube so
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Table 5.1: Physical properties of the fluids used in the experiments.

Fluids Density Viscosity Volume Static contact angle
(g cm−3) (Pa s) (cm3) (deg)

Glycerol 1.26 0.896 1.1 68± 3
PDMS 0.91 0.173 0.8 7± 3
LST+Glycerol (φp = 0.0) 2.45 0.022 1.1 65± 3
Suspension (φp = 0.100) 2.45 0.027 1.1 65± 3
Suspension (φp = 0.200) 2.45 0.043 1.1 65± 3
Suspension (φp = 0.300) 2.45 0.064 1.1 65± 3
Suspension (φp = 0.400) 2.45 0.096 1.1 65± 3
Suspension (φp = 0.425) 2.45 0.132 1.1 65± 3
Suspension (φp = 0.450) 2.45 0.162 1.1 65± 3
Suspension (φp = 0.475) 2.45 0.220 1.1 65± 3
Suspension (φp = 0.500) 2.45 0.295 1.1 65± 3
Suspension (φp = 0.525) 2.45 0.350 1.1 65± 3
Suspension (φp = 0.550) 2.45 0.763 1.1 65± 3

that suspension remained on the disk surface as a drop with minimum contact with

the enclosing tube surface. The tube, using micrometer screw arrangement, was then

lifted very slowly which eventually leaves behind a nearly circular drop of suspension.

The slow lifting of the tube minimizes the splashing when the tube loses contact with

the liquid. Even using this method, some amount of suspension always clings to the

wall of the cavity and some to the walls of the vertical tube, but the surface area over

which the material clings is very small leading to an accuracy of 1% in the volume

added as well as 1% in the volume fraction of the suspension drop added to the disc.

The disc surface, before every experiment, was washed multiple times using soap

solution and rinsed with DI water followed by acetone to remove any traces of fluid

used from the previous experiments. It was then mounted exactly horizontally on

the spinning assembly. This protocol ensured the reproducibility of the experimental

results. Experiments were carried out for four different rotational speeds of the disc:

250, 500, 750, and 1000 rpm. Each experiment was repeated 5 times and the results

presented are averages over these experiments.
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5.2.3 Imaging and analysis

The surface of the disc is illuminated from above using a bright halogen lamp. A dif-

fuser plate placed in front of the light generates an uniform light distribution across

the plate surface. The motion of fluid on the surface of the aluminium disc is cap-

tured from above using a high-speed camera with an exposure of 150 µs to acquire

sharp images. A small amount of fluorescent dye (Rhodamine B) was added to the

transparent fluid for ease in the flow visualization and image analysis using better

contrast (see inset of Fig. 5.1(b) showing a fluid, appearing in dark color, which has

spread to a certain extent). The addition of the fluorescent dye changes the surface

tensions of PDMS, glycerol, and LST-glycerol mixture by 0.05%, 0.3%, and 3.3%,

respectively, which is small enough to induce any qualitative changes in the observed

behavior. The camera, as shown in Fig. 5.1(a), is placed slightly inclined to the ver-

tical. This is to prevent the reflection of the camera from the optically flat substrate

surface appearing in the images which can create difficulty in image analysis. The

oblique positioning of the camera with respect to the plate surface makes the drop

and plate appear non-circular in the images due to unequal distance of different re-

gions on the plate from the camera. This spatial variation was taken into account by

imaging four concentric circles drawn on a similar plate, under similar camera, plate

and light positioning, spanning the whole area and obtaining the coordinates along

the circumference of each circle (See Fig. 5.4). The alternate positioning of the white

and black bands as shown in the figure makes the detection of the circles much easier.

This procedure provided the ratio between the actual radius and the apparent radius

obtained from the images at different spatial locations which was then applied to the

fluid spreading images appropriately. Increasing more measurements (i.e. drawing

several more concentric circles) improved the correction by a negligible amount.

