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Abstract 

The present investigations of the thesis have been performed to understand the complex 

mechanisms of large-scale biochemical pathways, mainly cell signaling networks and its 

complex interactions with gene regulatory processes in cancer cells using in-silico models. The 

main aim is to identify the crucial nodes or active regulatory reaction motifs in the entire 

network, which can be targeted to suppress the activities of the signaling networks in the 

proliferating and metastatic tumor/cancer cells, which could be further considered as 

important drug-targets in targeted cancer therapeutics. However, developing in-silico models 

of large-scale signaling networks to accurately capture the dynamics of pathway species in a 

cellular condition is a specifically challenging task. Hence, to overcome such problems, at first 

the large cell signaling networks have been curated from various sources. A new open source 

biochemical database BIOPYDB (http://biopydb.ncl.res.in/biopydb) has been developed in which 

the curated pathways have made available for the general research purposes. The database is 

equipped with the computational tools for performing network, logical, and dynamic analyses 

of the pathways. Availabilities of these computational tools including various unique features 

have made this database as a useful resource for pathway data searching, reconstructions, 

modeling, and simulation tasks within a single platform. Following this, the important 

oncogenic signaling pathways, such as Hedgehog (HH), Notch, WNT, and EGFR, etc. have 

been modeled and simulated using semi-dynamic, discrete logical modeling approach in the 

current investigation. Also, the static graph theoretic analysis has been utilized to understand 

the topology of the signaling networks in various conditions and subsequently identify the 

"Hubs" genes/proteins in the entire network.  

The broad objectives of the thesis are to understand the molecular mechanisms of the 

tumorigenic processes in cancer cells, find out the minimal number of potential drug-targets, 

and most importantly predict the risk of the development of tumorigenic cells from the normal 

cells or tissues (e.g., brain) using in-silico logical models of the signaling network. 

In order to fulfill these objectives, at first individual logical models of the oncogenic, 

developmental cell signaling networks, Hedgehog (HH) and Notch pathways have been 

developed. The HH model has been able to predict the molecular mechanisms or the active 

reaction motifs, which comprise of the crosstalk proteins of other signaling pathways, such as 
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RAS, ULK3, ERK1/2, TWIST in three cancer/tumor cell models viz. Glioblastoma, Colon, and 

Pancreatic cancers. It has been predicted that due to these active reaction motifs, the 

suppression of Smoothened (SMO) receptor protein, which is known for activating HH 

pathway, fails to stop the cell cycle progressions of cancer cells in target-based anti-cancer 

therapy. Furthermore, the topological analyses of the reconstructed HH network has been able 

to extract the important "Hubs" in the network, from which few select combinations have been 

proven useful to stop the SMO inhibitor resistant cancer cells. Similar, analyses have been also 

performed on the reconstructed Notch signaling model to identify the alternative drug 

target(s), which will be able to suppress the growth of Glioblastoma Grade-IV tumor cells. Two 

novel combinations of drug targets (a) NICD1 & MAML and (b) NICD1 & HIF1A have been 

identified, which have shown more powerful impact to shut down the active Notch signaling 

and its crosstalk pathways in the GBM cells as compare to the known drug-target Gamma-

Secretase enzyme of this pathway. 

In order to understand Notch pathway in the development of GBM cells starting from the 

normal adult neural stem cells (aNSCs) or Glioma stem cells (GSCs), different logical models 

have been developed for each cell types (aNSCs, GSCs, Glioblastoma). The general 

Glioblastoma (GBM) model has been able to nicely simulate the developmental dynamics of 

the development of different tumor grades or sub-types (i.e. low and high grade) as well as the 

molecular differences between the tumor sub-clones. It has been observed that Notch signaling 

can play central role to tune the dynamics of aNSCs and GSCs, and thus develop the normal 

differentiated cells (neurons, astrocytes) as well as different sub-types and distinct molecular 

sub-clones of GBM cells. This analysis has been specifically helpful to explore the causes 

behind the drug resistivity, intra-tumor heterogeneity, and tumor sub-types of GBM cells.  

Lastly, an integrated signaling pathway model combining major oncogenic pathways, such 

as HH, Notch, WNT, EGFR, PI3K/AKT, and etc. has been developed to study the gene 

expression patterns and identify novel drug-targets in the GBM cells. In this work, newly 

developed extended quaternary logic (ExQuLogic)-based modeling technique has been used to 

simulate and identify the signaling pathway activities in GBM cells. The combinations of the 

proteins from different signaling pathways viz. SMO, GLI1, GLI3, NICD1, HEY1, NRARP, and 

SNAI1 have been proposed as the minimal number of drug targets for the treatment of 

advanced metastatic GBM cells. 
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Chapter 1 
__________________________________________________________________________________ 

 

1 GENERAL INTRODUCTION AND SCOPE OF THE THESIS 

__________________________________________________________________________________ 

1.1 BIOCHEMICAL PATHWAYS AND HUMAN DISEASES 

Biochemical pathway is an umbrella term commonly used for describing all sorts 

of chemical reaction cascades, which occur in living cells and tissues [1-5]. Often the 

chemical reaction cascades of the biochemical pathways, which are relayed from the 

reactants to the products catalyzed by different enzymes and multiple regulators, are 

referred as "biochemical reaction network" or simply "biochemical network" [6,7]. In 

terms of chemical and functional properties, the biochemical pathways or networks 

can be divided into three major categories viz. signalling pathway, gene regulatory 

network, and metabolic pathway [5,8]. Signaling pathways or signal transduction 

networks are mainly defined as the transductions of the covalent modifications 

(phosphorylations, dephosphorylations, ubiquitination) and conformational changes 

of protein molecules upon external and internal stimuli (ligands, hormones, changes 

in protein concentration, ionic flux, etc.) in the cells [9,10]. Gene regulatory networks 

(GRN) are commonly defined as the intricate networks of gene regulatory elements 

(GRE), such as promoters, transcription factors, co-activators, co-repressors, rRNA, 

miRNA, etc., which play important role in the transcriptions and translations of the 

transcripts, post-translational modifications and sub-cellular localization of the 

synthesized proteins, etc. [11-13]. On the other hand, the metabolic pathways are 

generally defined as the series of chemical reactions in which small molecules or 

metabolites act as the substrates of several enzymes and undergo complex chemical 

modifications processes to optimize the requirements of mass and energy of 

biological cells/tissues [14].  
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Current applications of the analyses of different biochemical pathways involve 

identification of the important genes, enzymes, metabolites, and other cellular 

components in biomass production [15,16], cell divisions [17], cell migrations [18], 

etc.; revealing the missing components in chemical reaction cascades by genome 

comparisons and pathway alignments [19,20]; bridging the gaps between genome - 

proteome - phenome [17]; exploring the alternate and optimal routes for the 

synthesis of various cellular components [21]; discovering important component(s) in 

the pathway for novel drug target identifications [22]. The most important 

applications of biochemical pathway analyses has been observed in the area of the 

pathogenesis of severe diseases, such as cancer, immunological disorder, 

neurodegenerative disease, diabetes, cardiovascular disease, etc. [23-28]. 

1.1.1 Biochemical Pathways - a Conceptual Framework to Understand Different 

Human Diseases 

The interdependencies between various key components of biological systems - 

cells, genes, proteins, mRNA, microRNA, metabolites, inorganic molecules, free 

radicals, etc. can be brought together into a single conceptual framework of the 

biochemical pathway or network. Hence, to decipher various complex biological 

phenomena, such as embryogenesis, organogenesis, and most importantly the 

aetiology of various diseases, understanding of such intricate process has been a 

long-standing goal of the researchers [29-33]. Besides, biochemical pathways are the 

cardinal in the field of life science research to understand how a living cell or tissue 

will react and develop in different environmental (e.g., radiation, stimulus, heat, 

temperature, etc.) and internal fluctuations (e.g., mutations, copy number changes, 

hyper- or hypo-methylation, chromosomal aberrations, etc.). Due to its high 

importance in cellular and organ development, study of different biochemical 

pathways or networks has also become indispensable to infer the causalities of 

genetic, epigenetic, and environmental changes with the malfunctions of various 

cells/tissues and the pathogenesis of various human diseases [34-38]. However, the 
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understanding of the relationships between genetic variations, biochemical 

pathways, and human diseases had begun after the British physician Sir Archibald 

Garrod in 1908 hypothesized that the inactivity or lack of specific enzymes in certain 

biochemical pathways are the main cause behind the human disease alkaptonuria 

[39]. After this study, several experiments focused on the deregulations of various 

metabolic pathways related to amino acid metabolism [40], urea cycle [41], glucose 

metabolism [42], and others have been discovered as the potential regulators behind 

various severe human diseases including cancers. Successively, the whole genome 

sequence of human and other organisms as well as high-throughput omics-based 

experiments have provided us a plethora of information about the genetic, 

molecular, cellular makeup of normal human cells/tissues and helped us to 

understand how certain deregulations in such profiles (i.e., transcription, 

methylation, structural changes) can trigger anomalies in the biochemical pathways 

and cause different diseases [43-46].  

1.1.2 Interconnectivities of the Biochemical Networks and Disease Pathogenesis 

However, it should be noted that even though the biochemical pathways are 

categorised into three separate groups, the interconnectivities and interdependencies 

of these pathways are very much essential in cellular programming and disease 

pathogenesis [47-49]. Most importantly, the pathways do not work alone and the 

components of each pathway may remain in multiple layers and have different time 

scales but they always work in concert to maintain optimal activities of the cell or 

tissue [50-52]. Often, during the pathogenesis of several human diseases, the regular 

patterns of connectivity observed in the molecular reaction network get altered and 

thus cause the irregular activities of the biochemical pathways. For example, 

hyperglycemia-induced glucose metabolism pathway including lipid perioxidation 

process and glutamate toxicity have been found to induce the increased activities of 

the apoptotic and VEGFR signalling pathways in retinal capillary endothelial cells of 

the patients' suffering in diabetic retinopathy (DR) [53]. Enrichment of HER2 (ERBB2) 
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receptor protein in the luminal and myoepithelial cell membrane over-activates the 

ERBB signaling pathway, which eventually disrupts the regular gene transcription 

networks and triggers the over-expressions of various oncogenes and simultaneously 

the down-regulation of several tumour suppressor genes in breast cancer cells [54]. 

On the other hand, the mutations in the genes (IDH1 and IDH2) encoding the 

enzyme isocitrate dehydrogenase have been found to be associated with the 

synthesis of 2-hydroxyglutarate - a potential oncometabolite, which causes 

deregulations in the cellular metabolisms of glioblastoma brain tumour cells [55]. 

Mutations of IDH genes are also linked with hyper-methylation in Glioma cells, 

which eventually perturbs the normal gene transcription networks in the pathogenic 

glioma tumour cells [55]. Also, in several inflammatory/autoimmune diseases, it has 

been found that the stimulation of molecular reaction cascades via different 

serine/threonine protein kinase can over-activate the AMP-activated protein kinase 

(AMPK), which in turn can regulate its downstream metabolic pathways to trigger 

anti-inflammatory responses. Due to the presence of such strong coupling activity of 

AMPK signalling pathway and its downstream metabolic pathways, stimulation of 

AMPK has been exploited in the treatment of various chronic inflammatory diseases 

[56]. Apart from these, there are other numerous human diseases, in which the 

confluences of different types of biochemical pathways have been observed as the 

important governing factor [57,58]. Also, it has been observed that in various types of 

cancer cells the coupling of the molecular reaction networks is so strong that even the 

perturbations of the major cancer causing genes, proteins, or oncometabolites cannot 

stop the deregulations of the biochemical network [59-61]. Most often, the cancer 

cells can open or close several molecular pathways to minimize the selection 

pressure induced by the external inhibitors/drug molecules, and thus escape from the 

applied cancer treatment strategies [61]. 

Discrete studies, performed in the past, have proven that during carcinogenesis 

different molecular reaction cascades can interact with each other and trigger 
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abnormal behaviours (e.g., increased proliferations, nutrient uptakes, metastasis, and 

drug resistivity, etc.) of the cancer cells [62-64]. The genetic, epigenetic, and 

environmental changes induced in the cancer cells during carcinogenesis are 

intercepted by either signalling and/or gene regulatory and/or metabolic pathways 

[65]. The abnormalities impose in any of the network are then transferred to the other 

networks, and thus the entire cellular system becomes corrupted [61,66,67]. An 

elaborate description of the entire process is depicted in the following schematic 

diagram (Figure 1). 

1.1.3 Biochemical Reaction Networks in Cancer Cells                                

 

Figure 1: Coupling of different molecular interaction networks in cancer cells.  

Here, the perturbations impose in the depicted molecular networks (i.e., signaling, gene 

transcription, and metabolic) can be due to the abnormal changes in genetic (mutations, copy 

number gain or deletion), epigenetic (DNA methylation, acetylation), and environmental 

factors (hypoxia, radiation, carcinogens). 

In this schematic diagram (Figure 1), it is depicted that how different molecular 

reaction networks are connected with each other in a concerted manner within a cell, 

and how the external or internal perturbations caused due to genetic, epigenetic, and 
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environmental changes on any of the molecular reaction network can trigger the 

outcomes of cancer/tumour cells. It can be seen that the anomalies created in either of 

the cell signalling or gene transcription networks can affect both of its normal 

activities, which may eventually turn out to be the causes of excess cell proliferations 

and divisions, migration, angiogenesis, and so on. Also, the abnormalities incurred in 

the cells during carcinogenesis can also affect the normal metabolic pathways, which 

in turn can also trigger the rapid cell proliferations and other hallmarks of cancer 

cells. Most often, the oncogenic deregulations are imposed in the metabolic pathways 

due to the mutations, over-activations, or lack of activities of the enzymes 

responsible for metabolising the carcinogenic components consumed by the cells and 

tissues [68,69]. Sometimes, such deregulations in the metabolic pathways can initiate 

the synthesis of new metabolites, which can be carcinogenic in nature [55]. However, 

in both the cases, the main driving factor is the deregulations of the metabolic 

enzymes, which is mainly caused due to the induction of the external and internal 

perturbations on either of signalling or gene regulatory networks [70].  

1.2 IMPORTANCE OF CELL SIGNALLING NETWORKS IN ONCOGENESIS     

The abnormal activations of various cell signalling and its associated gene 

regulatory networks have been proven as the principal regulators of the 

predisposition of different human cancers [71-73]. However, despite encountering 

complexities at various levels, researchers have been able to discover unknown 

regulatory mechanisms of cell signalling and gene regulations system in cancer cells 

[74]. Characterizations of the subset of intracellular cell signaling networks, which 

are differentially activated in a specific type of cancer cells, have been proven helpful 

for acquiring the decipherable understandings of the mechanism of cancer cell 

development and the existing intra-tumor heterogeneity, analyzing the effects of 

tumor microenvironment on vascularization or angiogenesis, discovering the 

molecular mechanisms of drug resistivity and so on [75-78]. It has been observed that 

different subsets of the whole cell signal transduction networks are involved in the 



7 | P a g e  
 

outcomes of specific phenotypes [79]. Also, earlier studies have classified the cell 

signaling pathways in various categories, such as developmental, cell proliferations, 

cell migration, apoptosis, immunological, and so on [8]. Later studies have proven 

that deregulations in any of these pathways in the normal (matured or stem) cells can 

cause serious abnormalities in the regular cell division, apoptosis, migration 

processes, which in turn transform the cells towards oncogenesis [80,81]. For 

example, the gain-of-function mutation in Smoothened receptor protein of the 

developmental Hedgehog signaling (HH) pathway can over-activate its downstream 

effectors proteins (GLI1, GLI2, and GLI3), which are mainly the transcription factors 

of several cell cycle progression genes, such as CYCLIN-D, CYCLIN-A, etc. and cancer 

causing genes, such as MYC, FOXM1, etc. [82]. Over activations of HH signaling 

proteins and its downstream target oncogenes have been found in many cancers and 

tumors cells, such as glioblastoma, medulloblastoma, colon cancer, pancreatic cancer, 

basal cell carcinoma, etc. [82,83]. On the other hand, the cancer suppressor proteins 

or genes, such as P53, PTEN have been found in inactive or down-regulated state 

during oncogenesis [84]. Inactivation or the loss-of-function mutation of these genes 

most often deregulate the inhibitory effects from the activators of the developmental, 

cell proliferation pathways, and thus create positive effects in the rapidly 

proliferating cancer cells [85]. Simultaneously, there are various signaling pathways 

in the cancer cells, which can over-activate the expressions of various anti-apoptotic 

genes/proteins, such as BCL2, IAP, etc. and turn-off the normal cell death or 

apoptotic pathways [86,87]. Also, the signaling pathway, such as WNT pathway has 

been found to over-express the epithelial-to-mesenchymal transition gene SNAI1, 

which has been observed as the main regulator of cell migration and metastasis [88]. 

Other signaling pathways, stimulated by growth factor hormones, such as estrogen 

growth factor (EGF), insulin growth factor (IGF), etc. have been found to be 

associated with the activation of abnormal mitogenic or cell division process [89,90]. 

Signaling pathways also have the abilities to modify the epigenetic regulations in the 

cancer cells. For example, the TGFβ/SMAD signaling pathway has been found to 
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activate the Histone Deacetylases (HDAC) protein in Glioblastoma tumor cells and 

associated with the poor survival rate [91]. Epigenetic cascades initiated by the 

activation of HDAC proteins have profound effect in the regulations of the 

transcription of the genes related to other cellular activities, such as cell division, 

proliferations, metastasis, drug resistivity, etc. [92,93].  

 

Figure 2: Significance of the understanding of cell signaling pathways in oncogenesis. 

There are numerous other examples available in the literature, in which activation 

of signaling pathways have been observed to be associated with the abnormal gene 

regulations and faulty metabolisms in cancer cells [94-98]. Due to the higher 

importance in oncogenesis, targeting different cell signaling pathways has opened up 

various new possibilities in target-based cancer therapy (Figure 2) [99,100]. Different 

small molecule inhibitors or drugs, such as Vismodegib (inhibits Hedgehog signaling 

pathway protein Smoothened), Geftinib and erlotinib (EGFR pathway inhibitors), 

Gleevec or imatinib (BCR/ABL mediated pathway inhibitors), Bevacizumab (VEGF 

pathway inhibitors), Infliximab (TNF pathway inhibitors) etc. have been synthesized 

in the laboratories to target the growth of various cancer cells in-vivo [101]. Hence, 

the understandings of various cell signalling pathways are utmost important to not 
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only gain insights of the general mechanisms of oncogenesis, but also to discover 

novel drug-targets for the purpose of cancer therapeutics. 

1.3 TARGETING SIGNALING PATHWAYS IN CANCER STEM CELLS 

The rapid proliferation of cancer stem cells, which are most often difficult to 

eradicate by surgery, chemotherapy, and radiations therapies, can be neutralized by 

targeting different active cell signaling pathways [102,103]. It has been observed that 

due to the presence of various active developmental cell signaling cascades, such as 

Hedgehog, Notch, and WNT pathways, the cancer stem cell's (CSC's) can still 

maintain its self-renewal, tumorigenic progress, drug resistivity, etc. during and after 

the cancer therapies [104,105]. As a result, even after performing the successful 

surgery and chemotherapy of the tumor cells, there is always a higher probability of 

the recurrence of cancer cells from these drug resistant cancer stem cells in the future 

[106]. Hence, to deal with it, different small molecule inhibitors are synthesized, 

which can specifically target the developmental cell signaling pathways in cancer 

stem cells and block the active cell signaling cascades [107,108]. For example, the 

small molecule inhibitor PRI-724 has been tested as an effective modulator of WNT 

signaling pathway in colorectal cancer stem cells and it is currently in the clinical 

trials [109]. This inhibitor has been found to inhibit the CREB-binding protein, which 

is one of the important co-activator of the transcription factor β-catenin protein [109]. 

WNT signaling pathway, which activates the β-catenin protein as the transcription 

factor of various stem cell marker genes, thus get down-regulated in the rapidly 

proliferating cancer stem cells after the transcription activity of β-catenin is blocked 

by the suppression of its important co-activator protein CREB [110]. Similarly, the 

inhibitions of other developmental cell signaling pathways, such as Hedgehog, 

Notch, JAK/STAT, etc. have been also proven effective to suppress the uncontrolled 

proliferation of other cancer and tumor stem cells [99,111,112]. Targeting cancer stem 

cells to suppress the relapse of cancer cells can be more effective and precise as the 

signaling proteins responsible in these pathways have been observed to be explicitly 
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expressed in the cancer stem cells as compared to its surrounding differentiated 

normal cells [113,114]. The expression patterns of the receptor proteins of these 

signaling pathways are also different than its neighboring cells, which can be also 

seen as beneficial for small molecule inhibitors to target specifically the cancer stem 

cells [115]. Hence, the receptor proteins specifically expressed in cancer stem cells can 

act as the potential target biomarkers in the target-based cancer therapeutics [116]. 

1.4 CURRENT CHALLENGES OF STUDYING SIGNALING PATHWAYS IN 

TARGET-BASED CANCER THERAPEUTICS                        

Despite the success of suppressing cell signalling pathways in different types of 

cancer (matured and stem) cells, target-based cancer therapeutics still face difficulties 

at various levels [117]. It is still not clear to us that how the cell signaling pathways 

regulate the switching mechanism of a normal cell to cancerous states. Sometimes, 

the comprehensive information about the signaling molecules or the physicochemical 

nature of the molecular interactions is not available to understand the root causes 

behind the oncogenesis processes. Furthermore, complex pattern of the 

interconnectivities and interdependencies exist in signaling pathways have made the 

entire system more opaque to decipher. As a consequence, the researchers have been 

encountering serious problems to identify the main regulatory molecules as probable 

drug-targets in the future [117,118]. The following are the descriptions of few major 

challenges, which should be taken into the consideration in target-based cancer 

therapeutics. 

1.4.1 Identification of Druggable Proteins in Target-Based Cancer Therapeutics 

One of the most feasible targets in cancer cell signaling network is the enzymes or 

receptor proteins mainly responsible in oncogenesis [119,120]. In order to be 

considered as a potential drug-target for cancer therapeutics, the protein molecule 

must be druggable. There are various properties, a druggable protein must have. For 

example, the protein should be easily targetable by external drug molecule and 

biologically feasible to target by external drug molecules. It has been observed that 
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most of the receptor proteins and cytoplasmic enzymes (mostly kinase proteins) are 

biologically feasible to be considered as potential anti-cancer drug-targets. Also, the 

druggable proteins must have structural folds, which can favor the interaction with 

small molecule inhibitors. Besides, the target protein must possess a suitable binding 

pocket, which can be easily accessible to the external inhibitor molecules [121,122]. 

Last but not the least, the target protein should be highly important for the cancer 

cell signaling network, and targeting of which should be highly lethal to the cancer 

cells, but less toxic to the surrounding supporting cells and tissues [123,124]. The 

proteins, which have all these properties, are considered as the most ideal candidate 

for anti-cancer, target-based treatment strategy. However, the identification of such 

druggable proteins from the dense molecular signaling networks of cancer cells is 

sometimes the most difficult job to accomplish [121-124].  

Although, the advancement of high throughput omics-based experiments, protein 

assays, microarray data etc. have made it possible to identify the active 

genes/proteins and the corresponding signaling pathways in specific cancer cells 

(Figure 3), but the identification of suitable drug-target(s) from the set of identified 

differentially active or inactive genes/proteins, which are involved in multiple 

signaling pathways and cellular activities, have been still considered as an 

unresolved problem [123,125]. 

 

Figure 3: General experimental strategy to identify drug-targets in cancer cells. 

 The complex regulatory networks of gene expression, interconnections with 
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metabolic reaction networks, several feedback loops, etc. have made the entire 

signaling network very hard to decipher. The vast amounts of data originating at 

each level of the networks have also created several layers of complexities to 

interpret the working mechanisms of cell signaling network and identify the 

druggable drug-targets [126,127].  

There are various examples, in which popular omics-based experimental 

strategies have been used to identify the novel drug targets in cancer cell signaling 

networks. The genomics study (using microarray and next-generation sequencing-

by-synthesis techniques) performed on 24 different types of human pancreatic cancer 

cell lines by Kinzler et al. (2008) have shown that there are on an average 63 genetic 

mutations (mostly point mutations) associated with the pancreatic cancer cells and 

around 12 different cell signaling and regulatory networks are deregulated due to 

these genetic alterations [128]. From this study, the authors have been able to extract 

few important genes (e.g., TP53, SMAD4, KRAS, APC, CREBBP, etc.), which are 

significantly deregulated in the signaling pathways (e.g., KRAS signaling, TGF-Beta 

signaling, apoptotic pathway, WNT pathways, etc.) and could be used as future drug 

targets. 

In another experiment, performed by the same research group using the same 

integrated genomics approaches on 22 human Glioblastoma multiforme (GBM) 

tumor samples, it has been observed that multiple candidate cancer genes (i.e., TP53, 

MDM2, RB1, CDK4, CDKN2A, etc.) from multiple signaling pathways, such as TP53 

pathway, RB1 pathway, PI3K/PTEN pathway have shown altered expression levels 

in the GBM tumor cells [129]. In the successive experiments, several other research 

groups have also performed similar integrated genomics analyses on other types of 

cancer cells, such as colon, breast, basal cell cancers and identified the significantly 

expressed genes/proteins including the active signaling pathways in the cancer cells 

as potential targets [130-132]. However, these integrated genomics based approaches 

performed throughout the last few decades on different cancer or tumor cells have 
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proven that the progression and spread of cancer cells is not due to a mutation of a 

single gene/protein, rather it is the abnormalities caused by large number of factors 

(genes, proteins, miRNA, etc.) and pathways [131]. Out of the large number of 

identified active genes/proteins, the omics-based studies are not capable to precisely 

pin-point the proteins or pathways targeting of which would have been most 

destructive and lethal for the cancer cells. That is why the identification and ranking 

of most suitable druggable proteins from the differential gene expression studies 

have been still considered as a major challenging problem in the area of target-based 

cancer therapeutics.  

1.4.2 Limitations of the Complete Suppression of Cancer Signaling Network 

The active and dense signaling networks, which are often entangled with gene 

regulatory and metabolic networks in the cancer cells, are highly difficult to suppress 

by applying stress and external drug molecule [133]. There are multiple alternative 

routes, feedback mechanisms, alternate splicing variants of the signaling proteins, 

etc. exist in the signaling networks, which confer the entire system much more 

resilient against external and internal perturbations. For example, EGFR receptor 

mediated signaling pathway has been found active in many cancer cell types (e.g., 

glioblastoma, lung cancer) and it can trigger the transcriptions of various oncogenes. 

Being present in the cell membrane, the receptor protein EGFR have been considered 

as suitable candidate for many anti-cancer therapies. Drug molecules, such as 

Geftinib, Erlotinib have been synthesized to inhibit this protein in the lung cancer 

cells. Although, these drug molecules have shown promising results in the early 

stage of cancer therapy, in the later stages of therapy it has been found that the 

cancer cells may show resistivity against these drugs [134]. After a close inspection 

by dissecting the root molecular mechanisms in cancer cells, it has been revealed that 

the downstream kinase proteins and the main target transcription factor of EGFR 

pathway is not only activated by the EGFR receptor mediated pathway, but also by 

other receptor mediated signaling pathways, such as FGFR, FZD, C-KIT, PTPRF, 
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ITGB, etc. in the cancer cells (Figure 4) [135]. The alternate routes leading to the 

activation of the cell signaling pathways in cancer cells always have been a major 

problem in the complete suppression of oncogenic signaling networks in cancer cells. 

 

Figure 4: Alternate molecular routes mediated by multiple cell signaling pathways in 

cancer cells.  

This schematic diagram clearly depicts the alternative routes through which the main target 

transcription factor (TF) of EGFR pathway can be activated, even in the absence of upstream 

signal from the EGFR receptor. Hence, if a cancer cell is targeted in the EGFR receptor, then 

the alternative pathways, such as WNT/FZD or C-KIT mediated signaling pathways can 

compensate the absence of the activation signal outgoing from the EGFR receptor. This 

alternate pathway activation theory also holds true while targeting other receptor proteins in 

the cancer cells. 

1.4.3 Emergence of Drug Resistant Cancer Cells in Targeted Therapy 

Apart from the identification of suitable druggable proteins and the remaining 

challenges of the complete suppressions of cancer signaling networks, emergence or 

relapse of drug-resistant cancer cells and cancer stem cells is also a major challenge in 
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the field of target-based anti-cancer therapies. There are various experimental 

evidences available in the literature in which the emergence of resistant cancer cells 

against popular anti-cancer drugs has been reported. For example, the small 

molecule inhibitor vismodegib, a known FDA approved drug for the anti-cancer 

therapy of basal cell carcinoma, had shown promising outcomes in targeting the 

cancer stem cells in which activation of Hedgehog (HH) signaling pathway has been 

reported [136]. The receptor protein Smoothened (SMO), the activator of HH 

pathway is the main target protein of the drug vismodegib. However, despite 

showing its promising results in the suppression of HH pathway in cancer cells, later 

studies have proven that a population of vismodegib-resistant cancer cells may 

relapse in the cancer patients, who have undergone vismodegib therapy [137]. It has 

been also observed that the receptor protein SMO can also have mutations either 

within its drug binding site or distantly apart from the active site, and thus the SMO 

variants becomes resistant against the drug vismodegib [137]. The mutations in the 

signaling proteins thus make the signaling pathways resistant against small molecule 

inhibitors and thus create more difficult challenges to the targeted therapy. 

Furthermore, there are various others factors in cancer cells, which have been shown 

to create serious challenges in front of the success of target-based anti-cancer 

therapies. Existence of the intra-tumor heterogeneity in the malignant tumor is one 

such problem.   

It has been observed that the same type of tumor or cancer cells may have 

different molecular signatures and can have differential effects against target-based 

inhibition therapy [138]. A previous study performed on glioblastoma tumor cells 

using single-cell and bulk RNA-Seq analyses have revealed that GBM tumor cells 

consist of multiple heterogeneous tumor sub-clones, which are genetically different 

from each other. The RNA-Seq read counts mapped on these tumor sub-clones have 

revealed that different sub-set of tumor sub-clones can express different sub-sets of 

receptor proteins, such as EGFR, PDGFRA, FGFR1, ERBB2, ERBB3, KIT, FZD3, 
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NOTCH1, etc. [139]. This result also proves that the signaling pathways active in 

these genetically different sub-clones of GBM tumor cells have different active cell 

signaling pathways, and thus the transcriptional and proteosomal activities of these 

cells may also differ from each others. Hence, it can be also concluded that the target-

based anti-GBM tumor therapy which has been developed only to target EGFR 

receptor protein may not be effective to eradicate completely all the tumor cells from 

the GBM tumor ecosystem. Thus, the tumor sub-clones expressing other 

developmental signaling pathways mediated by NOTCH, FZD3 receptor proteins 

can be remained unharmed even after performing anti-EGFR target-based therapy. 

Moreover, the existence of surrounding normal cells and tissues in the tumor 

microenvironment can also pose challenges to the target-based cancer therapy [140]. 

However, as compare to the conventional anti-cancer therapies (chemo and radio), 

target-based anti-cancer therapy has less side effects and higher precision to kill the 

cancer cells. Although, the existence of similar types of normal cells with almost 

similar genetic signatures in tumor microenvironment can still create difficulties in 

target-based therapeutics. For example, the molecular and genetic characteristics of 

adult neural stem cells (aNSCs) and Glioma stem cells, both of which are present in 

sub-ventricular zone of human brain, have been found almost similar to each other 

[141,142]. Hence, finding the dissimilarities in almost similar gene/protein expression 

patterns in cancer cells should be the main priority to achieve high success rate in 

target-based anti-cancer therapies.                     

1.5 SIGNALING PATHWAYS AND ITS APPLICATIONS IN ONCOGENESIS 

Before the completion of human genome project, the mutant genes/proteins 

which were discovered as responsible factors for driving the cancer cells had been 

strongly advocated as the potential drug-targets for the treatment of various types of 

cancers [143]. Literally speaking, it was a "gold rush" for the researchers to identify 

new genes or proteins, which could be readily targeted for suppressing the cancer 
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cell proliferation, metastasis, angiogenesis, and so on [143]. During this time period, 

researchers had used mostly the "reductionist approach" to understand the nature of 

oncogenesis and the involvement of various individual mutant genes/proteins [144]. 

Eventually, many research groups had started reporting the importance of several 

mutated genes/proteins behind the root causes of different types of cancers [145-147]. 

Simultaneously, individual cell signaling pathways and gene regulatory networks 

had been also identified and implicated in the cancer research as the conceptual 

framework to draw the connections between various types of genetic, epigenetic, 

environmental anomalies with the abnormal activities observed in the biochemical 

reaction networks of cancer cells [148,149].  

After the successful completion of human genome project in the last decade of 

twentieth century, the researchers had started to understand the complex landscape 

of genes, proteins, miRNA, and other cellular components in the pathogenesis of 

various types of cancer cells [150]. The conceptual framework of signaling pathways, 

which were used only for visual inspection of comparing the flow of signaling 

cascades in the normal and cancer cells, had gained more importance in the study of 

holistic understanding of the cellular mechanisms. The advancements of high-

throughput sequencing techniques, array-based and sequence-based omics studies, 

and others experimental techniques had started flooding large volume of omics data 

and soon different areas of life science research, especially cancer biology entered 

into the "fourth paradigm" of science, which is mainly driven and dominated by the 

large biochemical datasets [151]. With the accessibility of freely available large 

datasets, such as NCBI, EBI, and DDBJ, the researchers from other discipline of 

science had started to explore the complex pattern in the biochemical data more 

explicitly. Instead of using the data to develop empirical and hypothesis driven 

models of different biological phenomena, researchers had started to explore and use 

these data to understand the basic and natural laws of the biological world [152].  

The main idea behind searching the new laws in the biological world by using the 



18 | P a g e  
 

big biochemical data was to gain the holistic view of various biological systems, such 

as cells, tissues, organs, and in fact the whole organism [153]. In order to analyze 

such big data, researchers have started implementing various tools and techniques of 

mathematics, physics, chemistry, and computer sciences to develop the 

"theoretical/mathematical" or "computational" or "in-silico" models of the biological 

systems. As a result various interesting properties of different biological systems 

have been identified by analyzing and simulating the in-silico models. For example, 

the seminal paper published by Barabasi et al. (2000) had shown that the organization 

of the metabolic networks is not only conserved in different organisms, but also 

follows similar scale-free topology, which is the main reason behind the robust and 

error-free properties of the biochemical networks [6]. In the later studies, performed 

on protein-protein interaction, gene co-expression, and signaling networks of cancer 

cells, have also proven that scale-free property may be an important factor of the 

increased robustness and fault-tolerance capacity of cancer cells against any external 

perturbations [22,154,155]. For example, the topological analyses of the protein-

protein interaction network of Glioblastoma tumor cells have revealed that the 

constructed network follows scale-free property. After dividing the whole network 

into different sub-networks or modules, and enriching them with different biological 

functions, it has been revealed that two novel protein molecules, CSK21 and PP1A 

play significant roles to connect the two important sub-networks, which comprise of 

the proteins CDC2-PTEN-TOP2A-CAV1-P53 and CDC2-CAV1-RB-P53-PTEN, 

respectively [156]. The proteins involved in these two sub-networks are important for 

cell cycle regulations, and from the topological study, it has been identified that 

CSK21 and PP1A have significant role in the development of glioblastoma. The Real-

time quantitative reverse transcription-PCR and immunohistochemical staining of 

these two proteins in glioblastoma tumor samples have revealed that these two 

proteins are significantly over-expressed in the GBM tumor cells, which in turn 

makes these two proteins as the suitable candidates for anti-GBM therapy.   
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Several other in-silico experiments of different types of molecular networks have 

also shown promising outputs in the identification of primary regulatory factors 

behind the pathogenesis of various types of tumors [157-160]. In the later studies, it 

has been also identified that other topological parameters, such as degree, clustering 

coefficient, Betweenness centrality, Closeness centrality, Eigen-vector centrality, 

modularity, etc. computed from the signaling, protein-protein interactions, gene co-

expression, methylation co-occurrence networks, etc. have also higher importance in 

the discovery of crucial nodes or "Hubs" (genes, proteins, miRNA) in the networks 

responsible for cancer pathogenesis [161-163]. The success of implementing the 

network or topological analyses in the study of cancer and other disease 

pathogenesis and drug-target identifications studies have opened up a new direction 

to study the systems (i.e., cells, tissue, organs) as a whole rather than understanding 

it part by parts via reductionist approach. The concept of "systems biology" approach 

has been constantly gaining its momentum and has been applied to decipher various 

complex phenomena of human diseases including cancers. 

It has been strongly argued by various scholars that system modeling by in-silico 

mathematical models is utmost necessary for understanding the complex phenomena 

of cancer pathology, identifying novel drug-targets, classifying the patients into 

different categories or sub-classes, or developing new strategies of personalized 

precision medicines in cancer therapeutics, etc. [164,165]. Several computational 

modeling techniques, which have been used to model and simulate the cell signaling 

and different other pathways in cancer cells so far, can be broadly categorized into 

three classes viz. (i) structure or topology based static model, (ii) discrete and 

continuous dynamic model, and (iii) rule based hybrid discrete and continuous 

dynamic models [166-169]. However, in each of the mathematical technique, there 

exist certain pros and cons [170]. Discussion of each of the modeling techniques is 

beyond the scope of this chapter, but in the subsequent chapters, the appropriate 

implications of these modeling techniques in cell signaling networks have been 
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documented. Various review articles have been written on these techniques, which 

can be useful to gain significant understandings of the in-silico modeling techniques, 

used in theoretical and computational cancer biology studies [171,172].  

In short, it can be stated that the understanding of the complex phenomena of 

cancer pathogenesis, which in some cases have been proven difficult to analyze using 

the conventional experimental techniques, the in-silico computational models have 

been able to decipher those complex phenomena more conveniently, efficiently and 

explicitly [166]. Extraction of functionally important modules, identification of novel 

drug targets, discovery of alternate signal activation paths, etc. from the large-scale, 

dense cell signaling networks in cancer cells have been made possible by using 

topological or graph theoretical analyses [173,174]. The steady-state behaviors of 

several genes, proteins, and pathway species in cancer signaling networks have been 

analyzed and computed using semi-dynamic, discrete Boolean or logical modeling 

approaches [175]. On the other hand, to observe the transient and steady-state 

quantitative changes of the expressions or concentrations of pathway species in 

cancer cell signaling networks have been computed by implementing in-silico 

dynamic models of signaling and gene regulatory networks [172]. However, 

implementation of dynamic continuous model of signaling pathways has been found 

difficult to model large-scale signaling networks, especially in which the enzyme 

kinetic equations, rate parameter values are mostly unknown [176]. In such cases, 

application of semi-dynamic logical modeling technique has been proven useful as it 

does not depend on extensive details and information of the parameter values of the 

signaling network [177]. There are other mathematical techniques, such as flux-

balance analyses (FBA), partial differential equations (PDE), agent-based modeling 

(ABM), etc. have been also implied in the understanding of several signaling, gene 

regulatory, and metabolic networks in cancer cells [176]. 
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1.6 SCOPE AND SPECIFIC OBJECTIVES OF THE THESIS                                     

 Understanding of the role of various developmental and receptor tyrosine kinase 

(RTK) mediated cell signaling pathways with their associated gene regulatory 

mechanisms in cancer cells, especially the Glioblastoma tumor cells is the main focus 

of the present investigation. As mentioned in the Sections 1.1.1 and 1.2, different 

biochemical pathways including cell signaling networks are the important 

components to construct the conceptual framework for understanding the 

differences of the biochemical events in normal and cancer cells. It is also mentioned 

in these sections that the unresolved questions of cancer pathogenesis, such as the 

reasons behind the irregular cell divisions, progression towards metastasis, evolution 

of the intra-tumor heterogeneity, and drug resistivity and relapse of the cancer cells 

can be answered by deciphering the complex nature of signaling cascades and 

measuring its influences in the gene regulatory mechanisms in cancer cells. 

Therefore, reconstructions and analyses of the important signaling networks, such as 

Hedgehog, Notch, WNT, EGFR, and other related pathways followed by finding the 

differences of the chemical cascades between normal astrocytes cells (healthy control) 

and gliomagenic tumor cells bring the valuable information to decode the complex 

etiologies of gliomagenesis. The inhibitors of Hedgehog, Notch, and other pathways 

have been used to suppress the growth of Glioblastoma (GBM) tumor cells, but most 

often the tumor cells have been able to find out alternatives routes to eliminate the 

drug induced perturbations and evolve as drug resistant [178,179].  

Hence, the important question which is asked in the current investigation is that how 

the signaling pathways in cancer cells adapt the stress induced by the external target-

based drug molecules during the targeted therapy.  

Besides, the GBM tumor cells depict higher level of inter-tumor and intra-tumor 

heterogeneities. Depending on the rate of proliferations and histopathological 

characteristics, the GBM tumor cells are classified into four major grades, viz. Grade-

I, Grade-II, Grade-III, and Grade-IV. The Grade-I, II are considered as low-grade 
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GBM (LGG), and the Grade-III, IV are considered as high-grade primary GBM 

(HGG) [180]. In the population, such types of inter-tumor heterogeneities or different 

grades of GBM tumors are commonly observed. The groups of patients suffering in 

LGGs have shown high median survival year and better prognosis after therapy, 

whereas HGGs are more difficult to treat and have very less median survival year 

(less than 1.5 years) as well as depict poor rate of prognosis [181]. There are 

evidences in which it has been shown that the LGG tumor cells can sometimes 

progress and transform into HGG and are called as secondary GBM. Discrete 

experimental studies have been able to show the differences in the molecular 

characteristics between the GBM sub-types, but how such differences are appeared in 

the tumor sub-types, which are originating from the common Glioma stem cells 

(GSCs) in the brain tissue are hitherto unknown [182]. Even the tumor cells of HGG 

are also not same and possess higher level of molecular heterogeneities [183]. In the 

Section 1.4.3, it is mentioned that the existence of such intra-tumor heterogeneity of 

GBM cells poses serious challenges to the target-based anti-GBM therapy [183]. 

Indeed, if the molecular expression patterns and the corresponding signaling 

pathways significantly differ within the same sub-type of GBM cells, then finding the 

right molecular target or druggable protein to kill all the tumor cells becomes a 

challenging issue. It has been also mentioned in this section that the emergence of 

drug-resistant tumor cells after performing target-based anti-GBM tumor therapy is 

also occurred due to the presence of the appearances of intra-tumor heterogeneity 

[184]. Hence, in order to understand the involvements of various large-scale, non-

linear cell signaling pathways and its crosstalk with various gene regulatory 

networks behind the emergence of inter-tumor and intra-tumor heterogeneities of 

GBM cells, visual inspections and comparisons of the reaction cascades in normal 

and tumor cells are not sufficient enough.  

In Section 1.5 it has been discussed that how the implementation of 

computational modeling of signaling pathways is beneficial to decode the patterns in 
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the signaling pathways in various biological systems including the cancer cells. In 

this present investigation, identification of the molecular reactions motifs in GBM 

tumor cell signaling networks, responsible for the emergence of inter- and intra-

tumor heterogeneities have been targeted to accomplish. Apart from this, using in-

silico mathematical models and simulations, the activities of various cell signaling 

pathways are modeled in GBM cells.  

The main objective of this work is to use the knowledge of signal transduction 

mechanisms in the development of mathematical model and try to identify the 

alternative druggable proteins for suppressing the active oncogenic cell signaling 

pathways in GBM tumor cells. Besides, one of the major objectives of the thesis is to 

develop the computational frameworks, new algorithms, and simultaneously 

provide the processed datasets for the reconstructions, modeling, and simulations of 

signaling pathways, which can be further used for rigorous hypothesis testing and 

designing new experimental strategies to deal with various types of human diseases, 

such as cancer.                       

1.6.1 Outline of the Thesis  

In Chapter 2, the materials and methods used in the present investigations for the 

curation of cell signaling pathways, modeling, and simulations of GBM and other 

cancer cells are elaborately discussed. In the Sections 1.1.2 and 1.1.3, it is mentioned 

that the signaling pathways and its associated gene regulatory machineries inside the 

cells (both normal and cancer) are strongly connected with each other. Hence, to 

consider the strong cross connections and interconnectivities of the cell signaling 

networks in the development of useful mathematical models of GBM cells, at first the 

comprehensive knowledge of the signaling pathways including all its all crosstalk 

reactions and the information about its target genes are required. This chapter has 

elaborately discussed about the procedures and resources required for pathway data 

curation and modeling. For simulation of such large-scale reconstructed signaling 

networks in tumor cells, the theoretical understandings and the formulae required 
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for computing the topological parameters of the networks are also provided here. To 

develop the mathematical models and simulations of the large-scale signaling 

networks, all the present investigations in the thesis have used graph theoretical and 

logical modeling approaches.   

In Chapter 3, a comprehensive review of the existing challenges of pathway data 

curation from the current cell signaling databases are discussed [8]. The limitations of 

the computations of pathway related data in these databases are also discussed in 

this chapter [8]. Also, the comprehensive descriptions of our newly launched 

database-cum-pathway data analyses platform BIOPYDB, which has been 

specifically designed for resolving the current limitations of the existing databases, 

are also provided in this chapter. The database can be accessed by following the link: 

http://biopydb.ncl.res.in/biopydb  

In Chapter 4, the descriptions of the observations obtained from the mathematical 

model developed for simulating the activities of Hedgehog signaling and its cross-

talks with other cell signaling and gene regulatory mechanisms in GBM, Colon, and 

Pancreatic cancer cells are provided [82].  

In Chapter 5, the simulation outcomes of active Notch signaling and its cross-

talks with other cell signaling and gene regulatory mechanisms in GBM cells are 

described [185].  

In Chapter 6, the descriptions and the outcomes of the mathematical models 

developed for the analyses and simulation of inter-tumor and intra-tumor 

heterogeneities of GBM tumor cells are discussed. In this chapter, it is shown that 

how different reaction modules in the reconstructed Notch signaling and its cross-

talk networks play important roles in the development of both adult neural stem 

cells (aNSCs) and Glioblastoma tumorigenic stem cells (GSCs) in the sub-ventricular 

zone of human (SVZ) brain. The developmental dynamics of GSCs from the origin of 

aNSCs as well as the development of matured differentiated tumor cells or 



25 | P a g e  
 

astrocytomas from GSCs in human brain is simulated and further studied for the 

downstream analyses. A phenotype predictor score is proposed in this work, which 

is able to successfully compute the frequency distributions of the differentiated, 

proliferating, apoptotic, and quiescence cells, etc. in the normal and tumorigenic 

stem cells niche. In further downstream studies, it is shown that this new phenotype 

predictor scoring technique is particularly helpful to predict the future risk of the 

development of different grades of Glioblastoma (GBM) tumor in human brain. In 

this work, it is also shown that how different types of heterogeneous molecular 

clones of the same grade of tumor originate in the GBM tumor ecosystem. Also, a 

novel technique using Fast Fourier Transformation (FFT) analyses is described in this 

work, which is specifically helpful to pin-point the most crucial nodes (or drug-

targets) in the dynamic or active signaling network in cancer cell.  

In Chapter 7, the descriptions of a newly developed extended quaternary logic 

(ExQuLogic)-based simulation technique to model the cell signaling pathways in 

various types of cellular systems are provided. Also, the ExQuLogic-based 

simulation technique is applied on the developed integrated pathway model of 

Hedgehog, Notch, EGFR, WNT, PI3K-AKT, JAK/STAT, HIF1A cell signaling 

networks and subsequently the model outputs are studied for the analysis of the 

growth of GBM cells and identification of novel drug targets. 

In Chapter 8, the conclusions and future directions of the thesis are provided. 
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Chapter 2 
__________________________________________________________________________________ 

 

2 MATERIALS AND METHODS 

__________________________________________________________________________________ 

2.1 AVAILABLE RESOURCES OF PATHWAY DATA 

Different types of databases or resources viz. "Pathway databases," "Protein-

Protein Interactions (PPI) databases," "Omics databases," "Disease databases," and 

most importantly the "Literature resources" were used for pathway reconstructions, 

modeling and simulation purposes (Figure 5). Around 24 different cell signaling 

databases were identified, which are currently at active states and distribute the 

pathway related data (e.g., pathway image, molecular interactions, molecule names, 

sequence, etc.) freely to the users (Appendix Table 1). The protein-protein 

interactions (PPI) databases, such as MINT, STRING, APID, PIPS, DIP, and BIOGRID 

were also found to be the useful resources for the collation of pathway data 

(Appendix Table 1)1.  

 

Figure 5: Available databases used for pathway data collation.  

                                                           
1
 The materials of this chapter have been taken verbatim from our previously published articles (a) Chowdhury et al., PLoS 

ONE, 2013 (b) Chowdhury and Sarkar, Clin Exp Pharmacol., 2013 (c) Chowdhury et al., J Integr Bioinform, 2018. 
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"The Cancer Genome Atlas (TCGA)" data portal was also used to study the next-

generation sequencing-based transcriptomics (mRNA-Seq) data of Glioblastoma 

(GBM) patients. TCGA has studied a large group of GBM patients, which is divided 

into two cohorts, viz. Low-grade GBM (LGG) and High-grade GBM (HGG). The 

following are the statistics of the two patient cohorts (Table 1). 

The raw counts of mRNA sequencing data are freely available through Genomics 

Data Commons (GDC) data portal (https://portal.gdc.cancer.gov/). There were three 

types of tumor cells considered in the mRNA sequencing analyses of the TCGA-LGG 

and TCGA-GBM patient cohorts, viz. (i) Primary tumor, (ii) Recurrent tumor, and (iii) 

Solid normal tumor cells. 

Table 1: Statistics of Glioblastoma Patient Cohorts 

Cohorts 
Gender mRNA-Seq Data 

Male Female Unknown Total PTM RTM SNT Total 

Low Grade 

GBM 

285 230 1 516 513 16 0 529 

High Grade 

GBM 

366 230 121 617 156 13 5 174 

PTM = Primary tumor; RTM = Recurrent tumor; SNT = Solid normal tumor 

A comprehensive review of the available signaling pathway databases, which 

was used for pathway data collation, is provided in Chapter 3 (see Section 3.3).       

2.2 DATA COLLATION PROCEDURES OF SIGNALING NETWORKS 

The intra-cellular, biochemical interactions data available in Cell signaling and 

PPI databases (Appendix Table 1) were used for the reconstructions of signal 

transductions pathways. At first, the comprehensive maps of the signalling pathways 

were constructed by using the available pathway (or network) data provided in the 

cell signaling databases. All the 24 cell signaling databases were searched to compile 

the information (i.e., molecular species, chemical reactions, physical interactions, 

translocations, etc.) of a selected pathway (e.g. Hedgehog) and a master data table 
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was created. Followed this, the redundant molecular species and biochemical 

interactions from the non-redundant datasets were separated out. The redundant 

molecular interactions data collated from most of the databases were considered as 

the core reaction module of the pathway. After that, the non-redundant molecular 

interactions data was integrated into the core reaction module and thus a coherent 

network of the pathway of interest was reconstructed. 

The pathway reactions which had at least one literature evidences were 

considered during pathway reconstructions. To expedite this process, PPI databases 

were also used to cross-verify the pathway species and reactions included in the 

reconstructed pathway diagrams. Thus, following these filtering processes, it was 

made sure that all the molecular species and interactions included in the 

reconstructed pathway are correct and do not have any ambiguity. 

 Furthermore, the molecular species and the interactions were annotated on the 

basis of their sub-cellular locations in the cells. In case of multiple locations observed 

for a single molecular species, the molecule in both the locations was indexed using 

the prefixes (e.g.," NUC_" for nuclear, "CYT_" for cytoplasmic locations, and so on) to 

distinguish it in the reconstructed pathway. At this step, all possible homologs of the 

protein molecules in human and their activities in the pathway were also searched. 

Thus, all the molecular species in the pathway were indexed according to their 

observed sub-cellular locations. After that, the connections (i.e. chemical reactions, 

physical interactions, translocations, etc.) between the molecular species within and 

outside of the sub-cellular locations were constructed. Pathway constructions by 

literature search had helped to find out the missing links within the reaction 

network, which were not addressed by the cell signaling pathway databases. The 

pathway reconstruction procedure was not restricted only in the core reaction 

module, but also spread to connect various cross-talks and feedback reactions 

involved with the core signaling and gene regulatory networks of the pathway. The 

transcribed genes and their encoded proteins of the reconstructed signaling 
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pathways were connected with various cellular phenotypes, diseases, and other 

signaling networks.  

2.2.1 Reconstructions of the Signalling Networks 

The reconstructions of the signaling networks, such as Hedgehog, Notch, WNT 

pathways including their crosstalk pathways and gene regulatory networks, 

mentioned in Chapters 4-7 were performed by collating data from different signal 

transduction and PPI databases (Appendix Table 1). The pathway data were 

extracted from more than 500 research articles. CellDesigner Ver. 4.2. was used for 

pathway design and annotations of the molecular species of the signaling pathways 

[186]. The pathway species were also annotated according to their sub-cellular 

locations of the cell using standard notations available in CellDesigner. The 

annotation procedures mentioned in the previous section (Section 2.2) was followed 

during pathway reconstructions.  

2.3 CONSTRUCTION OF PATHWAY KNOWLEDGEBASE  

The open source database "BIOPYDB (BIOchemical PathwaY DataBase)" was 

prepared to store and distribute the reconstructed pathways for the general research 

purposes. Following are the descriptions of the database architecture, which was 

used for constructing the database. 

2.3.1 Database Architecture and Implementation 

2.3.1.1 Pathway Nomenclature and Ontology 

It was found that a consensus naming system with well defined vocabulary and a 

hierarchical tree of pathway based ontology will be of great importance for indexing, 

searching, analyzing the pathways systematically in the database. It was observed 

that the ontology tree defined by BioPortal for annotating the rat, mouse and human 

genes with different pathway terms/names would be most appropriate in this case 

[187].                                  
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Hence, the similar pathway ontology tree of BioPortal was used to index the 

signaling and diseases pathways into the database. New syntaxes and vocabularies 

were introduced for this purpose. Three different functional (Developmental, 

Immunological and Cell proliferation pathways) and one biological context 

dependent (Disease Pathways) nodes from BioPortal ontology tree were placed at the 

top of the hierarchy of the newly developed pathway ontology tree. This newly 

developed ontology tree further served the purpose of indexing the reconstructed 

signaling pathways in the database. These topmost level nodes were further linked 

with the child nodes. For example, under the node of Immune Signalling pathways, 

the cytokine signalling pathways constitute a separate sub-category (child node), 

which was further classified into distinct Interleukin families like IL-2 family, IL-10 

family, etc. Each of these interleukin families were further assigned with different 

interleukin signalling cascades, which were having similar functionalities. More 

number of different categories in the subsequent updates of this database will be also 

included. To assign the names of the new pathways and make them distinct from 

each other within a same family and sub-family, the pathways were named 

according to either ligand (e.g. IL2, IL4) or the main receptor protein (e.g. TLR, T-cell 

receptor or TCR) molecule, which triggers that particular signalling cascade. The 

following vocabularies (a, b, c) were used for the nomenclature of the signalling 

pathways involved in various cellular functions (a, b) and disease pathogenesis (c): 

a) X Ligand(s) Stimulated Signaling Pathway(s) 

b) Y Receptor(s) Mediated Signaling Pathway(s) 

c) Deregulated Signaling Pathways in Z 

Where, X, Y, and Z represent the name of the Ligand or the family of the Ligands, Single or a 

family of Receptors molecule, and name of the Disease respectively.  

If there were multiple ligands/receptors associated with the signalling pathway, 

then the logical operator 'AND' was used in the vocabularies ('a' and 'b') to separately 

mention the names of each of the ligands/receptor molecules. Introduction of such 
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detail classification and nomenclature system is useful for searching/browsing a 

specific class/family of pathway(s) in the database. It is also helpful to understand 

and compare the different pathways activated/stimulated under different extra-

cellular stimuli. The information about the biological context specific pathways (e.g. 

the disease pathways) was also indexed here by using a controlled vocabulary (c), 

which could be further useful to differentiate the deregulated or malfunctioned 

pathways from its normal counterparts and their involvements into a particular 

disease. A flow-chart describing the entire process of implementing and processing 

the pathway nomenclature system in the BIOPYDB database is depicted in Figure 6. 

 

Figure 6: Flow-chart of pathway nomenclature system used in BIOPYDB database.  

This flow chart was used for naming the pathways according to the vocabulary we 

introduced in our database. We also consulted BioPortal pathway ontology tree for making 

the pathway nomenclature system concordant with the international standard.  
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2.3.1.2 Assignment of Unique Pathway Identification Number 

A standard protocol for assigning pathway identification number (PID) for each 

of the reconstructed pathways was also implemented in the database. Following are 

the descriptions of the entire protocols. 

1. At first, the newly reconstructed pathway, which was decided to be included 

in the database, was allocated in the appropriate position in the BIOPYDB ontology 

tree. The ontology constituted the pathways in four main classes: viz. 

"Developmental", "Immunological", "Cell proliferation", and "Disease pathways" (see 

flow-chart of Figure 6). 

2. Followed by the selection of the classification of the new pathway, a unique 

number (or database ID) was assigned against the pathway ontology. For example, 

the ontologies, viz. "Developmental Pathway", "Immunological pathways", "Cell 

proliferation pathways", and "Disease pathways", were assigned by the IDs 

BIOPYDB1000, BIOPYDB2000, BIOPYDB3000, and BIOPYDB4000, respectively. 

3. After that the following strategies to assign a new PID of our pathway of 

interest in the ontology tree was considered. An example is given bellow: 

The Cytokine signalling, T-cell signal transduction, TLR mediated pathways are all come 

under Immunological pathways (ID: BIOPYDB2000)". Hence, these pathways were assigned 

as the "child" pathways under the PID of BIOPYDB2000. All the corresponding pathways 

associated under this PID were given new PIDs as BIOPYDB2001, BIOPYDB2002, and 

BIOPYDB2003, respectively. Moreover, there are many pathways, which come under the 

category of Cytokine signalling pathway (PID: BIOPYDB2001). Hence, the pathways under 

this category, such as IL1, IL2, Interferon pathways etc. were given new PIDs as 

BIOPYDB2001.1, BIOPYDB2001.2, and BIOPYDB2001.3, etc. 

 Furthermore, the signalling pathways activated by the IL2 family molecules were 

classified into the family of "IL2 Family Ligand Stimulated Signalling Pathways (ID: 
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BIOPYDB2001.2)". This family of pathway corresponds to the signaling pathways governed 

by the ligands IL2 and IL4. Hence, these child pathways under "IL2 Family Ligand 

Stimulated Signalling Pathways" were named as "IL2 Ligand Stimulated Signalling 

Pathways (ID: BIOPYDB2001.2.1)" and "IL4 Ligand Stimulated Signalling Pathways (ID: 

BIOPYDB2001.2.2)". 

2.3.1.3 Processing of Pathway Molecule Table 

Followed by the nomenclature and ontological assignment, the molecular species 

(i.e., proteins, genes, metabolites, RNA etc.) involved in the reconstructed pathways 

were categorized according to their molecular and chemical properties (e.g., protein, 

carbohydrate, gene, ion, mRNA/rRNA, etc.). Then, the molecule was indexed by its 

corresponding BIOPYDB Pathway ID in the database. An abbreviated name, which 

was used in the published literatures or UNIPROT database, was assigned to each of 

the protein molecule.  

Furthermore, to show the molecular complexes formed by proteins and other 

molecules in the pathway, the following vocabulary was used. 

Let's consider the following reactions (i.e., E1, E2, and E3) from a signalling event in 

which the complexes are formed as products.  

 

Different types of complexes formed in the signalling cascades by various 

chemical reactions were indexed in the molecule list by using the vocabularies A:B; 

A:B:C, and M:M etc. 

2.3.1.4 Hyper-Linking and Annotation of Pathway Molecules 

Hyper-linking and annotation of each protein molecule of all the pathways in a 
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database is the most time consuming process, as both the processes require more 

manual interventions and efforts to execute. However, in BIOPYDB, this entire time-

consuming process was minimized by utilizing an intelligent pathway update 

engine, which can take minimal pathway information as inputs and simultaneously 

build the pathway database automatically. A custom script was written for 

developing the pathway update engine, which runs at the backend of the database 

and automatically processes the hyperlinks of each of the molecular species with 

other popular databases (Appendix Table 1).  

Moreover, each protein molecule of a pathway was annotated with the interactive 

access of PPI databases viz. PIPs [188] and STRING [189] to get the information of 

other protein molecules interacting with that particular protein of interest. 

Furthermore, each molecular species of the reconstructed pathways were 

automatically hyperlinked with the popular database GeneCards [190], which is 

known for providing the gene/protein-disease association data. Apart from these, the 

customized script running in the automated update engine can also annotate the 

protein molecules with the database TiGER [191] from which the tissue specific 

expression of the proteins/genes are freely available. The entire custom script for the 

automated update processes was written in PHP, Perl, and Python languages.  

2.3.1.5 Processing of Molecular Interactions Table 

The molecular interactions or reactions present in each pathway of BIOPYDB 

database were manually curated from the experimental data available in literatures 

and were successively stored in a master table called "Interactions" table. All the 

interactions of this master table were linked with the corresponding pathway ID 

assigned for each pathway in the database ontology tree. The corresponding 

literature reference of each interaction was hyper-linked with the associated Pubmed 

ID. The molecular and chemical properties (e.g., phosphorylation, ubiquitination, 

dimerization, etc.) of different types of biochemical reactions were tabulated with 
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each of the interaction in the 'Interactions' table. The sub-cellular location (i.e., 

extracellular space, membrane, cytoplasm, etc.) in which the molecular interactions 

were found evident was also tabulated in this table. To maintain the direction of the 

reaction cascades, each of the reactions was considered as the directed edges 

connecting a source molecule (i.e., reactant) with another target molecule (i.e., 

product). The molecular interactions of the reconstructed pathways were 

automatically hyper-linked with iRefIndex database [192], which provides a 

standardized indexing of the non-redundant molecular interactions found in the 

popular protein-protein and molecular interactions databases, such as  BioGRID 

[193], IntAct [194], HPRD [195] etc. Mapping the interactions with the iRefIndex 

database is very much useful for the users to verify the interactions with other 

popular PPI databases. 

2.3.1.6 Processing of Disease, Reference and Mathematical Model Tables 

The protein molecules of the reconstructed signaling pathways were mapped 

with various diseases and thus a protein-disease network was reconstructed. The 

protein-disease mapping data was mainly curated from the external database - 

MalaCards: Human Disease Database [196]. The disease data was fetched from this 

database for each protein included in a particular BIOPYDB pathway ID. It should be 

noted that the protein-disease data provided in BIOPYDB is solely owned by the 

MalaCards database and BIOPYDB is providing only an advanced, automated 

interface to fetch and process the data in a more user-friendly process.  

BIOPYDB also maintains a dedicated database of all the relevant references or 

published literature related to each pathway in the "Reference" table. The reference 

table was generated automatically by fetching the citation information from Pubmed 

database. The users can get this entire "Reference" list by accessing the pathway-

browsing interface of BIOPYDB. Thus, the literature mining for getting the 

information of a particular pathway will be much easier to the experimental 
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biologists. Furthermore, to obtain the information of previously published 

mathematical models of different biochemical pathways, BIOPYDB had also made a 

database of the literature references related to the mathematical models (e.g., Graph 

theory, Boolean, Ordinary or Partial Differential equations, etc.) and tabulated in the 

"Model" table. The Pubmed id or DOI was also provided for each published 

mathematical model. 

2.3.1.7 Processing of Pathway Image and Textual Data 

BIOPYDB distributes the pathway images and textual data to the users in various 

file formats. Users can download the data without any restrictions and charges. 

However, for commercial uses, the users are required to take appropriate license 

from us. The entire processes of pathway data processing steps followed in the 

database are described in Figure 7 for better clarification. The entire process can be 

broadly categorized into two categories: (i) "Pathway Image Processing" and (ii) 

"Textual Data Processing". Both were automatically processed from the BIOPYDB 

main data sources (i.e., Molecules list, Interactions list, etc.). The pathway images 

were processed in JPEG, SVG, and PNG formats. Two types of pathway images were 

produced viz. Structured or Hierarchical and Unstructured or Network. The Structured 

pathway image of a pathway was produced by allocating the pathway species in a 

hierarchical fashion, in which the ligands and receptor molecules (present in the 

extracellular and membrane regions) of a pathway were placed at the left (in left to 

right hierarchy) or top (in top to bottom hierarchy) in the pathway image. The 

pathway components found in the cytoplasm and in nucleus were placed 

accordingly in the subsequent hierarchical levels (i.e., Extracellular region, 

Membrane, Cytoplasm, Nucleus) respectively. Another hierarchical location 'Output' 

was introduced in the pathway image to signify the target genes/proteins produced 

at the end of the signaling cascades. All the pathway molecules belong to the 

hierarchical location 'Output' were placed at the rightmost or at the bottom of the 

Structured or Hierarchical image. Though this region does not indicate any physical 
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sub-cellular location, but to distinguish the pathway molecules from the target 

proteins, inclusion of such location in the pathway image will be very much useful 

for better simplification. 

 

Figure 7: Flow-chart for pathway image and textual data preparation. 

The pathway image and textual data provided to the users are processed in real-time upon 

user's request. Here, the idea is to reduce the effort of database developers to continuously 

update the pathway images and textual information after every update in the pathway 

database. Using this process, the users always get the updated pathway data and the 

developers do not need to manually compile and keep the pathway images and textual data 

in the database archive for storage and distribution.  

The sub-cellular locations, required to maintain this hierarchy, were fetched from 

the "Molecules" table generated at the beginning of the pathway curation. On the 
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other hand, the connections/edges between two pathway molecules were fetched 

from the "Interactions" list. Different color codes and shapes were used to classify 

different types of molecular interactions enlisted in this table. Thus, an in-silico 

structured pathway image, resembling the internal cellular environment was 

reproduced automatically in the database interface. The unstructured pathway image 

(i.e., network) was also generated to analyze the topological properties of the 

biochemical signaling pathways. Such type of network is viewed as the directed graph 

in which the direction of the interaction between the two species of a pathway (i.e., 

Source and Target) was generated from the information provided in the 

"Interactions" table. Both of these pathway images (i.e., hierarchical and network) 

were generated automatically by using the popular graph drawing software: 

Graphviz [197] and the in-house script written in PHP. 

On the other hand, the textual data (i.e., molecule names, interactions, disease 

names, etc.) of biochemical pathways were generated in BIOPYDB through an 

automated fashion by fetching the raw data from the database tables' viz. 

"Molecules", "Interactions", and "Diseases".  The textual data for each pathway were 

processed in simple flat files i.e., either in TXT or CSV formats or in XML based 

SBML (Systems Biology Mark-up Language) and BIOPAX (Biological Pathway 

Exchange) formats [198,199]. SBML and BIOPAX files were computer readable, 

vocabulary based, widely used standard pathway sharing file formats, which were 

useful for pathway visualization and performing mathematical modeling. The 

dynamic engine running at the backend of BIOPYDB web services automatically 

processes these verities types of textual data. To generate runtime BIOPAX format of 

the biochemical pathways, we used open source, third-party tool Sig2BioPAX for 

converting the biochemical reactions into BioPAX level 3, OWL format [200]. Using 

such automated process of generating pathway images and textual data, the data in 

BIOPYDB can be readily updated and thus does not depend on any manual 

intervention by the database administrators and curators. 
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2.4 TOPOLOGICAL ANALYSES OF SIGNALING NETWORKS 

The topological properties of the signaling networks were analyzed by 

considering the pathway as a directed graph or network. The pathway species (i.e. 

molecules) were considered as "nodes" and the interactions/reactions between a pair 

of molecules as "arcs". Following this assumption, the adjacency matrix (A) of the 

entire signaling network was constructed, whose elements (Aij) were computed 

based on the following criteria (Eq. 1). 

1, '

0 ,
i j

i f f th e  n o d e  'i in te ra c ts  w ith  th e  n o d e  'j '
A

o th erw ise


 


 

                   (Eq. 1) 

2.4.1 Network Parameters Calculated From the Adjacency Matrix 

In-Degree (Kin): It refers the total number of nodes that are directly acting on a 

particular node in the network [82,201].    

Out-Degree (Kout): The total number of interactions (activations or inhibitions) that 

are acting by a particular node on the other nodes in the network [82,202].  

Degree (Ki): It refers the total number of in-degree and out-degree of a particular 

node [82,202]. The total degree (Ki ) of a node "i" is calculated as shown in (Eq. 2). 

i in o u t
K K K                   

                 (Eq. 2)                                                                                                                                                                                       

Eigenvector centrality: It refers that a node in a network will be more central if it is 

connected to many central nodes in the network [82,203].  According to Newman 

[203], the centrality xi of a node "i" is directly proportional to the cumulative sum of 

the centralities of its neighbors: xj.  
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x A x



                                      (Eq. 3) 

Or, 



40 | P a g e  
 

1

1
n

i ij j

j

x A x
 

                             

                  (Eq. 4) 

Where, 
1


 is the proportionality constant. 

Now, if we consider (Eq. 4) as a vector equation, then we can write that, 

x A x                    

                (Eq. 5)  

Where, 
1 2 3

  ( ,  ,  , ......, )
n

x x x x x  is the Eigenvector of the adjacency matrix A having 

highest positive Eigen value λ.    

Betweenness centrality: It is the ratio of the number of shortest paths that pass 

through the node to the total number of shortest paths of all the nodes to all the other 

nodes. It signifies that how a node is important in the shortest paths of all the other 

nodes of the network [82,204]. The following formula was used for calculating the 

Betweenness centrality (Bx) of a node (x) in the network (Eq. 6). 
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           (Eq. 6) 

Here,  y z
x  represents the number of shortest paths passing through the node 

("x") from all other pairs of nodes "y" and "z".  Whereas, 
y z

  represents the total 

number of shortest paths between the nodes "y" and "z". 

Closeness centrality: It is the inverse of the total number of shortest paths of a node 

to all the other nodes in the network. Therefore higher closeness centrality of a node 

implies the lower shortest paths to the all other nodes in the network [82,162]. The 

following formula was used for calculating the Betweenness centrality (Cx) of a node 

(x) in the network (Eq. 7). 
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Shortest Path (Lij): It refers the minimum number of intermediate links or 

connections that have to traverse from one node "i" to another node "j". Dijkstra's 

shortest path algorithm was used to compute all possible shortest paths between 

every pair of nodes in the network [82,205]. 

2.4.2 Network Parameters of Hedgehog and Notch Signaling Pathways 

The reconstructed pathways of Hedgehog and Notch signaling networks 

(discussed in Chapters 4 and 5) were converted into the adjacency matrices, which 

were then converted into ".net" format (default input file format of the network 

manipulation and visualization software "Pajek" [206]). The constructed networks of 

Hedgehog or Notch pathways were directed graphs, which were analyzed using the 

software Pajek and Gephi 0.8.1 [207]. The graph theoretical parameters, such as 

Degree (IN-, OUT-, TOTAL-DEGREE), Eigenvector centrality were computed in 

Gephi. The network figures of Hedgehog and Notch signaling networks shown in 

Chapter 4 and Chapter 5 were also drawn in this software. The .net files of the two 

networks were also used in "igraph" (a software package of "R") to calculate "All 

pairs shortest paths" [208]. Pajek was also used to calculate the Betweenness and 

Closeness centrality scores. The Matlab (R2012b, The MathWorks) function "SPY" was 

used to visualize "all pairs shortest paths" matrix.  

The topological analyses of the integrated signaling network discussed in Chapter 

7 were performed in the Cytoscape (version 3.6.1) software environment [209]. The 

clusters in the network were identified by EAGLE algorithm implemented Clusterviz 

app available in Cytoscape [210]. The cluster, which contains the nodes related to cell 

cycle progression and EMT was considered as "cell cycle progression and EMT" 

module. The Cytoscape app MCDS was used to extract the strongly connected 
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components (SCC) in the whole and the select modules of the network [211]. The 

identification of the alternate routes (or directed shortest paths) from the input nodes 

leading towards cell cycle progression and EMT were performed by using PESCA 

app in Cytoscape [212]. 

2.5 SEMI-DYNAMIC ANALYSES USING BOOLEAN LOGIC 

Semi-dynamic analyses of signaling pathways were performed using logical 

modeling approach. After preparing the knowledgebase of each of the chemical 

reaction of the signaling network, the pair-wise binary molecular reactions were 

translated into logical hyper-graph. All the logical hyper-graphs of a reconstructed 

signaling network were comprised of universal "AND", "OR", and "NOT" gates. The 

"AND" gate was used for representing the interdependencies of two or more than 

upstream molecules (i.e. reactants) on the downstream molecules (i.e., products) in 

the signaling network. On the other hand, the "OR" gate was used if the upstream 

molecules or reactants of a signaling cascade were independent with each other and 

produce the downstream product. The enzymes or repressor molecules responsible 

for slowing down or inhibiting the molecular reactions in the network were 

represented by "NOT" gate. The implementations of universal logic gates to construct 

the logical hyper-graph from the binary reactions list were straight-forward as it only 

required the biological interpretations of the reaction events and did not depend on 

the enzyme kinetics, rate equations, reaction parameters, and initial concentration of 

the reactants. The following criteria were applied while translating the chemical 

reactions of the signaling network into logical equations. 

R u le1 : A (t+ 1 )= B (t) , i f  B  R ea c ta n t &  A P ro d u c t

R u le  2 : A (t+ 1 )= B (t)  A N D  C (t) , i f  B  &  C  b o th  s im u lta n eo u s ly  req u ire  fo r  th e  p ro d u c tio n  o f A

R u le  3 : A (t+ 1 )= B (t)  O R  C (t) , i f  B  o r  C , a n y  o f th e  m o lecu le  ca n  

 

p ro d u ce  A

R u le  4 : A (t+ 1 )= N O T  D (t) , i f  D  is  th e  in h ib ito r  o f A

    

                 (Eq. 8) 

Using the logical rules defined in (Eq. 8), the chemical reactions were translated 
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into logical hyper-graphs. For example, in signaling network, if a single reactant 

molecule B was found responsible for the production of the product A, then Rule 1 of 

(Eq. 8) was applied for the synthesis of logical hyper-graph. Here, the Rule 1, 

measures the logical activity of the product molecule A at time (t+1) depending on 

the logical state of the reactant molecule B at time "t". On the other hand, if the 

reactants B and C both were observed to be simultaneously required for the 

production of A, then the logical rule: Rule 2 (using universal logic gate "AND") was 

applied for the synthesis of logical hyper-graph of the corresponding reaction. 

Similarly, Rule 3 was used for the chemical reactions in which the reactants (e.g., B 

and C) were independent on each other and can produce the product A. The Rule 4 

was used in the scenario, where a molecule (i.e., D) was experimentally observed as 

an inhibitor of a product A in a chemical reaction.  

Example 1:  

In order to understand the logical model construction and simulation, an example using a 

toy reaction model is provided in Figure 8. In this figure, a toy signaling network is 

considered, in which the nodes A, B, C, D, E, F, and G are connected by chemical reactions. 

Here, the molecules A and B are reacting with each other and forming another molecule C. 

After that C participates with the downstream reactants D and F, which further produces the 

molecules E and G. Also, there is a positive feedback loop from G to D and negative feedback 

loop from E to F in the reaction cascade. The entire reaction cascade now can be translated 

into a digital circuit diagram using universal AND, OR and NOT gates. After that the 

corresponding logical equations of the circuit are formulated. 

The truth table generated from the logical equations corresponding to the signaling 

network is shown in Figure 8. To generate the truth table, here it was considered that the 

initial state of the node "A" as True (or 1). The tuple of the binary states (0 or 1) of all the 

nodes at initial time point (i.e., at "0th time-point") is called as the initial state (S0 = [1, 0, 0, 0, 

0, 0, 0]) of the system. Theoretically, there are total 27 numbers of distinct initial states 
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possible in the toy network shown in Figure 8.  

