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Summary 

Reprogrammed cellular metabolism is a hallmark of cancer. It favours rapid growth, 

unregulated proliferation, anti-inflammatory responses and confers anti-tumoral 

immunity to the cancer cells. Glioblastoma are the most aggressive brain tumors that 

demonstrate complex metabolic rewiring in response to the intracellular and 

microenvironmental stress. Multiple factors determine the changes in the metabolic 

profile of these tumors that include the upstream regulation of metabolic genes by 

mutational, genetic, epigenetic or transcription factors, insults incurred within the 

mitochondria, or due to the nutritional, cytotoxic or oxidative stress generated in the 

microenvironment. The adaptability of the cellular metabolism facilitate phenotype 

switching in these tumors, which is manifested as the ability to switch between different 

cellular phenotypes as per growth condition. The plasticity of metabolism provides 

robustness to the cells against both random or deliberate perturbations. Additional 

challenges emerge over time with the disruption of redox and thiol balance of the tumors 

and development of complex oncogenic phenotypes that leads to poor prognosis of the 

glioblastoma. In order to address these challenges, we have considered to study the 

changes exhibited in the metabolism of glioblastoma at multiple biological scales starting 

from pathways to genes using computational and mathematical modelling. 

In order to gain a holistic perspective of the pathway behavior and condition specific 

changes in the metabolic network of glioblastoma, we formulated and analyzed a 

constraint-based metabolic model. Analyses of the changes in the flux profiles of the 

model under normal and cancerous scenarios showed condition specific dependence of 

glioblastoma on glutamine and fatty acids as alternate energy sources and a considerable 

amount of flux re-routing towards glutathione production. By performing a knockout 

analysis of input metabolites, cystine and glucose were identified as the minimum 

essential input metabolites that could sustain glioblastoma growth under limited 

nutrient availability. Combinatorial therapeutic targets were also identified where the 

importance of enzymes belonging to glycine-serine biosynthesis pathway was 

highlighted.  

To understand the changes in the redox and thiol status of the cells and the changes 

occurring in the oxidant-antioxidant balance during gliomagenesis, a dynamic ordinary 
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differential equation model was formulated. Model analyses established that the 

coordinated functioning of glutathione peroxidase (GTHP), glutathione oxidoreductase 

(GTHO) and NADPH oxidase (NOX) is crucial in determining cancerous transformation in 

gliomas. Further, we proposed that the puzzling duality of reactive oxygen species (ROS) 

in exhibiting varying cellular fates could be determined by considering simultaneous 

changes in nadph/nadp+ and gsh/gssg that occur during the reprogramming of metabolic 

reactions. The model was further used to propose ROS manipulative strategies for 

designing effective pro-oxidant and/or antioxidant therapeutic approaches against 

gliomas. 

To understand the genetic regulation of metabolic gene expression, the post-

transcriptional regulation imposed by microRNAs on the metabolic genes was studied. 

We parallelly investigated the microRNA regulation of cellular metabolism and cellular 

phenotypes in order to identify miRNA targets that can regulate metabolic plasticity 

aided oncogenic phenotypes via miRNA-based therapeutic strategies. We explored the 

miRNA regulation of glioblastoma metabolism using graph theoretical approach. 

Differentially expressed miRNAs and metabolic gene expression data used for the 

analyses were obtained from glioblastoma patients-derived data. The effect of miRNA 

regulation on the metabolism associated with oncogenic phenotypes was analyzed to 

delineate the role of miRNAs in determining metabolic plasticity that aid phenotype 

switching in glioblastoma. Target miRNA combinations were identified for each 

phenotype that can be used for miRNA-based therapeutics. The strategies implemented 

in the study can be used to generate testable hypotheses and design context-specific 

miRNA-based therapy for individual patient and their usability can be extended to other 

gene regulatory networks as well. 

With rationalized evaluation and computational analyses of the deregulated metabolic 

network, the present thesis provides explanations to some of the commonly observed but 

less understood phenomena in glioblastoma and generate testable hypotheses for 

potential therapeutic targets against the cancer. The outcomes of the thesis provide 

insightful understanding to both the researchers and the oncologists and find application 

in designing therapeutic strategy against glioblastoma that will help in better prognosis 

of the cancer.   
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CHAPTER 1 

INTRODUCTION  

1.1. Background 

Cancer cells exhibit characteristic phenotypic plasticity that allows cellular 

reprogramming. Adaptive cellular reprogramming facilitates rapid proliferation, evading 

immunosurveillance and survival under stress. Reprogrammed cancer metabolism, a 

hallmark of cancer cells, is one such adaptation that exhibits distinctive phenotypic 

changes and has been considered as a signature for different cancer cells. In recent years, 

there has been a surge in research targeted to understand how these metabolic 

adaptations occur in cancer and how these can be ventured for therapeutic benefits. Many 

of the oncogenic signalling pathways directly regulate metabolic pathways that support 

cell growth. Additionally, metabolites are recognized to play important roles in regulating 

tumorigenesis in feedback and feed-forward manner. Besides providing the “food and 

fuel” for cell survival and growth, metabolites can influence stress response pathways, 

chromatin modifications, and gene expression directly or indirectly, which collectively 

drive tumor development. 

Glioblastoma has been a subject of rigorous research in Cancer Biology. Identified as the 

most common and invasive tumors of the central nervous system, these brain tumors 

have a very low median survival time for patients suffering advanced malignancies. 

Tumor-free survival post-treatment is also impugned by their high recurrence rate. The 

capability of glioblastoma to exhibit surprising heterogeneity in their genotypic and 

phenotypic features has made them a suitable subject to study and understand cancer 

phenotypes. Like other cancers, glioblastoma displays metabolic remodelling to support 

the requirement of the highly proliferating cells. These cells exhibit profound metabolic 

alterations that allow them to fulfil the metabolic demands associated with rapid 

proliferation and additional features of malignancy. These metabolic transformations are 

supported by the gene regulatory events that drive tumorigenesis by activating 

oncogenes and/or the loss of onco-suppressor genes and further shaped by 

environmental cues, such as oxygen concentration, nutrient availability, cytotoxic 

Bulk of this chapter has been taken verbatim from our previously published articles (see List of Publication):  

Bhowmick R, Ganguli P, Sarkar RR, (2020) Systems and Synthetic Immunology. Springer, Singapore, pp:153-182, 

Online ISBN: 978-981-15-3350-1, DOI: 10.1007/978-981-15-3350-1_6; Bhowmick R and Sarkar RR, (2020) PLoS 

ONE, 15(6): e0235204. DOI: 10.1371/journal.pone.0235204; Bhowmick R and Sarkar RR, (2021) Submitted 
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releases in the tumor microenvironment, etc. Pertaining to this, a mechanistic 

understanding of metabolic rewiring remains critical to address. Hence, in this thesis, we 

focus on the detailed study of the metabolic re-routing, quantitative evaluation of the 

critical mechanistic regulation and controls at the gene level that guides reprogramming 

in cancer, with particular reference to glioblastoma.  

Metabolic phenomena like the Warburg effect and glutaminolysis have been repeatedly 

evaluated in the cancer cell and have been well established for their role in glioblastoma 

progression as well (1, 2). Strategies to target these phenomena have been developed and 

are popularly being used in treatment regimens. However, the high connectivity and 

robustness of metabolic networks protect the cells against random failure, and hence 

cells evolve and develop resistance against the therapeutic regimens. Hence, the study of 

metabolic pathway re-routing in glioblastoma is crucial to understand the alternate 

routes of therapeutic escape, opportunistic mode of nutrient acquisition, and evolving 

mechanisms to surpass oxidative stress and immune surveillance. The improper 

management of the redox balance and increased accumulation of reactive oxygen species 

(ROS) within the cells during hypoxia aid the development of oncogenic phenotypes. 

However, studies to delineate the role of ROS in cancer have shown that ROS have a 

double-edge sword property in regulating the apoptotic fate of cancer cells. This has left 

oncologists with the question of whether to increase or decrease it for therapeutic gains. 

A quantitative understanding of the mechanism of ROS management in cancer cells hence 

remains crucial to be addressed. The regulation of metabolic genes during cancer 

development is another important aspect of our study. The genetic regulations imposed 

due to mutation, methylation, and nucleotide polymorphism in glioblastoma have 

contributed to our understanding of metabolic regulations. Nevertheless, the recent 

understanding of the role of microRNAs in cancer metabolic regulation has been well 

appreciated and largely remains unexplored in glioblastoma. Hence, we attempt to 

delineate the metabolic gene and pathway regulations imposed by differentially 

expressed miRNAs in glioblastoma, concluding with their potential contribution in 

determining cellular phenotypes of glioblastoma. 
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1.2. Cancer and its adaptive phenotypes 

One of the most critical phenomena of cancer cells is their ability to undergo phenotype 

switching. It facilitates adaptation to micro-environmental stress, immunosurveillance 

mechanisms, and loss of sensitivity to drugs and therapeutic regimens. Phenotype 

switching permits uncontrolled cell proliferation, cell migration, invasion, and 

development of stemness in tumor cells affecting the overall survival of the patients and 

eventually the evolution of resistant cancer cells. However, in doing so, the selfish 

requirements of the cancer cells are fulfilled at the cost of the cellular needs of normal 

cells. As a result, stress generated in the tumor micro-environment aggravates over time. 

Against all odds, the tumor cells sustain themselves by continuously adapting to the 

changing microenvironment. 

In 2011, Hanahan and Weinberg proposed six well-established and two emerging 

hallmarks of cancer (3). These hallmarks include uncontrolled cell proliferation and 

growth, activation of invasion and metastasis, induction of angiogenesis in the tumor 

masses, stemness of tumor cells, and escaping programmed cell death by surpassing 

apoptotic signals. Capability to undergo spontaneous transitions between these cellular 

phenotypes help acquire transient resistant phenotype that helps tumor cells to 

temporarily evade stress responses and eventually attain permanent resistance 

mechanisms. The enabling characteristics behind these hallmarks are genome instability, 

mutation, metabolic plasticity, and the tumor-promoting inflammations. Hanahan and 

Weinberg registered metabolic reprogramming and evasion of immune surveillance as 

the two emerging hallmarks of cancer. Over the years, metabolic reprogramming has 

evolved as one of the most important hallmarks enabling phenotype switching in cancer 

cells. Initiated with the proposition of the Warburg effect, studies conducted to 

understand the altered metabolism of cancer cells have established their crucial role in 

meeting the survival and rapid proliferative requirements of these cells.  