The image analysis procedure and quantities determined are nearly the same for

two-fluid experiments from Chapter 4. We reproduce the details again for ease of

reading. The acquired images were analysed in ImageJ and MATLAB R© to track the

position of the interface and extract its behavior. The sequence of steps involved in
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Figure 5.4: Scale used for image calibration.

the edge detection process is shown in Fig. 5.6. First, the raw image is converted to

a binary image. In the next step, the image is inverted and the connected component

(drop) having only white pixels (the required object) is identified. Any noise in

the required object image is then removed and finally, the edge is extracted using

standard edge detection algorithm (‘sobel’ method) available in MATLAB’s inbuilt

image analysis tool. The edge detected coordinates were calibrated using the scale

shown in Fig. 5.4. The algorithms use the polar and Cartesian coordinate systems

with the origin at the center of the disc. The edges were detected to an accuracy of

±0.15 mm (see Fig. 5.1(c)). The edge detection data was used to calculate several

quantities, viz., effective radius (R) at different radial locations (i.e., different times),

spreading rates, instability wavelengths, and number of fingers. The effective radius

at different times before the onset of instability, was obtained by fitting a circle to

the edge detected coordinates. In order to find the finger front position as a function

of time, the image data was first converted to polar coordinates (r-θ) and the local

maxima (finger tips) in each image data was found out as shown in Fig. 5.5. Then,

one particular finger tip position was tracked in subsequent images to find out the

position of the finger front with time. Depending on the rotational frequency and

the camera frame rate, the tip position of a particular finger in the next image was
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(a) (b) (c)

Figure 5.5: Steps involved in tracking the finger front position. (a) Original experimental
image, (b) corresponding edge detected coordinates superimposed on the original image,
and (c) finger tip positions in (b) plotted in polar coordinates (r − θ).

obtained by searching within a specified range of angular distance. After finding out

the front position with time for several fingers in a particular experiment, it was

observed that the trends were not much different for all the fingers as compared to

the fastest growing finger. Therefore, the data is reported only for the fastest growing

finger in all the experiments.

5.3 Results and discussion

5.3.1 Spreading behavior

Figure 5.8 shows the spreading of partially wetting glycerol, completely wetting

PDMS and suspensions (φp = 0.45, 0.475, 0.525, 0.55) at a rotational speed of 500

rpm. Each column corresponds to the spreading of a particular fluid at different

times. Each row corresponds to the same degree of deformation of the drop bound-

ary for all the fluids. The degree of deformation is defined as [(R1 − R2)/R2]× 100,

where R1 is the largest radius for the drop (distance of the farthest point from the

axis of rotation) and R2 is the radius of a circle centered on the axis of rotation and

having same area as that covered by the drop (See Fig. 5.7). The rows 2, 3,and 4 thus,

correspond to a deformation of 10% and 20%, and 30% respectively, for all fluids.

The drop of PDMS, when placed on the disc, occupies a larger area compared
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Original Image Grey to Binary Inverted Image

Required ObjectHoles FilledEdges Found

Figure 5.6: Sequence of operations involved in the processing of raw image to extract the
edge of a spreading drop.

to the drop of glycerol and suspensions even if the volume used is smaller (row 1 in

Fig. 5.8). This is due to high wettability of PDMS (small contact angle) with respect

to the disc surface, which spreads to occupy a larger area. The suspension drop (for all

φp) occupies nearly the same area of the disc as the glycerol drop. This suggests that

the suspending liquid, which has the same wettability as glycerol (nearly same contact

angles as shown in Table 5.1) primarily determines the final static configuration and

the particles have relatively lesser influence. The finer details of the approach to this

final static state, [98,99] and the possible particle influence therein, are not within the

scope of this work and hence was not studied.

Once the rotation of the disc is started (500 rpm as shown in Fig. 5.8), the drops of

glycerol (first column) and PDMS (sixth column) start to spread leading towards the

formation of instability along the circumference (second row) and its further growth

into fingers at later times (3rd row). The radius of the base circular region of the

drop at which instability first appears, does not seem to increase significantly with
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R0 Finger
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Figure 5.7: Images showing the definition of quantitative parameters obtained using image
analysis.

the fluid continuously flowing outward through the fingers which eventually reach the

periphery. This overall behavior, inclusive of the instability wavelength (or number of

fingers formed), is very much in agreement with the analytical expression (See eq. 4.1)

provided by Fraysse and Homsy [46].