 

Figure 8: Workflow for translating signaling network to logical hyper-graph simulation. 

Here, a toy model of a molecular interaction network is translated into logical hyper-graph 

model, which is then translated into corresponding logical equations. The logical state of the 

node is either 0 (OFF) or 1 (ON). The truth table of the network is generated by considering 

A = 1 (ON or Active) state, and the logical states of other nodes are computed based on the 

considered logical equations. The computation is performed until the steady state is 

observed (here at time = 5) for all the molecules. The temporal dynamics of the molecules can 

be also analyzed as well as the logical expressions of all the molecules at the corresponding 

state scenario. Both temporal and steady state data can be validated either time course or 

static gene/protein expression profile. 

However, to reduce the calculations in this toy example model, only one initial state is 

considered here, in which the node "A" is at active (or 1) state and the rest of the other nodes 

are at inactive (or 0) states. If the model assumes the initial state (S0), then as per the 

asynchronous logical model update rule, the states of all the nodes in the toy network will be 

updated to the next time steps subsequently and reach the steady-state at Time = 5. At this 

time point (Time = 5), transitions all the nodes are stopped and in the next time step (Time = 

6), the same states are repeated (S5 = [1, 0, 1, 1, 1, 0, 0]). Therefore, the time step of five (Time 

= 5) can be considered as steady-state time point and the state S5 as the steady-state. The state 

transitions path from S0 --> S1 --> S2 --> S3 --> S4 --> S5 is considered as state transition graph 

(STG). The full STG of the system can be constructed if all possible initial states (27) of the 

system are considered here. The steady-state(s) (S5) of STG are called the "attractor" and the 
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other transient states (S0, S1, S2, S3, and S4) are called as the "basin-of-attraction" [213]. There 

are two types of attractors found in STG, viz. "Fixed-point or stable focus" and "Cyclic or 

periodic attractors". In cyclic attractor, all the attractor states are repeated in definite time 

point with period of length greater than one.  

The temporal dynamics of all the proteins/nodes of the network can be also extracted from 

the transition states and can be plotted as time dynamics graph (Figure 8). The steady-states 

of all the proteins at S5 (Figure 8) can be also extracted and validated with the experimental, 

high-throughput omics data (e.g., microarray, RNA-Seq, Mass-Spec, etc.). However, before 

validation with the experimental omics datasets, the expression values of the genes/proteins 

are required to be binarized (0 or 1). There are various statistical methods (e.g., t-statistics 

based differential expressions, k-means, BASC A, BASC B, Coarse-scale qualitative modeling 

approaches, etc.) available in the literature, which can be used for binarizing static and time-

course microarrays [214-217].  

2.5.1 General Definitions Used in Logic Theory 

Dependency matrix: This matrix defines the influence of a node 'i' to another node 'j' 

in the network. The matrix is also termed as influence matrix of the Boolean network, 

in which the influences (activation or inhibition effects) of any arbitrary node to all 

other nodes in the network are represented. The rows and columns of Dependency 

matrix (D) are the nodes of the network and the element of the matrix (Dij) is 

calculated by using following criteria (Eq. 9). 
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(Eq. 9) 

The dependency matrix can be further used for calculating the total number of 
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upstream activators and inhibitors of an arbitrary node in the network after the 

system reaches at steady state level. The matrix can be also realized for determining 

the total number of downstream activated and inhibited molecules of an arbitrary 

node in the network after the system reaches at steady state level. The following 

definitions were used for determining these parameters from dependency matrix (D). 

Upstream activator species of a node (X): The upstream activator species of any 

arbitrary node is defined as the total number of direct and indirect upstream 

activators of that node (Eq. 10). The upstream activator of node 'i' is calculated from 

the dependency matrix (D) defined in (Eq. 9).  

[( 1) ( 3 )]

N = T o ta l N o d e s

j X j X

j= 1

U p s tre a m  a c tiv a to r  sp e c ie s  o f a  n o d e  (X ) = D D          (Eq. 10) 

Downstream species activated by a node (X): The total numbers downstream 

pathway species activated by any arbitrary node are calculated as the sum of total 

number species or molecules directly and indirectly activated in the downstream of 

that node. Following equation is used for calculating this parameter in a Boolean 

network (Eq. 11). 

[( 1) ( 3)]

N = T o ta l N o d e s

X j X j

j= 1

D o w n s tre a m  sp e c ie s  a c tiv a te d  b y  a  n o d e  ( X )= D D    

(Eq. 11) 

Upstream inhibitor species of a node (X): The upstream inhibitor species of any 

arbitrary node is defined as the total number of direct and indirect upstream 

inhibitors of that node. Following equation is used for calculating this parameter in 

Boolean network (Eq. 12). 

[( 2 ) ( 4 )]

N = T o ta l N o d e s

j X j X

j= 1

U p s tre a m  in h ib ito r  sp e c ie s  o f a  n o d e  (X ) = D D    

 (Eq. 12) 

Downstream species activated by a node (X): The total numbers downstream 

pathway species inhibited by any arbitrary node are calculated as the sum of total 
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number species or molecules directly and indirectly inhibited in the downstream of 

that node. Following equation is used for calculating this parameter in a Boolean 

network (Eq. 13). 

[( 2 ) ( 4 )]

N = T o ta l N o d e s

X j X j

j= 1

D o w n s tre a m  sp e c ie s  in h ib ite d  b y  a  n o d e  ( X )= D D    

(Eq. 13) 

2.5.2 Logical Steady-state Analyses (LSS) of Hedgehog Pathway 

In the logical formulations of the reconstructed Hedgehog pathway (Chapter 4), 

all the pathway species or proteins (Ligands, Receptors, kinase or Transcription 

factor) and cellular responses (Cell Proliferation, Cell cycle progression, WNT 

Pathway) were considered as "nodes". Their logical states can be either be "0" (OFF) 

or "1" (ON), which means depending on the cellular function and/or location, the 

proteins may be active (ON) or inactive (OFF), respectively. The entire simulation of 

Boolean models was performed in CellNetAnalyzer [126] and the following steps 

were followed during the logical simulation. 

i) Selection of input and output proteins. In order to construct the logical 

model for Hedgehog signaling network, at first the input and output nodes were at 

first considered. Mainly the proteins, which did not have upstream connection in 

the reconstructed pathway map, were considered as input proteins. Similarly, the 

proteins, which were the downstream effectors of input proteins, were considered 

as output proteins in the logical model. Though there were few exceptions in the 

model considered while choosing the initial states of the proteins for three cancer 

scenarios (Glioblastoma, Colon and Pancreatic cancers) with respect to the normal 

pathway scenario. The three ligands of HH pathway SHH, IHH, and DHH were 

considered as time invariant (i.e., fixed logical state) and their logical states were 

kept at constant active state as "1" or "ON" during the simulation of cancer 

scenarios. But in normal scenario, their expression or logical state were considered 

as time variant, which were dependent on the logical states of the upstream 
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activators (i.e., BMP_RUNX3, CDO, BOC, etc.). The logical states of the input 

proteins were considered from various literature sources ( Appendix Table 6), EBI-

ArrayExpress Atlas, and also from various signaling and cancer databases 

(Appendix Table 1). 

ii) Construction   of   Boolean   or   logical   equations.  The Boolean equations 

of all the nodes of Hedgehog signaling network were formulated after consulting 

the biological evidences of each reactions from various literature sources (Appendix 

Table 5). There are total 96 Boolean equations and 63 nodes including cellular 

responses presented in the model. The detail information about model formulation 

procedure is provided in Section 2.5.  

iii)  Simulation. The protocols for model simulations were described in Example 

1 of Section 2.5 [126,218]. In order to create cancer the specific model of Hedgehog 

pathway , the logical states (‘‘0’’ as ‘‘OFF’’ or ‘‘1’’ as ‘‘ON’’) of the select proteins, 

which were found to be associated with cancer pathogenesis, were kept time-

invariant during the simulations. ‘Gain-of-function’ (‘‘ON’’ or ‘‘1’’) states of the 

oncogenic proteins like RAS, ERK12, TWIST etc., and the ‘‘loss of functions’’ (‘‘OFF’’ 

or ‘‘0’’) of few tumor suppressor proteins, like GAS1, SUFU, NUMB, SNO were 

considered while creating different cancer scenarios in the logical simulation 

(Appendix Table 6). Also, in order to simulate the scenarios in temporal space,  the 

time scales were accounted into the Boolean equations written in the master model 

(Appendix Table 5). It is known that in a signaling network a few reactions are 

specifically dependent and can be only executed after the executions of other 

reactions. Such scenarios were considered in the model by assigning ‘‘Time Scale’’ 

of every equation. In the developed model of HH pathway, the logical equations 

representing the productions of GLI1, PTCH1 and HHIP proteins from the 

transcription factors and their translocations to the specific sub-cellular locations 

were assigned in "time scale 2".   
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The developed logical model was also simulated using both the synchronous and 

asynchronous updates schemes available in CellNetAnalyzer. However, it should be 

mentioned that after attaining the logical steady states, it was observed that the 

simulation results of both the update schemes were showing same dynamics. Hence, 

in the current investigation of the simulation of Hedgehog pathway, the logical 

steady states obtained in synchronous update scheme were only shown and used for 

further downstream analyses.   

2.5.3 Simulation of the Logical Model of Notch Signaling Pathway 

The master model of the logical equations of Notch pathway (Chapter 5) was 

developed by following the similar protocols used in Hedgehog pathway modeling 

(Appendix Table 7). The constructed master model was simulated in 

CellNetAnalyzer to simulate the normal activities of Notch pathway. The initial 

states of the input proteins used for the simulation is provided in Appendix Table 8 

[126]. In normal Notch pathway scenario (NNS), only the reactions of the core Notch 

pathway was simulated, in which the Notch pathway ligands were considered as 

active (i.e., ON/TRUE). The non-canonical and cross-talk reactions in this scenario 

were not activated in the simulation of NNS. On the other hand, the expressions of 

the mRNAs of the proteins found to be differentially expressed (up or down 

regulated) in the transcripts of Grade-IV tumor cells derived from GBM patients 

were considered to create the Glioblastoma Scenario (GBS) [219].  

In order to create the GAMMA-SECRETASE inhibition scenario (GSI), at first one 

of the important component proteins (PRESENILIN1) of this enzyme complex in the 

NNS scenario was suppressed (or OFF) by making its logical state as time-invariant. 

This scenario was created to observe the effect of GSI in the canonical Notch 

pathway. It was observed that the inhibition is effective to suppress the target 

genes/proteins of Notch pathway. This scenario was denoted as the GSI sensitive 

cellular model. However, the main objective of this current investigation was to 
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create the GSI resistant scenario, in which the suppression of GAMMA-SECRETASE 

protein was found ineffective to inhibit Notch target genes of the GBM cells in the 

previous reports. Hence, to create that scenario, all the cross-talks and non-canonical 

Notch pathway were made constitutively active in the GBS scenario and then the 

GAMMA-SECRETASE enzyme was suppressed by targeting one of its component 

proteins PRESENILIN1. This method was successful to create the GSI resistant 

scenario for GBM cells as the inhibition of GAMMA-SECRETASE enzyme was 

compensated due to the over-activations of cross-talks and non-canonical pathway.  

In order to create the drug treatment scenarios (TS), random attacks (single and 

double knock-outs) on the signaling proteins in the GSI resistant scenario were 

performed. The two target proteins (TS1 and TS2) with maximum suppression effects 

on Notch target genes were identified. The total number of upstream activators and 

downstream activated proteins were also got reduced by these potential targets in 

the GSI resistant GBM scenario. The detail information of the calculation of total 

number of upstream activators and the downstream activated nodes of each protein 

in the Notch pathway under different simulation scenarios are provided in Section 

2.5.1. 

2.5.4 Methodologies used in the Simulation of Neurogenesis and Gliomagenesis 

The entire methodological procedures used in Chapter 6 to simulate the normal 

neurogenesis and tumorigenic development starting from adult neural stem cells 

(aNSCs) are described in this section. To understand the neurogenesis of aNSCs in 

sub-ventricular zone (SVZ) of human brain, Notch signaling pathway and its cross-

talk reactions with other pathway molecules (i.e., JAK2/STAT3, HIF1A, P53, RAS, 

PI3K/AKT, WDR12, and JIP1) were considered to construct a comprehensive logical 

dynamic model (Appendix Table 9). The preliminary data for constructing the core 

pathway model was taken from the logical dynamic model of Notch pathway 

discussed in Chapter 5 (Appendix Table 7) [185]. Based on this pathway model, the 
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entire logical model was then modified and restructured to simulate the 

developmental dynamics of adult neural stem cells (aNSCs) and the mutated 

Glioblastoma stem cells (GSCs). The logical rules defining the dependencies of the 

pathway molecules were derived from related literatures and the chemical 

regulations of the constructed signaling network. 

The dynamics of the pathway molecules were updated synchronously and the 

following rules (Eq. 14) & (Eq. 15) were considered while constructing the dynamic 

Boolean model of Notch and its cross talks reactions were considered in this work. 

The initial states (1/ON or 0/OFF) of the input nodes were chosen randomly by 

generating random number for each input node from uniform distribution 

 (0 ,1)U n if  in the range of 0 to 1 and setting the cutoff at 0.5 (Eq. 15). 

1 2 3

( 1) (0 )

( ( ) , ( ) , ( ) , ...., ( ))i i

i i i

k k

i j j j j j

X t X iff X In p u t N o d es

f X t X t X t X t iff X In te rm ed ia te a n d O u tp u t N o d es

   

  

 

(Eq. 14) 

, : (0 ) 1 (0 ,1) 0 .5

0

,

i

i i

W ith in itia l c o n d itio n s X iff U n if

o th e rw ise

W h ere k T o ta l n u m b er o f In p u t N o d es o f n o d e X

 





 

(Eq. 15) 

The pathway consists of 117 molecules out of which 53 were the input molecules 

(Appendix Table 10). Here, input molecules refer the molecules that do not possess 

any predecessor molecules (i.e., no upstream regulators) and during the signaling 

event they can be at either up-regulated (ON) or down-regulated (OFF) state (Eq. 15). 

Hence, the possible highest numbers of expression patterns of these input molecules 

were 253 (~9.0071993 X 1015). In presence of such enormous number of possibilities, 

mainly occurred due to the variations in the expressions of several extrinsic and 

intrinsic molecules, it is indeed obvious that adult and inactive NSCs (aNSCs) in the 

neurogenic niche of SVZ have to make right decision to opt any of the cellular 

states/phenotypes either by proliferation and differentiation during the 

developmental process. The aNSCs can also choose to stop its cell division process 
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(i.e., undergo cell cycle arrest or quiescent state) or undergo natural cell death 

process (i.e., apoptosis).    

Hence, to capture such huge possibilities at steady-state, a robust simulation 

technique to stimulate the developmental dynamics of aNSCs with all input states (~ 

9.0071993 X 1015) was required. However, in practical scenario, logical dynamic 

simulations by considering all the input conditions and finding all possible attractors 

at equilibrium state were not feasible in terms of required computational cost. Hence, 

to reduce the computational cost, a fraction (total 106) random, non-redundant initial 

input sequences were generated by using uniform random number distribution and 

subsequently assigned binary states ON (1) or OFF (0) to each input node of the 

reconstructed model (Eq. 14). The entire random input sequences (106) were then 

further divided into 100 separate simulation batches (10,000 random sequences) and 

simulations are performed for all the 100 batches. Boolean functions shown in (Eq. 

14) for each node/molecule are provided in Appendix Table 9. All the nodes 

considered in the logical model were further classified into four sub-classes: (i) 

Inputs, (ii) Intermediates, (iii) Targets, and (iv) Phenotypes. A detailed description of 

all the nodes included in the model is given in Appendix Table 10. 

2.5.5 Marker Proteins of aNSC, GSC and GBM Models 

The marker proteins whose expressions were analyzed to observe the dynamics 

of different cellular states or phenotypes in the aNSC, GSC and GBM models were 

enlisted, with appropriate references, in Table 2. The expressions of these marker 

proteins are denoted in the model simulation by discrete binary states 0 or 1. The 

occurrences of a particular phenotypic/cellular state in the model are mapped with a 

Boolean function  f  of the corresponding marker proteins  M  of that phenotype 

 P and therefore its expression values (or activity patterns) will be varied in the 

discrete binary domain of{0 , 1 } . 



53 | P a g e  
 

1 2 3

1 2 3

:

:

: { , , , ....} {0 ,1}

: { , , ....} {0 ,1}

f M P

f B o o lea n F u n c tio n

P P h en o typ es p p p

M M a rker  P ro te in s m m m





  

  

  

2.5.6 Determination of the Phenotypes and Cellular States 

There were total five phenotypic functions considered in the developed dynamic 

model, which were dependent on the expression of specific marker proteins of 

normal and tumorigenic brain cells. These five phenotypes were i) Apoptosis, ii) NSC 

Renewal, iii) NPC Differentiation, iv) ASPC Differentiation, and v) GBM 

Development. Depending on the distribution of input signals, different marker 

proteins were expressed with different distribution, which in turn would regulate the 

expressions of different phenotype in the binary domain{1, 0} . Hence, theoretically, it 

can be considered that in total 25 or 32 single and combinations of phenotypes were 

possible to be occurred with equal probability in the attractor distribution space.  

Table 2: Information of the marker proteins mapped with different phenotypes  

Cellular Phenotypes Marker Proteins References 

Apoptosis Pro-apoptotic: PUMA, NOX, BAD, BAX [220,221] 

Anti-apoptotic: FLIP, IAP, BCL2 

Neural Stem Cells 

Renewal 

CYCLIN-D3, CYCLIN-D1, CDK, HES1, HES5 [222-224] 

Neural Progenitor Cells NESTIN, NEUROD, β-TUBULIN [225]-III [226] 

Astrocyte Progenitor Cells GFAP [227] 

Glioblastoma Stem Cells CYCLIN-D3, CYCLIN-D1, CDK, HES1, HES5, 

FLIP, IAP, BCL2  

[228] 

Glioblastoma tumor Cells CYCLIN-D3, CYCLIN-D1, CDK, C-MYC, 

TENASCIN-C, GFAP 

[229,230] 

The probability to reach any of the phenotype would be random and unbiased if 

the logical model was purely random. Also, in case of a random logical network 

model, it can also be assumed that the flow of signal transduction within the 

signaling network would be purely unbiased and can lead the reaction cascades 

towards the development of any phenotype under a set of specific intra and extra-
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cellular stimuli. However, in reality, the topology of the constructed logical model 

was not completely random and also unbiased in nature as the logical rules defined 

for the Notch signaling network was mainly taken from experimental evidences. The 

normal functioning of Notch signaling network was specifically oriented towards the 

neural stem cell renewal and its differentiation into neural progenitor cells [231]. 

Similar to the experimental findings, it was also observed that at the time of Notch 

pathway simulation, only a few phenotypic states occurred in the attractor space and 

those states were denoted as "Cellular states". A cellular state can be an individual 

phenotype (such as Apoptosis) or a combination of multiple phenotypes (e.g., NSC 

Renewal/NPC Differentiation). The following attributes were also considered during 

the model simulation to define two typical cellular states: Quiescent cells and GSC 

Renewal.  

: 1 : ( ) {0} ; , 1, 2 , ..., 5iC ellu la r S ta tes Q u iescen t (t) iff P h en o typ es P t w h ere i

G S C R en ew a l(t)= N S C R en ew a l(t) a n d  n o t A p o p t o s is (t)

    

 

Quiescent state was a distinct cellular state, which was found at ON state only 

when all the phenotypes were at OFF state. In this state all other cellular activities, 

such as proliferation, differentiation, and apoptosis were found at dormant stage or 

at lower rate [232]. Similarly, GSC renewal will be at ON state if the phenotype 

Apoptosis was at OFF state and the "NSC Renewal" state was at ON state.  

It can be also possible that the attractor states obtained in the simulation studies 

at LSS can be either "Fixed-point" or "Periodic". In the fixed-point attractor state, the 

binary expressions of the cellular state and the pathway molecules will show 

homeostatic behavior, whereas in the periodic state it will be oscillatory in nature. 

2.5.7 Calculation of Normalized Frequencies of Cellular States, Shannon Entropy 

and Activity Ratio (AR) Scores  

In the earlier example (Example 1 of Section 2.5), there are total 7 (seven) nodes in 

the toy Boolean network (Figure 8), and out of which 2 (two) nodes (A and B) have 
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no upstream connector nodes. Hence, these two nodes are considered as inputs in the 

network, which can have total 22 = 4 initial conditions (A=0, B=0; A=0, B=1; A=1, B=0; 

and A=1, B=1). Therefore, starting from all of these initial conditions, it was easier to 

observe the steady-state expressions of the other nodes in the system and generate 

the state transition graph (STG) of the system.  

However, the entire calculation becomes complicated for a system with large 

number of input nodes. For example, if a Boolean network consists of total 50 input 

nodes, then the entire input space will be 250 = ~ 1.1258999 X 1015), which is practically 

impossible to simulate with the limited computational resource. Hence, to reduce the 

computational cost and time, a heuristic search algorithm (simulation based) is used 

here to find the maximum number of attractors of this logical model. The basic 

criterion of this algorithm is to run the simulation by taking random samples of non-

redundant, finite set of initial states (say N = 106) from the overall population (~ 

1.1258999 X 1015) of input states.  

Similar strategy was also used in this study. The random initial states were 

further divided into 100 separate batches (i.e. each batch will contain 10,000 random 

input sequences) and the frequencies of all the attractor states (or cellular states) were 

calculated for each batch of simulation. The frequencies of each cellular state were 

further normalized by dividing its total frequency observed in a simulation batch 

with respect to the total number of random initial conditions (i.e., 10,000) used for 

simulation. It should be noted that degeneracy of the observed attractor states with 

respect to a particular cellular state is possible, which means multiple sets of similar 

attractor states can be mapped with a particular cellular state depending on the 

expression state(s) of the marker protein(s) in those attractor distribution ( )A .  

Let us consider that such attractor distributions were calculated from the initial 

input states distribution ( )I  in any of the simulation batch. Hence, it can be said 

that the distribution of the cellular states ( )C  is also dependent on the distribution 
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of the attractor states ( )A  and can be mapped with Boolean 

function : ( ) ( )f A C   . 

Let us also consider that in an arbitrary batch of simulation (Bi), there exists a set 

of cellular states  
1 2 3

, , , ....,
m

i i i i iC C C C C . Here, 'i' is the simulation batch number and 

'm' is the total number of observed cellular states or the size of maximum 

information content possible to be observed in the attractor distribution ( )A  

generated in the simulation draw Bi.  

 If the probability mass functions (i.e., information) of all the elements of the sets 

of cellular states ( )
i

C drawn from the simulation batches (B = 100) were taken into the 

consideration, then according to the "principle of maximum entropy" the probability 

mass function with highest information entropy will be chosen as the "proper one" 

for further data analyses [233]. The information entropy of a given batch of 

simulation can be calculated by calculating the Shannon entropy score of the 

observed cellular states.         

Definition 1: The Shannon entropy H(Ci) of the ith instance of a simulation 

containing the distribution of cellular states  
1 2 3

, , , ....,
m

i i i i iC C C C C is the negative 

logarithm of the probability mass function of the observed cellular states in that 

instance of simulation (Eq. 16). 

 
2

1

, ( ) [ ln (P ( ))]

P ( ). lo g P ( )
m m

i
i

m

i i

m

H en ce S h a n n o n E n tro p y H C E C

C C



  

 
 

(Eq. 16) 

Theorem 1: If 1 2 3( ), ( ), ( ), ...., ( )nA A A A    are the attractor distributions 

generated from initial input states 1 2 3( ), ( ), ( ), ....., ( )nI I I I    and their 

corresponding normalized frequency distributions of cellular states are 

1 2 3( ), ( ), ( ), ....., ( )nC C C C    , then the simulation instance containing highest 

Shannon entropy score H(Ci) will posses maximum numbers of different types of 
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cellular states  
1 2 3

, , , ....,
m

i i i i iC C C C C .  

Proof: Let us assume that i=1, 2, 3,...,n are the different instances of Boolean 

simulations performed under a set of equal number of initial expressions vectors (say 

N), in which the expressions of the elements (i.e. input molecules) are randomly 

distributed. Let us consider the distribution of the random initial expressions 

sequences is ( )iI . Let us also consider that each of the simulation instances is 

producing a distribution of attractor states ( )iA , which can be mapped with a 

distribution of cellular states : ( ) ( )i if A C   . Here,  
1 2 3

, , , ....,
m

i i i i iC C C C C is the 

normalized frequency of the individual cellular states (total numbers m) observed in 

the attractor distribution ( )iA of ith simulation instance. It could be possible that the 

total number of individual cellular states (m) observed in a particular simulation 

instance may not be equal for all the simulation instances.  

Let us assume that the probabilities of each of the cellular states in a given 

simulation instances are 1 2 3

P ( ) , P ( ) , P ( ) , .... , P ( )
m

i i i iC C C C . 

If there are {0 ,1}
1 2 3 z

,  ,  p p p ,... . ,p   numbers of fixed phenotypes considered 

in the model, which are mapped with the cellular states  
1 2 3

, , , ....,
m

i i i i iC C C C C , 

then theoretically there exist maximum ( 2 )
z

M    numbers of cellular states and 

the maximum Shannon entropy score by definition 1 will be 

  2

1

( ) P ( ). lo g P ( )
m m

M

m

M a x H C C C
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The maximum Shannon entropy of any arbitrary simulation instance 'i' is, 
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Hence, it is proven that at the level of maximum Shannon entropy score, there 

exists maximum number of distinct cellular states (i.e., max(m)).   

Activity Ratio Score: This novel scoring technique is a metric to determine the 

contribution of an arbitrary pathway molecule (Xi) in the cell-signaling network to 

drive the cellular dynamics towards a particular cellular state. This scoring technique 

is specifically useful for extracting the important proteins from the set of input 

proteins, which are helping the signaling cascade to reach the specific phenotype. In 

the pathway simulation, given a set of total random input sequences (N), if Sk is the 

total number of random input sequences which direct the model simulation towards 

a particular cellular state ( )
m

iC , then the activity ratio of any arbitrary input molecule 

(Xi) will be calculated by using the following equations (Eq. 17) & (Eq. 18).  
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(Eq. 17) 
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(Eq. 18) 

 

 

 

 

 

 
1 2 3

, , , ....,

1 2 3 1

1 2 3

, :

: { , , , . . . , }

1

: { , , , . . . , }

m

k

N
i

S

L e t u s a s su m e C S e t o f C e llu la r S ta te s C C C C

m T o ta l N u m b e r P h e n o ty p e s o b se rv e d

X X S e t o f In p u t M o le c u le s X X X X

N T o ta l In p u t p ro te in s

Y S e t o f In p u t s e q u e n c e s Y Y Y Y re a c h in g to c e

 



  



 

,

. .

j

k

k

l lu la r s ta te C

W h e re S T o ta l n u m b e r o f in p u t s e q u e n c e s re a c h in g to a p a r tic u la r c e ll la r s ta te s o u t o f N ra n d o m s e q u e n c e s

i e S N







59 | P a g e  
 

Here, the proportion 
|

( )
i j

X X C C


 
 of an input protein ( )iX  in a given cellular state 

( )iC is defined as the ratio of the difference of the number of times the input protein is 

up-regulated and down-regulated to the total number random input sequences 

directed towards a specific cellular state in the simulation.  

Lemma 1: In an arbitrary simulation instance, started from a finite set of random 

initial conditions, the value of AR score of any input node is bounded in the range of 

-1.44 to +1.44.  

Proof: Let us assume that in an arbitrary simulation instance there are 

k
S numbers of input sequences 1 2 3( { , , , ..., } )

k
S

Y Y Y Y Y out of N random sequences 

generating the cellular state iC .  

Hence, it can be written as,  
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From (Eq. 17) it can be written that, 
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 In the input list, if a particular protein is essential (activator) for a particular 

cellular state, then its expression would be constitutively 1 in the set of all random 

sequences SK. In that case, the numerator of the proportion
|

( )
i j

X X C C


 
will be equal to 

k
S and maximum and thus the value of the proportion will be equal to +1. Similarly, 

for a protein, which is inhibitor (or negative inducer) of a particular cellular state, it 

can be shown that the proportion will be equal to -1. The Log2 of the exponential of 

this proportion value is simply taken as scaling factor to stretch the distributions of 

the scores in the region of -1.44 to +1.44. This scaling is specifically useful for gaining 

high resolutions among the activity patterns of a large set of input proteins in the 

development of a particular cellular state. If AR score of a protein is either +1.44 or -

1.44 in a given cellular state, then it can be said that the specific protein is highly 

essential and positive or negative inducer for that particular cellular state.   

2.5.8 Calculation of Phenotype Cost Function 

The emergence route of intra-tumor heterogeneity and the sub-clones of GBM 

tumor cells from a common origin of mutated cells can be best analyzed with the 

help of tumor cell evolution phylogeny [234]. If the overall expressions of all the 

pathway molecules at tth time are considered as a 'state' of the 

cell 1 2 3
{ , , , . . . . . . : }

m

t t t t t
Z M M M M m T o ta l m o le c u le s  , then the entire developmental 

routes through which different states 
1

{ , , ...... : }
t t t T

Z Z Z T T o ta l s im u la tio n tim e
 

 reach at 

the attractor states (singleton or periodic) are called as ‘State Transition Graph’ or 

STG [235]. The nodes of a STG are the states and edges are directed which defines the 

transition of one state to another state at every Boolean update. Hence, State 

Transition graph is able to depict the expression dynamics of all the pathway 
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components and the transformation of the cells towards different cell types, starting 

from a common origin of tumor initiating cells (states). It is observed that for 

reaching at a particular attractor state, STG has to pass through few 

transition/intermediate states or nodes 
1 2

{ , , , ......}
t t t

S S S
 

and then land into either 

fixed-point node { }
t s

S


or cyclic attractor nodes
1 2 3

{ , , , ...... }
t t t t l

L L L L
   

. It is considered 

that the transition from one state to another state of a cell is also associated with a 

signaling cost function (i.e. for chemical reactions/any physical processes) and it 

affects the overall state transition rate. Hence, it can be also assumed that the 

probability of a particular attractor/cellular state ( )
i

C in equilibrium state starting 

from initial states depends on the overall distance (i.e. transition steps) and the total 

number of molecular transitions to reach at that particular state. Hence, to quantify 

the average signaling cost functions ( )
i

C
 in each simulation batch for each cellular 

state is considered to be the functions of total transitions steps and periodicity (in 

case of cyclic attractor), and the total number of molecular alterations performed 

starting from initial state to the attractor state. This function is defined in (Eq. 19). 
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i
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(Eq. 19) 
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Calculation of "Hamming distance" between two successive nodes (or cellular 

states) in STG is particularly interesting to know the temporal changes or evolution 
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of the expression dynamics of the pathway molecules in the successive time points 

[236]. Let us assume that 1 2 3
{ , , .. . . . . . , }

N

t t t t t
S X X X X  & 

1 2 3

1 1 1 1 1
{ , , ......., }

N

t t t t t
S X X X X

    
 are the expression vectors referring to the any 

arbitrary successive states in STG. The expression of the elements ( )
k

j
X lies in binary 

domain{0,  1} . The Hamming distance (
1j j

S S
d




) can be calculated by using the 

following (Eq. 20). 

1
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(Eq. 20) 

Moreover it is also assumed that, apart from the signaling cost a mutated model 

in which few molecules are constitutively activated or suppressed will also induce 

mutational cost ( ) in the cells at the time of its transitions. The mutational cost 

function for a specific model is dependent on the total number of induced 

mutations ( ) and the change in the total number of added and omitted cellular states 

in the mutated model with respect to the non-mutated model ( 0 )  .  

Let us consider, in the non-mutated model there are total maximum X number of 

Cellular states
1 2 3

( : , , , . . . . . . )
n n n n n

X
C C C C C observed and in the mutated model there are 

total maximum Y number of Cellular states 
1 2 3

( : , , , . . . . . . )
m m m m m

X
C C C C C  observed. 

Suppose in the mutated model there are total  mutations induced. Hence, the 

mutational cost ( ) is defined as follows (Eq. 21). 
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Hence, the phenotype cost function ( )
i

C
 is defined as the sum of total signal cost 

and the mutational cost (if any) for a particular state ( )
i

C in the STG of a Boolean 

model. It is defined as follows (Eq. 22). 

i i
C C

      

(Eq. 22) 

    Phenotype Predictor Score: The predictor score[ ( )]
i

C of a particular cellular state 

observed in the simulation defines as the ratio of the total number of observed 

occurrences ( )
i

C
P to the total cost ( )

i
C

  requires for reaching at ith cellular state ( )
i

C in 

the attractor space. Hence, this parameter can be defined as follows (Eq. 23). 

( )
( )

( )

i

i

C
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(Eq. 23) 
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The probability density of the phenotype predictor score ( )
P

 


is previously 

discussed in various literatures [237,238].  

Here,  
2

,
P p
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2
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  , ( , ) 1C o rr P     , and the probability 

density function ( )f   is given as follows (Eq. 24). 
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The function ( )f   follows the general properties of the Cauchy-like distribution 

[237]. 

2.5.9 Selection of Patient Cohorts and Preparation of RNAseq Sample Data Sets  

Two patient cohorts consist of low-grade (TCGA-LGG) and high-grade 

Glioblastoma (TCGA-GBM) from "The Cancer Genome Atlas (TCGA)" research 

networks [239,240] were chosen for the case studies in this present work. HTSeq raw 

counts files (RNASeq experiment) of the Glioblastoma patients with TP53 mutation 

were selected to determine the mRNA expression profiles of these two patient 

cohorts (data downloaded on 27th April, 2017). 

The TCGA-Low Grade Glioblastoma (TCGA-LGG) cohort contains tumor 

samples from Grade-II and Grade-III glioblastoma patients, whereas the TCGA-GBM 

cohort contains samples from Grade-IV tumor patients. The RNASeq raw counts 

data (available as TXT files) for each patient is available in the open source GDC Data 

portal of National Cancer Institute (https://portal.gdc.cancer.gov/). Further 

information about the workflows related to sample collection; mRNA sequencing 

and data processing, read alignments, and mRNA quantification etc. are available at 

https://docs.gdc.cancer.gov/Data/PDF/ Data_UG.pdf. 
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2.5.10 Differential Expression Analyses of mRNA transcripts  

The RNASeq raw counts data files corresponding to the patient cohort with TP53 

mutation were extracted from the TCGA-LGG (General) and TCGA-GBM (General) 

patient cohorts.  The differential expression analyses were performed by forming the 

contrasts between primary (TP53 mutated) (i) LGG (total samples = 240) and (ii) 

GBM (total samples = 57) tumor samples versus solid normal tumor (total samples = 

5) samples using "edgeR" statistical package [241]. The differentially expressed (P-

value <= 0.001) transcripts of the input proteins of aNSC, GSC, and general GBM 

model were extracted. The logical states of the extracted input proteins were 

considered as "1" or "True" in the logical simulation of the case studies, if the 

transcript was up-regulated in contrast to normal tumor samples, else "0" or "False". 

The mRNA expression patterns observed in this analysis were considered as the 

transcriptomics profiles of the two different patient cohorts (primary LGG and 

GBM). 

2.5.11 Logical Simulations using the Transcriptomics Data Generated from TCGA-

LGG and TCGA-GBM  

The transcriptomics profiles of the input protein molecules observed in both the 

TCGA-LGG and TCGA-GBM patient cohorts were taken as inputs for the further 

simulations of aNSC and general GBM model simulations.  

2.5.11.1 Methodologies used in the Case-Study of TCGA-LGG Patient Cohort  

In the TCGA-LGG patient cohort there were total 5 and 3 protein molecules 

found to be over and under expressed, respectively. Mutation or down regulation of 

P53 protein was also considered in the logical simulation of the case-study of TCGA-

LGG cohort. Hence, out of total 53 input molecules of the master aNSC model, there 

were total 9 protein molecules kept frozen (i.e., constitutively expressed at ON or 

OFF state) and eliminated from the input list for further randomization in the new 

simulation. Hence, the total number of mutations μ introduced in the master aNSC 
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model was 9 and the rest 44 input proteins were randomized 10000 times in 10 

separate batches. The mean normalized frequency values of each cellular state were 

calculated from these 10 independent simulation batches, which will be further used 

for checking the goodness-of-fit with the normalized frequency values observed for 

the cellular states in the previously performed, master aNSC model. The objective of 

this study was to assess the effects of these 9 differentially expressed transcripts of 

the input proteins in the development of adult NSCs within the neurogenic niche of 

human brain and how much the normalized frequency distributions of different 

cellular states will vary with respect to the distributions of the cellular states 

observed in the master aNSC model. The Chi-square goodness of fit test was used to 

compare the normalized frequency distributions of this new model (i.e., observed 

normalized frequencies) with the distributions (i.e., expected normalized 

frequencies) observed in the master aNSC model. The statistics was performed under 

the following null (H0) and alternate (H1) hypotheses: 

H0 = The normalized frequency values observed in the two model simulations (i.e. expected 

and observed) are consistent with each other. 

H1 = The normalized frequency values observed in the two model simulations (i.e. expected 

and observed) are not consistent with each other.     

Following this simulation, the TCGA-LGG transcriptomics data was considered 

as inputs in the previously developed, master model of general GBM developmental 

model. In the master GBM model, there were already 4 mutations added (including 

P53) and 8 mutations were further added as per the TCGA-LGG transcriptomics 

expression profile (see Table 13 of Chapter 6). Hence, altogether there were total 12 

mutations (μ) introduced in the master general GBM model and a new derivative 

model was developed by keeping these 12 input proteins at constitutively up or 

down regulated states. These 12 input proteins were kept aside for further 

randomization and the rest 41 input proteins were randomized 10000 times in 10 
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separate batches. The mean normalized frequency values of each cellular state 

(observed normalized frequencies) were calculated from these 10 simulation batches 

and the Chi-square goodness-of-fit test considering the null (H0) and alternate (H1) 

hypotheses was performed again to assess the effects of the newly introduced 

mutations on the normalized frequency values of each cellular state (i.e., expected 

normalized frequencies) found in the master, general GBM model simulation.  

2.5.11.2 Methodologies used in the Case-Study of TCGA-GBM Patient Cohort 

Similar to the analyses of TCGA-LGG tumor samples cohort, the transcriptomics 

profile (see Table 13 of Chapter 6) observed for the TCGA-GBM sample cohort was 

also considered at first as inputs in the master aNSC and general GBM models. There 

were total 12 and 6 proteins found to be up and down-regulated, respectively, in the 

differential expression analyses of TP53 mutated primary GBM versus normal solid 

tumor tissues. Therefore, in total 19 mutations (μ = 12 + 6 +1) of the input proteins 

were considered in the input in the master aNSC model and a new model using the 

TCGA-GBM transcriptomics data on master aNSC model was developed. Here, the 

extra 1 mutation was added for the P53 mutation. Similar to the previous analyses, 

these 19 input proteins were kept constitutively at ON or OFF state as per the 

differentiation expression results (see Table 13 of Chapter 6) and the rest 34 input 

proteins out of 53 were further randomized 10000 times in 10 separate simulation 

batches. Similar Chi-square goodness-of-fit test was performed to assess the 

similarities of the normalized frequency values of each cellular state observed in 

master aNSC and new model simulations.  

On the other hand, another set of simulation was performed to examine the effects 

of the differentially expressed transcripts of the TCGA-GBM tumor samples cohort 

(see Table 13 of Chapter 6) on the master general GBM model. Here, the master 

general GBM model had 4 mutations (TP53, JAK2, STAT3, and RBPJ) and in the 

TCGA-GBM cohort another 18 proteins were found to be differentially expressed. 
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Therefore, in total there were 22 mutations (μ = 18 + 4) added in the new simulation 

of general GBM model for the case-study. These 22 proteins were kept constitutively 

expressed (either up or down) based on the transcriptomics profile generated from 

differential expression analyses (see Table 13 of Chapter 6) and the rest 31 out of 53 

input proteins were randomized 10000 times in 10 separate batches. Similar Chi-

square goodness-of-fit test was also performed to study the similarities of the 

normalized frequency values of each cellular state observed in master general GBM 

model and new model simulations. 

2.5.12 Methodologies used for Drug Target Screening  

The simulation outcomes of "Grade-IV GBM model" simulation showed 

significant increase in the number of Grade-IV tumor cells (i.e., the cellular state: 

"GSC Renewal/ASPC Differentiation/GBM Development") in the attractor space 

(Figure 39C). The periodic state transition dynamic in the steady state level observed 

in this cellular state was mainly occurred due to the presence of cyclic expression 

patterns of its corresponding marker proteins (Table 2). The expressions of these 

marker proteins were dependent on the intermediate molecules through which the 

flow of signaling cascades were transduced from the input to the target molecules 

during tumorigenesis. Hence the molecules, which showed higher correlations in 

their expression pattern with the marker proteins, were the key regulators of the flow 

of tumorigenic signal inside the developing Grade-IV tumor cells. Therefore, it can be 

hypothesized that a subset of intracellular intermediate molecules, strongly tuned 

and correlated with the activity pattern of Grade-IV cellular state via the marker 

proteins are the most significant molecules for the sustainment of this cellular state. 

Indeed, it is expected that perturbing the expressions (i.e., logical states) of such 

molecules (individually or in combination) will alter the activity pattern of the 

Grade-IV cellular state and those proteins will be considered as potential drug 

targets. However, identification such small subset of molecules out of the large set of 

modeled pathway molecules is a challenging task, which could be only possible to 
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resolve through an efficient computational algorithm capable of analyzing multiple 

time series data simultaneously.      

The intermediate molecules which were mutually interconnected and highly 

correlated with the temporal activity pattern observed for Grade-IV cellular state in 

the "Grade-IV GBM" model simulation study were required to be extracted [242]. The 

correlation and delay between a pair of time course data was calculated by using Fast 

Fourier Transform (FFT) analysis. The delay and pair-wise correlation between the 

activity patterns of Grade-IV tumorigenic cellular state (i.e. Target signal) and the 

time-course logical expressions data of all the intermediated molecules (i.e. Query 

signal) were measured by the following method.  

Let us consider that 
1 2 3

{ , , , . . . . . , }
G ra d e IV

T
C c c c c


 is the time series activity (ON or 1 

and OFF or 0) profile of the Grade-IV cellular state observed in the STG of "Grade-IV 

GBM model" simulation at the discrete time points 1, 2 , 3, .....,t T . This time-course 

data of Grade-IV cellular state was considered as the "Target" signal. Similarly, let us 

consider that the time-course logical expression (ON/1, OFF/0) profile of any 

arbitrary molecule
1 2 3

{ , , , ....., }
i T

X x x x x , which was considered as "Query" signal. 

Both the temporal signals (S) were decomposed into cyclic patterns (i.e., frequency 

domain) with each frequency 1, 2 , 3, ......, 1n T  by following FFT analyses as shown 

in  (Eq. 25) and (Eq. 26) [242]. 
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(Eq. 26) 

Amplitude of the cycle with frequency n = 0 was neglected. The amplitudes and 

phase angles of the cycles with higher frequencies (n > 0) were calculated for both the 



70 | P a g e  
 

signals. The frequency of the cycle (n) for which the amplitude is found at maximum 

magnitude was at first identified. After that phase angles of the cycles from both the 

target and query signals ( , )
n n

C X
   were calculated at that frequency (n) and the 

difference or delay n n n

C X C X
     between the two signals was measured. The delay 

between two signals 
C X

  was further calculated in the range of 
T

0  to  
n

 by using the 

following (Eq. 27) [242]. 

3 6 0

n

C X

C X
n

T





 
 
 

 

(Eq. 27) 

Lagged Pearson correlation coefficient was also calculated for measuring the 

strength and association between the two signals or trajectories [242]. In this work 

the delay and correlation between Grade-IV cellular state and for each pathway 

molecules were measured pair-wise. There were total six probable outcomes, which 

were found while comparing all such pairs of trajectories (i.e., Target vs. Query) 

using this approach. These entire mathematical calculations were done in 

"DynOmics" package developed in the statistical package "R" [242].    

i) The signals were positively correlated (correlation > 0) with no delay (Delay = 

0). In this case both target and query signals were superimposed on each other and 

the phase (or direction) of the signals was same (i.e. positively correlated). Hence, it 

was considered that the molecular expression pattern (i.e. query signal) was 

positively influencing the activity pattern or dynamics of Grade-IV tumor state and 

there was no delay between the time-course profiles. Therefore, the molecule was a 

strong positive inducer or activator of Grade-IV tumor cells, which means that when 

the molecule was at ON (i.e., up -regulated/ active) state, the activity of Grade-IV 

cellular state was also High (or ON). 
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ii) The signals were positively correlated (correlation > 0) with negative delay 

(Delay < 0). In this case the phase (or direction) of both the signals was same (i.e., 

positively correlated), but the initiation of the target signal at initial time point was 

delayed with respect to the query signal. Hence, it was considered that the molecular 

expression pattern (i.e. query signal) was positively influencing the activity pattern 

or dynamics of Grade-IV tumor state, but there was a lag of the Grade-IV time-course 

activity profile with the respect to that positively influencing molecule. Therefore, the 

molecule was a positive inducer or activator of Grade-IV tumor cells, which means 

activation of these molecules, will lead to the higher expression of Grade-IV tumor 

state.    

The signals were negatively correlated (correlation < 0) with positive delay (Delay 

> 0). In this case the phases of the signals were opposite (i.e. negatively correlated) 

and the initiation of the target signal was ahead of the query signal at initial time 

point. Hence, it was considered that the molecular expression pattern (i.e., query 

signal) was negatively influencing the activity pattern or dynamics of Grade-IV 

tumor state, but the Grade-IV time-course activity profile was running ahead with 

the respect to that negatively influencing molecule. Therefore, the molecule was a 

negative inducer or activator of Grade-IV tumor cells, which means which means 

when the molecule was at ON (i.e., up-regulated/ active) state, the activity of Grade-

IV cellular state was Low (or OFF). 

iii) The signals were negatively correlated (correlation < 0) with no delay (Delay = 

0). In this case the phases of the signals were opposite (i.e. negatively correlated), but 

there was no delay at the initiation of the signals at initial time point. Hence, it was 

considered that the molecular expression pattern (i.e., query signal) was negatively 

influencing the activity pattern or dynamics of Grade-IV tumor state, but there was 

no lag between the trajectories of these two signals. Therefore, the molecule was a 

strong negative inducer or inhibitor of Grade-IV tumor cells which means activations 
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of these molecules, will inhibit the expression or activation of Grade-IV tumorigenic 

state.  

iv) The signals were negatively correlated (correlation < 0) with negatively delay 

(Delay < 0). In this case the phases of the signals were opposite (i.e., negatively 

correlated), but the initiation of the target signal at initial time point was delayed 

with respect to the query signal. Hence, it was considered that the molecular 

expression pattern (i.e.. query signal) was negatively influencing the activity pattern 

or dynamics of Grade-IV tumor state, but there was a lag of the Grade-IV time-course 

activity profile with the respect to that negatively influencing molecule. Therefore, 

the molecule was a negative inducer or inhibitor of Grade-IV tumor cells which 

means activations of these molecules, will inhibit the expression or activation of 

Grade-IV tumorigenic state.     

v) The signals were positively correlated (correlation > 0) with positive delay 

(Delay > 0). In this case the phase (or direction) of both the signals is same (i.e., 

positively correlated), and the initiation of the target signal was ahead of the query 

signal at initial time point. Hence, it was considered that the molecular expression 

pattern (i.e., query signal) was positively influencing the activity pattern or dynamics 

of Grade-IV tumor state, but the Grade-IV time-course activity profile was running 

ahead with respect to that negatively influencing molecule. Therefore, the molecule 

was a positive inducer or activator of Grade-IV tumor cells which means activations 

of these molecules, will lead to the higher expression of Grade-IV tumor state. The 

pathway molecules, which showed significant positive correlation (correlation value 

≥ 0.6) and Delay ≤ 3 with the activity trajectory of Grade-IV cellular state were chosen 

as drug targets for the subsequent perturbation analyses. 

Perturbation study: The molecules enlisted in Table 14 of Chapter 6 showed 

positive correlation with the activity profile of Grade-IV cellular state were targeted 

by freezing the expression states as down-regulated (or OFF) state in the "Grade-IV 
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GBM" model. On the other hand, the molecules, which were negatively correlated, 

were kept up-regulated (i.e., ON) in the perturbation study. In Table 15 of Chapter 6, 

the molecules which had absolute correlation value ≥ 0.75 with P-value < 0.05, Delay 

≤ 3 and showed profound effect of reducing the activity of LGG-I, LGG-II, and 

Grade-IV cellular states while perturbing their expressions in the "Grade-IV GBM" 

model were extracted rank-wise.  

2.6 SEMI-DYNAMIC ANALYSES USING QUATERNARY LOGIC 

2.6.1 Truth Table of Quaternary Logic-Based Operation 

The truth table of the quaternary logic (Table 3) was taken from the truth table 

used in previous work proposed for constructing quaternary logic gate circuits of 

universal NOT, OR, and AND gates using Spatial Wavefunction-Switched Field-

Effect transistors (SWSFET) [243]. 

Table 3: The Truth Table of Quaternary Logic 

Serial Number I1 I2 O1 = I1 AND I2 O2 = I1 OR I2 O3 = NOT O2 
1 0 0 0 0 3 

2 0 1 0 1 2 

3 0 2 0 2 1 

4 0 3 0 3 0 

5 1 0 0 1 2 

6 1 1 1 1 2 

7 1 2 0 3 0 

8 1 3 1 3 0 

9 2 0 0 2 1 

10 2 1 0 3 0 

11 2 2 2 2 1 

12 2 3 2 3 0 

13 3 0 0 3 0 

14 3 1 1 3 0 

15 3 2 2 3 0 

16 3 3 3 3 0 

2.6.2 Modifications of the Logical Equations Constructed Using Negation Rule 

The  implementation of NOT gate in the logical equation which consists of only a 

single or multiple upstream inhibitors without any activator(s) was considered in the 

newly developed quaternary logic-equation in a slightly different way than the 

conventional approach. For example, if a node A is only inhibited by an upstream 

inhibitor B, then the logical equation of the corresponding event will be denoted by 
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the following logic-equation (Eq. 28). 

( 1) ( ) ! ( )A t A t B t                      

(Eq. 28) 

The following truth table of the equation can be obtained from (Eq. 28) by using 

binary logic, which is also comparable with the real biochemical event (Table 4). 

Table 4: Binary Logic-Based Truth Table of the Modified NOT Gate Equation  

A(t) B(t) A(t+1)=A(t) AND NOT B(t) 
0 0 0 

0 1 0 

1 0 1 

1 1 1 

In the quaternary logic-based operations, the resultant truth table after executing 

(Eq. 28) is provided below (Table 5).  

Table 5: Truth Table of the Extend ExQuLogic 

Serial Number A(t) B(t) NOT B(t) A(t+1)=A(t) AND NOT B(t) 

1 0 0 3 0 

2 0 1 2 0 

3 0 2 1 0 

4 0 3 0 0 

5 1 0 3 1 

6 1 1 2 0 

7 1 2 1 1 

8 1 3 0 1 

9 2 0 3 2 

10 2 1 2 2 

11 2 2 1 0 

12 2 3 0 0 

13 3 0 3 3 

14 3 1 2 2 

15 3 2 1 1 

16 3 3 0 0 

   It can be seen from both the truth tables that when the node A is absent or not 

expressed in the previous time-step, then the logical state of the node A at the next 

time-step will be always at absent or not expressed state, irrespective of the state of B 

at the previous time-step. Hence, it can be said that memory of the node A at tth time-

step plays important role in its own update scheme at (t+1)th time-step. The memory 

function of the inhibited downstream node can be also used in case multiple 
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inhibitors present in the upstream with no activator node(s). In such instance, the 

equation will be written as follows (Eq. 29). 

1 2 3
( 1) ( ) ! ( ) ! ( ) ! ( ) .....! ( )

,

n
A t A t B t B t B t B t

W h ere n T o ta l n u m b er o f u p s trea m in h ib ito rs

     


  

(Eq. 29)    

2.6.3 Extended Quaternary States Update Scheme (ExQSUS) 

The quaternary state update schemes of the nodes used in the conjunction rule 

(AND operator) of logical equations were modified based on the assumptions of 

"maximal or dominant effect" of the upstream effectors nodes on the downstream 

effected node. The algorithm for the extended quaternary states update scheme 

(ExQSUS) used in this work is elaborately discussed here.  

Let us consider that there are m number of upstream activators 

 1 2 3 4
, , , , ....

m
A A A A A and n numbers of inhibitors 1 2 3 4

, , , ....,
n

I I I I I nodes regulating a 

downstream node D in the network. Let us also consider that all the activators and 

inhibitors work in conjunction to activate or inhibit the expression of the 

downstream node D . Hence, the following logical equation using the universal 

"AND" and "NOT" operators can be written to describe the update rule of the node 

 D  at (t+1)th time-point (Eq. 30).  

1 2 3 1 2 3
( 1) ( ) ( ) ( )..... ( ) ! ( ) ! ( ) ! ( )..... ! ( )

m n
D t A t A t A t A t I t I t I t I t          

(Eq. 30) 

Let us compute the total number upstream nodes at tth time-point having 

quaternary states  0 ,1, 2 , 3X   as 
X

 by using the following equation (Eq. 31).  

Where,      
1 1

, 0 ,1, 2 , 3 ! ( )

m n

X i j n n

i j

A X I X X a n d I I t

 

          

(Eq. 31) 

The stepwise description of the ExQSUS algorithm implemented in the extended 
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quaternary logic (ExQuLogic)-based operations is provided in Appendix Text 1.  

The disjunctive (OR operator) rule implemented in ExQuLogic operation were 

simply performed by using the truth table of quaternary number based algebra 

(Table 3). The logic equation (Eq. 32) consists of conjunctive, disjunctive, and 

negation rules were solved by first computing the negation rule (or NOT operator), 

after that conjunctive rule (or AND operator) using ExQSUS algorithm followed by 

disjunctive rule (or OR operator).  

1 1 1 1 2 2 2 2

1 1 1 1 1 1

1 1 1 1 2

1 1 1

( 1) ( ( ) ... . . ( ) ! ( ) ... . . ! ( )) ( ( ) , .. . . ( ) ! ( ) .. . . . ! ( ) .. . . . ( ( ) , . . . . ( ) ! ( ) ... . . ! ( ))
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w w w w
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(Eq. 32)      

2.6.4 Quaternary States Selection Rules 

The following quaternary state selection rules are proposed here to select the 

logical states of the genes/proteins after performing differential expression analyses 

of transcripts/proteins. 

1 2

1 2

                             =  3 ,  i f f  (P -v a lu e  < =  θ  &  lo g  [F C ]   θ )

                             =  2 ,  i f f  (P -v a lu e  < =  θ  &  0  <  lo g  [F C ]  <  θ )

                                                        



1 2

1

o r ,

                                          (P -v a lu e  >  θ  &  lo g  [F C ]  >  θ )

                                                        o r ,

                                       (P -v a lu e  >  θ  &  0  <  lo g  [F C
2

1 2

1 2

]  <  θ )

Q u a te rn a r y  s ta te  = 1 ,    i f f  (P -v a lu e  < =  θ  &   -  θ  <  lo g  [F C ]  <  0 )

                                                         o r ,

                                      (P -v a lu e  >  θ  &   -  θ  <  lo g  [

1 2

1

F C ]  <  0 )

                                                        o r ,

                                     (P -v a lu e  >  θ  &   lo g  [F C ]  <  -  θ )  

                            = 0 ,  i f f  (P -v a lu e  < =  θ  &  lo g  [F C ]
2

  -θ )

  

Here, θ1 and θ2 are the user defined non-zero, positive values to setup the 

thresholds for P-value (or FDR) and the log of fold change ratio, respectively. Also, it 

should be noted that the quaternary state "0" is used here for representing the under 

expressed or down-regulated or knock-out or absent transcripts/genes/proteins of the 

logical model. On the other hand, the quaternary state "3" represents over-

expressions or up-regulation or hyper-activation of the pathway species. The other 



77 | P a g e  
 

two states are used for representing the intermediate states between up (hyper-

active) or down (inactive) regulations. The quaternary state "2" can be denoted as 

modestly or regularly active nodes, whereas the quaternary state "1" can be used for 

signifying the hypoactive or lesser active nodes in the network. In a differential 

omics-based expression study, if a transcript/gene/protein is quantized as "1" as per 

our quaternary state selection rule, then it can be signified that the biomolecule is 

almost equally expressed in both the groups (e.g., tumor versus normal) of the study 

and has little contribution to make significant changes in the regulation of its 

downstream nodes in the network. On the other hand, the quaternary state "0" refers 

the complete absent (knocked-out) or a very little expression of the nodes in one 

group of cells as compare to other group. 

2.6.5 Implementation and Execution of Quaternary Logic 

The execution of quaternary logic-based operation in the conventional computing 

environment is not straightforward as the modern computing systems are hitherto 

operated in the regime of binary numbers (0 or 1) system-based logical operations 

proposed in the truth table of Boolean algebra. None of the existing model or 

software developed for the simulation of multi-valued logical analyses of 

biochemical pathways uses the actual truth table of quaternary logic (Table 3). In this 

work, this problem was solved and the executions of quaternary logic-based 

operations were executed in the conventional computing environment. The truth 

table for performing quaternary algebra was also implemented by using a special 

GCC library developed for this purpose. This new library can be compiled with 

standard C programming environment and the simulations of the logical equations 

or steady-state analyses of quaternary logic-based operations can be performed 

without changing the core structure and conceptual framework of the conventional 

logical equations. That means, the rules applied for implementing the conjunction 

(AND gate), disjunction (OR gate), and negation (NOT gate) in the conventional 

logic-based model can be still used in the new computational framework while 
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performing quaternary logic-based operations.  

2.6.6 Simulations of the Signaling Networks using ExQuLogic Method 

The logical model of the T-cell receptor signaling pathways was taken from the 

model published by Saez-Rodriguez et al. [244]. The logical equations of the T-cell 

receptor mediated signaling pathway were simulated in three different time-steps (t 

= 0, 1, 2) based on ExQuLogic-based logical update rules. The logical model of the 

ERBB receptor mediated signaling pathway was taken from the model published by 

Sahin et al. [245]. The logical model of the pathway is provided in Appendix Table 

11. The logical models of Hedgehog and Notch signaling pathways were taken from 

[82] and [245]. By freezing the logical update rule of the node with respect to time, 

the perturbation analyses of the logical nodes were performed.  

For example, while perturbing the logical state of any arbitrary node D in the 

logical model, the logical equation was changed to freeze the update of the 

node  1 2 1 2
( 1) , , ..., , , , ....,

n n
D t f A A A I I I  to ( 1) ( ), (0 ) {0 ,1, 2 , 3}D t D t w h ere D q    . 

Here, the quaternary state q is the altered or perturbed state of the node D.  

The logical model of the integrated signaling pathways of Hedgehog, Notch, 

WNT, ERBB pathways shown in Chapter 7 were developed by integrating the 

previous models of the Hedgehog [82], Notch [245], and ERBB pathways [245] in a 

common logical model followed by its integration with the newly developed WNT 

pathway model. The WNT pathway contains the comprehensive information of the 

all the nodes (proteins, complexes, genes) and their reactions, which were manually 

collected from various resources, such as PPI databases, Cell signaling databases, and 

most importantly from various literature sources [8]. The logical equations of the 

integrated pathway model are provided in Appendix Table 12. 

2.6.7 Computation of the Level of Accuracy of Predicting the Activity Profile 

The activity profiles of all or a few select nodes in the logical model refer the 
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active or inactive states of the nodes (genes/proteins) in an experimental datasets 

(obtained from differential expression studies) or at the logical steady state (obtained 

from model simulations). Here, the "active" state of a node in a logical network refers 

quaternary states "2" and "3" or the binary state "True (1)", whereas "inactive" state 

signifies either the quaternary states "1" and "0" or the binary state "False (0)". The 

differential expression of the target nodes (genes/proteins) considered in the activity 

profile was at first taken from the differential expression studies of the target model 

scenario (e.g., Glioblastoma) followed by the application of quaternary state selection 

rule (see Section 2.6.4) to convert and discretize the expression values in quaternary 

states. After discretization, the quaternary states were hot encoded as "Active 

(αexpected)" if the states are either "2" or "3" and "Inactive (βexpected)" if the states are either 

"0" or "1". Similarly, the steady-state expression values of the quaternary states 

obtained after ExQuLogic-based simulation are also hot encoded as "Active (αpredicted)" 

and "Inactive (αpredicted)" states. The following equation (Eq. 33) was then used to 

compute the percentage of accuracy of the predicted activity profile obtained by the 

ExQuLogic-based operations with respected to the descritized and hot encoded 

experimental expression values of the transcripts obtained after differential 

expression studies. 

( )

1,
( )

0 ,

N
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i i
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Chapter 3 
__________________________________________________________________________________ 

 

3 DEVELOPMENT OF A NEW PATHWAY DATABASE WITH 

INTEGRATED COMPUTATIONAL PLATFORM  

__________________________________________________________________________________ 

3.1 INTRODUCTION2 

Systems level understandings of biochemical pathways to analyze their roles in 

governing multiple biological systems is expected to flourish at various directions in 

the near future using state-of-the-art molecular biology experiments [153,246-248]. A 

huge amount of unstructured data related to biochemical pathways is now available 

in literatures as well as in various other resources as raw or partially processed 

formats [248-252]. However, it is one of the major challenges to the researchers for 

acquiring and collating such highly dispersed data into a common hub of biological 

knowledgebase for further analyses [251]. Such platform will help to share the 

annotations of newly identified biomolecular species (e.g., genes, proteins, RNA, 

miRNA, etc.) in a biochemical pathway within the academic communities for future 

experimentations and references [253].  

However, initially the construction and analysis of the large and complex reaction 

network of biochemical pathways was not so easy due to the unavailability of 

advanced tools and techniques for the functional annotations of various unknown or 

newly identified genes and proteins in the biochemical pathways. The recent 

developments of multidisciplinary, integrative approaches using bioinformatics tools 

to analyze such big data have made these entire processes easier. The advancements 

in cellular and molecular biology experiments, high-throughput genomics or 

                                                           
2
 The materials of this chapter has been taken verbatim from our previously published articles (a) 

Chowdhury and Sarkar, Database (Oxford)., 2015 (b) Chowdhury et al., J Integr Bioinform, 2018 
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proteomics studies and the successful completion of Human genome project have 

flourished this field of study by generating plethora of genomics and proteomics 

data, and introducing new computational algorithms [254-256]. Moreover, the sub-

cellular localization data of the cellular components from immunohistochemistry, 

FISH, live cells microscopy, etc. experiments have made it possible to annotate the 

pathway molecules according to their cellular locations in the constructed pathway 

diagram [257]. Eventually many scientific communities, research groups, database 

developers have got involved in pathway reconstruction by collating experimental 

observations from published literatures [257,258]. Various databases (e.g., KEGG, 

REACTOME, PANTHER, NETPATH, NCI-PID, SIGNALINK) with interactive user 

friendly interface have been developed to facilitate the operations for pathway data 

retrieval, sharing and storing in proper formats more easily via internet (see 

Appendix Table 1) [259].  

These databases are majorly used for pathway enrichment, gene ontology (GO) 

analyses, which are the downstream analyses of the high-throughput omics-based 

experiments [97,260-262]. The data available in these databases are also proven 

useful for the identification of novel drug or drug targets of various diseases. Spatial 

annotations of the bimolecular entities provided in these databases are also very 

much useful for the molecular and cell biology experiments to track the expression 

dynamics of various marker proteins in in-vitro assays. Apart from these studies, 

such databases have also become valuable resources for in-silico experiments to 

interpret the emerging properties of the cellular networks upon its exposure in 

various external cues under different pathological conditions [251]. The biochemical 

reaction networks provided by these databases are routinely used by the 

computational biologists to generate and subsequently prove various experimental 

hypotheses through in-silico models and simulations [263]. Indeed, the successful 

simulation of such in-silico models depends on the accuracy of the reconstructed 

pathway data and respective parameters provided by the databases [263,264].  
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3.2 A BRIEF HISTORY OF THE EXISTING SIGNALING DATABASES 

The history of biochemical pathway databases starts from the construction and 

storage of metabolic pathway maps by various research groups. Initially these 

metabolic pathway maps were used to refer as "Biochemical Pathways Wall Chart", 

originally developed by Dr. Gerhard Michal [265]. In the last two decades, the 

advance of computer science, internet, web browsers and data sharing policy have 

made it possible to host and share the rendered pathway images via internet. In 1993-

94, EcoCyc, a family of Cyc family database launched the first formal representation 

of metabolic pathways of E.coli [266,267]. Subsequently, in the year of 1995-96, the 

database “Kyoto Encyclopedia of Genes and Genomes (KEGG)” launched by Profs. 

Minoru Kanehisa, Kyoto University, Japan, initiated the web hosting of manually 

curated pathway diagrams of metabolic, genetic and signal transductions networks 

of different organisms. It was the first initiative, where the binary gene interaction 

data from genome projects was used to map and group with functional dependencies 

and subsequently was presented by so called higher level information schema or 

pathway diagrams [258].     

Inspired by this approach, several other academic and commercial groups put 

their efforts to construct various biochemical pathways from the experimental data 

[259]. As time proceeds, a group of databases restricted themselves to only curate 

either metabolic (e.g. BioCyc, MetaCyc) or gene regulatory (e.g. TRED) or cell 

signaling networks (SPAD, NETPATH) [268-272]. We observed that throughout the 

last two decades, the progress of these databases was clearly divided into two 

branches, mainly lead by either Commercial or Academic groups (Figure 9). 

It is worthy to mention that before 1998-99 (after the publication of KEGG), there 

were no as such any divisions or progress seen to develop human cell signaling 

databases for commercial purposes by any commercial groups or companies. Hence, 

KEGG, SPAD, and STKE/Science Signaling Database (which were made for academic 
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purposes), are placed in the middle of the database evolution tree in Figure 9.  

 

Figure 9: Evolution of the existing and active human signaling pathway databases. 

This figure clearly depicts that KEGG, SPAD, and STKE can be thought as the pioneers in the 

field of the development of human cell signaling databases. In the subsequent years, the 

evolution of human cell signaling databases is mainly led by the ‚Commercial Groups‛ and 

several ‚Academic Groups‛. The first commercial database BIOCARTA and GENEGO were 

launched in 2000. In the subsequent years several databases, like CELL SIGNALING 

TECHNOLOGY (2002), PROTEIN LOUNGE (2003), INVITROGEN (2005), APPLIED 

BIOSYSTEM (2007), MILIPORE (2009) were also started to provide human cell signaling data 

freely to the users. Integration of signaling pathway components with their corresponding 

antibodies, drugs, inhibitor molecules in their products website, helps the bench biologists to 

order and purchase those products readily. On the other hand, the evolution of the other 

branch of the human cell signaling database is lead by several academic groups across the 

world. Since 1995, almost each year on an average one or two such database has been 

launched. The objectives of these databases are wider than the commercial databases and are 

not only restricted to the pathway data annotation and presentation but also to the analysis 

of cross talks of multiple pathways, drug target identification, in-silico simulation, computer 

readable pathway data sharing, and pathway analyses and so on.  
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However, after the year of the launch of STKE in 1999, the history of human cell 

signaling databases is bifurcated into two branches: Academic and Commercial 

database. Following 1999, the commercial databases GENEGO/METACORE and 

BIOCARTA (2000) started to provide signal transduction data to the common users. 

Successively, the academic databases, such as KEGG, PANTHER, REACTOME, 

PATHWAY COMMONS, [273] etc. also started to provide similar types of tools to 

the pathway curators and database developers, and in this context various API 

services as well as the computer readable pathway data sharing files, like SBML, 

BIOPAX, KGML etc. are distributed for academic purposes to the non-commercial 

users and software developers at free of cost [274-277]. A detail description of the 

history and evolutions of these databases is available in our previously review article 

on human signaling pathway databases [8].  

It is also worth to mention that most of the pathway databases have evolved in 

such a way that it can provide maximum information and facilities to the general 

users by smoothly sharing the data contents across a large number of users. 

Moreover, there are many other features, which these databases have included to 

facilitate the users' experience to interact with the database. However, there are few 

constrains, which remain unsolved and still demand the attentions of the database 

developers and as well as the end-users of these databases.  

3.3 STATE-OF-THE-ARTS 

We observed that all the human cell signaling databases developed till date can be 

classified according to their mode of collating pathway data and can be grouped into 

any of the three categories viz. "Primary", "Secondary", and "Hybrid" database. Major 

academic databases KEGG, SPAD, DOQCS, NETPATH, REACTOME, SIGNALINK, 

SPIKE, BIOMODELS, INOH, and PANTHER and almost all the commercial 

databases BIOCARTA, GENE GO/METACORE, CELL SIGNALING TECHNOLOGY, 

PROTEIN LOUNGE, MILLIPORE, APPLIED BIOSYSTEM, and INVITROGEN, 
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which possess self-curated pathway data fall in the first category. The secondary 

databases are PATHWAY COMMONS, GOLD.DB, and HIPATHDB, which mainly 

aggregates the pathway data from the primary databases for various other purposes. 

On the other hand, the "Hybrid" database, such as WIKI PATHWAYS, NCI-PID, 

CPDB, and INNATEDB are dependent on self-curated as well as aggregated data 

from the primary databases. To understand the state-of-the-arts of these databases, 

we have performed a comparative study on these databases to evaluate the pathway 

data quality and the available technical features showcase by these databases. In the 

following sections, we have pointed-out the major outcomes of our review.  

3.3.1 Currently Available Active Pathway Databases 

We identified around 24 different cell signaling databases, which are currently at 

active states and distribute the pathway related data (e.g., pathway image, molecular 

interactions, molecule names, sequence, etc.) freely to the users (Appendix Table 1). 

We observed that various types of cell signaling pathways, such as developmental 

(e.g., Hedgehog, Notch, etc.), disease-specific (cancer, cardiovascular, etc.), 

immunological (T cell, B cell signaling, etc.), apoptotic, etc., were freely available in 

these databases. In total 19 such broad classifications of pathway data types were 

found in these databases. Hence, to summarize our findings, we constructed a matrix 

to show the databases and the different types of pathway data available in the 

respective databases (Figure 10).  

Furthermore, it was observed that there were only a few databases which store 

the pathway data compatible with the in-silico model development. BioModels is 

such kind of database which serves as the repository of the in-silico computational 

models of the biochemical pathways collated from the published literature. Using a 

software module Path2Model [278], it automatically generates the mathematical 

models in the computer-readable formats. It is considered as a useful resource of 

biochemical pathway models and relevant data, such as kinetic rate parameters, 
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concentrations of biomolecules, dynamic rate equations, etc. Another database, 

DOQCS also distributes the in-silico quantitative models for neuron and other 

signaling pathways. The models provided in this database are collated from 

literature and are freely available to the users. The kinetic rate parameters are 

obtained from various experimental resources, such as enzyme assays, binding 

experiments, the time course of reactions, etc. 

 

Figure 10: Signaling pathway databases and the available pathway data types. 

This figure illustrates a matrix, whose "Rows" and "Columns" represent the number of 

different types of signaling pathways (Y-axis) available in different databases (X-axis) 

respectively. Color legends are used to represent the "presence" or "absence" of different 

types of signaling pathway data (total 19) available in the selected 24 databases. The 

numbers in the first bracket indicate the number of the databases which contain a particular 

type of pathway data (represented in row-wise), whereas the numbers in square bracket 

indicate the total number of different types of pathway data present in a particular database 

(represented in column wise). 

In the following sections, a brief comparative review based on the pathway 

information and the technical features available in these databases is provided. The 

elaborate discussion about this topic is also available in our review article [8]. 
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3.3.2 Comparative Study on Pathway Information 

3.3.2.1 Pathway Information is not Homogeneous 

A case study on Hedgehog and Notch pathway was performed by manually 

counting the number of molecular species and interactions given in different 

database (Figure 11A and Figure 11B).  

 

Figure 11: Comparative statistics of pathway information available in databases. 

Total number of molecular species and interactions available in (A) Hedgehog & (B) Notch 

pathways in different databases are shown here. The blue arrows indicate the databases, 

which do not possess Hedgehog or Notch pathway data and the red arrows indicate the 

databases, which do not possess their own curated Hedgehog or Notch pathway data. (C) 

The total numbers of signaling pathways available in different databases are shown here.  
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We also observed that the total number of signaling pathways (human) in 

different databases is also seemed to be widely varied in different databases (Figure 

11C). The metabolic or the biosynthesis pathways were not included for this 

comparative study.  

3.3.2.2 Pathway Annotation and Nomenclature is not Standardized   

We observed that although the signaling pathway databases assign specific entry 

number for each pathway, there is no such specific nomenclature exists for assigning 

the name of the signaling pathways in the databases.  

 

Figure 12: Pathway ontology used by INOH and Pathway Ontology portal. 

(A) INOH based ontology and (B) Bioportal: Pathway Ontology.  
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For example, in case of naming Hedgehog pathway, KEGG, PANTHER, WIKI 

PATHWAYS  etc. are using common names, such as "Hedgehog signaling pathway", 

but the other databases are using different nomenclatures (e.g., BIOCARTA assigns 

the Hedgehog pathway as ‚Sonic Hedgehog (Shh) Pathway‛; NCI-PID as ‚Signaling 

events mediated by the Hedgehog family‛, etc.). We noticed that ‚Ontology (i.e. 

structured vocabulary or the terms for conceptualization)‛ based pathway 

annotation and nomenclature can be a reasonable solution for this problem. By 

forming the ontology based pathway annotation tree, one can easily assign a specific 

name as well as the functional annotations for a particular pathway in the database. 

There are two such types of ontology database exist: INOH [279] and BIOPORTAL: 

PATHWAY ONTOLOGY [280], which can be used for pathway nomenclature 

(Figure 12). 

3.3.2.3 Cross-rreferences of the Signaling Reactions are Mostly Unavailable 

We noticed that the data heterogeneity sometimes creates the confusion to choose 

the appropriate and comprehensive data from a database. Hence, it is therefore the 

developer's responsibility to minimize all the ambiguities and create the database 

with high level of authenticity and reliability. We observed that the reference(s) for 

each included interactions of a particular pathway are most often not available in 

other popular databases except BIOMODELS, NETAPTH, and REACTOME. As a 

result, in most cases, the appropriate annotations of the pathway reactions, such as 

corresponding literature references, its experimental details, reaction stoichiometry, 

rate parameters, etc., are not easily available. We observed that a large amount of 

molecular reactions data is still dispersed in many signaling pathway databases 

without proper annotation.  

In this context, iRefIndex, a protein-protein interaction indexing database is 

useful as it assigns each reaction IDs for all the redundant and non-redundant 

reactions present in the popular protein-protein interactions databases [192]. Using 
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the reaction IDs, the pathway reactions or interactions in the pathway databases can 

be mapped successfully without any redundancy (Figure 13A). 

 

Figure 13: Cross-referencing strategies of pathway data.  

The Black, Dotted Black and Blue arrows signify the manual curation, hyper-links and 

proposed cross-referencing (hyper-linking) strategies respectively. (A) Shows the cross-

referencing system implemented in different databases. Here, we propose to use iRefIndex, a 

non-redundant protein interaction database for annotating the interaction. (B) Shows the 

database names which have implemented protein-disease mapping in their databases. (C) 

Shows the databases which map the manually collated tissue specific m-RNA or protein 

expression data along with the pathway information. Here, we propose to map such data 

from the third-party databases, like BLOTBASE and LOMA. (D) Shows the databases which 

provide in-silico mathematical models of signaling pathways in various formats.   