1.3. Metabolism as an enabling factor of phenotype switching 

Emerging evidence indicates that impairment of cell metabolism is one of the most 

important defining characteristics of cancer cells, irrespective of their cell or tissue of 
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origin. In fact, this has led a group of the scientific community to believe that cancer is 

essentially a metabolic disease caused by the impairment of the energy metabolism, 

primarily due to mitochondrial dysfunction in the cancer cells, named the “metabolic 

impairment theory” (4). The theory is contradicted by “gene theory,” which states that 

mitochondrial dysfunction is a cause rather than an effect of cancer arising due to genetic 

mutation and chromosomal abnormalities. There is a continuing debate on the origin of 

cancer that includes a controversy between the gene theory and the metabolic 

impairment theory as well. 

In 1924, Otto Warburg proposed that preference for aerobic glycolysis in cancer cells 

originates as a consequence of the faulty mitochondrial respiratory system (1). The 

phenomenon, popularly known as the “Warburg effect,” is considered an essential 

metabolic switch to compensate for the energy requirements of the rapidly proliferating 

tumor cells. As a result of the mitochondrial dysfunction, the ATP synthesis machinery of 

the tumor cells is compromised. As such, the cells switch their dependence on the 

alternate mechanism of ATP production. The glycolytic pathway tends to maximize ATP 

production by driving its glycolytic flux towards lactate formation. Although the 

mechanism of conversion of glucose to lactate yields only 4 ATPs per cycle as compared 

to the oxidative phosphorylation that yields 36 ATPs per cycle, the tumor cells rely on 

aerobic glycolysis as an alternative to maintain viability (Figure 1.1A). Although both 

aerobic and anaerobic glycolysis has the same end product, i.e., lactate, aerobic glycolysis 

is considered a signature of cancer cells as it originates due to damaged mitochondrial 

respiratory mechanism. Anaerobic glycolysis, on the other hand, arises due to the 

absence of oxygen and can be witnessed in normal cells. 

Glutaminolysis is another compensatory mechanism in cancer cells that increases in 

response to mitochondrial dysfunction. Many cancer cells utilize glutamine as an 

alternate energy source and an anaplerotic substrate to produce TCA cycle intermediates 

required for macromolecular biosynthesis. Glutamine can stimulate glycolysis in the 

cytoplasm as well as induce substrate-level phosphorylation in the TCA cycle, both of 

which add up to the energy production of cancer cells. The preference of cancer cells to 

consume glutamine as an alternate energy source results in the switching of metabolic 

paths. Increased glutaminolysis in glutamine-dependent cancers is associated with an 
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increase in the activity of the enzymes glutaminase, which catalyzes the conversion of 

glutamine to glutamate and glutamate dehydrogenase that catalyzes the reversible 

conversion of α-ketoglutarate to glutamate and vice versa (Figure 1.1B). The flow of flux 

in these cancers is directed from glutamine to α-ketoglutarate to replenish the pool of 

TCA cycle intermediates and induce substrate-level phosphorylation rather than the 

usual flow of flux from α-ketoglutarate to glutamate and glutamine.  

 

Figure 1.1: Demonstration of frequently observed metabolic phenomena in cancer. (A) The 
difference in the fate of glucose in normal differentiating tissues and tumor mass. Tumor masses 
and highly proliferating cells display the Warburg effect (Picture courtesy: Heiden et al., 2009, 
Science (5)). (B) The fate of glutamine during glutaminolysis. Cells consume excess glutamine to 
produce glutamate and other cellular biosynthetic products (Adapted from 
www.pennmedicine.org).   

A major difference in the normal and the cancer cell exists in their paths to procure 

energy substrates. Prolonged dependence on substrate-level phosphorylation for energy, 

damaged mitochondrial respiration along with a faulty DNA repair mechanism cause 

cellular malfunction, generation of oxidative stress and cytotoxic releases in the tumor 

microenvironment, and genomic instability within the cells. These factors contribute to 

the development of oncogenic phenotypes, and the process continues as a vicious circle, 

worsening the situation over time and eventually developing into aggressive malignant 

tumors. Metabolism also confers the ability to the cancer cells to evade immune-

surveillance. Thus, to summarize the facts, metabolic reprogramming might be an 

epiphenomenon of a much more complex problem within the cancer cells, but the 

prevalence of a prolonged fault in metabolism can eventually promote the development 

of additional complexities of oncogenesis. 
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1.4. The origin of glioblastoma 

Glioblastoma is a fast-growing aggressive tumor of the central nervous system, with a 

very low median survival time for patients suffering advanced malignancies. Tumor-free 

survival post-treatment is challenged by their high recurrence rate. These tumors are of 

glial origin. Glial cells support neurons by providing energy and nutrients and 

maintaining the blood-brain barrier. There are different types of glial cells, each with a 

different function: (i) astrocytes, (ii) oligodendrocytes, (iii) microglia, and (iv) ependymal 

cells. Astrocytes provide nutrients to the neurons and hold them in place; 

oligodendrocytes provide insulation; microglia digest the circulating pathogens and dead 

neurons from the neuronal microenvironment, and; ependymal cells form the epithelial 

lining of ventricles of the brain and the spinal cord and secrete the cerebrospinal fluid. 

The cancerous transformation of these glial cells is categorized under the umbrella term 

gliomas. Gliomas can be categorized into 4 categories based on aggressiveness: (i) Grade 

I: pilocytic astrocytoma, (ii) Grade II: Low-grade gliomas, (iii) Grade III: Malignant 

gliomas, and (iv) Grade IV: Glioblastoma. Glioblastoma is primarily an astrocytic tumor 

(Figure 1.2)  (6). Owing to the morphology and high aggressiveness, these tumors can 

infiltrate across the brain as tentacular projections that make their surgical removal 

difficult (7). 

 

Figure 1.2: Difference in the role of astrocyte and glioblastoma towards maintaining 
neuronal function 
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1.4.1. Metabolic properties of astrocytes 

Astrocytes are the most abundant glial cells accounting for about 20-40% of the brain 

cells (8). The origin of the word comes from the Latin words “astra” and “cyte,” meaning 

star-shaped cells. At the time of its discovery, it was postulated that there exists a link 

between the morphology and function of astrocytes, which was soon verified. The 

astrocytes establish interconnections between the blood vessels and parenchymal cells 

of the brain, hence responsible for the exchange of metabolites (9). They have additional 

roles of maintaining water and ion homeostasis and maintaining the blood-brain barrier 

(10). Astrocytes prefer a glucose-dependent metabolism where glucose is catabolized to 

pyruvate that enters the TCA cycle leading to ATP synthesis via the mitochondrial 

electron transport chain and partly to the formation of lactate so as to suffice the neuronal 

lactate requirement. The activation of neurons upon release of neurotransmitter 

glutamate stimulates glycolysis in astrocytes that is driven to produce lactate as fuel for 

the neuronal metabolism (11). The uptake of glucose increases with the rise in glutamate 

uptake in astrocytes, thus leading to amplified lactate production. 

Another important metabolic function of astrocytes is the rapid uptake of glutamate 

released by neurons for neurotransmission at the junction of the synaptic cleft. This 

ensures instant termination of neurotransmission and also prevents accumulation of 

glutamate to excitotoxic levels. The excess glutamate released by the neurons is up-taken 

by the astrocytes and metabolized to glutamine via the glutamate-glutamine cycle. The 

cycle involves a series of conversions catalyzed by important enzymes like aspartate 

aminotransferase, alanine aminotransferase, glutamate decarboxylase, glutamate 

dehydrogenase, and most importantly, glutamine synthase. The enzyme glutamine 

synthase is responsible for the conversion of glutamate to glutamine and, as reported, is 

exclusively expressed in astrocytes. The glutamine thus produced is released for uptake 

by the glutamatergic neurons (12). In astrocytes, the uptake of glutamate from the 

synaptic cleft is mediated by the excitatory amino acid transporter (EAAT) 1 and EAAT2. 

However, in addition to the EAATs, glutamate transport is also maintained by the cystine-

glutamate antiporters (xCT) in astrocyte, which releases glutamate out of the cell to 

antiport cystine. The regulation of xCT expression is thus important in astrocytes as its 

overexpression will release excess glutamate, causing excitotoxicity (13). The role of 
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astrocytes comprises of but is not confined to such signature metabolic functions towards 

maintaining proper neuronal function. However, with the onset of gliomagenesis, these 

supportive functions suffer detrimental consequences as a result of metabolic 

reprogramming in the tumor cells. This affects the neuronal function, thereby affecting 

the overall well-being of the patients. The well-studied changes in the tumor metabolism 

of glioblastoma have been discussed in the next subsection. 

1.4.2. Reprogrammed metabolism in glioblastoma 

The metabolic abnormalities incurred within the astrocytes lead to their phenotypic 

manifestation as glioblastoma (14). The concept of cancer as a metabolic disease can be 

debated with substantial evidence in the case of glioblastoma. The metabolic plasticity of 

the tumor cells enables them to thrive even in stressful conditions by switching 

phenotypes as per requirement. Reprogramming of the metabolic pathways in 

glioblastoma is exhibited in response to the gene expression regulation and stimulus 

generated by the microenvironment. Glioblastoma displays the Warburg Effect that 

enables reprogramming of energy metabolism to suffice their rapacious energy 

requirements (15). A schematic of frequently altered metabolic pathways in glioblastoma 

is provided in Figure 1.3. Additional discoveries have been made to delineate the 

phenomenal changes in the properties of glioblastoma as an effect of metabolic 

alterations in pathways like tryptophan metabolism (16), cysteine metabolism (17), 

glutamine, and glutamate metabolism (2). Phenomena like higher accumulation of 

glycine in the glioblastoma cells (18) and the disruption of primary brain tumor growth 

with the inhibition of cystine (19) have also been observed. 

The energy acquisition in glioblastoma differs hugely from the astrocytes to sustain high 

proliferation and invasive phenotype. The reprogrammed energy metabolism puts 

neuronal function at stake. While the production of lactate via aerobic glycolysis is a 

feature of both astrocytes and glioblastoma, the defects in the mitochondrial respiration 

are the underlying cause that drives aerobic glycolysis in glioblastoma. The ATP synthase 

activity is severed, and the tumor cells depend heavily on the glycolytic pathway for ATP 

(15). Glioblastoma also displays glutaminolysis, which is characterized by the uptake and 

utilization of glutamine from the extracellular matrix, converted to glutamate for use 

within the tumor cells. Glutamine acts as an alternate energy source that allows 
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substrate-level phosphorylation in the TCA cycle and also replenishes pools of TCA cycle 

intermediates via anaplerosis. Overexpression of xCT antiporter in glioblastoma leads to 

excess release of glutamate in the microenvironment, inducing toxicity (2). Enhanced 

expression of xCT antiporter results in the excess uptake of cystine in glioblastoma (17). 