The suspension, for all values of φp, spreads to a larger area before the instability

is initiated compared to the spreading of a partially wetting liquid when the disc is

rotated. Note that the suspending liquid is partially wetting, like glycerol. The extent

of spreading, before the initiation of instability, increases gradually up to φp = 0.525

and then decreases slightly at the highest particle volume fraction (φp = 0.55). This

indicates stabilization of the contact line due to the increasing presence of particles

which is qualitatively similar to that observed during the spreading of a viscoelastic

fluid [47] and clay suspensions which exhibit a finite yield stress. [72,74] For the values

of φp studied over here, the suspensions, however, do not exhibit a yield stress or

show a viscoelastic behavior as ascertained from the bulk rheology measurements.

Further, when compared to pure liquids, the base circular region of suspension (for

any particular φp) continues to spread significantly post the instability initiation.

Increasing the rotational speed beyond 500 rpm does not qualitatively change the
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spreading behavior, however, lowering the rotational speed reduces the spreading

tendency significantly. The qualitative behavior of the fingering instability, however,

remains the same for different rotational speeds as shown next.

Figure 5.9 illustrates the relative influence of the driving force (rotational speed

employed) and particle volume fraction on the spreadability of the suspensions for

5 different volume fractions. All images are shown at the same percentage (10%) of

deformation of the contact line (corresponding to onset of instability). Clearly, there

is a big increase in the spreading tendency when rotational speed is increased from

250 to 500 rpm, for all φp. However, any further increase in the rotational speed does

not qualitatively change the spreading behavior, suggesting a critical rotational speed

demarcating different spreading behaviors. For rotational speeds 500 rpm and above,

the behavior is nearly independent of φp (each row of Fig. 5.9). It is also observed

that the time to attain the onset of instability decreases with increase in rotational

speed decreasing spreading of a particular volume faction of suspension (each column

of Fig. 5.9). A distinct behavior is observed for the highest φp studied for the case of

750 and 1000 rpm, where the extent of spreading seems to decrease as compared to

500 rpm. The reason for this could be the higher driving force which does not allow

the drops to spread more once the instability is formed as compared to the case of

500 rpm. In fact, with further increase in time of spreading, the capillary ridge for

the drops of φp = 0.55, at 750 and 1000 rpm breaks and the material gets thrown off

the disc.

The time evolution of the drops of suspension from their initial state up to the

critical radius is shown in Fig. 5.10(a) for the rotational speed of 500 rpm along with

the evolution of the drop of PDMS and glycerol. The results for the spreading/growth

post-instability are shown later. The extent of spreading (R(t)−R0) is normalized by

the cube root of initial volume (V0) which is not the same for all fluids as mentioned

earlier. Here, R(t) is the radius of the spreading drop and R0 is the radius of the drop

in its initial state. The final point in each profile corresponds to critical radius (i.e.,

images in the second row shown in Fig. 5.8). The rate of spreading of the suspension

drop decreases with increase in the particle volume fraction which can be expected [65]
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Figure 5.10: Spreading of a drop from its initial position upto the onset of instability for
(a) varying particle φp at 500 rpm, and (b) 4 different rotational speeds for φp = 0.5 . The
profiles in (a) represent the drop evolution from its initial position (row 1 in Fig. 5.8) upto
the critical radius (row 2 in Fig. 5.8). Solid line in (a) denotes the spreading of glycerol
while the dashed line denotes the spreading of PDMS.

given the increase in the viscosity (see Table 5.1). For the highest particle volume

fraction (φp = 0.55) studied, the spreading rate is even lower than that observed for

the two liquids. The extent of spreading (R(t)−R0) for the suspension drop, however,

increases continuously with φp before decreasing slightly at φp = 0.55. Further, the

time to attain the critical radius increases monotonically with increase in φp. The

overall behavior seems to arise due to combined effect of viscosity as well as the ability

of a fluid to spread. For instance, the viscosities of PDMS and suspension (φp = 0.45)

are nearly the same and both possess very different static contact angles, but the

extent of spreading for same degree of deformation seems to be similar. Similarly,

the viscosities of glycerol and suspension (φp = 0.55) are nearly the same and both

are partially wetting (large static contact angles), but still the suspension spreads to

a larger extent. Finally, the spreading rates and extent of spreading for PDMS and

glycerol, which have quite different viscosities and wettabilities, are nearly the same.