3.3.2.4 Mutation or Disease Related Information are Sparse   

We found that there are only two databases, KEGG and APPLIED BIOSYSTEM, 

which manually annotate the disease specific information with each protein of the 

pathways. The databases NETPATH, WIKI PATHWAYS, INNATEDB, BIOCARTA 

hyper-link the pathways with disease specific database OMIM [281]. On the other 
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hand, REACTOME has nicely categorized the different diseases with various 

pathways, which are found to be involved in the progression of those diseases in the 

experimental results. However, it is observed that except few databases, the 

annotation of protein-disease information is still not much popular and not 

uniformly adopted in all the signaling pathway databases (Figure 13B). 

3.3.2.5 Cell or Tissue Specific Pathway Information is most often Found Missing 

 We observed that SIGNALINK provides the characterized tissue and cancer 

specific protein expressions data with the pathway information. Another popular 

database, REACTOME also provides the expressions of the proteins across different 

tissues linked in a signaling pathway. However, it should be noted that the cell or 

tissue specific expression provided by REACTOME is provided through another 

popular microarray expression database: EBI web resource. 

Also, the gene enrichment analysis present in CPDB can also be used to analyze 

the genome-wide gene expression or proteome-wide protein abundance analysis 

between two different phenotypes using Wilcoxon signed-rank test [282]. Two other 

databases (not signaling pathway database), viz. BLOTBASE [283] and Library of 

Medical Genomics (LoMA) [284], which provide the northern blot results of different 

tissues, can also be used to map the proteins/genes within a particular signaling 

pathway (Figure 13C).  

3.3.2.6 Unavailability of In-Silico Pathway Models 

We observed that there are very few databases, which store the pathway data 

relevant for the in-silico model development. BIOMODELS serves as the repository 

of the in-silico computational models of the signaling pathways or the biological 

processes mined from the published literatures. Using Path2Model [278], it 

automatically generates the mathematical models and enrich it with the cross 

references. It is a reliable resource for the model developers as it manually curates 

the model related data such as kinetic rate parameters, protein concentration, 
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dynamic rate equations etc. from the published literatures. There is another useful 

database, DOQCS, which serves the in-silico quantitative models for neuron and 

other signaling pathways. The models provided in this database are collated from 

peer-reviewed journals and are freely available to the users. The kinetic rate 

parameters are obtained from various experimental resources, such as enzyme 

assays, binding experiments, time course of reactions, etc. Both BIOMODELS and 

DOQCS have authors' assessment system and the users can comment, contact or run 

the model simulation to test its accuracy in the respective databases (Figure 13D).  

3.3.3 Comparative Study Based on Technical Features 

3.3.3.1 Unavailability of Integrated Computational Tools for in-silico Pathway 

Analyses 

In order to compare different types of online analysis tools available in major 

databases, this comparison has broadly divided the online tools according their 

functional modes, which are ‚Pathway Uploading tools‛, ‚Pathway drawing tools‛ 

and ‚Pathway analysis tools‛. Different databases have found to possess different 

types tools in their web interface as shown in Appendix Table 2. In this table, it is 

shown that BIOCARTA, WIKI PATHWAYS, REACTOME are only the database, 

which provide tools to the users or pathway curators to curate and upload the 

pathway map or pathway related information in their databases. On other hand, to 

facilitate the pathway drawing KEGG, CPDB, PROTEIN LOUNGE, PATHWAY 

COMMONS, SPIKE provide various type of pathway drawing tools (desktop or 

online version) in their databases. On the other hand, the open access pathway 

drawing tools provided by CPDB, PATHWAY COMMONS etc. are also very useful 

in this regard. Open source, desktop application, Chisio BioPAX Editor (ChiBE), 

provided by PATHWAYCOMMONS database is also very useful to edit, visualize 

and modify the pathway models using BIOPAX format.  

3.3.3.2 Multiple File Formats are used for Data Sharing 

The types of data present in signaling pathway databases can be broadly 
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categorized in two parts: Pathway Image and Pathway Description. The pathway 

image is provided in various file formats, such as PDF, PNG, TIFF, JPEG, SVG, etc. 

We observed that out of all these formats, SVG has better advantage compared to the 

other formats as it is xml and vector based image file and therefore much easier to 

zoom in higher magnification level without losing the image quality. On the other 

hand the pathway descriptions (molecules, reactions, cellular locations, etc.) are 

mostly provided in SBML, BIOPAX, PSI-MI, SBGN [285,286] file formats.  

3.4 RATIONALES FOR DEVELOPING NEW DATABASE     

Followed by the comparisons of pathway data and technical features available in 

different databases, we observed that different types of signaling pathways are 

present in different databases and all such data are still heterogeneously distributed 

across multiple databases (Figure 10) [8]. However, it is important to note that all of 

these databases have evolved in different time points with new ideas of sharing 

different types of pathway related data, new file formats for data sharing purpose, 

new applications to display the pathway data (Figure 9). Hence, expecting 

homogenous pathway information with a standard file format from these databases 

is limited in this case. The systematic reviews on the active cell signalling databases 

have revealed few limitations of these databases and simultaneously discussed the 

probable solutions, which could help to overcome the drawbacks [251]. For example, 

we noticed that the absence of appropriate ontology and standard pathway 

nomenclature system; heterogeneity in the information of same pathway data across 

multiple databases; absence of cross references of molecular interactions (i.e. 

Reaction ID, PPI ID, Literature references etc.); inability to define a standard 

boundary of pathway reconstruction; unavailability of the information of protein 

complex formation data (i.e. dimerization, trimerization, dissociation etc.); sub-

cellular locations of the molecules and their translocation to various organelles 

within the cell during signalling events; unavailability of biological context specific 

(disease, tissue specific, mutation etc.) pathway information; and absence of 
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advanced computational tools for performing various pathway analyses studies, etc. 

are the major drawbacks, which are required to be improvised or modified in the 

current databases [8].  

Moreover, hypothesis generation, followed by mathematical formulations of 

biochemical reactions and its in-silico simulations using various mathematical 

approaches (e.g., topological, logical, and dynamic, etc.) to assess the roles of a 

biochemical pathway in governing different biological scenarios are also one of the 

major research interest to the computational biologists [251]. These types of 

mathematical simulations heavily depend on the data provided by the pathway 

databases and hence, the availability of computer readable pathway information (i.e., 

file systems, syntax, schema, reaction parameters, etc.) should also be considered 

carefully by the data curators [8]. In this scenario, the importance of integration of 

various computational tools altogether with the database interface could be one of 

the major up-gradation of these databases from a simple pathway data sharing portal 

to a pathway data analyses platform [8]. Considering the current scenarios of multi-

disciplinary research works in the fields of molecular and computational biology, 

such type of up-gradation would be always beneficial for a wide spectrum of 

database users. On the other hand, from the user's perspective, it is worth to mention 

that the database interface should be more users friendly and interactive for manual 

as well as automated computer-guided operations [8].  

In order to make it possible, the use of advanced and useful database query 

language  (e.g., SQL), appropriate file format (e.g., SBML), and API based web 

services would be much more effective and useful [251]. However, updating the 

database through proper annotations of the pathway molecules and reactions with 

the appropriate sub-cellular locations, and cross referencing with external database 

sources and literatures are the major problems, which are currently faced by the 

developers of such databases [8]. As mentioned previously, the deluge of biochemical 

pathway specific data in various public domains of scientific literatures makes it 
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almost difficult to the data curators to continuously update the data in their 

databases regularly. As a result, the pathway reconstructions and simultaneously 

illustrating the pathway images with the newer information during every update in 

the database are one of the major challenges faced by the data curators [8]. In 

summary, the requirements of the advanced platform for pathway data sharing 

process and the computational analyses tools with more user friendly features for 

performing various computational tasks are the major demands, which could be 

included or modified in the existing or in a new pathway database.       

3.5 BIOPYDB: A NEW HUMAN CELL SIGNALLING DATABASE  

We have taken an initiative of developing a human cell-specific BIOchemical 

PathwaY DataBase, "BIOPYDB" with the aim of overcoming the current challenges 

discussed in the previous sections. This database is designed in such a way that after 

inserting minimal amount of curated raw data into the database, a significant portion 

of the post-processing tasks is performed automatically and the processed data are 

stored into the internal database. The raw data of this database are mainly extracted 

from the manual curation of published experimental articles and from the other 

popular databases (Appendix Table 1). The post-processing operations (e.g., 

reconstruction and automated productions of the pathway images, annotations and 

hyper-linking of pathway components and reactions with other databases, post-

processing of computer readable files for pathway data sharing, mapping of protein 

molecules with different diseases, etc.) are performed automatically with the help of 

BIOPYDB's in-build dynamic computational algorithms without any manual 

interventions. Data entry operations such as insertion, deletion, or modification of 

the pathway data are performed via SQL and the database is based on Relational 

Database Management System (RDBMS), which allow the entire operations in a more 

dynamic fashion.  

Presently, it is providing the information of 46 different human cells specific, 



96 | P a g e  
 

intra-cellular cell signalling pathways that are involved in various developmental 

events of cells and tissues, such as cellular growth, tumorigenesis, and immune cell 

activation, etc. A new pathway ontology and standard nomenclature system of cell 

signalling pathways are introduced in this database to allocate as well as index the 

curated pathways according to their biological functions and relevance. Each 

molecule and reaction of the pathways is automatically hyper-linked with various 

other resources for further references of the database users. Additionally, disease 

pathway (currently only Glioma specific pathway is available) is included in this 

database as a repertoire of biological context based (e.g. disease specific) human cell 

signalling pathway database. Also, the relationships between different proteins with 

various diseases (specific to human) are mapped and shown as a network of proteins 

and diseases. Furthermore, the architecture of the backend of this database is 

designed dynamically, which could be easily updated and modified after performing 

insertion, modification or deletions. Biochemical pathway related information such 

as images, networks, molecules and interactions list, protein-disease mapping, etc. 

shown in the database webpage are instantly generated from the data stored in the 

backend of this database and do not require the continuous modification as well as 

the manual changes in its frontends after any updates in the database. Such dynamic 

and automated process is specifically helpful to the pathway curators to populate the 

pathway information without giving any effort for further post-processing 

operations (see Section 2.3).   

On the other hand, to develop this database as a platform for performing in-silico 

pathway analyses, useful mathematical tools, such as Network or Topological 

analyses of pathway networks (using Graph theoretic analysis), Logical analyses 

(using discrete time, semi-dynamic Boolean equations) and Dynamic analyses (using 

Ordinary Differential equations) are made available through user friendly interface. 

The pathway data sharing and analyses platforms are brought together in this 

database into a single computational framework, which makes it easier for the user 
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to perform multiple analyses on pathway data with less effort. To access the database 

from the external computational platform, RESTFul API service is made available for 

the advanced users and software developers. Using this service, it will be possible to 

obtain the various types of pathway related data (e.g. list of all pathways, pathway 

description, pathway image, species and reactions etc.) stored in this database.     

In order to welcome the involvement of more number of data curators to collate 

pathway specific data for this database and to keep the database up to date with 

current experimental findings, BIOPYDB is also providing the facilities to upload 

new pathway data and simultaneously analyse it within a single platform. Based on 

the user's request and approval, the newly uploaded data will be verified by the 

curators of BIOPYDB and will be stored in the main database as a freely available 

data to the general users. Such crowd sourcing facility to populate the database will 

be very much useful to expand and update the database continuously in future. The 

database is now available in the public domain and common users can also suggest 

any changes in any of the existing pathway by providing their feedbacks/comments.  

In the following sections, we have given the detailed description about the 

database storage system and architecture, statistics and properties of the curated 

pathways; implementations and operations of various pathway analyses tools; 

procedures of using pathway data upload system from the user end; and a brief 

discussion about the BIOPYDB web interface and its backend (i.e. database schema 

and objects) structure.  

3.5.1 Data Storage System 

We used "Relational Database Management System (RDBMS)" in BIOPYDB for 

managing the entire database architecture. Here, we used MySQL database server to 

access the stored data using Structured Query Language (SQL). Different types of 

pathway related data (i.e., molecules, interactions, diseases, etc.) were stored in 

MySQL as different 'Tables'. These tables are the logical objects of the relational 
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database within which the relations were established through unique pathway ids or 

primary key [287]. We stored the pathway specific data (within tables) in such a way, 

so that after inserting or updating the pathway data, the successive outputs of 

pathway images, annotation and hyper-linking of pathway molecules with other 

databases, mapping the molecular interactions with iRefIndex database, or 

generating the textual data for pathway data sharing etc. will be automatically 

mapped by the corresponding unique pathway IDs and successively stored in the 

respective tables of the database. This automated process and the structure-function 

relationship of BIOPYDB are presented more precisely in Figure 14. In this figure, the 

entire data structure and its relationship with the available features are represented 

in a simple relational schematic diagram.      

 

Figure 14: Schematic diagram of the database architecture used in BIOPYDB. 

In the backend of this database, it contains the logical objects or 'Tables', which 

individually store the pathway related data, such as Pathway Name, Pathway Info, 
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Overview of each of the pathway, the cross-talks of each pathway, Molecules, 

Interactions, Diseases, information about the developed mathematical models, 

References, etc. All the tables contain a primary key (Pathway ID), which was used to 

connect each of the tables while performing the data searching and entry operations 

in the database. Hence, each and every data in the database, stored in the database 

tables (pathway molecules, interactions, references etc.), are associated with such 

unique pathway id. This helps to perform the entire operations (e.g., insertion, 

deletion, modification etc.) in the database more accurately using structured query 

language (SQL) with the help of any dynamic programming language, such as PHP. 

This schema provides this database more fluidity to perform post-processing tasks in 

an automated fashion by consuming less time and manual interventions. 

3.5.2 Web Interface of BIOPYDB 

The web interface of BIOPYDB is designed in such a way, so that users can easily 

interacts and navigate through the database web pages. The "Home" page of the 

database contains all the necessary tabs like "About BIOPYDB", "Browse pathways", 

"Downloads", "Tools", "Upload Pathway", "FAQ" and "Contact Us". Home page also 

provides text "Search" and "Advanced search" options. "Search" option has ‚auto-

suggestion‛ option enabled, which facilitates more convenient searching of proteins, 

pathways and diseases. Left panel of Home page contains "News & Updates" to 

highlight the subsequent updates and the right panel contains "Current Database 

Statistics" which is automatically updated if there is any changes/insertion or 

deletion in the database. In Figure 15, we have provided the picture of BIOPYDB 

home page to understand the navigation of different web pages from the frontend. 

3.5.3 Resource of Biochemical Pathways 

BIOPYDB is currently providing the biochemical, intra-cellular signalling 

pathway data under four different categories viz. i) Developmental Pathways, ii) 

Immunological Pathways, iii) Cell Proliferation Pathways, and, iv) Disease Pathway. 
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In the Developmental Pathways category, two important developmental pathways 

viz. Hedgehog and Notch pathways are included. 

 

Figure 15: Snapshot of the frontend page of BIOPYDB database. 

The frontend is designed in such a way that the users can navigate to various features 

available in our database. Pathway browse option is available under "Browse Pathway" tab. 

A global search field along with "Advanced Search" is also available to execute user-specific 

simple and complex queries, respectively. Using "Download" tab user can also download the 

pathway images and textual data of the curated pathways available in the database. The 

information requires for accessing our developed "RESTful API" service is also available in 

this section. All the tools developed for pathway image drawing, analyses, and searching 

interaction and disease related information is available in "Tools" section.        

Also, BIOPYDB has a rich collection of cell growth regulator pathways eminently 

represented by the Epidermal Growth Factor Receptor (EGFR/ErbB) mediated 

Mitogen Activated Protein Kinase (MAPK) pathways under the ‚Cell Proliferation 

Pathways‛ category. The EGFR/ErbB mediated signalling system forms a family of 

pathways, which is classified here on the basis of ligand-receptor interaction. Apart 

from the known Growth factors, like the Epidermal Growth Factor (EGF), heparin-

binding EGF (HB-EGF) and Neuregulins (NRG1, NRG2, NRG3 and NRG4), a few of 
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the lesser known ligands of the family like Amphiregulin, Betacellulin, Epiregulin 

are also included. A unique ligand of neuregulin subfamily, Neu Differentitaion 

Factor (NDF-β), is also included in this category.  

BIOPYDB also contains an exhaustive list of ‚Immunological Pathways‛ that 

includes pathways related to both innate (e.g., TLR pathways) and adaptive 

immunity (e.g., T cell signalling pathways). It contains a repertoire of cytokine 

signalling pathways as well, that includes different Interleukins, Interferons, Tumor 

Necrosis factors, Tumor Growth Factors and Colony Stimulating factors, all of which 

plays a pivotal role in regulating the immune-regulatory network. To provide the 

context specific pathways, BIOPYDB also provides the signalling pathways, which 

are found to be deregulated in a particular disease scenario under ‚Disease 

Pathways‛ category (see Section 2.3.1.1). The malfunctioned signalling pathways, 

which are only stimulated by PDGF, IGF1 and EGF ligands in Glioma, are currently 

provided in this section. Later, it also intends to provide all other possible pathways, 

which are responsible for the development of Glioma in human. All these categories 

of pathways are easily accessible from the "Browse Pathways" tab provided in the 

home page of BIOPYDB (Figure 15).   

To access the information of the pathway of interest, the users are required to 

click on the corresponding link of the pathways in the pathway browse section. A 

small description of each pathway, including the pathway statistics (number of 

molecule, interactions, articles, diseases etc.), will be available in the "Overview" 

section of the pathway data. Besides, the phenotypic expressions (e.g. cell division, 

cell growth, apoptosis etc.) and cross talks with other pathways with proper 

literature references will be also available in this section for each pathway. 

3.5.4 Resource of Proteins/Genes Involved in Biochemical Pathways 

The users can also use BIOPYDB as a resource of signalling protein(s)/gene(s) 

involved in the intracellular signal transduction cascades with appropriate literature 



102 | P a g e  
 

evidences. Currently, it contains a total number of 2748 such proteins/genes, which 

can be easily accessible through the general 'Search' as well as "Advanced Search" 

option provided in "Home" page (Figure 15). The query result gives a short 

description of the protein, as well as the link to access its genetic and amino acid 

sequence data from NCBI-GENE and UNIPROT, respectively [288,289]. Users can 

also get the links of the proteins from other pathway resources like KEGG, 

WIKIPATHWAYS, and HUMANCYC databases [268,290,291]. Besides, it provides the 

hyper-links of the Protein-Protein Interaction databases from the database PIP; 

Disease related data from GENECARD database, and tissue specific expression 

pattern data from TiGER database [188,191,292]. 

3.5.5 Resource of Protein-Protein Interaction Data 

We have also made available of the Protein-Protein interaction data with network 

representation and proper references through the "Find Interaction" application 

present in "Tools" section (Figure 15). The type of interactions (i.e., chemical nature) 

of each interaction is also available with each of the interaction. Currently BIOPYDB 

has included 25 different types of reactions/ interactions/ connections in the 

signalling networks. The types of interactions are Cholesterol Modification, Physical 

interaction, Inhibition, Phosphorylation, Activation, Nuclear Translocation, 

Transcriptional Co-repression, Protein Production, Transcriptional Co-activation, 

Protein Recruitment, Auto-phosphorylation, Ubiquitination, Transcriptional 

activation, Complex formation, Stimulation, Dissociation, Dephosphorylation, 

Homodimerization, Heterodimerization, Deubiquitylation, Calcium exchange, 

Acetylation, Phospholypase reaction, Proteolytic cleavage, and Enzymatic Reaction 

[293-300]. We think that the information related to the type of chemical reactions or 

interactions occurring between two pathway molecules present in a pathway will 

help the users of BIOPYDB to understand the biochemical processes regulating the 

signalling cascades inside the cell. Moreover, to further cross verify the interaction 

data, we have also mapped each interaction of the database with the iRefIndex 
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database [192], which consists non-redundant molecular interaction data collated 

from different protein-protein interaction databases (see Section 2.3.1.5).  

3.5.6 Resource for Visualizing the Protein-Disease Mapping 

It is well known that certain malfunctions caused by the mutation of proteins in 

biochemical pathways could be responsible for various types of diseases in human 

body [301-303]. Therefore, it is worth to mention that protein-disease mapping of the 

protein molecules in the signalling pathways is also important to understand the 

importance of that pathway in disease pathology. To include this feature into the 

database, we have provided an interactive interface in BIOPYDB to dynamically fetch 

the information of various diseases from protein-disease mapping database: 

MalaCards [196] and made possible to display the results in more user friendly way. 

However, it should be noted that all the information provided in this section is solely 

owned by MalaCards database and we do not hold any claim related to the protein-

disease mapping data. Here, we have simply provided a technical resource for 

fetching and visualizing protein-disease network as image and tabular formats 

within the BIOPYDB interface. The diseases associated with each protein of the 

pathway of interest are automatically hyper-linked with the MalaCards database ID. 

Currently, BIOPYDB has dynamically mapped around 6897 diseases with the 

proteins present in the pathways in BIOPYDB database. The disease related 

information is available through the "Disease" tab under the "Browse Pathway" 

option (Figure 15). It is also available through the "Find Disease" application 

available in the "Tools" Section (Figure 15).  

Presently, we have included a total number of 3187 molecules (Proteins, Protein 

complexes, Inorganic molecules, Mutated proteins, Secondary messengers, 

Phospholipids and Lipid molecules) and 5740 molecular interactions or connections 

of 46 manually curated pathways in our database (Table 6). For accuracy and 

authenticity of the pathway data, we have also provided the literature reference 
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(with Pubmed ID) for each and every interaction included in the database. Users can 

cross verify the pathway data immediately by accessing the hyper-links provided in 

the "Interactions" tab under the "Browse Pathway" option. We have also made it 

possible to cross check the pathway data in similar 17 different databases by 

automatically searching the pathway links (see Section 2.3.1.6). 

Table 6: BIOPYDB Database Statistics 

Data types Statistics 

Total Number of Pathways   46 

Total Number of Molecules   3187 

Total Number of Interactions   5740 

Total Number of Diseases Mapped with Proteins 6897 

Total Number of Articles Used to Curate Data  520 

3.5.7 Computational Platform for Pathway Data Analyses 

One of the unique features of BIOPYDB is its in-built pathway data analyses 

platform for performing Network (using Graph theoretic analysis), Logical (using 

discrete time, semi-dynamic Boolean equations) and Dynamic (using Ordinary 

Differential Equations or ODEs) analyses of biochemical pathways [82,304,305]. No 

other similar resources/databases provide this wide ranges of computational tools 

altogether in a single platform to the common users. Moreover, to make this database 

more interactive and user friendly for the large community of experimental and 

theoretical biologists, we have included various technical features and applications to 

search, retrieve, annotate or analyse the data stored in the database. The entire 

resource is easily made executable and do not require any separate hardware or 

software installation in the user's local machine. To view the pathway image and 

network, users are required to use a SVG compatible web browser, which is now 

available in any modern web browsers, like Internet Explorer (version > 9), Mozilla, 
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and Google Chrome etc. A schematic diagram showcasing all the available tools and 

the stepwise guidelines of their operational protocol are presented in Figure 16. A 

brief description of all the technical features available in BIOPYDB is also provided in 

Appendix Table 3. Following is the brief descriptions of the technical or 

computational features available in BIOPYDB. 

 

Figure 16: Flow-chart describing different operations executed in BIOPYDB. 

3.5.7.1 Searching/Browsing Pathway Data 

We have provided the global text search option in the home page of BIOPYDB 

(Figure 15). The search box includes ‚auto-suggestion‛, which suggests the pathway 
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names, proteins or diseases from the database while typing into the search box and 

thus expedites and eases the text searching procedures. Users can also browse and 

select a pathway of interest by using "Browse Pathway" option. The "Browse 

Pathway" option has two different tabs for browsing the pathways "By Name" or "By 

Category". After selecting a pathway from any of these options, users will get the 

pathway details which are provided in 10 different tabs: Overview, Image, Molecule, 

Interaction, Download, Links to Other DB, Disease, References, Model and finally 

Network Analysis. Users can click on any tab and get the relevant information about 

the pathway. We have also included the advanced search option to execute complex 

and multiple queries through this database (Figure 15). Search queries, such as, 

pathway name; drugs or inhibitors of a pathway; disease caused by the mutation of 

proteins; articles searching operations using Pubmed IDs, E.C. number, etc. can be 

executed in this section. Using this unique application of BIOPYDB, users not only 

can search in BIOPYDB database, but also can perform search queries to the other 17 

similar signalling pathway resources, as well as in PUBMED, ExPASy, BRENDA, 

METACYC, and GENECARDS databases. We believe that this unique advanced 

search query options will make this database more attractive to the users for collating 

diverse sets of biological data from a common web application platform. 

3.5.7.2 Pathway Image Drawing  

We have introduced this application to provide an automated tool for pathway 

drawing and annotation. Using this tool the users do not need to manually draw the 

structured pathway diagram; instead it can automatically annotate and draw the 

molecular connections between the pathway components based on the information 

provided by the users. Simultaneously, it will render the pathway image in SVG 

format and subsequently host it into the web browser. To use this application, users 

are required to simply insert the molecular entities and their binary interaction or 

connections in the specified fields mentioned in the web interface of this tool. Users 

can also specify the different types of inserted molecular entities (e.g., Protein, 
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Protein complexes, Secondary messenger, Inorganic molecule, Mutated protein and 

Phospolipid), its sub cellular locations in the cell (e.g., Extracellular region, 

membrane, cytoplasm, nucleus) or can allocate the molecules in ‚output‛ section by 

using the simple drop down list available in the pathway data upload form. Similarly 

in the interaction section, we have enlisted a total number of 25 different types of 

molecular reactions, which can be used by using the drop down menu. For better 

visualization and image rendering, users are required to provide at least four 

molecules from four different sub-cellular locations and their interactions in the 

specified fields. Users can add or delete any molecules or the reaction in this 

dynamic web page form. After filling up all the information, user has to click on the 

"Draw" button, which will instantly generate a pathway image in SVG format and 

the pathway image will appear in the web browser. Here, the different types of 

molecule and interactions will appear in different colours according to their 

molecular properties and thus it helps to differentiate the reaction cascades more 

appropriately in the newly generated image.  

3.5.7.3 Network Analyses  

We have introduced this application to perform topological analyses of the 

biochemical pathways using graph theoretical method [82,208,304]. Using this tool, 

user can calculate various network parameters, such as Connectivity parameters (all 

pairs shortest paths, in-degree, out-degree, total degree and their corresponding 

distributions), and Centrality parameters (Eigenvector, Betweenness and Closeness 

centrality of a pathway network). All pairs shortest paths (of each molecules of the 

signalling pathway) are presented by a matrix heatmap, and the other parameters 

values are shown by bar diagrams. To execute this application, at first the users are 

required to select the pathway to view the list of the binary interactions of the 

pathway molecules on which the topological analyses will be performed. After that, 

the user can directly run the graph theoretical simulation on the provided binary 

interactions or can add or delete any pathway species and its corresponding 
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interactions in the provided list and then can run the simulation. The inclusion of this 

feature into the user interface makes it a useful platform to perform the in-silico 

protein knock-in/out experiments in a signalling network, where one can 

simultaneously observe the variations of the different network parameters. Each 

simulation will provide the network picture, average values of the network 

parameters, and the bar plots of each parameter values for each pathway molecule of 

the network. Users can also download the network picture and bar plots in SVG, 

PNG, PDF or JPG formats. 

3.5.7.4 Logical Analyses 

In order to perform semi-dynamic logical (synchronous, discrete time updates) 

analyses of a signalling cascade, we have incorporated the Logical analyses tool in 

BIOPYDB. This application is based on the in-build "Boolean Analysis" simulation 

engine used for analyzing the activity (i.e., up-regulation and down-regulation) of 

pathway molecules in the biochemical and gene regulatory networks [82,244,306-

308]. This application has three sub-sections, mainly divided for three different 

purposes. The first section allows the users to perform Boolean analysis of the 

pathways, which are present in BIOPYDB database. The second sub-sections allows 

the users to perform Boolean analysis of a new (user defined) pathway and the third 

sub-section is used for revisiting the previous Boolean analyses data by using the Job 

ID, which was provided to the user at the first time of performing the simulation.  

In order to use this application, at first the users are required to select the 

appropriate sub-section. If the user selects the first sub-section, a pathway list 

available in the BIOPYDB database will be appeared in the webpage. After selecting 

the name of the pathway of interest, the user will be redirected to the next page in 

which the users are required to provide initial values (binary values i.e. either 1 or 0) 

of the molecules (or nodes). If the initial values of the nodes are not provided in this 

section, then it will assign the random binary inputs (either 0 or 1) to the 
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uninitialized nodes as defaults. The simulation engine running in the backend of 

BIOPYDB will instantly provide the Boolean equations of the intermediate molecules 

(i.e. the nodes/molecules which has upstream regulator in the pathway network). It 

should be noted that the Boolean equations generated in this section for the pathway 

species may not reflect the exact biological scenario as it is computationally 

generated from the 'Interaction' table by using the information provided in the binary 

interactions of the pathway of interest.  

User can also easily add new nodes and equations or modify the Boolean 

equation of the existing node in this interactive web interface. After confirming the 

initial values and the logical or Boolean equations, users are required to provide the 

total time steps (not more than 500) up to which the Boolean simulation will be 

performed. If the user does not provide this field then a default value (time steps 30) 

will be assigned to the submitted simulation. The user can also select the nodes of 

interest for which the time variation would be analyzed. After completing these 

steps, user can now submit the job in BIOPYDB web server. The logical simulation is 

performed with the help of popular python package BooleanNet [309]. A unique job 

ID will be provided to the user after submission of the simulation and the outputs 

will be provided in the next page. The nature of the stability (stable or cyclic 

attractor) of the simulation outcomes will be provided including the other 

parameters such as total transition states, number of input nodes, cycle length (if 

any), attractor length etc. The state transition data can also be downloaded as well as 

viewed in the web page. Temporal dynamics of the nodes of interest selected in the 

previous section will also be shown in image and can be downloaded.  

Similar analyses can also be performed on a new (or user defined) pathway using 

the second sub-section of this application. Unique job ID will also be provided in this 

section, which can be viewed later by providing the job ID in the third sub-section of 

this application. The results of a performed simulation will be stored in the database 

for the next six months and until then it can be viewed by this application interface. 
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3.5.7.5 Dynamic Analyses  

We have also added the dynamic analysis tool to simulate the continuous 

temporal variations of the pathway species under a specific biological condition. This 

application is based on the numerical analyses of the coupled Ordinary Differential 

Equations (ODEs) based on the reaction/enzyme kinetics of the biochemical reaction 

cascades [305,310]. This application can be performed on the existing pathway of 

BIOPYDB or on a new pathway model provided by the user. In order to perform the 

dynamic analyses of the existing pathway, users are required to select the pathway 

name from the drop down list. After that, users will be asked to select the variables 

(molecular species) and its corresponding initial concentration in the html format 

used in the application interface. Simultaneously, users are required to provide the 

reaction kinetic equation (functional forms) of each selected variables/species of the 

pathway, which should be based on its functional relationships or reaction orders 

with the other interacting species.  

Users can also delete or insert any new molecule in the variable list and can 

execute the dynamic simulation of any number of variables. The users are also 

required to provide the numerical values of the rate parameters of the kinetic 

equations used for modelling the pathway reactions. Moreover, the users will be 

asked to provide the initial and final time (in seconds) up to which the simulation 

will be run and the time step at which the data for the time series will be saved. After 

submitting all these information, the user can submit the dynamic model into the 

BIOPYDB simulation engine by using the "Submit" button. The simulation outputs 

will show the time series plot of all the pathway components/variables within the 

time span provided by the user. On the other hand, to execute the similar dynamic 

analysis on a completely new pathway model, user can select the "Ordinary 

Differential Equation of a new pathway" tab and then follow the same procedures 

described above. Depending on the size of the model (i.e. the number of independent 

variables and the complexities of the equations), the total time require for executing 
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the entire simulation may vary. The fourth order Runge-Kutta numerical integration 

algorithm (implemented through C/C++ programming language) is used here for 

quick simulation of the dynamic models [310]. 

3.5.7.6 Find Interaction and Disease  

Using this user-friendly application, user can search either all the interacting 

proteins of a particular protein of interest or the interaction between two specific 

proteins from BIOPYDB interactions data sets. In each case, it will give the 

interactions of the protein(s) as a directed network including a table with the 

appropriate Pubmed and iRefIndex links of each queried interaction. Users can then 

directly check the literature reference of that queried interaction. 

This application is useful to find the diseases associated with a particular protein 

in the signalling network. This tool is divided into three parts, one for searching 

mutated proteins associated with a disease, second for searching diseases which are 

associated with a particular protein of interest and another is for searching the 

connection between a particular protein and disease from the protein-disease 

database: Malacards. BIOPYDB provides a beneficial interface for accessing, 

retrieving and viewing the protein-disease mapping data from this application. The 

Malacards database accession IDs are provided for each query performed through 

this tool. 

3.5.7.7 Data Download Application  

In order to facilitate the data downloading process more efficiently from the 

database, we have developed a useful application written in PHP for quick data 

download. It is unique because each time, upon user's request, this application 

initially generates the downloadable data (pathway image in SVG, PNG, and JPEG 

format or interaction data in Tab delimited, SBML or BIOPAX formats) from the raw 

data stored in the database and then serves for further downloading process. It 

allows the users to obtain an up to date data from the database and thus the 
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developers of the database do not have to bother about the post-processing and 

archiving the pathway data every time for data download purpose. This automated 

process also makes the database maintenance much easier and less time consuming.  

Also, to make the database more accessible through various platforms (i.e., 

browsers, command line or any other third-party software), we have also included 

the RESTful API service. Under the "Download" section, we have provided the 

elaborate descriptions of the protocols, which are required to use our API service. 

Users can access and obtain various pathway related data through browser or 

command line programming using our API. It can provide the list of pathways with 

the BIOPYDB accession ID numbers; pathway images in SVG, PNG and JPEG 

encoded formats; pathway description and statistics encoded in XML format; and 

information of pathway species, reactions, and disease names encoded in JSON 

format. A list of URLs is available for obtaining such information through API in the 

database webpage under "Download" section (Figure 15). 

3.6 DISCUSSION 

It is worth mentioning that in BIOPYDB we have developed a unique repertoire 

of cell growth regulation, developmental and immune Signalling pathways. This 

database provides a comprehensive understanding of the signalling pathways and 

their important roles in regulating the human cells/tissues. These pathways are very 

much useful to understand the de-regulations involved in diseases related to 

abnormal cell proliferation, immunity, birth defects and various others pathologic 

conditions. The exhaustive list of Interleukin pathways helps the users of BIOPYDB 

to gain a detailed in-sight into the signalling mechanisms of the immune-regulatory 

network that plays a pivotal role in understanding both infectious diseases and 

cancer.  

In this database all the pathways are manually curated and possess up to date 

data synced with the current experimental findings. Cross validation of the pathway 
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data is also available through the same platform with the other similar databases. We 

have used a new ontology tree, based on the pathway functions, and successively 

categorized the pathways accordingly. We have introduced a unique pathway 

nomenclature system this database to eliminate the ambiguities found in the existing 

databases [8]. In terms of the quality of data, the developers of BIOPYDB have 

rigorously cross-checked the pathway data (properly supported with existing and 

up-to-date literature) before including it in the main database. We have collated more 

number of targets or output proteins/molecules in each of the pathway by deep 

literature mining, so that a comprehensive picture of the target or output products of 

biochemical reaction cascades could be shown and linked with various phenotypic 

outcomes of a cell or tissue. We have also included the intermediate molecules in 

more numbers so that the cross talks with other pathway molecules could be easily 

and accurately depicted in the pathway diagrams. For example, to show the Notch 

signalling events, its cross talks with other important pathway proteins, such as 

JAK/STAT, HIF1, and P53 are also included. Inclusion of this information is required 

as these cross talk molecules play major roles in regulating a signalling pathway and 

hence it would be incomprehensive, if these proteins are not included in the Notch 

signalling pathway data. The definition and the boundary of the reconstructed 

pathway diagram is not restricted to the core molecular entity of the newly 

reconstructed pathway, rather it is expanded as much as possible by including more 

number of the cross talks through deep literature mining to provide a comprehensive 

knowledge of the pathway reactions. Due to this reason, the number of molecules of 

a particular pathway shown in BIOPYDB is higher than any of the similar pathway 

databases.  

Another strong merit of BIOPYDB is that it not only provides the biochemical 

pathway data, but also provides a common platform to draw new pathway image as 

well as analyse Topological properties (such as Shortest Path between two proteins, 

Distribution of shortest paths, In-Degree, Out-degree, Total Degree and their 
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distributions, Closeness, Betweenness and Eigenvector Centrality), Logical analysis 

(using discrete, semi-dynamic Boolean equations) and Dynamic analysis (using 

Ordinary Differential Equations) of the existing as well as new, user defined 

pathways [82,185,263,304,305]. Moreover, the availability of Protein-Protein and 

Protein-Disease data (which are displayed as network view) provides an added 

benefit to this platform, which is not available in any other databases.  

Several novel features, such as, automatic annotation or mapping of pathway 

molecules to other databases, network representation of protein-disease network, 

advanced data searching across 17 similar pathway and drug databases, user friendly 

pathway upload and update system for users, instant view of uploaded data by the 

users, dynamic pathway image drawing, runtime generation of pathway data for 

download, pathway data analyses platform to perform structural and dynamic 

analyses, sharing of pathway data in computer readable file formats (SBML and 

BIOPAX), and its potential usefulness in academic research, experimentalists, 

computational and theoretical biologists, etc. separates out BIOPYDB from other 

existing databases. The database is also made accessible through RESTful API 

service, which also helps the other third party software and database developers to 

use and analyze the BIOPYDB data.           

3.7  CONCLUSION 

We have developed BIOPYDB as a useful resource of biological data of human 

biochemical pathways; annotated proteins/genes that are involved in the pathways; 

protein-protein interactions, and protein-disease mapping. All the available data is 

manually curated from several literature resources and is available free of cost 

through web browser and RESTful API services. BIOPYDB is a resource or repertoire 

of biochemical pathway data and also provides a method or strategy to make similar 

resources or a multi-functional platform, which would be easy to update and 

maintain, user friendly, dynamic. It provides a single computational platform that 
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would be useful for multiple tasks from data searching to data analyses. In short, 

BIOPYDB is not only a database, rather it is an information system, integrated with 

its own manually curated biochemical pathway database, a computational platform 

for accessing pathway data from the external sources, and providing web-services for 

in-silico pathway data modelling and simulation analyses. The data curation process 

of BIOPYDB is steadily increasing and in near future it also promises to add more 

pathway information by including other types of pathways (such as metabolic, gene 

regulations etc.). The long-term goal of this database is to develop a common 

pathway data searching and computational analyses platform for performing 

biochemical pathway based modelling and simulations. 
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Chapter 4 
__________________________________________________________________________________ 

 

4 UNDERSTANDING OF HEDGEHOG SIGNAL TRANSMISSION 

DYNAMICS IN CANCER CELLS 

__________________________________________________________________________________ 

4.1 INTRODUCTION3 

Hedgehog is an evolutionarily conserved developmental pathway, widely 

implicated in controlling various cellular responses including various cancers (e.g., 

basal cell carcinoma, medulloblastoma, glioblastoma, colon, and pancreatic cancers, 

etc.) [30,301,311]. There are three ligands of this pathway viz. Sonic Hedgehog 

(SHH), Desert Hedgehog (DHH) and Indian Hedgehog (IHH), which play cardinal 

role of initiating the Hedgehog signaling cascades in different cells. We have also 

observed that SMO (Smoothened) receptor protein is the most preferred drug target 

in Hedgehog pathway to treat various types of cancers [312]. It has been observed 

that SMO is a membrane-bound G-protein coupled receptor protein (GPCR), which 

is required to translocate at the membrane of primary cilia for phosphorylating 

STK36 protein in the downstream region (Figure 17). In the absence of Hedgehog 

ligands (i.e., SHH, IHH, DHH) this process is inhibited by another membrane bound 

proteins PTCH1/2 and therefore SMO cannot translocate towards the primary cilia 

after its synthesis. In this situation, cytoplasmic protein SUFU makes complex 

products with GLI1/2/3 and triggers proteosomal degradation of GLI transcription 

factor proteins. Transcription repressor protein GLI3R is produced at this stage, 

which further translocates to the nucleus and inhibits the transcription of Hedgehog 

target genes responsible for cell renewal, cell proliferation, migration, etc. Thus, 

PTCH1/2 acts as repressor of Hedgehog pathway activation as well as tumor 

                                                           
3
 The materials of this chapter has been taken verbatim from our previously published article (a) 

Chowdhury et al., PLoS ONE, 2013 
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suppressor protein [82,313-315].  

 

Figure 17: Hedgehog signaling activation mechanisms in OFF and ON states. 

This schematic diagram represents the mechanisms describing how SHH or other Hedgehog 

ligands interact with PTCH and activates the translocation of SMO towards primary cilia. In 

OFF state, GLI3R (transcription repressor) is produced from GLI3 in cytoplasm, which 

translocates in nucleus and suppresses the Hedgehog target gene transcription process. In 

the ON state, GLI1/2/3 proteins are released from SUFU and starts transcription of various 

genes, such as CYCLIN D2, FOXM1, SFRP, etc. 

On the other hand, in presence of Hedgehog ligands, PTCH1/2 proteins make 

complex products in the cell membrane. In this complex form, PTCH1/2 cannot 

laterally diffuse towards the primary cilia and thus SMO experiences no inhibition of 

its translocation towards primary cilia. Subsequently, SMO phsophorylates its 

downstream kinase protein STK36 in the primary cilia and the phosphorylated 

STK36 further phsophorylates SUFU at the GLI protein binding site [82,313-315]. As 

a result, the phosphorylated SUFU cannot further bind with GLI1/2/3 proteins. Thus, 

the GLI transcription factors become free and further translocate into the nucleus, 

where these protein starts transcriptions of various target genes, such as CYCLIN D2, 
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FOXM1, SFRP, JAG2 etc. (Figure 17) [82,316]. Controlled regulation of this pathway 

activates these target genes at certain level and thereby maintains the proper 

development of cell or tissue [317]. But deregulation of this mechanisms can cause 

uncontrolled expressions of these target genes and may cause severe outcomes in 

tissue or organ development [318]. Since, this pathway is also strongly implicated in 

self-renewal of adult stem cells, therefore the system-component malfunctioning of 

this pathway can lead to cancer in various cells/tissues of human [83,319]. 

Moreover, the role of few important proteins has been identified in this pathway, 

such as PTCH1, SMO, and GLI etc., which are mainly responsible for the 

malfunctioning of this pathway in various types of cancers [320,321]. We have 

observed that the follow-up studies by several research groups have developed 

various therapeutic strategies to inhibit the activation of this pathway by inhibiting 

these proteins in various cancers [322,323]. However, none of them have achieved 

complete success to cure a particular cancer caused by the abnormal activation of the 

Hedgehog pathway. Therefore, it is indeed a growing concern to the cancer research 

communities to find out alternate/combination of drug targets in Hedgehog pathway 

to treat various oncogenic anomalies developed in various tissues of human body. 

4.2 STATE-OF-THE-ART  

 A recent review by Li et al. have underscored the importance of combinatorial 

drug targets to inhibit Hedgehog signaling network in cancer treatment [324]. It is 

known that activation of cytoplasmic GLI (zinc finger transcription factor) protein, 

which is the main target transcription factor of this pathway, is initiated by two 

different mechanisms, viz. (i) the ligand dependent mechanism in which the 

extracellular response i.e., hedgehog ligands directly interact with receptor proteins 

PTCH1/PTCH2 and activates G-coupled protein SMO (i.e., canonical process) (Figure 

17), and (ii) the malfunction of the other proteins that are present in the cytoplasm 

which inhibit or activate GLI protein activity in the absence of hedgehog ligands (i.e., 
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non-canonical process). Moreover, certain polymorphic variations in SMO can also 

constitutively activate its activity in the cell, which in turn over-activate Hedgehog 

pathway even in the absence of any Hedgehog ligands [312]. We have observed that 

most of the studies have mainly focused on the development of small molecule 

inhibitor/drug which is useful to impede the canonical activation mechanism. In 

order to do that most of these studies are only directed towards the identification of 

the drug molecules that could suppress either PTCH1 or SMO in the cell membrane 

[16–19]. We have found that these types of drugs, such as Cyclopamine, Vismodegib, 

etc. are effective when SMO receptor protein is over-expressed in the primary cilia of 

the cancer cells [325].  

A Phase-I clinical trial performed in the patients with solid tumors (Basal Cell 

Carcinoma, Pancreatic Cancer, and Medulloblastoma) refractive of current 

chemotherapeutic drugs had shown promising results while treated with anti-SMO 

small molecule inhibitor Vismodegib (GDC-0499) [326]. After its successful clinical 

trials, FDA had approved Vismodegib (GDC-0499) and Sonidegib (anti-SMO 

molecules) for the treatment of Basal Cell Carcinoma (BCC) patients. In spite of its 

successful implications in target-based cancer therapy, the follow-up studies have 

found that a relatively higher number of patients undergoing this target-based 

therapy would eventually develop resistivity against these anti-SMO molecules 

[327]. It is observed that genetic mutations in SMO preserve the activity of Hedgehog 

pathway and thus confer the drug-resistivity of the cancer cells [328]. Apart from 

targeting SMO receptor in cancer cells, researchers have also tried to inhibit the 

downstream effector proteins (e.g., GLI) in the Hedgehog pathway to treat cancers. 

However, such research works are still in the nascent stage and none of the targets or 

inhibitor molecules are approved for therapeutic usage [329]. 

4.3 RATIONALE AND OBJECTIVES  

Overcoming the drug-resistivity while targeting the aberrantly activated 
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Hedgehog pathway in the early and advanced stages of cancer cells is one of the 

major challenges in target-based cancer therapeutics (Figure 18) [330]. There is an 

unmet need to find out alternative drug targets for inhibiting Hedgehog pathway 

activity in the cancer cells and for which we require to implement the advanced 

approaches in target identification process. 

 

Figure 18: Reaction cascades in Vismodegib sensitive and resistive cancer cells. 

In the Vismodegib sensitive cells (with wild-type SMO), cancer cell growth is activated in the 

presence of Hedgehog ligands, whereas in the presence of anti-SMO molecule Vismodegib, 

the cancer cells undergo apoptosis. On the other hand, in Vismodegib resistive cells with 

mutated SMO, the cancer cells do not show any apoptotic effect. 

Therefore, the main challenge is to understand the underlying mechanisms in 

the downstream processes of Hedgehog pathway and subsequently find out suitable 

target to inhibit a significant portion of the reactions cascades [331]. In this work, we 

sought for the investigations of the reaction mechanisms involved in Hedgehog 

signaling network in normal and cancer scenarios, and thereby identification of the 

suitable drug target or combinations of drug targets as the alternatives of anti-SMO 

based cancer therapeutics. In our opinion, the identification of alternative drug 

targets by the conventional experimental approaches sometimes is challenging due 
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to some limitations in the experimental set-ups. Moreover, the complex gene 

regulatory networks and most importantly the molecular cross-talks of different 

pathways, make the target identification processes more challenging for the 

experimental biologists. The advancements of high-throughput omics-based studies 

rigorously performed in cancer cells under different inhibition scenarios have 

generated a plethora of datasets to understand the involvement of several genes, 

proteins, miRNA, etc. in different cancer pathology. Given the vast amounts of such 

datasets generated in each level, it has become more challenging to interpret all the 

information to decode and subsequently use it for identifying new drug targets. 

Recent developments in integrative approaches, bioinformatics tools, 

mathematical and computational methods have become indispensable in 

understanding and analyzing such high-throughput datasets. Diverse approaches 

using qualitative and quantitative methods as well as successful implementation of 

mathematical modeling of signaling pathways can be used to decipher the 

complexities in signaling cascades [332]. Knowledge-based approaches by 

developing mathematical models of signaling cascades are proven useful for 

understanding the reaction mechanisms and identifications of alternative drug 

targets [317,333]. After a thorough literature review, we have observed that the 

development of mathematical models of Hedgehog signaling pathway to decipher its 

roles in cancer pathology is still in its infancy. One of the major challenges which we 

have observed is the lack of our understanding about the flow of reaction cascades in 

intra-cellular region. This limitation causes a serious challenge to construct the model 

for understanding the reaction mechanisms in normal and cancer cells, and 

successively find out most suitable drug targets from the set of proteins involve in 

the pathway. 

We understand that the up to date information or a comprehensive reaction map 

of Hedgehog pathway would help us to analyze the entire signaling cascades more 

accurately. However, we have observed that there is no comprehensive pathway 
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map available in literature or cell signaling databases for studying the Hedgehog 

pathway more elaborately. After performing a review of the existing databases, we 

have noticed that a significant variation exist while comparing the number of 

molecules and interactions of this pathway reported in the existing databases (Figure 

11). Also, after assessing the overall scenarios, we have noticed that a suitable 

combination of alternate drug-targets in target-based cancer therapeutics to inhibit 

the Hedgehog pathway activity is unknown hitherto. A large-scale analysis of 

Hedgehog signaling network considering its entire pathway species, cross-talks 

reactions from other pathway molecules, its associated gene-regulatory network, and 

its association with different phenotypic outputs is also undone. We have also 

observed that the state-of-the-arts techniques developed in computational systems 

biology could be highly useful to simulate the activity of this pathway in normal and 

cancer cells in-silico. Simulation of this pathway could be effective to understand the 

flow of reactions cascade under disease pathology, which would successively helpful 

to perform various in-silico, automated perturbations (i.e., drug treated) scenarios of 

multiple proteins.           

In this work, the following objectives are undertaken. 

 Reconstruction of a comprehensive map of Hedgehog pathway by database 

searching and literature mining. 

 Understanding of the activities or expression patterns of the intracellular 

components in normal and cancer cells using in-silico simulations. Here, we have 

considered three different types of cancers or tumors, viz. Glioblastoma multiforme, 

Colon, and Pancreatic cancers.  

 Implementation of the state-of-the-art graph or network theory and logical 

modeling approaches for in-silico simulations of the activity of Hedgehog pathway in 

normal and cancer cells. 
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 Validation of the expression patterns observed in in-silico analyses with the 

published experimental datasets (e.g., microarray, SDS-PAGE) of cancer cells.  

 Identification of the molecular reaction motifs (or modules) in Hedgehog 

pathway responsible for helping out the cancer cells to escape anti-SMO treatment. 

Here, comparison of the reaction motifs exist in different cancer cells will be 

performed. 

 Discovery of alternative drug targets in combination with the known drug 

target protein SMO to treat Glioblastoma, Colon, and Pancreatic cancers.     

4.4 HYPOTHESES AND ASSUMPTIONS                  

We have hypothesized the existence of active signaling reaction modules in 

Hedgehog pathway, which are responsible for creating drug-resistivity during anti-

SMO treatment. Also, our conjecture is that the combinations of potential drug 

targets can be more effective than targeting the single receptor protein SMO in target-

based anti-cancer therapeutics. 

There are few assumptions, which we have also undertaken to verify these 

hypotheses using theoretical modeling and in-silico simulation of Hedgehog signal 

transduction activities in normal and cancer cells. The assumptions are as follows. 

Assumption 4.4.1. The signal transduction cascades flowing in the network via 

different pathway species are considered as the connection between two species. The 

connection is unidirectional and the directionally is also conserved irrespective of the 

cellular conditions.  

Assumption 4.4.2. The activities of all the pathway species are assumed as discrete 

and binary in nature, i.e. either ON or OFF. The "ON" state represents the "Active or 

Over-expressed or Up-regulated" situations of the pathway molecules. On the other 

hand, the "OFF" state represents as the "Inactive or Under-expressed or Down-
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regulated" situations.  

Assumption 4.4.3. The logical steady-states of the pathway molecules at the steady-

state (i.e., equilibrium) are directly related to the activity or expression of the 

molecules found in experimental data (e.g., microarray, RNA-Seq, Mass spec, etc.). 

Assumption 4.4.4. The gene expression and the synthesis of protein molecules from 

the transcripts are directly proportional to the activation of the transcription factors 

and other transcription co-activators of the gene in the signaling network. The 

events, such as transcriptional regulations of the transcribed mRNA by miRNA, and 

the post-translational modifications of the newly synthesized proteins are not 

considered in our simulation. 

4.5 RESULTS 

4.5.1 Reconstruction of Human Hedgehog Signaling Pathway 

In order to fulfill the first objective of this work, at first we have reconstructed the 

comprehensive and up to date map of the Hedgehog signaling network (Figure 19). 

To the best of our knowledge, the newly reconstructed map is the largest map of 

Hedgehog pathway till this date. 

There are total 57 proteins (52 core Hedgehog pathway proteins and 5 cross-talk 

proteins from other pathways) and 96 hyper-edges included in the newly 

reconstructed pathway diagram. A comparative statistics of the total number of 

pathway species included in our reconstructed map versus the number of species 

presented in major biochemical signaling databases (e.g., EGG, BIOCARTA, GENE 

GO, NETPATH and PATHWAY CENTRAL) is depicted in a Venn diagram (Figure 

20). The pathway information, such as molecule names, interactions, etc., require for 

reconstructing the map is mainly curated from different databases and literature 

sources. For detail descriptions of pathway reconstruction procedure, please see 

Section 2.2 of Materials and Methods.   
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Figure 19: Reconstructed human cell specific Hedgehog signaling pathway. 

There are total 57 proteins included in the reconstructed pathway. The green and red arrows 

indicate Activation/Production and Inhibition process, respectively. The black arrows 

indicate the nuclear translocation process. All the proteins of this network are allocated into 

four main regions with different color codes: Extracellular and Membrane (Blue); Cytoplasm 

(Red); Nucleus (Green); and Output (Yellow). The output proteins are linked with various 

cellular responses (cross-talks with other pathways or phenotypic expressions) with black 

dotted arrow. 

In order to distinguish the hedgehog signaling proteins according to their cellular 

locations, we have allocated all the proteins in the reconstructed pathway diagram in 

four main groups: Extracellular & Membrane, Cytoplasmic, Nuclear and 

Output/Readouts with four different colors: Blue, Red, Green and Yellow, 

respectively. The group Output/Readout represents the target genes/proteins of 

Hedgehog pathway and does not signify any sub-cellular location. The phenotypic 

outputs or the cross-talks with other pathways which are initiated as a consequence 
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of Hedgehog pathway are termed as ‘‘Cellular Responses’’, which are mainly 

mapped with the output/readout of the pathway. A detail description of each of the 

groups and the associated pathway species is provided in the following sections. 

 

Figure 20: Comparison of the number of proteins available in other database and our 

model. 

This Venn diagram represents a comparative view of number of proteins in our model with 

existing major databases, KEGG, BIOCARTA, GENE GO, NETPATH and PATHWAY 

CENTRAL, considered to reconstruct the Hedgehog pathway diagram. The overlapping 

regions between two circles (i.e., two databases or anyone of the database and our model) are 

representing the same proteins which have mentioned in both the databases. The large non-

overlapping area shown by OUR MODEL signifies the information of the large number of 

proteins which are not found in any databases and are mostly collated from literature 

sources. 

4.5.1.1 Extra-Cellular and Membrane Region 

In this region, we have included three hedgehog ligands: Sonic Hedgehog (SHH), 

Indian Hedgehog (IHH) and Desert Hedgehog (DHH). These are the ligands that 

bind to the receptor proteins Patched1 (PTCH1) and Patched2 (PTCH2) of a 

hedgehog target or responsive cell [334,335]. The inhibitory effect of PTCH1/PTCH2 

receptor proteins on the trans-membrane G-coupled protein ‘‘Smoothened (SMO)’’ is 

also depicted in the diagram [336]. In the downstream process the phosphorylation 
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of Serine/Threonine kinase 36 (STK36) by the activated SMO is included [337]. The 

consecutive activation of Glioma associated proteins (GLI) by STK36 kinase in the 

cytoplasm is also shown [337]. This entire process of GLI protein activation in the 

presence of Hedgehog ligands is known as canonical Hedgehog pathway activation 

process and the stimulating signal for this process is primarily come from the extra-

cellular region, which is finally transduced to the intra-cellular region via receptor 

protein SMO [338]. 

There are other molecules (e.g., CDO, BOC, DISPATCHED, HHAT, and 

BMP_RUNX3 protein complexes) present mainly in the extra-cellular or in the 

membrane of other cells secreting the Hedgehog ligands [167,339]. These proteins are 

mainly responsible for the post-translational modifications and dispatching of the 

Hedgehog ligands in the extra-cellular regions. We have found the literature 

evidences that in the absence of these proteins in the Hedgehog ligands secreting 

cells, the activation of Hedgehog signaling is highly affected in the effector cells 

[337]. There is another membrane bound protein known as Hedgehog interacting 

protein (HHIP) present in the cell membrane, which is responsible for attenuating 

the Hedgehog ligands medicated pathway activation and triggering the homeostasis 

in signal transductions [340]. In this region, we have included total 3 ligands, 6 

extracellular proteins and 4 membrane proteins included in Extracellular and 

Membrane region. 

4.5.1.2 Cytoplasmic Proteins 

 In this region, we have included total 16 protein molecules in the reconstructed 

pathway diagram (Figure 19). We have included all the three isoforms of GLI 

transcription factors, viz. GLI1, GLI2, and GLI3. The inactive form of GLI proteins 

bound with SUFU and other inhibitors (e.g., PKA ALPHA, BTRCP, GSK3B, and 

CKIA) are shown in the Cytoplasm. In the inactive state of the pathway, the 

repressor form of GLI3 protein, known as GLI3R is produced which further 
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translocates into the nucleus and prohibits gene transcription process [341]. 

However, by the canonical pathway activation process, the phosphorylated STK36 

phosphorylates either SUFU or the bound GLI proteins in the GLI-SUFU complex 

[337,342]. This phosphorylation event detaches Suppressor of Fused (SUFU) protein 

from the complex, which eventually gets degraded by proteosomal activities [342]. 

The phosphorylated GLI proteins in the cytoplasm are transcription active and are 

able to translocate into the nucleus [30]. The translocation of activated GLI proteins 

into the nucleus is also shown in the diagram (Figure 19). Also, apart from the 

SHH/IHH/DHH --> SMO --> STK36 --> GLI mediated canonical activation pathway, 

we have also found other cytoplasmic proteins, which can also phosphorylate the 

GLI-SUFU complex directly or indirectly. These proteins are Human Fused (HFU), 

Unc-51-like kinase 3(ULK3), ERK1/2, RAS and TWIST, which are mainly activated by 

other signal transduction pathways in the cells [343-346]. Such activation process of 

Hedgehog pathway via cross-talks from other pathway molecules is known as non-

canonical Hedgehog pathway activation process, which have also found responsible 

for abnormal growth and tumorigenesis in different tissues and organs [343-346].  

Such ligand-independent hedgehog pathway activation process in Glioma, Colon 

and Pancreatic cancer scenarios is also seen in the previous research works [345]. On 

the other hand, we have found that other cytoplasmic proteins viz. Protein Kinase-A 

(PKA), Beta-transducin repeat-containing protein (BTRCP), Casein kinase isoform 

alpha (CKIA), Glycogen synthase kinase-3 (GSK3) can repress GLI proteins [347-349]. 

4.5.1.3 Nuclear Proteins  

In the nuclear region of the Hedgehog pathway map, we have included 13 

molecules which are mainly transcription factors, co-activators or co-repressors. The 

activated transcription factors GLI1, GLI2 and GLI3 translocate into the nucleus as 

Nuclear GLI1 (NUC_GLI1), Nuclear GLI2 (NUC_GLI2) and GLI3 active (GLI3_A), 

respectively [350]. The transcription factors initiate the transcription of various 

hedgehog target genes with the help of transcription co-activators Nuclear STK36 
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(NUC_STK36) and Dual specificity tyrosine-phosphorylation-regulated kinase 1 

(DYRK1) proteins [351]. Also, there are few transcription co-repressors in the nucleus 

which act as the inhibitors of the GLI transcription factors. These proteins are 

Nuclear SUFU (NUC_SUFU), NUMB, ITCH, SKI, Nuclear Receptor Co-repressor 

(NCOR), SNO, HDAC and SIN3A [352-355]. In nucleus NUC_GLI1 transcription 

factor transcribes the genes ptch1, hip1, gli1 along with several other responsive 

genes of this pathway. In order to reduce the complexity in the pathway figure, we 

did not include any gene or m-RNA in this nuclear region. 

4.5.1.4 Outputs/Readouts 

This region does not specify any cellular location in the pathway diagram (Figure 

19). We have included this section separately to identify the target genes or the 

translated proteins produced at the end of Hedgehog pathway. There were total 15 

proteins including GLI1, PTCH1 and HHIP included in this section. The total 

numbers of proteins shown in this region are highest as compared to any other 

published human specific Hedgehog pathway map to the best of our knowledge. 

Besides, all the proteins in this region are colored as yellow, except PTCH1, HHIP 

and GLI1 to show their feedback mechanism and translocations into the respective 

cellular locations. Production of PTCH1 and HHIP proteins in this pathway switch 

‘‘ON’’ a ‘‘negative feedback’’ mechanism and thus they prohibit further hedgehog 

pathway activation by inhibiting SMO or interacting with Hedgehog ligands, 

respectively [356-358]. On the other hand, the transcription of GLI1 gene and the 

synthesis of GLI1 protein as target output of Hedgehog pathway augments the 

pathway activity and creates a ‘‘Positive feedback’’ loop in this network [359]. 

4.5.1.5 Phenotypic Outputs or Cellular Responses 

In order to show the cross connections of the output proteins of Hedgehog 

signaling with the other pathways or cellular functions, we have kept this section at 

the end of our pathway figure (Figure 19). There are 6 cellular responses included 
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which are Cell Proliferation, Cell cycle progression, Anti-Apoptosis, Epithelial–

Mesenchymal Transition (EMT), Wnt signal, and Notch signal. We have shown the 

connections of produced proteins with these cellular responses by black dotted 

arrow in the pathway figure (Figure 19). 

4.5.2 Topological Analyses of the Reconstructed Hedgehog Signaling Network 

The reconstructed diagram of Hedgehog signaling network have helped us to 

understand the Hedgehog pathways in more details. The pathway is now more 

informative than ever before - with highest number of pathway species, 

interactions, feedback loops, cross-talks, and cellular responses, etc. However, with 

such higher amount of information, the pathway has become more difficult to 

decipher in various disease scenarios. Hence, to understand the structural integrity 

or the topological properties of the reconstructed network, we have used state-of-

the-arts techniques of graph or network theory [360,361]. 

Here, we have considered the whole signalling pathway as a network where the 

reactions (i.e., signal) from the hedgehog ligands traverses from extracellular region 

to the nucleus of a target cell via various cytoplasmic intermediate proteins (Figure 

21). Our hedgehog signaling network has a ‘Bow-Tie’ like topology and consists of 

57 nodes or proteins (52 core and 5 non-core proteins of hedgehog pathway) and 

140 directed edges (interactions, regulations or the direction of flow of signal). The 

network is considered as a directed graph to maintain the directionality of the flow 

of reactions from the extra-cellular region to intra-cellular region. 

We have assigned the size of the nodes in this network according to the total 

number of connections or degree values. GLI1 in cytoplasm has highest number of 

total degree in the network; therefore the size of this node in the network is largest 

among all the other nodes. It is also clear from this figure that the hedgehog signals 

from the inputs (extracellular and membrane proteins) converged to the particular 

proteins (GLI1 and GLI2) in cytoplasm to activate it and after its activation these 
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proteins send the signals (actually translocate into the nucleus) to activate the 

production of the various target genes/proteins (like OPN, BCL2, GLI1, HHIP etc.) at 

the downstream of hedgehog pathway. 

 

Figure 21: Network picture of Hedgehog signaling pathway. 

The nodes are colored according to different groups or layers mentioned in Figure 19. These 

groups are Extracellular and Membrane (Blue), Cytoplasm (Red), Nuclear (Green), and 

Output proteins (Yellow), respectively. The size of the nodes is assigned according to their 

total number of connections or degree.  

Therefore, we can say that the flow of hedgehog signal from extracellular-

membrane region to the downstream target proteins of hedgehog pathway mainly 

depends on the intermediate cytoplasmic GLI proteins. Due to this reason the 

canonical hedgehog pathway is also called as ‘GLI mediated hedgehog pathway’ 

[362]. In order to understand the topology of the network in a better way, we have 

analyzed it in three different aspects viz. "Connectivity", "Centrality", and "Linear 

shortest paths". 
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4.5.2.1 Connectivity Analyses  

We have performed this analysis to compute the number of connections of each 

protein with all other proteins in the network (see Section 2.4 of Materials and 

Methods). Three types of parameters (IN DEGREE, OUT DEGREE and TOTAL 

DEGREE) are used in this analysis (See Section 2.4). We have calculated and 

represented these three parameters for each protein of the Hedgehog signaling 

network in Figure 22.  

 

Figure 22: Topological parameters of Hedgehog signaling network. 

The parameter values are arranged column wise (X-axis) in the heat map. (A) Heat map of 

the parameter values used in connectivity analysis are IN-DEGREE, OUT-DEGREE and 

TOTAL DEGREE of each protein. (B) Heat map of the individual centrality score of each 

protein of Hedgehog map. The Centrality measurement parameters used in this analysis 

were Eigenvector (EC), Betweenness (BC) and Closeness (CC) centrality.  
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The heat map (Figure 22A), representing the values of the parameters (IN-

DEGREE, OUT-DEGREE and TOTAL DE- GREE), shows the proteins row wise 

according to their cellular locations in a cell (top to bottom) and the parameter 

values column wise. The average IN and OUT DEGREE (all together) of the 

network was calculated as 2.45 and the average total degree was 4.91. In order to 

identify the important proteins from this heat plot on the basis of the connectivity 

parameters, we extracted the proteins which had the parameter values higher than 

their corresponding average values. All the extracted significant proteins on the 

basis of this hypothesis were listed in Table 7. We have found that there are total 19, 

10, and 23 proteins, which have higher values than the average IN-DEGREE, OUT-

DEGREE, and TOTAL-DEGREE, respectively. 

We have observed that the receptor protein PTCH1 and the transcription factors 

GLI1, and GLI2 have higher IN-DEGREE values as compared to the other proteins in 

the entire network due to their higher number of regulations or interactions with 

other upstream proteins in the hedgehog signaling network. PTCH1 has shown 

higher IN-DEGREE because most of the extracellular signals pass through this 

receptor protein to trigger the activation of SMO protein in membrane. On the other 

hand the cytoplasmic GLI1 and GLI2 have high IN-DEGREE value as these proteins 

are the most important proteins in the network to activate the pathway. 

Also, among the three Hedgehog ligands, Sonic hedgehog (SHH) had the highest 

IN-DEGREE value as its interaction with PTCH1 and PTCH2 receptors is highly 

dependent on the proteins DISPATCHED, HHAT, CDO, BOC, and GAS1 at the 

extracellular region of Hedgehog target cell. The proteins in the nucleus like 

NUC_GLI1, NUC_GLI2, DYRK1, etc. have highest out-degree value compared to the 

other proteins in the network. Mainly the output proteins are connected to the 

outgoing connections or edges of these nuclear proteins in the network structure. 

Due to the presence of the higher number of outgoing connections from the nuclear 

proteins to the output proteins, the OUT-DEGREE values of these proteins are 
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increased in comparison to the other proteins in the whole network. We have also 

observed that except the nuclear proteins, the proteins from the other sub-cellular 

locations or regions do not show significant OUT-DEGREE values. 

We have also extracted the proteins which have TOTAL- DEGREE values higher 

than the average total-degree 4.91. Table 7 shows that in extracellular and ligands 

region PTCH1, HHIP, SHH, IHH have significant number (greater than the average 

total degree) of connections or total degree in the network.  

Table 7: Significant Proteins Extracted from Connectivity Analysis 

Parameters Extracellular and 

Ligands 

Cytoplasm Nucleus Output proteins 

In-Degree  

(> 2.45) 

DHH(3),IHH(4), 

SHH(6),PTCH1(9), 

PTCH2(3), HIP1(6)  

GLI1(24), 

GLI2(8) 

NOT FOUND [OPN, 

CYCLIN_D, 

CYCLIN_E, 

CMYC, 

BMI,SNAI1, 

JAGGED2, 

SFRP,WNT](6) 

BCL2(7), 

CYCLIN_D2(4) 

Out-

Degree 

(> 2.45) 

DISPATCHED(3), 

HHAT(3), HIP1(3) 

GLI1(6) [DYRK1, 

NUMB, 

ITCH, 

NUC_GLI1] 

(13), 

NUC_STK36 

(14),  

NUC_SUFU 

(14) 

NOT FOUND 

Total-

Degree 

(> 4.91) 

DHH(5), IHH(6), 

SHH(8), 

PTCH1(11), 

HIP1(9)  

GLI1(30), 

GLI2(10) 

[DYRK1, 

NUMB, 

ITCH](13), 

[NUC_GLI1, 

NUC_SUFU, 

NUC_STK36] 

(14)  

[OPN, 

CYCLIN_D, 

CYCLIN_E, 

CMYC, BMI, 

SNAI1, 

JAGGED2, SFRP, 

WNT](6), BCL2(7) 

The numbers mentioned in first parenthesis represent the corresponding parameter values. 
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It is also clear from Figure 21, that GLI1 has the highest TOTAL-DEGREE value 

among all other proteins in the Hedgehog signaling network. It also signifies that this 

protein is the most important protein in the Hedgehog signaling network. Out of 57 

proteins in the network, it is found to be connected to 30 other proteins in the 

network. Therefore, in terms of signaling network, it is the biggest ‘Hub’ in the entire 

network, which is actually influenced by more number of other proteins as well as 

influencing more proteins than the other hubs in the entire network.  Similarly, in the 

nuclear region NUC_GLI1, NUC_SUFU, and NUC_STK36 have formed the other 

larger hubs and thus controlling the synthesis of various target proteins of Hedgehog 

pathway. 

4.5.2.2 Centrality Analyses 

We have also measured the ‘Centrality score’ of each node or protein in the 

network after identifying the important ‘‘Hub proteins’’ from the network. In the 

connectivity analyses, we have found few important nodes or proteins, which are 

forming important ‘Hub’ in the whole network structure. In that case, we have given 

the highest importance to a node on the basis of its total number of connections or 

degree value. Albeit in biological as well as any real world network the importance 

of a node or a protein does not depend only on its number of connections or 

neighbors [360,363]. Sometimes the importance or significance of a node may 

increase due to its connections with the other important nodes in the network, 

though it may have lower number of neighbors or connections or vice-versa. We 

have used the centrality measurement parameters viz. Eigen-vector, Closeness, and 

Betweenness centrality to determine the relative importance of a node within a 

network (See Section 2.4).  

In this analysis, at first, we have calculated ‘Eigenvector Centrality’ to identify the 

proteins according to their importance in our newly reconstructed hedgehog 

signaling network. This parameter is particularly useful to identify the central node, 
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which is connected to other important nodes (i.e., high degree nodes) in the network. 

The central node identified by using this parameter may have minimum connections 

with other nodes. We have calculated the eigenvector centrality scores for each of the 

protein in the network (Figure 22B). We have observed that GLI1and PTCH1 have 

high Eigenvector centrality score, but GLI2 has comparably lesser score than GLI1, 

though it has large number of connections or degree in the network. The reason of 

showing this interesting feature is that in Hedgehog signaling network, GLI2 is 

connected to NUC_GLI2, FAS, HFU, SUFU, PKA_A, BTRCP etc., which have lowest 

number of connections in the network and therefore are less important as compare to 

other nodes. On the other hand, GLI1 is connected with another important protein 

NUC_GLI1 in the network which regulates the expression of most of the output 

proteins in the network and comparably has higher number of connections than 

NUC_GLI2. Therefore, GLI1 is connected to another most important protein 

NUC_GLI1 in the network and thus the importance of GLI1 increases significantly as 

compared to GLI2 protein. Also, SMO, GLI3_Repressor (GLI3_R), GLI3_Active 

(GLI3_A) have higher Eigen-vector centrality values and thus can be considered as 

important nodes in the network, though they have lower number of connections. 

Also, we have calculated the Betweenness centrality and Closeness centrality 

scores for each protein in the network (Figure 22B). We have identified some 

important proteins of the network based on these parameter values. As expected, we 

have observed that GLI1 have the highest Betweenness and Closeness centrality 

scores among all other proteins in the Hedgehog signaling network. Both the 

centrality scores of GLI1 are high because large numbers of shortest paths between 

two nodes are passing through it and it is connected to all other proteins with the 

minimum number of connections in the network. We have also found that besides 

GLI1, there are some other proteins, such as NUC_GLI1, SMO, STK36, and PTCH1 

have high Betweenness centrality score. On the other hand, NUC_SUFU, 

NUC_STK36, DYRK1, NUMB, and ITCH have shown high Closeness centrality score 
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after GLI1. Interestingly, all of these proteins are found in the nucleus. As expected, 

the large number of the proteins, which belong to the "extracellular and ligands" 

region have lowest closeness scores i.e., they are situated more distantly from all the 

other nodes in the network and regulating the downstream proteins of Hedgehog 

signaling network. 

4.5.2.3 Linear Shortest Paths 

We have calculated the all-pairs shortest paths between each pair of nodes or 

proteins (directed edges) in the Hedgehog pathway (Figure 23).  

 

Figure 23: All-pair directed shortest paths of the Hedgehog signaling proteins. 

The color codes represent the magnitude of the shortest-path between a pair of proteins in 

the network.  

As obvious, the proteins of the "extracellular and ligand" region are distantly 
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separated from the Hedgehog target proteins (Outputs/Readouts) with the shortest 

paths of lengths either 6 or 7. We have also calculated the distribution of all the 

shortest-paths of the Hedgehog signaling network and the average shortest path is 

3.581. This observation signifies that most of the proteins in the Hedgehog signaling 

network are connected with each other on an average by 3 intermediate steps. For 

example, the transmission of the signal after ligand-receptor binding takes only 3 

(three) intermediate steps or links to activate GLI1 or GLI2 proteins (largest hubs) in 

the cytoplasm (i.e., PTCH1/PTCH2 --> SMO --> STK36 --> GLI1/GLI2). Similarly, in 

order to initiate the production of the target output proteins of Hedgehog pathway in 

the nucleus by transcription factors GLI1, GLI2 or GLI3_ACTIVE, it requires only 2 

(two) intermediate steps or links (i.e., GLI1/GLI2  --> NUC_GI1/ NUC_GLI2 --> 

CYCLIN_D/CMYC/BCL2).  

This observation clearly demonstrates that a strong and tightly coupled signal 

transmission network exists in Hedgehog pathway to rapidly relay the activation 

signal from the extra-cellular region to the gene transcription network of the cell. 

Also, we have observed that the identified, important ‘hub’ proteins (i.e., GLI1, 

PTCH1, NUC_GLI1, etc.) are connected by each other with shorter number of links, 

which also signifies the rapid information sharing process between the important 

hubs in the network. Previous studies of different biological networks have proven 

that such topological characteristic of the networks (i.e., with a lower value of 

average shortest-path) is much more robust than the network with higher average 

shortest-path [364,365]. Researchers have found that removal of the central nodes (or 

hubs) significantly increases the average shortest-paths of the entire network and 

decreases the resilience of the system against external perturbation (or mutational 

attack) [364,365]. 

Therefore, it is seen that the graph theoretic analyses of the Hedgehog signaling 

network have helped us to identify the important hubs or proteins in the pathway, 

understand the topology and resilience of the network, and extract molecular 
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reaction routes between a pair of protein. The extracted central nodes from our graph 

theoretic analyses are proven experimentally as the important nodes for initiating the 

Hedgehog signaling cascades within the cells and their abnormal activations or 

inhibitions lead to uncontrolled cell proliferation or tumorigenesis in various 

cells/tissues [337,343-346,357,366]. Hence, the central nodes can be also considered as 

probable drug targets for inhibiting the growth of the Hedgehog pathway activated 

cancer cells. It also proves that the topology of network plays very important role in 

governing the gene transcription mechanisms, and therefore the in-depth analyses 

are required for understanding the topology of reaction cascades in the network 

under various pathological conditions. However, one of the major limitations of the 

graph theoretic analyses is that it just captures the static behavior of the network and 

is unable to depict any diseased scenario or malfunctions caused by genes/proteins in 

the pathway. The dynamic interplay of the pathway species after pathway 

stimulation and their reaction trajectory to reach the steady-states level are also 

important to understand the mechanisms of pathway activity under different 

biological conditions. Hence, to overcome this challenge, we have used ‘‘Logical 

analysis’’, where all the interactions of the network are modeled as ‘Boolean or 

Logical equation hyper-graph’ using logic-based formalisms (see Section 2.5). 