Enhanced β-oxidation of fatty acids is also an observable trait of glioblastoma that is 

linked with tumorigenesis. β-oxidation of fatty acids generates acetyl-CoA, NADH, and 

FADH2 that create the electron gradient for oxidative phosphorylation required to drive 

ATP synthesis. The acetyl-CoA produced by the oxidation of fatty acids supplement the 

TCA cycle cataplerosis providing substrates for amino acid and nucleotide synthesis, as 

well as enhancing the redox potential of the tumor cells (20). Understanding the 

regulatory mechanisms that guide metabolic reprogramming and the role of these 

changes in regulating oncogenic phenotypes in glioblastoma will be conducive in the 

assessment of escape mechanisms and prognostic features of glioblastoma. 

 

Figure 1.3: Frequently reprogrammed metabolic pathways in glioblastoma 
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1.5. Regulation of metabolic reprogramming and its role in the 

development of oncogenic phenotypes in glioblastoma 

The gene regulatory networks can have a profound effect on the activity of metabolic 

pathways via enzyme gene regulation. The mutations, epigenetic modifications, and 

transcriptional regulations affecting metabolic genes have been explored in detail and 

contribute much to our understanding of the metabolic alterations in glioblastoma (21-

24). In addition, the metabolic routes preferred in the tumors are also determined by the 

microenvironmental stress and availability of extracellular nutrients. Oxygen deprivation 

in the microenvironment is a vital stress factor responsible not only for metabolic 

reprogramming but many other hypoxia-induced oncogenic phenotypes as well. 

Increased demand for amino acids like cysteine, glutamine, aspartate, glycine, arginine, 

or methionine determines the metabolic dependency of the tumor cells, and the 

metabolism is reprogrammed accordingly. The probable factors determining metabolic 

reprogramming in glioblastoma are discussed in the subsequent subsections. 

1.5.1. Regulations imposed by upstream regulatory networks 

The increase in omics and high-throughput research has enabled the identification of 

genetic factors regulating the expression of metabolic genes. The mutational landscape 

of glioblastoma is very well studied. Somatic mutation of IDH1 and IDH2 is well 

established in this cancer (Table 1.1). The mutation results in the formation of 2-

hydroxyglutarate (2-HG), which is a competitive inhibitor of α-ketoglutarate. 2-HG 

competitively binds and inhibits the α-ketoglutarate metabolizing enzymes resulting in 

DNA and histone hypermethylation and HIF degradation (25).  Somatic mutation in 

Cytochrome C Oxidase (COX, complex IV), germline mutation in Ubiquinol-Cytochrome c 

reductase (Complex III), and mutation of ND6 subunit of Complex I are commonly 

observed mutations that deregulate the function of oxidative phosphorylation in 

glioblastoma. Genomic amplification of the PHGDH gene of the serine biosynthesis 

pathway and methylthioadenosine phosphorylase (MTAP) deletion are also 

characteristics of glioblastoma. 
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Epigenetic factors like DNA methylation and histone modification regulate the enzyme 

gene expression. Association of DNA methylation patterns with IDH mutation (26), 

hypomethylation in the intronic region of HK2 and PKM, and hypermethylation of 

glycolytic genes ENO1, HK3, GAPDH, and LDHA in IDH mutant glioblastoma are 

associated with the expression regulation of these genes (21). The methylation status of 

the MGMT gene has been used to stratify the glioblastoma patients into two categories: 

those with the methylation of MGMT have a comparatively longer survival period of 21.7 

months as compared to those without it (12.7 months) (27). The modulation of HIF-1α 

and Akt via histone modification, two key regulators of the genes associated with energy 

metabolism, have been noteworthy (21). Epigenetic regulation of the two key enzymes of 

the arginine biosynthetic pathway, ASS1, and ASL, via methylation, is also frequently 

witnessed in glioblastoma (28). The landscape of nucleotide polymorphism has been 

explored in-depth and conducive inferences on the regulation of metabolic gene 

expression by SNPs and CNVs have been captured via genome wide association studies 

(29, 30). Important findings include the association of copy number gain in EGFR and 

RNF139 with increased expression of carbonic anhydrase. Copy number gain of RNF19 

also positively correlates with LDHA and MCT4 expression (31). Copy number deletion 

of PTEN and RB1 has been witnessed, the consequence of which is realized in the 

regulation of signalling and metabolic events (32). 

The differential expression of transcription factors is also well studied in glioblastoma. 

HIF-1α is a master regulator of the glycolytic genes and is often differentially regulated 

in glioblastoma. TFAM, p53, TIGAR, c-MYC, and PTEN have been found to be differentially 

expressed that regulate the expression of a range of genes, including those associated 

with metabolism (33). Additional regulatory mechanisms on metabolism are currently 

being explored to gain a better understanding of the metabolic plasticity. The role of 

microRNA as a regulator of metabolism has been discovered in the last one decade. Since 

its discovery, growing evidence of the microRNA-dependent regulation of metabolism 

has initiated research interest to explore their role in cancer metabolism (34). MicroRNAs 

(miRNAs) are 18-25 nucleotide long small non-coding RNAs produced endogenously 

within the cell. MiRNAs are post-transcriptional regulators that bind to the 3’ UTR of the 

target genes via base complementarity between the seed sequences of the miRNAs and 
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the 3’ UTR of the gene and regulate gene expression via gene silencing (35). The role of 

miRNAs is currently being explored for prospects of miRNA-based therapeutics in 

glioblastoma (36-38). Studying the effect of miRNA regulation on the metabolism 

associated with the oncogenic phenotypes in glioblastoma will delineate the role of 

miRNAs in metabolic plasticity that aid phenotype switching and will help identify targets 

for miRNA-based therapeutics. 

1.5.2. Effect of microenvironmental stress 

The reciprocal communication between the cancer cells and the microenvironment 

harbour collusive metabolic management that promote proliferation and metastasis. The 

tumor microenvironment participates actively in tumorigenesis via direct and indirect 

regulation of tumor cells. Oxidative and nutritional stress can be considered the 

secondary forces that drive metabolic rewiring in cancer cells. The oxygen availability in 

the tumor microenvironment is often depleted in order to meet the increased oxygen 

consumption of the tumors creating a hypoxic condition. The oxidative stress generated 

by hypoxia leads to the enhanced production of reactive oxygen species (ROS). Under 

normal physiology, ROS modulate various signalling and mitochondrial events 

favourable for normal cellular function. A balance of the ROS is maintained in the cells by 

the activity of anti-oxidants. However, under oxidative stress, the cells remain under the 

constant pressure of maintaining the balance between the ROS and anti-oxidants, failing 

which the cells are fated to generate stress response. The most recognized stress 

response generated by these cells is the enhanced expression of hypoxia-inducible factor 

(HIF) and the mitochondrial dysfunction due to disrupted redox balance.  

The nutritional stress generated due to the reckless nutrient demands of the tumor cells 

is another important determinant of metabolic reprogramming. The immediate effect of 

mitochondrial dysfunction is the dependence of cells on aerobic glycolysis for energy 

requirements, thereby consuming excess glucose to drive higher flux through the 

glycolytic pathway. As the tumor cells sequester glucose from the microenvironment, the 

pool rapidly exhausts, thus creating a dependence on alternate energy sources. The cells 

seek glutamine and fatty acids as alternate energy sources and modify metabolic paths 

accordingly to metabolize them (Figure 1.4). The glioblastoma cells also show increased 
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demand for amino acids glycine, arginine, cysteine, and cystine, the disulfide form of 

cysteine. Cysteine is metabolized in the production of anti-oxidant glutathione, required 

to scavenge the excess ROS generated.  

 

Figure 1.4: Communication between the cancer cells and the microenvironment (Adapted 

from Yuan et al., 2016. Oncology Reports (39)) 

The lactate produced as a by-product of the enhanced aerobic glycolysis is released out, 

inducing acidic conditions and ROS generation in the microenvironment. The 

accumulation of lactate has an inhibitory effect on glycolysis and on tumor proliferation 

and growth. However, lactate is consumed as an energy substrate by the fibroblasts, 

epithelial, and other tumor cells in the microenvironment, inducing vascularization, 

angiogenesis, and rapid tumor growth. Glutamine, metabolized to produce glutamate and 

α-ketoglutarate in subsequent steps, releases ammonia as a by-product. Ammonia readily 

diffuses into the microenvironment and is consumed and metabolized by cancer-

associated fibroblast (CAF) cells. The cascade of nutrient flow between the tumor cells 

and CAF cells induces autophagy of CAF cells. The exchange of metabolites between 

tumor cells and the microenvironment contributes to the proliferation, growth, 

differentiation, and stem-like properties of tumor cells. Thus, a systematic study of the 

changes inside and outside the tumor cells is important to understand the metabolic 

barriers contributing to the complexities in cancer and to identify the crack within the 

barrier that can be targeted for treatment. 
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1.5.3. Signature metabolic regulations and their effect on glioblastoma 

In light of the advances made in the understanding of cancer metabolism, various 

signature metabolic changes have been identified in glioblastoma. A list of the important 

metabolic genes whose expression is altered by regulatory factors or mutations is 

provided in Table 1.1. The identification of these signatures in glioblastoma has helped 

classify the heterogeneity in the tumor population of glioblastoma, thereby assisting the 

development of tumor-specific treatment strategies. However, problems arise when the 

mutually cross-talking metabolic pathways re-structure their path to elude the effect of 

treatment response. The known effect of these changes on the cancer cell behavior is 

discussed in the subsequent sub-sections. 

Table 1.1: Notable regulation of metabolic genes via gene regulatory factors in 
glioblastoma 

Regulation Target Regulator Mechanism of action Ref. 