Fig. 5.10(b) shows the effect of driving force on the time evolution of the sus-

pension drop from its initial state up to the critical radius for a particular volume

fraction (φp = 0.5). A sudden increase in the spreading rate is observed for increas-

ing rotational speed from 250 to 500 rpm beyond which the increase is quite slower.

Clearly, there is a critical rotational speed demarcating the spreading rate, the exact

reasons for the origin of which are not clear at the moment.
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5.3.2 Instability and finger growth

The characteristics of the contact line instability accompanying the spreading of the

film are discussed. The reason for the occurrence of this instability in case of pure

liquids has been discussed in detail in Chapter 4. [46,58,59,62,100] The parameters used

for quantifying the instability are the critical radius (Rc), wavelength of instability

(λ), number of fingers (Nf ), and the growth rate of the fingers. The procedure for

the measurement of the above parameters are the same as discussed in Chapter 4.

The Rc value is normalized using the cube root of the initial drop volume (V0) which

is not the same for all fluids.
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Figure 5.11: Normalized critical radius (Rc) at (a) 250 rpm, (b) 500 rpm, (c) 750 rpm and
(d) 1000 rpm. Open circles denote the data for suspension. Error bars denote deviations
obtained by averaging over five independent data sets. Values of Rc for glycerol and PDMS
are shown, respectively, as solid and dashed lines.

Figure 5.11 shows the variation of the normalized critical radius with φp for all the

rotational speeds studied. The critical radius for PDMS decreases slightly over the

range of rotational speeds employed, which is in accordance with previously observed

behavior. [46] For all other fluids, the critical radius increases with increase in rotational

speed from 250 rpm to 500 rpm, beyond which it remains nearly constant (also

observed in Fig. 5.9). Further, the critical radius for glycerol (shown as a solid

line) is much lower than PDMS (shown as a dashed line) for all the rotational speeds

which is expected given that PDMS is far more wetting than glycerol and hence can

spread to a larger area before developing instabilities (compare first and sixth column

in Fig. 5.8). The value of Rc at φp = 0.4 and lower (not shown) is quite close to that

for the partially wetting glycerol for all the rotational speeds which suggests that the
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presence of particles has a negligible influence on the instability behavior for these

values of φp. For these cases, the instability is, then, initiated due to the usual contact

line instability of the partially wetting suspending liquid. Beyond φp = 0.4, the value

of Rc increases steadily (except at φp = 0.425 for some rotational speeds which is not

clear) towards that for PDMS, with a slight decrease at the highest φp for rotational

speeds of 500 rpm and above. The rate of increase is smaller for 250 rpm compared

to that for higher rotational speeds (evident from Fig 5.9).

The wavelength (λ) of the instability is related to the experimentally determined

critical radius (Rc) and number of ensuing fingers (Nf ) as counted from the images,

by the geometric relation [46] λ = (2πRc)/Nf . All the measurements are carried out at

a radial location where the degree of deformation is 10%. The secondary fingers which

form at later times (larger degree of deformation or spreading) between the existing

fingers are not included over here. Fig. 5.12 depicts the wavelength of instability

obtained using the above procedure for different fluids for all the four rotational

speeds employed. PDMS has lower surface tension and breaks into several fingers

associated with smaller instability wavelength. Glycerol, on the other hand, has

higher surface tension and breaks into lesser fingers associated with larger instability

wavelength to minimize the surface energy. This behavior is very well known in the

literature and the values of the wavelength for both the liquids are in accordance with

the predictions obtained through the linear stability analysis of thin film equations

as discussed in Chapter 2.

The data for suspension exhibits a very interesting non-monotonic dependence

on increasing φp for all the rotational speeds. There is no existing model available

for thin film flow of a suspension on a spinning disc which can explain this non-

monotonic behavior. Also, there are no theoretical equations available which are valid

for pure liquids and can be easily translated to suspensions to account for this peculiar

behavior. The decreasing and increasing behavior can, however, be independently

understood based on the theoretical works done previously, as discussed next.