4.5.3 Semi-Dynamic or Logical Analyses of Hedgehog Signaling Pathway 

A list of all the proteins and other pathway species including phenotypes are 

provided in Appendix Table 4. We have written the logical equations of these 

pathway species with the help of biological understandings gained from literature 

sources (Appendix Table 5). The developed logic-based equations are considered as 

the "Master model", which is then used for simulating the pathway activities under 

normal and different pathological conditions viz. Glioblastoma, Colon, and 

Pancreatic cancers. We have simulated the logical models in CellNetAnalyzer to 

create the canonical activation process of Hedgehog pathway in normal scenario 

(NS) and then created the other cancer scenarios by mutating the Hedgehog proteins 
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found to be responsible for tumorigenesis (see Section 2.5.2 for further details) [126]. 

4.5.3.1 Construction of Normal Hedgehog Pathway Scenario (NS) 

We have calculated the total number of upstream activators and inhibitors of each 

protein in the Hedgehog pathway at the steady-state level (see Section 2.5.2). 

Similarly, we have also calculated the total number of downstream activated or 

inhibited proteins of each protein considered in the logical model of the normal, 

canonical Hedgehog pathway (see Section 2.5.1). In case of ‘Canonical hedgehog 

pathway’ (i.e., NS or Normal Scenario), we have found that at time scale two (2), the 

ligand Sonic Hedgehog (SHH) has activated overall 26 different proteins in the 

pathway directly or indirectly (Figure 24C). Also, other proteins SMO, STK36 have 

activated overall 25 and 24 other proteins in the pathway, respectively. Similarly, we 

have observed that in the normal Hedgehog pathway, the cytoplasmic proteins, such 

as GLI1 and GLI2 have activated total 21 and 23 proteins, respectively. These results 

clearly show the importance of these proteins in the activation of Hedgehog pathway 

in normal human cells [337].  

On  the  other  hand,  we  have found  that there are total 20 inhibitor proteins 

(e.g., PTCH2, SUFU,  BTRCP,  GSK3,  PKA,  CKI_A,  NCOR,  HDAC,  SNO, SIN3A, 

NUMB, and ITCH, etc.) present in the upstream of GLI1 protein in normal scenario 

(Figure 24B). We have observed that such inhibitory effects from the upstream 

inhibitors are also required for the homeostasis GLI1 protein activation process in 

Hedgehog pathway under normal condition [355,367-369]. Therefore, it can be said 

that the interactions between these activators and inhibitors in the canonical 

Hedgehog pathway control the abnormal activation of GLI protein in the cytoplasm, 

and thus regulate the excess productions of various target proteins responsible for 

cell division, migration, and anti-apoptosis processes, etc. We have also observed 

that our developed model for simulating the canonical Hedgehog pathway activity 

in normal cells imitates the expression scenarios of various genes or activity profiles 
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of various proteins under normal conditions (i.e., non-malignant, non-cancerous 

cells). We have used the simulation outputs of the canonical Hedgehog pathway 

model as the "Normal Scenario (NS)" of the non-malignant cells and then compared 

with the three cancer cells models developed in-silico by inserting corresponding 

oncogenic mutations in the normal model. 

4.5.3.2 Construction of Glioblastoma Tumorigenic Scenario (GS) 

 GBM model development and simulation: In order to simulate the tumorigenic 

events in Glioblastoma cells caused by abnormal activity of Hedgehog pathway, we 

have considered the over-expression of Sonic Hedgehog ligand (SHH) in the glial 

cells, which is a known factor responsible for the over-activation of Hedgehog 

pathway in difference cells/tissues (see Section 2.5.2) [370]. We have done this 

analyses by constitutively over-activating (i.e., keeping the binary state at '1' or 

'TRUE') the state of SHH protein in the normal Hedgehog pathway during pathway 

simulation. We have also kept the over-activated cytoplasmic kinases HFU and 

ULK3 in the model and allowed these proteins to hyper-activate the GLI proteins in 

cytoplasm. Apart from these proteins, we have also considered the cross-talk 

activation Hedgehog pathway by constitutively over-expressing the cross-talk 

proteins, such as ERK12, TWIST, and RAS during simulation. Thus, we have made 

the overall situations (in-silico) favorable towards the hyper-activation of canonical 

and non-canonical Hedgehog pathway (including abnormal activation of GLI1 and 

GLI2), which are most often observed in Glioblastoma stem and tumor cells 

[346,371,372]. Therefore, to simulate the Glioblastoma scenario in our study, we 

have considered the constitutive expressions of SHH, HFU, ULK3, ERK12, RAS, 

TWIST as ‘‘1’’ or ‘‘ON’’ (Appendix Table 6). We have also considered the down 

regulation or loss of function of few tumor suppressor proteins, such as GAS1, 

SUFU, NUMB, SNO, etc. in the new Glioblastoma model simulation (Appendix 

Table 6). Down regulation or loss function of these proteins can also cause the up-

regulation of GLI proteins in cytoplasm as well as in nucleus [373]. 
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Simulation outcomes: We have analyzed the dependency matrices obtained from 

both normal and glioblastoma scenario and observed that the total numbers of 

upstream activators of SHH, STK36, GLI1, GLI2, NUC_GLI1, NUC_GLI2 and all the 

output proteins (OPN, BMI, SNAI1 etc.) of hedgehog pathway in Glioblastoma 

scenario (GS) are higher as compared to the normal scenario (NS) (Figure 24).  

 

Figure 24: Comparative analyses of Glioblastoma scenarios.  

TS: Treated Scenario; NS: Normal Scenario; GS: Glioma Scenario. The green arrow heads are 

indicating the minimal combination of proteins which was inhibited in the drug treated 

perturbation analysis. (A) Represents number of Upstream activator proteins (Y-axis) 

activating the proteins (X-axis) representing significant variations. (B) Represents number of 

Upstream inhibitory proteins (Y-axis) inhibiting the proteins (X-axis) representing significant 

variations. (C) Represents number of downstream proteins (Y-axis) activated by the proteins 

(X-axis) representing significant variations. (D) Represents number of downstream proteins 

(Y-axis) inhibited by the proteins (X-axis) representing significant variations.  
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In case of Glioblastoma, the total numbers of activators acting on GLI1 and GLI2 

proteins are 16 and 6, respectively, whereas in case of normal scenario there are total 

11 and 5 proteins activating the expression of GLI1 and GLI2 proteins, respectively. 

These simulation results clearly show the differences between Normal (NS) and 

Glioma scenarios (GS), which can be observed from our developed master model 

(Appendix Table 5). We also have found that the total numbers of activator proteins 

acting on target oncoproteins of Hedgehog pathway, such as FOXM1, PDGFRA, 

OPN, CYCLIN_D, CYCLIN_E, BMI, SNAI1, JAGGED2, and SFRP are increased in 

Glioblastoma scenario (GS) as compared to the normal scenario (Figure 24) [374-383]. 

On the other hand the total number of upstream inhibitor proteins on these output 

proteins remains unchanged while we have compared the Normal versus GBM 

scenario (Figure 4B). This clearly indicates that the activator proteins of these target 

oncoproteins in GBM cells are highly active as compared to the inhibitor proteins of 

the same target oncoproteins.  

On the other hand, to identify and compare the potential activators and inhibitor 

proteins of this pathway, we have calculated the total number of proteins that are 

activated or inhibited directly or indirectly by each protein of the Hedgehog pathway 

model (Figure 24C - D). We have found that as compared to GLI1 protein, GLI2 

protein is more potential activator in GBM scenario. GLI2 is connected with GLI1, 

which is also an important activator protein in the network (Figure 24C - D). 

Therefore it is worth mentioning that to suppress the GLI1 activation, GLI2 protein 

should be suppressed simultaneously. We have also observed that HFU, ULK3, RAS, 

TWIST, ERK12 can act as the activators in GBM scenario (GS), but not in the normal 

Scenario (NS). This indicates the effect of cross-talk activation process between the 

core Hedgehog pathway molecules (e.g., GLI1, GLI2, etc.) with the other pathway 

molecules in GBM cells. On the other hand, we have found that the other core 

proteins of Hedgehog pathway, such as SHH, SMO, GLI1, GLI2, GLI3_A can activate 

its downstream proteins in both normal as well as GBM scenarios (Figure 24C).  
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Overall, the simulation results of GBM model have helped us to identify the key 

regulatory proteins that could be used as potential target proteins to inhibit the 

growth of tumor cells in GBM treatment. However, at the time of determining the 

target proteins for our in-silico drug treatment strategy (TS) of GBM, we have also 

taken into the consideration of the biological relevance and the feasibility of targeting 

that target protein(s) in real therapeutic scenario. We have identified that SHH, SMO, 

STK36, RAS, TWIST, ERK12, HFU, ULK3 are the proteins responsible for activating 

most of the target oncoproteins in GBM cells by using GLI transcription factor 

(Figure 24C). It is experimentally proven that SMO plays a very crucial role to 

activate STK36 as well as GLI1 in cytoplasm [337]. Our graph theoretical study has 

shown that SMO receptor protein has significant high Betweenness centrality score, 

which in turn also proves the importance of this protein to transduce the activation 

signal into the downstream (Figure 22). Inhibition of this trans-membrane protein by 

small molecule inhibitor/drug in tumor cells has shown effective inhibition of 

Hedgehog signal and the reduction of tumor size [384,385]. Although, SMO is 

important to mediate the Hedgehog signal in GBM cells by activating GLI 

transcription factors, but still it is worth to mention that the inhibition of SMO by its 

inhibitor/drug molecule is not sufficient to completely suppress the Hedgehog 

pathway activity and reduce the growth of GBM cells. This is due to the activity of 

the intracellular activator proteins, which are present in the cytoplasm of tumor cells 

to augment the expression of GLI transcription factors via non-canonical process. 

Therefore, in this work, we have proposed that to suppress the growth of GBM cells, 

individual targeting of SMO protein by drug is not sufficient and we also need to 

take into the account of the intra-cellular, cross-talk molecules present in cytoplasm.  

Drug target(s) identification: In order to determine the other factors, we have 

revisited our graph theoretical analysis and identified the IN-DEGREE neighbors of 

GLI proteins from cytoplasm. We have found that the upstream activators (IN-

DEGREE neighbors) of GLI1 and GLI2 proteins in cytoplasm are HFU, ULK3, ERK12, 
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RAS, and TWIST. We have individually perturbed the logical states of these 

activators in GBM scenario (GS), but targeting these activator proteins individually 

have shown no effect to reduce GLI activity and also the phenotypes, such as cell 

division, anti-apoptosis, etc. We have tried various combinations of HFU, ULK3, 

ERK12 to suppress the Hedgehog signal in GBM scenario (GS), but we have observed 

that only the perturbations of all the activator proteins simultaneously can suppress 

the GBM growth (i.e., cell division and anti-apoptosis) in the in-silico treatment 

scenarios (result not shown). However, targeting all the activator proteins in GBM 

cells simultaneously is not biologically feasible due to the possibility of drug induced 

toxicity. Therefore, to suppress the GLI activation process in cytoplasm, we have 

directly inhibited the activity of GLI1 and GLI2 proteins in the cytoplasm and SMO 

protein in cell membrane by constitutively keeping these proteins at "0" or "OFF" 

states in the GBM scenario (GS). As a result of this perturbation simulation, we have 

observed that the expression of the output proteins is blocked in GBM scenario (GS). 

We have used the dependency matrices of the tumorigenic glioblastoma model (GS) 

and the in-silico treatment model (TS) to extract and compare the total number of 

proteins that are directly activated or inhibited by each protein in both scenarios. We 

have found that the total number of upstream activator and inhibitor proteins of all 

the target/output oncoproteins of Hedgehog pathway in the treatment scenario (i.e., 

GLI1/2 & SMO = 0) has come down to zero. Due to this perturbation, we have also 

observed that the potential activators and inhibitors of Hedgehog pathway (e.g., 

RAS, TWIST, GSK3, BTRCP) are activating or inhibiting less number of proteins in 

the downstream region of the pathway (‘‘Treated Scenarios (TS)’’ of Figure 24C-D). 

4.5.3.3 Construction of Colon Cancer Scenario (CC) 

Model development and simulation: We have found that in case of Colon cancer, 

canonical Hedgehog pathway mediated by IHH and SHH ligands, and the RAS/RAK 

mediated signaling pathways simultaneously up-regulates the activity of the GLI 

proteins in colorectal cancer cell [386]. Experimental evidences have shown that over-
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expression of SHH and IHH ligands can cause up-regulation of GLI transcription 

factors. Also, the over-activation of HRAS protein can also up regulate GLI proteins 

in Hedgehog pathway and are responsible for Colon cancer [387-391]. In order to 

capture the effects of Hedgehog ligands IHH and SHH, and RAS in Colon cancer 

scenario (CC), we have constitutively over-activated these proteins in the master 

Hedgehog pathway model and then tried to analyze logical states of the GLI 

transcription factors in the steady-state. To develop the CC mode scenario, we have 

also considered the down-regulation or loss-of-function states of the tumor 

suppressor proteins, such as GAS1, SUFU, NUMB, SNO, etc. (Appendix Table 6).  

Simulation outputs: The simulation outputs of CC model scenario have shown 

that the total numbers of upstream activator proteins of GLI1, GLI2, and GLI3_A 

proteins are greater than the normal scenario (NS) (Figure 25A). As a result, the total 

numbers of upstream activators of the target/output oncoproteins of Hedgehog 

pathway are also increased in colon cancer scenario as compared to the normal 

scenario (NS) (Figure 25A). Therefore, it is clear that the abnormal activation of GLI 

proteins in colon cancer cells not only occurred due to the abnormal expression of 

hedgehog ligands (IHH/SHH), but also due to the over-activation of RAS protein and 

its subsequent interactions with GLI1 and GLI2 transcription factors. Also, HFU and 

ULK3 are over-activated as these are the auto-phosphorylated kinase proteins 

present in cytoplasm to activate GLI proteins [316,343]. The relative potential of 

activating the other molecules between GLI1 and GLI2 are also measured and we 

have found that GLI2 have higher number of downstream activated species in the 

colon cancer scenarios (Figure 25A and Figure 25C), as it has connection with GLI1. 

Drug target identification: These findings have helped us to identify the combination 

of potential drug targetable proteins in the aberrantly activated Hedgehog pathway 

for Colon cancer cells. We have perturbed the activation signal transducing from 

SHH and IHH via PATCHED (PTCH1/2) and SMO proteins to GLI transcription 

factors. Simultaneously, we have perturbed the interactions between HFU, ULK3, 
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and RAS proteins with GLI transcription factors in the cytoplasm. In order to stop 

the SHH/IHH signal transduction, we have perturbed SMO protein by keeping its 

logical state constitutively at "0" or "OFF" state.  

 

Figure 25: Comparative analyses of Colon Cancer scenarios.  

TS: Treated Scenario; NS: Normal Scenario; CC: Colon Cancer Scenario. The green arrow 

heads are indicating the minimal combination of proteins which was inhibited in the drug 

treated perturbation analysis. (A) Represents number of Upstream activator proteins (Y-axis) 

activating the proteins (X-axis) representing significant variations. (B) Represents number of 

upstream inhibitory proteins (Y-axis) inhibiting the proteins (X-axis) representing significant 

variations. (C) Represents number of downstream proteins (Y-axis) activated by the proteins 

(X-axis) representing significant variations. (D) Represents number of downstream proteins 

(Y-axis) inhibited by the proteins (X-axis) representing significant variations.  

On the other hand, we have cut the interactions of HFU, ULK3, and RAS proteins 

with GLI transcription factors by keeping the logical states of these proteins at OFF 

state and thus created the treatment scenario (TS) on Colon cancer (CC) model. We 
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have found that the total numbers of the activated proteins by GLI1, GLI2, and GLI3 

proteins are decreased as compared to the colon cancer scenario (CC) (Figure 25C). 

Moreover, we have observed that the activation and inhibition level of GLI 

transcription factors in nucleus and cytoplasm by the upstream proteins are reduced 

as compared to the CC scenario (Figure 25A and Figure 25B). 

4.5.3.4 Construction of Pancreatic Cancer Scenario (PC) 

Model development and simulation: In case of pancreatic cancer, we have found 

that the expressions of IHH, PTCH1, and SMO proteins in pancreatic cancer cells are 

highly associated with the tumor cell growth and metastasis [392]. Simultaneously, 

over-expressions of kinase proteins, such as RAS and ERK12 in the pancreatic cancer 

cells are also reported [345,393]. Pathological and biopsy reports of pancreatic cancer 

cells have shown that the mutation or over-expressions of these proteins can trigger 

tumorigenic events Pancreas [345,393]. Hence, to capture the effect of these proteins 

in pancreatic cancer cell development, we have constitutively over-activated IHH 

and RAS in the master Hedgehog pathway model. Apart from these proteins, we 

have also down-regulated the tumor suppressor or Hedgehog pathway inhibitor 

proteins, such as GAS1, SUFU, NUMB, SNO, etc. to account their loss-of-function 

effects in the initiation of pancreatic cancer (PC) scenario (Appendix Table 6). 

Simulation outcomes: We have observed that in PC scenario, the total numbers of 

upstream activators of GLI transcription factors and its target oncoproteins are 

higher than the normal scenario (NS) (Figure 26). The increase of total number of 

activators of the GLI proteins and its target oncoproteins in PC scenario clearly 

indicates the effect of the over-activations of IHH, RAS and down-regulation of 

tumor-suppressor proteins in PC.  

Drug target(s) identification: We have noticed that the individual perturbations 

of SMO or PTCH1/PTCH2 receptors are not effective to reduce the activation of 

GLI1/GLI2/GLI3_A in pancreatic cancer model. Therefore, in order to completely 
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repress the over-expression of GLI proteins in cytoplasm, we have perturbed the 

logical states of RAS and ERK12 proteins simultaneously with SMO in pancreatic 

cancer scenario (PC).  

 

Figure 26: Comparative analyses of Pancreatic Cancer scenarios.  

TS: Treated Scenario; NS: Normal Scenario; PC: Pancreatic Cancer Scenario. The green arrow 

heads are indicating the minimal combination of proteins which was inhibited in the drug 

treated perturbation analysis. (A) Represents number of Upstream activator proteins (Y-axis) 

activating the proteins (X-axis) representing significant variations. (B) Represents number of 

upstream inhibitory proteins (Y-axis) inhibiting the proteins (X-axis) representing significant 

variations. (C) Represents number of downstream proteins (Y-axis) activated by the proteins 

(X-axis) representing significant variations. (D) Represents number of downstream proteins 

(Y-axis) inhibited by the proteins (X-axis) representing significant variations. The numbers of 

downstream proteins inhibited in normal versus pancreatic cancer scenario remain same. 

We have also perturbed the logical state of HFU and ULK3 proteins as these 

proteins are the common and essential auto-phosphorylating kinase proteins 

responsible for enhancing the activation of GLI1 and GLI2 in cytoplasm [316]. We 

have observed that the targeting SMO, HFU, ULK3, RAS, and ERK12 proteins 
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simultaneously are highly effective for suppressing the expressions of GLI 

transcription factors in cytoplasm. This combinatorial drug treatment scenario (TS) is 

able to down-regulate GLI transcription factor in cytoplasm and thus caused the 

down-regulation of the Hedgehog target oncogenes or oncoproteins (e.g., BMI, 

FOXM1, etc.). The expression of various output proteins like OPN, BMI, SNAI1, 

JAGGED2, PDGFRA are also not observed in our drug treated perturbation scenario 

(TS). We have compared the total number of upstream activators and inhibitors of 

each protein for Normal, Pancreatic and Treatment scenarios, respectively (Figure 

26A and Figure 26B). 

4.5.3.5 Validation of the Developed Cancer Models with Experimental Data 

We have validated the developed cancer models with the experimental data 

available in published literature (see Section 2.5.2). We have validated the model 

outcomes by performing two different simulation approaches (SIM1 and SIM2). In 

Simulation 1 (SIM1), at the initial time step (Time = 0), we have considered the logical 

states of the Hedgehog proteins for each cancer scenario by collating the expression 

data of each protein observed in different experimental conditions (Appendix Table 

6). Hence, the dataset we have used in SIM1 have variations within itself due to the 

different experimental set-up, but is not prone to the error caused in a single 

experimental set-up and thereby reduces the chance of getting true negative outputs. 

In Simulation 2 (SIM2), we have considered the expression of the input proteins 

specifically observed in a single experimental set-up (microarray experiment or 

proteomics study; EXP) for each cancer type. In SMI2, we have considered the logical 

state of a protein as "1" or "ON", if the corresponding gene of that protein or the 

proteomic expression of that protein is found to be differentially up-regulated 

(significantly) with respect to the normal cells or vice-versa. The proteins which 

showed insignificant expression in the microarray or proteomics datasets are 

considered as "un-determined" protein and their logical states are considered based 

on literature evidences.  
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Analyses of glioblastoma scenario (GS): In the microarray experimental data 

(GEO ID: GSE4290), we have found the up-regulation of IHH, RUNX3, SMO, STK36, 

TWIST, ERK12, RAS and down-regulation of tumor suppressor protein SUFU in 

GBM grade-IV cells (Figure 27A) [219].    

 

Figure 27: GBM model validation and signaling motif behind anti-SMO drug resistivity.  

(A) Represents the comparisons of the expressions of Hedgehog pathway proteins found in 

the experimental data (EXP) of GBM Grade-IV cells [219] and in the corresponding 

simulation (SIM1 and SIM2) data from our logical model. (B) First column represents the 

expressions of the proteins observed after inhibiting only SMO protein in GBM scenario 

(GS). The second column represents the expressions of the proteins observed in the 

alternative, combinatorial treatment scenario (TS) by perturbing SMO, GLI1, and GLI2 

simultaneously in GS. (C) Shows the identified alternative pathways or reaction motif 

(shown by solid green arrows), which remain active even after the inhibition of SMO (anti-

SMO treatment by the drugs Cyclopamine, Vismodegib, etc.) in GBM cells. 

We have observed total 33 proteins out of 57 proteins of Hedgehog pathway 

model are differentially expressed (Up or Down) in Grade-IV GBM tumor cells as 

compared to the normal astrocytes cells (Figure 27A). The rest of the proteins, which 
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have shown insignificant expression level as compare to normal cells are also 

grouped together in Figure 27A. Within these 33 determined proteins, our simulation 

(SIM1; Figure 27A) has correctly predicted the expression levels of 22 proteins 

(66.66% accuracy). This result depicts the effect of the over-expressions of the 

activator proteins viz. HFU, RAS, TWIST on Hedgehog pathway in the development 

of Grade-IV GBM tumor cells. Furthermore, using the experimental expression data, 

we have performed Simulation number 2 (SIM2; Figure 27A) and compared the 

simulation outcomes with both Experimental (EXP) and (SIM1) (Table 8). 

Table 8: Comparison of the Percentage of Accuracy between Experimental and 

Simulation Results. 

Disease  Comparison Not 

Determined/ 

Not 

Available 

Correct 

Predictions 

Incorrect 

Predictions 

*Accuracy 

(in %) 

Glioblastoma 

Grade-IV tumor 
SIM1 with EXP 24  22  11  66.66  

SIM2 with 

SIM1 0 54 3 94.37 

SIM2 with EXP 24 25 8 75.75 

Colon Cancer 
SIM1 with EXP 52 5 0 100.00 

SIM2 with 

SIM1 0 57 57 100.00 

SIM2 with EXP 52  5 0 100.00 

Pancreatic 

Cancer 
SIM1 with EXP 13 25 19 56.80 

SIM2 with 

SIM1 0 47 10 82.45 

SIM2 with EXP 13 32 12 72.72 

*Accuracy (%) = ((Correct Predictions) / (Correct Predictions) + (Incorrect Predictions)) X 100 (%) 

After comparing the simulation results of Simulation #2 (SIM2) with the 

Experimental dataset (EXP; Figure 27A), we have found that out of 33 experimentally 

determined proteins, we have correctly predicted the expression levels of 25 proteins 
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(75.75% accuracy). On the other hand, while comparing the simulation result 

between Simulation #1 (SIM1) and Simulation #2 (SIM2), we have found correctly 

predicted the expression levels of 54 proteins out of 57 proteins with the accuracy of 

94.37% (Table 8). Therefore, in both the cases our GBM model (GS) has shown 

promising predictions as compared to the experimental data of GBM Grade-IV cells. 

Hence, the combination of drug targetable proteins identified from our drug 

treatment scenario (TS1) of GBM mode could be also used as potential drug targets 

for the treatment of GBM Grade-IV cells. 

Moreover, in order to test our hypothesis that the newly identified combinatorial 

drug treatment therapy will be more effective than the anti-SMO targeted therapy, 

we have created the in-silico treatment scenario by targeting SMO protein in the GBM 

model. After that we have compared the simulation outputs with our treatment 

scenario (TS1) of GBM model (Figure 27B). We have observed that in the treatment 

scenario (TS1) of GBM model, the repressor form of GLI3 (i.e., GLI3R), and the pro-

apoptotic protein FAS are up-regulated in comparison to the anti-SMO treatment 

scenario. Previous reports suggest that the up-regulation of these proteins will help 

to attenuate the active Hedgehog signaling in the rapidly proliferating GBM cells 

[394,395]. On the other hand, the target onco-proteins, such as FOXM1, PDGFRA, 

OPN, C-MYC, BMI, SNAI1, SFRP, BCL2 and the cell cycle regulatory proteins, such 

as CYCLIN-D, CYCLIN-D2, and CYCLIN-E are down-regulated in the treatment 

scenario (TS1) as compared to anti-SMO treatment (Figure 27B). We have also found 

that anti-SMO treatment scenario does not down-regulate the activity of GLI 

transcription factors (i.e., GLI1, GLI2, and GLI3_A).  

Hence, we have hypothesized that there are some alternative molecular reaction 

routes present in the Hedgehog pathway, which can activate the GLI transcription 

factors even after inhibiting SMO protein in the cell membrane of the tumor cells. 

Hence, to find out such alternative routes, we have calculated and compared the 

dependency matrices of anti-SMO treatment and combinatorial treatment scenarios 
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performed on GBM model (GS). We have computed the inter-dependencies of each 

pathway species with every other species in the two scenarios and found out the 

proteins whose influence (activation) on the GLI transcription factors have reduced 

significantly in the combinatorial treatment scenario with respect to anti-SMO 

treatment scenario. We have also used the structural connectivity map of general 

Hedgehog signaling network (Figure 21) to locate the identified species and thus 

extracted the molecular reaction network through which the identified proteins 

activate GLI proteins in the GBM cells. We have observed that although in anti-SMO 

treatment scenario, the canonical Hedgehog pathway is blocked by SMO inhibitor, 

but the non-canonical activation via cross-talk molecules can still play the significant 

role to over-activate GLI transcription factors in the cytoplasm (Figure 27C). 

Cytoplasmic proteins, such as HFU, ULK3, RAS, TWIST, and ERK12 over-activates 

GLI1 and GLI2 proteins and thus continue the Hedgehog signaling mechanism in the 

GBM tumor cells.  

Analyses of Colon cancer scenario (CC): In order to validate the model developed 

for simulating the Colon cancer scenario, we have considered the protein expressions 

profile of colorectal adeno-carcinoma cells, determined by RT-PCR, in situ 

hybridization, and immunohistochemistry techniques  [396]. We have found that in 

the colon cancer cells, the Hedgehog pathway proteins such as SHH, PTCH1, HHIP, 

GLI1, GLI3_Active, and PDGFRA are significantly expressed as compared to the 

normal cells (EXP; Figure 28A). The expression levels of rest of the proteins are 

considered as ‘‘Not available’’ and are grouped separately. 

Our first simulation (SIM1) has correctly predicted the expressions of these 5 

proteins with 100% accuracy (SIM1; Figure 28A). From this simulation, we have also 

predicted the expression levels of the other undetermined proteins, whose 

expression levels were not available in the experimental data [396].  
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Figure 28: Colon cancer model validation and signaling motif behind anti-SMO drug 

resistivity. 

(A) Represents the comparisons of the expressions of Hedgehog pathway proteins found in 

the experimental data (EXP) of colorectal adeno-carcinoma cells [396] and in the 

corresponding simulation (SIM1 and SIM2) data from our logical model. (B) First column 

represents the expressions of the proteins observed after inhibiting only SMO protein in 

colon cancer scenario (CC). The second column represents the expressions of the proteins 

observed in the alternative, combinatorial treatment scenario (TS2) by perturbing SMO, 

HFU, ULK3, and RAS proteins simultaneously in CC. (C) Shows the identified alternative 

pathways or reaction motif (shown by solid green arrows), which remain active even after 

the inhibition of SMO (anti-SMO treatment by the drugs Cyclopamine, Vismodegib, etc.) in 

colon cancer cells. 

In the next simulation (SIM2; Figure 28A), we have computed the expressions of 

the same 5 identified proteins and compared the outputs with both Experiment 

(EXP) and Simulation 1 (SIM1) results (Table 8). In both the cases, we have observed 

same expression levels of the proteins (with 100% accuracy), which strongly validates 

our in-silico model of Colon cancer scenario. Hence, we can conclude that the 

combination of drug targetable proteins identified from our drug treatment scenario 

(TS) of Colon cancer model could be also used as potential drug targets for the 
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treatment of colon cancer cells. 

Similar to the GBM model validation analyses discussed in the previous sections, 

here we have also found out that anti-SMO treatment of colon cancer cells is not 

effective to suppress the expressions of Hedgehog target onco-proteins and thus it is 

not effective to halt the growth of colon cancer cell progressions (Figure 28B). Hence, 

to identify the alternative molecular reaction routes, which can cause resistivity 

against anti-SMO treatment, we have studied the anti-SMO and combinatorial drug-

targets (TS2) treatment scenarios. We have found out that like GBM cells, there also 

exists an alternative molecular reaction module, which can cause resistivity against 

anti-SMO treatment. This molecular route is basically the cross-talk interactions of 

HFU, ULK3, and RAS proteins with SMO, STK36, GLI1, and GLI2 reaction motifs in 

the proliferating cancer cells (Figure 28C). The reaction motif is very much robust 

and the inhibition of SMO protein in the cell membrane cannot down-regulate the 

GLI1 and GLI2 proteins completely and thus expressions of the Hedgehog pathway 

target onco-proteins becomes difficult to inhibit. 

Analyses of Pancreatic cancer scenario (PC): In order to validate our developed 

pancreatic cancer model, we have used the previously microarray expression 

datasets of pancreatic cancer cells (GEO ID: GSE16515) [397]. We have extracted the 

expressions levels of 44 out of 57 proteins of our Hedgehog model from the 

published microarray expression data. The rest of the proteins (insignificant) are 

considered as "not determined" category (Figure 29A). The up regulation of HFU, 

ERK12, RAS are observed in the microarray expression data (EXP; Figure 29A). Out 

of the extracted 44 significantly expressed proteins, our first simulation method 

(SIM1) have correctly predicted the expression levels of 25 proteins with 56.80% 

accuracy (Table 8).  
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Figure 29: Pancreatic cancer model validation and signaling motif behind anti-SMO drug 

resistivity. 

(A) Represents the comparisons of the expressions of Hedgehog pathway proteins found in 

the experimental data (EXP) of pancreatic cancer cells with respect to normal cells [397] and 

in the corresponding simulation (SIM1 and SIM2) data from our logical model. (B) First 

column represents the expressions of the proteins observed after inhibiting only SMO 

protein in pancreatic cancer scenario (PC). The second column represents the expressions of 

the proteins observed in the alternative, combinatorial treatment scenario (TS3) by 

perturbing SMO, HFU, ULK3, RAS, and ERK12 proteins simultaneously in PC. (C) Shows 

the identified alternative pathways or reaction motif (shown by solid green arrows), which 

remain active even after the inhibition of SMO (anti-SMO treatment by the drugs 

Cyclopamine, Vismodegib, etc.) in pancreatic cancer cells. 

After that we have compared the expressions profiles of the genes from 

experimental data (EXP) and second simulation method (SIM2) (Figure 29) and 

found that the Simulation 2 have correctly predicted the expressions level of 32 
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proteins out of 44 significantly expressed proteins with 72.72% accuracy (Table 8). 

On the other hand while comparing the simulation results between Simulation 1 

(SMI1) and Simulation 2 (SMI2), we have found that out of 57 proteins, our 

simulations have correctly predicted the expression levels of total 47 proteins with 

82.45% accuracy (Table 8). Therefore, it is worth to mention that the developed 

model of pancreatic cancer (PC) model and the expression pattern are useful and can 

be used for further analyses, such as drug target identification, new hypotheses 

testing, etc.  

Similar to the analyses of glioblastoma (GS) and colon cancer (CC) scenarios, here 

we have also observed the effect of anti-SMO treatment in pancreatic cancer cell 

model (PC) by perturbing SMO expression. We have observed that the inhibition of 

SMO by small molecule inhibitor can reduce the canonical Hedgehog pathway, but is 

unable to stop the activation signal transduces via cross-talks molecules, which 

eventually activate the GLI transcription factors in the cytoplasm. As a result, the 

anti-SMO treatment performed in our pancreatic cancer (PC) model has still shown 

the active expression pattern of the Hedgehog target onco-proteins (Figure 29B). On 

the other hand, our combination of drug targets (TS3: SMO, HFU, ULK3, RAS, 

ERK12) have successfully reduced the activity of the target onco-proteins (e.g., 

FOXM1, PDGFRA, BCL2, etc.) in the pancreatic cancer (PC) model. 

We have also identified the alternative molecular reaction paths in the pancreatic 

cancer cells, which have caused the anti-SMO resistivity (Figure 29C). We have 

observed that the activation signal on GLI1 and GLI2 in cancer cells can come from 

the cytoplasmic molecules HFU, ULK3, RAS, and ERK12, even after blocking the 

activation signal from SMO protein to GLI1 or GLI2. The alternative reaction paths 

for GLI protein activation depict the intra-cellular molecular mechanisms through 

which the pancreatic cancer cells become resistance of anti-SMO treatment therapy.  
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4.6 DISCUSSION 

Several attempts have been made so far to study the Hedgehog signaling 

pathway to understand its role in organ development and cancer pathogenesis using 

experimental and theoretical approaches [83,167,398,399]. Dillon et al. proposed 

reaction-diffusion kinetic models of Hedgehog signaling pathway to study Patched-

Smoothened interaction and function of SHH as a long range morphogen [317]. A 

dynamic model based approach to analyze the signal transduction and transport 

mechanism of Sonic Hedgehog to study tissue patterning has also been done 

successfully [167]. All of these studies are based on quantitative modeling of coupled 

Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDEs), the 

success of which immensely depend on rate equations, kinetic rate constants, and 

initial concentrations of the pathway species, and hence requires substantial amount 

of data from the biochemical studies. In this context, qualitative modeling approach 

is much more amenable to model larger biochemical reactions network than the 

quantitative modeling approaches based on coupled ODEs/PDEs.  

Qualitative modeling approach, based on semi-dynamic, logic based equations 

using universal logic gates (AND, OR, NOT) can be particularly useful for this 

purpose, in which the model formulation does not depend on finer details of reaction 

kinetics and a large number of pathway species and their interactions/ reactions/ 

connections are modeled by using their logical relationships [400,401]. This also 

enables our understanding that how a large scale biochemical reactions network 

behaves in different conditions at steady-state. Previous attempts have used Boolean 

logic to model developmental pathways for the topological study of interactions that 

enable prediction of patterning in Drosophila melanogaster [402], and exploration of 

the effect of transient perturbations on development of wild type pattern for the 

segment polarity network [403]. However, the implication of logic based modeling 

approach to study the Hedgehog pathway dynamics in cancer pathogenesis is not 

performed earlier. We have observed that the successful implications of logic based 
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approach require the comprehensive knowledge of the network topology and the 

prior knowledge of reaction mechanisms and interdependency of all the associated 

pathway species, starting from extra-cellular ligands to gene transcription regulators. 

We noticed that there was no single database or literature evidence available from 

which we could get such comprehensive information of the pathway. The pathway 

information was highly dispersed in various literature and pathway databases, and 

hence it required manual curation with the expertise of domain knowledge.    

In this study, at first, we reconstructed the Hedgehog signaling network using the 

information available from various sources and tried to include as many as possible 

target output proteins of this pathway (Figure 19). We included the connections of 

the output proteins JAGGED2, WNT, SFRP, CYCLIN_B, CYCLIN_D, CYCLIN_D2,  

CYCLIN_E,  OPN,  SNAI1,  CMYC,  BMI,  BCL2, FOXM1, and PDGFRA with the 

phenotypic outcomes or cellular responses (like Cell proliferation, Cell cycle 

progression and Endothelial to Mesenchymal Transition etc.) and also with three 

other important pathways, viz. WNT, NOTCH, and Anti-Apoptosis 

[86,337,376,377,379-381,404-407]. The inclusion of these output proteins in the 

reconstructed pathway map helped us to understand that how Hedgehog signaling 

pathway controls the major developmental procedures of a cell, such as cell division, 

cell proliferation and also maintains the cross-talks with other pathways. Also, it is 

important to note that most of the output proteins presented in the reconstructed 

map are oncoproteins and thus the developed model is correlated with various types 

of cancers. Also, we included the cross-talk proteins, such as ERK12, RAS, TWIST, 

FAS, NOTCH1, which are not the core hedgehog pathway proteins. The inclusion of 

these proteins in our reconstructed map helped us to depict the regulation or cross-

talks of Hedgehog pathway with other molecules associated with different signaling 

pathways, viz. WNT, NOTCH, and MAPK, etc. Including these non-core proteins, as 

far as the literature and database are concerned, this reconstructed map of Hedgehog 

signaling pathway represents the highest number of molecules and interactions, and 
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is considered for further computational analysis. 

After the pathway reconstruction, we performed graph theoretical and logical 

analysis in the newly reconstructed signaling network. We observed that GLI1 

protein had most number of connections with other proteins in the entire network 

(Figure 21). Hence, we denoted GLI1 as the "hub" protein in the network, which if 

targeted by inhibitor, would trigger maximum damage in the flow of signaling 

cascades in the entire network. Our observation also matches with biological 

evidences, in which it is already identified that certain perturbation (e.g., mutation, 

malfunction, high or low expression, etc.) of this protein can affect the normal 

functioning of Hedgehog pathway and may cause several disease pathologies, such 

as cancers, birth defects, improper organ development, etc. [408-411]. This proteins 

is also found to be associated with the etiology of Glioblastoma, Colon, and 

Pancreatic cancers, in which cancer cells have shown aberrant activation of GLI1 

[388,412,413]. Moreover, we found that PTCH1 had higher importance in the 

network (Figure 22), which supports numerous experimental studies where 

mutation of PTCH1 protein was shown to affect the flow of normal Hedgehog 

signal and cause pancreatic and colon cancer [414]. Higher concentration (i.e., active 

or ON state) of PTCH1 protein in membrane is helpful to regulate the activated 

SMO protein in membrane, so that it cannot further activate GLI proteins in the 

cytoplasm [415]. Also, the high IN-DEGREE value showed by SHH also implies that 

this ligand is mostly regulated by some other extracellular proteins at the time of 

binding with PTCH1/2 (Table 7). It is experimentally proven that the proteins CDO 

and BOC both help to process (or activate) the SHH ligand in the Hedgehog ligand 

secreting cells, whereas GAS1 inhibits SHH to bind with Patched proteins 

(PTCH1/2) in the membrane [416]. SHH is one of the main activator of this pathway 

in several cancer cells, hence from our result it is clear that targeting CDO or BOC 

by small molecule inhibitor in the ligand secreting cells could be helpful to 

attenuate the pathway activity in the receiving cancer cells.  
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On the other hand, the higher OUT DEGREE value of the nuclear proteins 

signifies the role of these proteins to process the hedgehog input signal into the 

output products (Table 7). Therefore, mutation or malfunction of these proteins in 

nucleus would cause over production of various target oncoproteins of the 

Hedgehog pathway. In the case of Eigenvector centrality score, GLI1, SMO, PTCH1, 

GLI3_A had shown significant higher scores as compared to other proteins in the 

network. It implies that these proteins not only have higher number of connections, 

but are also connected with other highly prestigious nodes in the network. We also 

observed that although GLI1 and GLI2 had higher number of connections in the 

network, but the eigenvector centrality of GLI2 was lower as compared to GLI1. We 

analyzed the reason behind this phenomenon, and found that the downstream 

proteins of GLI1 and GLI2 were making the main difference. The downstream node 

of GLI1 is NUC_GLI1, which is also a central node in the network and is connected to 

many other proteins. The downstream of GLI2 protein is NUC_GLI2, which is 

connected with comparably lesser number of proteins in the network as compared to 

NUC_GLI1. This result was also reflected in our Logical analyses, where we 

observed that in case of Glioblastoma, Colon and Pancreatic cancer scenarios the 

number of upstream activator/inhibitor species and downstream activated species of 

NUC_GLI1 was high compared to the NUC_GLI2.  

Also, GLI1, NUC_GLI1, SMO, STK36, and PTCH1 had shown high Betweenness 

centrality score and GLI1, NUC_SUFU, NUC_STK36, DYRK1, NUMB, and ITCH had 

shown high Closeness Centrality score in our analysis (Figure 22). It was clearly seen 

that GLI1 had significant scores in all three kinds of centrality parameters and thus 

we can say that GLI1 was the most centrally situated protein in our reconstructed 

Hedgehog signaling network. Therefore, knock-out or mutation of this protein from 

the Hedgehog signaling network would cause most significant effect in the normal 

cell and would lead the cells towards the cancerous stage [406]. Apart from GLI1 

protein, SMO was also found as another important protein which featured high 
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Eigenvector and Betweenness centrality scores (Table 7). The Closeness centrality 

score showed by most of the nuclear proteins implied that these were the proteins 

that were connected with lower number connections to the other proteins in the 

network and thus regulated by maximum number of proteins in the network. 

Therefore, certain disturbance in the other proteins can perturb the normal activity of 

these proteins in the network.  

In order to analyze the importance of this signaling pathway as well as the 

individual proteins involved in Glioblastoma, Colon, and Pancreatic cancer cell lines, 

we developed Boolean or Logical models or scenarios. We found that, if we 

perturbed the logical states of SMO, GLI1 and GLI2 proteins from 1 to 0 in 

Glioblastoma model scenario (GS), it will be possible to suppress the expression of 

various output proteins (e.g., JAGGED2, WNT, SFRP, CYCLIN_B, CYCLIN_D, 

CYCLIN_D2, CYCLIN_E, OPN, SNAI1, CMYC, BMI, BCL2, FOXM1, PDGFRA, etc.) 

as well as the phenotypic expressions of the Glioblastoma affected cell (Figure 24). 

Therefore we propose that inhibition of these proteins would be helpful for the 

therapeutic treatment of Glioblastoma. We observed that there were several proteins 

which were activating the GLI transcription factors in cytoplasm and these proteins 

were connected with other signalling pathways. Therefore inhibiting those proteins 

could affect the normal functioning of other pathways. In order to prevent such side-

effects, we propose that, in Glioblastoma cancer cells, selectively targeting SMO in 

cell membrane, and inhibiting the nuclear translocation of activated GLI1 and GLI2 

within cytoplasm would be more effective to completely shut down the Hedgehog 

pathway by suppressing the activity of different proteins responsible for 

uncontrolled cellular proliferation. Also, inhibition of the activity of GLI2 protein 

was necessary to prevent its positive feedback loop to GLI1 activation. 

In case of Colon cancer scenario, we found that inhibition of SMO, HFU, ULK3 

and RAS was useful to suppress the expressions of various responsive proteins of 

Hedgehog pathway (Figure 25). Several experimental studies have already proven 
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the correlation of the mutation of ras gene with the Colon cancer [417,418]. As this 

protein was one of the activator of GLI1 in cytoplasm, therefore inhibition of RAS 

may also help to shut down the Hedgehog pathway. Hence, targeting RAS in 

cytoplasm would be effective to reduce the over activation of GLI proteins in 

cytoplasm and consequently several oncoproteins like PDGFRA, BMI, SNAI1, etc. of 

Hedgehog signaling. Few studies have already reported that mutated RAS family 

proteins could be the suitable drug targets for treating various types of cancer 

[419,420] [90,91], which also supports our computational findings. On the other 

hand, our analysis also revealed that suppression of SMO, HFU and ULK3 by 

external drug would be required to completely shut down the Hedgehog signaling 

in the colon cancer cells. Therefore, we propose that in order to shut down the effect 

of Hedgehog signaling in colon cancer cell line for in-vitro or in-vivo analysis, one 

could also think a combination of drugs that will suppress the activity of SMO, 

HFU, ULK3 and RAS proteins altogether. 

From our analysis, we also suggested a minimal combination of proteins, SMO, 

HFU, ULK3, RAS and ERK12, the expressions of which needed to be inhibited so as 

to control the effect of mutated hedgehog signaling pathway in pancreatic cancer by 

suppressing the activity of different proteins responsible for uncontrolled cellular 

proliferation (Figure 26). Also, suppression of HFU and ULK3 proteins in cytoplasm 

would be helpful to block the enhanced activation of GLI proteins. Experimental 

studies have already proven their role to activate and enhance the production of 

phosphorylated GLI transcription factors in the Hedgehog signaling pathway [343]. 

This perturbation would decrease the concentration of NUC_GLI1, NUC_GLI2 and 

GLI3_A in nucleus and consequently bring down the production of various output 

proteins of Hedgehog signaling network. 

All the developed cancer models were validated with the existing microarray 

data for these three types of cancer and also simulated using the experimental data 

(Figure 27A, Figure 28A, and Figure 29A). In both the cases our model predictions 
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showed promising validations with the experimental results (Table 8). Moreover, to 

determine the alternative pathways which are still active under drug treatment, we 

refined the model simulation by only inhibiting SMO in three types of cancer 

scenarios and compared the results with the corresponding treatment scenarios 

(Figure 27B,  Figure 28B, and Figure 29B). Using this analysis we found the 

alternative pathways in each cancer scenarios, which have the ability to up-regulate 

the GLI proteins without the help of hedgehog ligands  (Figure 27C, Figure 28C, 

and Figure 29C). 

4.7 CONCLUSION 

Hence, we have proven our proposed hypotheses of the existence of active 

signaling modules in Hedgehog pathway, which are responsible for creating drug-

resistivity during anti-SMO treatment. Also, we have proven that the combinations 

of potential drug targets (TS1, TS2, and TS3) can be more effective than targeting the 

single receptor protein SMO in target-based anti-cancer therapeutics. However, our 

logical model had also some limitations, as it was unable to present the quantitative 

measurements of the expression levels of the genes/proteins, the rate of inhibition 

required in combinatorial therapy, or the dose dependent scenarios in the treatment 

of cancer cells. Despite its limitations, our model helped us to identify the expression 

levels of different proteins, which were ‘‘not determined’’ in the experiments. The 

proteins identified as probable drug targets from these simulations were not novel 

targets, and individually their efficacy as drug targets was tested experimentally. But 

the optimal combinations of drug targets used in these simulations are new and to 

the best of our knowledge, the effectiveness of targeting these proteins in 

combinatorial drug target therapy is not tested yet. Therefore, our in-silico 

simulations identified the "novel combinations" of drug targets from the large scale 

network of Hedgehog pathway, which can be helpful to the experimental biologists 

as well as pharmacologists to develop optimal targeted therapy.  
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Chapter 5 
__________________________________________________________________________________ 

 

5 UNDERSTANDING THE ROLE OF NOTCH SIGNALING 

PATHWAY IN THE GROWTH OF GLIOBLASTOMA CELLS 

UNDER STEADY STATE 

__________________________________________________________________________________ 

5.1 INTRODUCTION4 

Notch signaling pathway is a conserved developmental intra-cellular pathway, 

which is involved in cell fate determination, stem cells renewal at the stage of 

embryonic development and also plays essential roles in tissue and organ 

development, hematopoiesis, vascular growth, etc. in the adult stage of human [421-

424]. The canonical Notch pathway is activated when the membrane-associated 

ligands (DELTA or JAGGED family proteins) of the transducer cells interact on the 

membrane-bound NOTCH receptor proteins of the juxtaposed receiver cells [425]. 

After the ligand-receptor binding, the complex undergoes several enzymatic 

reactions, which involve the enzymes, such as ADAM, TACE, and the GAMMA-

SECRETASE enzyme complex formed by PRESENILIN, NICASTRIN, APH-1, and 

PEN-2 proteins in the membrane of the receiver cells. The ankyrin domains present 

in the intracellular portion of NOTCH family receptor proteins (NOTCH1, NOTCH2, 

NOTCH3, and NOTCH4) are catalytically cleaved with the help of the enzyme 

complex GAMMA-SECRETASE. The cleaved portion of is a truncated protein and 

generally known as the Notch intracellular domain (or NICD). There are four types 

of NICDs viz. NICD1, NICD2, NICD3, NICD4 can be present in the cells, which are 

mainly produced from the four homologues of NOTCH proteins. NICDs then 

translocates into the nucleus, where it binds with the transcription factor complex 

                                                           
4
 The materials of this chapter has been taken verbatim from our previously published articles (a) 

Chowdhury and Sarkar, Clin Exp Pharmacol., 2013 
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CSL (CBF1/Su(H)/Lag-1) and starts transcription of its target genes, such as 

HES/HEY family of genes and various others genes related to cell cycle progression, 

anti-apoptosis, and so on [426-429]. Thus, Notch pathway operates various cellular 

functions including cell division, cell cycle progressions, cell growth, anti-apoptosis, 

differentiation, etc. through transcription of various target genes and activation of 

other signaling and metabolic pathways in the cell [430-434].  

However, sometimes this entire concerted process diverges from its main 

objective and triggers the development of various types of cancers, such as 

glioblastoma, breast cancer, osteosarcoma, prostate cancer, melanoma, T-cell acute 

lymphoblastic lymphoma/leukemia, and so on [435-442]. In the previous reports, we 

have found that Notch pathway plays significant roles in the maturations of 

astrocytes/oligodendrocytes cells from the neural stem cells in the sub-ventricular 

zone (SVZ) of the adult human brain [443-445]. Previous reports have also asserted 

that during tumorigenesis in the human brain, specific somatic or genetic mutations 

in the matured astrocytes/oligodendrocytes (commonly known as Glial cells) cause 

abnormal growth and eventually convert the cells towards tumor formation 

[446,447]. Hence, it is expected to observe that the suppressor pathways of 

tumorigenesis, such as Notch pathway also gets hijacked by the mutations in the 

glial cells, and is redirected towards the development of astrocytomas or 

oligodendrogliomas (or Glioblastoma) in SVZ [448,449].         

5.2 CURRENT CHALLENGES 

The identification of drug-targetable proteins in the Notch signaling pathway to 

reduce the growth of Glioblastoma tumor cells is always a major area of research in 

target-based tumor therapeutics [450]. The membrane-bound enzyme protein, 

GAMMA-SECRETASE is widely used as a potential drug target to reduce the Notch 

pathway activity in Glioblastoma treatment therapy [451]. Although, the GAMMA-

SECRETASE inhibition (GSI) therapy had proven succesfull for reducing the growth 
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of GBM cells, but later studies have found that GBM cells may generate resistivity 

against GSI therapy [452]. Also, during the clinical trial (Phase III trial of Alzheimer's 

disease) of the small molecule inhibitor of GAMMA-SECRETASE protein 

Semagacestat (LY450139), the molecule has failed to meet the desired objective and is 

found to be associated with several risk factors including skin cancer [453]. GSI is 

also associated with several others long term side effects, such as gastrointestinal 

toxicity and diarrhea [454]. The principal reason behind the appearance of such 

toxicity in GSI is because of its wide array of substrates in the cells (including 

NOTCH) and its involvement in the enzymatic cleavage of different proteins in the 

cell and mitochondrial membrane [455-458]. An in-vivo study performed on 

transgenic mice model to observe the consequence of the inhibition of GAMMA-

SECRETASE protein had shown that GSI therapy had impaired the development of 

lymphocyte and altered the tissue morphology in the intestine [459]. Due to these 

reasons, although GSI is effective to inhibit Notch pathway activity in cancer cells, 

still the target protein GAMMA-SECRETASE cannot be used for the treatment of 

GBM and other cancer patients. The other drug targets of this pathway, such as 

NOTCH1, NOTCH4, DLL4, NRARP etc. have also failed to show desirable outcomes 

due to toxicity and side effects [31].    

On the other hand, identification of suitable and alternative drug targets for the 

inhibition of aberrantly activated Notch pathway in Glioblasotma (GBM) cells is also 

a major challenge. It requires the understanding of the complex mechanisms that are 

governing the normal functioning of Notch signaling pathway in normal cells, and 

the processes through which it gets deregulated in the cancer cells. The complex 

circuitry of this pathway, which includes several regulations, feedback loops, cross-

talks, etc. have made the drug targets identification process a more challenging task. 

Moreover, the comprehensive information of this pathway is also limited in the cell 

signaling databases, and the information is mostly scattered in literature. Integrations 

of the scattered experimental findings are also not done yet. Moreover, to study 
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effects of new drug targets through in-vitro and in-vivo analyses is also a challenging 

task.   

5.3 HYPOTHESES AND OBJECTIVES 

In order to address the previously mentioned challenges, here we have 

hypothesized that the alternative of GAMMA-SECRETASE protein as drug target 

can be used for the treatment of GBM cells which are non-responsive to GSI therapy. 

Our conjecture is that by suppressing the Notch pathway activity at the steady-state 

level, there is a chance of reducing the expressions of the target oncogenes of Notch 

pathway and thus we can reduce the growth of Glioblastoma. Hence, to test our 

hypotheses, we need to understand the mechanistic regulations of Notch signaling 

cascades under normal and GBM pathogenic scenario and the effects of pathway 

regulations in the expressions of the target genes/proteins in these two scenarios. We 

require the absolute understandings of the topological properties of the network by 

finding out the largest "hub" and central nodes, diversities of the flow of reaction 

cascades from the extra-cellular region to the nucleus, influence of several feedbacks 

and cross-talk reactions, dependencies of various pathway species with cellular 

phenotypes, and so on in the outcomes of tumorigenesis process.  

Our main objective in this work is to identify the alternative molecular reaction 

routes other than the GAMMA-SECRETASE mediated pathway activation process in 

the comprehensive network of Notch pathway, which can be further used for 

suppressing the pathway activities in GBM cells. To fulfill this objective, we will at 

first curate a most up to date and comprehensive map of human cell specific Notch 

signaling pathway by assembling the interactions data found in literature and 

signaling pathway databases (Appendix Table 7). The reconstructed map will be 

then analyzed using graph theoretical analyses with the aim of identifying central 

nodes in the network. The reconstructed map will be also analyzed using logical 

equations and a master model will be created to simulate the normal and GBM 
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scenarios. The expressions/activities of the proteins at the steady-states will be 

measured and compared between these scenarios. The models outcomes will be 

validated with the experimental data and if the master model shows promising 

results to simulate the normal and GBM scenarios, then it will be further used for 

simulating the effects of non-responsive GAMMA-SECRETASE inhibition (GSI) 

scenario in the GBM model. The objective of developing the GSI scenario is to 

analyze and compare the expression patterns of target oncogenes/proteins in GSI 

resistant cells versus GBM scenarios, and subsequently identify the alternative 

molecular reaction routes (or drug targets) to suppress the Notch activity without 

using GSI. Finally, by combining the outcomes of graph theoretical results for 

identifying the hub proteins and the outcomes of logical simulations for identifying 

the molecular reaction routes, our objective will be to perform in-silico perturbation 

analyses of an individual or a set of proteins on GBM scenario with the aim of 

finding out alternative drug target of GAMMA-SECRETASE enzyme complex. 

5.4 RESULTS 

5.4.1 Reconstructed Map of Notch Signaling Network 

5.4.1.1 Pathway Statistics 

In this work, we have reconstructed a comprehensive, most up to date and largest 

human cell specific Notch signaling pathway to the best of our knowledge. The entire 

Notch pathway (Figure 30) was annotated and reconstructed manually by collating 

the data from various literature, experimental findings, and biological databases 

(Appendix Table 1). Although the basic core pathway is same as the pathway map 

available in the existing signaling databases, but to the best of our knowledge the 

newly reconstructed pathway map consists up to date information of interaction data 

which is not available in any freely available major academic databases. 

In this reconstructed pathway map, we included 115 molecules (96 core and 19 

cross talking pathway molecules including proteins and organic compounds) and 
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231 molecular interactions. 

 

Figure 30: Reconstructed map of the human Notch signaling pathway. 

All the pathway species (proteins, metabolites, truncated proteins, co-activators, co-

repressors, and phenotypes) in the diagram are color coded as per the locations and 

hierarchy. Physical interactions are shown by black arrow, whereas blue colored arrows are 

enzyme mediated reactions. Protein truncation is shown by brown arrow. Gene 

transcription, followed by protein synthesis is depicted by magenta colored arrows, nuclear 

translocation is by dotted black arrows, activation is by green arrows, and phosphorylation is 

by orange arrows. Red arrows depict inhibitions. All the target genes/proteins (yellow 

colored) of Notch pathway are mapped with phenotypes at the bottom level of the diagram.    
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Different types of molecular reactions such as physical interaction, enzymatic 

reactions, phosphorylation, protein synthesis, activation, inhibition, and nuclear 

translocation etc. were also considered to construct the pathway map. A comparison 

between this reconstructed notch pathway data (i.e., total number of molecules and 

interactions) with the pathway information from other major biochemical signaling 

databases (e.g., KEGG, Biocarta, Netpath, etc.) is presented in Table 9. 

Table 9: Comparative Statistics of the Reconstructed Notch Pathway Data 

Database Name Molecules* Interactions* 

Our Reconstructed Pathway 115 231 

KEGG 24 15 
Biocarta 7 10 
NetPath 85 138 
Pathway Central 16 11 
Cell Signaling Technology 22 18 
Protein Lounge 13 12 

5.4.1.2 Description of the Reconstructed Notch Pathway  

Reactions in the extracellular & membrane region: Previous experimental 

findings have identified that all four homologues of NOTCH receptor protein can 

express in the cell membrane of the Notch ‚Signal receiver‛ cells, whereas the 

membrane bound ligands JAG/DLL class proteins are expressed in the membrane of 

notch signal ‚Transducer cells‛ [460]. In the reconstructed pathway map (Figure 30), 

we have shown these proteins in the membrane regions of both the cells. Moreover, 

Notch pathway can also be activated by the interactions between microfibrillar 

proteins MAGP1 and MAGP2, CONTACTIN/F3 (CNTN1), or Nephroblastoma over-

expressed (NOV) proteins with Notch receptors [461-464]. We have shown these 

proteins separately in the extracellular regions in the pathway map. However, all 

ligand-receptors interactions (i.e., JAG/DLL mediated or MAGP1/ MAGP2/ CNTN1/ 

NOV mediated) follow the complex common proteolytic cleavage of NOTCH 

receptors and produces Notch Extracellular Domain (NECD) and Notch Extracellular 

Truncated Protein (NEXT) from the four Notch receptor proteins [460].                 
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These proteolytic cleavage reactions are shown by brown arrows in the pathway 

map. We have found that the metalloprotease enzyme TACE helps at this step to 

cleave the Notch receptors [465]. Subsequent to these reactions, all the truncated 

proteins NEXT1/2/3/4 are again cleaved by another proteolytic enzyme GAMMA 

SECRETASE enzyme complex present in the cell membrane (Figure 30). 

Reactions in the cytoplasm: Followed by the GAMMA-SECRETASE mediated 

reactions, four NEXT proteins produce four homologues of Notch Intracellular 

Domains (NICD1/2/3/4) which are then translocated into the nucleus [460]. During 

this translocation time, NICD proteins encounter other activators (RAS, GSK_3BETA, 

and WDR12) and inhibitors (DVL, JIP1) proteins in the cytoplasm [466-469]. The post 

translation modification of Notch precursor proteins (NOTCH1_PRE, 

NOTCH2_PRE, NOTCH3_PRE and NOTCH4_PRE) are also shown included in the 

reconstructed map. In these reactions, notch precursors undergo several 

glycosylation or fucosylation reactions by Glucose, Galactose, Fucose and the 

enzymes POGLUT_1, FRINGE, GASE, POFUT_1, etc. in the cytoplasm or ER [470-

473]. These post translational modifications of notch precursors increase the 

specificity of ligand receptors interactions in the membrane. On the other hand, 

Xylosylatin by Xylose with the help of the enzyme Xylosyltransferase (XYLE) is also 

observed in several cases which in turn reduce the specificity of notch ligand 

bindings [470].  

Reactions in the nucleus: The truncated NICD1/2/3/4 proteins enter into the 

nucleus and interact with another transcription factor complex CSL [460]. In the 

absence of NICDs, CSL forms a transcription repressor complex with the 

transcription co-repressor (COR) proteins SMRT, SAP30, HDAC, CIR, and SIN3A in 

the nucleus [474-477]. On the other hand, in presence of NICDs, when CSL makes 

transcription factor complex, there are other set of proteins, viz. MAML, SKIP, HAT, 

and EP300 act as transcription co-activator (COA). The transcription factor complex 

of NICD-CSL-COA transcribe the Notch target genes/proteins, such as HES1, HES5, 
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HEY1, HEY2, HEYL, BCL2, P65, and NOTCH1/2/3/4, etc. [33,478-482] Besides this 

CSL/NICD/COR/COA mediated transcription, it is also reported that Notch pathway 

can be activated by CONTACTIN/F3 (CNTN1) mediated interaction, which requires 

the involvements of DTX1 as a transcription co-activator to produce the protein 

MAG. This protein is involved in the oligodendrocyte maturation and myelination 

[463]. 

Cross-talks with other pathways: Notch pathway has cross connections with 

different signaling pathways such as, JAK/STAT, PTEN/PI3K/AKT, RAS/MAPK, 

TGFB/SMAD3, CYCLIN/CDK, HYPOXIA/HIF1A, BCL2/IAP/ANTI-APOPTOSIS, 

P65/P50/NFKB etc., [445,473,479,483-491]. In our reconstructed Notch pathway map, 

we have tried to include more number of cross-talks reactions with core proteins of 

Notch pathway. We have included only those cross-talk molecules of other pathways 

that had direct interaction/influence on the core proteins of Notch pathway. For 

example, we have added the cross-talk of PTEN/ PI3K/AKT pathway with HES 

protein in the pathway map. We have found in the literature that the output proteins 

HES1 or HES5 directly inhibit the activity of PTEN protein, and thus activate the 

PI3K/AKT pathway [492,493]. Please see Section 2.2 of Materials and Methods for 

more details of pathway reconstruction procedures.   

5.4.2 Topology of Notch signaling network 

5.4.2.1 Identification of Feedback Loops  

The reconstructed map of Notch signaling pathway is further analyzed by graph 

or network theory. We have used MCODE algorithm to find out the sub-graphs (or 

cluster of nodes) in the entire network [494]. Using this algorithm (implemented as a 

plug-in package in Cytoscape [209]), we have identified few feedback loops in the 

reconstructed map of Notch pathway. We have found a cyclic feedback loop HIF1A -

-> NICD1 --> HES1/5 --> JAK/STAT --> HIF1A in the network. We have observed that 

HIF1A (a core protein of Hypoxia pathway) can activate NICD1/2/3/4 in the 
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cytoplasm, which in turn helps to produce HES1/5 as well as the other Notch 

pathway target proteins [495]. We have found that HES1/5 proteins help to stabilize 

the JAK2/STAT3 complex formation. The stable JAK3/STAT3 complex is required to 

produce phosphorylated form of STAT3 protein (STAT3_P), which binds in the 

promoter region of HIF1A gene and synthesize its transcript [491].  

We have also found a double negative feedback loop between P53 and Notch 

signaling proteins NICDs. We have found that the phosphorylated P53 protein 

inhibits NICDs in the nucleus (NUC_NICD1/2/3/4) and terminates its transcription 

mechanisms. On the other hand, the phosphorylation reaction of P53 is blocked by 

NICD1/2/3/4 in the cytoplasm [488,496].  Besides, these two sub-graphs or clusters, 

we have also observed a comparatively larger feedback loop within the pathway, 

which is formed by the the precursor of NOTCH proteins, Notch receptors, and 

NICDs (NOTCH_Precussors --> NOTCH --> NICD --> NOTCH_Precussors). 

Synthesis of Notch precursor proteins contributes a strong positive feedback effect in 

the entire network. Besides, we have also found another strong negative feedback 

loop, which is formed between Notch-regulated ankyrin repeat-containing protein 

(NRARP) and NICDs, which was one of the Notch targeted output proteins. 

NUC_NICD1/2/3/4 produces this protein as a target, but this protein inhibits the 

translocation of NICD1/2/3/4 proteins to the nucleus [497]. 

5.4.2.2 Identification of Central Nodes in the Network 

In order to identify the important "Hubs" or central nodes or proteins in the 

network, we have measured the connectivity and centrality parameters of the 

network, such as "Degree", "Closeness", "Betweenness", and "Eigenvector" centrality 

(See Section 2.4). We have computed the numerical values of these parameters for 

each node and measured the average values of each of the parameters.  After that, we 

have extracted the significant nodes/proteins, if the protein/node has higher value of 

the parameter than the corresponding average value of the parameter (Table 10). 
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We have observed from In-Degree calculation that almost all the four 

homologues of Notch receptors (NOTCH1/2/3/4), the Notch precursors and the 

Notch Intracellular domains (NICD1/2/3/4) proteins have high In-Degree values as 

compared to the other proteins in the network (average value of In-Degree of the 

entire network: 1.97).  

Table 10: Significant Proteins of Notch Signaling Pathway Identified through 

Topological Analyses 

Network 

Parameters 

Average 

Value 
Name of molecules 

In-Degree 1.97 NOTCH1, NOTCH2, NOTCH3, NOTCH4, 

GAMMA_SECRETASE, NICD1, NICD2, NICD3, NICD4, 

NOTCH1_PRE, NOTCH2_PRE, NOTCH3_PRE, NOTCH4_PRE, 

NUC_NICD1, NUC_NICD2, NUC_NICD3, NUC_NICD4, CSL, 

COA, SMRT, COR, HDAC, YY1, STAT3 

Out-Degree 1.97 JAG1,JAG2,DLL1,DLL4,DLL3,TACE,GAMMA_SECRETASE,DVL,

POGLUT1,O_GLUCOSE,POFUT_1,O_FUCOSE,XYLE,XYL,GASE,

GALACTOSE,FRINGE,NGA,GSK_3BETA,P53_P,NUC_NICD1,N

UC_NICD2,NUC_NICD3,NUC_NICD4,CSL,DTX1,FBW7,SKIP,C

DK8,HIF1A,HES1,NRARP 

Total-Degree 3.94 NOTCH1, NOTCH2, NOTCH3, NOTCH4, 

GAMMA_SECRETASE, NICD1, NICD2, NICD3, NICD4, 

NOTCH1_PRE, NOTCH2_PRE, POGLUT1, O_GLUCOSE, 

NOTCH3_PRE, NOTCH4_PRE, POFUT_1, O_FUCOSE, XYLE, 

XYL, GASE, GALACTOSE, FRINGE, NGA, P53_P, NUC_NICD1, 

NUC_NICD2, NUC_NICD3, NUC_NICD4, CSL, , YY1, HIF1A, 

NRARP 

Eigenvector 

Centrality 

0.20 NICD1,NICD2,NICD3,NICD4,NOTCH1_PRE,NOTCH2_PRE,NO

TCH3_PRE,NOTCH4_PRE,NUC_NICD1,COA,HAT,SMRT,COR,

HDAC,YY1,HES1,STAT3,HES5,JAK2,HEY1,HEY2,MAG,NRARP,

NFKB,MYOD,GATA3,CD44,P21,KLF5,PTCRA,REL_B,C_REL,P50,

P65,SOX9,BCL2,IAP,FLIP,CCND1,CCND3,MKP_1,HEYL,HES7 

Closeness 

Centrality 

0.002 JAG1,NOTCH1,JAG2,DLL1,DLL4,DLL3,NOTCH2,NOTCH3,NOT

CH4,MAGP1,MAGP2,TACE,NOV,CNTN1,PRESENILIN1,GAMM

A_SECRETASE,APH1,NICASTRIN,PEN2,NEXT1,NEXT2,NEXT3,

NEXT4,NICD1,NICD2,NICD3,NICD4,DVL,WDR12,GSK_3BETA,J

IP1,RAS,P53,P53_P,NUC_NICD1,NUC_NICD2,NUC_NICD3,NU

C_NICD4,SMAD3,CSL,DTX1,FBW7,EP300,COA,SKIP,HAT,MAM

L,SMRT,COR,SAP30,HDAC,CIR,SIN3A,CDK8,STAT3_P,NUC_ST

AT3,HIF1A,HES1,STAT3,HES5,JAK2,NRARP 

Betweenness 

Centrality 

107.94 NOTCH1,NOTCH2,GAMMA_SECRETASE,NEXT1,NEXT2,NEXT

3,NEXT4,NICD1,NICD2,NICD3,NICD4,NUC_NICD1,NUC_NICD

2,NUC_NICD3,NUC_NICD4,CSL,STAT3_P,NUC_STAT3,HIF1A,

HES1,STAT3,HES5,NRARP,PTEN 

NOTCH1 has high values compared to the other homologues NOTCH2/3/4. 
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Similarly, NOTCH1_PRECURSOR and NICD1 have shown higher as compared to 

the other homologues present in the network. This result clearly signifies the 

importance of NOTCH1 receptor protein, its precursor, and its truncated portion 

(NICD1) in compare to all other homologues in the entire network. As expected, in 

case of Out-Degree parameter calculations data (average Out-Degree of the network: 

1.97), we have observed that the nuclear protein CSL has highest number of Out-

Degree value in the network. CSL is mostly connected with the target genes of Notch 

pathway the network, and therefore its importance in terms of Out-Degree 

calculation is very high as compared to all other nodes. Apart from CSL, the NOTCH 

ligands, GAMMA_SECRETASE enzyme complex, and the enzymes, such as 

POGLUT_1, POFUT_1, Galactosyltransferase (GASE), have higher maginitudes of 

Out-Degree values in the network. On the other hand there are also some inhibitor 

molecules or complex like Co-repressor complex (COR), HDAC, SMRT and the 

phosphorylated form of P53 (inhibitors of NUC_NICD1/2/3/4) which also have 

significant number of Out-Degree values in the network. This result signifies that the 

stimulation of Notch pathway activity is mostly triggered by these molecules in the 

network and targeting these proteins during pathway activation will create profound 

effects in the signal transductions mechanisms (Table 10). 

The average Eigen vector centrality of the whole network is 0.20 (Table 10). We 

have found that the nuclear transcription factor CSL has the highest value in the 

network. Interestingly, we have also found that the cross-talk protein STAT3 has 

significant Eigenvector centrality in the network, although it has lower number of 

connectivity (Degree centrality) in the network. The reason behind of STAT3 

showing higher Eigenvector centrality is that it is connected (in-degree connections) 

with the Notch target proteins HES1 and HES5. These two proteins are again 

connected with the hub proteins, such as NUC_NICD1/2/4 and CSL in the network. 

Due to this reason, STAT3 gets higher Eigenvector centrality as its connections HES1 

and HES5 are connected with the most influential nodes in the network. Similarly, 
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we have observed the higher Eigenvector centrality of the transcription co-repressor 

proteins HADC and SMRT, which in turn implies the importance of these proteins in 

the transcriptional mechanisms and the activities of the whole network. 

The Closeness centrality (average 0.002) values of all individual molecules in 

Notch pathway have revealed that CSL is the closely places node in the entire 

network with lowest number of shortest paths or connections (Table 10). This 

signifies that to influence a node in the network, CSL protein will be the highest 

priority protein to start with. Simultaneously, NRARP, HIF1A, STAT3 have also 

shown higher Closeness centrality values in the network. Similar to the Eigenvector 

centrality, herein we have also identified the feedback effects of other important 

proteins, such as NICD1/2/3/4 or HES1/5 in the network, which in turn has increased 

the closeness of HIF1A, STAT3, NRARP proteins in the network.     

We have also measured another important centrality parameter called 

Betweenness centrality (Table 10). As expected, we have found that CSL has highest 

Betweenness centrality value in the network as the synthesis of all the output 

proteins are mediated by this protein the nucleus. We have also found that NICD1 

has higher Betweenness centrality value as compared to its other homologues (i.e., 

NICD2/3/4). We have checked its connectivity profile and found that unlike the other 

three homologues of these proteins, NICD1 has extra three upstream regulators 

proteins: RAS, JIP1 and WDR12 as well as P53 protein in its downstream. It is also 

connected with its nuclear counterpart NUC_NICD1, which has additional 

downstream target genes (e.g., BCL2, FLIP, IAP, P21, P65, P50, C_REL, REL_B) for 

transcription than its counterparts NUC_NICD2/3/4. Hence, more number of shortest 

paths intersects this protein and thus enhances its Betweenness centrality score.   

Although the topological analysis is useful to identify the important proteins 

from such a large complex network and have helped us to identify the probable drug 

targets to suppress the activity of maximum Notch target proteins, but using this 
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technique we are unable to identify the exact proteins that are directly or indirectly 

influenced by these identified proteins. This is one of the limitations of the graph 

theoretical analyses. Hence, to overcome this drawback and to test the effect of 

mutation or deregulation of important proteins in the network under certain 

circumstances as well as to identify the new biomarkers of Notch pathway, we have 

performed logical or semi-dynamic analysis of the reconstructed network. 

5.4.3 Logical Analyses of Notch Signaling Network 

The entire reconstructed map of Notch pathway is modeled using Boolean 

algebra (See Section 2.5.3). We have also extracted the input nodes (source) and the 

rest intermediate and output nodes (sink) from the logical hyper-graphs. The logical 

equations (master model) are at first used for constructing the normal Notch 

pathway scenario (NNS) (Appendix Table 7), in which we have considered the 

normal expression pattern (Appendix Table 8) of the input nodes as binary values 

(Up or Down). We have simulated the model in CellNetAnalyzer to observe the 

steady-state expression patterns of the intermediates and target proteins (outputs). 

Followed this, to create the GBM tumor scenario (GBS), we have at first performed 

the differential expression analysis of primary Grade-IV GBM tumor versus normal 

cells (GBE) [219] and extracted the differentially expressed transcripts of the input, 

intermediate, and output proteins of the master model (Appendix Table 8). The 

initial states of the input proteins are considered as "1" or "Up", if the transcript of the 

protein in the differential expressions analyses has shown significant up regulation 

and vice-versa (Appendix Table 8).  

However, in few cases, the transcripts of the input proteins have shown 

insignificant expression pattern as compared to the normal cells. In that scenario, we 

have consulted the literature references for the expected expressions or activities (up 

or down) of those insignificant proteins in the GBM cells and considered their initial 

expressions accordingly. For example, in the differential expression analysis, we have 



180 | P a g e  
 

observed that the expression of JAK2 protein in GBM cells is not significantly 

expressed as compared to the normal cells, because JAK2 is a common protein and it 

can express normally in both GBM and normal cells. However, in another 

experiments (from literature references), we have found that JAK2 protein can be 

also over-expressed in the GBM cells [498,499]. Hence, we have considered initial 

expression of JAK2 protein as 1 or Up in the GBS model (Appendix Table 8). 