Upregulation GLUT1 VEGFA Via AKT mediated regulation of 
PI3K/mTOR pathway 

(40)  

G6PD 1PAK4, 
2RHEB, 

3SREBP-1a, 
4HSPB1, 

5PLK1 

1Mdm2-mediated p53 ubiquitination 
and degradation of G6PD by PAK4; 2,3 

via enhanced mTORC1 expression; 
4Enhanced SIRT2-mediated G6PD 
activation; 5PLK1 promote active 
dimerization of G6PD via direct 

phosphorylation 

(41) 

(42) 

(43) 

(44) 

SHMT2 H3K9 ATF4 dependent mono-methylation of 
H3K9 methyltransferase activates 

SHMT2 

(45) 

GLS1 c-MYC Via repression of microRNA-23A and 
microRNA-23B, that inhibit GLS1 

(46) 

CPT1 PPAR PGC-1α, a potent activator and 
upregulator of PPARs, is activated by 
AMPK and sirtuin 1 (SIRT1). PPARs 

induce CPT1 gene expression 

(47) 

Downregulation GLUT1 STOM via the TP53/PON2 pathway (48) 

PDH HIF1α Inhibitory phosphorylation of the 
pyruvate dehydrogenase α (PDHα) 

subunit by PDH1, a HIF-1α regulated 
gene 

(49) 

Transcriptional 

Upregulation 

GLUT1 HIF2α Preferential expression of HIF2α under 
normoxia and hypoxia and 

transcriptional regulation of GLUT1 

(50) 

HK2, LDHA HIF1α HIF1α enhances LDHA expression when 
cAMP binds to the cAMP response 

element (CRE) in the LDHA promoter 
region. 

(51-

53) 

G6PD YY1 Direct activation of G6PD transcription 
by YY1 

(54) 
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MTHFD2 MYC Overexpression in MYC is reflected in 
MTHFD2 expression 

(55) 

SHMT2 NRF2 Transcriptional regulator (56) 

CDO1 c-MYB CDO1 promoter contains c-MYB 
responsive element. 

(57) 

Transcriptional 

Repression 

GLUT1, HK2, 
LDHA 

TP53 Transcriptional repression; negative 
regulation of AKT/mTOR and NF-κB 

signalling pathways 

(58) 

Expression 

regulation 

GLUD1, GLUD2 mTOR mTORC1 promotes GLUD expression by 
repressing SIRT4 via promotion of 

proteasome-mediated destabilization of 
cAMP-responsive element-binding 2 

(CREB2) 

(59) 

Expression 

regulation 

under Hypoxia 

G6PD, RPIA, 
TALDO1, TKT, 

PGLS 

IRE1 Inhibition of IRE1 under hypoxia 
increased sensitivity of G6PD, PGLS, 

RPIA, TALDO1, TKT gene expression to 
hypoxia 

(60) 

Co-expression GSR MGMT GSR co-expresses with MGMT promoter 
and has a higher expression in 

unmethylated MGMT promoter. 

(61) 

Inhibition G6PD p53 p53 prevents active dimerization of 
G6PD 

(62) 

PRMT5 MTA MTAP deletion increases methyl-
thioadenosine (MTA) that specifically 

binds and inhibits PRMT5  

(63) 

Mutation 1IDH1, 2IDH2, 
3Cytochrome C 
Oxidase (COX, 
complex IV) 

Somatic 
mutation 

1Mutation in the Arg132 codon 
(R132H). Associated with TP53 

mutation, or with loss of heterozygosity 
of 1p/19q; 2Mutation in the Arg140 

(R140Q) and Arg172 codon (R172K); 
3Somatic mutations in MT-CO1 and MT-

CO3 subunits (G6619A and G9655A, 
respectively) 

(64, 

65) 

(66) 

Ubiquinol-
Cytochrome c 

reductase 
(Complex III) 

Germ-line 
mutations  

The germline mutation in the MT-CYB 
subunit (T14798C and G15500A) causes 

potential genetic predisposition. 

(66) 

NADH: 
ubiquinone 

oxidoreductas
e (Complex I) 

Mutation of 
ND6 subunit 

Mutation of ND6 subunit of Complex I 
(T14634C) renders the cells hypoxia-

sensitivity. The mutation alters Complex 
I function as proton translocator, 

associated with cellular respiration. 

(67) 

PHGDH Genomic 
amplification 

Genomic amplification of the PHGDH 
gene on chromosome 1p12. Associated 
with higher tumor grade and decreased 

overall survival. 

(68) 

MTAP Deletion MTAP share genomic proximity to the 
commonly deleted tumor suppressor 

gene, CDKN2A 

(63) 

Epigenetic 

regulation 

ASS1, ASL Methylation Expression of ASS1 and ASL could be 
silenced by gene promoter methylation 

in glioblastoma 

(28) 

MGMT Promoter methylation of MGMT causes 
gene silencing and correlates with 

survival of patients. 

(27) 
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Metabolic rewiring to support high proliferative requirement 

The preference of metabolic routes in cancer cells is an optimization problem. The cancer 

cells optimize the metabolic flux distribution to maximize their ability to produce energy 

currencies and building blocks of cellular components (like lipid membrane, nucleic 

acids, proteins, and enzymes) to increase their proliferation rate. The management of 

energy metabolism serves a major part of these requirements. Gene regulation of 

glycolytic receptors and enzymes GLUT1, HK2, PKM2, PDH and LDHA, fatty acid 

metabolizing enzyme CPT1, and glutamine metabolizing enzymes GLUD1, GLUD2, and 

GLS are associated with energy production. The regulation of pentose phosphate 

pathway enzymes G6PD, RPIA, TALDO1, TKT, and PGLS are involved in the regulation of 

redox balance of the cell and generation of ribose units (r5p) for nucleotide biosynthesis. 

Changes in the expression of serine biosynthetic pathway enzymes PHGDH, SHMT2, 

MTHFD2 are associated with the production of anti-oxidants and changes in tryptophan 

degradation enzyme CDO1, and methionine and arginine catabolizing enzymes, MGMT, 

PRMT5, ASS1, and ASL confer stability against the cells own fail-check mechanism. The 

collusion of all these factors within a tumor cell guarantees an unhindered and high 

proliferation rate.  

Altered metabolism helps cancer cells evade immune surveillance 

The reduced expression of endogenous enzymes, ASS1 and ASL, of arginine metabolism 

makes it dependent on the external supply of arginine. As such, arginine depletion from 

the tumor micro-environment has been utilized as a therapeutic strategy for treating 

tumor cells, including gliomas (69). However, the applicability of this strategy is 

challenged by the downregulated antitumoral response of T-cells and macrophages. 

Exogenous arginine supply induces a metabolic switch from glycolysis to OxPhos during 

T-cell activation. T-cell sense arginine depletion in tumor-microenvironment (70). 

Moderate reduction in arginine uptake negatively impacts T-cell survival without 

affecting proliferation (71). The auxotrophic dependence of glioblastoma on arginine also 

generates a similar response towards T-cells, thus impeding the activation and 

differentiation of T-cells upon tumor initiation. Arginine also determines M1 and M2 

polarized metabolism in macrophages. M1 macrophages engage in an anti-tumoral 
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response by metabolizing arginine to NO required for its cytotoxic activity via NO 

synthase (NOS). Whereas M2 macrophages, which have been described to possess anti-

inflammatory responses, metabolize arginine to arginase, leading to ornithine and urea 

production, resulting in anti-tumoral immunity (72). Thus, arginine depletion in the 

tumor microenvironment can impede the generation of immunological responses 

allowing tumor cells the opportunity to evade immune-surveillance. 

Metabolic changes serve drugs and therapeutic resistance 

Metabolic rewiring during the administration of drugs or therapies makes the prognosis 

difficult. Cases of drug resistance and off-target responses induced by metabolic plasticity 

are frequently encountered. For e.g., the efficacy of alkylating agent prodrug 

temozolomide, popularly used for glioblastoma treatment, is often challenged by the 

presence of AP endonuclease-1 (APE-1) and deficiency of methylguanine 

methyltransferase (MGMT) or mismatch repair protein (MMR) (73). The anti-VEGF drug 

bevacizumab acquires resistance upon CXCL10, CXCL11, STAT3, or c-MET 

overexpression (74) and overexpression of hypoxic markers HIF-1α and CAIX and 

glycolytic genes GLUT1, GLUT3, HK2, and LDHA following treatment (75). The 

tryptophan metabolism targeted drug navoximod that targets IDO/TDO has potential off-

target effects on aryl hydrocarbon receptor (AhR) signalling that is anticipated to have 

detrimental effects on the treatment strategy (76). A list of resistant mechanisms against 

popular drugs induced by metabolic changes in glioblastoma are tabulated in Table 1.2. 

Table 1.2: Popular drugs and the resistance induced by metabolism in glioblastoma 

Drug/ 
Therapy 

Intervened by Mechanism Ref. 

mTOR 
inhibition 

GLS overexpression Glutamine produced by GLS overexpression 
surpasses the effect of mTOR inhibition by 

compensating for the loss of TCA cycle 
intermediates 

(77) 

IDO inhibitors 
(Indoximod, 
Epacadostat, 
Navoximod, 

and 
Norharmane) 

Off-target effects on aryl 
hydrocarbon receptor 

(AhR) that activates AhR 
signalling 

AhR mediated transcription of IL-6 leads to 
STAT3 mediated activation of IDO, that is 

associated with poor prognosis in different 
cancer 

(76) 

Temozolomide 
(TMZ) 

Resistance due to 
increased glucose uptake 
and enhanced glycolysis 

- (78) 
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O-6-methylguanine-DNA-
methyltransferase (MGMT) 

overexpression 

Direct repair of O6-MeG adducts by MGMT. 
MGMT is an inducible DNA repair gene which 

can be up-regulated by alkylating agents, 
ionizing radiation, and 

glucocorticoids 

(79-
81) 

Resistance due to 
methionine 

Low methionine has an impact on the MGMT 
levels that sensitizes the cells to TMZ 

(78) 

Upregulation of APE-1 APE-1 is an endonuclease involved in base 
excision repair pathways that remove 

alkylation-induced abasic sites 

(82, 
83) 

Bevacizumab Off-target effect Upon treatment, bevacizumab increases the 
expression of HIF-1α and CAIX and the 

glycolytic enzymes GLUT1, GLUT3, HK2, 
LDHA, and also the enzymes of pentose 

phosphate pathway, thus reversing the effect 
of treatment 

(75) 
 

Xenobiotics/ 
anti-cancer 

drugs (in 
general) 

Glutathione-S-transferases 
(GST) and MRP1 
overexpression 

GSTs detoxify xenobiotics and other 
endogenous toxic compounds by secreting 

them into the extracellular matrix. GSTs form 
a GST-GSH-drug conjugate that is excreted 

out of the cells via multiple resistance-
associated proteins (MRP1) transporters 

(84, 
85) 

1.6. Computational strategies to address complexities of metabolic 

rewiring 

The use of in-silico approaches in understanding the biological systems has been 

instrumental in the post-genomic era (86). In the last few decades, the field has emerged 

and revolutionized the study of complex biological systems, especially allowing the study 

of large-scale systems-level and understanding the emergent properties. An integrative 

approach to understanding the system as a whole rather than going for the reductionist 

approach helps in narrowing down the wide range of search to a smaller subset of 

probable solutions. Emerging fields of bioinformatics, mathematical and computational 

biology have made it easier to analyze the big data. The use of bio-informatics tools has 

become indispensable in a few of the high-throughput studies and often are accompanied 

as combined packages for the analysis of the experiments. In recent years, the 

development of in-silico cancer models has been conducive in gaining significant results. 