The decrease in the wavelength observed in Fig. 5.12, is in qualitative agreement

with the linear stability analysis of thin film equations by Cook et al. [75] These authors
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Figure 5.12: Wavelength of the instability (λ) for (a) 250 rpm, (b) 500 rpm, (c) 750
rpm and (d) 1000 rpm. Open circles denote the data for suspension. Error bars denote
deviations obtained by averaging over five independent data sets. Values of λ for glycerol
and PDMS are shown, respectively, as solid and dashed lines.

have numerically studied the fingering instability in case of particle-laden thin film

flowing down an inclined plane (not on a spinning disc), and for a suspension in

a wetting liquid medium. They have developed a continuum two-phase (separate

momentum equations for the mixture phase and the particle phase) model for a non-

buoyant suspension, including the effect of shear induced diffusion [101] (i.e., diffusion

in the horizontal direction resulting from the horizontal concentration gradient of

φp). The depth averaged velocity term in the thin film equation [59] (for pure liquid)

provided in Chapter 2 (eq. 2.2) is replaced with volume averaged velocity term which

involves the velocity contributions from both particle as well as liquid phase. A linear

stability analysis is performed on this model by perturbing the time-dependent base

state in both space and time. Note that the base state in case of thin film flow of a pure

liquid is quasi-static and hence easy to model as compared to the time-dependent base

state for the case of suspension. The numerical stability analysis is able to capture

the decrease in the instability wavelength for a suspension film compared to that for

the film of the suspending liquid. [22] In our experiments, this raises the possibility of

the presence of particle concentration gradients within the capillary ridge which can

cause diffusion of particles and consequently lower wavelengths. The primary reason

behind the formation of such a concentration gradient in the system, if at all present,

is however not clear and needs to be investigated further. However, this model cannot

explain the increase in the wavelength observed beyond a certain φp.
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The higher wavelengths observed in Fig. 5.12 at higher values of φp seem to be

in qualitative agreement with the predictions of linear stability analysis of thin film

equations for yield stress (viscoplastic) suspension by Balmforth et al. [74] Again, their

model is for inclined plane flow of a suspension and wetting suspending liquid. The

model, incorporates a suitable Bingham stress constitutive equation to obtain the

thin film equation and solve for the corresponding base state profile. A stability

analysis performed on the above system captures an increase in the wavelength for a

suspension film compared to the film of the suspending liquid, through the increasing

yield stress, which is also observed in their experiments. For the higher concentrations

studied in our experiments, this raises the possibility of particle crowding within the

capillary ridge, which will ensue a contact network and impart a yield stress, leading

to the observed higher wavelengths. Again, the exact mechanism behind the crowding

of the particles in the ridge, if at all present, needs further investigation.
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Figure 5.13: Comparison of the experimentally determined values for Nf with that pre-
dicted by linear stability theory. Symbols denote data for PDMS, glycerol and suspensions
(all φp) obtained at all four rotational speeds studied. Solid line shows y = x

The linear stability analysis for viscous, wetting, Newtonian liquid [46] which pro-

vides the expression for predicting the value of Nf using the properties of the fluid

and the measured value of Rc is provided in eq. 4.1 in Chapter 4. This equation
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predicts the value of Nf quite well for PDMS and glycerol as shown in Fig. 5.13. The

theory, however, over-predicts the Nf for the suspension data including all φp and

rotational speeds. The reason for such an over-prediction is not quite clear at the

moment. Nevertheless, it is interesting that the data for varying φp and wide range of

rotational speed clutter around a straight line with a different slope in spite of a very

varied spreading behavior exhibited by suspensions as described in this work which

definitely is not controlled by the value of γ for a static drop. Curiously enough,

Eq. (4.1), is able to predict the value of Nf for viscoelastic fluids quite well [47].
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Figure 5.14: Normalized growth of the fastest moving finger for 500 rpm. Open circles
denote data of suspension (a) φp = 0.4, (b) φp = 0.45, (c) φp = 0.475, (d) φp = 0.5, (e)
φp = 0.525 and (f) φp = 0.55. Solid line denote finger growth for glycerol while dashed line
denotes finger growth for PDMS.