5.4.4 Validations of GBS and NNS Models 

We have extracted the logical steady-states of all the nodes in the developed NNS 

and GBS models using the initial states (See Section 2.5.3) (Figure 31A). The logical 

steady-states of the intermediate and the output nodes observed in NNS and GBS 

models are shown in Figure 31B. We have found that in the differential expression 

analyses of the microarray data of GBM cells versus normal cells (GEO: GSE4290), 35 

proteins out of 54 proteins in the input list have shown significant expressions (either 

Up or Down) in the GBM cells in contrast to the normal glial cells (Figure 31A) [219]. 

Similarly, in the intermediate and output list, 25 out of 62 proteins have shown 

significant expressions in the GBM cells (Figure 31B). Our model simulation of GMB 

model (GBS) has correctly predicted the expressions of 21 proteins with accuracy of 

84% out of the 25 significantly expressed proteins in the output list (Figure 31B). Our 

model simulation (GBS) has predicted the expressions of NOTCH1, NOTCH2, 

NOTCH3, HES7, and HEYL proteins (up-regulation) exact to the expressions 

observed in the differential expression analyses of GBM cells (GBE). Also, it has 

correctly predicted the oncoproteins related to GBM growth, such as HIF1A, MKP-1, 

FLIP, SOX9, etc. The tumor suppressor protein PTEN, which is down-regulated in 

the GBM cells, is also found at the down regulated state in our logical steady-state 

simulation of GBS. Apart from this, our simulation has also predicted expressions of 

the remaining 38 proteins, which can be validated with other experimental 

(microarray, RNA-Seq) data. The accuracy level of GBS model confirms the useful of 

the GBS model for further GSI analyses and new drug targets identification process. 
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Figure 31: Logical states of the nodes observed in differential expression analyses and 

simulations of NNS and GBS models. 

(A) Represents the logical states of the input nodes observed in experimental data of 

Glioblastoma cells (GEO: GSE4290) and in simulations of GBS and NNS scenarios. (B) 

Represents the differential expression patterns observed for the output proteins in the same 

microarray experiment and the logical states under steady-states of NNS and GBS 

simulations. The transcripts of few proteins from both the lists have shown insignificant 

expression in the differential expression studies of normal and GBM cells.  
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5.4.5 Simulation of GSI Non-Responsive Scenario 

We have targeted the GAMMA-SECRETASE enzyme complex in our master 

model to create the non-responsive GSI scenario (See Section 2.5.3). We have 

constitutively kept the expression of this node in the model simulation as ‘0‛ or ‘OFF’ 

in the GBM model scenario (GBS) and simulated the expressions of the intermediate 

and output proteins. The expressions of Notch pathway proteins in GSI are collected 

from the previous performed experiment in GBM cells [500]. The known GAMMA-

SECRETASE inhibitors, such as DAPT, BMS-708163, and RO4929097 are used in 

GBM cells and the expressions of Notch pathway proteins (Appendix Table 8) are 

measured. In the experimental outcomes, it is observed that in the GSI responder 

(sensitive) cells, the Notch pathway proteins, such as NOTCH1, NOTCH3, HES1, 

MAML, DLL3, and JAG2, etc. are up-regulated before treamtent and down-regulated 

after performing GSI using DAPT, BMS-708163, and RO4929097. 

We have found similar results (data not shown) in our GBS scenario, if we 

consider only the canonical Notch pathway activity in GBM cells. However, if we 

consider the non-canonical activation and cross-talk effects of Notch signaling in 

GBM cells, we have found that GSI is not effective for the treatment of GBM cells. 

Almost, every Notch target genes (except MYC, MYOD, and MAG) are still active in 

after suppressing GAMMA-SECRETASE enzyme complex in GBS (Figure 32B). 

Thus, we have created the GSI non-responsive (resistive) GBM scenario, in which GSI 

treatment will not be effective. 

5.4.6 Variations in the number of activator and inhibitor nodes in the NNS, GBS, 

and GSI scenarios 

We have also computed the total number of upstream activator and inhibitor, and 

the downstream activated and inhibited nodes for each of the node in the NNS, GBS, 

and GSI scenarios. We have observed that mostly all the Notch target proteins 

(including the oncogenic proteins, such as BCL2, FLIP, SOX9, etc.) of GBS has higher 

number of upstream activator nodes in GBS as compared to the NNS (Figure 33A). 
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Figure 32: Logical states of the nodes observed in experimental analyses and simulations 

of NNS, GBS, and GSI models. 

(A) Represents the logical states of the input nodes observed in experimental data of GBS, 

GSI, and the logical states considered in GBS, NNS, and GSI non-responder (resistant) 

models. (B) Represents the differential expression patterns observed for the output proteins 

in the experimental conditions and the logical steady-states observed in NNS, GBS, and GSI 

scenarios. 

On the other hand the total number of inhibitor molecules (Upstream inhibitor) 

acting on the Notch target proteins of NNS scenario are comparably higher than the 

GBS scenario. This result clearly indicates that the in the normal scenario (or cells), 

the Notch pathway is highly controlled by other inhibitor proteins or molecules in 

the reaction cascade.  
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Figure 33: Comparison between Normal, Glioblastoma, Gamma Secretase inhibition and 

the two proposed drug target scenarios. 

NNS: Normal Notch Pathway; GBS: Glioblastoma Scenario; GSI: Gamma Secretase 

inhibition; TS1: NICD1 and HIF1A combinatorial inhibition; TS2: NICD1 and MAML 

combinatorial inhibition. (A) Represents number of Upstream activator molecules (Y-axis) 

activating the molecules (X-axis) representing significant variations. (B) Represents number 

of downstream activated molecules (Y-axis) activated by the molecules (X-axis) representing 

significant variations. (C) Represents number of upstream inhibitor molecules (Y-axis) 

inhibiting the molecules (X-axis) representing significant variations. (D) Represents number 

of downstream inhibited molecules (Y-axis) inhibited by the molecules (X-axis) representing 

significant variations. 

Thus, the pathway is able to regulate the phenotypic expressions of cells, such as 

cell proliferation, anti-apoptosis, hypoxia, etc. in a homeostatic state. Most often, this 
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homeostatic regulation of the Notch pathway gets perturbed by over-activations of 

several oncogenic factors and down-regulations of tumor-suppressor proteins (e.g., 

P53, PTEN) in Glioblastoma cells and thus the controlled regulations of the output 

proteins are perturbed. 

On the other hand, the total numbers of downstream activated proteins of 

GAMMA_SECRETASE, WDR12, NICD1, NICD4, EP300, MAML, SKIP, HAT, etc. 

have also shown significant variations in GBS as compared to the NNS (Figure 33B). 

We have observed that downstream activated proteins of DLL1, DLL3, DLL4, HES1, 

MAML, HAT, and HIF1A, etc. are increased around 2 folds to 50 folds in GBS as 

compared to NNS. The increase in total number of downstream activated proteins by 

these proteins indicates that these proteins play significant roles in the up-

regulations of other target oncoproteins and down-regulations of tumor-suppressor 

proteins in Notch pathway under GBS model simulation. Over-activations of these 

proteins and their downstream effects in the acceleration of GBM cell growth are also 

experimentally verified in previous experiments [501,502]. Hence, we are now able to 

distinguish the proteins which are highly influenced by other upstream proteins and 

also the proteins, which influence higher numbers of other proteins in the 

downstream of Notch pathway during GBM cell growth. However, the total 

numbers of downstream inhibited proteins by most of the proteins in this pathway, 

(except for NUC_NCD1, FBW7, CDK8, COR and HEY1), have not shown any 

significant variations in both GBS and NNS scenarios.  

On the other hand, in the simulation of GSI non-responder GBM cells, we have 

found that the total numbers of upstream activator nodes of NOTCH1 receptor 

protein is significantly reduced as compared to GBS scenario, but not with respect to 

NNS (Figure 33A). This result proves that although the higher rate of activation of 

NOTCH protein is suppressed by GSI in GBM cells, but the normal rate of activation 

of this protein still persists. As a result, the non-responder of GSI tumor cells may 

still have active Notch pathway, which in turn provides the tumor cells a scope to 
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escape the GSI induced break on active cell cycle. Apart from this protein, the other 

proteins in this pathway, such as NICD1, STAT3 (in Nucleus), HIF1A, and the Notch 

target genes/proteins (e.g., MYC, SOX9, BCL2, HES1, GATA3, etc.) also have reduced 

numbers of upstream activators in non-responder GSI scenario as compared to GBS, 

but not significantly lesser than NNS simulation. This result also proves the existence 

of active Notch pathway in the non-responder GSI tumor cells. Simultaneously, we 

have observed that the downstream activated proteins by the transcription factors, 

such as NICD1/2/3/4 (in Nucleus), CSL, YY1, and including the co-activators, such as 

MAML, EP300, HAT are not significantly reduced in non-responder GSI tumor cells 

as compared to GBS (Figure 33B). The activities of these transcription factors and co-

activator proteins indicate that GSI resistant GBM cells are still able to transcribe 

Notch targets oncogenes and thus activate the cell cycle progressions.          

We have not observed any significant variations in the total numbers of upstream 

inhibitor molecules in GBS, NNS, and GSI scenarios (Figure 33C). This signifies that 

in all the three cases, viz. NNS, GBS, and GSI, the inhibitors of Notch pathway are 

mostly unchanged and thus the activities of this pathway do not get impede. On the 

other hand, we have observed that in GSI scenario, the total number of downstream 

inhibited proteins by P53 protein is increases as compared to the NNS and GBS 

scenarios (Figure 33D). This result proves the synergistic effects of P53 and 

GAMMA-SECRETASE inhibition in canonical Notch pathway to suppress cell cycle 

progressions. 

5.4.7 Identification of Alternative Drug Targets 

In order to find out the novel drug targets as the alternative of GAMMA-

SECRETASE enzyme to impede the growth of GBM tumor cells, at first we have 

analyzed the topological parameters (i.e., connectivity and centrality) and network 

structure (e.g., feedbacks) of the entire Notch signaling network. We have seen that 

the proteins, such as ADAM/TACE, CSL, NICD1, MAML, HI1A, NRARP, HES1, 
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HES5, etc. have high centrality values (i.e., Degree, Eigenvector, Closeness, etc.) in 

the network (Table 10). Out of these proteins, we have filtered out the proteins, 

which are biologically feasible to target, such as ADAM/TACE, NICD1, MAML, 

HIF1A, and DLL4. We have selected these proteins as the probable drug targets for 

our next in-silico perturbation analyses on GSI resistant GBS model.  

However, after performing the single knock-out of the selected target proteins, 

we have not found any potential protein as the alternative of GSI, which can 

suppress the expressions of target oncoproteins of Notch pathway in the GSI non-

responsive Grade-IV GBM cells (results not shown). Next, we have performed the in-

silico dual knock-out of the selected proteins in the GSI non-responsive GBM 

scenario. After performing several trials, we have found that targeting NICD1 with 

either HIF1A or MAML give optimal results of suppressing target oncoproteins. 

Hence, we have selected two target combinations, viz. NICD1 and HIF1A as TS1, and 

NICD1 and MAML as TS2 as the alternative of drug targets. 

We have observed that, in case of dual knock-outs of NICD1 and HIF1 (TS1) in 

GSI resistant GBM model cells, the total numbers of upstream activator proteins and 

the total numbers of downstream activated proteins are significantly reduced in TS1 

simulation as compared to GBM and GSI scenarios (Figure 33A-B). However, the 

steady-states of the target oncoproteins in TS1 scenario are not down-regulated as 

compared to GBS and GSI scenario, which makes our hypothesis that this 

combination (NICD1 and HIF1A) can cause partial suppression of the growth of 

GBM cells (Figure 34B).  

On the other hand, in case of dual knock-outs of NICD1 and MAML proteins 

(TS2), we have observed that the expressions of all target onco-proteins are 

completely suppressed (Figure 34B). Moreover, the decrease in fold changes of total 

numbers of upstream activator proteins and the total numbers of downstream 

activated proteins in TS2 are very much lower as compared to GBM and GSI 
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scenarios (Figure 33A -  B). Thus, the complete inhibition of the growth of GBM cells 

and the GSI resistive cells is possible by using this target combination.  

5.5 DISCUSSION 

We analyzed the reconstructed Notch signaling network using graph theoretical 

techniques and identified the centrally located proteins or "Hubs" (e.g., CSL, NICD1, 

NICD2, MAML, HIF1A, HES1, HES5, NRARP) in the network. 

 

Figure 34: Logical states of the nodes observed in experimental analyses and simulations 

of NNS, GBS, GSI, TS1, and TS2 models. 

(A) Represents the logical states of the input nodes observed in experimental data of GBS, 

GSI, and the logical states considered in GBS, NNS, GSI non-responder (resistant), TS1 and 

TS2 models. (B) Represents the differential expression patterns observed for the output 

proteins in the experimental conditions and the logical steady-states observed in GBS, NNS, 

GSI non-responder (resistant), TS1 and TS2 models. 

We found that the nuclear transcription factor CSL, STAT3 had the higher 
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eigenvector centrality value in the network along with HES1 and HES5. Similarly the 

Eigenvector centrality of NICD1/2/3/4 was also increased due to its connections with 

the output proteins NRARP, implying that these proteins not only have high number 

of connections but also are connected with other highly prestigious nodes that 

possess higher number of connections in the network. The molecules connected in 

feedback regulations with the output proteins had higher Eigenvector centrality and 

showed strong influence in the network, even though they had lower number of 

connections in the network. This finding helped us to identify the unknown feedback 

interactions of a particular protein in the network. We were also able to identify the 

connection of several cross-talk molecules, such as, HIF1A from Hypoxia, PTEN 

from PI3K/AKT pathway, P53, RAS etc., with the core molecules of Notch pathway, 

which create either positive or negative feedback loops in the network. Moreover, 

CSL, NRARP, HIF1A, STAT3 were also showing high Closeness centrality score, 

where the feedback connections of these proteins with the other important proteins, 

such as NICD1/2/3/4 or HES1/5 in the network gave the access of these proteins to 

regulate more number of other proteins in the network. As a result the closeness 

centrality values of these proteins were also increased. This result also signifies that 

certain perturbations or mutations of these proteins will cause worst effect than the 

other proteins having lower closeness centrality value. The higher Betweenness 

centrality value found for NICD1 compare to its other homologues (i.e. NICD2/3/4) 

shows that unlike the other three homologues of these proteins, NICD1 had extra 

three upstream regulators proteins: RAS, JIP1, and WDR12 as well as P53 protein in 

downstream. We found that this protein was connected with its nuclear counterpart 

NUC_NICD1, which had additional downstream target genes (e.g., BCL2, FLIP, IAP, 

P21, P65, P50, C_REL, REL_B) for transcription than its counterparts 

NUC_NICD2/3/4, implying enhancement of Betweenness centrality value as  more 

numbers of shortest paths intersect this protein. Therefore, this structural and 

topological analysis helped us to identify the important proteins from a large 

complex network and indicated the probable drug targets to suppress the activity of 
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maximum Notch target proteins. 

We also created the logical models for normal (NNS) and GBM cancer (GBS) cells 

to test the effect of mutation or deregulation of important proteins in the network 

under certain circumstances as well as to identify the new biomarkers of Notch 

pathway. In the logical analysis, we modeled the entire pathway reactions by logical 

equations and created five scenarios: Normal (NNS), Glioblastoma (GBS), GAMMA 

SECRETASE inhibition (GSI), Treatment scenarios by inhibiting NICD1 and HIF1A 

(TS1) and by inhibiting NICD1 and MAML (TS2). We also validated our model with 

the mRNA expression profiles of human Glioblastoma cells [219]. Further we were 

also able to verify the expression or activation of proteins in the non-responsive 

GAMMA-SECRETASE inhibited GBM cells (GSI) scenario. From our in-silico 

simulation of GAMMA-SECRETASE inhibition scenario (GSI) by comparing the 

number of upstream activators genes/proteins in GBS and GSI scenarios, we 

observed that the downstream activated proteins of several Notch pathway activator 

proteins (e.g., JAG1/2, DLL1/3/4, MAGP1, NICD1, etc.) were getting reduced by 

administering the GAMMA-SECRETASE inhibition in GSI resistive GBS cells.  

Moreover, by comparing the Normal Notch and Glioblastoma scenarios, we were 

also able to identify the proteins which were abnormally getting activated or 

inhibited in GBM cells as compared to the normal scenario. This findings and the 

results obtained in our network analysis, gave us the opportunity to extract the 

potential drug targets from a large numbers of pathway molecules (total 115 species) 

of the reconstructed Notch pathway. We identified several probable targets through 

single and double knock-outs of few selected proteins by perturbing the logical states 

in the GBS model. We found that as compared to single knock-out, the double or 

multiple knock-outs show promising results. Among these possible double knock-

out combinations, we observed that the combination of NICD1 and HIF1A (TS1) is 

suitable for the partial suppression of Notch pathway activity in the GSI resistant 

GBM cells. On the other hand, the inhibition of the proteins NICD1 and MAML (TS2) 
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as a combination is useful to completely suppress the Notch pathway activity, which 

targets most of the oncoproteins in the GBM cells. Therefore, it can be concluded that 

depending on the choice of suppressions of Glioblastoma cells, one can use any of the 

above drug target combinations (TS1 or TS2) to suppress the growth of Glioblastoma 

cells.           

5.6 CONCLUSION 

Our Notch pathway reconstruction and computational analyses is able to provide 

the insights of the mechanistic view of the signal transduction processes in primary 

GBM and GSI resistant GBM cells. The entire analysis is helpful to identify the 

alternative drug targets for Glioblastoma tumor cells. The computational strategy 

and alternative drug targets predicted from our analysis may help to achieve more 

accurate therapeutic strategy, not only for Glioblastoma cells, but also for other 

diseased conditions in which Notch pathway is found to be aberrantly activated. The 

strategy used for identifying the minimal combination of drug targets for GBM cells 

is easy to implement. Our findings will be useful for the experimental and clinical 

biologists to select the biomarkers for cancer diagnosis, treatment response and will 

show new direction in human cell specific signaling pathway study. 
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Chapter 6 

__________________________________________________________________________________ 

 

6 IMPLICATION OF NOTCH PATHWAY ANALYSES IN THE 

EVOLUTIONS OF INTRA-TUMOR HETEROGENEITY AND RISK 

PREDICTION OF GLIOBLASTOMA 

__________________________________________________________________________________       

6.1 INTRODUCTION5 

In the previous chapter, we have shown that how the developmental cell 

signaling pathway mediated by Notch receptors regulate the growth of proliferating 

GBM cells in the advanced stage (i.e., Grade-IV) [185]. We have also shown the 

methodologies using state-of-the-art graph or network theory and Boolean logic to 

dissect the network properties of the molecular reactions behind the growth of GBM 

and how one can use the network topology and its logical inter-connectivity to 

identify novel drug targets [503]. However there are certain aspects of GBM tumor 

growth, which we did not cover there. For example, the activity of Notch pathway in 

the maintenance of GBM stem cells was not highlighted there [141,504]. We did not 

observe the somatic mutations in the Notch pathway, which trigger the normal 

neural stem cells (NSCs) to transform into Glioma initiating stem cells (GSCs) [141]. 

Moreover, our approach had the limitations to simulate the occurrence of intra-

tumor heterogeneity within the GBM tumor cells, [505] and most importantly it was 

unable to classify and predict the risk of GBM tumor in the early stage by analyzing 

the omics data. We have understood that to answer these unsolved questions and 

decipher the complex pattern of the evolutionary mechanisms, a predictive model 

with the aim of performing mechanistic simulation of the emergence of genetically 

different sub-clones of tumor cells with the normal neuronal and astroglial cells in 
                                                           
5  The materials of this chapter have been taken verbatim from our communicated article Chowdhury 

& Sarkar, 2018 (manuscript under review). 
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the tumor microenvironment is very much important.     

However, the tumor microenvironment created by GBM is highly heterogeneous 

and complex in nature, which also accompanies with multiple non-tumorigenic cells, 

e.g., quiescence, apoptotic (or necrotic), normal or healthy neurons, astrocytes, 

oligodendrocytes [139]. The sub-ventricular zone (SVZ) of the human brain, 

recognized as the primary location for nurturing neural stem cells (NSCs), also 

provides a sustainable ground for the maintenance of GSCs and the development of 

matured Glioblastoma (GBM) tumor cells [141]. Stemness properties 

(tumorigenic/non-tumorigenic) of few cells within the tumor ecosystems are also 

observed and are proven to be the underlying causes of the emergence of low and 

high-grade astrocytomas during tumor development [506]. The single-cell RNA-Seq 

analyses performed by Patel et al. on single 420 primary GBM tumor cells collected 

from 5 individual patients has depicted the cell-to-cell variability of the expressions 

of surface receptor genes (e.g., EGFR, PDGFRA, FGFR1, ERBB2, ERBB3, KIT, and 

NOTCH2, etc.) [139]. This observation has demonstrated the role of most of the RTKs 

and its downstream signaling cascades in the emergence of intra-tumor 

heterogeneities within a tumor. This study has also confirmed that these surface 

receptor molecules, especially the RTKs are mutually expressed in different tumor 

cells and trigger uncontrolled cell divisions. The mosaic expression pattern of 

NOTCH2 receptor gene (a non-RTK surface gene/protein) observed across the tumor 

cells is also interesting to realize not only the development of genetic heterogeneities 

between the tumor cells but also the evolutions of various cell-lineages co-existing 

within the GBM ecosystems. Hence, this work is aimed to explore the ability of 

Notch pathway in the regulation of intra-tumor heterogeneity as well as the 

developmental dynamics of the evolutions of variable cell lineages in the GBM 

ecosystems. 

Notch signaling pathway, which is commonly known for the maintenance and 

proliferation of the adult neural stem cells (aNSCs) in the neurogenic niche of SVZ, is 
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also implicated in the proliferation of GSCs[141]. It suppresses the neurogenesis and 

gliogenesis by targeting the expression of bHLH transcription repressor proteins 

HES1-7 and HEY1, 2, L, which help to maintain the self-renewal of aNSCs/GSCs by 

suppressing the transcriptions of the differentiation genes [507]. On the contrary, the 

other component proteins of Notch pathway (e.g., NOTCH1, RBPJ/CSL, NICD1, γ-

Secretase complex, and so forth) are observed to be over-expressed in the 

differentiated astrocytes and GBM tumor cells [508,509]. However, how the Notch 

pathway reprograms its functional mechanisms to trigger the differentiation 

processes in aNSCs/GSCs, despite being the gate-keeper of the maintenance of stem-

like cells, is unknown hitherto. Previous reports suggest that several cross-talk 

pathways of Notch signaling can manipulate the self-renewing processes of 

aNSCs/GSCs and trigger the differentiation of astrocytomas [510,511]. However, the 

mechanistic regulations through which the cross-talk molecules influence the 

dynamics of Notch pathway and help to sustain its dichotomous nature between 

stem cells renewal and differentiation (i.e., neurogenesis and gliogenesis) processes 

are also not clearly understood yet. Hence, identification of the molecular switches 

and reaction motifs in Notch signaling balancing the stemness and differentiation 

properties of aNSCs/GSCs will be helpful to decipher the complexities of cellular 

dynamics involved in GBM tumorigenesis. 

6.2 CURRENT CHALLENGES AND OBJECTIVES UNDERTAKEN 

Various experimental analyses have corroborated the existence of the driver 

genes/proteins (e.g., P53) causing tumorigenesis, but a follow-up study is essential 

for studying their functional regulations with Notch signaling which help to regulate 

the self-renewal or differentiation of aNSCs to GSCs and drive the self-renewing 

GSCs or Astrocytes towards GBM [512]. Simultaneously, the molecular processes 

triggering the formation of neurosphere from aNSCs or the isolated GSCs collected 

from GBM tumor are also required to be studied [507]. Moreover, the underlying 

mechanisms of the evolutions of different grades (Grade I-IV) of GBM tumor cells 
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with different clinical responses (e.g., drug sensitivity and resistivity) and its 

relationship with Notch signal transductions are also not explored yet. Previous 

reports suggest that evolution of such phenotypically distinct sub-types of GBM cells 

originated from GSCs or low-grade astrocytomas along with other cell lineages (e.g., 

neurons, astrocytes, and quiescence cells) in the GBM tumor cells niche, impose 

significant hurdles in GBM therapeutics[234,437,513,514]. Moreover, the appearances 

of genetically distinct, sub-clones of tumor cells in the molecular level within the 

same grade of GBM tumor create another layer of challenges as these sub-clones 

most often evolve against the selection pressure created by the chemotherapeutic 

drugs during therapy [234,513]. Hence, understanding the mechanisms of Notch 

signaling cascades and its implications in the gene regulatory network on the 

developmental pathway of the evolutions of different sub-types and genotypically 

distinct sub-clones of GBM tumor cells is the main objective of this work [515]. 

6.3 FORMULATIONS OF THE PROBLEM AND WORK FLOW 

Predictive mechanistic models, considering the dynamic activities of the 

reconstructed Notch and its cross-talks pathways (see Section 2.5.4), are developed 

here for analyzing the underlying mechanisms of neurogenesis and GBM 

tumorigenesis. The underlying molecular processes of Notch and its cross-talks 

pathways are explored by using this computational approach, which in turn helps to 

assess the governing principles working behind the self-renewal, differentiation, 

apoptosis, and cell growth arrest (i.e., quiescent state) of aNSCs/GSCs or GBM tumor 

cells. Also, by assessing the variances in the genetic makeup of the individual tumor 

cells, this work is competent to dissect the underlying mechanisms working on the 

emergence of different sub-types and sub-clonal heterogeneities of GBM tumor. 

Based on these basic understandings, these models are further implicated to perform 

futuristic predictions of the transformation of low-grade astrocytoma to high-grade 

GBM, the chances of occurrences of heterogeneous populations of GSCs, and the 

developmental tracks of the evolutions of intra-tumor molecular sub-clones. Apart 
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from these, these models are used to explore other fundamental aspects of 

neurogenesis and tumorigenesis, for example, what are the molecular mechanisms 

driving the excess rate of apoptosis of aNSCs observed during neurogenesis? [516]. 

Also, is there any role played by the Notch pathway during apoptosis and cell 

growth arrest (or quiescent state) of aNSCs/GSCs? Does P53 mutation hinder the 

neurogenesis or other cellular differentiation of GSCs? What are the main component 

proteins of the Notch pathway, which form the regulatory switch to regulate the 

differentiation of different cell lineages from aNSCs/GSCs?  

The models are developed to predict the probability of the emergence of GSCs 

within the normal neurogenic niche and identify the driver proteins responsible for 

the development of different tumor sub-types. The chances of developing different 

sub-types of GBM tumor cells from GSCs or astrocytes cells are also quantified and 

further applied as a personalized approach to detect the risk of early onsets of GBM 

tumor with appropriate grades (or sub-types). A novel scoring technique is 

introduced here for quantifying the risk of the tumor development by considering 

the genetic variances of the individual patients as inputs. Moreover, a novel 

approach is developed for in-silico perturbations analyses to perform the assessments 

of targeting multiple combinations of proteins on the developed models. The 

implication of this approach would help to screen and identify potential molecules 

for target-based GBM therapeutics. 

6.4 RESULTS 

6.4.1 Mechanistic Models of aNSC, GSC, and GBM Tumor Development 

Illustrate Cell Proliferation and Differentiation Dynamics  

6.4.1.1 Simulation of aNSC Model 

Simulation outputs of the developed aNSC model with highest Shannon entropy 

score (1.456 Shannon, Figure 35A) had produced multiple cellular states (i.e., cell 

lineages, Figure 35B) of normal brain cells, e.g., quiescent, neural stem, matured 

neurons and astrocytes in the steady state or attractor space (see Section 2.5.4). It was 
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also observed that a large number of cellular states were apoptotic in the simulation 

outcomes. This result justifies the previous experimental outcomes, where it is shown 

that most of the stem cells undergo apoptosis during the normal developmental 

stages of adult NSCs [516]. Activity ratio (AR) scores of each input protein of aNSC 

model showed that by decreasing the activities of the Notch pathway activators and 

in the presence of wild type active tumor-suppressor P53 (TP53) protein, most of the 

aNSCs were directed towards the apoptotic state (Figure 36A). Hence, from this 

observation, it was understood that during aNSCs proliferation, a large numbers of 

newborn stem cells did not get ample stimulations from Notch pathway to 

proliferate, but due to the increased activity of P53, a significant fraction of stem cells 

went to apoptotic state. This process is proven useful to maintain sustainable 

proportions of aNSCs in SVZ, which further divide and differentiate to mature 

neurons and glial cells [516]. 

 

Figure 35: Simulation results of the aNSC, GSC, and GBM models. 

(A) Shannon entropy scores observed, and (B) Normalized frequencies of cellular states (or 

cell lineages) observed in aNSC, GSC, and GBM model simulations. Batch numbers 21, 92 

and 42 in aNSC, GSC, and GBM models with highest Shannon entropy scores in each model 

simulations, respectively, are chosen for calculating the normalized frequencies of each 

attractor states of different models. 

The AR-scores (-1.44 to +1.44) of each input protein in the aNSC, GSC, and GBM 
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models were used to identify the driver proteins responsible for the development of 

a particular cellular state during the developmental stages of neurogenesis and 

tumorigenesis (see Section 2.5.4). For example, the driver proteins, stimulating the 

aNSCs towards the development of a few numbers of Glioblastoma stem cells 

(GSCs), were easily identified by observing the AR-scores of the core component 

proteins of Notch signaling and the functional state of the P53 protein. It was 

observed that core Notch pathway proteins (e.g., APH1, RBPJ, MAML1, etc.) were 

required to be in the active state (AR score = +1.44) and P53 in the inactive (or 

mutated) state in the self-renewing GSCs (Figure 36B). However, the probability of 

this combination (i.e., protein activities) was infrequent in proliferating aNSCs, and 

thus the normalized frequency obtained for proliferating GSCs was lowest in the 

simulation outcomes (Figure 35B).  

6.4.1.2 Simulation of GSC model 

However, it was observed that P53 mutation in GSCs did not influence the 

developmental dynamics of the stem cells and the cells still retained its self-renewal 

and differentiation properties like aNSCs. Simulation outputs of GSC model (highest 

Shannon entropy 0.852 Shannon) were able to exhibit all sub-types of cells observed 

in the neurogenic niche (e.g., neurons, astrocytes, quiescent cells, etc.), except the 

apoptotic cells, which was not present due to P53 mutation (Figure 35B). 

6.4.1.3 Simulation of general GBM model 

On the other hand, while simulating the general GBM model (in which P53 is 

inactive and JAK2, STAT3, and RBPJ are constitutively over-expressed), another 

three new cyclic attractors (or cellular states viz. i) GSC Renewal/ASPC 

Differentiation, ii) GSC Renewal/ASPC Differentiation/GBM Development, and iii) 

GSC Renewal/ASPC Differentiation/NPC Differentiation) were found in the attractor 

space with varying normalized frequency distributions (Figure 35). Fixed-point 

attractor states viz. Quiescent and NPC differentiation and the cyclic attractor states 
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viz. ASPC differentiation were also observed in this model simulation as observed in 

aNSC and GSC models. The cellular state ASPC Differentiation (with P53-/-, JAK2+/+, 

STAT3+/+, RBPJ+/+ mutations) observed in this model simulation is an oscillating 

attractor state with the expression of GFAP protein, uncontrolled proliferation or 

division of mutated astrocyte cells and no apoptotic break. Hence, the phenotypic 

characteristic of this cellular state was tumorigenic in nature and thus it was denoted 

as "Low Grade Glioblastoma (LGG-I)" state (Figure 37A-B).  

 

Figure 36: Activity Ratio (AR) scores of the input molecules. 

(A) aNSC (B) GSC and (C) GBM Model simulations. The AR-scores of each input molecules 

were calculated for every cellular state. TP53 protein was found as mutated in the "GSC 

Model" simulation. On the other hand, while simulating "GBM Model", TP53 protein was 

found mutated along with increased activities of RBPJ+/+, JAK2+/+ and STAT3+/+ proteins. 
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Moreover, the protein activity profile observed in another cellular state: "GSC 

Renewal/ASPC Differentiation" revealed that the expression of the astrocytes 

differentiation marker GFAP is oscillating along with the stem cell markers (tumor) 

and the anti-apoptotic markers are constitutively expressed, which also make this 

cellular state tumorigenic in nature (Figure 37C).  

 

Figure 37: Activity profiles and the temporal dynamics of the marker proteins observed in 

general GBM model simulation.  

(A) & (B) ASPC Differentiation; (C) & (D) GSC Renewal/ASPC Differentiation; (E) & (F) GSC 

Renewal/ASPC Differentiation/ GBM Development; (G) & (H) GSC Renewal/ASPC 

Differentiation/NPC Differentiation.  

It was observed that both the phenotypes GSC renewal and ASPC differentiation 

processes are oscillating with fixed time periods throughout the transition time 
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points around their respective steady state levels (Figure 37D). Both the phenotypes 

had same periodicities (i.e., 4 units of transition states) and out of these two cellular 

states, GSC renewal process was moving ahead from the ASPC differentiation 

process. This observation clearly indicates the real biological scenario, in which self-

renewal/proliferations of GSCs are initiated in the brain tissue followed by its 

differentiation and maturation into ASPCs (Figure 37D). It also proves the role of 

Notch pathway to maintain the inertia of GSCs at self-renewal state compare to 

differentiation and maturation into glial cells and also demonstrates the slow rate of 

differentiation of mutated and proliferating astrocytes/glial cells from GSCs in the 

tumor niche. It should be noted that the ASPCs generated through this process were 

purely tumorigenic in nature with multiple oncogenic mutations and uncontrolled 

rate of proliferation without apoptosis. However, the genotypic signature of ASPCs 

found in this cellular state had down-regulated C-MYC (a marker for high-grade 

GBM), which in turn made this cellular state less tumorigenic (i.e., low grade) as 

compared to grade-IV glioblastoma tumor cells. As this cellular state contains both 

tumorigenic stem cells (GSCs) and mutated astrocytes (ASPCs), hence this state is 

defined here as the "LGG-II" state.   

Apart from these two major cellular states, the state transition dynamics of the 

model also lead towards the two other complex attractor states, which were 

phenotypically mapped with the "GSC Renewal/ASPC Differentiation/GBM 

Development" and "GSC Renewal/ASPC Differentiation/NPC Differentiation" 

cellular states. In the first one, it had shown the cyclic expression patterns of all the 

GSCs self-proliferation, ASPC maturation or differentiation and simultaneously the 

constitutive over expressions of important high-grade glioblastoma marker proteins 

C-MYC and TENASCIN-C (Figure 37E). Although both the processes, involved in 

GSC renewal and ASPC differentiation, were showing oscillatory dynamics around 

the steady state time points, but the observed periodicities of both the cellular states 

(i.e. 3 units of transition states) were lesser than the previously mentioned LGG/GSC 
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cellular state. More importantly, in this cellular state both the phenotypes were 

oscillating synchronously and dividing rapidly in the tumor niche, which will 

eventually accelerate the entire population of the mutated astrocytes to grow 

exponentially without any apoptosis (Figure 37F). Interestingly, it was observed that 

if the malignant GBM markers C-MYC and TENASCIN-C, both were expressed in 

the rapidly proliferating ASPCs, then the cumulative dynamics of the entire cellular 

state would transform more aggressively into the self-proliferating stage. Hence, 

based on these phenotypic and genotypic characteristics, this particular cellular state 

observed in this simulation was further denoted as "High-Grade GBM" state. The 

characteristic dynamics of GBM developmental process was also periodic in nature, 

but the periodicity and the amplitude were comparably higher than the GSC renewal 

and ASPC differentiation processes. 

The Shannon entropy landscape showed that the differentiating GSCs were also 

directed towards the development of high-grade or "Grade-IV" tumorigenic cellular 

state in the general GBM model simulation (highest Shannon entropy score, 1.164 

Shannon, Figure 35A). After analyzing the AR-scores of the input molecules driving 

towards this cellular state, it was observed that YY1 transcription factor was one of 

the driver proteins associated with the development of Grade-IV tumorigenic state in 

the simulation and formed a nexus of the transcriptions regulatory genes associated 

with tumorigenesis and metastasis (Figure 35B).  

6.4.2 Network Motifs of Notch Pathway in the Regulation of Cellular States 

These overall simulation studies on aNSC, GSC, and GBM models had further 

revealed the underlying molecular reaction mechanisms (sub-networks) in Notch 

signaling pathway through which different cellular states occurred during the 

developmental stages (Figure 38).It was observed that, in the normal situation, when 

the core Notch pathway is active and the P53 protein was not mutated in the aNSCs, 

the target proteins (HES1, HES5 etc.) produced at the end of this pathway were 
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normally expressed and follow cyclic temporal expression pattern (results not 

shown) [517]. It was experimentally proven and also shown in the identified network 

motif that the transcription complex (NICD:CSL:MAML) of Notch pathway produces 

the precursor of NOTCH receptor protein [185], which was then turns to post-

processing (most often glycosylated) and transferred to the cell membrane, where it 

further binds to the Notch pathway activation ligands Delta/Jagged (Figure 38A). 

Thus, this reaction pathway makes a positive feedback loop in the reaction motif and 

triggers oscillatory dynamics of the Notch target genes HES1, HES5, CYCLIN-D1, 

CYCLIN-D3 etc. The entire reaction motif works in such a way that it enforces the 

transcription regulatory network of notch pathway to produce the cell cycle 

regulatory proteins CYCLIN-D1, CYCLIN-D3, etc. in periodic pattern. In the 

previous experiments and these current simulation studies, oscillations in the 

dynamic expressions of HES1, HES5 genes/proteins were also observed [518]. 

However, the expressions of HES1/HES5 proteins negatively influence the 

transcriptions of their own expressions and thus create a negative feedback loop in 

the motif [519]. The periodic expressions of CYCLINS and CDK proteins, a well 

known indicator of cell proliferation process, were also observed due to the presence 

of these feedback loops in the simulations [377]. It was also observed from the 

simulations that the controlled regulation and fine-tuning of this positive and 

negative feedback loops were the main regulators behind the maintenance of stem 

cell renewal and proliferation process. Further, perturbation studies performed by 

eliminating or targeting any of this feedback loops would shift the cellular dynamics 

towards different cellular states (neurogenesis or gliogenesis). 

In another reaction motif, it was observed that when the expressed HES1/HES5 

proteins, which are also known as bHLH transcription repressor protein, interact 

with the transcription regulatory network of MASH1 gene, then the entire reaction 

motif was redirected to suppress the expressions of neuronal cell markers e.g., 

NGN1, β-TUBULIN-III (Figure 38B). In this case, HES1/5 proteins act as a 
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transcription repressor of MASH1 gene, which is the activator of the production of 

NGN1 and β-TUBULIN-III proteins.  

 

Figure 38: Active network modules in Notch pathway.  

(A) NSC Renewal/ Apoptosis; (B) NSC Renewal/NPC Differentiation/Apoptosis; (C) ASPC 

Differentiation; and (D) GSC Renewal. COA and COR represent co-activator and co-

repressor complexes. 

It was also observed that during the periodic intervals, at which the HES1/HES5 

protein expressions were at the lower activity level, the expressions of neuronal 

marker proteins were found at the higher level and differentiation of neuron 

progenitor cells appeared (i.e., neurogenesis). On the other hand, it was observed 

that when the expression dynamics of HES1/5 protein were at the up-regulated state, 
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and JAK2/STAT3 proteins were also simultaneously expressed, then the expression 

of the marker protein GFAP, responsible for astrocytes differentiation (ASPC) was at 

ON state. In this case, the entire reaction motif of Notch signaling network was 

redirected towards gliogenesis process (Figure 38C). 

These entire feedback reaction mechanisms governing neurogenesis and 

gliogenesis processes can sometimes can go awry, if the tumor suppressor protein 

P53 is absent in the neural stem cells. In that case, anti-apoptotic proteins such as 

BCL2, IAP, and FLIP will be expressed at higher quantities and the stem cells become 

immortal. However, due to the active regulations of both the positive and negative 

feedback loops, Notch signaling network will produce HES1/5, CYCLINS at regular 

interval of time (Figure 38D). This will eventually lead the rapid proliferations of the 

stem cells without any apoptosis and the cells will be converted into Glioblastoma 

stem cells (GSCs). 

6.4.3 Increased Activities of JAK2/STAT3, RBPJ, YY1, γ-Secretase Complex and 

P53 Mutation Promoted Low-Grade GBM to High-Grade 

In the high-grade (Grade-IV) GBM tumor states, increased activities of 

JAK2/STAT3, RBPJ, MAML1, YY1, γ-Secretase complex (APH1, NCSTN, PSENEN, 

PEN2) and mutation of P53 were observed as a minimal number of deregulations 

(total mutations, μ = 10) in the Notch pathway derived high-grade GBM cells (Figure 

36A). Hence, a new model was built by constitutively expressing Notch pathway 

molecules (RBPJ, MAML1, γ-Secretase complex), JAK2/STAT3 and YY1 proteins and 

by mutating P53 protein to simulate the evolution of high-grade (Grade-IV) GBM 

cells. This model was named as high-grade or the Grade-IV GBM model. In this new 

model, the mean normalized frequency of Grade-IV tumor state was found 

comparatively high (Mean 0.094  0.003 S.D.) as compared to the normalized 

frequency (Mean 0.002  0.0005 S.D.) observed in general GBM model and thus this 

new model was named as high-grade (Grade-IV) GBM model. A comparative study, 

performed to analyze the changes of the mean normalized frequency differences of 
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different cellular states observed in general GBM and Grade-IV model, depicted 

significant changes in all scenarios (Figure 39).  

 

Figure 39: Comparative analyses of the normalized frequencies of cellular states observed 

in general GBM and Grade-IV models.  

Normalized frequencies of the cellular states representing (A) Quiescent cells; (B) NPC 

Differentiation; (C) LGG-II vs. Grade-IV tumor cells; (D) ASPC Differentiation or LGG-I; and 

(E) GSC Renewal/ASPC/NPC Differentiation states observed between general GBM and 

Grade-IV GBM models are compared here. The simulations of all the models were replicated 

100 times (N = 100). Data represents the means ± S.D.; *** P-value < 0.001. 

In the Grade-IV GBM model, the normalized frequencies of quiescent cells and 

the differentiating NPCs were found to be significantly reduced in numbers (Figure 

39A-B). In contrast, the normalized frequencies of differentiated ASPCs (LGG-I state) 

and the cellular state "GSC Renewal/ASPC/NPC Differentiation" were significantly 

increased in the Grade-IV GBM model as compared to the general GBM model 

(Figure 39D-E). A significant increase of LGG-I cells depicted the possibilities of the 

presence of spatiotemporally distributed, genetically distinct, heterogeneous 

populations of differentiated astrocytes cells within the high-grade (Grade-IV) GBM 

tumor niche. Most often these cells (LGG-I) progress to form high-grade (Grade-IV) 

glioblastoma tumor cells and cause poor prognosis of the patients [520]. It was 
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observed that in the general GBM model, although a significant difference between 

LGG-I and Grade-IV cells (Figure 35B) exists, no difference was found between LGG-

II and Grade-IV cells (Figure 39C). In contrasts, the simulation outcome of high-

grade (Grade-IV) GBM model showed the significant differences between the 

frequencies of the two states: LGG-II and Grade-IV. A higher number of Grade-IV 

tumorigenic cells were observed, which in turn justified the redirection of low-grade 

GBM cells towards the high-grade state in this high-grade GBM model (Figure 39C). 

6.4.4 Origin of the Evolution of Intra-Tumor Heterogeneity and Distinct Sub-

Types of GBM Tumor  

 

Figure 40: Full State transition graph (STG) of general GBM model.  

NPC Differentiation and Quiescent cells are the fixed-point attractors and the others 

represent the cyclic attractor states corresponding to different sub-types of GBM tumor cells. 

The state transition graph (STG) of the logical model developed for general 

glioblastoma development (GBM) was used to identify the initial and transient states 

(or cells), which were eventually redirected at either the singleton (i.e., fixed-point) or 
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periodic (i.e., cyclic) attractor states. Here, STG was used for representing the 

phylogeny and the hierarchical arrangements of variant tumor cells within the tumor 

microenvironment. In the steady state level of general GBM model simulation, the 

constructed STG contained 26 distinct groups of clusters, each of which was 

associated with either stable or cyclic attractor states or sometimes both (Figure 40). 

 

Figure 41: Partial stage transition graph (STG) of the general GBM model.  

The Red and blue nodes represent the initial and transient cellular states of the general GBM 

developmental model. It shows that starting from a group of common tumor-initiating cells 

(red colored nodes), the tumorigenic developmental process leads towards distinct grades 

(sub-types) and sub-clones of GBM tumor. ASPC and ASPC/GSC refer the cyclic attractor 

states "ASPC Differentiation or LGG-I" and "GSC Renewal/ASPC Differentiation or LGG-II" 

respectively, whereas GBM refers the cellular state corresponding to "GSC Renewal/ASPC 

Differentiation/GBM Development or Grade-IV" cellular state. 

Analysis of one such cluster extracted from the STG showed that the 

developmental dynamics of the tumor-initiating mutated GSCs were able to develop 

any of the three different sub-types of GBM viz. LGG-I, LGG-II and Grade-IV 

[234,521] (Figure 41). In this STG (Figure 41), the basin of attractors contained the 

critical nodes (e.g., C1, C2, C3, C4, C5, C6, etc.) at which the transient states were 

separated and proceed towards different cellular states (i.e., LGG-I, LGG-II, and 

Grade-IV). The critical nodes in STG, such as C1, C2, C4, and C6 are the nodes, at 
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which the stimulated GSCs undergo asymmetric cell division and produce distinct 

sub-types of GBM cells. On the other hand, C3 and C5 represent the critical junctions 

during the development at which the transient tumorigenic stem cells perform 

symmetric cell divisions and produce sub-clones of each different grade of GBM 

tumor (Figure 41).  For example, there were total 14 distinct sub-clones (periodic 

attractor states) obtained in the simulation of general GBM model, each of which 

represented Grade-IV tumor cells and had different protein activity patterns at the 

steady state (periodic) levels (Figure 42). 

 

Figure 42: Activity patterns of the pathway molecules observed in all the periodic attractor 

states corresponding to Grade-IV tumor state in the general GBM model simulation. 

The temporal expression/activity profiles (ON/Up-regulation OR OFF/Down-regulation 

states) of the pathway molecules in each of the distinct attractor states (total 14) clearly depict 

the intra-molecular heterogeneities, which exist within the sub-clones of Grade-IV tumor 

cells found in GBM tumor.  

Comparative analyses of the activity patterns of the pathway molecules were 

performed successively to extract essential marker proteins whose variations of 
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expressions were creating heterogeneities within the sub-clones of Grade-IV tumor 

cells. This STG also helped to track the small but effective fluctuations within the 

tumorigenic stem cells, which significantly contributed to the emergence of different 

cell types, grades and the sub-clonal heterogeneity previously observed in the GBM 

tumor cells niche [139]. For example, after the critical junction at C1 in STG, it is 

visible that the developmental paths lead to either ASPC (LGG-I) or GSC/ASPC 

(LGG-II) cellular states via the transient node C2. Otherwise, it can also be attracted 

towards high-grade GBM (Grade-IV) states via C3 junction (Figure 41). Hence, by 

comparing the protein activity profiles of the transient nodes C2 and C3, it was 

revealed that transitions from low-grade GBMs (LGG-I or LGG-II) to high-grade 

GBM was possible if the cells had increased activities of the proteins YY1, C-MYC, 

CYCLIN-D1, CYCLIN-D3, etc. Comparing C5 and C6 nodes, the similar expression 

pattern of the proteins behind the origin of high-grade tumor cells was also observed. 

Moreover, to assess the molecular heterogeneities of the sub-clones of GBM (high-

grade) cells, all the different 14 attractors states observed in Grade-IV tumor state 

were compared, which helped to find the origin of the heterogeneous sub-clones 

(Figure 42). 

6.4.5 Understanding the Bias in the Outcomes of Different Cellular States under 

Different Conditions 

The probabilities of occurrences of different cellular states were not homogenous 

in the attractor space (Figure 35). For example, in Grade-IV GBM model, the 

normalized frequency of Grade-IV tumor cells was comparatively higher than LGG-

II cellular state, whereas, in the general GBM model, these two cellular states did not 

have much difference (Figure 39C). Here, it is hypothesized that the intra-cellular 

network, through which the activation signal flows from the ligand and receptors to 

the tumor marker proteins via the cytoplasmic and nuclear molecules, plays crucial 

roles to determine the bias towards a particular cellular state during tumor 

development. During the flow of such signal, which is imposed on a cell at the time 
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of cellular development, a set of signaling molecules (or proteins) alter their 

activity/abundance (ON/OFF states) patterns rapidly and relay the signal to the 

transcription factors in the nucleus. Hence, it could be considered that the activities 

of different ligand molecules, the complicated topology of the intra-cellular network, 

and the presence of several intrinsic and extrinsic fluctuations (e.g., mutations, over-

activation, phosphorylation, etc.) were the critical factors behind the emergence of 

cellular heterogeneities in the attractor space. It is evident that if higher numbers of 

alteration of the molecular activities are required for reaching at a particular cellular 

state or phenotype, then a cell has to perform multiple chemical reactions. It will 

eventually increase the overall costs for the cells during the developmental stage and 

thus decrease the probability to reach that particular cellular state. Hence, to quantify 

the effects of diverse molecular events (e.g., chemical reaction, physical interaction, 

translocation, etc.) associated with the development of different cellular states, a 

novel phenotype cost function ( )
C

  was defined in this present work. It was defined 

as the summation of the average rate of changes of the activity patterns of all the 

pathway molecules (i.e., the signaling cost) and the mutational cost associated with 

that cellular system (see Section 2.5.8 ).  

Analyses of the phenotype cost function were found useful to understand the bias 

towards the determination of particular cell fate during neural stem cell maintenance 

and differentiation processes. The violin plots depict the comparative analyses of the 

distributions of the average cost values associated with the cellular states "NPC 

Differentiation", "ASPC Differentiation (LGG-I)", "GSC Renewal/ASPC 

Differentiation (LGG-II)", and "GBM Development (Grade-IV)" cells observed in 

aNSC (non-tumorigenic), general GBM and high-grade GBM (tumorigenic) models 

(Figure 43). 
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Figure 43: Violin plots of the total phenotype cost function or total costs calculated for 

different cellular states. 

Comparisons of the median and the probability density functions of the cellular states (A) 

NPC Differentiation and (B) ASPC Differentiation observed in aNSC, general GBM, and 

high-grade GBM models respectively. In high-grade (Grade-IV) GBM model, the median 

costs for reaching the differentiated NPC and ASPC cells are opposite to each other. In adult 

NSC model, the median costs for reaching the differentiated NPC cellular state is lowest 

compared to the others tumorigenic models. In contrasts, the required total cost is 

significantly lower in the tumorigenic GBM model as compared to the non-tumorigenic 

aNSC model. Comparative analyses are also performed between the total costs required for 

reaching the LGG-II and Grade-IV tumor cell states in (C) general GBM and (D) High-grade 

GBM models. 

It was observed that in the non-tumorigenic, adult NSCs model, the overall 

median costs to produce the differentiated neurons (NPCs) was significantly lower 

than the costs required for producing differentiated astrocytes cells (ASPCs) (Figure 

43A-B). This result was validated with the previous observation, which suggests the 

higher amount of neurogenesis happens in the adult neural stem cell niche in SVZ 

[522]. Whereas in the general and high-grade GBM models, the total costs for 

reaching the ASPC differentiation state at the steady state level found to be reduced 

significantly, which in turn proved the previous experimental finding that the higher 
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number of matured astrocytes cells also exist in GBM tumor niche [523]. Hence, it is 

proven that the induced mutations e.g., P53 knock-out and increased activities of 

JAK2/STAT3, RBPJ, YY1 proteins, etc. can divert the normal functioning of Notch 

pathway in the aNSCs from undergoing the stem cell renewal or neuronal 

differentiation processes to the development of mutated, differentiated astrocytes 

cells [523]. 

On the other hand, while performing the intra-model comparisons of the total 

costs required for LGG-II and Grade-IV tumor cells, it was observed that in both the 

tumorigenic (i.e., general GBM and Grade-IV GBM) models, the median total costs 

required for developing Grade-IV tumor cells were comparably lower than the LGG-

II cells. Although, the median difference was not very much high in general GBM 

model (Figure 43C), but it was found to be significantly higher in high-grade (Grade-

VI) GBM model. Hence, it proved that to reach the Grade-IV tumor state in 

comparison to the LGG-II cellular state at the steady state level, the high-grade 

(Grade-IV) GBM model requires less cost than LGG-II cellular state. This result also 

explained the previous observation that why the Grade-IV tumor cells were observed 

with higher normalized frequency in the high-grade (Grade-IV) GBM model (Figure 

43C). 

6.4.6 Applications of Phenotype Predictor Scores to Predict the Appearances of 

Cellular States 

The normalized frequency ( )
C

P and the total phenotype cost function or total cost 

required for reaching a particular cellular state were the two main parameters, which 

showed to regulate the outcome of a specific cellular state during the cell fate 

determination process. It was observed that the probability of occurrences of a 

particular cellular state was directly proportional to its total frequency and inversely 

proportional to the phenotype cost function. A novel scoring function "Phenotype 

Predictor Score ( )
C

 " was introduced here by defining this function as the ratio of the 

total frequency to total phenotype cost function associated with the cellular states.  
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Figure 44: Distributions of the Phenotype Predictor Scores. 

Distributions are plotted for all distinctly observed cellular states (total 12) viz. (A) Quiescent 

state; (B) Apoptosis; (C) NPC Differentiation; (D) GSC Renewal; (E) NSC Renewal/NPC 

Differentiation; (F) GSC Renewal/NPC Differentiation; (G) NSC Renewal/Apoptosis; (H) 

NSC Renewal/ NPC Differentiation/Apoptosis; (I) GSC Renewal/ASPC Differentiation/ NPC 

Differentiation; (J) ASPC Differentiation (LGG-I); (K) GSC Renewal/ASPC Differentiation 

(LGG-II); (L) GSC Renewal/ASPC Differentiation/GBM Development (Grade-IV) state.  

The distributions of the frequencies ( )
C

P and total phenotype cost function ( )
C

 of 

all the cellular states in the attractor space followed normal distributions with 

different variances. Hence, the probability density function of this newly defined 

score ( )
C

   is the joint probability distribution ( )
C

C

C

P
 


of the ratio of two 

multivariate normally distributed variables and the shape of the resultant 

distribution is a fat-tailed Cauchy-like distribution (Figure 44) [237]. A detailed 
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description of this distribution including its mathematical expression is provided in 

the Section 2.5.8. 

A higher value of phenotype predictor score of an arbitrary cellular state signifies 

the greater chance of that cellular state to appear within the attractor space (see 

Section 2.5.8). The mean values with 95% CI (calculated using Fieller's theorem [524]) 

of all the cellular states (total 12) observed in all the four aNSC, GSC, general GBM 

and Grade-IV models are provided in Table 11. It was observed that the mean 

phenotype predictor score (mean 147.688, 95% CI [146.630 148.747]) of the 

"Quiescent" cellular state was lowest in the highly mutated Grade-IV GBM as 

compared to the other models. This result was also in accord with the previous 

observation (Figure 39A), in which lower normalized frequency of quiescent state 

was detected in Grade-IV GBM model as compared to general GBM model (Figure 

39A). Therefore, it can be state that the percentage of quiescent cells will be less in the 

heavily mutated tumorigenic niche (i.e., Grade-IV GBM cells) as compared to normal 

neurogenic niche (adult NSCs). A similar result also observed for "NPC 

differentiation" state, which showed that in the same tumorigenic niche, the heavily 

mutated tumor cells were least influenced (mean 40.372, 95% CI [39.804  40.940]) to 

differentiate into matured neurons as compared to normal aNSCs in the neurogenic 

niche. The score observed for GSC renewal (mean 0.193, 95% CI [0.163   0.224]) state 

was also higher in the GSC model as compared to the aNSC model (mean 0.100, 95% 

CI [0.078  0.124]).  

A comparative analysis of LGG-I, LGG-II, and Grade-IV cellular states observed 

in general GBM, and Grade-IV GBM models revealed that the phenotype predictor 

scores for all of these cellular states were comparably higher in Grade-IV GBM model 

as compared to other model simulations. For example, the score observed for Grade-

IV cellular state in general GBM model was less (mean 0.970, 95% CI [0.873  1.066]) as 

compared to Grade-IV GBM model (mean 29.414, 95% CI [28.875  29.955]) (Table 11). 
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Table 11: Mean Values with 95% CI of the Phenotype Predictor Scores of all 

Cellular States. 

Observed Cellular 

States or Phenotypes 

Models 

aNSC 

Mean 

[95 % CI] 

GSC 

Mean 

[95 % CI] 

General GBM 

Mean 

[95 % CI] 

Grade-IV GBM 

Mean 

[95 % CI] 

Quiescent 
172.813 

[171.596   174.032] 

334.160 

[333.246   335.074] 

301.827 

[300.945 302.709] 

147.688 

[146.630  148.747] 

Apoptosis 
286.581 

[284.957   288.206] 
NA NA NA 

NPC Differentiation 
55.326 

[54.496   56.156] 

107.264 

[106.388   108.140] 

96.677 

[95.862    97.492] 

40.372 

[39.804    40.940] 

GSC Renewal 
0.100 

[0.078    0.124] 

0.193 

[0.163   0.224] 
NA NA 

NSC Renewal/NPC 

Differentiation 

0.123 

[0.095    0.150] 
NA NA NA 

GSC Renewal/NPC 

Differentiation 
NA 

0.226 

[0.194   0.259] 
NA NA 

NSC 

Renewal/Apoptosis 

0.118 

[0.090   0.147] 
NA NA NA 

NSC Renewal/NPC 

Differentiation/Apoptos

is 

0.124 

[0.098   0.151] 
NA NA NA 

GSC Renewal/ASPC 

Differentiation/ NPC 

Differentiation 

NA NA 
0.072 

[0.053    0.0917] 

1.063 

[0.984  1.141] 

ASPC Differentiation 

(LGG-I) 

0.054 

[0.040  0.069] 

0.098 

[0.073   0.123] 

23.655 

[23.150   24.160] 

159.059 

[158.118  160.000] 

GSC Renewal/ASPC 

Differentiation (LGG-

II) 

NA NA 
1.265 

[1.161   1.370] 

4.282 

[4.096   4.470] 

GSC Renewal/ASPC 

Differentiation/GBM 

Development (Grade-

IV) 

NA NA 
0.970 

[0.873   1.066] 

29.414 

[28.875  29.955] 

Thus, the induced alterations of the protein expressions in Grade-IV GBM models 

accelerated the growth of LGG-I, LGG-II and high grade (Grade-IV) glioblastoma 
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cells, which in turn helped to predict the chances of occurrences of the oncogenic 

cells in the tumor ecosystem. 

Based on these observations, it was ascertained that the phenotype predictor 

score could be used to highlight the possible outcomes of the specific grade of tumor 

cells in the tumorigenic niche and could be a good estimator to quantify and assess 

the heterogeneity of glioblastoma tumor cells. Hence, after its successful executions 

on the master tumorigenic models (i.e. general GBM and Grade-IV GBM), it was 

interesting to analyze the performance of this novel scoring function to detect and 

quantify different grades and molecular sub-clones of tumor cells present in the 

tissue samples, collected from the individual glioblastoma patients. Here, the general 

hypothesis was that given the molecular expressions (e.g., transcriptomics, 

proteomics, etc.) data from the individual glioblastoma tumor patient or cohort, the 

phenotype predictor scores calculated for the tumorigenic (e.g., LGG-I, LGG-II, 

Grade-IV, etc.) and non-tumorigenic (e.g., Quiescent, NPC differentiation, apoptosis 

etc.) cellular states from the tumorigenic model would be able to predict the chances 

of occurrences of tumor cells and the corresponding grades.  

6.4.7 Retrospective Studies of the Low and High- Grade GBM Patient’s Cohort 

Retrospective case studies using the RNA-Seq transcriptomics data, available in 

"The Cancer Genome Atlas (TCGA)" data portal of the P53 mutated low (TCGA-

LGG) and high grade (TCGA-GBM) tumor samples from the cohorts of glioblastoma 

patients (Table 12) were performed to assess the potential of the developed models 

for identifying tumor grades by using the newly introduced estimator, "phenotype 

predictor score". A detailed description of the entire methodology used here is 

provided in the Section 2.5.11 of Chapter 2 ("Materials and Methods") of the thesis. The 

transcriptomics profile of the transcripts of 9 out of 53 input molecules was found 

(Table 13) in the differential expression analyses performed on the RNA-Seq data 

extracted from the cohort of P53 mutated, low-grade glioblastoma (TCGA-LGG) 
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tumor samples available in TCGA data portal. Using this TCGA-LGG 

transcriptomics data as inputs in the master aNSC model, a new simulation was 

performed to calculate the normalized frequencies of the observed cellular states (see 

Section 2.5.11). 

Table 12: Statistics of the TCGA Glioblastoma Patient Cohorts.   

Cohorts # of Cases (Patients) # of Samples (RNA-Seq Raw Counts Data) 

M F U Total # Normal 

Tumor 

Samples 

# Primary 

Tumor 

Samples 

# Recurrent 

Tumor 

Samples 

Total 

TCGA-LGG 

(General) 

282 228 1 511 0 513 16 529 

TCGA-LGG 

(TP53 

Mutated) 

141 100 1 242 0 240 15 255 

TCGA-GBM 

(General) 

366 230 21 617 5 13 156 174 

TCGA-GBM 

(TP53 

Mutated)  

32 21 0 53 0 57 0 57 

M = Male, F = Female, U = Undefined/Not mentioned 

 At first, the new values were compared with the normalized frequencies 

obtained for each cellular state in the master aNSC model. After that, Chi-square 

goodness-of-fit test was performed between the normalized frequencies observed for 

each cellular state in the new simulation (observed data) versus normalized 

frequencies observed for each cellular state in the master aNSC model (expected 

data). This statistical test showed significant differences between the expected and 

observed data, which in turn proved that the transcriptomics profile extracted from 

the TCGA-LGG cohort did not indicate the development of normal neurogenesis of 

adult NSCs (Figure 45A). For example, due to the imposed induction of the proteins 

(such as P53 mutation, and increased activities of DLL1, DLL3, etc.) in the new 

model, cellular states "Apoptosis" and "NSC/NPC/Apoptosis" were not found in the 

attractor space. On the other hand, the normalized frequencies of the cellular states 
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"ASPC differentiation" and "GSC renewal" were found in higher numbers in the 

TCGA-LGG transcriptomics data model of aNSC. Hence, it proved that the neural 

stem cells having transcriptomics profile of TCGA-LGG cohort were more inclined to 

the development of glioblastoma stem-like (GSC) and mutated astrocytes or tumor 

cells (ASPC). 

Table 13: Differential Expressions Genes in Glioblastoma Patient Cohorts. 

TCGA-GBM (TP53 Mutation) Vs. 

Normal solid tumor 

TCGA-LGG (TP53 Mutation) Vs. 

Normal solid tumor 

Up Regulation Down Regulation Up Regulation Down Regulation 

APH1,DLL3, 

FRINGE,GASE, 

HAT,HDAC,JAG1, 

MAGP1,MAGP2, 

NEDD4,POFUT1, 

SAP30 

CNTN1,DVL,DTX

1, FBW7, JAG2, 

JIP1 

DLL1, DLL3, 

FRINGE, NEDD4, 

POFUT1 

 

FBW7, JAG2, NOV 

 

Further, the present study was aimed to assess the same transcriptomics profile 

(TCGA-LGG) on the development of GBM tumor cells (Table 13). It was 

hypothesized here that if the same profile was taken as input in the master general 

GBM model, then the outputs of the model simulation will be able to capture the 

developmental dynamics of the tumorigenesis of low-grade glioblastoma starting 

from the mutated GSCs.  

It was observed that all the cellular states, which were observed in the master 

general GBM model, were also appeared in the attractor space of this new model 

simulation. Furthermore, Chi-square goodness-of-fit test found that the values of the 

observed normalized frequencies of each cellular state fitted well with the expected 

normalized frequencies of each cellular state of the master general GBM model 

(Figure 45B). In this simulation, the mean values of the phenotype predictor scores of 

the tumorigenic cellular states viz. LGG-I (mean 19.00, 95% CI [18.60  19.41]), LGG-II 

(mean 1.10, 95% CI [0.98 1.22]), and Grade-IV (mean 0.83, 95% CI [0.73  0.93]) were 

similar to the values observed in master general GBM model (Table 11). 
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Figure 45: Comparative statistics of the normalized frequency distributions of different 

cellular states in master aNSC and general GBM models.  

(A) A significant difference (Chi-Square goodness-of-fit test, P-Value < 0.001) is observed in 

the normalized frequency distributions while comparing the effect of TCGA-LGG expression 

profile in aNSC model simulation. Cellular states such as Apoptosis and NSC 

Renewal/Apoptosis are found to be absent in the aNSC model with TCGA-LGG expression 

profile. Normalized frequencies of ASPC Differentiation and GSC Renewal are also slightly 

increased in this scenario as compared to the master aNSC model simulation. (B) The 

normalized frequency distribution of the cellular states of general GBM model is well fitted 

with the simulation outcomes of general GBM model with transcriptomics profile of TCGA-

LGG patient cohort. Similar to these analyses, mRNA expressions profile of the TCGA-GBM 

patient cohort is also given as inputs in (C) aNSC and (D) general GBM models. In both the 

scenarios, significant differences are observed between the expected and observed (outcomes 

from TCGA-GBM) normalized frequency distributions of the cellular states. These results 

prove that the developed aNSC and general GBM models are capable of differentiating the 

mRNA expression profiles of LGG and GBM patient cohorts correctly. 

Hence, from this retrospective analysis, it was concluded that the transcriptomics 

profile of TCGA-LGG tumor samples was perfectly matching with the developed 

master general GBM model and therefore, this model could be further used for 
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testing other unknown transcriptomics profile to predict the existence of low-grade 

glioblastoma. This new simulation was also able to indicate the early risk of the 

development of low-grade GBM in an individual by analyzing the transcriptomics 

profile of that individual.     

Another retrospective analysis was also performed by using the transcriptomic 

profile of the input molecules, which were differentially expressed in the P53 

mutated TCGA-GBM tumor samples collected from the high-grade Glioblastoma 

patients' cohort (Table 12). Total 19 transcripts out of the total 53 transcripts of the 

input molecules were found significantly expressed in the high-grade GBM tumor 

samples with respect to the normal (control) solid tumor samples (Table 13). This 

transcriptomics profile was then provided as inputs in the master aNSC model to 

assess whether the differentially expressed genes/proteins of the transcripts of the 

input molecules were able to trigger normal neuronal cell development or not. It was 

observed that the transcriptomics profile while taken as inputs in the aNSC model 

were able to shift the NSCs developmental dynamics from the stem cell renewal 

process to the cell differentiation processes (i.e., NPC and ASPC). The normalized 

frequencies of cellular states observed in this new simulation were not found 

consistent with the cellular states observed in the master aNSC model (Chi-square 

goodness-of-fit test) (Figure 45C). It was observed that the cellular state ASPC 

differentiation had a higher normalized frequency in the attractor distribution in the 

new simulation, which signified that the transcriptomics profile observed in TCGA-

GBM sample cohort were biased towards the development of astrocytes cells in the 

neurogenic niche. These astrocytes cells had a higher number of mutations, abundant 

expressions of Notch and JAK/STAT pathway molecules with rapid proliferation 

rate, which in turn helped these cells to differentiate and transform into tumorigenic 

states. Differentiation of NPC was also observed in higher numbers, which indicated 

that the tumorigenic niche also contained matured (mutated) neuron-like cells. 

Cellular state Apoptosis was also absent in the new simulation, which was an 
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indicator of the development of tumor cells. Overall, this study depicted that the 

transcriptomics profile of TCGA-GBM cohort was not helpful to the normal 

development of NSCs and could trigger tumorigenesis in future time-course. 

To check the probabilities for developing high-grade GBM cells from the mutated 

GSCs a new simulation was again performed on this transcriptomics profile 

(extracted from TCGA-GBM cohort) by considering it as an input in the master 

general GBM model (see Section 2.5.11). The simulation outcomes showed that 

although there was no other cellular state appeared in the simulation as compared to 

the master general GBM model, but the normalized frequencies of the cellular states 

were not consistent (Chi-square goodness-of-fit test, rejecting the null hypothesis at 

99.99% significance level). It was found that the tumorigenic cells viz. LGG-I, LGG-II, 

Grade-IV and GSC/ASPC/NPC were significantly increased in the new simulation 

(Figure 45D). Quiescent cells were significantly reduced, and simultaneously the 

differentiated NPC cells were increased. These results proved that the 

transcriptomics profile of TCGA-GBM tumor samples cohort could trigger stem cell 

differentiation as well as tumorigenesis. The inconsistency appeared between the 

normalized frequency values were due to the higher number of differentiation of 

neuronal and tumorigenic cells in the new model simulation.            

The reasons behind the inconsistency of the normalized frequencies of cellular 

states were further analyzed by assessing the phenotype predictor scores. It was 

observed that the phenotype predictor scores of the tumorigenic states viz. LGG-I, 

LGG-II, GSC/ASPC/NPC and most importantly the Grade-IV tumor cells were 

significantly increased in the new simulation as compared to the scores observed in 

the general master GBM model (Table 11). For example, the mean phenotype 

predictor score of Grade-IV tumor cells was calculated in the new simulation was 

3.22 (95% CI [3.05  3.39]), which was approximately 3 times greater than the mean 

score (mean 0.970, 95% CI [0.873  1.066]) of Grade-IV cells observed in master general 

GBM model. The mean scores of other two tumorigenic cellular states LGG-I and 
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LGG-II were 32.72 (95% CI [32.46  32.97]) and 3.51 (95% CI [3.30  3.71]) respectively, 

which were also slightly increased in the new simulation as compared to the general 

master GBM model simulation. On the other hand, the mean phenotype predictor 

score 133.04 (95% CI [132.21  133.87]) of "Quiescent" state in the new simulation was 

drastically reduced as compared to the mean score 301.827 (95% CI [300.945  

302.709]) observed in the master general GBM model. Hence, this result indicated 

that the transcriptomics profile of TCGA-GBM tumor sample cohort was not only 

triggering the differentiation of mutated GSCs but also lead to the development of 

Grade-IV (high-grade) GBM cells. Therefore, it was concluded that the general 

master GBM model could predict the risk of the development of high-grade GBM 

cells, and simultaneously, the prospective study of the determination of the probable 

tumor grades could be performed by using its transcriptomics profile. 

6.4.8 A Case Study of Screening and Ranking of Potential Drug Targets in High-

Grade GBM Cells 

Potential drug targets screening and its ranking by assessing their ability to 

suppress the Grade-IV tumorigenic cellular state were also performed on the 

developed Grade-IV (high-grade) GBM model. The objective of this study was to 

check the efficacy of an individual or a combination of protein(s) to suppress the 

Grade-IV GBM tumor cells in the tumorigenic niche. A detailed description of the 

methodologies used for the drug target screening is discussed in Section 2.5.12. The 

significant correlation and delay between the temporal dynamics of the Grade-IV 

cellular state observed in the Grade-IV GBM model (i.e., target signal) with the 

intermediate signaling molecules (i.e., query signal) was calculated in their 

corresponding normalized frequency domains (Table 14). The critical proteins 

identified from this analysis (Table 14) were targeted individually or in 

combinations in the high-grade GBM model, and the normalized frequencies of the 

LGG-I, LGG-II, and Grade-IV cellular states were compared with the master Grade-

IV GBM model simulation results.  
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Table 14: Delay Difference and Significant Correlation Observed Between Grade-

IV Trajectory and Pathway Molecules. 

Original Signal Query Signal Delay  3 Correlation >= 0.6  P-Value 

Grade-IV  GFAP 1 1 0 

Grade-IV  HIF1A* 1 1 0 

Grade-IV  NUC_STAT3* 2 1 0 

Grade-IV  MASH1* 3 -1 0 

Grade-IV  NESTIN 3 -1 0 

Grade-IV  NEUROD 3 -1 0 

Grade-IV  PTEN* 3 -1 0 

Grade-IV  STAT3_P* 3 1 0 

Grade-IV  BAD 0 -0.7698004 0.005588 

Grade-IV  AKT* 1 0.7637626 0.010131 

Grade-IV  NGN1* 2 -0.7559289 0.018452 

Grade-IV  PI3K* 2 0.7559289 0.018452 

Grade-IV  HES1 0 0.6236096 0.040347 

Grade-IV  HES5 0 0.6236096 0.040347 

* Proteins selected for drug target screening as they do not belong to the class of marker proteins responsible 

for defining different cellular states. 

It was observed that inhibition of STAT3 protein strongly affected the 

development of all grades of Glioblastoma tumor cells. Besides, increased activity of 

MASH1 (or NGN1) protein (TC4) or its higher expression with the inhibition of PI3K 

protein as a combination (TC5) were able to suppress the LGG-I glioblastoma cells 

completely (Figure 46A) but were unable to suppress LGG-II and Grade-IV cells 

significantly (Figure 46B-C). On the other hand, inhibitions of PI3K/AKT and HIF1A 

simultaneously (TC6) was necessary to suppress the LGG-II tumor cells (Figure 46B), 

but not the LGG-I (Figure 46A) and Grade-IV cells (Figure 46C) in the tumorigenic 

niche. Significant partial suppression of Grade-IV tumor cells was also observed 

while activating NGN1 (or MASH1) protein in the Grade-IV tumor cells (Figure 

46C). Therefore, the activation of MASH1/NGN1 was proven to be significantly 

useful for Glioblastoma treatment as it was able to suppress both LGG-I and Grade-
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IV tumor cells simultaneously. However, it should be noted that LGG-II tumor cells 

which were mostly unaffected by this treatment, had a probability of the recurrence 

of Grade-IV cells from the remaining LGG-II cells in the future. 

Table 15: Calculated ranks of the effective drug targets for suppressing Grade-IV 

tumor cells. 

Target Cellular 

State  

Query Proteins Delay 
 ≤ 3 

|Correlation| ≥ 

0.75 

P-Value Rank 

GSC/ASPC/GBM  NUC_STAT3* 2 1 ~ 0 1st 

GSC/ASPC/GBM  NGN1* 2 -0.7559289 0.018452 2nd 

GSC/ASPC/GBM  STAT3_P* 3 1 ~ 0 1st 

GSC/ASPC/GBM  MASH1* 3 -1 ~ 0 2nd 

Hence, from this analysis, it was possible to rank the target proteins, which had a 

significant effect on perturbing the LGG-I, LGG-II, and Grade-IV tumor cells in the 

high-grade GBM tumor niche. The ranking for each protein to target the tumorigenic 

cells is provided in Table 15. 

In the previous experiments, inhibition of STAT3 protein is found highly effective 

to suppress Glioblastoma tumor cells [525,526]. However, the inhibition of STAT3 

protein in cancer therapy also triggers various toxic side effects as this protein is 

involved in many other signaling pathways responsible for the development of 

normal neural cell lineages [527]. It has been observed that targeting MASH1 by 

over-expressing this protein in the tumor cells is sufficient for the treatment of high-

grade GBM [528]. MASH1 is a neurogenic gene and over-expression of this protein 

will trigger the differentiation process of neurons from the GSCs present in the tumor 

niche and would be helpful to redirect the mutated stem cells from further astrocytes 

differentiation process [529].  

Applications of such targeted, cell-based differentiation therapy would be very much 

practical as it has a less chance of developing tumorigenic (or differentiated, mutated 

astrocytomas) cells after therapy and thus may reduce the probability of the tumor 

relapse. 



226 | P a g e  
 

 

Figure 46: Simulation outcomes of drug targets screening analyses. 

Normalized frequencies observed for (A) LGG-I (B) LGG-II, and (C) Grade-IV tumor cells in 

High-grade GBM model and different target screening scenarios are shown here. TC1: 

HIF1A Inhibition; TC2: PI3K & AKT Inhibition; TC3: STAT3 Inhibition; TC4: MASH1 & 

NGN1 Activation; TC5: PI3K Inhibition & MASH1 & NGN1 Activation; TC6: PI3K & AKT & 

HIF1A Inhibition. (* P-Value  0.05). 