The consecutive subsections provide an overview of the popularly used in-silico 

techniques to infer meaningful insights in the field of cancer metabolism. 
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Constraint-Based Approach 

Constraint-based mathematical modelling is a popularly used systems-level modelling 

approach that assimilates biochemical, genetic, and genomic information within a single 

computational platform (87-91). It allows the study of the metabolic genotype-phenotype 

relationship of an organism. Genome-scale metabolic models (GSMM), that implements a 

constraint-based approach have been used in in-silico metabolic engineering for the 

design of studies like defining essentiality of the reaction/gene (92, 93), the influence of 

distant pathways (94), and overexpression or repressed expression of metabolites, 

reactions and metabolic pathways (95). These are efficient tools for the prediction of 

growth in living cells/tissues exposed to different external conditions (96). They have 

been used to predict the conditional and absolute essentiality of metabolites and 

reactions in metabolic networks. GSMM considerably contributes to deducing the 

metabolism of lower organisms. The construction of the Human RECON model and its 

recent update RECON3D has enabled scopes of whole-genome modelling of human 

metabolism as well. However, usage of this vast model has remained limited due to 

handling issues and is mostly used to develop context-specific models. Context-specific 

models allow systems-level understanding of the relevant part of the network while 

yielding results consistent with experimental findings (97).  

Flux balance analysis (FBA) is the most popularly used constraint-based approach to 

model both genome-scale and context-specific systems-level metabolism that works on 

the basic principles of linear optimization (98). Linear Optimization in biological systems 

has been in use since the 1980s when Papoutsakis, in 1984, first used the technique to 

calculate the maximum fermentation yield of butyric acid-producing bacteria (99). In 

1986, Fell and Small used linear optimization to analyze lipogenesis in adipose tissues 

(100). The technique was used by Majewski and Domach to study acetate overflow during 

aerobic growth in E.coli (101). The technique was later adapted by Savinell and Palsson 

to develop the FBA (102). In 1994, Varma and Palsson used the theory to describe the 

properties of E.coli (103). Further developments were made with the inclusion of the 

biomass concentration by Pramanik and Keasling (104) and elementary mode analysis 

by Pfeiffer et al.(105). Advanced features were eventually included in FBA like gene 

deletion, phase plane, and robustness analysis. The usability of the FBA models was 
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upgraded to another level with the inclusion of regulation imposed by gene expression 

by Covert et al.(106). Additional features of FBA like Minimization of metabolic 

adjustment (MOMA) (107) and Regulatory on/off minimization (ROOM) (108), the 

inclusion of 13C flux analysis (109), and Steady-State Regulatory FBA (SR-FBA) (110) 

were developed. The use of these techniques in Cancer Biology has started only lately in 

the last two decades and has been quite conducive. Prediction of selective drug target for 

Hereditary Leiomyomatosis and Renal-Cell Cancer (HLRCC) (111), multidimensional 

optimality (112) are some of its uses. Very recently, in a composite study by Mathias et 

al., the transcriptome data of 17 different cancer types were analyzed by using a systems-

level approach (113). 

A further extension of the modelling technique has been done to incorporate dynamic 

regulation of metabolism popularly known as dynamic FBA (dFBA), where the 

optimization is done over a time period to obtain time-dependent changes in the flux 

profiles and metabolite levels (114). In yet another extension of FBA, the initial signalling 

response is analyzed using Boolean analysis. This is known as rFBA. The method which 

takes into account a combined FBA, boolean regulatory and ODE approach is known as 

integrative FBA (iFBA) (115). 

There are various tools available for performing these analyses. COBRA Toolbox is the 

most widely used platform for flux balance analysis (116). This is a MATLAB extension 

that provides a user interface for ease of analysis. Other platforms are COBRApy(117), 

PSAMM (118), OptFlux (119), FBASimVis (120), FluxViz (121), FlexFlux (122) and FAME 

(123).  

Dynamic Approach 

Unlike the constraint-based models that are discovered rather recently, dynamic 

modelling approaches to study biological phenomena have been in use for quite some 

time. Dynamic modelling of biological systems essentially involves converting the 

biological question into a mathematical problem using ordinary or partial differential 

equations. The approach requires to have information about the parameter used to define 

the biological system mathematically. Their benefits in the study of cancer phenomena 

have been realized in the early ’70s. The initial use of dynamic models in cancer goes back 
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to 1976 when Greenspan used it to study the growth and stability of solid tumors (124). 

In 1982, Vaidya and Alexandro made a comparative study of then-existing exponential, 

Gompertz, Bertalanffy, and logistic models to best fit the experimental findings of human 

lung carcinoma and mice sarcoma. The logistic model for the human carcinoma and the 

Bertalanffy model for mice sarcoma generated the best fits (125). In later years, 

consideration of time factors in linear quadratic equations was reviewed by J.F. Fowler 

(126). 

In 1993, Chaplain and Sleeman proposed a model for the growth of solid tumors using 

the membrane theory of shells and strain-energy function (127). A comparative work was 

performed by Marusic et al. in 1994, where they evaluated the efficiency of the then 

existing models to fit the spheroid growth hypothesis of tumors. Gompertz's model was 

found to best fit the hypothesis (128). Subsequently, models were built to capture the 

effect of chemotherapy on the spatiotemporal growth of gliomas which considered two 

domains: (i) geometry of the brain and (ii) its natural barriers to diffuse (129). A two-

dimensional model on the effect of surgical re-sectioning on glioma growth was built by 

Woodward in 1996 (130), which was later extended by Burgess et al., to include a third 

component of diffusion coefficients into gliomas growth (131). Another model developed 

by Orme and Chaplain on the tumor angiogenesis and anti-angiogenesis strategies were 

able to capture the role of hypotaxis and chemotaxis during the growth of neo-

vasculature (132). In 2000, Swanson et al. developed a quantitative model for differential 

motility of gliomas in grey and white matter (133). Subsequently, they made 

advancements in the model and developed a model to quantify the spatio-temporal 

growth and invasion of gliomas and used it to quantify the efficacy of chemotherapy of 

brain tumors with homogenous and heterogeneous drug deliveries (134). In a similar 

period of time, an agent-based model of spatio-temporal growth and cell motility was 

developed by Mansury et al.(135).  

Taking into consideration the effect of the microenvironment in tumorigenesis, Gatenby 

and Vincent developed an evolutionary model of carcinogenesis (136). Meanwhile, to 

take an account features like blood flow and vascular dynamics in tumors, Alarcon et al. 

developed a cellular automaton model for tumor growth and inhomogeneous 

environment (137). In 2004, Plank and Sleeman developed lattice and non-lattice models 
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of tumor angiogenesis, where the process of angiogenesis was simulated by the 

application of circular random walk, which allowed the cells to move independently 

(138). A three-way model was developed by Wu et al., including tumor growth, replicate-

competent virus, and immune response (139). A trend of in-silico modelling in cancer 

immune interactions and therapeutics developed around this time. Models for effective 

and less toxic therapies for breast cancer (140), immune response to tumor antigens 

(141), factors like tumor necrosis, neo-vasculature, tissue invasions (142), histo-

pathological features of brain tumors (143), and multicellular patterns in brain tumors 

(144) were developed. Non-linear and multi-scale models of cancer considering both 

experimental and mathematical modelling approaches were developed by Lowergrub et 

al. (145). Hernandez et al. modelled cancer glycolysis and predicted therapeutic targets 

therefrom (146). In a recent advancement, Molina-Pena et al. developed a model based 

on the cancer stem cell hypothesis in which they considered that a small sub-population 

of cells within cancerous tissues exhibit stem-cell-like characteristics and is accountable 

for the maintenance and proliferation of cancer (147). Reviewing the different areas of 

oncology where dynamic modelling approaches have been applied helps us understand 

the diverse applicability of these models. 

Graph Theoretical Approach 

Graph theoretical approach has been applied in the metabolic network to determine the 

structural properties of these networks, their functional roles, identify hub nodes, and 

modularity between reactions. There are different methods of formulating the metabolic 

into a graph network (148). The classical way of representing a metabolic network is by 

considering the metabolites as nodes and edges represented by the reaction that converts 

one metabolite into another. One can also convert the information of metabolites and 

reactions into a reaction adjacency matrix, where the nodes are formed by the reactions, 

and the edge connectivity between two nodes is established if the product of the first 

reaction node is a substrate of the second reaction node. To determine the regulation of 

reaction on metabolites or vice-verse or the effect of a third regulator (transcription 

factors, signalling regulators, post-transcriptional regulators, etc.) on metabolism, one 

can formulate a bipartite network where both metabolites and reactions can be 

represented as nodes (149). The choice of the right graph-theoretical approach depends 
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on the biological question that needs to be addressed. This selection of a proper graph is 

a vital step as the conclusions drawn from the analyses depend on the structure of the 

network (150). 

Two vital features of metabolic graph networks are: directionality and weight. Metabolic 

networks consist of both reversible and irreversible reactions that are capable of 

changing direction depending on cellular requirements. It is, therefore, essential to use 

directed graphs for metabolic networks (151). Yet another challenge in the construction 

of metabolic graph networks is the preferential selection of metabolic routes. The graph 

approach generally includes all possible reaction information in a single network 

providing a generic map of the whole network. Cellular metabolism, however, has a 

preference towards the selection of metabolic routes that are determined by the cellular 

requirement. Introducing the criteria to switch reactions on or off in a graph network is 

a challenge. The use of a weighted network is a probable choice that requires knowledge 

about the probability of flux distribution across the different paths in a metabolic 

network (152). The weight is generally introduced on the edges that determine the 

strength of information flow between two connected nodes. Weighted networks provide 

the opportunity to build context-specific graph models of the metabolic network that can 

be altered by changing the edge-weights. Information from gene or protein expression 

profiles, metabolomic analysis of metabolite concentration, flux flow distribution using 

13C analysis can be used as weights.  