Finally, the growth of the fingers post-instability formation is discussed. Here,

only the fastest growing finger is considered, though the behavior is more or less the

same for other fingers. Figure 5.14 shows the growth of the fastest growing finger

(Rf − Rc) normalized by the cube root of the initial volume (V0) at 500 rpm. Here,

Rf is the distance of the finger front from the axis of rotation and Rc is the critical

radius. Glycerol forms less number of fingers and all the fluid passes outwards from the
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existing fingers leading to a faster growth rate (solid line in Fig. 5.14). In contrast,

PDMS forms more fingers and the liquid flows outward through fingers as well as

during the slow spreading of the central drop causing an overall lower rate in the

finger growth (dashed line in Fig. 5.14). With increasing particle volume fraction,

the suspension data show a monotonic decrease in the rate at which the fingers grow

in time. The rate, is faster at lower values of φp, decreases and is nearly identical to

that for glycerol at φp = 0.475, decreases further to be similar to that for PDMS at

φp = 0.5 and falls further for highest values of φp studied. This overall behavior is

a combination of varying viscosity and the particle influence on finger growth with

increasing φp. The observed trend for 500 rpm for the evolution of finger front position

remains valid for all the rotational speeds studied.

5.4 Conclusions

In summary, a unique and curious effect of the particle volume fraction on the spread-

ing behavior of a film of suspension is shown, through flow visualization experiments.

The critical radius for the onset of instability is found to increase gradually with

increase in the particle volume fraction with a slight drop off at the highest particle

volume fraction studied, while the instability wavelength decreases and then increases

again while going through a minimum for the same range of particle volume fractions.

The decrease and increase in the wavelength are, respectively, attributed to the pos-

sible particle concentration variations in the capillary ridge at lower φp and particle

crowding at higher φp. The supporting arguments provided on the basis of previous

theoretical studies [74,75] are qualitative, but the results presented are, nevertheless,

quite significant. They should provide strong impetus towards developing a theoreti-

cal framework capable of encompassing the existence of seemingly different spreading

characteristics of a suspension film within a small concentration range.

Some interesting avenues within the scope of future work are (i) actual visual-

ization of particle motion within the capillary ridge, (ii) changes in the contact line

instability for a mixture of particles differing in size, for non-neutrally buoyant parti-

114



cles and for non-Newtonian suspending liquids, and (iii) altering the particle surface

properties to change its affinity with respect to liquid. The results also suggest possi-

ble mechanism of altering the spreading behavior of a thin film of liquid by addition

of non-interacting particles which should be of interest to industrial applications.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

We have carried out a systematic study to investigate the spreading and instability

behavior of a thin film of liquid on a spinning disc, the contact line behavior of which

is altered using an externally located immiscible liquid and internally suspended solid

particles. Both theoretical and experimental studies are carried out for the flow, of a

Newtonian liquid spreading in presence of another liquid on its top and of suspensions,

on a spinning disc. A summary of the results and conclusions of the work are provided

below.

A systematic study of the axisymmetric two-layer spin coating process is carried

out using numerical simulations. The fluids used are assumed to be Newtonian and

fully wetting. A precursor layer model is used to relieve the singularity of the contact

line. The effects of the ratios of the physical properties of the liquids, and process

parameters on the uniformity of the two-layer film and spreading behavior are in-

vestigated. Our results demonstrate that bulkiness of the capillary ridge increases

with an increase in the viscosity ratio. Also, the capillary ridge becomes sharper

with the decrease in the interfacial tension ratio. The formation of the sharp capil-

lary ridges could affect the uniformity of the two-layer film. Nevertheless, our results

suggested that a uniform two-layer thin film can form when the fluid in the upper

layer is less viscous or when the upper gas-liquid surface tension is more than the
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inner liquid-liquid interfacial tension. Furthermore, it is observed that increase in

the precursor layer thickness facilitated the film to become uniform. An important

finding is that the increase in the volume ratio did not affect the uniformity of the

film. Therefore, the simulation results implicate that operating the process with an

equal volume of the fluids in both the layers will produce a uniform two-layer coating

film with minimal loss of the liquids.