6.5 DISCUSSION 

 Population based study on Glioblastoma tumor by TCGA consortium has 

demonstrated the existence of four different tumor subtypes within the high-grade 

GBM patient cohort [530]. Later, Patel et al. have explored the possible cellular states 

with diverse transcriptional programs within the same tumor cells using single-cell 

RNA-Seq analysis and provided a substantial evidences of the existence of intra-

tumor heterogeneity in GBM [531]. These studies have triggered several intriguing 

questions related to the mechanisms of the development of tumor sub-types and the 
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evolutions of genetically distinct sub-clones in GBM tumor. The molecular signatures 

between adult NSCs and tumorigenic GSCs are observed to be similar in various 

aspects, and it is understood that both of these cells share a common origin of 

evolution during development [506]. However, the dynamic regulations behind the 

emergence of tumorigenic lineages in the SVZ of the human brain are unknown 

hitherto. 

In this work, a novel approach is proposed to analyze the developmental 

dynamics (i.e., self-renewal, differentiation processes, etc.) of adult neural stem cells 

in the neurogenic niche and the molecular mechanisms of the emergence of GSCs are 

attempted to explore. The role of juxtacrine Notch signaling and its cross-talk 

reaction mechanisms are considered for this purpose as the involvement of Notch 

target genes HES1, HES5, etc. are proven to be strongly correlated with the 

regulation of neurogenesis as well as gliogenesis in brain tissue [532]. While studying 

the normal neurogenic and tumorigenic niches, the simulation studies performed on 

the aNSC, GSC, general GBM and Grade-IV GBM models were also able to show the 

emergence of different cell lineages (Figure 47) which are similar to the observations 

found in the previous experiments [533,534]. 

The performance of these developed models was measured by calculating the 

maximum number of appropriate cell types appeared in a simulation with highest 

normalized frequency distributions (and Shannon entropy scores) [535]. Further, by 

introducing a novel scoring parameter "Activity Ratio (AR)" score, the active 

regulatory motifs which played the critical roles to maintain the dynamic balance of 

this entire developmental process of aNSCs were also identified (Figure 38). 

It was observed that the three interconnected gene regulatory networks and the 

P53 dependent apoptotic network, which were responsible for the transcription of 

marker genes involved in stem cell maintenance, apoptosis, and the differentiation of 

neurons and astrocytes, were greatly influenced by the activities of Notch signaling 
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network during GBM development (Figure 38). 

 

Figure 47: Simulation outcomes of Neural and Glioma stem cells development and the 

emergence of different grades of the tumor cells.  

This figure describes the simulation outputs of the developmental model of aNSCs in the 

neurogenic niche and how different neuronal and astrocytes cell lineages are emerged. In the 

first step, aNSCs produce 8 different cell types, out of which 3 cell types (e.g. aNSC/NPC) are 

bipotent or multipotent (i.e. carrying multiple marker genes). Apoptotic cells are only 

observed in the aNSC model simulation, and are absent in the later tumorigenic simulations. 

This result clearly shows the capability of the developed models to correctly predict the 

differentiation and renewal of various cell types observed in the neurogenic niche of the SVZ 

of human brain.    

On the other hand, Notch signaling network was stimulated by several extrinsic 

(such as ligands) and intrinsic (e.g., kinase, transcription co-activator, repressors, 
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crosstalk reactions, etc.) factors, which profoundly differed based on the 

microenvironment of the cancer cells as well as its genomic/proteomic profiles. 

However, it was observed that Notch pathway alone could not regulate or initiate all 

the cellular states. For example, to trigger the gliogenesis process, Notch target 

proteins HES1/5 should be highly abundant in the cells to stimulate the kinase 

activity of the JAK2 protein and the successive phosphorylation of the transcription 

factor STAT3 protein. STAT3 is the transcription factor of the gene responsible for the 

expression of GFAP protein, which is a known marker of astrocytes cells [443]. 

Hence, from this motif identification analyses, it was clearly understood that how the 

intracellular Notch signaling network performed multiple developmental processes 

in adult NSCs and governed the neurogenesis, gliogenesis as well as tumorigenesis. 

This mechanistic understanding further helped to assess the effects of the 

perturbations within Notch signaling network through which normal aNSCs develop 

proliferating GSCs and further trigger the development of different grades of 

Glioblastoma tumor in the human brain. 

Finally, it was observed that the core Notch pathway is primarily used in the 

adult NSCs as a rheostat, which can be tuned by regulating (i.e., mutation, activation, 

inhibition, etc.) various proteins to achieve desired phenotypic outputs (Figure 48). 

Simulation outcomes showed that if the activities of the core component molecules of 

Notch pathway (e.g., Notch receptors and ligands, γ-secretase enzyme complex, 

MAML, RBPJ or CSL, HES/HEY, etc.) were very less, then the stem cells would stay 

at its quiescent state (qNSCs). On the other hand, the cells would lose its stemness or 

quiescent properties, if EP300 protein had increased activity in the aNSCs/aNSCs. In 

this case, the stem cells will switch to the differentiation process and develop into 

matured neurons.  

The neural stem cells would retain its self-renewing state if the core components 

of this pathway were abundant in the cells to produce HES/HEY, CYCLIN-D1, etc. 

proteins periodically and simultaneously possessed the wild-type active P53 protein.  
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Furthermore, if the P53 protein was mutated but Notch pathway was active, then the 

stem cell dynamics would alter and redirect towards the development of self-

renewing Glioblastoma stem cells (GSCs). 

 

Figure 48: The rheostat model proposed for Notch signaling network.  

This model shows the mechanistic regulations of core Notch pathway during the evolutions 

of different sub-types of normal and tumorigenic cells from adult neural cells. 

It was also observed that in the normal, wild-type adult NSCs (with wild-type 

P53), if the targets proteins (i.e., HES1, HES5) of active notch pathway interact with 
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the JAK2/STAT3 protein, then the developmental dynamics of adult NSCs would 

redirect towards the development of gliogenesis (i.e., astrocytes) process. It was also 

observed that the same gliogenesis process could be malfunctioned and lead to the 

development of Glioblastoma tumor formation if the differentiating cells had mutant 

P53 protein. 

The master general GBM model, developed for simulating the tumorigenesis 

process, was also able to predict the developmental routes through which the intra-

tumor heterogeneities of tumor cells of different grades emerged in the tumorigenic 

niche of Glioblastoma (Figure 40, Figure 41, and Figure 42). The critical time points, 

at which the different grades (sub-types) of GBM tumors and its sub-clones occur, 

were also possible to extract for analyzing the differences in the molecular profiles of 

the tumor cells at these critical junctions. Moreover, using the newly introduced 

phenotype prediction score, it was possible to quantify the probabilities of 

occurrences of different cellular states as well as tumor grades during the time of 

tumorigenesis. 

This scoring technique correctly predicted the bias towards the development of 

low-grade astrocytoma from mutated aNSCs/GSCs or the bias towards the 

development of high-grade GBM cells from low-grade GBM. To validate the 

existence of such bias, a case study was performed considering the TCGA RNA-Seq 

data from low and high-grade GBM tumor samples cohort as the inputs for master 

aNSC and general GBM models, respectively. The simulation results correctly 

predicted the higher probabilities of low grade and high-grade (Grade-IV) GBM 

tumor cells in the general GBM model (Figure 45). After this prediction study, the 

proposed Grade-IV GBM model was used for screening and ranking of potential 

drug targets for the suppression of the growth of Grade-IV tumor cells. A novel 

methodology was developed for this purpose in which Fast Fourier Transformation 

(FFT) technique was used to find out the correlation and lag between the temporal 

dynamics of Grade-IV tumor state with the temporal expression pattern observed for 
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each pathway molecule. It was observed that the protein molecules correlating 

higher than 0.6 and lag less than or equal to 3 time-steps with the Grade-IV tumor 

cell were the suitable drug targets to perturb the Grade-IV tumorigenic signal. In-

silico perturbations were performed on the Grade-IV GBM model to explore the 

effects of targeting these identified drug targets individually or in combinations. The 

drug target (such as MASH1), which showed huge reductions of the normalized 

frequencies of LGG-I, LGG-II, and most importantly Grade-IV tumor cells, but did 

not affect the growth of non-tumorigenic cells (NPCs), were considered as the highly 

preferable target(s) (Table 15).  

6.6 CONCLUSIONS 

This work has provided new concepts for better understanding of the biological 

signal transduction mechanisms in normal and diseased scenarios. The overall 

methodologies provided here can be applicable to multiple biological processes (such 

as stem cell development, neurogenesis, tumorigenesis, etc.) and can be implicated 

for a diverse range of investigations in future. If integrated with robust experimental 

data, this work would be helpful to substantially advance the understanding of the 

mechanisms underlying cellular responses to external or internal cues, and refine the 

current views of the signaling processes. 
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Chapter 7 

__________________________________________________________________________________ 

 

7 IMPLICATIONS OF THE RECONSTRUCTED INTEGRATED CELL 

SIGNALING NETWORKS TO UNDERSTAND THE GROWTH AND 

METASTASIS OF GLIOBLASTOMA 

__________________________________________________________________________________          

7.1 INTRODUCTION6 

In the previous chapters, we described the importance of Hedgehog and Notch 

pathways, and their individual cross-talks with other pathway molecules (e.g., 

JAK/STAT, PI3K/AKT, HIF1A, P53, ERK, RAS, etc.) in Glioblastoma tumor cells. We 

performed literature-based pathway reconstructions followed by topological 

analyses and binary logic-based dynamic simulation of the pathway species to 

predict their expression levels in normal and tumorigenic cells (e.g., Glioblastoma, 

Colon, Pancreatic cancers) [185]. We have shown our approach effective as well as 

efficient to model the temporal dynamics of multiple pathway species (i.e. genes, 

proteins, complexes, metabolites, etc.) and their reaction dynamics using Boolean 

logic-based formalism without the use of kinetic rate equations and quantitative 

dynamic modeling. The semi-dynamic binary logic (BL)-based approach was useful 

to predict the expressions or activity profiles of the genes/proteins of the modeled 

pathways in different initial conditions and thus we were successful to create 

different cellular systems (e.g. normal, glioblastoma, drug treatment). The steady-

state expressions of the target genes of both the pathways in GBM scenarios were 

compared with the experimental evidences (e.g., microarray, proteomics data) of 

Grade-IV GBM cells and thus the performances of the developed models were 

calculated. During the comparative studies of the pathway models, we observed 
                                                           
6
 The materials of this chapter have been taken verbatim from our communicated article Chowdhury 

& Sarkar, 2018 (manuscript under review). 
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higher level of accuracies while predicting the expression levels of target 

genes/proteins in cancer cells with respect to normal cells or controls.  

We were also able to analyze the state-transition dynamics of the overall system 

(cellular state) under different input conditions, and successively analyzed the course 

of the appearances of multiple attractor states correspond to different cellular fates. 

The attractor analyses in the state-transition graph (STG) of the logical model 

developed for Notch signaling pathway was specifically helpful to understand the 

fate of adult neural stem cells (aNSCs) under different pathological conditions and 

the predictions of the trajectories to the development of glioblastoma stem cells 

(GSCs) from aNSCs. The follow up analyses of the results obtained from the 

attractors of the STGs were specifically useful for determining the steady-state 

expression patterns of the important marker genes, particularly expressed in the self-

renewing stems cells (aNSCs, GSCs), matured and differentiated cells (e.g., 

astrocytes, neurons, and different grades of GBM tumor cells), and the apoptotic 

cells. Perturbation studies of important genes/proteins in the network were also 

performed in the logical model by making the target node(s) time invariant during 

the Boolean updates. The resultant attractors under the perturbation analyses were 

compared with the normal and tumorigenic scenarios, and subsequently the 

efficacies of the drug target(s) were measured.           

Applications of logic based (qualitative) modeling technique have been 

implicated in the analyses of other biological systems (most often gene regulatory 

and signaling pathways), in which prediction of the qualitative expression patterns 

of the nodes (i.e., genes/proteins) at equilibrium condition are of particular interest to 

the model developers [536-538]. Also, while developing mathematical model of a 

large biochemical reaction network, in which the quantitative information of the 

reaction parameters are largely unknown, binary logic-based logical modeling 

approach is proven to be effective in such instances [539]. Various attempts of 

modeling the signaling pathways, such as T-cell signaling [244,309,540], MAPK 
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pathway [541], JAK/STAT [542], Apoptosis [543], etc., and several gene regulatory 

networks of yeast [544], mammal [545], and plat cells [546] are successfully executed 

by using binary logic-based Boolean modeling approach. The resultant attractor 

states obtained from the STGs of the model simulations are used for explaining the 

cell fate decision mechanism during development and identification of the molecular 

pathways leading to the expressions of various phenotypic states (e.g., cell division, 

differentiation, apoptosis, metastasis, etc.) in the organisms [537,547,548]. Logic-

based computational models are also developed for studying the effects of different 

extra-cellular and environmental factors (e.g., radiation, carcinogens) on cell 

signaling and gene regulatory networks [549].  

The expression/activity of the nodes considered in the logical model is mapped 

discretely with only two binary states i.e. active/over-expressed/present (or binary 

state = 1/TRUE) and inactive/under-expressed/absent (or binary state = 0/FALSE). To 

run the simulation, the initial binary states (TRUE/FALSE) of all the nodes are 

required to provide at the start of the simulation, which are mainly considered by 

discretizing the continuous expression values, obtained from different biological 

assays. Most often, the discretization of the continuous expression values are 

performed by differential expression analyses of the samples with respect to the 

controls, and thus different cellular conditions are created for modeling and 

simulation. The binary logic-based analyses solely rely on the assumptions of only 

two possible states of the nodes based on their "significant changes" in the expression 

levels observed in the biological samples versus controls [82,185,542]. Most often, a 

"threshold" (e.g., P-value, FDR, log fold change) is determined and applied on the 

expression values obtained in array-based experiments based or from other 

experimental assays to discretize (up/true/active/present/1 or 

down/false/inactive/absent/0) the expressions or activities or abundances of the 

nodes (pathway species such as genes, proteins, microRNA, etc.) in a given biological 

condition [82,126,185,550]. Besides, perturbations analyses in the logical model can be 
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performed by freezing the update rules of the select nodes during the execution of 

the update rules. This is also an advantage of the application of logical model, in 

which the temporal dynamics of the nodes in a perturbed condition can be predicted 

and thus the expressions of the target nodes (or outputs) of the perturbed model can 

be compared with the unperturbed model at the steady-state. Such perturbation 

analysis is very much effective to examine the sensitivity of the nodes in a model 

without having quantitative information of the perturbation on the select nodes 

[551]. The most sensitive nodes identified through the perturbation analyses in the 

logical models of cell signaling or gene regulatory networks are considered as "target 

nodes" of the network [552,553]. 

7.1.1 Challenges in the Selection of Binary States of the Nodes  

Despite its successful implications in the analyses of gene circuits and cell 

signaling networks, binary logic-based model formalism has few inherent limitations 

[554]. However, in some cases assumption of the binary states to represent the 

possible outcomes of a node in a biological sample can be limited to the over-

simplification of the target problems. For instance, certain transcription factors, 

receptors, ligands, etc. are found to be expressed in almost equal quantities in both 

the normal and cancer cells. In that case, the differential expressions of those 

transcription factors and other molecules in both the cells will be computed as 

"insignificant" after performing the differential expression studies. For example, the 

presence of equal amount of transcription factors responsible for the transcription of 

MYC oncogenes in both normal and cancer cells (e.g., Burkitt lymphoma) may 

trigger different level of transcriptions (weak or string). It is observed that MYC 

oncogenes in Burkitt lymphoma cells translocates into the enhancer regions of 

immunoglobulin heavy chain (IGH) locus, which in turn causes strong transcription 

of MYC [555]. Logical modeling of such molecular events  T F s G en e  to 

distinguish the magnitude of gene expressions in normal and cancer cells will remain 

elusive, as the transcription factors (TFs) of the genes (activators) are present in both 
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the cells (i.e. at ON state) and thus the logical state of the gene in both scenarios will 

be at active (or ON) state. On the other hand, if we consider the enhancer elements 

with the TFs during gene transcription in the logical equation i.e., 

 T F s A N D E n h a n cers G en e , then the absence (OFF state) of enhancers in normal 

cells will output down regulation or inactive (OFF) state of the gene, even though the 

TFs of the gene is still available in the normal cells. This is one of the serious 

challenges of the use of binary number-based logical modeling approach in gene 

transcription network, in which multi-valued states of the expression levels (absent, 

low, normal, strong) of the genes/proteins are difficult to model. On the other hand, 

there are some genes/proteins in the cells, which are always expressed in lower 

quantities but play effective roles in the functioning of both the normal and cancer 

cells. In such situation, the differential expression studies will also compute those 

genes as insignificant, and thus determining the initial binary states will be again 

difficult.  

Similar problem may also arise while modeling the receptor mediated pathways 

(e.g., ERBB pathway), in which the genes (EGFR) responsible for encoding receptor 

proteins have higher copy number gains in the target samples (e.g., cancer cells) in 

comparison to the normal controls [556,557]. Binary logic-based modeling approach 

is not suitable in this case to model the effects of the copy number gains of the 

receptor proteins and its downstream regulations in both normal and cancer cells, 

and subsequently predict and compare the gene expression patterns at the steady-

state or equilibrium conditions. Also, the homozygous (P53-/-) and heterozygous 

(P53+/-) deletions of protein coding genes can have different effects in the downstream 

of signaling cascades and gene regulatory networks in the target biological 

cells/tissues [558,559]. In such instance, developing different computational models, 

which consist of homozygous deletions, heterozygous deletions, and wild-type 

expressions of the select gene can be challenging as both the deletion scenarios will 

have to be considered in the logical model as down-regulated or inactive (i.e., FALSE 
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or 0). Hence, we can understand that binary logic-based algebra will mostly fail to 

develop and compare the outputs of the logical models of signaling and gene 

regulatory networks, which consist of the genes/proteins with copy number gains, 

homozygous and heterozygous deletions, and wild-type expressions.  

Apart from considering the multi-valued variations of the expression of 

genes/proteins in the logical models, binary logic-based method is also unable to 

capture the differences in the signal propagation under strong and weak stimulations 

of the receptor proteins (e.g., T-cell receptor and co-receptors) in signaling pathways 

or the presence of very high abundance and regular concentrations of transcription 

factors in the promoter regions during the simulation of gene transcription 

regulatory networks. There are various examples, in which the bi- or multi-phasic 

responses of target genes and phenotypic expressions observed after strong and 

weak stimulations of the receptor proteins in signaling pathways [560-563]. Different 

multitudes of signal intensities or the abundance of transcription factors, co-

repressors, and co-activator molecules in the nucleus are proven significant in the 

pathology of various diseases including cancers and immunological disorders 

[561,563,564]. Due to the presence of such variances, alternative molecular reaction 

pathways or gene regulatory motifs can be activated in the cellular systems, which 

sometimes may change the course of expression dynamics of the target genes or 

phenotypes of cells or tissues [564,565]. However, comparative analyses of such 

scenarios are not possible via Boolean modeling due to its limitations of the scope of 

considering only TRUE (or active state) for both the strong and weak stimulations or 

very high and modest concentrations of the transcription factors and co-factors in the 

logical model simulations. 

7.1.2 Methodological Challenges of the Constructions of Logical Equations 

We have also observed few methodological challenges while writing the logical 

equations based on Boolean algebra to model biochemical reaction pathways. For 
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instance, when a single protein molecule or any other species (say A) in the signaling 

or gene regulatory networks is negatively regulated by another single inhibitor (say 

B), the logical state of the negatively regulated species will have complementary state 

of its upstream inhibitor. Such type of reaction is modeled in Boolean logic by using 

negation ( )B A or universal NOT gate{ ( 1) ! ( )}A t B t  . Hence, if we consider 

(0 ) 0A   and (0 ) 0B  , then based on the condition of negation we can say 

that (1) 1A  , even though the expression of A at 0th time-point was null. Now, let us 

consider the node A is a protein, which gets phosphorylated by another protein B 

and then the protein A goes to proteosomal degradation. Most often, such type of 

chemical reactions are written in Boolean logic by using the above mentioned logic of 

negation rule. The output of the logic equation in such biochemical reaction holds 

true in terms of the biochemistry of the event, if only the protein A is present or 

TRUE in the initial time-point or 0th state. Whereas, if the protein A is not at all 

present in the initial time-point, then the presence (TRUE) or absence (FALSE) states 

of B at the initial time-point has no consequence in the downstream protein A. But, 

we have observed that the binary output state of A at (t+1)th time step will be "TRUE", 

if B is "FALSE" at the tth time step. Indeed, this output will propagate false chemical 

signal in the downstream of the network. Also, the logical output state of a node Z at 

(t+1)th time-point regulated by multiple co-operative activators (X1, X2, X3,...) and 

inhibitors (Y1, Y2, Y3,...) considered as conjunction (AND gate) in the Boolean equation 

1 2 3 1 2 3
{ ( ) ( , , , ..., ! ,! ,! , ....)}f Z A N D X X X Y Y Y  will be always at FALSE state if any of the 

upstream inhibitor of that node is at TRUE state in the previous time-point (t).  As a 

consequence, the output of the overall system could depict strong canalizing effect in 

the attractor space.  

7.1.3 Alternative Solutions to Overcome the Methodological Challenges of 

Boolean Logic 

In this work, we have proposed an extended quaternary logic (ExQuLogic)-based 

method as the alternative solution to overcome the challenges or limitations 
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discussed in the previous sections. In order to consider multiple qualitative states of 

logical nodes of the Boolean equations, previous research works have already shown 

the use of multi-valued logic in the update scheme [539,566-569]. Several software, 

such as CellNetAnalyzer (CNA), GINsim, etc. are available freely to model the 

signaling and gene regulatory networks using binary and multi-valued logical 

update schemes [218,570]. In CNA, the logical equations of the nodes are integrated 

with stoichiometry of the equations e.g. 2 3A B C  to consider the multi-valued 

logic. From this equation, CNA assumes that the logical states of the node A is when 

2 and the node B is 1, then the activation state of C will reach at 3. Hence, using this 

approach, one can easily model the strong and weak stimulation of the receptors, 

higher and regular abundances of transcription factors and other molecules in the 

nucleus and its effects in the gene transcription network. The effect of copy number 

gain or homozygous and heterozygous deletions of the genes/proteins can be also 

performed by using CNA. Moreover, to account the effects of multiple inhibitors in 

the regulations of a downstream node in the model, Guebel et al. have also proposed 

an extension of multi-valued quaternary logic, named as graded-inhibition theory 

[569]. Here, the authors have argued the use of four logical ordinal states (0, 1, 2, and 

3) { }S fu lly  inactive , low ly  inactive , h igh  ac tiv ity , m axim a l activ ity  to represent the quaternary 

states. The authors have also shown the procedure to integrate the graded-inhibition 

method with CNA, so that the model developers can realize the full potential of the 

use of multi-valued logic implemented in CNA software environment.  The other 

popular software GINsim can also take multi-valued states of the nodes, whose 

update rule can be defined by user specified threshold value. Using these software, 

researchers have successfully modeled the gene regulatory system of lac operon 

found in prokaryotic system [554], E2F1 transcription network [539], apoptosis 

pathway [566], functional model of hypothalamic-pituitary-adrenal (HPA) axis 

during stress response [567], the mathematical model of anti-inflammatory effects of 

reactive oxygen species (ROS) in immune signaling network [568] and so on [571].  
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However it should be noted that, although both CNA and GINsim can take multi-

valued logic states of the nodes to successfully simulate the multi-valued logic 

operations, the very basic theory or logic behind the update rules of the nodes used 

in this software is still based on general Boolean algebra. In the previous models of 

quaternary-logic based simulation of biochemical pathways, the update rule of the 

quaternary states of the logical nodes is dependent on either stoichometric constraint 

or the canalization rules of upstream nodes. In these cases, the threshold values, 

canalization rules or the stoichiometry selected in the logical state update schemes 

are completely relied on prior domain knowledge of the model developers. 

However, for a large signaling and gene regulatory network, providing the threshold 

values or imposing the constraints on the update rule using stoichiometry may not 

be always the feasible options to the model developers. Apart from the quaternary 

state update rules, binary logic-based models are not capable to discretize the 

insignificant genes/proteins in appropriate logical state, except "Up (1)" and "Down 

(0)". In few cases, researchers have also used fuzzy-logic-based modeling approach to 

discretize the continuous expressions of the genes/proteins/metabolites of the 

pathway [572-574]. However, in spite of its superiority over conventional binary 

logic-based Boolean modeling approach, the performance of Fuzzy-logic is largely 

depends on the appropriate selection of membership functions to activate the nodes 

and most often it requires large amount of training datasets to come up with a best 

fuzzy-network to predict gene expression pattern in a given biological scenario 

[575,576].  

7.1.4 Proposed Approach 

Hence, to overcome the above mentioned issues, in this work we propose to 

implement the previously developed truth table of quaternary number system [243] 

and its corresponding algebra to perform the basic logic operations of negation (NOT 

operator), conjunction (AND operator), and disjunction (OR operator) rules (see 

Section 2.6.1). Like the truth table used in conventional Boolean algebra, the update 
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scheme of multi-valued quaternary logic will be also defined by the already 

established truth table of quaternary number system 0, 1, 2, and 3 [243]. In the logical 

model of biochemical pathway using our proposed ExQuLogic-based operation, the 

quaternary states are considered as ordinal values, in which 0 refers the fully inactive 

or absent or lowest possible active state of the nodes. The quaternary state 1 

represents the lowly active or mild expressions of the pathway species, but higher 

level of expression than the state 0. Another state 2 represents the regular or normal 

or modest expression or activity of nodes, which is higher than the state 1 (lowly 

active), but lower than the quaternary state 3. Here, the quaternary state 3 represents 

the maximal active or highly over-expressed or strongly stimulated nodes in the 

network. Unlike the conventional logic, herein we can model the weak or mild 

stimulation or responses of genes/proteins by considering the quaternary state either 

as 1 or 2 with respect to strong stimulation/response denoted by the quaternary state 

3. Likewise, we can also consider the state 3 to define the copy number gain, state 2 

to define wild-type expression, state 1 to define heterozygous deletion, and the state 

0 to represent homozygous deletion or knock-out of the genes/proteins or any other 

pathway species in the logical model. Similarly, the quaternary state of the 

significantly under-expressed genes having very high negative fold change ratio 

(threshold) in the target samples in comparison with control observed after 

differential expression studies can be considered as "0" and "1" for the condition of 

vice-versa. On the other hand, the quaternary states of insignificant genes can be 

defined as either 2 or 1 based on the statistics observed in differential expression 

studies. The elaborate descriptions of the quaternary state selection rule used for 

considering the initial states of the input nodes from the statistics obtained from the 

differential expression data are provided in the Materials and methods section (see 

Section 2.6.4). 

However, we have found that there are few scenarios in the biochemical reaction 

events, which cannot not be captured appropriately while implementing the logic 
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rules described in the quaternary logic truth table. Hence, we argue to use the 

concept of extended quaternary (multi-valued) logic (ExQuLogic), in which the 

update rule of a node is not defined by any pre-specified subjective threshold values 

or canalization rules. It also does not depend on the specification of the stoichiometry 

of the reactants and the products of biochemical reactions to perform the multi-

valued logic operation. In ExQuLogic-based operation, we have introduced a new 

extended quaternary state upstate scheme (ExQSUS) to model and simulate the 

functioning mechanisms of biochemical reactions, which involve multiple activators 

and inhibitors in more realistic way.             

7.1.4.1 Rationale of Extended Quaternary States Update Scheme 

 It is known that the biochemical reactions inside the cells are highly intricate in 

nature and there exist multiple routes for signal propagations, gene regulations, or 

metabolite conversions. A single pathway species in a biochemical network thus 

have multiple activators and inhibitors molecules or external factors (stress, 

radiation, drug molecules), which play important roles to either activate or inhibit 

the chemical and physical states of that node in the consecutive time-step. The core 

objective of logical modeling is to observe the dynamical changes of the chemical or 

physical states of all the nodes in biochemical network, based on the logical states of 

its upstream activators and inhibitors at the previous time-step and subsequently 

compute the equilibrium state of the overall system. We have observed that during 

the logical update of the quaternary states of a node, sometimes there may exist a 

strong canalization effect of its single or multiple upstream activator or inhibitor 

node(s), which can always drive the quaternary state of that node towards a 

biologically, chemically or physically inappropriate state. As a result, the system may 

always trap into a specific phenotypic state even there are multiple variations existed 

in the logical states of the input nodes. Following are the examples of few 

biochemical reaction events the quaternary algebra defined in the truth table fails to 

model the reaction propagation dynamics in the downstream of reaction networks. 
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Let us consider a set of activators 
1 2 3 4

{ , , , , ....., }
m

A A A A A  and inhibitors 

1 2 3 4
{ , , , , ....., }

n
I I I I I  are regulating a node D. Let us also assume that the activators are 

cooperative in nature, which can be modeled using conjunctive rule or AND 

operator as follows. 

1 2 3 4 1 2 3

1 2 3 4 1 2 3

( 1) ! ! !

( 1)

D t A A A A I I I

D t A A A A I I I    W h ere , I I

       

           
  

(Eq. 34)  

 Example 1:  If
1 1 2 3 4 2 3

0 , 2 / 3I A A A A I I         , then the output of D from the 

logical equation (Eq. 34) is the quaternary state 0. Let us also assume that I1 and I2 are 

the co-repressor proteins which act with the transcription repressor I3. Hence, the 

individual expression of either I1 or I2 have no role in the regulation of D, if I3 is 

absent in the reaction. But, the logical output of D in the quaternary logic simulation 

is 0, if we use the general rule of AND gate operation, which is clearly not capturing 

the real biological scenario. In such scenario, we should consider the quaternary 

states of other activators (A1, A2, A3, and A4) and inhibitor molecules (I2 and I3), and 

can consider the particular quaternary state at which maximal number of upstream 

nodes are present in the previous time-step.       

Example 2: If
1 2 3 4 1 2 3

3 & 2 & 3A A A A I I I         , then the output of D from the 

logical equation (Eq. 34) is the quaternary state 2. In this case, it is seen that the there 

are total three activators (A1, A2, and A3) of D which are at their maximal activation 

state (3) and all the inhibitors (I1, I2, and I3) are at their lowest activation state or 

absent (0). Despite this the logical output or the quaternary state of D is not reaching 

at the maximal activation state (3). The activation state of D is not reaching at the 

maximal activation state because of the quaternary state of another activator A4 in the 

equation, which has the quaternary state 2. For example, if we consider the activator 

node A4 as the transcription co-activator molecule of the main activator, which can 

cooperatively binds with another transcription factor and activates the transcription 
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of a gene (say D). In such scenarios, it is clear that although A4 is an important factor 

(activator) of the node D, but it cannot solely bring down the state of D in the 

chemical reaction, especially when other activators of D are present at the maximal 

active quaternary state (3). Herein, we propose to use the extended rule of 

quaternary state update scheme (ExQSUS) instead of the general rule of conjunction 

defined in the truth table (see Section 2.6.3).  

Example 3: If
1 2 3 4 1 2 3

2 & 3A A A A I I I         , then the output of D from the 

logical equation (Eq. 34) is the quaternary state 2 as per the rule mentioned for AND 

logic in quaternary truth table. However, it can be seen that in this equation, all the 

inhibitors are at lowest inactive state or absent (0), and there are two activators A3 

and A4 at maximal active state (3). In terms of biochemical reaction, there is a 

possibility that the output of such reaction will lead to the maximal activation of D, 

even though the state of A1 and A2 are at regular activation state (2). In such scenario, 

we can also apply our ExQSUS algorithm and choose the state at which most of the 

upstream activators and inhibitors are present at the previous time-step (see Section 

2.6.3). 

Example 4: If
1 2 3 4 1 2 3

2 & 3 & 0A A A A I I I         , then the output of D from 

the logical equation (Eq. 34) is the quaternary state 0 as per the rule mentioned for 

AND logic in quaternary truth table. Here, it can be seen that all the three inhibitor 

molecules are at active state and out of four activator molecules, there are two 

activators which are at normal active states (2) and other two are at highest active 

state (3). Clearly the dominating factors in this scenario are the inhibitor molecules, 

which will play most influential role to determine the state transition of D at the next 

time-step. Hence, the quaternary state of D at the consecutive step will be 0 as per 

proposed algorithm designed for the extended quaternary state update scheme 

(ExQSUS). It should be noted that in few cases, the rule proposed by ExQSUS may 

give exactly the same output as it is supposed to compute through general 
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quaternary truth table.  

Apart from these examples, depending on the distribution of the quaternary 

states of upstream activator and inhibitor nodes in a logical equation, numerous 

other situations may also appear during the signal propagation or gene regulation. In 

all such scenarios, our newly proposed EXQSUS algorithm at first tries to compute 

the quaternary state at which most of the upstream nodes are present at the previous 

time-step (for more details see Section 2.6.3). The most dominating state at which 

most of the upstream molecules are present is always chosen as the output state of 

the downstream node at the subsequent time-step. If same numbers of upstream 

molecules are found to be present at multiple states, then the ExQSUS algorithm will 

realize the output from the general quaternary truth table. It should be noted that the 

algorithm is only applied for the nodes which are cooperatively dependent on each 

other and are modeled via conjunction rule (AND operator). The upstream nodes 

acting independently and modeled by disjunction rule (OR operator) follow the 

output of general quaternary truth table of OR gate.       

7.1.5 Hypothesis and Objectives     

In this work, we have hypothesized that the use of quaternary logic-based 

operations can be successfully implemented to test our different conjectures of large 

scale biochemical pathways and its relationships with different human diseases 

mainly oncogenesis, which we could not explained via conventional logic-based 

operations. Herein, we aim to develop a general computational framework, which 

will be useful for automatic update of quaternary states of the nodes with respect to 

time without using any constrained-based approach or pre-defined thresholds 

during execution. We have divided the entire workflow of the current work in three 

modules. In the first module, we aim to validate our proposed methodology in the 

existing logical models of biochemical pathways and seek the answers of the 

unexplained phenomena which were remained unanswered due to the limitations of 



247 | P a g e  
 

the conventional logical model. The next module is directed towards the application 

of quaternary logic to examine and compare the potential of our quaternary state 

selection algorithm with the conventional binary logic-based model simulations 

while predicting the steady-states of the genes/proteins in diseased (Glioblastoma) 

cells. The overall objectives of performing these two modules are to validate and 

measure the potential of our quaternary logic-based operation in the simulation of 

biochemical pathways and the accuracies of the predictions of genes/proteins 

expression patterns in biological samples. In the last or third module, we implement 

our quaternary logic-based operations to model a completely new pathway model 

consists of multiple signaling pathways found to be responsible in the development 

of Glioblastoma cells. Hence, the overall approaches of the first two modules of this 

work are retrospective analyses and validations of the developed models using 

quaternary logic-based operation, whereas the last module is performed for 

prospective analyses of integrated pathway model to predict the target gene 

expression patterns of all the pathways in different GBM tumor cells. Subsequently, 

the integrated model with quaternary logic-based simulation technique is used for 

our new hypotheses testing and tasks for the validation of previously identified or 

novel drug-target identification process of GBM tumor. 

7.2 RESULTS 

7.2.1 Case Studies of the Previously Published Logical Models 

7.2.1.1 Activation of JNK Protein in CD28 Stimulated T-Cells 

In the previous experiments, it was observed that the stimulation of only CD28 

co-receptor protein in T-cells could not activate JNK protein at higher the expression 

level or sometimes it can induce a very weak activation of JNK [577-579]. A seminal 

paper published by Rodriguez et al. had tried to simulate this molecular event by 

developing an integrated logical model of T-cell receptor and co-receptors mediated 

intracellular signaling pathways [244]. The authors had considered this molecular 

event in T-cells as a binary response, in which CD28 stimulation alone induced the 
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JNK activation (i.e., binary state 1 or UP) and vice-versa in the developed in-silico 

model. They had also performed an in-vitro experiment on mouse primary T-cells to 

observe the effect of CD28 stimulation on JNK and found that stimulation of only 

CD28 protein by non-superagonistic CD28 antibody induced a sustained expression 

of JNK protein. Thus, verified the binary response phenomena of JNK activation by 

CD28 stimulation with the new in-vitro experiment. Although their simulation result 

perfectly matched with their newly performed experimental evidence, the author 

mentioned that the discrepancy of the JNK activation level in comparison to the 

literature could be due to the different cellular systems (e.g., primary T-cells or T-cell 

lines) used in the previous [577-579] and current experiments [244]. 

Hence, considering all the previous results, we can argue that CD28 stimulation 

does not trigger the activation of JNK or weakly activates its expressions or in some 

cellular system, it can trigger the sustained expression of JNK. The binary 

assumption (either ON or OFF) of the logical states of the pathway species (nodes) is 

not sufficient to simulate all of these three possible outcomes of JNK activation level. 

We have hypothesized that the strength of CD28 stimulation and the initial states of 

the pathway species of T-cell signaling network are the main factors behind these 

three possible (i.e., inactive, weakly active, and sustained active) states or outcomes 

of JNK protein. Here, we propose to implement our modified quaternary logic based 

method and algorithm to simulate the previous model of T-cell signaling pathway 

developed by Rodriguez et al. [244]. In this logical model, we have only changed the 

mathematical function of those nodes, which have only inhibitor proteins in their 

upstream region (see Section 2.6.2). Apart from these nodes, we have not altered the 

mathematical equations of any other nodes in the select model. However, before 

trying to prove our proposed hypothesis, we have attempted to reproduce the 

simulation results obtained by Rodriguez et al. in the Boolean logic based simulation 

of T-cell network [244]. The authors had simulated the logic model in three different 

time scales (t0, t1, t2), in which t2 time scale contains few feedback reactions. The first 
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time scale t0 refers the simulation outcomes of the logical model without any 

stimulation of the activators/receptor proteins CD28, CD4, and TCRLIG. In the t1 and 

t2 timescales, the logical steady states of t0 and t1 timescales are considered as the 

inputs, respectively. In this work, at first, we have simulated the t0 timescale by 

considering the initial states of the input nodes cd28, cd4, and tcrlig as "0" or 

"Absent". To simulate the next timescale t1, we have considered the initial states of 

each input nodes cd28, cd4, and tcrlig at three different expression levels, viz. "1" or 

"low expression"; "2" or "normal expression"; and "3" or "over-expression". Here, the 

low expression (i.e., quaternary state = 1) of the input nodes refers to mild 

stimulation, whereas the normal and overexpressions states are referred to as the 

normal and strong stimulations, respectively.  

We have followed the similar simulation steps executed by Rodriguez et al. to 

measure the expression profiles of the read-out proteins, viz. pag, tcrp, cblb, ccblp1, 

lckp1, zap70, lat, pkb, and erk at t0, t1, and t2 timescales by stimulating the input 

nodes cd28, cd4, and tcrlig [244]. We have successfully reproduced the similar 

expression profiles of these proteins (except cblb and pkb) under strong stimulation 

of cd28, cd4, and tcrlig input proteins (Figure 49). Hence, it is proven that our newly 

developed quaternary logic method is capable of reproducing (qualitatively) the 

previous outcomes of Boolean logic based T-cell pathway model. Additionally, we 

have observed that under the mild and normal stimulations of all the three input 

proteins, the expressions profiles of the select proteins have shown different 

expression patterns. The varied responses of the read-out proteins under different 

initial conditions, which could not be retrieved in the previous model due to the 

limitations of considering only the binary states of the nodes, are now can be 

observed by implementing our newly developed quaternary logic based analyses. 

Hence, altogether it can be concluded that the application of quaternary logic based 

method can be best suitable for studying the effects of the strength of stimulation of 

the receptor proteins by the ligand molecules as well as assessing the magnitude of 
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the activation/inactivation of the input proteins in signal transduction pathway.  The 

current approach can be reduced to simulate only the binary responses or multi-

valued responses depending on the objective of the work. 

 

Figure 49:  Activity profiles of the select proteins of T-cell pathway model. 

At timescales, t1 and t2, the quaternary states of the input nodes cd4, cd28, and tcrlig are 

considered as "1", "2", and "3" to simulate the effect of mild, normal, and hyperstimulation of 

these input proteins in the select downstream proteins of T-cell signaling network. The 

observed activity profiles of the select downstream proteins, simulated with our newly 

developed quaternary logic based method, show the quaternary states ("0", "1", "2", and "3") 

of the select proteins. Here, the quaternary state "0" refers the absence or null expression of 

the proteins, whereas "1", "2", and "3" refers the low expression, normal or basal, and over 

expressions of the proteins, respectively. The activity profiles of the select proteins under 

hyper-stimulation of input proteins qualitatively match (except cblb and pkb proteins) with 

the activity profiles observed by Rodriguez et al. in their developed Boolean logic-based 

model of T-cell signaling pathway [244].      

Next, we have tried to prove our hypothesis by simulating the dichotomous or 

binary response pattern of JNK activation upon stimulation of CD28 protein, 
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observed by Rodriguez et al. [244] as well as the multi-level responses (null 

expression, weak activation, and sustained expressions) of JNK protein by CD28 

stimulation observed in all experiments (including Rodriguez et al.) [577-579]. 

We have traced back the JNK activation pathway in the model diagram and 

found that a node named as rac1r is situated at the upstream of JNK and 

downstream of CD28. The pathway species (node) rac1r was considered as the 

reservoir node of rac1 and rac2 proteins. Here, we have assumed that the initial 

concentration of rac1r species in the T-cell pathway is heterogeneous in different 

cellular systems (primary T-cells and T-cell lines), which can regulate the inital states 

of rac1 and rac2 proteins and finally the activation of JNK. We have observed that the 

effect of varied strengths of stimulation and its consequence in the expressions of 

JNK protein can be only observed if we consider different initial expressions 

(quaternary states) of rac1r in the logical model. We have found that the cellular 

system with null expression of rac1r shows no activation of JNK protein under all 

three possible stimulations of CD28. The similar observation was also found in the 

previous experiment (Figure 50A) [577,578]. In case of a cellular system with a 

shallow concentration level of RAC1R protein (quaternary state = 1), we have 

observed a very weak activation of JNK (quaternary state = 1) under CD28 

stimulation (Figure 50B). The weak JNK activation state upon CD28 stimulation was 

also observed in the previous experiment [579]. Simultaneously, we have also 

observed the binary response pattern of the JNK activation level upon CD28 

stimulation in the cellular system having normal or basal expression level of RAC1R 

protein (Figure 50C). The sustained expression pattern of JNK protein was observed 

by Rodriguez et al. in their experiment on primary mouse T-cells after stimulating 

CD28 co-receptor with non-superagonistic antibody [244]. Apart from these 

observations, we have also predicted the graded, multi-valued response patterns of 

JNK activation levels under the gradually increasing strength of CD28 stimulation in 

the cell types having overexpressed RAC1R (Figure 50D). Hence, we can conclude 
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that in previous experiments the initial concentrations of RAC1 and RAC2 proteins 

before CD28 stimulation may have played significant roles to trigger multi-valued 

expression patterns of JNK protein in the T-cells. Simulation of such multi-valued 

outcomes of the target genes/proteins in large-scale signaling pathway is difficult to 

perform by Boolean modeling approach, but it can be much easier with the help of 

our newly developed quaternary logic-based approach.  

 

Figure 50: JNK activation profile in the different cellular systems. 

Total four different cellular systems (A) null, (B) low, (C) normal or basal level and 

(D) over expressions of RAC1R are considered in our simulation to assess the effects 

of CD28 stimulation in JNK activation level. The JNK activation profile is simulated 

in these cellular systems under gradually increasing strengths of only CD28 

stimulation. The quaternary states of CD28 equal to 1, 2, and 3 refer to the mild, 

normal, and hyper stimulations (in-silico) of CD28 co-receptor protein of T-cells, 

respectively.     

7.2.1.2 Effects of Copy Number Gain or Gene Amplification in Signaling Pathways 

Apart from the effects of varying signal transduction intensities exerted by ligand 

molecules on the receptor proteins, genetic aberrations viz. gain or loss of copy 
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numbers of the vital signal transducing genes are also found responsible for 

manipulating the expressions of target genes/proteins during disease pathogenesis. 

For example, epidermal growth factor receptor or EGFR (also known as ERBB1 or 

HER1) is regularly expressed in the membrane of epithelial, mesenchymal, and 

neuronal cells, which most often binds with the growth factor ligands (EGF, TGF, 

etc.) and triggers the downstream kinase signaling pathways for normal mitogenic 

(e.g., G1/S transition) events [580]. One of the target proteins at the downstream of 

EGFR pathway is the tumor suppressor protein retinoblastoma (pRB). In the early G1 

stage of cell cycle, the hypo-phosphorylated pRB binds with E2F family transcription 

factors and represses the transcription of the genes (e.g., Cyclin A and E, CDC2, 

CDC25C, p21, etc.) responsible for cell division [581]. In order to accelerate the cell 

cycle progression, the mitogenic signaling cascades mediated by growth factor 

receptor proteins, such as EGFR are specifically directed towards the 

phosphorylation of pRB in the late G1 phase and subsequently inhibit the interaction 

between pRB and E2F [245,581]. Hyper-phosphorylation of pRB is found to be 

strongly correlated with the irregular cell divisions and the pathogenesis of various 

types of cancers [582]. Similarly, hypo-phosphorylation of pRB is associated with the 

G1 cell cycle arrest and the inhibition of cellular growth [583]. Hence, the modest 

expression of the phosphorylated pRB protein after EGFR pathway activation in the 

late G1 phase followed by its hypo-phosphorylation is always desirable to maintain 

the cell cycle progression dynamics at a regular rhythm [581]. The EGFR receptors 

family mediated pathway play important role in the maintenance of cell cycle 

progression and cell proliferation pattern by tightly regulating the phosphorylation 

of pRB and other CDKs. Therefore, the imbalances caused due to the irregular 

expressions of the ligands, such as EGF, over-expression or amplification and 

mutation of the receptors in the membrane are found to be strongly associated with 

the hyper-phosphorylation (or inactivation) of pRB, irregular cell divisions and 

oncogenesis [584].      
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Amplification of the EGFR gene with higher expression of EGFR protein is 

detected in various cancer cells including primary Glioblastoma (57.4% of GBM 

patients) [556]. Different types of EGFR variants in GBM cells, such as EGFR deletion 

(EGFRvIII, deletion of exons 2–7) or point mutations (R108K, A289V/D/T, G598D) are 

also co-expressed with the amplified EGFRWT in the cell membrane [556]. Also, the 

previous studies have found that these variants are present in the GBM cells at 

constitutively active state and trigger the aberrant mitogenic signal to the intra-

cellular kinase proteins, such as CDKs [556]. The constant activations of the kinase 

proteins augment the phosphorylation of pRB. Therefore, it can be said that the 

activation levels of various proteins (e.g., AKT1, MEK1) or phosphorylation 

(inactivation) of pRB in the downstream of EGFR pathway will not be in equal 

magnitudes in the cells expressing only EGFRWT with modest expression level and 

the cells which express EGFRWT with amplification or higher copy number, or the 

cells which have both the amplified EGFRWT and EGFRvIII variants co-expressed 

[245] (Figure 51A). As a result, the expressions of cell cycle regulatory genes in these 

cell types will be highly varied and thus the rhythm of cell division process. The 

comparative analyses of such downstream proteins (e.g., CDK2, CDK4, CDK6, 

CYCLIN D1, and CYCLIN E1, etc.) after EGFR pathway activation in different cells 

expressing the variants of EGFR receptor will be helpful to understand the 

regulatory mechanisms behind the irregular cell divisions and tumor formation. 

Previous dynamic logical models (based on binary Boolean algebra) of ERBB 

pathway have successfully simulated the dynamics of the activation pattern of cell 

cycle regulatory genes/proteins during cell division process under various 

pathological conditions [585-587]. However, a general logical model developed for 

the simulations of all such molecular variants of EGFR protein simultaneously and 

subsequently the comparison of the expressions of downstream genes/proteins of 

this pathway in different cellular systems is hitherto unavailable. Using conventional 

binary logic-based approach, a comparative study of the different cellular systems 

with regular, amplified, and variant EGFR in the cell membrane is not possible to 
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perform due to the limitation of considering the initial logical state of the EGFR 

protein in all the cellular systems at only the up-regulated (or Active/True) state. On 

the other hand, the quaternary logic-base approach can overcome this limitation by 

considering the initial state of the regularly expressed EGFRWT as "2" and the 

amplified or copy number gain as quaternary state "3" (without EGFRvIII expressed).   

 

Figure 51: Simulation output of ERBB family receptor proteins mediated pathway in 

Glioblastoma cells.  

(A) Network diagram of ERBB pathway. The green and red arrows in the network are 

activation and inhibition, respectively. (B) Predicted quaternary states of the pathway 

species in various experimental situations. Two types of EGFR (or ERBB1) viz. EGFR_WT 

(wild type) and EGFRvIII (deletion of exon of 2-7) are considered in the simulations to create 

different cell types. EGFR_WT = 2 and EGFR_WT = 3 represent the regular and amplified 

EGFR expressions, respectively. Here, the logical state of pRB represents the 

phosphorylation status of the protein. 
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We can also create four different possible scenarios of the cellular systems which 

co-express EGFRWT and EGFRvIII viz. (i) regular EGFRWT expression (= 2) and no 

stimulation (EGF = 0), (ii) regular EGFRWT expression (= 2) with stimulation (EGF = 3), 

(iii) EGFRWT amplification (= 3) and no stimulation (EGF = 0), and (iv) EGFRWT 

amplification (= 3) and with stimulation (EGF = 3). In order to analyze the effects of 

these quaternary states of EGFR protein in all the cellular systems, we have used a 

previously published logical model of ERBB pathway [245] and have modified the 

formulation of the logical equations (Appendix Table 11) by following our proposed 

quaternary logical equation formulation rule (see See 2.6.2).  

We have observed that when there is no external stimulation and no EGFRvIII 

variant is present in the cellular system, our model simulation perfectly predicts the 

expressions or activities of the pathway species at the logical steady states  (Figure 

51B). The downstream proteins of ERBB pathway responsible for cell cycle 

progression (e.g., phosphorylated pRB, Cyclin D1, Cyclin E1) are found inactive in 

this scenario. The expressions of these proteins are increased and reached at the 

regular expression level (= 2) when EGF (= 3) is present in the extracellular region as 

ligand or stimulant for the wild-type receptors viz. ERBB1 (EGFRWT), ERBB2, and 

ERBB3. The regular or normal expression patterns achieved in our simulation can be 

represented as the normal functioning of the cells. On the other hand, we have found 

that the downstream proteins are over-expressed (as compared to normal cells) when 

EGFRWT (ERBB1) is amplified in the cells and received appropriate signal from EGF 

ligand. The over-expression of the downstream proteins, such as phosphorylated 

pRB, is observed in the GBM cells having amplified or high copy number of EGFR 

(ERBB1) protein [245]. Over-expressions of phosphorylated form of pRB, and Cyclin 

D1 are linked with rapid cell cycle progressions and malfunctions in the normal 

development of the cells, and thus cause cancer or tumor [245,588]. Hence, we can 

assert that our developed quaternary logic-based model is able to simulate both the 

normal (with or without stimulation) and cancer (high copy gain of EGFR) scenarios 
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with correct expression levels of the downstream proteins.  

Simulation of the cellular system co-expressing amplified EFGR and EGFRvIII 

variant can be also performed to compare the protein activity profiles of ERBB 

pathway with various other cellular systems. We have used our modified, 

quaternary logic-based model (Appendix Table 11) in four different cellular systems 

consist of EGFRvIII variant and computed the activity profiles of the downstream 

proteins of ERBB pathway (Figure 51B). We have observed that EGFRvIII variant 

cells without any extracellular stimulation and co-expressing with regular EGFRWT 

transduces weaker activation signal to the downstream proteins as compared to the 

amplified EGFR and/or EGF stimulated cellular systems. This result validates the 

previous experimental findings in which it was shown that the constitutively active 

EGFRvIII variant has weaker kinase activity in the downstream proteins of ERBBB 

pathway than the EGFR, but it is reported to be sufficient for cell cycle progression in 

the absence of extracellular stimulation in GBM and other tumorigenic cells [556,584]. 

The augmentation in the signal intensity in the downstream proteins was observed 

when EGFRvIII variant is co-expressed with the amplified EGFR protein in the GBM 

cells [556]. We have also observed the similar expression profiles of the downstream 

proteins in our simulation studies, which proves that the EGFRvIII variant promotes 

the oncogenic transformation of the cells by producing dimer with EGFR protein 

(Figure 51B). Hence, it can be seen that all the cellular situations consisting of the 

molecular variants of EGFR protein can be possible to simulate with the help of our 

newly developed quaternary logic-based modeling approach, and can better explain 

the activity profiles of pathway species as compared to the binary logic-based 

approach.                    

7.2.1.3 A Comparative Study of the Previous Models of Hedgehog and Notch 

Pathways 

We have also used our newly developed quaternary logic-based modeling 

technique to simulate the previously developed logic-based models of Hedgehog and 
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Notch pathways [185]. In our previous models of Hedgehog and Notch pathways, 

we tried to predict the logical steady-states of the target genes/proteins of these 

pathways in grade-IV GBM cells and matched the expression profiles with the 

microarray data (GSE42902) [219]. To simulate the models, we considered the initial 

states (binary 1 and 0) of all the input genes/proteins of the pathways based on the 

expression profile obtained from the microarray data. While simulating the GBM 

cellular system, we considered the initial states of the input proteins/genes in the 

logical models as "1" or "True" if the corresponding transcripts are differentially over-

expressed (significant or adjusted P-Value ≤ a defined cut-off) in the GBM cells as 

compared to normal cells. Similarly, the initial states were considered as "0" or 

"False" if the transcripts of the input genes/proteins were differentially down-

regulated (significant) in the GBM cells. We used this data as inputs of our Hedgehog 

and Notch pathway models, and achieved 75% and 84% accuracies, respectively 

while we compared the activity profiles of all proteins obtained from the simulations 

of the pathway models using Boolean logic with the expression profiles of the 

corresponding transcripts obtained from microarray data.    

However, we could not determine the binary initial states of a few input 

proteins/genes in both the model simulations as the differentiation expressions of the 

respective transcripts of those genes/proteins in the GBM cells were not statistically 

significant [185]. We have observed that the transcripts whose expressions were 

insignificant (adjusted P-Value > a user defined cut-off), sometimes had fold change 

value more or less than ± 2 (i.e. log2 *FC+ ≥ 1 or log2 *FC+ ≤ -1) in the GBM cells as 

compared to the normal cells. On the other hand, few transcripts had significant 

expression level (adjusted P-Value ≤ a defined cut-off) in the GBM cells, but had fold 

change ratio lies between -2 to +2. Such scenarios signify that these transcripts are 

either modestly active (but not hyperactive) or hypoactive (but not absent) in the 

GBM cells as compare to the normal cells. Indeed, such expression scenarios we 

cannot capture in Boolean logic-based model, in which we can either use binary 1 
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(active or over-expressed) or 0 (inactive or under-expressed) states to represent the 

logical states of the genes/proteins. Hence, we need a better approach to perfectly 

quantize (multiple states) the logical states of the nodes by using the statistics we 

obtain from the differential expression analyses. Our proposed technique, to select 

multi-valued, quaternary logical states of the nodes can be specifically useful for this 

purpose (see Section 2.6.4).   

Here, we have used the quaternary state selection criteria on GSE4290 microarray 

datasets to select the quaternary logical states of the proteins considered in 

Hedgehog and Notch pathway models for simulating the primary GBM scenario. We 

have chosen the adjusted P-value cut-off (i.e. θ1) at 0.05 and log2 [FC] (i.e. θ2) equals 

to ±1 for determining the quaternary states of all the transcripts to implement the 

quaternary state selection rules. We have also modified the logical equations of both 

the models as per our proposed rules for the constructions of logical equations and 

subsequently computed the logical-steady states of the models using our modified 

quaternary logic (ExQuLogic)-based simulation rules. We have observed that both 

the models have reached the fixed-point attractor states during simulations. 

Followed this, we have extracted the quaternary logical states of all the 

genes/proteins of the models at the steady-states and compared with the logical 

states obtained just after applying quaternary selection rule. We have achieved 

77.55% and 87.65% accuracies from both the model simulations, respectively. 

Although, the accuracy levels have not improved significantly in Hedgehog pathway 

model, but the prediction of the expression levels of the statistically insignificant 

genes/proteins, which we could not explicitly computed in the binary logic based 

simulation, can be now possible to predict by using our ExQuLogic-based method. 

In case of binary logic (BL)-based simulation of Hedgehog (HH) pathway model, 

we observed that the important activator proteins of this pathway, such as CDO, 

BOC, DISPATCHED, etc. had insignificant expression level in GBM cells as 

compared to the normal cells. However, to activate the HH pathway, we know that 
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these proteins play significant role to pre-process the HH pathway ligands viz. Sonic 

(SHH), Desert (DHH), and Indian (IHH) Hedgehog. Due to the limitation of 

considering only two possible states either up-regulation (or True) or down-

regulation (or False) in BL-based simulation, these proteins were required to be 

considered as up-regulated or over-expressed at the initial time point of the 

simulation to activate the HH pathway in the in-silico model of Glioblastoma 

tumorigenic scenario (GBS). On the other hand, after applying the quaternary state 

selection rules on the transcripts of these proteins of the same microarray dataset of 

GBM tumor cells (GEO ID: GSE4290), we have seen that these proteins are modestly 

active (but not hyper-active or over-expressed) but insignificantly expressed in GBM 

cells (Figure 52). Hence, in our ExQuLogic-based simulation of GBM cells, we do not 

need to consider the initial states of these insignificantly expressed proteins as up-

regulated (or TRUE) state. Instead, we can consider the activity of these proteins as 

modestly active (quaternary state = 2) at the initial state of the simulation (Figure 52). 

Also, On the other hand, the biological expressions of the co-repressor proteins of 

HH pathway, such as SKI, SNO, SIN3α, and NCOR found insignificant in the same 

expression dataset of GBM cells (GSE4290), but they were also considered as 

inactive/down-regulated to activate the HH pathway during the BL-based simulation 

[82]. After applying our quaternary state selection rules on the same datasets, we 

have observed that SNO and SIN3α are modestly active (quaternary state = 2), and 

SKI and NCOR are hypo-active (quaternary state = 1) in the dataset. The simulation 

outputs of our modified quaternary logic (ExQuLogic)-based simulation method on 

HH pathway depict that the expressions of the target oncoproteins (e.g., FOXM1 

[589], PDGFRα [590]) of HH pathway will be still hyper-active (over-expressed) at 

the steady state (Figure 52). This result clearly shows that the modest activation of 

CDO, BOC, DISPATCHED, SNO, and SIN3α and hypo-activation of SKI and NCOR 

proteins of HH signaling network are sufficient to trigger the over-activation of 

tumorigenic proteins. 
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However, it should be noted that the predicted quaternary states of HH pathway 

activators viz. CDO, BOC, and DISPATCHED and the co-repressor proteins viz. SKI, 

SNO, NCOR, and SIN3α are sufficient but not necessary for promoting the 

expressions of the target oncoproteins.  

 

Figure 52: Logical steady-states of the proteins in Hedgehog pathway model. 

The logical states of the proteins shown under binary logic-based simulation (first two 

columns) are obtained from the previously performed logical-steady states analyses of 

Hedgehog pathway model. The transcripts of the Hedgehog pathway proteins are quantized 

using the "quaternary states selection rules" and the logical steady-states of these proteins are 

computed by using the modified quaternary logic (ExQuLogic)-based simulation technique. 

Perturbation 1 refers the in-silico knock-out of CDO, BOC, DISPATCHED and Perturbation 2 

indicates the over-expression of SKI, SNO, SNI3A, and NCOR proteins in the GBM cells. 

Perturbation 3 shows the simulation outputs of the knock-out experiments on SMO, GLI1, 

and GLI2 proteins in the GBM cells as the proposed, combinatorial drug target. 
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Perturbations studies of these two groups of proteins (activators and co-

repressors) separately (perturbation 1 and 2) have proven that the over-expressions 

of the target oncoproteins (e.g., FOXM1, and PDGFRα) in GBM scenario do not get 

affected even after perturbing the quaternary states of these proteins (Figure 52). 

Hence, it can be said that the suppression of CDO, BOC, and DISPATCHED (positive 

effectors) or over-activation of the co-repressors proteins SKI, SNO, NCOR, and 

SIN3α have no potential to reduce the activities of the oncogenic signaling network 

in GBM cells. Indeed, certain cross-talks from other pathway molecules and/or the 

positive feedback loops can still keep the signal at ON state even after suppressing its 

activators or over-activating its suppressor proteins. Similar to the previous binary 

logic-based, perturbation analysis of the activated Hedgehog signaling network on 

GBM cells have revealed that by targeting SMO, GLI1, and GLI2 proteins 

simultaneously, down-regulation of the target oncoproteins FOXM1 and PDGFRα is 

possible to accomplish [82]. 

In addition, we have also predicted that perturbation of SMO, GLI1, and GLI2 

proteins will not completely down-regulate the cell cycle regulatory proteins Cyclin 

D, Cylcin D2, and Cyclin E, which will in turn reduce the chance of severe toxicity 

induce on the normal cells during target-based therapy (Figure 52). Therefore, we 

have established that using our new quaternary logic-based simulation of Hedgehog 

pathway, we can now test the precision of the proposed drug-target in the GBM or 

other tumorigenic cells, which was not made possible in the binary logic-based 

simulation.  

7.2.2 Application of ExQuLogic-based Simulation Techniques on Other Datasets  

We have shown that by taking the inputs from the microarray gene expression 

datasets (GSE4290) of GBM tumor cells, how our newly developed ExQuLogic-based 

simulation technique is helpful to predict the expression profiles of each of the 

genes/proteins involved in Hedgehog pathway with much higher level of resolution 
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than the BL-based method [82] (Table 16). On the other hand, in case of Notch 

pathway model, the ExQuLogic-based logical simulation have shown a slightly 

higher level of accuracy (91.35%) than the accuracy level (84%) obtained in BL-based 

method [185] (Table 16).  

Table 16: Percentage of Accuracy Obtained in BL- and ExQuLogic methods 

                  Models 

 

Datasets 

Hedgehog Pathway Notch Pathway 

Binary 

Logic (BL) 

Extended 

Quaternary 

Logic 

(ExQuLogic) 

Binary 

Logic (BL) 

Extended 

Quaternary 

Logic 

(ExQuLogic) 

Glioblastoma tumor 

cells vs. Normal 

cells  (GSE50161) 

80.77%* 

69.23%** 
81.25%** 

85.71%* 

97.62%** 
91.36%** 

NICD over-

expressed GBM cells 

vs. Neural stem cells 

(GSE44561) 

NA 75% NA 89.87% 

* FDR = 0.05 & log2 [FC] = 0; ** FDR = 0.05 & log2 [FC] = 1 

However, in both the analyses, we have used same gene expression datasets 

obtained from GBM tumor cells. Hence, to examine the efficiency of ExQuLogic-

based method for the prediction of the gene expression or protein activity profiles, 

we have also used other experimental datasets (microarray, proteomics) as 

benchmark for measuring its performance with BL-based method. It should be noted 

that similar to the previous approach used in BL-based simulation [185], herein the 

entire analyses are also performed in retrospective mode to compute the percentage 

of accuracy of the predicted activity profile or expression pattern of the associated 

genes/proteins of the signaling pathways (see Section 2.6.7). 

We have observed that in both the pathway models, while predicting the 

percentage of accuracy of the gene/protein expression patterns with respect to the 
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experimental datasets (GSE50161 and GSE44561), the ExQuLogic-based approach 

slightly outperforms the BL-based approach (Table 16). We have also observed that 

the BL-based method outputs different magnitudes of the percentage of accuracies in 

both the pathway models after applying different level of fold change (log2 [FC]) 

values as thresholds to determine the up or down regulated transcripts. Indeed the 

change of fold change values in constant FDR have altered the expression profiles of 

the transcripts significantly and thus have changed the magnitudes of the percentage 

of accuracy of all the pathway species in GBM cells. 

However, the main advantage of the use of ExQuLogic-based method is not 

limited to the calculation of the percentage of accuracies of the expressions of 

genes/proteins in the GBM cells under steady-state. This new method has the 

capability to consider and correctly compute the expression patterns of all the 

genes/proteins even though the transcripts are not significantly expressed in the 

cellular system (i.e., GBM cells) to be considered as the binary up ("1") or down-

regulated ("0") states.  For example, in the GSE44561 microarray assay performed by 

Guichet et al., the GBM cells were transfected with NICD (Notch Intracellular domain) 

and the expressions of the transcripts were compared with the normal neural stem 

cells (with NICD transfection) for further differential expression analysis [591]. 

Interestingly, the authors observed that even after strong activation of Notch 

signaling pathway in the GBM cells, the main target genes of this pathway, such as 

HES5, HEY1, and HEY2 were not significantly expressed or sometimes modestly 

expressed (FDR > 0.05). Hence, the application of BL-based method to retrospectively 

predict the gene/proteins expression pattern of the NICD transfected GBM cells is not 

helpful in this case. After reanalyzing this microarray dataset, we have also observed 

that most of the genes/proteins involved in Hedgehog and Notch pathways are not 

significantly expressed in the NICD transfected GBM cells. Hence, we cannot apply a 

suitable threshold of significance level on the expression patterns of the transcripts to 

determine the binary states (Up or Down) of the involved genes/proteins considered 
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in our logical models.  

We have overcome this problem by implementing our quaternary state selection 

rule on the output of the differential expression analyses of the microarray dataset, 

and thus quantized the expression pattern as per our defined quaternary 

states 0 , 1, 2 , 3   . Subsequently, we have extracted the quaternary states of all the 

genes/proteins considered in both the pathway models as inputs for further logical 

steady-state analyses. We have obtained 75% and 89.87% accuracies from Hedgehog 

and Notch pathway models, respectively by using the ExQuLogic-based method for 

pathway simulation. This result clearly depicts the prospective potential of the 

developed ExQuLogic-based method for the prediction and analyses of the gene 

expression pattern in a cellular system. Also, we have observed that in the Notch 

pathway model of GBM cells, the logical steady states of the target proteins of the 

pathway, such as HES5, HEY1, and HEY2 are modestly active (quaternary state = 2) 

(result not shown). This observation completely agrees with the experimental 

evidences observed by Guichet et al. [591]. Hence, it is observed that the BL-based 

method, which specifically depends on the significant expression levels of the 

genes/proteins of the pathway to decide the binary logical states of the inputs, fails to 

capture the expression pattern of the genes/proteins of the cellular systems (or 

disease scenario) in which the transcripts/genes/proteins are insignificantly or 

modestly activated and inhibited. 

7.2.3 Activity Profiles of the Genes/Proteins in the Integrated Logical Model of 

Hedgehog, Notch, WNT, and EGFR Pathways 

7.2.3.1 Study of Integrated Pathway Model using ExQuLogic 

In order to examine the applicability of our proposed ExQuLogic-based method 

on another pathway model, we have reconstructed a new logical model of the 

reaction networks consisting of Hedgehog, Notch, WNT, and EGFR pathways (see 

Section 2.6.6) and subsequently used it for further in-silico analyses (Appendix Table 

12). These pathways and their cross-talks are proven to be significantly associated 
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with the development and maintenance of the matured and tumor initiating stem 

cells [314,405,584,592,593]. These pathways are also involved in the angiogenesis, 

tumor cell invasion, Epithelial-Mesenchymal transitions (EMT) during cancer 

pathogenesis [594-598]. Hence, a predictive mathematical model is very much useful, 

which is specifically developed for computing the expressions of genes/proteins 

associated with these pathways during cancer cell development and maintenance. In 

this work, we have used our proposed ExQuLogic-based method on the newly 

developed, dynamic logical model of the integrated pathways and subsequently 

compared the qualitative expression levels of the genes/proteins observed in the 

experimental microarray data of GBM tumor cells with the predicted quaternary 

expression/activity levels of the respective genes/proteins at the steady-state of the 

dynamics. We have used same logical model, but different initial conditions for the 

inputs of the integrated pathway. The initial conditions of the input proteins are 

considered from the three microarray datasets, which we have used earlier for the 

individual Hedgehog and Notch pathway models of GBM development to computer 

the logical steady-states (LSS) of the genes/proteins of these pathways.  

7.2.3.2 Initial States of the Input Proteins and the Expected Expressions of the 

Target Genes of the Model are Selected from Microarray Data 

In order to select the quaternary states of the input proteins for each model 

simulation, at first we have used the differential expression statistics of each 

microarray experiments (i.e., GSE4290, GSE50161, and GSE44561) to extract the log2 

[FC] and FDR values of each of the transcripts correspond to the input proteins of the 

model. After that, we have applied the quaternary state selection rules on the 

extracted transcripts and assigned the quaternary states to the input proteins. We 

have also used the differential expression statistics to assign the quaternary states of 

the output nodes or the target genes of the integrated pathway model. The 

quaternary states of the target genes obtained from three microarray datasets are the 

"expected values", which will be compared with the computed quaternary states (i.e. 
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"predicted values") of the target genes to predict the "level of accuracy" of the 

corresponding model simulation. During logical simulation of a single microarray 

dataset, we have shuffled the quaternary states of the inputs and generated random 

1000 samples. However, while shuffling the quaternary states of the inputs, we have 

made sure that the activity status of the input proteins remains conserve as per the 

quantization level achieved from the differential expression study. That means, if the 

quaternary state of a transcript is obtained from the differential expression study is "2 

(or modestly expressed)", then the corresponding random initial state of the input 

protein will be either "2 (or modestly active)" or "3 (or highly-active)" during 

shuffling. On the other hand, if the quaternary state of the transcript is determined as 

"3 (i.e., Over-expressed)", then random initial state of the corresponding input 

protein during shuffling will be either "2 (or modestly active)" or "3 (or highly-

active)". Similar rule is applied for the quaternary states "1 (or lowly expressed)" or "0 

(or absent)" of the transcripts. The quaternary states of the intermediate nodes (e.g. 

signal transducer proteins, protein complexes, metabolites, ions, etc.) are randomly 

assigned at the initial time point of the simulation and no activity conservation rule is 

applied.   

7.2.3.3 Percentage of Accuracy of the Model Simulations are Calculated Based on 

the Predicted Expression Levels of the Target Output Genes 

Here, we have assumed that if the transcript of an input protein is found 

modestly expressed (quaternary state "2"), then the activity of that protein after post-

translational modification will be either remained modestly ("2") or highly ("3") 

active and thus the activity status of the input nodes will be remained conserved as 

per the observed experimental gene expression pattern. By this way, we have created 

1,000 random initial states including the randomized states of the intermediate nodes 

and successively computed the LSS of the target genes or output nodes of each 1,000 

models of a single microarray dataset. Simultaneously, we have computed the active 

and inactive target genes from the LSS of each model and compared with the 
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expected activity profile of the target genes obtained from the corresponding 

microarray data of GBM cells. All the target genes, which have the quaternary the 

states "2 or 3" and "0 or 1" in the expected and predicted datasets, are hot encoded as 

"active" and "inactive" states, respectively. The percentage of accuracy of the activity 

profile of a model is thus measured by using the hot encoded activity profiles of the 

expected versus predicted dataset of the target genes.           

In our integrated pathway model, we have total 158 input, 220 intermediate, and 

50 output (or target genes) nodes. The accuracy of the model prediction is performed 

on these 50 target genes of the developed pathway model. After running the LSS 

simulation, we have achieved maximum 72%, 68%, and 67.34% level of accuracies in 

each 1,000 total set of simulations (random initial states) of the logical model 

developed for all the three experimental microarray datasets viz. GSE4290, GSE50161, 

and GSE44561, respectively. The activity profile of the target genes of the model 

obtained after taking the initial states of the input proteins from the three microarray 

datasets are shown in Figure 53.  

7.2.3.4 Predicted Quaternary States of the Target Genes Depict Better Resolutions 

during Comparison of the Expected Expression Levels in GBM Cells  

We have observed that our developed logical model, based on the input dataset 

obtained from the GSE 4290 microarray experiment, is correctly able to predict the 

expressions of various target genes (e.g., CD44, MYOD, BAX, CYCLIN D2, etc.) 

observed in the same assay of GBM cells. Important cell cycle regulatory, apoptosis, 

and E-to-M transition related genes (also responsible in GBM cell division and 

metastasis), such as CD44, FOXM1, SOX9, CYCLIN-D2, CYCLIN-E, MMP7, OPN, etc. 

have "active" expressions (either regular- or over-expressed) in the corresponding 

GBM microarray assay (GSE 4290) as compare to the normal cells (see EXP, Figure 

53A). In the simulation of GBM model using ExQuLogic method, we have also 

observed similar expression pattern of these proteins in the computed logical steady 

states (LSS) (see SIM, Figure 53A). Similar results are also observed for the other 



269 | P a g e  
 

assays i.e. GSE 50161 (Figure 53B) and GSE 44561 (Figure 53C). It should be noted 

that for each logical models, the quaternary states of the extracted output or target 

genes are different, which actually indicates the context specific expression patterns 

of the select target genes in different GBM cells. Hence, it can be said that the 

simulation outputs of our developed model (ExQuLogic-based) are also able to 

predict such context specific variations of the gene expression pattern, which are 

most frequently observed in different GBM tumor cells. 

7.2.3.5 Phenotypic response profile of cell cycle progression and EMT show different 

response patterns in the simulated GBM cell scenarios 

Moreover, in the developed logical model, we have also considered few 

phenotypic responses, such as cell cycle progressions, pro-apoptosis, anti-apoptosis, 

Epithelial to Mesenchymal transition (EMT), etc. to predict the future effects of the 

expressions of the target genes in the tumor cell divisions, metastasis, and cell death. 

The temporal phenotype response profiles of cell cycle progression and E-to-M 

transition for each cancer model are plotted in Figure 53D-H. 

These temporal profiles clearly depict that both the phenotypes reach 

homeostasis (sustained level of activation observed in GSE 4290 and GSE 50161 

models) or revolves around a fixed-point attractor state (cyclic or periodic activation 

observed for E-to-M transition in GSE 44561 models) in all the three developed 

logical models of GBM cell system. It should be also noted that the response profile 

of cell cycle progression state in the steady-state of GSE 4290 and GSE 50161 assay-

based GBM models are comparably higher (quaternary state = 3) and sustainable 

than the GSE 44561 assay-based model (quaternary state = 2). The occurrence of such 

variation mainly arises due to the differences in the expression levels of the 

dependent genes (e.g., CYCLIN-D1, CYCLIN-D2, CYCLIN-E1, CYCLIN-E2, CYCLIN-B, 

CYCLIN-C, etc.) in the GBM cells. 
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Figure 53: Quaternary states of the target genes and temporal dynamics of the 

corresponding phenotypes of integrated pathway model.  

The logical steady states of the target genes of integrated pathway model are calculated for 

three models based on the input dataset obtained from microarray data viz. (A) GSE 4290, (B) 

GSE 50161, and (C) GSE 44561. EXP: Experimental data obtained from the microarray data 

(expected values) of GBM cells, SIM: Simulation outputs (LSS) of the corresponding model 

simulation, and TRT: Treatment refers the combinatorial inhibition scenarios (perturbations 

of multiple proteins on the corresponding model). (D), (F), (H) The temporal dynamics 

(pattern of activations) of two important phenotypes viz. "Cell Cycle Progression" and "E-to-

M Transition or Epithelial to Mesenchymal transition" obtained after considering the initial 

states of the input proteins from the three microarray datasets of GBM cells.  (E), (G), (I) The 

temporal dynamics of the same phenotypes observed after inhibiting multiple proteins on 

the corresponding GBM models. GLI1, NICD, HEY1, NRARP, and SNAI1 are targeted in the 

developed GBM models based on GSE 4290 and GSE 44561 microarray datasets (E) & (I). 