The selection of proper centrality measures to identify the central nodes in a graph 

network is important. The popularly used centralities are degree, betweenness, closeness 

centrality, eigenvector centrality, and eccentricity. Limitations in the usage of these 

centralities arise with the change in the structure of the network. The difference in the 

network structure and topology makes the selection of suitable centrality measures 

difficult. The universality of the “centrality-lethality hypothesis” (153) becomes 

questionable if the measures to identify central nodes in the network are not chosen 

wisely. To quantitatively evaluate the central nodes of the metabolic network, centrality 

measures like flux centrality have been developed (154). Nodes ranking based on the flux 

distribution through the network help identifies central nodes that are relevant in context 

to a particular growth condition. The application of network biology in metabolic 
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networks has gained momentum in the last one decade. New centralities and network 

measures are being developed to make use of graph theory in this direction.  

1.7. Challenges created by metabolic reprogramming in glioblastoma 

While metabolic plasticity is a boon to the cancer cells, it is a bane for the researchers 

seeking answers to the complex phenomena exhibited by these cells. The changing paths 

of preferred metabolic routes make the practical implementation of the understanding 

difficult. The flexibility of cancer cells to switch between phenotypes as and when 

required create additional challenges in the prognosis. The major challenges associated 

with metabolic reprogramming that need to be addressed are described below. 

Robust mechanisms provide stability to perturbations 

The scale-free nature of biological networks provides stability and protects these 

networks from random failures. However, cells under normal physiological conditions 

can be vulnerable to changes that induce severe cellular response breaking its symbiosis 

with the surrounding cells and microenvironmental factors. Cancer cells elude this 

response and continue to thrive with severe defects, causing a disruption of homeostasis 

with the cell as well as its microenvironment. Their ability to switch metabolism as per 

requirement provides a benefit over the cell’s innate fail-check mechanisms. With the 

accumulation of genetic defects and differential regulation of metabolic genes in 

glioblastoma, as discussed in section 1.5.3, these tumor cells evolve into malignant and 

metastatic tumors with high invasive properties. The adjustments made in the 

metabolism of these cells confer robustness over the otherwise vulnerable changes and 

perturbations. The cell’s innate machinery to identify lethal insults fails to guide the 

tumor cells to apoptosis. Owing to the devious metabolic changes, the cells manage to 

evade the immune-surveillance as well. Metabolic plasticity also confers stability to 

induced perturbations, as in the case of therapeutic interventions. The resistance 

mechanisms generated against drugs, as discussed in section 0 and the gsh dependent 

overexpression of glutathione-S-transferases (GST) inducing exocytosis of drugs and 

xenobiotics, protect the tumor cells from external perturbations. An additional level of 

complexities is added by the condition specificity of the metabolic changes exhibited by 
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these tumors. Simply understanding the preferred metabolic route in tumor cells is not 

sufficient to address the complexities associated with metabolic reprogramming. The 

knowledge about the environmental and growth condition under which the tumor cells 

exhibit a particular metabolic phenomenon is crucial for its implementation in therapies. 

The cancer cells can opt for a changing preference of metabolic routes under different 

growth conditions. As such, a major challenge is to understand the landscape of metabolic 

changes as an integrated systems-level network where the effectiveness and unintended 

consequences of a perturbation in the network can be anticipated.  

Disruption of redox and thiol balance  

Unregulated production of Reactive Oxygen Species (ROS) has been implicated in various 

disease conditions and is considered a crucial driving factor in the process of aging and 

carcinogenesis. ROS possess a double-edged sword property having both tumor-

promoting and a tumor-suppressing function (155). An intricate balance between ROS 

and antioxidants and other ROS scavengers are maintained in a normal proliferating cell 

which is a prerequisite for maintaining redox balance and proper functioning of the cell. 

Human cells tend to function in a reduced state (e.g., by maintaining a high gsh/gssg ratio 

(156)  and high nadph/nadp+ ratio (157)). However, exceptions are made when the cells 

need to maintain a partial oxidative environment to aid various cellular processes like 

folding of nascent proteins in the endoplasmic reticulum, activation of gene transcription 

factors, etc. An increase in intracellular oxidative state induces apoptosis, although too 

much oxidation helps to evade apoptosis by oxidizing and inactivating the caspase 

enzymes (158). Thus, the balance between oxidant and antioxidant activity becomes 

crucial as a shift might facilitate apoptosis or might also suppress apoptosis rendering 

therapeutic approaches ineffective.   

The changes in the thiol and redox ratios are important determinants of cellular response 

towards oxidative insults. These ratios are cumulative resultant of multiple changes in 

the metabolism and hence are considered as indicators of various diseased states. A 

conducive understanding of the cellular function can be obtained by considering changes 

in these ratios in light of other mutations considered together.  Although, the effect of ROS 

manipulation on these ratios and how the metabolic switching of cells affects the redox 
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and thiol status of the cell are not clearly understood. Whether the redox and thiol status 

of the cell have any role in determining cellular fate during oxidative stress is another 

debatable topic of discussion. Within the cell, these changes are regulated by the 

metabolic processes, functioning as an orchestrated network that is rerouted during 

oxidative stress to maintain cell survival. However, changes in the metabolic network that 

govern the puzzling duality of ROS are yet not clearly understood. The role of the gsh-gssg 

cycle as a crucial regulator of the anti-oxidant machinery has been well studied, but 

whether it has any role in determining the paradox is yet to be explored. The changes in 

the metabolic network that affect the efficacy of pro-oxidant or anti-oxidant approaches 

in cancer therapeutic design are also an ongoing area of research and is yet to be 

understood. 

Development of oncogenic phenotypes  

Changed metabolism nurtures the tumor cells allowing the development of oncogenic 

phenotypes. Remodelled energy metabolism support proliferation and growth of tumor 

cells. Additional changes in the fatty acid metabolism and ROS production allow the 

development of invasion and metastasis. The energy metabolism also regulates the 

development of stem-like properties in these tumors. The stem cells have a strong 

dependence on the oxidative phosphorylation. However, the dependence can be easily 

bypassed by switching between metabolism. It has been observed that inhibition of both 

glycolysis ad oxidative phosphorylation is necessary to target cancer stem cells. Yet 

another route available to the stem cells the fatty acid oxidation (159). The exchange of 

metabolites between tumor cells and microenvironment, as discussed in Section 1.5.2, 

allows nutrition to the cancer-associated fibroblasts and epithelial cells, thus promoting 

angiogenesis and vascularization. Glioblastoma is a highly vascularized tumor, and its 

growth depends on angiogenesis (160). Needless to say, the drug-resistant glioblastoma 

cells acquire resistance with changing metabolism over time. Understanding the role of 

metabolic pathways in the development of these oncogenic phenotypes and the 

underlying mechanism that could control the switching between phenotypes remains as 

a challenge. 
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Poor prognosis and recurrence  

The cumulative effect of all the above-mentioned factors is realized during the prognosis 

of glioblastoma. Till date, glioblastoma remains to be the most challenging cancer, with a 

median overall survival time of only 12-15 months in primary glioblastoma patients. The 

5-year survival rate of these patients is < 9.8% (161). Post-treatment tumor-free survival 

of the patients is also challenged by the high recurrence rate of this cancer. The 

morphology of glioblastoma cells has an added advantage on tumor invasiveness. 

Accumulation of metabolic insults within the cells is manifested as severe responses 

disrupting the homeostasis within the tumor cells and that of the nearby cells as well. In 

addition, the tentacular morphology of these tumor cells allows rapid infiltration into the 

nearby region of tumor origin that progresses to different areas of the brain. The web-

like progression of tumor cells across the brain makes the complete surgical removal of 

these tumors very difficult, resulting in recurrent tumor formation. Current treatment 

protocols of cancer that consist of surgical resection of tumors followed by radio and 

chemotherapy is challenging in glioblastoma due to its dominant phenotypic plasticity.  

Whether metabolic reprogramming is a cause of these challenges or an effect of an 

underlying factor that is manifested as oncogenic phenotypes via metabolic 

reprogramming remains debatable. Nonetheless, the complicity of metabolic changes in 

tumorigenesis is undeniable. Understanding the landscape of altered metabolism in 

glioblastoma can help address many of these challenges.  

1.8. Scope and Specific Objectives of the Thesis 

Metabolic phenomena like the Warburg effect and glutaminolysis have been repeatedly 

evaluated in the cancer cell and have been well established for their role in glioblastoma 

progression as well. Strategies to target these phenomena have been developed and are 

popularly being used in treatment regimens. However, high connectivity and robustness 

of metabolic networks protect the cells against random failure, and hence cells evolve and 

develop resistance against the therapeutic regimens. Hence, the study of metabolic 

pathway re-routing in glioblastoma is crucial to understand the alternate routes of 

therapeutic escape, opportunistic mode of nutrient acquisition, and evolving mechanisms 
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to surpass oxidative stress and immune surveillance. The improper management of the 

redox balance and increased accumulation of reactive oxygen species (ROS) within the 

cells during hypoxia aid the development of oncogenic phenotypes. However, studies to 

delineate the role of ROS in cancer have shown that ROS have a double-edge sword 

property in regulating the apoptotic fate of cancer cells. This has left the oncologists with 

the question of whether to increase or to decrease it for therapeutic gains. A quantitative 

understanding of the mechanism of ROS management in cancer cells hence remains 

crucial to be addressed. The regulation of metabolic genes during cancer development is 

another important aspect of our study. The genetic regulations imposed due to mutation, 

methylation, and nucleotide polymorphism in glioblastoma has contributed to our 

understanding of metabolic regulations. Nevertheless, the recent understanding of the 

role of microRNAs in cancer metabolic regulation has been well appreciated and largely 

remains unexplored in glioblastoma. Hence, we attempt to delineate the metabolic gene 

and pathway regulations imposed by differentially expressed miRNAs in glioblastoma, 

concluding with their probable contribution in determining cellular phenotypes of 

glioblastoma. 

A reductionist approach aiming to annotate the vast expanse of biological data generated 

with the high-throughput technologies is currently being appreciated. However, simple 

analysis techniques become a limiting factor once the interacting components go beyond 

a certain number. In such scenarios, the employability of in-silico approaches provides a 

comprehensive insight into the resulting phenotypic behaviors. In similar lines, in the 

present thesis, the following biological objectives relating to glioblastoma metabolism 

have been addressed using in-silico techniques: 

• Pathway-level analysis of the metabolic pathways deregulated in glioblastoma to 

understand its effect on internal cellular mechanism. 