Majority of the previous studies in this field have looked at the film thinning

behavior and interfacial instability for stratified two-layer flow of thin liquid films.

Our results, are the first ever results which demonstrate the effect of ratio of fluid

properties and process parameters on the shape of the capillary ridge close to the

two contact lines, and their corresponding evolution. The results of our study are

useful in determining the optimum parameter space for a given two-layer coating

application. Nevertheless, this study has certain practical limitations. Due to the

axisymmetric nature of the simulation, it cannot explain the instability that occurs

in these type of flows. Furthermore, the simulation results are applicable only to fully

wetting liquids. In other words, it cannot predict the behavior for partially wetting

liquids. The major practical issue is associated with the Newtonian fluid assumption,

which limits the applicability of the model for predicting flow behavior in case of

non-Newtonian liquids such as polymeric liquids and suspensions which are widely

used in industrial applications.

Fingering instability in case of simultaneous centrifugal spreading of a drop of

Newtonian liquid spread on a top of another drop of Newtonian liquid is studied

experimentally and the results are presented for varying volume ratios of the two liq-

uids. Both qualitative as well as quantitative differences in instability behavior for the

single and two-liquids has been observed for the experimental conditions considered

in our study. It is found that the number of fingers which form in case of the two-

liquid spreading process is comparatively higher than the single liquid case. Also, the

spreading dynamics and onset of instability are significantly altered by the presence

of a liquid-liquid interface. After comparison of the experimental results of the liquid

spreading in presence of another liquid with the available linear stability theory for
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predicting the Nf for single liquid spreading, it is found that the the inner liquid data

for two-fluid case does not agree with the theory. In fact, the theory overpredicts

the number of fingers observed in experiments. A new theory has been derived by

using linear stability analysis for small but finite surface to interfacial tension ratio,

and it has been found that the presence of outer interface brings down the value of

most unstable wave number as compared to single fluid case. This is equivalent to

the observed decrease in the number of finger in our experiments. Furthermore, a

newer effect of finger break up and drop formation is also observed experimentally

and is not reported elsewhere.

Finally, a unique and interesting effect of the particle fraction on the spreading

behavior of a film of suspension is shown, through flow visualization experiments.

The critical radius for the onset of instability is found to increase gradually with

increase in the particle fraction with a slight decrease at the highest particle fraction

studied, while the instability wavelength decreases and then increases again while

going through a minimum for the same range of particle fractions. The decrease and

increase in the wavelength are, respectively, attributed to the possible particle concen-

tration variations in the capillary ridge at lower φp and particle crowding at higher φp.

The supporting arguments provided on the basis of previous theoretical studies [74,75]

are qualitative, but the results presented are, nevertheless, quite significant. They

should provide strong impetus towards developing a theoretical framework capable

of encompassing the existence of seemingly different spreading characteristics of a

suspension film within a small concentration range. The results also suggest possible

mechanism of altering the spreading behavior of a thin film of liquid by addition of

non-interacting particles which should be of interest to industrial applications.

6.2 Future Directions

The results of our research poses some open questions which can be addressed through

future work. The future studies may include:

• Extending the two-layer axisymmetric code to include the partially wetting
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behavior of liquids to understand the capillary ridge formation and its stability

subjected to azimuthal perturbations.

• Modification of the mathematical model to study the two-layer spin coating

process of non-Newtonian fluids such as polymer melts, emulsions and suspen-

sions.

• Analysis of the size distribution of the droplets obtained in two-liquid experi-

ments for varying experimental parameters.

• Experimental visualization of particle motion within the capillary ridge for

spreading of suspensions which will provide us with the mechanism behind the

observed spreading and instability characteristics.

• Investigation of the contact line instability for a variety of cases such as: for

bimodal and multimodal suspensions, for non-neutrally buoyant particles and

for non-Newtonian suspending liquids, and for particles with modified surface

affinity with respect to the suspending liquid.

• Finally, mathematical models for the spreading of thin film of suspensions on

a spinning disc could also be developed in future to find out the concentration

variation in the capillary ridge region. We believe that the demonstrated ap-

proach will be valuable in theoretical studies of thin film flow of suspensions

suitable for practical applications.
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