Whereas, in GSE 50161 dataset based developed GBM model, another protein Estrogen 

receptor-alpha (ER-α) is required to inhibit in combination with the previously mentioned 

target proteins.         

Appearance of such variation in the response profile is analogous to the unequal 

rate of cell cycle progression dynamics associated with GBM tumor cells. The 
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response profiles of cell cycle progression observed in the three logical models of 

GBM cells describe the strong and moderate activation of cell division process of the 

tumor cells obtained from three different sources of GBM tumor. The variable rate of 

cell cycle progression mainly depends on the expression levels of cyclin 

genes/proteins after the initiation of signal transduction. Indeed, the variations in the 

transcription of cyclin genes depend on the initial states of the input proteins (or 

signal intensities) and the concentrations of the component proteins involved in the 

transcription machinery of the signal transduction pathways activated in GBM tumor 

cells. Hence, we have seen that using ExQuLogic-based logical modeling approach 

we can readily create such cellular environment and successively predict the 

phenotypic outcomes in higher resolution. Obviously, the binary-logic based 

approach will fail in this scenario to create such cellular system and successively 

predict the ordinal expression/activation pattern of the cellular phenotypes 

depending on variable signal intensities.   

7.2.3.6 SCCs are Important in the Reaction Module of Cell Cycle Progression and 

EMT of GBM  

We have also applied the ExQuLogic-based logical modeling method to predict 

the important drug targets (or crucial nodes) in the whole signaling network used for 

the development of the three independent models of GBM tumor cells. Here, the 

objective is to identify the signal transduction nodes in all the three logical models of 

GBM cells, whose perturbations will subvert the cell cycle progression and E-to-M 

transition dynamics of the rapidly proliferating and metastatic tumor cells. However, 

the existing cross-connections between different signaling pathways, numerous 

positive and negative feedback loops, sub-cellular compartmentalization of the 

reactions, alternative shortest paths connecting the ligands/receptors to the 

components of transcription machineries within tumor cells make the entire system 

highly convoluted for the identification of drug-targetable crucial nodes [599-601]. 

Previous research works have shown the possible way out to overcome such 
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problems by splitting the entire network in different functional and regulatory 

modules [602-604]. In this work, at first we have extracted all possible existing 

reaction modules from the whole reconstructed signaling network (Figure 54A). The 

existing modules and the few large of cluster of nodes can be visualized in this 

network diagram, which in turn proves the existence of highly connected nodes 

(hub) or proteins and the preferential attachment of the other nodes to that hub 

proteins in the whole signaling transduction network. The SCCs of the whole 

network are mainly situated in between the clusters and helping to maintain the flow 

of signal across the network. Due to this topological importance, the SCCs of any 

large signaling network are proven the best targets to alter the functional properties 

of the signaling network under a specific pathological condition [235,537,605].  

However, all the SCCs, which we have identified in the whole network, are not 

suitable for perturbing the cell cycle progression and EMT of the tumor cells. Most 

importantly, there are total 62 SCCs in the network, and therefore systemic 

perturbations (or knock-outs) of all the SCCs on the logical model are difficult to 

perform. Hence, to reduce the overall complexities, we have analyzed the extracted 

modules of the whole network and identify a specific module which mainly contains 

the genes/proteins directly or indirectly influencing the cell cycle progression and 

EMT (Figure 54B). We have observed that in this extracted module (Figure 54B), 

there are total eight strongly connected components or nodes (Inactive GLI1, 

activated GLI1, Nuclear localized GLI1, repressor of GLI3, activated NICDs, HEY1, 

NRARP, and SNAI1) present, which connect the other genes/proteins/complexes in 

the network involve in the regulation of the phenotypic nodes: cell cycle progression 

and E-to-M transition (EMT). GLI1 protein (transcription factor activated in 

Hedgehog pathway), Notch intracellular domains or NICDs (produced during Notch 

signaling), NRARP (Notch-regulated ankyrin repeat-containing protein), and SNAI1 

(the nodes present in the outside of the circular layout of the regulatory module) 

(Figure 54B) are the important genes/proteins responsible for regulating the two 



273 | P a g e  
 

phenotypic responses. The peripheral nodes (e.g., SUFU, PKAα, CKIα, MAML, 

PTCRA, etc.) present in the circular layout are mainly the intermediate, but 

important signaling proteins in the entire network module, which help to process 

and transduce the incoming activation signal from the input to trigger the select 

phenotypes. However, it should be noted that the identified SCCs are also the 

intermediate nodes in the network, which mainly maintain the intra-module 

connectivity to smoothly relay the signal to the downstream for activating the 

phenotype responses at the end of the signaling cascade. 

 

Figure 54: Network view of the whole reconstructed signaling network and the identified 

cell cycle progression and EMT regulatory module. 

The green and red colored edges in the (A) whole reconstructed signaling network and (B) 

cell cycle progression and EMT regulatory module represent the activation and inhibition 

processes, respectively. The red colored, diamond shaped nodes in both the network 

diagrams represent the strongly connected components (SCC) of the respective networks. 

The topological positions of the SCCs in the extracted regulatory module describe the 

importance of the nodes connecting the outside (mainly inputs) and peripheral 

(intermediates) nodes to the select phenotypes.         

7.2.3.7 The Identified SCCs are the Minimal Target Proteins to Deregulate Cell 

Cycle Progression and EMT in the GBM Cells 

We have further studied the importance of the identified SCCs in the response 

patterns of cell cycle progression and E-to-M transition (EMT), observed in the 
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logical model simulations of the GBM cells (Figure 53D-H) (see Section 2.4.2 of 

Materials and Methods). In order to do that, we need to systematically perturb the 

identified SCCs in each of the developed models and subsequently computed the 

steady-state expression pattern of the select target genes of the integrated pathway 

model. Interestingly, after individually knocking-out the identified SCCs in each 

logical model of GBM cells, we have not observed any significant differences in the 

expression patterns (quaternary states) of the select target genes at equilibrium 

conditions (results not shown). This result proves that the single knock-out of any of 

the identified SCCs is not capable enough to down-regulate the cell cycle progression 

genes (e.g., CYCLIN D1, CYLCIN-D2, and CYLCIN-E1, etc.) and simultaneously 

inhibit the hyper-phosphorylation of pRB protein in the GBM cells. The single 

inhibition of the SCCs also does not have any effect on the response of E-to-M 

transition phenotype.  

The possible reason behind this outcome can be the existence of the alternative 

pathway and feedback loops (i.e. conserved signaling motifs) in the module, which 

can help to sustain as well as relay the response signal from the input nodes to the 

target genes (Figure 55). Follow up studies have revealed various feedback loops, 

cross-connections between the signaling proteins of all the pathways, which in turn 

create conserve signaling motif in the module. 

Existence of such reaction motifs are the main reason for which suppression or 

single knock-out of the important SCCs are not effective to suppress the response of 

cell cycle progression and E-to-M transition dynamics. For example, while targeting 

the SCC, such as GLI1 or NUC_GLI1 in the GBM model, we have not observed 

complete suppression of cell cycle progression and EMT. A closer inspection of a 

signaling motif in the module has shown us the alternative route via GLI2 protein in 

the signaling network can still activate CYCLIN-D2 gene expression and thus 

continues the cell cycle progression (Figure 55A). 
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Figure 55: Examples of the signaling motifs identified in the cell cycle progression and 

EMT regulatory module.  

(A) The alternate pathways available for activating cell cycle progression in Hedgehog 

pathway via GLI1 or GLI2 proteins. (B) The cross-talks of WNT, Notch, and Hedgehog 

pathways in the activation of cell cycle progression genes (CYCLIN-D1 and CYCLIN-D2). (C) 

Cross-talks and feedback reactions between multiple signaling pathways leading towards 

EMT activation. 

Hence, the better solution in this case will be to suppress the upstream activator 

STK36 protein including GLI1 or target both GLI1 and GLI2 proteins simultaneously 

to suppress the cell cycle progression. However, suppression of these proteins in 

combination will be ineffective if the other pathways, such as Notch and/or WNT are 

active in the GBM cells. We have also identified another conserved reaction motif in 

the integrated network, which are tightly coupled with each other and provide 

alternative escape route to the GBM cells to sustain its cell cycle progression, even 

after targeting a SCC of any of the pathway (Figure 55B). In this reaction motif, we 

have found that even after targeting GLI1 and GLI2 proteins in the GBM cells, the 

alternate activation route via DELTA/JAGGED --> NOTCH 1/2 --> NICDs can still 

activate cyclin genes. Also, the cross-talks between WNT pathway and Notch 

pathway can indirectly activate the Notch intracellular domain (NICDs) and thus 

sustain the cell cycle progression. On other hand, we have also observed that 

different signaling pathways can also cross-talk and create a conserve and robust 

signaling motif for the activation of SNAI1 protein, which is important for the 
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initiation of Epithelial to Mesenchymal transition (EMT) of the GBM tumor cells 

followed by metastasis (Figure 55C). Hence, it is obvious that single perturbation of 

the SCCs may not be always effective to subvert the cell cycle progression and EMT 

due to the presence of such conserve and robust reaction motifs in the rapidly 

proliferating and metastatic GBM cells.  

In this work, we have hypothesized that to break such robust and synergistic 

network motifs in the GBM cells multiple knock-outs of SCCs including other 

signaling proteins are utmost required. We have tested this hypothesis on our 

developed logical models of GBM cells by knocking-out (considering the quaternary 

state = 0/absent) all the identified SCCs and STK36 proteins simultaneously. 

Inhibition of STK36 can be made possible by inhibiting its upstream activator protein 

Smoothened (SMO) in the cell membrane [606]. In case of GBM models based on GSE 

4290 and GSE 44561 microarray datasets, important target genes (e.g., REL-B, BCL2, 

PDGFRA, CYCLIN-E, OPN, FOXM1, CD44, KLF5, CYCLIN-B, etc.) responsible for 

tumorigenesis, uncontrolled cell divisions, and metastasis are either lowly expressed 

or completely down-regulated (or absent) after targeting all the SCCs and STK36. On 

the other hand, the pro-apoptotic genes, such as BOK and BAX are over-expressed in 

the multiple knock-out (or treatment) scenario (Figure 53A and Figure 53C). Due to 

this, the activation or response profile of the cell cycle progression and EMT also get 

declined (quaternary state = 0) in the steady-state or equilibrium condition in the 

treatment scenario  of the logical models developed for GSE 4290 and GSE 44561 

microarray datasets (Figure 53E and Figure 53I). Interestingly, we have also 

observed that the GBM model based on GSE 50161 microarray dataset does not show 

any promising results while performing multiple knock-outs of SCCs and STK36 

proteins. Further inspection of the experimental datasets and predicted outcomes of 

the target genes revealed that in parallel with Hedgehog, Notch, WNT pathway, the 

activation signal coming from EGFR pathway to activate ERα protein (Figure 51A) 

can also trigger the cell cycle progression dynamics in the GBM cells. In this case, the 
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EGFR signaling cascades act synergistically with other pathways to compensate the 

damages induced by targeting SCCs in the GBM cells. Hence, after targeting ERα 

and other SCCs including STK36, we have achieved the complete suppression of cell 

cycle progression in the respective GBM model (Figure 53B and Figure 53G).  

This result evidently indicates the existence of intra-tumor heterogeneity and the 

appearance of drug resistant GBM cells against known therapeutic drugs. The overall 

results of perturbation analyses also depict the potential of our newly developed 

extended quaternary logic-based approach in the simulation and prediction of the 

expression pattern of the target genes under tumorigenic and perturbation scenarios. 

Using this approach, we can more precisely predict the level of expressions (i.e., 

over-expressed, regular expression, low expression, and down-regulation) of the 

genes or proteins of the signaling pathways as compare to the conventional binary 

logic based approach, limited to predict only up or down-regulated states. Also, by 

connecting the target genes with the phenotypic responses (e.g. cell cycle 

progression, EMT, apoptosis, etc.), we can perform the comparative analyses of the 

magnitude of the response pattern (strong, modest, low, absent) of the phenotypes 

under tumorigenic and treatment cases. 

7.3 DISCUSSION 

In this work, we have shown the existing limitations of binary logic-based 

modeling method while implicated in the simulation of biochemical networks, such 

as signaling pathways, gene regulatory network, etc. We have shown the possible 

alternative of the use of quaternary logic-based algebra, which assumes four possible 

quaternary states 0, 1, 2, and 3 of all the nodes of the developed logical model, 

instead of binary states 0 and 1. We have also proposed quaternary state selection 

rule to discretize the genes/proteins of a logical model by utilizing their fold-change 

ratio and FDR values in a biological sample versus control, obtained in differential 

expression studies. We have introduced a novel algorithm to perform quaternary 
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algebra, which we have named as the extended quaternary state update scheme 

(ExQSUS) algorithm. We have proposed to consider the quaternary state of the 

downstream node of previous time-step while computing the influence of only the 

single or multiple inhibitor node(s) on that downstream node. The entire 

methodology is the extended version of quaternary logic (ExQuLogic)-based 

operation, but is more suitable and appropriate for modeling and simulating the real 

biochemical reaction events inside the cells. Hence, in order to assess its efficacy in 

the simulation of real biochemical networks, we have performed retrospective 

analyses of the previously published, binary logic-based models of T-cell receptor 

mediated signaling pathway, ERBB pathway, Hedgehog pathway, and Notch 

signaling pathway using ExQuLogic. We have compared the results obtained from 

ExQuLogic and binary logic-based operations, and observed marked improvement 

in the prediction of biological states (qualitative) of the nodes at steady-state. Using 

ExQuLogic, we have successfully simulated various biological scenarios, which we 

could not able to simulate using conventional binary-logic based simulation.  

Using ExQuLogic-based operation, one can create and simulate the effects of 

strong, weak, and the absence of stimulation of the receptor proteins in signaling 

pathway, consider the expression of the nodes in a network which are neither at 

significantly up-regulated (active) nor down-regulated states, and distinguish the 

logical states of the target genes/proteins in the cellular systems, which consist of 

homozygous, heterozygous, wild-type expression, and copy number gains of 

important signal transduction and gene regulatory nodes (genes/proteins), etc. We 

have also applied our proposed method in a newly reconstructed logical model of 

integrated cell signaling pathways of Hedgehog, Notch, EGFR, and WNT signal 

transduction networks to perform the prospective analysis for predicting the gene 

expression pattern in Glioblastoma cells at the equilibrium condition. We have 

matched the predicted gene expression data obtained from ExQuLogic-based 

operation with three microarray datasets of GBM cells. The simulation outputs 
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matches very well with all the three experimental datasets, and correctly predicted 

the activity profiles of the target oncogenes causing irregular cell cycle progression 

(cell division) and Epithelial to Mesenchymal transition or EMT (metastasis) of the 

GBM cells. Further topological analyses of the integrated network have revealed that 

there exist multiple strongly connected components (SCC) in the entire system, 

which can act synergistically to establish a robust fail-safe mode in the GBM cells 

upon any external perturbations. However, extracting the multiple shortest-paths 

which connect the SCCs in the network with the genes responsible for cell cycle 

progression and EMT, we have identified that targeting SCCs are the best possible 

solution if they are targeted simultaneously in the proliferating and migrating GBM 

cells. We have performed the perturbation analyses using ExQuLogic-based method, 

which has efficiently depicted the possible required alteration for the perturbed 

nodes in the network.  

7.4 CONCLUSIONS  

Overall, our developed method of the extended quaternary logic-based operation 

has depicted its potential to simulate the biochemical networks in cancerous and 

immunological cells. However, it should be mentioned that the algorithm proposed 

in the logic-based operation is not limited to the simulation of cancer or 

immunological cells, but also useful for modeling and simulating other types of 

cellular system. Using the ExQuLogic-based modeling approach, one can test various 

hypotheses related to cell signaling, gene regulatory, and the metabolic networks, 

etc. The outputs obtained from ExQuLogic have higher resolutions of the qualitative 

expressions of genes, proteins, and metabolites, etc. in any cellular system at 

equilibrium condition, which can be compared with the quantitative expression 

values obtained from the real biological and biochemical experiments. We believe 

that our newly proposed algorithm will open up new opportunities to model and 

simulate the biochemical networks in different cellular systems with much more 

accuracy and resolutions as well as break the imposed barriers causing by the 
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existing limitations of conventional binary and multi-valued logic-based modeling 

approaches. Our proposed algorithm (ExQSUS) can be easily implemented in the 

standard computing environment without using the compilers for multi-valued 

logical operations.                                                                            
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Chapter 8 
__________________________________________________________________________________ 

 

8 CONCLUDING REMARKS AND FUTURE WORKS 

__________________________________________________________________________________ 

In the targeted therapy of Glioblastoma tumor and other cancer cells, most often 

the preferred targets are the proteins or enzymes involved in different signal 

transduction pathways [607]. Hence, identification of suitable drug targets has 

always been a major challenge to the researchers working in this field of study [607].        

The investigations performed in the thesis have been specifically directed 

towards the understandings of the regulatory mechanisms in the signaling pathways 

involved in oncogenesis. The identified regulatory modules in the cancer cells have 

further helped to identify novel drug target(s) for the treatment of GBM tumor cells. 

The regulatory motifs have also helped to understand the mechanisms through 

which the cancer cells get resistivity against drug molecules. A phenotype prediction 

sore have been also proposed through which the risk of the development of different 

grades of GBM tumor cells have been computed. This phenotype prediction score is 

further validated with the TCGA-LGG and TCGA-GBM patient cohorts datasets.  

In this thesis, different oncogenic cell signaling networks, such as Hedgehog, 

Notch, WNT, EGFR, RAS, PI3K/AKT, HIF1A, etc. have been reconstructed for in-

silico analyses. Also, the reconstructed pathways have been made available to the 

common users via a newly developed database BIOPYDB. Furthermore, the 

reconstructed pathways have been analyzed using graph theoretic analyses and 

successively simulated using semi-dynamic logical models. The topological and 

semi-dynamic logical modeling approaches have helped us to identify the flow of 

reaction signals in the normal and GBM tumor cells, extract important modules 
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responsible for pathogenesis and drug-resistivity, and subsequently discover novel 

combination of drug-targetable proteins. The drug targets, which have been 

identified in this study is summarized in the Appendix Table 13. 

8.1 APPLICATIONS AND FUTURE DIRECTIONS  

8.1.1 Applications of the Drug-targets in Cancer Therapy 

In this thesis, we have been successfully able to identify the combination of 

druggable proteins, which can be useful for the targeted therapy of GBM and other 

cancer cells (i.e. pancreatic and colon). Our in-silico perturbation studies have proven 

the identified targets (Appendix Table 14) as highly effective for this purpose. 

However, to implement these targets in the targeted therapeutics, we need to 

perform further in-vitro and in-vivo studies. The efficacy of suppressing the targets, 

its side-effects, toxicity, pharmacodynamics, etc. should be rigorously measured and 

fine tuned with the current clinical guidelines of anti-cancer therapy.  

8.1.2 Implementation of Predictive Model for Tumor Risk Prediction 

The newly introduced phenotype prediction scores can be successfully 

implemented to measure the tumor risk of an individual model with the help of the 

logical models discussed in Chapter 6. The patient's omics data (e.g., differentially 

expressed transcripts, proteins, metabolites, etc.) will be considered as inputs in the 

developed models and the chances or risk of developing GBM tumor will be 

assessed, followed by drug-targets screening using FFT. Also, the novel AR score 

calculation technique could be useful to back-trace the probable stimulations in the 

GBM tumor cells responsible for the emergence of different tumor grade and intra-

tumor heterogeneity. The entire protocols to use the developed mathematical models 

in the prediction of tumor grades are provided in the flow-chart (Figure 56). 

8.1.3 Applications of ExQuLogic 

Our newly developed algorithm Extended Quaternary states Update Scheme 
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(ExQSUS), implemented in Extended Quaternary Logic (ExQuLogic)-based 

computational analyses framework has been shown highly useful to capture the 

various aspects of signal transduction networks, which we could not analyze by 

using conventional binary logic-based approach.  

 
Figure 56: Flow-chart of the decision-making steps to determine risk of GBM. 

These algorithm and framework can be implemented to model any cell signaling 

network and compute the steady-states of the nodes. In the near future, we believe 

the application of ExQuLogic will help to overcome the theoretical and 

computational limitations of the conventional binary logic-based modeling and 

simulation techniques. The source codes will be shared in open platform (e.g. 



284 | P a g e  
 

GitHub), which will help the researchers to gain better access and implementation of 

the developed method.     

8.1.4 Third-party use of BIOPYDB Database  

The newly developed, open source, database-cum-web server "BIOPYDB" can be 

also used by the third-party developers to launch new software or services for 

pathway data reconstructions, analyses, modeling, and simulations. We believe the 

third party software developers will find our free RESTful web services as useful API 

in their projects. Our pathway reconstruction process is still ongoing and in the near 

future, we believe that the available contents (pathways, reactions, tools) of our 

database will attract more users and software developers. We will try to update the 

information of the database as per the latest information available in the literature. 

The general users can also join the pathway reconstruction initiatives by providing 

their feedbacks, corrections, or new pathway data. The primary concept of our web 

service is not only to provide the pathway data, but also create the open source 

ecosystem in which the general users can model, simulate, and analyze the pathway 

data using network, logical, and dynamic theories without having advanced 

knowledge of computer programming.          

The investigations performed in the thesis have been mainly restricted to the 

understanding of major developmental and mitogenic signaling pathways in the 

pathogenesis of Glioblastoma tumor. However, the computational methodologies 

proposed in the thesis can be extrapolated to the understandings of the pathogenesis 

of other types of cancer and tumor cells. The drug-target identification techniques 

used in this thesis can be also applied to other human diseases, such as autoimmune 

diseases, heart diseases, and infectious diseases, etc. Also, to get better 

understanding of oncogenesis, other molecular datasets can be used, which will 

further help to understand the complex regulatory mechanisms in cancer cells and 

identify better drug-targets for the future cancer therapy.      
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9 APPENDICES 

__________________________________________________________________________________ 

 

All appendix tables cited in the main document have been provided in this section.  
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Appendix Table 1: Available Resources used for Pathway Data Curation, 

Modeling, and Simulation 

Name HTTP Link 

1A. Pathway Databases (Commercial Developers)  

1. GENEGO: PATHWAY MAPS http://pathwaymaps.com/maps/ 

2. BIOCARTA http://www.biocarta.com/ 

3. PROTEIN LOUNGE http://www.proteinlounge.com/ 

4. CELL SIGNALING TECHNOLOGY http://www.cellsignal.com/index.jsp 

5. MILLIPORE http://www.millipore.com/pathways/pw/pathways 

6. APPLIED BIOSYSTEM http://www5.appliedbiosystems.com/tools/pathway/ 

7. INVITROGEN http://www.invitrogen.com/site/us/en/home/Products-and-

Services/Applications/Cell-Analysis/Signaling-Pathways.html 

1B. Pathway Databases (Academic Developers) 

1. KEGG http://www.genome.jp/kegg/ 

2. SIGNALING PATHWAY 

DATABASE (SPAD) 

http://www.grt.kyushu-u.ac.jp/spad/ 

3. DOQCS http://doqcs.ncbs.res.in/ 

4. REACTOME http://www.reactome.org/ReactomeGWT/entrypoint.html 

5. PATHWAY INTERACTION 

DATABASE (PID) 

http://pid.nci.nih.gov/ 

6. CPDB http://cpdb.molgen.mpg.de/ 

7. NETPATH http://www.netpath.org/ 

8. PATHWAY COMMONS http://www.pathwaycommons.org/about/ 

9. HIPATHDB http://hipathdb.kobic.re.kr/browse.php?dbType=1 

10. SIGNALINK http://signalink.org/ 

11. SPIKE http://www.cs.tau.ac.il/~spike/ 

12. WIKIPATHWAYS http://wikipathways.org/index.php/WikiPathways 

13. INNATEDB http://www.innatedb.com/ 

14. INOH http://www.inoh.org/ 

15. BIOMODELS http://www.ebi.ac.uk/biomodels-main/ 

16. GOLD.DB https://gold.tugraz.at/ 

17. PANTHER http://www.pantherdb.org/ 

2. Protein-Protein Interaction (PPI) Databases 

1. MINT https://mint.bio.uniroma2.it/ 

2. APID http://bioinfow.dep.usal.es/apid/index.htm 

3. STRING 9.05 http://string-db.org/ 

4. PIPS http://www.compbio.dundee.ac.uk/www-pips/ 

5. DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi 

6. BIOGRID 3.2 http://thebiogrid.org/ 

3. Microarray Expression Databases 

1. EBI-ARRAYEXPRESS http://www.ebi.ac.uk/arrayexpress/ 

2. GENE EXPRESSION OMNIBUS http://www.ncbi.nlm.nih.gov/geo/ 

3. THE CANCER GENOME ATLAS 

(TCGA)  

https://portal.gdc.cancer.gov/legacy-archive/ 

4. Disease Databases 

1. NCG 5.0 http://bio.ieo.eu/ncg/ 

2. CANCER RESOURCE http://data-analysis.charite.de/care/ 

3. CANCER CELL MAP http://cancer.cellmap.org/ 
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Appendix Table 2: Detailed Description of the Signaling Pathway Database and 

their Computational Tools.     

Tools Name of the 

Database 

Remarks 

Pathway Data 

Uploading 

Tool 

BIOCARTA, 

WikiPathways, 

REACTOME 

These databases have the tools for uploading pathway data 

in the specific database formats. Users are required to Log in 

WikiPathways to upload or edit any pathway information.  

Pathway 

Drawing Tool 

KEGG KegDraw: It is a Java based application for drawing 

compound and glycan structures. 

CPDB It can create the signaling network or map by uploading the 

pathway interactions in its own format. 

PROTEIN LOUNGE 3D pathway can be created using its ePATH 3D tool. 

Although it is not free.  

Pathway Commons It has Cytoscape Plug in to view, edit and analyze the 

pathway data. It also has a pathway viewer and editor 

ChiBE which is linked to it. Another pathway visualization 

application PCVIZ is alos available in this database, which 

takes a list of genes and by finding its neighbors it generates 

the pathway diagram.   

SPIKE It is also a tool for pathway drawing and visualization. 

Pathway 

Analysis Tool 

BioModels It has online ODE simulation tool to simulate the pathway 

models. 

KEGG KegArray: JAVA based application for microarray data 

analysis.    

SignaLink PathwayLinker: Identifies and visualizes the first neighbor 

interaction network of the queried proteins, analyzes the 

signaling pathway memberships of the proteins in this 

subset, and provides links to further online resources. 

Signalog: It can predict novel signaling pathway 

components on a genomic scale based on the signaling 

pathway membership(s) of its ortholog(s) in 8 signaling 

pathways of 3 intensively investigated species: C. elegans, D. 

melanogaster, and human. 

SPIKE, CPDB These databases have the tools for pathway enrichment tools 

using micro array or protein expression data.   

PANTHER Gene List Analysis: This tool is provided in the database to 

analyze a set of user defined gene lists, and their expression 

data with PANTHER data. It maps the gene lists to 

PANTHER ontology and subsequently grouped into various 

biological process categories, as well as to the biological 

pathways. It also overlay the analysis results on PANTHER 

pathway diagrams to visualize the probable functional 

relationships between genes/proteins in known pathways.  

PANTHER scoring: This tool is useful for scoring a user 

defined protein sequence against the entire PANTHER 

library of over 38,000 statistical models based on Hidden 

Markov Models (HMMs) to obtain PANTHER classifications 

and alignments.   

Moreover, PANTHER has also built various in-house tools 
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for visualizing, downloading and computing the pathway 

data. It has also put a significant effort to provide the 

pathway maps using SBGN standard notation on JAVA 

based application platform.  

REACTOME Pathway Analysis Tools: This tool merges various pathway 

analysis related tasks to a single portal, through which one 

can perform the identifier mapping, overrepresentation and 

expression analysis. Users can provide Uniprot accession 

list, NCBI/Entrez list, Small molecule (ChEBI or KEGG) list, 

microarray, and metabolomics data for the mapping and 

expression study against REACTOME database. 

REACTOME has also in-built web based tools to visualize 

the module based/functional hierarchy based pathway 

components and reactions in web interface.    
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Appendix Table 3: Short Descriptions of the Features Available in BIOPYDB 

Features Description 

Search 

Text search 
Convenient way of searching proteins, pathways and Diseases in the search 
box provided in "Home" page. 

Advance Search 
Designed for searching multiple queries in BIOPYDB as well as in 17 Similar 
pathway databases. 

Browse 
Pathway 

Browse Pathway By Name Helps to select/browse the pathways by their names. 

Browse Pathway By Category 
To browse the pathways by their functional categories: Disease, 
Immunological and Developmental. 

Tools 

Pathway Drawing PHP and Graphviz based application to draw the pathway diagram. 

Network Analyses 
Built in PHP, Graphviz and igraph based application, which allows users to 
perform Graph theoretical or Network analysis of signaling network. 

Logical Analyses 
Developed by in-house codes written in PHP and the open source software 
BooleanNet for performing Boolean or logical equation simulation [309]. 

Dynamic Analyses 
Developed by PHP, C, Gnuplot scripts to perform Ordinary Differential 
Equation Model on the signaling pathways present in the database or on the 
user defined new pathway model. 

Find Interaction 
PHP and Graphviz based application to "Find interaction of a Protein" with 
other proteins or to "Find Interaction Between Two Proteins". For each 
instance reference is also available. 

Find Disease 

PHP and Graphviz based application to ‚Find Mutated Proteins of a Disease 
of Interest‛; ‚Find Diseases of a Protein of Interest‛; or to ‚Find Connection 
Between a Protein and a Disease‛. For each instance reference is also 
available. 

Download 

Download Pathway Image 

Developed to download "Pathway Image" in SVG, PNG, JPEG or PDF 
format. For each instance, image is first generated by Graphviz software and 
then serves for download. The idea is to provide up to date pathway image 
by using the data from database. 

Download Pathway Data 

Developed to provide Pathway related Data in SBML and simple Text (TAB 
or CSV) formats. Protein-Disease related data is also available. Here, the data 
is also first generated by PHP based application and then serve for 
download. 

RESTful API Service 

A tutorial to access the RESTful API services of BIOPYDB is provided in this 
section. The API service is useful to extract pathway list, their BIOPYDB IDs, 
pathway species and their reactions, protein vs. disease information etc. The 
pathway images can also be downloaded through this API, which are 
provided in encoded JPEG, PNG and SVG formats. 

FAQ 
Frequently Asked Questions (FAQ) is helpful for guiding the users in Database Searching, how to use the tools 
and data downloading. It is also open for asking new questions or suggestions. 

Upload 
Pathway 

New Pathway Upload 

It helps to upload and populate a new pathway data from user's side. A very 
handy application of pathway curators without having any previous 
knowledge of database maintenance. Also, users can instantly view their 
uploaded data, pathway image and the graph theoretical analysis of the 
uploaded signaling network. 

Edit Uploaded Pathway 
Helpful to update the user's pre-uploaded data in the database. Users have to 
provide the accession number entered in the first time of uploading the data 
from "New Pathway Upload" section. 

 
Contact Us 

Feedback 
This Option is available to provide Comments /Remarks to the database 
developers for further improvement/modifications. 

Contact Info Detail contact information of the Database management team. 
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Appendix Table 4: Abbreviations and Detail Information of the Proteins and 

Cellular Responses used in the Master Model of Hedgehog Pathway 

SHORT NAME USED 

IN MODEL 

FULL NAME DOCUMENTATION 

I. Extracellular and Membrane Proteins 

BMP_RUNX3 Bone Morphogenetic 

Protein and Runt related 

transcription Factor 3 

BMP-RUNX3 signaling induces 

expression of IHH in surface 

differentiated epithelial cells of 

stomach and intestine.  

DISPATCHED Dispatched Dispatched regulates the release 

and extracellular accumulation of 

cholesterol-modified hedgehog 

proteins and is hence required for 

effective production of the 

Hedgehog signal.  

HHAT Hedgehog Acyltransferase HHAT is a hedgehog modifier 

which induces lipid modification 

to generate mature peptides. 

Hedgehog proteins with lipid 

modification are then released 

from producing cells by 

Dispatched homologues.  

DHH Desert Hedgehog 
Three Hedgehog ligands 

(homologues proteins) of 

Hedgehog pathway considered 

as Input Proteins in this model. 

IHH Indian Hedgehog 

SHH Sonic Hedgehog 

PTCH1 Patched1 Two homologue of receptor 

protein Patched. In the absence of 

hedgehog ligands these proteins 

inhibit another trans membrane 

protein Smoothened (SMO).    

PTCH2 Patched2 

SMO Smoothened G-protein coupled receptor that 

is normally suppressed by 

Patched receptors but is activated 

in the presence of Hedgehog 

ligands (SHH, DHH, IHH).  

HHIP Hedgehog Interacting 

Protein1 

Regulates the amount of 

Hedgehog ligand that can bind to 

Patched receptors  

CDO Belong to Immunoglobin 

super family. 

CDO and BOC represent a 

subfamily within the Ig super-

family, consisting of an  
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BOC  Brother of CDO. ectodomain comprised of four 

(BOC) or five (CDO) Ig repeats, 

followed by three fibronectin 

type III (FNIII) repeats and a 

long, divergent intracellular 

domain.   

GAS1 Growth arrest specific gene Regulates the amount of 

Hedgehog ligand that can bind to 

Patched receptors along with 

HHIP. 

II. Cytoplasmic Proteins 

HFU Human Fused  Stimulates GLI1 and GLI2 

transcription factors. 

SUFU Suppressor of fused 

homolog 

Sequesters GLI proteins in the 

cytoplasm and prevents 

tarnscription of target genes.  

STK36 Serine/threonine-protein 

kinase 36 

Up-regulation of GLI 

transcription activity. 

ERK12* Extracellular signal-

regulated kinase 

Up-regulation of GLI 

transcription activity.  

GLI1 Transcriptional activator 

Gli1 

 Mediates target gene expression.  

GLI2 Transcriptional activator 

Gli2 

 Mediates target gene expression. 

GLI3_R Transcriptional repressor 

Gli3 

Antagonises target gene 

expression byother Gli factors. 

RAS* Ras protein (GTPase 

activity) 

RAS and TWIST activate GLI1 

regulatory sequences. 

TWIST* Twist-related protein Is known to activate GLI1. 

PKA_A Protein Kinase alpha Phosphorylates and activates 

SMO. 

BTRCP Beta-transducin repeat-

containing protein 

Involoved in ubiquitination of 

Gli1 resulting in the formation of 

a transcriptional repressor. 

CKI_A Casein Kinase I isoform 

alpha 

Known to elicit negative effects 

on GLI  

GSK3 Glycogen synthase Kinase 3 Known to elicit negative effects 

on GLI 

NOTCH1* Notch1  protein Known to elicit negative effects 

on GLI  

FAS* Apoptosis-mediating 

surface antigen FAS 

Mediates apoptosis 
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ULK3 Unc-51-like kinase 3 Serine Threonine kinase present 

in addition to STK36 that 

functions in up-regulation of GLI 

transcriptional activity 

                                                             III. Nuclear Proteins 

NUC_GLI1 Nuclear GLI1 Represents the nuclear form of 

GLI1 protein. 

NUC_GLI2 Nuclear GLI2 Represents the nuclear form of 

GLI2 protein. 

NUC_SUFU Nuclear SUFU Represents the nuclear form of 

SUFU.  

NUC_STK36 Nuclear STK36 Represents the nuclear form of 

STK36 

GLI3_A Activated GLI3 for 

Transcription 

Mediates target gene expression 

SKI Proto-oncogene C-Ski Functions as a transcriptional co-

repressor 

NCOR Nuclear receptor 

corepressor  

Functions as a transcriptional co-

repressor 

HDAC Histone deacetylase Functions as a transcriptional co-

repressor 

SNO Ski-like protein or Ski-

related oncogene 

Functions as a transcriptional co-

repressor 

SIN3A Paired amphipathic helix 

protein Sin3 alpha 

Functions as a transcriptional co-

repressor 

DYRK1 Dual Specificity Tyrosine 

phosphorylation Regulated 

Kinase 1A / Dual Specificity 

Yak1 related Kinase 

Known to substantially increase 

GLI mediated transcription 

NUMB Protein numb homolog Numb along with ubiquitin 

ligase such as Itch is able to 

polyubiquitinate GLI1 and target 

it for degradation and thus 

control HH signaling.  

ITCH E3 ubiquitin-protein ligase 

Itchy homolog 

IV. Output Proteins 
CTNNB_TCF4 Nuclear form of TCF4  Represents the nuclear form of 

TCF4 

CYCLIN_B G2/mitotic-specific cyclin-

B1 

Mediates cell cycle regulation 

CYCLIN_D G1/S-specific cyclin-D Mediates cell cycle regulation 

CYCLIN_D2 G1/S-specific cyclin-D2 Mediates cell cycle regulation 

CYCLIN_E G1/S-specific cyclin-E Mediates cell cycle regulation 
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FOXM1 Forkhead box protein M1 Implicated in cellular 

proliferation 

PDGFRA Platelet Derived Growth 

Factor receptorisoform 

alpha  

Transmembrane receptor 

OPN Osteopontin Osteopontin is a secreted protein 

that influences multiple 

downstream signaling events 

that allow cancer cells to resist 

apoptosis, evade host immunity 

and influence growth of indolent 

tumors. 

CMYC Myc proto-oncogene 

protein 

Mediates cellular proliferation.  

BMI Polycomb complex protein 

BMI-1 

BMI-1 is a transcriptional 

repressor belonging to the 

polycomb gene family and its 

suppressor functions are 

involved in maintaining 

neuronal, haematopoietic and 

mammary gland stem cells.  

SNAI1 Protein snai1 homolog 1 Responsible for the degradation 

of E-cadherin and initiation of 

invasion 

JAGGED2 Notch ligand Jagged Stimulates Notch  signaling  

SFRP Secreted frizzled-related 

protein 

Wnt antagonist 

WNT Wnt family proteins or 

ligand  

Representative of a WNT ligand 

BCL2 Apoptosis regulator Bcl-2 Anti-apoptotic  

V. Cellular Responses 

Anti_Apop Anti apoptosis  

 

These are the cellular responses 

or phenotypic expressions that 

have been shown as outcomes of 

this pathway.    

Notch_Signal Nocth signaling 

Wnt_Signal Wnt signaling 

Cellcycle_Progression Cell cycle progression 

Emt Epithelial to Mesenchymal 

transition 

Cell_Proliferation Cellular proliferation 
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Appendix Table 5: Master Model of the Hedgehog Signaling Pathway. 

Interactions Documentation 

DISPATCHED  

Inputs to the model. Upstream 

regulators of these molecules have 

not been considered.   

Inputs to the model. Upstream 

regulators of these molecules have 

not been considered.   

HHAT  

 CDO  

 BOC  

 NUC_SUFU  

 GAS1  

BMP_RUNX3  

 ULK3  

  HFU  

  SUFU  

  ERK12  

 RAS  

  TWIST  

  DYRK1  

  NUMB  

  ITCH  

  PKA_ALPHA  

  BTRCP  

  CKI_A  

  GSK3 

  NUC_STK36 

  NOTCH1  

  SKI  

  SNO  

  NCOR  

  SIN3 ALPHA  

  HDAC  

BMP_RUNX3IHH BMP-RUNX3 signaling induces 

expression of IHH in surface 

differentiated epithelial cells of 

stomach and intestine [337].  

CDO and BOCSHH CDO and BOC bind SHH through a 

high-affinity interaction with a 

specific fibronectin repeat that is 

essential for activity. They 

demonstrate that CDO and BOC are 

necessary but not sufficient for 

activation [416]. However, there is 

no evidence for the exact 

mechanism and if both are required 

for the enhancement of signaling.  
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DISPATCHED and HHAT and  not HHIPDHH Dispatched regulates the release 

and extracellular accumulation of 

cholesterol-modified hedgehog 

proteins and is hence required for 

effective production of the HH 

signal [608]. HHAT (Hedgehog 

acyltransferase) is a hedgehog 

modifier which induces lipid 

modification to generate mature 

peptides. HH proteins with lipid 

modification are then released from 

producing cells by Dispatched 

homologues. HHIP can antagonize 

all types of HH ligands [609].  

DISPATCHED and HHAT and  not HHIPIHH Dispatched and HHAT system also 

operates in the same way as during 

DHH release [608]. HHIP can 

antagonize all types of HH ligands 

[609].  

DISPATCHED and HHAT and  not HHIP and  not 

GAS1SHH 

Dispatched and HHAT also operate 

in the same way as during DHH 

release. HHIP is found to bind 

directly to SHH and attenuate SHH 

signaling like PTCH1/2 while its 

expression was induced by SHH 

signals [610].   

 not DHH and  not IHH and  not SHHPTCH1_Free Negative influence of all the 

Hedgehog ligands was considered 

to denote the inactive state of 

Patched (PTCH1 and PTCH2) 

receptors. In the absence of 

Hedgehog ligands Patched 

receptors are active and suppress 

the activity of Smoothened [611].  

 not DHH and  not IHH and  not SHHPTCH2_Free 

DHH and  not PTCH1_FreeSMO In the absence of a stimulus by 

Hedgehog, Patched receptor 

inhibits Smoothened. Upon binding 

of Hedgehog ligands DHH, SHH or 

IHH to Patched , Smoothened is 

activated leading to the 

transcription of target genes. This is 

also reported that mutations 

affecting the transmembrane 

proteins Patched or Smoothened 

trigger the ligand independent 

activity of Hedgehog signaling 

pathway and are hence associated 

with human tumors such as basal 

cell carcinoma and 

medulloblastoma [611].  

IHH and  not PTCH1_FreeSMO 

 SHH and  not PTCH1_FreeSMO 

SHH and  not PTCH2_FreeSMO 
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SMOSTK36 SMO binds to STK36 to stabilize 

GLI proteins [337]. 

 not SMOFAS SMO expression inhibits FAS 

thereby preventing apoptosis [606].  

HFU and  not PKA_A and  not GSK3 and  not CKI_A and  not 

BTRCP and  not SUFUGLI1 

HFU enhances GLI1 function in a 

manner that is independent of a 

functional kinase domain [316]. 

GSK3 phosphorylates GLI proteins 

post phosphorylation by PKA and 

it is known to elicit negative effects 

[343]. SMO inactivation leads to 

formation of the cytoplasmic GLI 

degradation complex, in which GLI 

family members (GLI1, GLI2 and 

GLI3) are phosphorylated by casein 

kinase alpha (CKI_α), glycogen 

synthase -kinase-3ß (GSK3ß) and 

protein kinase A (PKA). 

Phosphorylated GLI is recognized 

by FBXW1/BTRCP1 and 

FBXW11/BTRCP2 for 

ubiquitination, and ubiquitinated 

GLI is partially degraded to release 

its intact N-terminal half thereby 

functioning as transcriptional 

repressor [337]. The inhibitory 

interactions have been included 

with activation interactions using 

an AND operator. Therefore GLI 

cannot be activated unless and until 

all the inhibitors are absent. 

However, this needs to be checked 

in in-vivo conditions. But in the 

model it is necessary to introduce 

these interactions using an "AND" 

operation to assure signal flow. 

ERK12 and  not PKA_A and  not GSK3 and  not CKI_A and  

not BTRCP and  not SUFUGLI1 

EGFR signals via ERK potentiate 

target gene activation via GLI1 

[612].   

RAS and  not PKA_A and  not GSK3 and  not CKI_A and  not 

BTRCP and  not SUFUGLI1 

It is reported that oncogenic KRAS/ 

constitutively active RAS in 

Pancreatic Cancer cells, increases 

the transcription of GLI1 levels 

[345]. 
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TWIST and  not PKA_A and  not GSK3 and  not CKI_A and  

not BTRCP and  not SUFUGLI1 

TWIST activates human GLI1 

regulatory sequences via two E-

boxes in GLI1's first intron. 

Demonstrated in a murine model 

and using human GLI sequences. 

Two critical cis elements in human 

GLI1 gene: a GC box that binds Sp1 

at 195 and two E-boxes that operate 

at 157 and 482 have also identified. 

The 157 E-box binds USF1 and 

USF2, while E-box 482 binds 

TWIST. Sp1 and USf1/2 are 

ubiquitiously expressed TFs and 

can function either as activators or 

repressors depending upon cellular 

context. However their roles have 

not been clearly delineated and 

hence not incorporated in the 

model [345]. 

ULK3 and  not PKA_A and  not GSK3 and  not CKI_A and  not 

BTRCP and  not SUFUGLI1 

ULK3, a Ser/Threonine kinase 

present in addition to STK36 is 

essential for the up-regulation of 

GLI transcriptional activity. It 

phosphorylates GLI1 in both N (1-

426) and C (754 -1126) terminus but 

the fragment of gli1 between 

residues 426 -754 is not 

phosphorylated by ULK3. Thus 

ULK3 is a positive activator [343]. 

STK36 and  not PKA_A and  not GSK3 and  not CKI_A and  not 

BTRCP and  not SUFUGLI1 

STK36 is a positive regulator of 

SHH pathway that acts 

independent on is functional kinase 

domain. STK36 enhances GLI2 

activity but not GLI1 in C3H10T1/2 

and HEK293 cells and Gli1 

transcriptional activity in 

NIH3T3C2. Sn480 cells. Hence 

STK36 expression is cell type 

specific. As ours is a master model 

we have nevertheless included this 

interaction [10]. 

GLI2 and  not PKA_A and  not GSK3 and  not CKI_A and  not 

BTRCP and  not SUFUGLI1 

GLI1 is a direct target of GLI2. The 

study was conducted in normal 

human epidermis and Basal cell 

carcinoma cells [613]. 

GLI3_A and  not SKI and  not SNO and  not NCOR and  not 

SIN3A and  not HDACGLI1 

GLI3 exists in two forms — a full-

length transcriptional activator 

(GLI3A) or an amino-terminal 
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fragment that functions as a 

repressor. This particular activator 

isoform is GLI3A [320].  On the 

other hand SKI, SKI related protein 

SNO, NCOR, SIN3A, HDACs form 

a transcriptional repressor complex 

that interfere with GLI1 activation 

by full length GLI3 [355]. Hence 

they are included in the AND 

interaction. 

GLI1FOXM1 FOXM1/FOXL1 is a direct target of 

GLI mediated activation [337].  

FOXM1CELL_PROLIFERATION FOXM1 is known to mediate cell 

proliferative functions [614].  

CELL_PROLIFERATION Cellular response in our model.  

 not GLI1GLI3_R Repressor form of GLI3 produced 

in the absence of GLI1 expression 

[406].  

 not  GLI3_R  GLI3_ACTIVE GLI3_ACTIVE form is produced in 

the absence of GLI3 repressor form 

GLI3R [406].  

GLI1PDGFRA PDGFRA is expressed at high levels 

in human and murine Basal Cell 

Carcinoma. It has been found that 

ectopic expression of GLI increases 

PDGFRA levels i.e. increases 

receptor protein levels whereas 

inhibition of the HH pathway 

reduces PDGFRA levels [615]. 

PDGFRA 

GLI1NUC_GLI1 Cellular location of GLI1 has been 

found in Cytoplasm as well as in 

Nucleus. We considered this 

transportation in our model and 

named NUC_GLI1 of the nuclear 

counterpart of GLI1.  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHPTCH1 

PTCH 1 and HHIP genes 

transcribed as the transcriptional 

targets of GLI1 transcription factor 

in Hedgehog pathway.   

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHHHIP 
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NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHGLI1 

It is reported GLI1 is also produced 

at the end of this pathway and thus 

create a positive feedback loop 

[405,616].  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHOPN 

Osteopontin (OPN) is a direct 

transcriptional target of 

GLI1demonstrated in MDA-MB 435 

cell line. OPN is a secreted protein 

that influences multiple 

downstream signaling events that 

allow cancer cells to resist 

apoptosis, invade through ECM, 

evade host immunity and influence 

growth of indolent tumors. OPN is 

expressed by normal cells. 

However sustained expression in 

cancer cells promotes aberrant 

growth of cells and an invasive 

phenotype [617].  

OPN  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHCYCLIN_D 

Hedgehog signaling regulates the 

proliferation of distinct cell types 

via direct activation of genes that 

are involved in cell cycle 

progression and mediate G1 to S 

transition.  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHCYCLIN_E 

CYCLIN_DCELLCYCLE_PROGRESSION Cyclins such as CYCLIN D and 

CYCLIN E are involved in 

regulation of cell cycle. CYCLIN_ECELLCYCLE_PROGRESSION 

CELLCYCLE_PROGRESSION Cell cycle progression is one of the 

cellular responses that have been 

considered in our model.  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHCMYC 

Expression of GLI1 and C-MYC has 

also found in various experiments 

[618].  CMYC 

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHBMI 

Hedgehog signalling leads to an 

increased expression of BMI-1 in 

isolated mammary epithelial stem 

cells and CSCs. BMI-1 is a 

transcriptional repressor belonging 

to the polycomb gene family and its 

suppressor functions are involved 

in maintaining neuronal, 

haematopoietic and mammary  
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 gland stem cells. It leads to self 

renewal [612]. Activated STK36 also 

phosphorylates SUFU to promote 

the nuclear accumulation of full 

length GLI [337,612]. It is also 

reported that activation of 

hedgehog signaling increases 

mammosphere- initiating cell 

number and mammosphere size, 

whereas inhibition of the pathway 

results in a reduction of these 

effects. These effects are mediated 

by the polycomb gene bmi [619]. 

BMI Output protein considered in our 

model.  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHSNAI1 

It is reported that activation of 

SNAI1 a protein responsible for 

degradation of cadherin and 

induction of invasion is directly 

activated by GLI1 [612]. SNAI1 

protein is responsible for epithelial 

to mesenchymal transition.  

SNAI1EMT 

EMT Cellular response Epithelial to 

Mesenchymal Transition.  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHJAGGED2 

Expression of JAGGED2 has been 

reported [405].  

JAGGED2NOTCH_SIGNAL JAGGED2 is a notch ligand, hence 

promotes notch signaling.  

NOTCH_SIGNAL Cellular response.  

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHSFRP 

Expression of SFRP by GLI1 has 

been found [405,620]. 

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHWNT 

GLI1 mediates the activation of wnt 

family proteins and enhances 

signaling via these pathways, exact 

wnt ligand is not known and thus 

not included in our model [406]. 

WNT and  not SFRPWNT_SIGNAL Activation of Wnt signaling 

depends on the presence of WNT 

ligand and absence of its antagonist 

SFRP [621].  

WNT_SIGNAL Cellular response. 

NUC_GLI1 and NUC_STK36 and DYRK1 and  not NUC_SUFU 

and  not NUMB and  not ITCHBCL2 

In epidermal cells GLI1 can induce 

the expression of antiapoptotic 

factor BCL2 [612].  

HFU and  not PKA_A and  not GSK3 and  not CKI_A and  not 

BTRCP and  not SUFUGLI2 

HFU enhances GLI2 function in a 

manner that is independent of a 

functional kinase domain [316].  
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STK36 and  not PKA_A and  not GSK3 and  not CKI_A and  not 

BTRCP and  not SUFUGLI2 

STK36 is a positive regulator of 

GLI2 activity [343]. STK36 enhances 

GLI2 activity but not GLI1 in 

C3H10T1/2 and HEK293 cells. 

GSK3 phosphorylates GLI proteins 

post phosphorylation by PKA and 

it is known to elicit negative effects. 

On the other hand SMO 

inactivation leads to formation of 

the cytoplasmic GLI degradation 

complex, in which GLI family 

members (GLI1, GLI2 and GLI3) are 

phosphorylated by casein kinase I 

(CKI), glycogen synthase kinase-3ß 

(GSK3ß) and protein kinase A 

(PKA) [337]. Phosphorylated GLI is 

recognized by FBXW1/BTRCP1 and 

FBXW11/BTRCP2 for 

ubiquitination, and ubiquitinated 

GLI is partially degraded to release 

its intact N-terminal half 

functioning as transcriptional 

repressor. Thus all the above factors 

are included in the AND equation 

as they influence the formation of 

GLI2 

HFU and  not NOTCH1GLI2 HFU enhances GLI2 function in a 

manner that is independent of a 

functional kinase domain [316]. 

Inactivation of notch1 gene in 

epidermis induces sustained 

expression of GLI2 and causes Basal 

Cell Carcinoma [614].  

STK36 and  not NOTCH1GLI2 We have represented an alternative 

mode of GLI2 activation by STK36 

without the presence of NOTCH1.  

GLI2NUC_GLI2 GLI2 when transported to the 

nucleus is represented as 

NUC_GLI2. 

NUC_GLI2 and NUC_STK36 and  not 

NUC_SUFUCYCLIN_D2 

However, this interaction has been 

found in a murine model [612,622], 

we included this interaction as 

CYCLIN_D2 is one of the important 

proteins for cell cycle progression. 

Activated STK36 also 

phosphorylates SUFU to promote 

the nuclear accumulation of full 

length GLI. 

CYCLIN_D2CELLCYCLE_PROGRESSION  CYCLIN D2 is implicated in cell 

cycle regulation.  
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NUC_GLI2 and NUC_STK36 and  not NUC_SUFUBCL2 Epidermal cells GLI2 can induce the 

expression of anti apoptotic factor 

BCL2 [612]. 

BCL2ANTI_APOP  BCL2 is a known anti-apoptotic 

factor [220].  

ANTI_APOP Cellular responses. 

 not GLI1  CTNNB_TCF4 Coincident of high-to-low TCF and 

low-to-high HH-GLI1 transitions in 

patient Colon Carcinoma have been 

found. Therefore, we can write that 

higher level of expression of GLI1 

inhibits the activity of TCF complex 

[623].   

CTNNB_TCF4  

GLI3_A and NUC_STK36 and  not NUC_SUFUCYCLIN_D2 Similarly active form of GLI3 

mediates the activation of 

CYCLIN_D2.  

 not PTCH1CYCLIN_B It is reported that PTCH regulates 

the activity of CYCLIN_B. 

Interaction with Patched in the 

cytoplasm blocks cell proliferation 

by preventing nuclear localization 

of the activated complex. Ligand 

induced activation of this complex 

leads to the nuclear localization of 

CYCLIN B by disruption of the 

physical interaction  between 

Patched 1 and CYCLIN B [615]. 

CYCLIN_BCELLCYCLE_PROGRESSION  CYCLIN B is also implicated in cell 

cycle regulation.  
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Appendix Table 6: Logical States of the Input and Output Proteins of Hedgehog 

Signaling in Normal, Glioma, Colon and Pancreatic Cancer Scenarios.   

Normal  Glioma Colon  Pancreatic 

Input Output Input Output Input Output Input Output 
BMP_R

UNX3 

0 DHH 0 SHH 1 DHH 1 SHH 1 DHH 0 DHH 1 DHH 
1 

DISPA

TCHE

D 

1 IHH 0 DHH 1 IHH 1 IHH 1 SHH 1 SHH 1 SHH 

1 

HHAT 1 SHH 1 IHH 1 SHH 1 BMP_RUNX3 1 IHH 1 IHH 1 IHH  

CDO 1 PTCH1 1 BMP_RUNX3 1 PTCH1 0 DISPATCHE

D 

1 PTCH1 1 BMP_RUNX

3 

1 PTCH1 
1 

BOC 1 PTCH2 0 DISPATCHE

D 

1 PTCH2 0 HHAT 1 PTCH2 0 DISPATCH

ED 

1 PTCH2 
0 

GAS1 0 SMO 1 HHAT 1 SMO 0 CDO 1 SMO 1 HHAT 1 SMO 1 

HFU 0 STK36 1 CDO 1 STK36 0 BOC 1 STK36 1 CDO 1 STK36 1 

ULK3 0 GLI1 1 BOC 1 GLI1 0 GAS1 0 GLI1 1 BOC 1 GLI1 1 

NOTC

H1 

0 GLI2 1 GAS1* 0 GLI2 0 HFU 1 GLI2 1 GAS1 0 GLI2 
1 

SUFU 0 NUC_GLI

1 

1 GLI1 0 NUC_GLI1 0 ULK3 1 NUC_GL

I1 

1 HFU 1 NUC_GL

I1 
1 

TWIST 0 NUC_GLI

2 

1 GLI2 0 NUC_GLI2 0 NOTCH1 0 NUC_GL

I2 

1 ULK3 1 NUC_GL

I2 1 

RAS 0 GLI3_A 1 HFU 1 GLI3_A 0 SUFU* 0 GLI3_A 1 NOTCH1 0 GLLI3_A 1 

ERK12 0 GLI3_R 0 ULK3 1 GLI3_R 1 TWIST 0 GLI3_R 0 SUFU* 0 GLI3_R 0 

PKA_A 0 FAS  0 NOTCH1 0 FAS  1 RAS 1 FAS  0 TWIST 0 FAS  0 

BTRCP 0 CYCLIN_B 1 SUFU* 0 CYCLIN_B 0 ERK12 0 
CYCLIN

_B 
1 RAS 1 

CYCLIN

_B 
1 

CKI_A 0 
CYCLIN_

D 
1 TWIST 1 CYCLIN_D 0 PKA_A* 0 

CYCLIN

_D 
1 ERK12 1 

CYCLIN

_D 
1 

GSK3 0 
CYCLIN_

D2 
1 RAS 1 CYCLIN_D2 0 BTRCP* 0 

CYCLIN

_D2 
1 PKA_A* 0 

CYCLIN

_D2 
1 

DYRK1 1 CYCLIN_E 1 ERK12 1 CYCLIN_E 0 CKI_A* 0 
CYCLIN

_E 
1 BTRCP* 0 

CYCLIN

_E 
1 

NUMB 0 FOXM1 1 PKA_A* 0 FOXM1 0 GSK3* 0 FOXM1 1 CKI_A* 0 FOXM1 1 

ITCH 0 PDGFRA 1 BTRCP* 0 PDGFRA 0 DYRK1 1 PDGFRA 1 GSK3* 0 PDGFRA 1 

SKI 0 
CTNNB_T

CF4 
0 CKI_A* 0 

CTNNB_TCF

4 
1 NUMB* 0 

CTNNB_

TCF4 
0 DYRK1 1 

CTNNB_

TCF4 
0 

NCOR 0 OPN 1 GSK3* 0 OPN 0 ITCH* 0 OPN 1 NUMB* 0 OPN 1 

HDAC 0 CMYC 1 DYRK1 1 CMYC 0 SKI* 0 CMYC 1 ITCH* 0 CMYC 1 

SNO 0 BMI 1 NUMB* 0 BMI 0 NCOR* 0 BMI 1 SKI* 0 BMI 1 

SIN3A 0 SNAI1 1 ITCH* 0 SNAI1 0 HDAC* 0 SNAI1 1 NCOR* 0 SNAI1 1 

NUC_S

TK36 
1 JAGGED2 1 SKI* 0 JAGGED2 0 SNO* 0 

JAGGED

2 
1 HDAC* 0 

JAGGED

2 
1 

NUC_S

UFU 
0 SFRP 1 NCOR* 0 SFRP 0 SIN3A* 0 SFRP 1 SNO* 0 SFRP 1 

NA NA WNT 1 HDAC* 0 WNT 0 NUC_STK36 1 WNT 1 SIN3A* 0 WNT 1 

NA NA BCL2 1 SNO* 0 BCL2 0 NUC_SUFU* 0 BCL2 1 NUC_STK36 1 BCL2 1 

NA NA NA NA SIN3A* 0 HHIP 1 NA NA HHIP 1 
NUC_SUFU

* 
0 NA 

N

A 

NA NA NA NA NUC_STK36 1 NA 
N

A 
NA NA NA 

N

A 
NA 

N

A 
NA 

N

A 

NA NA NA NA NUC_SUFU* 0 NA N

A 

NA NA NA N

A 

NA N

A 

NA N

A 

NA: Not Applicable                     * Proteins having Loss of Function in cancer scenario. 
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Appendix Table 7: Master Logical Model used for Notch Pathway Simulations. 

LOGICAL EQUATIONS DOCUMENTATION 

INPUTS 

JAG1,JAG2, DLL1, DLL3, DLL4, MAGP1, MAGP2,NOV, 

CNTN1,PRESENILIN1,NICASTRIN, APH1, PEN2, 

FURIN, NEDD4,ITCH, NUMB,ALPHA_ADAPTIN, 

O_GLUCOSE, POGLUT_1,XYL, XYLE, 

NGA,O_FUCOSE, FRINGE, GALACTOSE, 

GASE,POFUT_1,JIP1,RAS,DVL, JAK2, 

STAT3,GSK_3BETA, WDR12,P53,FBW7,CDK8, 

CYCC,DTX1, MAML, EP300, SKIP, HAT,SMAD3, CSL, 

SMRT, SAP30, HDAC, CIR, SIN3A, YY1, 

TACE,NICD_ACTIVE 

Input proteins of our logical model. 

 
INTERMEDIATE REACTIONS 

JAG1+NOTCH1+TACE=NECD1 

JAG1+NOTCH1+TACE=NEXT1 

JAG1+NOTCH2+TACE=NECD2 

JAG1+NOTCH2+TACE=NEXT2 

JAG1+NOTCH3+TACE=NECD3 

JAG1+NOTCH3+TACE=NEXT3 

JAG1+NOTCH4+TACE=NECD4 

JAG1+NOTCH4+TACE=NEXT4 

NOTCH receptors (NOTCH1, 

NOTCH2, NOTCH3, NOTCH4) bind 

with membrane bound ligand JAG1. 

Followed by this interaction, a metallo-

protease enzyme TACE (TNFalpha-

converting enzyme) cleaves the 

NOTCH receptors and produces NECD 

(Notch extracellular domain1) and 

NEXT (Notch Extra cellular Truncated 

Protein) [624,625]. 

JAG2+NOTCH1+TACE=NECD1 

JAG2+NOTCH1+TACE=NEXT1 

JAG2+NOTCH2+TACE=NECD2 

JAG2+NOTCH2+TACE=NEXT2 

JAG2+NOTCH3+TACE=NECD3 

JAG2+NOTCH3+TACE=NEXT3 

JAG2+NOTCH4+TACE=NECD4 

JAG2+NOTCH4+TACE=NEXT4 

NOTCH receptors (NOTCH1, 

NOTCH2, NOTCH3, NOTCH4) bind 

with membrane bound ligand JAG2. 

Followed by this interaction, a metallo-

protease enzyme TACE (TNFalpha-

converting enzyme) cleaves the 

NOTCH receptors and produces NECD 

(Notch extracellular domain 1) and 

NEXT (Notch Extra cellular Truncated 

Protein) [624,625]. 
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DLL1+NOTCH1+TACE=NECD1 

DLL1+NOTCH1+TACE=NEXT1 

DLL1+NOTCH2+TACE=NECD2 

DLL1+NOTCH2+TACE=NEXT2 

DLL1+NOTCH3+TACE=NECD3 

DLL1+NOTCH3+TACE=NEXT3 

DLL1+NOTCH4+TACE=NECD4 

DLL1+NOTCH4+TACE=NEXT4 

NOTCH receptors (NOTCH1, 

NOTCH2, NOTCH3, NOTCH4) bind 

with membrane bound ligand DLL1. 

Followed by this interaction, a metallo-

protease enzyme TACE (TNFalpha- 

converting enzyme) cleaves the 

NOTCH receptors and produces NECD 

(Notch extracellular domain 1) and 

NEXT (Notch Extra cellular Truncated 

Protein) [624,625]. 

DLL3+NOTCH1+TACE=NECD1 

DLL3+NOTCH1+TACE=NEXT1 

DLL3+NOTCH2+TACE=NECD2 

DLL3+NOTCH2+TACE=NEXT2 

DLL3+NOTCH3+TACE=NECD3 

DLL3+NOTCH3+TACE=NEXT3 

DLL3+NOTCH4+TACE=NECD4 

DLL3+NOTCH4+TACE=NEXT4 

NOTCH receptors (NOTCH1, 

NOTCH2, NOTCH3, NOTCH4) bind 

with membrane bound ligand DLL3. 

Followed by this interaction, a metallo-

protease enzyme TACE (TNFalpha- 

converting enzyme) cleaves the 

NOTCH receptors and produces NECD 

(Notch extracellular domain 1) and 

NEXT (Notch Extra cellular Truncated 

Protein) [624,625]. 

DLL4+NOTCH1+TACE=NECD1 

DLL4+NOTCH1+TACE=NEXT1 

DLL4+NOTCH2+TACE=NECD2 

DLL4+NOTCH2+TACE=NEXT2 

DLL4+NOTCH3+TACE=NECD3 

DLL4+NOTCH3+TACE=NEXT3 

DLL4+NOTCH4+TACE=NECD4 

DLL4+NOTCH4+TACE=NEXT4 

NOTCH receptors (NOTCH1, 

NOTCH2, NOTCH3, NOTCH4) bind 

with membrane boundligand DLL4. 

Followed by this interaction, a metallo-

protease enzyme TACE (TNFalpha-

converting enzyme) cleaves the 

NOTCH receptors and produces NECD 

(Notch extracellular domain1) and 

NEXT (Notch Extra cellular Truncated 

Protein) [624,625]. 

NEXT1+GAMMA_SECRETASE=NICD1 

NEXT2+GAMMA_SECRETASE=NICD2 

NEXT3+GAMMA_SECRETASE=NICD3 

NEXT4+GAMMA_SECRETASE=NICD4 

Notch extracellular truncated domains 

(NEXT1, NEXT2, NEXT3 and NEXT4) 

are cleaved by intracellular proteolytic 

enzyme called Gamma_Secretase and 

produces Notch intracellular domains 

NICD1, NICD2, NICD3 and NICD4 

[624,625]. 

PRESENILIN1+NICASTRIN+APH1+PEN2 

=GAMMA_SECRETASE 

The component proteins of 

GAMMA_SECRETASE are 

PRESENILIN1, NICASTRIN, APH1 and 

PEN2. A charged aspartate in 19 

residues long trans-membrane domain 

of PRESENILIN1 helps to stabilize the 

GAMMA_SECRETASE enzyme 

complex  [626]. 
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MAGP1+NOTCH1=NEXT1 

MAGP1+NOTCH1=NECD1 

MAGP2+NOTCH1=NEXT1 

MAGP2+NOTCH1=NECD1 

MAGP1 and MAGP2 proteins, present 

on microfibrils can interact with 

NOTCH1 and form NEXT1 and NECD1 

by a furin-like cleavage without the 

help of TACE metallo- protease enzyme 

[461]. 

NOV+NOTCH1=NEXT1 

NOV+NOTCH1=NECD1 

Nephroblastoma overexpressed protein 

(NOV) associates with NOTCH1 and 

induces the subsequent release of Notch 

extracellular proteins (NEXT1 and 

NECD1) [462]. 

CNTN1+NOTCH1=NECD1 

CNTN1+NOTCH1=NEXT1 

CNTN1+NOTCH2=NEXT2 

CNTN1+NOTCH2=NECD2 

Trans-extracellular interaction between 

F3/Contactin (CNTN1) and NOTCH1 or 

NOTCH2 can trigger the notch 

signaling pathway [463,464]. 

FURIN+!NUMB+!ITCH+ALPHA_ADAPTIN 

+NOTCH1_PRE =NOTCH1 

FURIN+!NUMB+!ITCH+ALPHA_ADAPTIN 

+NOTCH2_PRE=NOTCH2 

During maturation procedures, pre-

processed NOTCH1 and NOTCH2 

molecules (NOTCH1_PRE and 

NOTCH2_PRE) are cleaved by FURIN 

like protease and form the processed 

NOTCH molecules (NOTCH1 and 

NOTCH2) for further ligand binding 

and signal transduction [8, 9]. Onco 

suppressor protein NUMB, with the 

help of ITCH or ALPHA_ADAPTIN, 

promotes the degradation of 

NOTCH1_PRE and NOTCH2_PRE (but 

not NOTCH3_PRE or NOTCH4_PRE) 

by recruiting the E3 ubiquitin ligase 

[627,628]. 

!NEDD4+NOTCH1_PRE=NOTCH1 Pre-processed NOTCH1 

(NOTCH1_PRE) is the direct target of 

ubiquitin-protein ligase NEED4. 

Overexpression of NEDD4 in atrophy 

muscle cell cause down-regulation of 

NOTCH1 as ubiquitination causes 

rapid degradation of pre- processed 

NOTCH1 [629,630]. 
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GSK_3BETA+!DVL+!JIP1 +NICD1 

=NUC_NICD1 GSK_3BETA+!DVL+!JIP1 +NICD2 

=NUC_NICD2 GSK_3BETA+!DVL+!JIP1 +NICD3 

=NUC_NICD3 GSK_3BETA+!DVL+!JIP1 +NICD4 

=NUC_NICD4 

GSK_3BETA phosphorylates NICD and 

then phosphorylated NICD goes into 

the nucleus for further transcription 

process. For simplicity the 

phosphorylated NICD are not 

considered in this model [14]. On the 

other hand it has also been found that 

DVL, JIP1 and P53 proteins can also 

exert inhibitory effect on Notch 

intracellular domains in cytoplasm 

(NICD1, NICD2, NICD3 and NICD4) 

[466,467,469]. 

RAS+NICD1=NUC_NICD1 Experimental findings have proven the 

cross talkbetween RAS/MAPK 

pathways with NOTCH1 intracellular 

domains. This cross talk results the 

activation of Notch pathway in various 

cancer cell line including Glioma, Breast 

cancer etc. [486]. 

!P53_P+NUC_NICD1+CSL=NOTCH1_PRE 

!P53_P+NUC_NICD2+CSL=NOTCH2_PRE 

!P53_P+NUC_NICD3+CSL=NOTCH3_PRE 

!P53_P+NUC_NICD4+CSL=NOTCH4_PRE 

P53 the tumor suppressor protein has 

found to bet the suppressor of NOTCH 

proteins in Glioblastoma cell line. P53 

have been considered as the 

transcription repressor of NUC_NICD 

and CSL and thus reducing the 

concentration of NOTCH precursor 

proteins [487-490]. 

P53+!NICD1=P53_P Activated NOTCH1 (or NICD1) 

interacts with P53 and inhibits its 

phosphorylation [496]. 

WDR12+NICD1=NUC_NICD1 WD-repeat protein contains NLS 

sequence has been found to interact 

with Notch1 intracellular domain 

(NICD1). Although the end result of 

this interaction is still not known, but it 

is quite intuitive that WDR12 may help 

to the nuclear translocation of NICD1 

from cytoplasm and thereby modulate 

NOTCH signaling pathway [631]. 
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!FBW7+NICD4=NUC_NICD4 FBW7 expressed in mouse embryo 
is found to negatively regulate the 
NOTCH4-HEY1 dependent 
pathway. The FBW7 degrades 
intracellular domain of NOTCH4 
through its ubiquitin ligase 
mediated activity [632]. 

POGLUT_1+O_GLUCOSE+NOTCH1_PRE 

= NOTCH1 

POGLUT_1+O_GLUCOSE+NOTCH2_PRE 

= NOTCH2 

POGLUT_1+O_GLUCOSE+NOTCH3_PRE 

= NOTCH3 

POGLUT_1+O_GLUCOSE+NOTCH4_PRE 

= NOTCH4 

Post-translational modification of 
NOTCH precursor proteins with O-
linked glucose (O_GLUCOSE) 
molecule by Protein O- 
glucosyltransferase -1 is a conserved 
process. This modification is found 
to be required for NOTCH pathway 
activation and ligand binding [470]. 

XYL+O_GLUCOSE+!XYLE+NOTCH1_PRE 

=NOTCH1 

XYL+O_GLUCOSE+!XYLE+NOTCH2_PRE 

=NOTCH2 

XYL+O_GLUCOSE+!XYLE+NOTCH3_PRE 

=NOTCH3 

XYL+O_GLUCOSE+!XYLE+NOTCH4_PRE 

=NOTCH4 

Addition of Xylose (XYL) molecule 
to the O- 

GLUCOSE linked NOTCH 

precursor proteins is mediated by 

an enzyme Xylosyltransferase 

(XYLE). Loss or gain of function of 

XYLE has strongly suggested that 

Xylose modification is negatively 

correlated with the notch pathway 

activation [470]. 

O_FUCOSE+NGA+FRINGE+POFUT_1 

+NOTCH1_PRE=NOTCH1 

O_FUCOSE+NGA+FRINGE+POFUT_1 

+NOTCH2_PRE=NOTCH2 

O_FUCOSE+NGA+FRINGE+POFUT_1 

+NOTCH3_PRE=NOTCH3 
O_FUCOSE+NGA+FRINGE+POFUT_1 
+NOTCH4_PRE=NOTCH4 

FRINGE catalyses the addition of N- 

acetylglucosamine (NGA) to O-

fucose in NOTCH precursor 

proteins. NGA modification plays 

positive role for ligand receptor 

binding in Notch signaling 

pathway [471]. Fucosylation of 

Notch molecules is mediated by 

the enzyme POFUT_1 (GDP-fucose 

protein O-fucosyltransferase 1) 

[472]. 

GALACTOSE+GASE+ O_FUCOSE+ 

NOTCH1_PRE=NOTCH1 

GALACTOSE+GASE+ O_FUCOSE 

+NOTCH2_PRE=NOTCH2 GALACTOSE+GASE+ 

O_FUCOSE 

+NOTCH3_PRE=NOTCH3 GALACTOSE+GASE+ 

O_FUCOSE 

+NOTCH4_PRE=NOTCH4 

GALACTOSE addition to 
O_FUCOSE linked 

Notch precursors molecules are 

mediated by the enzyme GASE 

(Galactosyltransferase) [473]. 
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NUC_NICD1+YY1=MYC NUC_NICD1 interacts directly with 
YY1 transcription factor and 
regulates the expression of MYC 
protein [633]. 

NUC_NICD1+SMAD3+CSL=HES1 NUC_NICD1 and SMAD3 are seen 
to interact directly and thereafter 
regulate the expression of HES1 
through CSL [483]. 

HDAC+SAP30+CIR+SIN3A+SMRT=COR 
EP300+MAML+ HAT +SKIP=COA 

On the other hand, the proteins 
HDAC, SMRT, CIR, SAP30, SIN3A 
forms a co-repressor complex (COR) 
of CSL which in turn regulates the 
expression of Notch target genes 
[474-477]. 

NUC_NICD1=NICD_ACTIVE 
NUC_NICD2=NICD_ACTIVE 
NUC_NICD3=NICD_ACTIVE 
NUC_NICD4=NICD_ACTIVE 
NICD_ACTIVE+CSL+!COR+COA= 
HES1/HES5/HES7/HEY1/HEY2/HEYL 
/GATA3/CCND3/CCND1/CD44/KLF5/SOX9 
/PTCRA/MKP_1/NFKB/ 

In order to reduce the complexity of 
the model, a dummy node 
NICD_ACTIVE has been considered 
in place of all NUC_NICD1, 2, 3 and 
4. This dummy species is not shown 
in the main figure. Transcription co-
activator complex (COA), consisting 
of CSL, NICD, Mastermind 
(MAML), EP300 and histone 
acetyltransferase (HAT) induces the 
transcriptional activation of several 
Notch target genes, such as HES1, 
HES5, HES7, HEY1, HEY2, HEYL, 
GATA3, CCND1, CCND3, CD44, 
KLF5, SOX9, NFKB,  [33,478-
482,484,634]. 

NUC_NICD1+COA+CSL+!COR= BCL2 
/FLIP/IAP/ P21/P65/P50/C_REL/REL_B 

Nuclear NICD1 (NUC_NICD1) has 
found to activate the anti-apoptosis 
proteins BCL2, FLIP, IAP as well as 
other NFkB pathway proteins P65, 
P50, C_REL, REL_B [484,635]. It also 
induces the expression of growth 
arrest factor P21 in primary 
differentiating keratinocytes cell 
lines [45]. 
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NUC_NICD1/2+DTX1+CSL+!COR+COA 
=MAG 

F3/contactin trans-extracellular 
ligand dependent NOTCH pathway 
promotes oligodendrocyte 
precursor cell differentiation and 
upregulates the myelin-related 
protein MAG. NOTCH1/2 and 
DTX1 mediated signaling cascade 
with the help of transcription factor 
CSL induces the transcription of 
MAG in OLN-93 cell line [463]. 