• To identify targets and mechanisms which could be used to develop therapeutics 

against glioblastoma. 

• To understand the dynamics of glutathione (antioxidants) in determining 

paradoxical ROS-manipulation strategies in glioblastoma. 

• To investigate the role of microRNAs in regulating the altered expression of 

metabolic genes, pathways, and cellular phenotypes in glioblastoma. 
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1.9. Organization and overview of the Thesis 

The present thesis focusses on the detailed study of the metabolic re-routing, quantitative 

evaluation of the critical mechanistic regulation and controls at the gene expression level 

that guide metabolic reprogramming in cancer, with particular reference to glioblastoma. 

The composite picture of the metabolic reprogramming will be helpful in delineating the 

additional challenges posed by metabolic reprogramming in glioblastoma (Section 1.7). 

Hence, the objectives of the thesis have been defined with a top-down approach to 

understand the prevailing challenges in glioblastoma, by considering a systems-level 

analysis of large-scale metabolic network that has been subsequently narrowed down to 

a smaller module for detailed dynamic analysis. This part of the thesis addresses the 

“what” and “why” of glioblastoma metabolism. To further understand “how” these 

changes are regulated, a study of the gene regulatory changes has been done.   

Systems approach to annotate the discrete and diverse landscape of glioblastoma 

metabolism using in-silico optimization methods like constraint-based modelling using 

linear programming, dynamic analysis using ordinary differential equations of reaction 

kinetics and network biology approaches have been employed to gain comprehensive 

insight into the resulting phenotypic behaviors. 

Chapter 1 i.e., the present chapter provides an overview of the concepts, theories and 

understanding related to cancer metabolism. The previously studied metabolic changes 

in glioblastoma and related phenotypic changes are thoroughly reviewed. Based on the 

understanding, the biological questions that remain to be addressed, the challenges, and 

the objectives of the thesis are introduced. 

Chapter 2 provides the details of methodologies applied to meet the objectives of the 

thesis. The chapter discusses the detailed working principles and rationale of the in-silico 

techniques used to formulate, analyze, and interpret the computational models used to 

address the different biological questions in the thesis. 

Chapter 3 attempts to study the systems level changes in the flux flow through different 

metabolic pathways arising due to altered expression of important metabolic genes in 

glioblastoma. It focuses on a detailed comparison of metabolic routes chosen by 
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astrocytes vs glioblastoma, followed by the evaluation of the condition specificity of the 

observed phenomena and the identification of possible therapeutic targets.  

Chapter 4 addresses the puzzling duality of ROS in gliomas and their manipulative 

strategies that could determine the apoptotic fate of the gliomas. It quantitatively 

evaluates the dynamic changes in the kinetics of reactions associated with generation of 

ROS and anti-oxidants during gliomagenesis using an ordinary differential equation 

model. 

Chapter 5 investigates the microRNA regulation of metabolic gene expression and 

pathway regulation that results into metabolic reprogramming in glioblastoma. The 

study also focusses on the identification of miRNA targets to control and regulate 

oncogenic phenotypes in glioblastoma that can be used for miRNA-based therapeutic 

design. 

Chapter 6 concludes the significant outcomes of the thesis. The chapter also discusses 

the prospects of the applied techniques and findings of the thesis that can embark new 

research avenues.
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CHAPTER 2 

METHODOLOGIES 

2.1. Systems-Level Analysis of deregulated metabolic pathways in 

Glioblastoma 

The basic understanding of any disease pathology involves the identification of the 

underlying cause and understanding of the mechanism of its pathogenesis. The best way 

to begin with, is to study the normal and abnormal contrasts between the pathological 

and physiological conditions. This holds true for understanding the abnormalities at the 

molecular level too. Hence, to begin with, the work in Chapter 3 takes into account a 

systems-level study of the metabolic differences between astrocyte and glioblastoma. To 

understand the differences in the metabolic behavior of astrocyte and glioblastoma at the 

pathway level, a context-specific constraint-based model for astrocyte and glioblastoma 

metabolism was reconstructed and analyzed using flux balance analysis (FBA). For 

specific comparison between the two scenarios, pathways that are known to get 

deregulated in glioblastoma when compared to the normal astrocyte were considered. 

The model comprises of a total of 13 deregulated metabolic pathways with 247 reactions 

(39 exchange reactions and 69 transport reactions) associated with 147 genes. By 

analyzing this network, the differences in preferred flux flow routes in astrocyte and 

glioblastoma under different scenarios were delineated. Model analyses further helped 

identification of metabolites essential for glioblastoma growth and to understand the 

differences in the uptake and utilization of metabolites (which can be categorized as 

essential and non-essential) and release of overflow metabolites in the two scenarios. 

Probable chemotherapeutic targets were identified through in-silico single and double 

reaction knockout analyses. The details of the methods used in this study are provided in 

the subsequent subsections. 

2.1.1. Constraint-based model reconstruction  

Constraint-based models are a convenient approach for modelling large-scale metabolic 

networks that work on the principle of linear optimization (Section 1.6). The approach 

involves multiple steps of formalizing various levels of metabolic information into a 

The methodologies of this chapter have been taken verbatim from our previously published articles (see List 

of Publications): (i) Bhowmick et al., (2015) Systems and Synthetic Biology, 9, 159 - 177(2015), 

DOI:10.1007/s11693-015-9183-9; (ii) Bhowmick and Sarkar, (2020) PLoS ONE, 15(6): e0235204. DOI: 

10.1371/journal.pone.0235204; (iii) Bhowmick and Sarkar, (2021) Submitted 
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reconstructed composite network. This is a crucial step in the modelling study as it 

involves careful scrutiny and verification of information regarding the association of 

enzymes to crucial metabolic reactions, their appropriate subcellular locations, 

transports, and exchanges compiled using a variety of data sources. The basis of this 

reconstruction is to identify the gene-protein-reaction (GPR) network along with 

appropriate transports and exchanges (Figure 2.1). In the present work, the GPR was 

reconstructed considering reactions that contribute to ATP synthesis and glioblastoma 

growth. The GPR relationship for 147 reactions out of the total 247 reactions was 

established.  

The reactions considered in the model and their corresponding Enzyme Commission 

Numbers (EC Numbers) were curated from Expasy Enzyme (162) and KEGG (163). The 

genes to the enzymatic reactions considered in the model were obtained from NCBI Gene 

(164). The molecular functions of these reactions were obtained from UniProt (165), 

KEGG, and through literature survey. Information regarding the subcellular localization 

of the reactions was compiled through extensive literature search, and for those 

reactions, for which literature support for subcellular localization was limited or not 

available, cytosol was taken to be the default compartment of the reaction. A list of 

reactions, their corresponding genes, and enzyme commission numbers were compiled 

with appropriate literature support to gather evidence related to the biological 

significance and subcellular localization of the reactions and have been provided in 

APPENDIX A: Table A. 1. Most of the internal reactions along with 12 transport reactions 

were associated with their corresponding genes, which accounted for 147 genes in the 

model. All the metabolites and the corresponding reactions in which they were involved 

were distributed into five different compartments: Extracellular space (e), Cytoplasm (c), 

Mitochondria (m), Mitochondrial intermembrane space (i), and Nucleus (n). All these 

information were organized in the rBioNet toolbox, a MATLAB extension of the COBRA 

Toolbox (166), to reconstruct the constraint-based metabolic model. The reconstructed 

metabolic network consisted of 13 pathways that are significantly affected during the 

tumorigenesis of glioblastoma (Table 2.1). The detailed pathway diagram has been 

drawn in Cell Designer version 4.3 and has been provided in APPENDIX A: Figure A. 1. 

Note that the abbreviations used for all the reactions specific to Chapter 3 are explained 
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in APPENDIX A: Table A. 1. The abbreviations used for the metabolites in Chapter 3 are 

elaborated within the text of the chapter, wherever necessary. 

Table 2.1: List of pathways selected pathway reconstruction of the constraint-based 
metabolic model for astrocyte and glioblastoma and their references. 

Sl. No. Pathway Reference 

1 Alanine and Aspartate Metabolism (167) 

2 Beta Oxidation of Fatty acid (168) 

3 Cysteine Metabolism (17) 

4 Glutamate Metabolism (2, 169) 

5 Glutathione Metabolism (170) 

6 Glycine-Serine Metabolism (18, 171) 

7 Glycolysis (14, 15, 172) 

8 Methionine Metabolism (173) 

9 Oxidative Phosphorylation (174) 

10 Palmitic Acid Biosynthesis (172) 

11 Pentose Phosphate Pathway (175) 

12 TCA Cycle (176) 

13 Tryptophan Metabolism (16) 

 

 

Figure 2.1: Schematic workflow of the constraint-based metabolic model using flux 
balance analysis 
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2.1.2. Flux Balance Analysis (FBA) 

Flux Balance Analysis (FBA) is a mathematical approach to analyze the flow of 

metabolites through a metabolic network, where the metabolic reactions are represented 

in a matrix of metabolites and reactions composed of stoichiometric coefficients of each 

metabolite in each reaction (98). Flux balance analysis is the most popularly used 

constraint-based approach in systems-level metabolic modelling. The technique assumes 

a steady-state approach where all the metabolites of the network are considered to be in 

steady-state, i.e., the rate of change of metabolites over time remains zero. This ensures 

that the rate of formation of a metabolite in the network is always equal to the rate of its 

consumption and hence a net difference in the metabolite concentration over time always 

remains zero. All the reactions of the network work as constraints to the optimization 

problem. The reactions are bounded between a lower and an upper bound, which creates 

the constraint. The metabolites are connected to respective reactions in the form of a 

stoichiometric matrix, ‘S,’ where the rows represent the metabolites (m), and the columns 

represent reactions (n). Thus, a ‘m x n’ matrix is generated in which the involvement of a 

metabolite in a reaction is represented by its respective stoichiometry in that reaction. A 

positive stoichiometric value represents the formation of the metabolite, and a negative 

stoichiometric value represents consumption. The flux through the reactions is 

represented in a separate flux vector-matrix ‘𝒗,’ which is a ‘n x 1’ matrix. The flux through 

the reactions could be adjusted manually by defining the bounds of the reactions: lower 

bound (𝑣𝑙𝑏) and upper bound (𝑣𝑢𝑏). This allows the flexibility to redefine model 

conditions as per different pathological and physiological scenarios. The outcome of 

optimization is obtained by matrix multiplication of 𝑆. 𝑣 = 0. The matrix multiplication 

results in an optimized ‘𝒗’ matrix which assigns an optimal flux to each of the reactions 

in the network. Generally, whole-genome models are large with a few hundred reactions 

and metabolites, which makes it a multi-dimensional optimization problem. An objective 

is assigned to the model, which depends on the biological question one wants to address. 