!HES1=MYOD Ligand-induced Notch signaling in 
myeloma cell up-regulates HES1 
mRNA expression and 
subsequently reduced expression of 
MYOD [636]. 

MAML+!CDK8+!CYCC+!FBW7 
=NUC_NICD1/2/3/4 

MAML directly interacts with CDK8 
and recruits it to hyper-
phosphorylate the NICD in nucleus. 
Followed by the hyper-
phosphorylation, NICD undergoes 
FBW7 dependent ubiquitin 
degradation [637]. 

NICD_ACTIVE+CSL+!COR+COA 
=NRARP 

NRARP is the notch target gene 
which is transcribed by the CSL 
dependent NOTCH pathway 
activation [497]. 

!NRARP+NICD1/2/3/4=NUC_NICD1/2/3/4 NRARP is found to form a ternary 
complex with NICD in cytoplasm 
which in turn inhibits the further 
NICD dependent transcription. This 
is one of the identified negative 
feedback loop in NOTCH signaling 
pathway [497]. 

NUC_NICD1=CDK2 NUC_NICD1 induces the activation 
of CDK2 [479]. 

HES1/5+JAK2+STAT3=STAT3_P 
STAT3_P=NUC_STAT3 

HES1 and HES5 are found to 
interact with JAK2 and STAT3, and 
facilitate the complex formation 
between JAK2/STA3. This complex 
formation promotes the 
phosphorylation of STAT3 [445]. 
Phosphorylated STAT3_P then 
translocate into the nucleus. 
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NUC_STAT3=HIF1A NUC_STAT3 is found to activate 
HIF1A [491]. 

HIF1A=NICD1/2/3/4 HIF1A can interact with 
NICD1/2/3/4 to enhance the 
NOTCH pathway activity by up 
regulating the NOTCH pathway 
target genes [495]. 

!HES1=PTEN 
!PTEN=PI3K PI3K=AKT 

NOTCH pathway is found to 
activate the 
PTEN/AKT pathway by 
upregulating HES1 production. 
HES1 is found to inhibit the PTEN 
dependent suppression of AKT 
activation [492]. 

OUTPUT MOLECULES 

NECD1, NECD2, NECD3, NECD4, AKT, 

CDK2, HEY1, HEY2, MAG, NFKB, MYOD, 

GATA3, CD44, P21, KLF5, PTCRA, MYC, 

HES7, HEYL, MKP_1, CCND3, CCND1, FLIP, 

IAP, BCL2, SOX9, P65, P50, C_REL, REL_B, 

Output 
molecules of the 
model. 

Here ‘+’ sign in the logical equations signifies the ‘AND’ operation instead of conventional ‘OR’ logical operator. In 

CellNetAnalyzer the input equations should contain ‘+’ sign to signify the AND relation among the nodes. Nodes related 

with OR operations are given by individual logical equations. 
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Appendix Table 8: Logical Expressions of the Input Molecules used for the 

Simulation of Notch Pathway under Different Scenarios 

 

MOLECULES 

 

EXPERIMENT 

(GBE) 

 

SIMULATIO

N (GBS) 

 

GAMMA_SECR

ETASE 

INHIBITION 

(GSI) 

 

NORMAL 

NOTCH 

SCENARIO 

(NNS) 

 

TS2 

 

TS1 

JAG1 1 1 1 1 1 1 
JAG2 0 0 0 1 0 0 
DLL1 0 0 0 1 0 0 
DLL3 0 0 0 1 0 0 
DLL4 N

.
S
. 

1 N
 
.
S
. 

1 1 1 
MAGP1 1 1 1 0 1 1 
MAGP2 N

.
S
. 

0 N
.
S
. 

0 0 0 
NOV N

.
S
. 

1 N
.
S
. 

0 1 1 
CNTN1 0 0 0 0 0 0 
TACE 1 1 1 1 1 1 
PRESENILIN1 0* 1

* 
0 1 1 1 

NICASTRIN 1 1 1 1 1 1 
APH1 1 1 1 1 1 1 
PEN2 1 1 1 1 1 1 
FURIN N

.
S
. 

1 N
.
S
. 

0 1 1 
NEDD4 1 1 1 0 1 1 
ITCH 1 1 1 0 1 1 
NUMB N

.
S
. 

0 N
.
S
. 

0 0 0 
ALPHA_ADAPTIN N

.
S
. 

0 N
.
S
. 

1 0 0 
O_GLUCOSE N

.
S
. 

1 N
.
S
. 

1 1 1 
POGLUT_1 1 1 1 1 1 1 
XYL N

.
S
. 

0 N
.
S
. 

0 0 0 
XYLE 0 0 0 1 0 0 
NGA N

.
S
. 

1 N
.
S
. 

1 1 1 
O_FUCOSE N

.
S
. 

1 N
.
S
. 

1 1 1 
FRINGE 1 1 1 1 1 1 
GALACTOSE N

.
S
. 

1 N
.
S
. 

1 1 1 
GASE 1 1 1 1 1 1 
POFUT_1 1 1 1 1 1 1 
JIP1 0 0 0 1 0 0 
RAS 0 0 0 1 0 0 
DVL 0 0 0 0 0 0 
JAK2 N

.
S
. 

1 N
.
S
. 

0 1 1 
STAT3 1 1 1 0 1 1 
GSK_3BETA 0 0 0 0 0 0 
WDR12 1 1 1 1 1 1 
P53 1 1 1 1 1 1 
FBW7 0 0 0 0 0 0 
CDK8 0 0 0 0 0 0 
CYCC N

.
S
. 

0 N
.
S
. 

0 0 0 
DTX1 0 0 0 0 0 0 
MAML 1 1 1 1 0 1 
EP300 N

.
S
. 

1 N
.
S
. 

1 1 1 
SKIP N

.
S
. 

1 N
.
S
. 

1 1 1 
HAT 1 1 1 1 1 1 
SMAD3 N

.
S
. 

1 N
.
S
. 

1 1 1 
CSL N

.
S
. 

1 N
.
S
. 

1 1 1 
SMRT 1 1 1 0 1 1 
SAP30 1 1 1 0 1 1 
HDAC N

.
S
. 

0 N
.
S
. 

0 0 0 
CIR 0 0 0 0 0 0 
SIN3A N

.
S
. 

0 N
.
S
. 

0 0 0 
YY1 0 0 0 1 0 0 

 
* The expression of PRESENILIN1 was found ‚down regulated‛ in Glioblastoma cells, but at the time of Glioblastoma 

Simulation (GBS), logical expression of PRESENILIN1 was considered as ‘1 to show up regulation of GAMMA 

SECRETASE. "N" signifies the non significant expression level. 
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Appendix Table 9:  Notch Signaling Model Constructed for the Analyses of Neural 

Stem Cell Dynamics  

Logical equations of the Notch pathway species 

AKT (t+1) = (PI3K(t) ) 

BAX (t+1) = (P53_P(t) ) 

BCL2 (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

CCND1 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

CCND3 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

CD44 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

CDK2 (t+1) = (NICD_ACTIVE(t) ) 

MAML+P53_P (t+1) = (MAML(t) and P53_P(t) )  

COA (t+1) = (EP300(t) and MAML(t) and  HAT (t) and SKIP(t) ) 

COR (t+1) = (HDAC(t) and SAP30(t) and CIR(t) and SIN3A(t) and SMRT(t) ) 

FLIP (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

GAMMA_SECRETASE (t+1) = (PRESENILIN1(t) and NICASTRIN(t) and APH1(t) and PEN2(t) ) or 

(NICASTRIN(t) and APH1(t) and PEN2(t) ) 

HES1_MRNA (t+1) = (NUC_NICD1(t) and SMAD3(t) and CSL(t) and not HES1(t) ) or (NICD_ACTIVE(t) and 

CSL(t) and not COR(t) and COA(t) and not MAML+P53_P(t) and not HES1(t) ) 

HES1 (t+1) = (HES1_MRNA(t) ) 

HES5_MRNA (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) and not HES5(t) ) 

HES5 (t+1) = (HES5_MRNA(t) ) 

HES7 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

HEY1 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

HEY2 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

HEYL (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) and not MAML+P53_P(t) ) 

HIF1A (t+1) = (NUC_STAT3(t) ) 

IAP (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

MYC (t+1) = (NUC_NICD1(t) and YY1(t) ) 

NECD1 (t+1) = (JAG1(t) and NOTCH1(t) and TACE(t) ) or (JAG2(t) and NOTCH1(t) and TACE(t) ) or (DLL1(t) 

and NOTCH1(t) and TACE(t) ) or (DLL3(t) and NOTCH1(t) and TACE(t) ) or (DLL4(t) and NOTCH1(t) and 

TACE(t) ) or (MAGP1(t) and NOTCH1(t) ) or (MAGP2(t) and NOTCH1(t) ) or (NOV(t) and NOTCH1(t) ) or 

(CNTN1(t) and NOTCH1(t) ) 

NECD2 (t+1) = (JAG1(t) and NOTCH2(t) and TACE(t) ) or (JAG2(t) and NOTCH2(t) and TACE(t) ) or (DLL1(t) 

and NOTCH2(t) and TACE(t) ) or (DLL3(t) and NOTCH2(t) and TACE(t) ) or (DLL4(t) and NOTCH2(t) and 

TACE(t) ) or (CNTN1(t) and NOTCH2(t) ) 

NECD3 (t+1) = (JAG1(t) and NOTCH3(t) and TACE(t) ) or (JAG2(t) and NOTCH3(t) and TACE(t) ) or (DLL1(t) 

and NOTCH3(t) and TACE(t) ) or (DLL3(t) and NOTCH3(t) and TACE(t) ) or (DLL4(t) and NOTCH3(t) and 

TACE(t) ) 
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NECD4 (t+1) = (JAG1(t) and NOTCH4(t) and TACE(t) ) or (JAG2(t) and NOTCH4(t) and TACE(t) ) or (DLL1(t) 

and NOTCH4(t) and TACE(t) ) or (DLL3(t) and NOTCH4(t) and TACE(t) ) or (DLL4(t) and NOTCH4(t) and 

TACE(t) ) 

NEXT1 (t+1) = (JAG1(t) and NOTCH1(t) and TACE(t) ) or (JAG2(t) and NOTCH1(t) and TACE(t) ) or (DLL1(t) 

and NOTCH1(t) and TACE(t) ) or (DLL3(t) and NOTCH1(t) and TACE(t) ) or (DLL4(t) and NOTCH1(t) and 

TACE(t) ) or (MAGP1(t) and NOTCH1(t) ) or (MAGP2(t) and NOTCH1(t) ) or (NOV(t) and NOTCH1(t) ) or 

(CNTN1(t) and NOTCH1(t) ) 

NEXT2 (t+1) = (JAG1(t) and NOTCH2(t) and TACE(t) ) or (JAG2(t) and NOTCH2(t) and TACE(t) ) or (DLL1(t) 

and NOTCH2(t) and TACE(t) ) or (DLL3(t) and NOTCH2(t) and TACE(t) ) or (DLL4(t) and NOTCH2(t) and 

TACE(t) ) or (CNTN1(t) and NOTCH2(t) ) 

NEXT3 (t+1) = (JAG1(t) and NOTCH3(t) and TACE(t) ) or (JAG2(t) and NOTCH3(t) and TACE(t) ) or (DLL1(t) 

and NOTCH3(t) and TACE(t) ) or (DLL3(t) and NOTCH3(t) and TACE(t) ) or (DLL4(t) and NOTCH3(t) and 

TACE(t) ) 

NEXT4 (t+1) = (JAG1(t) and NOTCH4(t) and TACE(t) ) or (JAG2(t) and NOTCH4(t) and TACE(t) ) or (DLL1(t) 

and NOTCH4(t) and TACE(t) ) or (DLL3(t) and NOTCH4(t) and TACE(t) ) or (DLL4(t) and NOTCH4(t) and 

TACE(t) ) 

NICD_ACTIVE (t+1) = (NUC_NICD1(t) ) or (NUC_NICD2(t) ) or (NUC_NICD3(t) ) or (NUC_NICD4(t) ) 

NICD1 (t+1) = (NEXT1(t) and GAMMA_SECRETASE(t) ) 

NICD2 (t+1) = (NEXT2(t) and GAMMA_SECRETASE(t) ) 

NICD3 (t+1) = (NEXT3(t) and GAMMA_SECRETASE(t) ) 

NICD4 (t+1) = (NEXT4(t) and GAMMA_SECRETASE(t) ) 

NOTCH1 (t+1) = (FURIN(t) and not NUMB(t) and not ITCH(t) and ALPHA_ADAPTIN(t) and NOTCH1_PRE(t) ) 

or (not NEDD4(t) and NOTCH1_PRE(t) ) or (POGLUT_1(t) and O_GLUCOSE(t) and NOTCH1_PRE(t) ) or 

(XYL(t) and O_GLUCOSE(t) and not XYLE(t) and NOTCH1_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and 

FRINGE(t) and POFUT_1(t) and NOTCH1_PRE(t) ) or (GALACTOSE(t) and GASE(t) and O_FUCOSE(t) and 

NOTCH1_PRE(t) ) 

NOTCH1_PRE (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

NOTCH2 (t+1) = (FURIN(t) and not NUMB(t) and not ITCH(t) and ALPHA_ADAPTIN(t) and NOTCH2_PRE(t) ) 

or (POGLUT_1(t) and O_GLUCOSE(t) and NOTCH2_PRE(t) ) or (XYL(t) and O_GLUCOSE(t) and not XYLE(t) 

and NOTCH2_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and FRINGE(t) and POFUT_1(t) and NOTCH2_PRE(t) ) or 

(GALACTOSE(t) and GASE(t) and  O_FUCOSE(t) and  NOTCH2_PRE(t) ) 

NOTCH2_PRE (t+1) = (NUC_NICD2(t) and COA(t) and CSL(t) and not COR(t) ) 

NOTCH3 (t+1) = (POGLUT_1(t) and O_GLUCOSE(t) and NOTCH3_PRE(t) ) or (XYL(t) and O_GLUCOSE(t) and 

not XYLE(t) and NOTCH3_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and FRINGE(t) and POFUT_1(t) and 

NOTCH3_PRE(t) ) or (GALACTOSE(t) and GASE(t) and  O_FUCOSE(t) and  NOTCH3_PRE(t) ) 

NOTCH3_PRE (t+1) = (NUC_NICD3(t) and COA(t) and CSL(t) and not COR(t) ) 

NOTCH4 (t+1) = (POGLUT_1(t) and O_GLUCOSE(t) and NOTCH4_PRE(t) ) or (XYL(t) and O_GLUCOSE(t) and 

not XYLE(t) and NOTCH4_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and FRINGE(t) and POFUT_1(t) and 

NOTCH4_PRE(t) ) or (GALACTOSE(t) and GASE(t) and  O_FUCOSE(t) and  NOTCH4_PRE(t) ) 

NOTCH4_PRE (t+1) = (NUC_NICD4(t) and COA(t) and CSL(t) and not COR(t) ) 

NOX (t+1) = (P53_P(t) ) 

NRARP (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

NUC_NICD1 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD1(t) ) or (RAS(t) and NICD1(t) ) or 

(WDR12(t) and NICD1(t) ) or (MAML(t) and not CDK8(t) and not CYCC(t) and not FBW7(t) and NICD1(t) ) or 
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(not NRARP(t) and NICD1(t) ) or (HIF1A(t) and NICD1(t) ) 

NUC_NICD2 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD2(t) ) or (MAML(t) and not 

CDK8(t) and not CYCC(t) and not FBW7(t) and NICD2(t) ) or (not NRARP(t) and NICD2(t) ) or (HIF1A(t) and 

NICD2(t) ) 

NUC_NICD3 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD3(t) ) or (MAML(t) and not 

CDK8(t) and not CYCC(t) and not FBW7(t) and NICD3(t) ) or (not NRARP(t) and NICD3(t) ) or (HIF1A(t) and 

NICD3(t) ) 

NUC_NICD4 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD4(t) ) or (not FBW7(t) and 

NICD4(t) ) or (MAML(t) and not CDK8(t) and not CYCC(t) and not FBW7(t) and NICD4(t) ) or (not NRARP(t) 

and NICD4(t) ) or (HIF1A(t) and NICD4(t) ) 

NUC_STAT3 (t+1) = (STAT3_P(t) ) 

P53_P (t+1) = (P53(t) and not AKT(t) and not NICD1(t) ) 

PI3K (t+1) = (not PTEN(t) ) 

PTEN (t+1) = (not HES1(t) ) 

PUMA (t+1) = (P53_P(t) ) 

STAT3_P (t+1) = (HES1(t) and JAK2(t) and STAT3(t) ) or (HES5(t) and JAK2(t) and STAT3(t) ) 

BAD (t+1) = (not AKT(t) ) 

TENASCIN_C (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) or (NUC_NICD2(t) and COA(t) 

and CSL(t) and not COR(t) ) 

GFAP (t+1) = (NUC_STAT3(t) ) 

NGN1 (t+1) = (not DTX1(t) and EP300(t) and MASH1(t) )  

BETA_TUBULIN_III (t+1) = (NGN1(t) ) 

NESTIN (t+1) = (not HES1(t) and not HES5(t) ) 

MASH1 (t+1) = (not HES1(t) and not HES5(t) ) 

NEUROD (t+1) = (not HES1(t) and not HES5(t) ) 

*APOPTOSIS (t+1) = (not FLIP(t) and not IAP(t) and not BCL2(t) and BAD(t) and PUMA(t) and NOX(t) and 

BAX(t) ) 

*NPC DIFFERENTIATION (t+1) = (BETA_TUBULIN_III(t) and NEUROD(t) and NESTIN(t) and not 

APOPTOSIS(t) and not ASPC DIFFERENTIATION(t) and not GBM DEVELOPMENT(t) ) 

*ASPC DIFFERENTIATION (t+1) = (GFAP(t) and not APOPTOSIS(t) and not NPC DIFFERENTIATION(t) and 

not GBM DEVELOPMENT(t) ) 

*GBM DEVELOPMENT (t+1) = (CCND3(t) and CCND1(t) and CDK2(t) and MYC(t) and TENASCIN_C(t) and 

GFAP(t) and not APOPTOSIS(t) and not NPC DIFFERENTIATION(t) ) 

*NSC RENEWAL (t+1) = (CCND3(t) and CCND1(t) and CDK2(t) and not APOPTOSIS(t) and not NPC 

DIFFERENTIATION(t) and not GBM DEVELOPMENT(t) and not ASPC_PROLIFERATION(t) ) 

* Phenotypes of the model. R.H.S = Logical states of the nodes at tth time point. L.H.S = Logical state of the 

node at (t+1)th time point. 
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Appendix Table 10: Detail Descriptions of the Nodes used in the Logical Model  

Input Molecules 

Sr. 

No. 

Names used in 

the Model 

Type of 

the 

Molecules 

Full Name/Gene 

Name of the 

Molecules 

Short 

Name 

Uniprot 

ID 

Ensemble ID 

1 ALPHA_ADA

PTIN 

Protein AP-2 complex 

subunit beta 

AP2B1 P63010 ENSG00000006125 

2 APH1 Protein Gamma-secretase 

subunit APH-1A 

APH1A Q96BI3 ENSG00000117362 

3 CDK8 Protein Cyclin dependent 

kinase 8 

CDK8 P49336 ENSG00000132964 

4 CIR Protein Corepressor 

interacting with RBPJ 

1 

CIR1 Q86X95 ENSG00000138433 

5 CNTN1 Protein Contactin-1 CNTN1 Q12860 ENSG00000018236 

6 CSL Protein Recombining binding 

protein suppressor of 

hairless  

RBPJ Q06330 ENSG00000168214 

7 CYC Protein Cyclin-C CCNC P24863 ENSG00000112237  

8 DLL1 Protein Delta-like protein 1 DLL1 O00548 ENSG00000198719 

9 DLL3 Protein Delta-like protein 3 DLL3 Q9NYJ7 ENSG00000090932 

10 DLL4 Protein Delta-like protein 4 DLL4 Q9NR61 ENSG00000128917 

11 DTX1 Protein Deltex E3 ubiquitin 

ligase 1 

DTX1 Q86Y01 ENSG00000135144  

12 DVL1 Protein Segment polarity 

protein dishevelled 

homolog DVL-1 

DVL1 O14640 ENSG00000107404 

13 EP300 Protein E1A binding protein 

p300 

EP300 Q09472 ENSG00000100393 

14 FBW7 Protein F-box/WD repeat-

containing protein 7 

FBXW7 Q969H0 ENSG00000109670 

15 FRINGE Protein Beta-1,3-N-

acetylglucosaminyltr

ansferase lunatic 

fringe 

LFNG Q8NES3 ENSG00000106003 

16 FURIN Protein Furin FURIN P09958 ENSG00000140564 

17 GALACTOSE Metabolite Galactose NA NA NA 

18 GASE Protein β1,4-galactosyl-

transferase 

B4GALT1 P15291 ENSG00000086062 
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19 GSK_3BETA Protein Glycogen synthase 

kinase-3 beta 

GSK3B P49841 ENSG00000082701 

20 HAT Protein Histone 

acetyltransferase 1 

HAT1 Q09472 ENSG00000128708 

21 HDAC Protein Histone deacetylase 1 HDAC1 Q13547 ENSG00000116478 

22 ITCH Protein E3 ubiquitin-protein 

ligase Itchy homolog 

ITCH Q96J02 ENSG00000078747 

23 JAG1 Protein jagged-1 JAG1 P78504 ENSG00000101384 

24 JAG2 Protein jagged-2 JAG2 Q9Y219 ENSG00000184916 

25 JAK2 Protein Tyrosine-protein 

kinase JAK2 

JAK2 O60674 ENSG00000096968 

26 JIP1 Protein C-Jun-amino-

terminal kinase-

interacting protein 1 

MAPK8IP1 Q9UQF

2 

ENSG00000121653 

27 MAGP1 Protein Microfibril-associated 

glycoprotein 1 

MFAP2 P55001 ENSG00000117122  

28 MAGP2 Protein Microfibril-associated 

glycoprotein 2 

MFAP5 Q13361 ENSG00000197614 

29 MAML Protein Mastermind-like 

protein 1 

MAML1 Q92585 ENSG00000161021 

30 NEDD4 Protein E3 ubiquitin-protein 

ligase NEDD4 

NEDD4 P46934 ENSG00000069869 

31 NGA Metabolite N-acetylglucosamine NA NA NA 

32 NICASTRIN Protein Nicastrin NCSTN Q92542 ENSG00000162736 

33 NOV Protein Nephroblastoma 

overexpressed  

NOV P48745 ENSG00000136999 

34 NUMB Protein Protein numb 

homolog 

NUMB P49757 ENSG00000133961 

35 O_FUCOSE Metabolite O-Fucose NA NA NA 

36 O_GLUCOSE Metabolite O-GLUCOSE NA NA NA 

37 P53 Protein Cellular tumor 

antigen p53 

TP53 P04637 ENSG00000141510 

38 PEN2 Protein Presenilin enhancer 

gamma-secretase 

subunit 

PSENEN Q9NZ42 ENSG00000205155 

39 POFUT_1 Protein GDP-fucose protein 

O-fucosyltransferase 

1 

POFUT1 Q9H488 ENSG00000101346 

40 POGLUT_1 Protein Protein O-

glucosyltransferase 1 

POGLUT1 Q8NBL1 ENSG00000163389 
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41 PRESENILIN1 Protein Presenilin 1 PSEN1 P49768 ENSG00000080815 

42 RAS Protein GTPase HRas HRAS P01112 ENSG00000174775 

43 SAP30 Protein Histone deacetylase 

complex subunit 

SAP30 

SAP30 O75446 ENSG00000164105 

44 SIN3A Protein Paired amphipathic 

helix protein Sin3a 

SIN3A Q96ST3 ENSG00000169375 

45 SKIP Protein SKI Interacting 

Protein 

SNW1 Q13573 ENSG00000100603 

46 SMAD3 Protein Mothers against 

decapentaplegic 

homolog 3 

SMAD3 P84022 ENSG00000166949 

47 SMRT Protein Nuclear receptor 

corepressor 2 

NCOR2 Q9Y618 ENSG00000196498 

48 STAT3 Protein Signal transducer and 

activator of 

transcription 3 

STAT3 P40763 ENSG00000168610 

49 TACE Protein Disintegrin and 

metalloproteinase 

domain-containing 

protein 17 

ADAM17 P78536 ENSG00000151694 

50 WDR12 Protein Ribosome biogenesis 

protein WDR12 

WDR12 Q9GZL7 ENSG00000138442 

51 XYL Metabolite Xylose NA NA NA 

52 XYLE Protein α1,3-

xylosyltransferase 

XXYLT1 Q8NBI6 ENSG00000173950 

53 YY1 Protein YY1 transcription 

factor 

YY1 P25490 ENSG00000100811 

Intermediate Molecules 

1 AKT Protein AKT serine/threonine 

kinase 1 

AKT1 P31749 ENSG00000142208 

2 CD44 Protein CD44 antigen CD44 P16070 ENSG00000026508 

3 CDK2 Protein Cyclin-dependent 

kinase 2 

CDK2 P24941 ENSG00000123374 

4 NOTCH1 Protein NOTCH1 NOTCH1 P46531 ENSG00000148400  

5 NOTCH2 Protein NOTCH2 NOTCH2 Q04721 ENSG00000134250 

6 NOTCH3 Protein NOTCH3 NOTCH3 Q9UM4

7 

ENSG00000074181  

7 NOTCH4 Protein NOTCH4 NOTCH4 Q99466 ENSG00000204301 

8 PI3K Protein Phosphatidylinositol PIK3R1 P27986 ENSG00000145675 
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3-kinase regulatory 

subunit alpha 

9 PTEN Protein Phosphatidylinositol 

3,4,5-trisphosphate 3-

phosphatase 

PTEN P60484 ENSG00000171862 

10 MAML+P53_P Protein 

Complex 

MAML and P53 

proteins complex 

NA NA NA 

11 COA Protein 

Complex 

Transcription Co-

activator Complex 

NA NA NA 

12 COR Protein 

Complex 

Transcription Co-

repressor Complex 

NA NA NA 

13 GAMMA_SECR

ETASE 

Protein 

Complex 

Gamm Secreatase 

enzyme complex 

NA NA NA 

14 HES1_MRNA mRNA 

Molecule 

mRNA of HES1 

Protein 

NA NA NA 

15 HES5_MRNA mRNA 

Molecule 

mRNA of HES5 

Protein 

NA NA NA 

16 NECD1 Truncated 

Protein 

Notch extra-cellular 

domain 1 

NA NA NA 

17 NECD2 Truncated 

Protein 

Notch extra-cellular 

domain 2 

NA NA NA 

18 NECD3 Truncated 

Protein 

Notch extra-cellular 

domain 3 

NA NA NA 

19 NECD4 Truncated 

Protein 

Notch extra-cellular 

domain 4 

NA NA NA 

20 NEXT1 Truncated 

Protein 

Notch extra-cellular 

truncated domain 1 

NA NA NA 

21 NEXT2 Truncated 

Protein 

Notch extra-cellular 

truncated domain 2 

NA NA NA 

22 NEXT3 Truncated 

Protein 

Notch extra-cellular 

truncated domain 3 

NA NA NA 

23 NEXT4 Truncated 

Protein 

Notch extra-cellular 

truncated domain 4 

NA NA NA 

24 NICD1 Truncated 

Protein 

Notch intra-cellular 

domain 1 

NA NA NA 

25 NICD2 Truncated 

Protein 

Notch intra-cellular 

domain 2 

NA NA NA 

26 NICD3 Truncated 

Protein 

Notch intra-cellular 

domain 3 

NA NA NA 

27 NICD4 Truncated 

Protein 

Notch intra-cellular 

domain 4 

NA NA NA 
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28 NICD_ACTIVE* Hypothetic

al Node* 

Transcriptionally 

active Notch Intra-

cellular domain 

NA NA NA 

29 NOTCH1_PRE Precursor 

Protein 

Precussor of Notch1 

receptor protein 

NA NA NA 

30 NOTCH2_PRE Precursor 

Protein 

Precussor of Notch2 

receptor protein 

NA NA NA 

31 NOTCH3_PRE Precursor 

Protein 

Precussor of Notch3 

receptor protein 

NA NA NA 

32 NOTCH4_PRE Precursor 

Protein 

Precussor of Notch4 

receptor protein 

NA NA NA 

33 NUC_NICD1 Nuclear 

Counterpar

t 

Nuclear counterpart 

of NICD1 

NA NA NA 

34 NUC_NICD2 Nuclear 

Counterpar

t 

Nuclear counterpart 

of NICD2 

NA NA NA 

35 NUC_NICD3 Nuclear 

Counterpar

t 

Nuclear counterpart 

of NICD3 

NA NA NA 

36 NUC_NICD4 Nuclear 

Counterpar

t 

Nuclear counterpart 

of NICD4 

NA NA NA 

37 NUC_STAT3 Nuclear 

Counterpar

t 

Nuclear counter of 

STAT3 protein 

NA NA NA 

38 P53_P Phosphoryl

ated 

Protein 

Phosphorylated form 

of P53 protein 

NA NA NA 

39 STAT3_P Phosphoryl

ated 

Protein 

Phosphorylated form 

of STAT3 protein 

NA NA NA 

Target Proteins 

1 BAX Protein BCL2 associated X BAX Q07812 ENSG00000087088 

2 BAD Protein Bcl2-associated 

agonist of cell death 

BAD Q92934 ENSG00000002330 

3 BCL2 Protein Apoptosis regulator 

Bcl-2 

BCL2 P10415 ENSG00000171791 

4 CCND1 Protein G1/S-specific cyclin-

D1 

CCND1 P24385 ENSG00000110092 

5 CCND3 Protein G1/S-specific cyclin-

D3 

CCND3 P30281 ENSG00000112576 
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6 FLIP Protein CASP8 and FADD-

like apoptosis 

regulator 

CFLAR O15519 ENSG00000003402 

7 HES1 Protein HES1 HES1 Q14469 ENSG00000114315 

8 HES5 Protein HES5 HES5 Q5TA89 ENSG00000197921 

9 HES7 Protein HES7 HES7 Q9BYE0 ENSG00000179111 

10 HEY1 Protein HEY1 HEY1 Q9Y5J3 ENSG00000164683 

11 HEY2 Protein HEY2 HEY2 Q9UBP5 ENSG00000135547 

12 HEYL Protein Hairy/enhancer-of-

split related with 

YRPW motif-like 

protein 

HEYL Q9NQ8

7 

ENSG00000163909 

13 HIF1A Protein Hypoxia-inducible 

factor 1-alpha 

HIF1A Q16665 ENSG00000100644 

14 IAP Protein E3 ubiquitin-protein 

ligase XIAP 

XIAP P98170 ENSG00000101966 

15 MYC Protein Myc proto-oncogene 

protein 

MYC P01106 ENSG00000136997 

16 NOX Protein NADPH oxidase 1 NOX1 Q9Y5S8 ENSG00000007952 

17 NRARP Protein Notch-regulated 

ankyrin repeat-

containing protein 

NRARP Q7Z6K4 ENSG00000198435 

18 PUMA Protein Bcl-2-binding 

component 3 

BBC3 Q9BXH

1 

ENSG00000105327 

19 GFAP Protein Glial fibrillary acidic 

protein 

GFAP P14136 ENSG00000131095 

20 NGN1 Protein Neurogenin-1 NEUROG1 Q92886 ENSG00000181965 

21 BETA_TUBULI

N_III 

Protein Tubulin beta-3 chain TUBB3 Q13509 ENSG00000258947 

22 NESTIN Protein Nestin NES P48681 ENSG00000132688 

23 MASH1 Protein Achaete-scute 

homolog 1 

ASCL1 P50553 ENSG00000139352 

24 NEUROD Protein Neurogenic 

differentiation factor 

1 

NEUROD1 Q13562 ENSG00000162992 

25 TENASCIN_C Protein Tenascin TNC P24821 ENSG00000041982 

Phenotypes 

1 Apoptosis  NA Apotosis or Natural 

Cell death 

NA NA NA 
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2 NPC 

Differentiation 

NA Differentiations of 

Neural progenitor 

cells 

NA NA NA 

3 NPC 

Differentiation 

NA Differentiations of 

Astrocyte progenitor 

cells 

NA NA NA 

4 GBM 

Development 

NA Differentiated and 

developed 

Glioblastoma cells 

NA NA NA 

5 NSC Renewal NA Neural stem cell 

renewal 

NA NA NA 

* Hypothetical node is introduced for the simplification of the model simulation 
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Appendix Table 11: The Logical Model of ERBB Pathway. 

Nodes S1 S2 S3 S4 S5 S6 S7 
EGF 0 3 3 0 3 0 3 

ERBB1 0 0 0 0 0 0 0 

ERBB1_WT 2 2 3 2 2 3 3 
EGFRvIII 0 0 0 3 3 3 3 
ERBB2 0 0 0 0 0 0 0 
ERBB2_WT 2 2 2 2 2 2 2 
ERBB3 0 0 0 0 0 0 0 
ERBB3_WT 2 2 2 2 2 2 2 
ER_alpha 0 0 0 0 0 0 0 
ERBB2_3 0 0 0 0 0 0 0 
AKT1 0 0 0 0 0 0 0 
MEK1 0 0 0 0 0 0 0 
ERBB1_2 0 0 0 0 0 0 0 
ERBB1_3 0 0 0 0 0 0 0 
IGF1R 0 0 0 0 0 0 0 
Cyclin_E1 0 0 0 0 0 0 0 
p21 2 2 2 2 2 2 2 

p27 2 2 2 2 2 2 2 

c_MYC 0 0 0 0 0 0 0 

CDK4 0 0 0 0 0 0 0 
CDK2 0 0 0 0 0 0 0 
CDK6 0 0 0 0 0 0 0 
Cyclin_D1 0 0 0 0 0 0 0 
pRB 0 0 0 0 0 0 0 

Equations  
*ERBB1=(EGF and ERBB1_WT) or (ERBB1_WT and EGFRvIII) or (EGF and ERBB1_WT and EGFRvIII) 

*ERBB2=(EGF and ERBB2_WT) 

*ERBB3=(EGF and ERBB3_WT) 

ERBB1_2=(ERBB1 and ERBB2) 

ERBB1_3=(ERBB1 and ERBB3) 

ERBB2_3=(ERBB2 and ERBB3) 

IGF1R=(ER_alpha and not ERBB2_3) or (AKT1 and not ERBB2_3) 

ER_alpha=(AKT1) or (MEK1) 

c_MYC=(AKT1) or (MEK1) or (ER_alpha) 

AKT1=(ERBB1) or (ERBB1_2) or (ERBB1_3) or (ERBB2_3) or (IGF1R) 

MEK1=(ERBB1) or (ERBB1_2) or (ERBB1_3) or (ERBB2_3) or (IGF1R) 

CDK2=(Cyclin_E1 and not p21 and not p27) 

CDK4=(Cyclin_D1 and not p21 and not p27) 

CDK6=(Cyclin_D1) 

Cyclin_D1=(ER_alpha and c_MYC and AKT1) or (ER_alpha and c_MYC and MEK1) 

Cyclin_E1=(c_MYC) 

p21=(ER_alpha and not AKT1 and not c_MYC and not CDK4) 

p27=(ER_alpha and not CDK4 and not CDK2 and not AKT1 and not c_MYC) 

pRB=(CDK4 and CDK6) or (CDK4 and CDK6 and CDK2) 

* These equations are modified in our model. Please refer to Sahin et al. for the previous model [245].  

S1 = No Stimulation; S2 = Regular EGFRWT Expression + EGF; S3 = EGFRWT amplification + EGF; S4 = Regular 

EGFRWT with EGFRvIII and no stimulation; S5 = Regular EGFRWT/EGFRvIII and with stimulation; S6 = Amplified 

EGFRWT/EGFRvIII and no stimulation; S7 = Amplified EGFRWT/EGFRvIII and with stimulation. 
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Appendix Table 12: ExQuLogic-based Logical Equations of the Integrated Pathway 

Model 

Logical Equations 

ACTIN_REORG = (RAC1) or (RAC1_CDC42) 

ANCHORAGE_INDEPENDENCE = (FGF20 and FGF9) 

ANTI_APOP = (BCL2) 

APC_CTBP = (APC and CTBP and not DVL_AXIN_APC_GSK3_WTX_INACTIVE) 

ASEF = (APC) 

AXIN = (CKI_E and not WNT9B_FZD8_LRP6_CKI_G_GSK3 and not WNT1_FZD1_LRP5_CKI_G_GSK3 and not 

WNT3A_FZD2_LRP6_CKI_G_GSK3 and not WNT7B_FZD10_LRP5_CKI_G_GSK3 and not WNT7B_FZD1_LRP5_CKI_G_GSK3 

and not WNT3A_FZD8_LRP6_CKI_G_GSK3 and not WNT2_FZD1_LRP5_CKI_G_GSK3 and not 

WNT1_FZD8_LRP6_CKI_G_GSK3 and not WNT3A_FZD1_LRP6_CKI_G_GSK3 and not WNT1_FZD1_LRP6_CKI_G_GSK3 and 

not WNT2_FZD9_LRP6_CKI_G_GSK3 and not WNT5A_FZD4_LRP5_CKI_G_GSK3 and not WNT7A_FZD5_LRP6_CKI_G_GSK3 

and not WNT3_FZD1_LRP6_CKI_G_GSK3 and not WNT1_FZD8_RYK_CKI_G_GSK3 and not MACF1 and not HIC) or (DAB2 

and not WNT9B_FZD8_LRP6_CKI_G_GSK3 and not WNT1_FZD1_LRP5_CKI_G_GSK3 and not 

WNT3A_FZD2_LRP6_CKI_G_GSK3 and not WNT7B_FZD10_LRP5_CKI_G_GSK3 and not WNT7B_FZD1_LRP5_CKI_G_GSK3 

and not WNT3A_FZD8_LRP6_CKI_G_GSK3 and not WNT2_FZD1_LRP5_CKI_G_GSK3 and not 

WNT1_FZD8_LRP6_CKI_G_GSK3 and not WNT3A_FZD1_LRP6_CKI_G_GSK3 and not WNT1_FZD1_LRP6_CKI_G_GSK3 and 

not WNT2_FZD9_LRP6_CKI_G_GSK3 and not WNT5A_FZD4_LRP5_CKI_G_GSK3 and not WNT7A_FZD5_LRP6_CKI_G_GSK3 

and not WNT3_FZD1_LRP6_CKI_G_GSK3 and not WNT1_FZD8_RYK_CKI_G_GSK3 and not MACF1 and not HIC) 

AXIN_APC_GSK3_WTX_ACTIVE = (AXIN and APC and not GSK3_P and WTX) 

AXIN2_P_DUMMY = (AXIN2) 

BAX = (NUC_CTNNB_TCF4 and PYGO and BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 

and PIASY and TNIK and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and SMAD2_4 and SMAD3_4 

and not HIPK2 and not KLF4 and not NLK and not AXAM2 and not NARF) or (P53_P) 

BCL2 = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) or (NUC_GLI2 and 

NUC_STK36 and not NUC_SUFU) or (NUC_NICD1 and COA and CSL and not COR) 

BIRC5 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

BMI = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

BMP_RUNX3 = (BMP and RUNX3) 

BOK = (NUC_CTNNB_TCF4 and PYGO and BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 

and PIASY and TNIK and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and SMAD2_4 and SMAD3_4 

and not HIPK2 and not KLF4 and not NLK and not AXAM2 and not NARF) 

BTG2 = (P53_P) 

C_REL = (NUC_NICD1 and COA and CSL and not COR) 

CA = (IP3) 

CALCINEURIN = (CA and not KISS1) 

CAMK2 = (CA) 

CASR = (CA) 
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CD44 = (COA and CSL and not COR and NICD_ACTIVE) 

CDK2 = (NUC_NICD1) or (CYCLIN_E1 and not P21 and not P27) 

CDK4 = (CYCLIN_D1 and not P21 and not P27) 

CDK6 = (CYCLIN_D1) 

CELL_ADHESION = (CTNNB_MEMBRANE and E_CADHERIN) 

CELL_MOTILITY = (ROCK) 

CELL_PROLIFERATION = (FOXM1) or (MYC) or (SOX9) 

CELL_SURVIVAL = (WISP1 and BIRC5 and COX2) 

CELLCYCLE_PROGRESSION = (CYCLIN_D1 and P_RB and ANTI_APOP and not PRO_APOP) or (CYCLIN_E and P_RB and 

ANTI_APOP and not PRO_APOP) or (CYCLIN_E1 and P_RB and ANTI_APOP and not PRO_APOP) or (CYCLIN_D2 and P_RB 

and ANTI_APOP and not PRO_APOP) or (CYCLIN_B and P_RB and ANTI_APOP and not PRO_APOP) 

CJUN = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

COA = (MAML and EP300 and SKIP and HAT) 

COR = (SMRT and SAP30 and HDAC and CIR and SIN3A) 

COX2 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

CTNNB = (DVL_AXIN_APC_GSK3_WTX_INACTIVE and PAR1 and not PR61 and not P53 and not DAB2 and not SOX17 and 

not PKC and not BTRCP) or (SMAD7 and P38 and not P53 and not DAB2 and not SOX17 and not PKC and not BTRCP) or 

(ERBB1 and not E_CADHERIN and not PKC and not BTRCP) or (PIN1 and not P53 and not DAB2 and not SOX17 and not PKC 

and not BTRCP) or (CK2A and not P53 and not DAB2 and not SOX17 and not PKC and not BTRCP) or (SIAH2) 

CTNNB_MEMBRANE = (WNT4_FZD_LRP and CTNNB) 

CYCLIN_B = (CYCLIN_B and not PTCH1) 

CYCLIN_D1 = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) or 

(NUC_CTNNB_TCF4 and PYGO and BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and TNIK and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and SMAD2_4 and SMAD3_4 and 

not HIPK2 and not KLF4 and not NLK and not AXAM2 and not NARF) or (NUC_CTNNB_LEF and PYGO and BCL9 and EP300 

and TRAPP and MLL12 and PAF1 and BRG1 and PIASY and not REPTIN52 and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not DUPLIN and TBL1 and TBLR1 and not NARF) or (ER_ALPHA and MYC and p_AKT) or 

(ER_ALPHA and MYC and MEK1) or (COA and CSL and not COR and NICD_ACTIVE) 

CYCLIN_D2 = (NUC_GLI2 and NUC_STK36 and not NUC_SUFU) or (GLI3_A and NUC_STK36 and not NUC_SUFU) or 

(NUC_CTNNB_PITX2) or (COA and CSL and not COR and NICD_ACTIVE) 

CYCLIN_E = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

CYCLIN_E1 = (MYC) 

DAAM1 = (DVL) 

DAAM12 = (DAAM1) or (DAAM2) 

DAAM2 = (DVL) 

DAG = (PLC_G) 

DHH = (DISPATCHED and HHAT and not HHIP) 

DKK1_KREMEN2 = (DKK1) or (DKK1 and KREMEN2) 
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DNA_BIND = (not ID1) or (not ID2) or (not ID3) 

DVL = (WNT_FZD_LRP and not DAB2 and not DACT3 and not PR72 and not NKD and not IDAX and not AXAM2) or 

(WNT5A_FZD7_RYK) or (WNT5B_FZD7_RYK) or (WNT3A_FZD1_RYK) or (WNT11_FZD1_RYK) or (WNT5A_FZD3_RYK) or 

(WNT11_FZD3_RYK) 

DVL_AXIN_APC_GSK3_WTX_INACTIVE = (DVL and AXIN_APC_GSK3_WTX_ACTIVE) or (DVL and not APC) or (DVL and 

not GSK_3BETA) or (DVL and not AXIN) or (DVL and not WTX) 

E_CADHERIN = (E_CADHERIN and not IQGAP and not SNAI1) 

EMT = (SNAI1) 

ER_ALPHA = (p_AKT) or (MEK1) 

ERBB1 = (EGF) 

ERBB1_2 = (ERBB1 and ERBB2) 

ERBB1_3 = (ERBB1 and ERBB3) 

ERBB2 = (EGF) 

ERBB2_3 = (ERBB2 and ERBB3) 

ERBB3 = (EGF) 

ERK1 = (SRC) 

ERK12 = (ERK1) or (ERK2) 

ERK2 = (SRC) 

FAS = (FAS and not SMO) 

FGF20 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

FGF9 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

FLIP = (NUC_NICD1 and COA and CSL and not COR) 

FOLLISTATIN = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 

and PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not 

HIPK2 and not NLK and not AXAM2 and not NARF) 

FOXM1 = (GLI1) 

FRA1 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

GADD45A = (P53_P) 

GAMMA_SECRETASE = (PRESENILIN1 and NICASTRIN and APH1 and PEN2) 

GATA3 = (COA and CSL and not COR and NICD_ACTIVE) 

GLI1 = (GLI1_INACTIVE and HFU and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or 

(GLI1_INACTIVE and ERK12 and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or 

(GLI1_INACTIVE and RAS and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or 

(GLI1_INACTIVE and TWIST and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or 

(GLI1_INACTIVE and ULK3 and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or 

(GLI1_INACTIVE and STK36 and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or 
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(GLI1_INACTIVE and GLI2 and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) 

GLI1_INACTIVE = (GLI3_A and not SKI and not SNO and not NCOR and not SIN3A and not HDAC and not HES1) or (GLI3_A 

and not SKI and not SNO and not NCOR and not SIN3A and not HDAC and not HEY1) or (GLI3_A and not SKI and not SNO 

and not NCOR and not SIN3A and not HDAC and not HEYL) or (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU 

and not NUMB and not ITCH and not HES1) or (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB 

and not ITCH and not HEY1) or (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH 

and not HEYL) 

GLI2 = (HFU and not PKA_A and not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or (STK36 and not PKA_A and 

not GSK_3BETA and not CKI_A and not BTRCP and not SUFU) or (HFU and not NOTCH1) or (STK36 and not NOTCH1) 

GLI3_A = (GLI3_A and not NUC_CTNNB_TCF) or (GLI3_A and not GLI3_R)  

GLI3_R = (GLI3_R and not GLI1) 

GSK3_P = (p_AKT) or (RAS) or (ERK12) or (DVL_AXIN_APC_GSK3_WTX_INACTIVE) 

HATH1 = (HATH1 and not GSK_3BETA) 

HES = (HES1) or (HES5) or (HES7) or (HEY1) or (HEY2) or (HEYL) 

HES1 = (NUC_NICD1 and SMAD3 and CSL) or (COA and CSL and not COR and NICD_ACTIVE) or (NUC_GLI2 and 

NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) or (NUC_CTNNB_TCF and not 

NUC_CTNNB_PROP1 and not TLE) 

HES5 = (COA and CSL and not COR and NICD_ACTIVE) 

HES7 = (COA and CSL and not COR and NICD_ACTIVE) 

HEY1 = (COA and CSL and not COR and NICD_ACTIVE) 

HEY2 = (COA and CSL and not COR and NICD_ACTIVE) 

HEYL = (COA and CSL and not COR and NICD_ACTIVE) 

HHIP = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) or (not HES1) or (not 

HES5) or (not HES7) or (not HEY1) or (not HEY2) or (not HEYL) 

HIF1A = (NUC_STAT3) 

IAP = (NUC_NICD1 and COA and CSL and not COR) 

ID1 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and PIASY 

and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 and not 

NLK and not AXAM2 and not NARF) 

ID2 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and PIASY 

and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 and not 

NLK and not AXAM2 and not NARF) or (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and 

BRG1 and TBL1 and TBLR1 and PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and 

not APC_CTBP and not HIPK2 and not NLK and not AXAM2 and BMP and not NARF) 

ID3 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and PIASY 

and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 and not 

NLK and not AXAM2 and not NARF) 

IGF1R = (ER_ALPHA and not ERBB2_3) or (p_AKT and not ERBB2_3) 

IHH = (BMP_RUNX3) or (DISPATCHED and HHAT and not HHIP) 

INVASION = (NFAT) or (S100A4) or (MMP7) 

IP3 = (PLC_G) 

JAG1 = (NUC_CTNNB_TCF and PYGO and TRAPP and MLL12 and EP300 and PAF1 and BRG1 and TBL1 and TBLR1 and 
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PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

JAG2 = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) or (NUC_GLI2 and 

NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

JNK = (MKK4 and MKK7) 

KISS1 = (KISS1 and not WNT5A_FZD2 and not GRP54) 

KLF5 = (COA and CSL and not COR and NICD_ACTIVE) 

MAG = (NUC_NICD1 and DTX1 and COA and CSL and not COR) or (NUC_NICD2 and DTX1 and COA and CSL and not COR) 

MEK1 = (ERBB1) or (ERBB1_2) or (ERBB1_3) or (ERBB2_3) or (IGF1R) 

MEKK1 = (WNT5A_FZD7_RYK and DVL and AXIN and not CCD1 and not GSK_3BETA and not CKI_E and not HIC) or 

(WNT5B_FZD7_RYK and DVL and AXIN and not CCD1 and not GSK_3BETA and not CKI_E and not HIC) or 

(WNT3A_FZD1_RYK and DVL and AXIN and not CCD1 and not GSK_3BETA and not CKI_E and not HIC) or 

(WNT11_FZD1_RYK and DVL and AXIN and not CCD1 and not GSK_3BETA and not CKI_E and not HIC) 

MEKK4 = (WNT5A_FZD7_RYK and DVL and AXIN and not CCD1 and not HIC) or (WNT5B_FZD7_RYK and DVL and AXIN 

and not CCD1 and not HIC) or (WNT3A_FZD1_RYK and DVL and AXIN and not CCD1 and not HIC) or (WNT11_FZD1_RYK 

and DVL and AXIN and not CCD1 and not HIC) 

MKK4 = (MEKK4) 

MKK7 = (MEKK1) 

MKP_1 = (COA and CSL and not COR and NICD_ACTIVE) 

MKRN1 = (p_AKT) 

MMP7 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

MSX1 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) or (NUC_CTNNB_LEF and PYGO and EP300 and TRAPP and MLL12 and PAF1 

and BRG1 and TBL1 and TBLR1 and PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R 

and not APC_CTBP and not HIPK2 and not NLK and not AXAM2 and BMP and not NARF) 

MSX2 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and BMP and not NARF) or (NUC_CTNNB_LEF and PYGO and EP300 and TRAPP and MLL12 

and PAF1 and BRG1 and TBL1 and TBLR1 and PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and 

not TCF1_R and not APC_CTBP and not HIPK2 and not NLK and not AXAM2 and not NARF) 

MYC = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) or (NUC_NICD1 and 

YY1) or (NUC_CTNNB_TCF4 and PYGO and BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and 

TBLR1 and PIASY and TNIK and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not SMAD2_4 and 

not SMAD3_4 and not HIPK2 and not KLF4 and not NLK and not AXAM2 and not NARF) or (NUC_CTNNB_LEF and PYGO 

and BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and PIASY and not REPTIN52 and not TCF1_R and not 

APC_CTBP and not HIPK2 and not NLK and not AXAM2 and not DUPLIN and TBL1 and TBLR1 and not NARF) or (p_AKT) or 

(MEK1) or (ER_ALPHA) 

MYOD = (MYOD and not HES1) 

NECD1 = (JAG1 and NOTCH1 and TACE) or (JAG2 and NOTCH1 and TACE) or (DLL1 and NOTCH1 and TACE) or (DLL3 and 
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NOTCH1 and TACE) or (DLL4 and NOTCH1 and TACE) or (NOTCH1 and MAGP1) or (NOTCH1 and MAGP2) or (NOTCH1 

and NOV) or (NOTCH1 and CNTN1)  

NECD2 = (JAG1 and NOTCH2 and TACE) or (JAG2 and NOTCH2 and TACE) or (DLL1 and NOTCH2 and TACE) or (DLL3 and 

NOTCH2 and TACE) or (DLL4 and NOTCH2 and TACE) or (NOTCH2 and CNTN1) 

NECD3 = (JAG1 and NOTCH3 and TACE) or (JAG2 and NOTCH3 and TACE) or (DLL1 and NOTCH3 and TACE) or (DLL3 and 

NOTCH3 and TACE) or (DLL4 and NOTCH3 and TACE)  

NECD4 = (JAG1 and NOTCH4 and TACE) or (JAG2 and NOTCH4 and TACE) or (DLL1 and NOTCH4 and TACE) or (DLL3 and 

NOTCH4 and TACE) or (DLL4 and NOTCH4 and TACE) 

NEURONAL_DIFF = (not REST) 

NEXT1 = (JAG1 and NOTCH1 and TACE) or (JAG2 and NOTCH1 and TACE) or (DLL1 and NOTCH1 and TACE) or (DLL3 and 

NOTCH1 and TACE) or (DLL4 and NOTCH1 and TACE) or (NOTCH1 and MAGP1) or (NOTCH1 and MAGP2) or (NOTCH1 

and NOV) or (NOTCH1 and CNTN1) 

NEXT2 = (JAG1 and NOTCH2 and TACE) or (JAG2 and NOTCH2 and TACE) or (DLL1 and NOTCH2 and TACE) or (DLL3 and 

NOTCH2 and TACE) or (DLL4 and NOTCH2 and TACE) or (NOTCH2 and CNTN1) 

NEXT3 = (JAG1 and NOTCH3 and TACE) or (JAG2 and NOTCH3 and TACE) or (DLL1 and NOTCH3 and TACE) or (DLL3 and 

NOTCH3 and TACE) or (DLL4 and NOTCH3 and TACE) 

NEXT4 = (JAG1 and NOTCH4 and TACE) or (JAG2 and NOTCH4 and TACE) or (DLL1 and NOTCH4 and TACE) or (DLL3 and 

NOTCH4 and TACE) or (DLL4 and NOTCH4 and TACE) 

NFAT = (CALCINEURIN and not GSK_3BETA) 

NFKB = (COA and CSL and not COR and NICD_ACTIVE) 

NICD_ACTIVE = (NUC_NICD1 and not HES) or (NUC_NICD2 and not HES) or (NUC_NICD3 and not HES) or (NUC_NICD4 

and not HES) or (NUC_NICD1 and WNT3A) or (NUC_NICD2 and WNT3A) or (NUC_NICD3 and WNT3A) or (NUC_NICD4 

and WNT3A)  

NICD1 = (NEXT1 and GAMMA_SECRETASE) or (HIF1A)  

NICD2 = (NEXT2 and GAMMA_SECRETASE) or (HIF1A) 

NICD3 = (NEXT3 and GAMMA_SECRETASE) or (HIF1A) 

NICD4 = (NEXT4 and GAMMA_SECRETASE) or (HIF1A) 

NKD = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

NLK = (TAK1) 

NOTCH_SIGNAL = (JAG2) 

NOTCH1 = (NOTCH1_PRE and FURIN and not ITCH and not NUMB and ALPHA_ADAPTIN) or (NOTCH1_PRE and not 

NEDD4) or (NOTCH1_PRE and O_GLUCOSE and POGLUT_1) or (NOTCH1_PRE and O_GLUCOSE and XYL and not XYLE) or 

(NOTCH1_PRE and NGA and O_FUCOSE and FRINGE and POFUT_1) or (NOTCH1_PRE and O_FUCOSE and GALACTOSE 

and GASE) 

NOTCH1_PRE = (not P53_P and NUC_NICD1 and CSL) 

NOTCH2 = (NOTCH2_PRE and FURIN and not ITCH and not NUMB and ALPHA_ADAPTIN) or (NOTCH2_PRE and 

O_GLUCOSE and POGLUT_1) or (NOTCH2_PRE and O_GLUCOSE and XYL and not XYLE) or (NOTCH2_PRE and NGA and 

O_FUCOSE and FRINGE and POFUT_1) or (NOTCH2_PRE and O_FUCOSE and GALACTOSE and GASE) 

NOTCH2_PRE = (not P53_P and NUC_NICD2 and CSL) 

NOTCH3 = (NOTCH3_PRE and O_GLUCOSE and POGLUT_1) or (NOTCH3_PRE and O_GLUCOSE and XYL and not XYLE) or 
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(NOTCH3_PRE and NGA and O_FUCOSE and FRINGE and POFUT_1) or (NOTCH3_PRE and O_FUCOSE and GALACTOSE 

and GASE) 

NOTCH3_PRE = (not P53_P and NUC_NICD3 and CSL) 

NOTCH4 = (NOTCH4_PRE and O_GLUCOSE and POGLUT_1) or (NOTCH4_PRE and O_GLUCOSE and XYL and not XYLE) or 

(NOTCH4_PRE and NGA and O_FUCOSE and FRINGE and POFUT_1) or (NOTCH4_PRE and O_FUCOSE and GALACTOSE 

and GASE) 

NOTCH4_PRE = (not P53_P and NUC_NICD4 and CSL) 

NRARP = (COA and CSL and not COR and NICD_ACTIVE) 

NUC_CTNNB = (CTNNB and IMPORTIN and not ICAT and not CHIBBY and not PEN2) or (CTNNB and IMPORTIN and RAC1 

and JNK and not ICAT and not CHIBBY and not PEN2) 

NUC_CTNNB_LEF = (NUC_CTNNB and LEF and CKI_E and not TLE and not HDAC) or (NUC_CTNNB and LEF and not 

HDAC) 

NUC_CTNNB_PITX2 = (NUC_CTNNB and PITX2) 

NUC_CTNNB_PROP1 = (NUC_CTNNB and PROP1) 

NUC_CTNNB_TCF = (NUC_CTNNB_TCF4) or (NUC_CTNNB_TCF3) 

NUC_CTNNB_TCF3 = (NUC_CTNNB and TCF3_INACTIVE and CKI_E and not TLE and not HDAC) or (NUC_CTNNB and 

TCF3_INACTIVE and not TLE and not HDAC) 

NUC_CTNNB_TCF4 = (NUC_CTNNB and TCF4_INACTIVE and CKI_E and not TLE and not HDAC) or (NUC_CTNNB and 

TCF4_INACTIVE and not HDAC) 

NUC_GLI1 = (GLI1 and not SNAI1) or (GLI1 and not NUC_CTNNB_TCF) 

NUC_GLI2 = (GLI2 and not SNAI1) 

NUC_NICD1 = (not JIP1 and not DVL and GSK_3BETA and NICD1) or (RAS and NICD1) or (WDR12 and NICD1) or (not FBW7 

and not CDK8 and not CYCLIN_C and MAML) or (NICD1 and not NRARP)   

NUC_NICD2 = (not JIP1 and not DVL and GSK_3BETA and NICD2) or (not FBW7 and not CDK8 and not CYCLIN_C and 

MAML) or (NICD2 and not NRARP) 

NUC_NICD3 = (not JIP1 and not DVL and GSK_3BETA and NICD3) or (not FBW7 and not CDK8 and not CYCLIN_C and 

MAML) or (NICD3 and not NRARP)  

NUC_NICD4 = (not JIP1 and not DVL and GSK_3BETA and NICD4) or (NICD4 and not FBW7) or (not FBW7 and not CDK8 and 

not CYCLIN_C and MAML) or (NICD4 and not NRARP) 

NUC_STAT3 = (STAT3_P) 

OPN = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

PI3K = (PIK3CA and PIK3R1) 

p_AKT = (PI3K and AKT) or (AKT and ERBB1) or (AKT and ERBB1_2) or (AKT and ERBB1_3) or (AKT and ERBB2_3) or (AKT 

and IGF1R) 

GSK_3BETA = (GSK_3BETA and not GSK3_P) 

P_RB = (RB and CDK4 and CDK6) or (RB and CDK4 and CDK6 and CDK2) 

P14ARF = (NUC_CTNNB_TCF4 and PYGO and BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and 

TBLR1 and PIASY and TNIK and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and SMAD2_4 and 

SMAD3_4 and not HIPK2 and not KLF4 and not NLK and not AXAM2 and not NARF) or (NUC_CTNNB_LEF and PYGO and 

BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and PIASY and not REPTIN52 and not TCF1_R and not 

APC_CTBP and not HIPK2 and not NLK and not AXAM2 and not DUPLIN and TBL1 and TBLR1 and not NARF) or (TBX3) 

P21 = (NUC_NICD1 and COA and CSL and not COR) or (ER_ALPHA and not p_AKT and not MYC and not CDK4) or (P53_P) 
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P27 = (ER_ALPHA and not CDK4 and not CDK2 and not p_AKT and not MYC) 

P50 = (NUC_NICD1 and COA and CSL and not COR) 

P53 = (P14ARF and not MKRN1) 

P53_P = (not NICD1 and P53) 

P65 = (NUC_NICD1 and COA and CSL and not COR) 

PDGFRA = (GLI1) 

PI3K = (WNT3A_FZD8 and not PTEN) or (WNT3A_FZD2 and not PTEN) or (WNT3A_FZD1 and not PTEN) or (WNT1_FZD1 

and not PTEN) or (WNT1_FZD8 and not PTEN) 

PIT1 = (NUC_CTNNB_PROP1 and EP300) 

PKC = (CA and DAG and not KISS1 and not GRP54) 

PLC_G = (WNT5A_FZD2) 

PPAR_D = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

PPAR_G = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

PRICKLE12 = (PRICKLE1) or (PRICKLE2) 

PRO_APOP = (BOK and BAX) 

PTCH1 = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

PTCH1_HH = (PTCH1 and DHH) or (PTCH1 and IHH) or (PTCH1 and SHH) 

PTCH2_HH = (PTCH2 and DHH) or (PTCH2 and IHH) or (PTCH2 and SHH) 

PTCRA = (COA and CSL and not COR and NICD_ACTIVE) 

PTEN = (PTEN and not HES1) 

RAC1 = (ASEF) 

RAC1_CDC42 = (WNT5A_FZD7_RYK and DVL and AXIN and ANKRD6 and NKD and DAB2 and not PAR1 and not CCD1) or 

(WNT5B_FZD7_RYK and DVL and AXIN and ANKRD6 and NKD and DAB2 and not PAR1 and not CCD1) or 

(WNT3A_FZD1_RYK and DVL and AXIN and ANKRD6 and NKD and DAB2 and not PAR1 and not CCD1) or 

(WNT11_FZD1_RYK and DVL and AXIN and ANKRD6 and NKD and DAB2 and not PAR1 and not CCD1) or (APC and 

IQGAP) 

REL_B = (NUC_NICD1 and COA and CSL and not COR) 

REST = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

RHOA = (DAAM12 and RHOGEF) 

ROCK = (RHOA) 

S100A4 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

SFRP = (SFRP1) or (SFRP3) 

SFRP1 = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

SFRP3 = (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 
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SHH = (CDO and BOC) or (DISPATCHED and HHAT and not HHIP and not GAS1) 

SIAH2 = (WNT5A_FZD7_RYK and CASR) 

SMAD2_4 = (SMAD2) or (SMAD4) 

SMAD3_4 = (SMAD3) or (SMAD4) 

SMO = (PTCH1_HH and PTCH2_HH) 

SNAI1 = (AXIN2_P_DUMMY) or (NUC_GLI1 and NUC_STK36 and DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

SOX9 = (NUC_CTNNB_TCF4 and PYGO and BCL9 and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and 

TBLR1 and PIASY and TNIK and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and SMAD2_4 and 

SMAD3_4 and not HIPK2 and not KLF4 and not NLK and not AXAM2 and not NARF) or (COA and CSL and not COR and 

NICD_ACTIVE) 

SRC = (WNT3A_FZD8) or (WNT3A_FZD2) or (WNT3A_FZD1) or (WNT1_FZD1) or (WNT1_FZD8) 

STAT3_P = (CTNNB and STAT3) or (JAK2 and STAT3 and HES1) or (JAK2 and STAT3 and HES5) 

STK36 = (SMO) 

TAK1 = (CAMK2) 

TBX3 = (NUC_CTNNB_TCF and PYGO and TRAPP and MLL12 and EP300 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

TCF3_INACTIVE = (TCF3) 

TCF4 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) 

TCF4_INACTIVE = (TCF4) 

TOP2A = (TOP2A and not ub_PTEN) 

TPX2 = (NUC_STAT3) 

TRANSCRIPTION_REP = (MSX1) or (MSX2) 

ub_PTEN = (MKRN1 and PTEN) 

VANGL12 = (VANGL1) or (VANGL2) 

WISP1 = (NUC_CTNNB_TCF and PYGO and EP300 and TRAPP and MLL12 and PAF1 and BRG1 and TBL1 and TBLR1 and 

PIASY and SMAD2_4 and SMAD3_4 and not REPTIN52 and not DUPLIN and not TCF1_R and not APC_CTBP and not HIPK2 

and not NLK and not AXAM2 and not NARF) or (NUC_CTNNB_LEF and PYGO and BCL9 and EP300 and TRAPP and MLL12 

and PAF1 and BRG1 and PIASY and not REPTIN52 and not TCF1_R and not APC_CTBP and not HIPK2 and not NLK and not 

AXAM2 and not DUPLIN and TBL1 and TBLR1 and not NARF) 

WNT_FZD_LRP = (WNT3A_FZD8_LRP6) or (WNT9B_FZD8_LRP6) or (WNT1_FZD1_LRP5) or (WNT3A_FZD2_LRP6) or 

(WNT7B_FZD10_LRP5) or (WNT7B_FZD1_LRP5) or (WNT2_FZD1_LRP5) or (WNT1_FZD8_LRP6) or (WNT3A_FZD1_LRP6) or 

(WNT1_FZD1_LRP6) or (WNT2_FZD9_LRP6) or (WNT3A_FZD8_LRP6) or (WNT5A_FZD4_LRP5) or (WNT7A_FZD5_LRP6) or 

(WNT1_FZD8_RYK) or (WNT3_FZD1_LRP6) 

WNT1 = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) or (NUC_GLI1 and NUC_STK36 and 

DYRK1 and not NUC_SUFU and not NUMB and not ITCH) 

WNT1_FZD1 = (WNT1 and FZD1) 

WNT1_FZD1_LRP5 = (WNT1 and FZD1 and LRP5 and GAQ and not SHISA and not IGFBP4 and not LRP1 and not 

DKK1_KREMEN2) 

WNT1_FZD1_LRP5_CKI_G_GSK3 = (WNT1_FZD1_LRP5 and CKI_G and GSK_3BETA) 
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WNT1_FZD1_LRP6 = (WNT1 and FZD1 and LRP6 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2 and not 

LRP1) 

WNT1_FZD1_LRP6_CKI_G_GSK3 = (WNT1_FZD1_LRP6 and CKI_G and GSK_3BETA) 

WNT1_FZD8 = (WNT1 and FZD8) 

WNT1_FZD8_LRP6 = (WNT1 and FZD8 and LRP6 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2) 

WNT1_FZD8_LRP6_CKI_G_GSK3 = (WNT1_FZD8_LRP6 and CKI_G and GSK_3BETA) 

WNT1_FZD8_RYK = (WNT1 and FZD8 and RYK and GAQ and not IGFBP4 and not SHISA) 

WNT1_FZD8_RYK_CKI_G_GSK3 = (WNT1_FZD8_RYK and CKI_G and GSK_3BETA) 

WNT11 = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT11_FZD1_RYK = (WNT11 and FZD1 and RYK and ROR2 and PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and 

NKD and MAGI3 and not SHISA and not IGFBP4 and NON_CANONICAL) 

WNT11_FZD3_RYK = (WNT11 and FZD3 and RYK and ROR2 and PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and 

NKD and MAGI3 and not SHISA and not IGFBP4 and NON_CANONICAL) 

WNT2 = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT2_FZD1_LRP5 = (WNT2 and FZD1 and LRP5 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2 and not 

LRP1) 

WNT2_FZD1_LRP5_CKI_G_GSK3 = (WNT2_FZD1_LRP5 and CKI_G and GSK_3BETA) 

WNT2_FZD9_LRP6 = (WNT2 and FZD9 and LRP6 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2) 

WNT2_FZD9_LRP6_CKI_G_GSK3 = (WNT2_FZD9_LRP6 and CKI_G and GSK_3BETA) 

WNT3 = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT3_FZD1_LRP6 = (WNT3 and FZD1 and LRP6 and GAQ and not SHISA and not IGFBP4 and not LRP1 and not 

DKK1_KREMEN2 and NON_CANONICAL) 

WNT3_FZD1_LRP6_CKI_G_GSK3 = (WNT3_FZD1_LRP6 and CKI_G and GSK_3BETA) 

WNT3A = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT3A_FZD1 = (WNT3A and FZD1) 

WNT3A_FZD1_LRP6 = (WNT3A and FZD1 and LRP6 and RYK and GAQ and not SHISA and not IGFBP4 and not 

DKK1_KREMEN2 and not LRP1) 

WNT3A_FZD1_LRP6_CKI_G_GSK3 = (WNT3A_FZD1_LRP6 and CKI_G and GSK_3BETA) 

WNT3A_FZD1_RYK = (WNT3A and FZD1 and RYK and ROR2 and PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and 

NKD and MAGI3 and not SHISA and not IGFBP4 and NON_CANONICAL) 

WNT3A_FZD2 = (WNT3A and FZD2) 

WNT3A_FZD2_LRP6 = (WNT3A and FZD2 and LRP6 and RYK and GAQ and not SHISA and not IGFBP4 and not 

DKK1_KREMEN2) 

WNT3A_FZD2_LRP6_CKI_G_GSK3 = (WNT3A_FZD2_LRP6 and CKI_G and GSK_3BETA) 

WNT3A_FZD8 = (WNT3A and FZD8) 

WNT3A_FZD8_LRP6 = (WNT3A and FZD8 and LRP6 and RYK and GAQ and not SHISA and not IGFBP4 and not 

DKK1_KREMEN2) or (WNT3A and FZD8 and LRP6 and PRR and GAQ and not SHISA and not IGFBP4 and not 

DKK1_KREMEN2) 

WNT3A_FZD8_LRP6_CKI_G_GSK3 = (WNT3A_FZD8_LRP6 and CKI_G and GSK_3BETA) 

WNT4 = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT4_FZD_LRP = (WNT4 and LRP5 and FZD3) or (WNT4 and LRP6 and FZD3) 

WNT5A = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) or (CASR and EVI and PORCN and not 
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SFRP and not CER1 and not SOST and not WIF1) 

WNT5A_FZD2 = (WNT5A and FZD2 and GAQ and not SHISA and not IGFBP4 and NON_CANONICAL) 

WNT5A_FZD3_RYK = (WNT5A and FZD3 and RYK and ROR2 and PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and 

NKD and MAGI3 and not SHISA and not IGFBP4 and NON_CANONICAL) or (WNT5A and FZD3 and RYK and ROR2 and 

PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and NKD and MAGI3 and not SHISA and SFRP4 and NON_CANONICAL) 

WNT5A_FZD4_LRP5 = (WNT5A and FZD4 and LRP5 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2) 

WNT5A_FZD4_LRP5_CKI_G_GSK3 = (WNT5A_FZD4_LRP5 and CKI_G and GSK_3BETA) 

WNT5A_FZD7_RYK = (WNT5A and FZD7 and RYK and ROR2 and PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and 

NKD and MAGI3 and not SHISA and not IGFBP4 and NON_CANONICAL) or (WNT5A and FZD7 and RYK and ROR2 and 

PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and NKD and MAGI3 and not SHISA and not IGFBP4 and SFRP4 and 

NON_CANONICAL) 

WNT5B = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT5B_FZD7_RYK = (WNT5B and FZD7 and RYK and ROR2 and PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and 

NKD and MAGI3 and not SHISA and not IGFBP4 and NON_CANONICAL) or (WNT5B and FZD7 and RYK and ROR2 and 

PTK7 and VANGL12 and PRICKLE12 and ANKRD6 and NKD and MAGI3 and not SHISA and SFRP4 and NON_CANONICAL) 

WNT7A = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT7A_FZD5_LRP6 = (WNT7A and FZD5 and LRP6 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2) or 

(WNT7A and FZD5 and LRP6 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2 and SFRP4) 

WNT7A_FZD5_LRP6_CKI_G_GSK3 = (WNT7A_FZD5_LRP6 and CKI_G and GSK_3BETA) 

WNT7B = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT7B_FZD1_LRP5 = (WNT7B and FZD1 and LRP5 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2 and 

not LRP1) 

WNT7B_FZD1_LRP5_CKI_G_GSK3 = (WNT7B_FZD1_LRP5 and CKI_G and GSK_3BETA) 

WNT7B_FZD10_LRP5 = (WNT7B and FZD10 and LRP5 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2) 

WNT7B_FZD10_LRP5_CKI_G_GSK3 = (WNT7B_FZD10_LRP5 and CKI_G and GSK_3BETA) 

WNT9B = (EVI and PORCN and not SFRP and not CER1 and not SOST and not WIF1) 

WNT9B_FZD8_LRP6 = (WNT9B and FZD8 and LRP6 and GAQ and not SHISA and not IGFBP4 and not DKK1_KREMEN2) 

WNT9B_FZD8_LRP6_CKI_G_GSK3 = (WNT9B_FZD8_LRP6 and CKI_G and GSK_3BETA) 
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Appendix Table 13: Descriptions of the Developed Pathway Models 

Pathways Crosstalk with 

Other Pathways 

Modeling 

Techniques 

Statistics 

(Nodes & 

Edges) 

Study objectives 

Hedgehog 
RAS, ERK1/2, 

TWIST 

Graph theoretical 

and Binary Logic-

based modeling 

57 & 140 

 

Novel drug target 

identification for GBM 

treatment 

Notch 

PI3K/AKT, 

JAK/STAT, P53, 

HIF1A 

Graph theoretical 

and Binary Logic-

based modeling 

115 & 231 

 

1. Novel drug target 

identification for GBM 

treatment 

2. Study of intra-tumor 

heterogeneity 

3. Study of the 

Developmental 

dynamics of neural 

stem cells, glioma stem 

cells in GBM ecosystem 

Hedgehog, 

Notch, 

WNT, EGFR, 

PI3K/AKT, 

JAK/STAT, 

HIF1A, P53 

NA 

Graph theoretical 

and ExQuLogic-

based modeling 

410 & 1695 

1. Application of 

ExQuLogic to measure 

gene expression 

pattern 

2. Novel drug target 

identification for GBM 

treatment 
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Appendix Table 14: Summary of the Identified Drug-targets 

Pathway Models Drug-targets Targeted 

Phenotypes/Cancer 

Cells 

Technique Used 

Hedgehog 

1. SMO, GLI1, GLI2 Cell Division (Grade-

IV GBM Tumor) 

Graph theoretical 

and Binary Logic-

based simulation 

2. SMO, HFU, ULK3 

and RAS 

Cell Division (Colon 

Cancer) 

Graph theoretical 

and Binary Logic-

based simulation 

3. SMO, HFU, ULK3, 

RAS, ERK1/2 

Cell Division 

(Pancreatic Cancer) 

Graph theoretical 

and Binary Logic-

based modeling 

Notch 

1. NICD, MAML Cell Division (Grade-

IV GBM Tumor) 

Graph theoretical 

and Binary Logic-

based simulation 

2. NICD, HIF1A Cell Division (Grade-

IV GBM Tumor) 

Graph theoretical 

and Binary Logic-

based simulation 

3. STAT3 Cell Division (Grade-

IV GBM Tumor and 

LGG) 

Fast Fourier 

Transform (FFT) and 

Binary Logic-based 

simulation 

4. NGN1, MASH1 Cell Division (Grade-

IV GBM Tumor and 

LGG) 

Fast Fourier 

Transform (FFT) and 

Binary Logic-based 

simulation 

Hedgehog, 

Notch, WNT, 

EGFR, PI3K/AKT, 

JAK/STAT, 

HIF1A, P53 

1. GLI1, GLI3, NICD, 

HEY1, NRARP, SNAI1 

Cell Division and 

Metastasis (Grade-IV 

GBM Tumor) 

Strongly Connected 

Component Analyses 

and Extended 

Quaternary Logic-

based simulation 
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Appendix Text 1: ExQSUS Algorithm 

The description of the ExQSUS algorithm implemented in Chapter 7 is provided 

bellow. 
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