Thus, the model gets optimized as per the requirement of maximizing or minimizing the 

objective function. 

In the present metabolic network, this relationship was established between the 

metabolites and the reactions in the form of an S-matrix, which comprised of 159 
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metabolites and 247 reactions, building up the S-matrix of dimension ‘159 x 247’. The 

score assigned to each element of the S-matrix, 𝑆𝑥𝑦 represented the stoichiometry of the 

metabolite ‘𝑥’ in the reaction ‘𝑦’. A positive score signified the production of the 

metabolite, and a negative score implied its consumption in the reaction. The column 

vector 𝒗 had 247 fluxes, including 39 exchange reactions and 69 transport reactions. FBA 

formalizes the flux distribution through the whole metabolic network as the dot product 

of the S-matrix and the vector 𝒗. All the reactions in the model were organized in the 

rBioNet extension of the Cobra Toolbox, where their fluxes were constrained between a 

lower bound 𝑣𝑙𝑏  and an upper bound 𝑣𝑢𝑏 . All the reversible reactions were bounded 

between 𝑣𝑙𝑏 = −1000 and 𝑣𝑢𝑏 = 1000. The irreversible reactions in the model were 

bounded either from 0 to 1000 or -1000 to 0 with respect to the substrate and products 

defined for that reaction as per available information from the literature. The bounds to 

the exchange reactions were fixed as per the requirement of the system for uptake or 

release of the exchange metabolites. Those exchanges which were known to be taken in 

were bounded between -1000 to 0, and those which were known to be released out were 

bounded between 0 to 1000. The rest of the exchanges was bounded between -1000 to 

1000 to analyze their role in the metabolism by simulating the model using FBA.  

2.1.3. The objective functions: defining objectives for energy and growth 

requirement 

The biological question to be addressed using the constraint-based model is defined with 

the help of an objective function. The model optimizes flux through all the reactions in 

the network to yield optimal flux through the objective function as per the requirement 

to maximize or minimize it. Multiple objective functions can be assigned to a single model 

to define different biological questions pertaining to the model. The metabolic 

requirement of the glioblastoma cells changes as per the growth condition. The proper 

functioning of energy metabolism in a normal cell ensures that the growth requirements 

of the cell are taken care of by generating by-products that are used in the biosynthesis 

of additional cellular components required for growth. However, due to the changed 

expression profile of glycolytic, pentose phosphate pathway and TCA cycle enzymes, and 

metabolic insults generated in the mitochondrial respiratory chain, this mutual fulfilment 

of energy and growth requirement is disrupted. An altered metabolic flux profile ensures 
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that both the energy requirement and metabolic requirement for the growth of the cancer 

cells are met. Hence, in the present work, two objective functions were defined to capture 

this difference is flux profiles of normal astrocytes and glioblastoma cells. 

Objective function for energy demand 

ATP synthesis through oxidative phosphorylation (ATPSyn) was considered as the 

objection function for energy demand. Cells under normal physiological conditions drive 

their glycolytic flux towards the production of ATP through the mitochondrial F0F1 ATP 

synthase. Hence, this reaction was chosen as the objective (Eq. 1) to understand the flux 

flow distribution in the model under normal astrocytic conditions as well as under the 

glioblastoma condition.    

𝐴𝑇𝑃𝑆𝑦𝑛 =  𝑎𝑑𝑝[𝑚]  +  𝑝𝑖[𝑚]  +  4 ℎ + [𝑖] −>  ℎ2𝑜[𝑚]  +  𝑎𝑡𝑝[𝑚]  +  3 ℎ + [𝑚]    …Eq. 1 

Objective function for growth demand 

A metabolic demand reaction that will dually fulfil the requirements of growth and ATP 

(GBM_BM) was designed to capture the growth demands of glioblastoma. To define the 

growth requirement of the model, ribose-5-phosphate, r5p(c), oxaloacetate, oaa(m),  

succinate,  succ(m), and glutathione glt(c) were included as components of the objective 

function, selected on the basis of their contribution as (a) precursor to the nucleotide 

biosynthesis and synthesis of amino acids like valine, lysine, methionine, threonine, etc. 

(106, 177), (b) intermediates for maintaining redox balance in different cellular 

compartments and biosynthesis of other cellular components required for cell growth 

(178), (c) preventing damage to cellular components caused by reactive oxygen species 

produced due to hypoxia or other cellular stress (19) 

𝐺𝐵𝑀_𝐵𝑀 =  𝑜𝑎𝑎[𝑚]  +  𝑔𝑙𝑡[𝑐]  +  𝑟5𝑝[𝑐]  +  𝑠𝑢𝑐𝑐[𝑚]                        …Eq. 2 

2.1.4. Creation of scenario-specific metabolic flux models 

Flux models allow the flexibility to define model conditions by changing the bounds 

defined for each reaction. Different physiological and pathophysiological conditions 

could be defined in a model by adjusting the lower and upper bounds of reactions that 

generate different optimization conditions for the objective function. In this work, the 
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normal physiological and the pathological conditions were defined by the metabolic 

differences between astrocyte and glioblastoma, respectively. Bounds to the flux through 

a few enzymatic reactions which defined the differences between the two scenarios were 

assigned on the basis of literature support. Both the objective functions were optimized 

for the two scenarios. Limited bounds were assigned to a few reactions to create the 

astrocyte scenario. The rest of the reaction fluxes were allowed to vary between a wide 

range of [-1000 to 1000] or [0 to 1000] or [-1000 to 0] as per the reversibility or 

irreversibility of the reactions. The model was then simulated to obtain results that were 

in accordance with the experimentally available data defining the features of astrocytes 

(179-181). Bounds to the mitochondrial reactions- glutaminase [-50, 50], glutamate 

dehydrogenase [-150, 150], mitochondrial pyruvate carboxylase [-10, 10], and 

cytoplasmic reactions- acetyl-CoA carboxylase [0, 100], L-carnitine O-

palmitoyltransferase [0, 20], and cytoplasmic malate dehydrogenase [-50, 50], were fixed 

and the model was analyzed using FBA to create the astrocytic scenario. 

Perturbations were done to the same astrocytic model by varying the lower and upper 

bounds to a few reactions that were experimentally found to be deregulated in 

glioblastoma, and then the model was simulated to create the glioblastoma scenario. 

Bounds were released to a few reactions, which were imposed in the astrocytic scenario: 

glutaminase [-1000, 1000] and acetyl-CoA carboxylase [0, 1000]. New bounds were 

assigned to another set of reactions to generate the glioblastoma scenario: glutamate 

dehydrogenase [-200, 200], Cytochrome c Oxidase (complex IV) [-10, 10], 

Trans_Glutamate (ATP) [-90, 90] and glycine exchange [-500, 500]. This model was 

analyzed using both ATPSyn (Eq. 1) and GBM_BM (Eq. 2) as the objective function. This 

model was further validated with experimental data available for glioblastoma (2, 17, 

182). 

2.1.5. Validation of Constraint-based models 

Validation is an important step in computational modelling that improves the credibility 

of results obtained from model analyses. In the case of biological models, verification of 

model properties with experimental observations made for the physiological and/or 

pathological conditions is a prerequisite for proceeding further with the model for 
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analyses. Hence, the reconstructed metabolic models in the present study were validated 

for both the astrocytic and the glioblastoma scenario. The mitochondrial ATPSyn (Eq. 1) 

was used as the objective function. The astrocytic and glioblastoma models were created 

as described in Section 2.1.4. Both the models were validated with experimentally 

verified observations made in astrocytes and glioblastoma. 

Properties of astrocyte like the increase in glucose uptake driven towards both 

mitochondrial ATP synthesis and lactate production, increase in the activity of lactate 

dehydrogenase and pyruvate kinase in hypoxia conditions (180) and increase in glucose 

utilization and lactate production with increasing glutamate uptake (181) were validated 

for the astrocytic model. Similarly, the reduced mitochondrial ATP synthesis and 

increased glucose utilization (15) and reversal in glutamate and glutamine utilization, and 

increase in cystine uptake in glioblastoma cells (2) were validated for the glioblastoma 

model. The results are discussed in detail in Section 3.2.3 of Chapter 3. 

2.1.6. In-silico prediction of minimal essential metabolite for glioblastoma 

growth 

Glioblastoma cells are grown in commercially available MEM or DMEM media (17, 183, 

184). However, due to the lack of sufficient literature that reports the essential 

metabolites required for glioblastoma growth under nutrient-starved conditions, an in-

silico simulation was performed to check the fate of some key metabolites that contribute 

to the growth in the glioblastoma. The model consisted of eight input metabolites: 

glucose, cystine, methionine, tryptophan, palmitate, glutamate, glutamine, and glycine. 

The entry of each of these input metabolites was allowed in the model, one at a time, and 

the corresponding flux through the GBM_BM, objective function for growth was 

computed. Further, the fate of the essential metabolite in combination with a second 

input metabolite within the model was checked, and the optimal solution of the GBM_BM 

objective was calculated. This was performed to identify the most important input 

metabolite required for enhancing glioblastoma growth.  
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2.1.7. Single and double reaction knockouts in glioblastoma 

Reaction knockout analysis was performed to completely nullify the functional effect of a 

reaction in the network. Reaction knockout predictions allowed the identification of 

reactions that could be targeted for either completely inhibiting or reducing the 

glioblastoma growth. While transport reactions were considered for the knockout 

analysis, the 39 exchange reactions were eliminated. Each of the 208 reactions in the 

metabolic network was knocked down individually to predict the knockouts that could 

potentially reduce glioblastoma growth. For performing the knockout, flux through each 

individual reaction in the network was constrained to zero (𝑣𝑙𝑏 = 𝑣𝑢𝑏 = 0) and the flux 

through the GBM_BM objective function was computed. Double reaction knockouts were 

also performed, with a combination of two reactions knocked out of the network 

simultaneously. The single and double knockouts were classified on the basis of 

percentage reduction of flux through the objective function, GBM_BM, from its optimal 

value. The optimal value of flux through the objective function in the astrocytic scenario 

corresponded to the normal growth rate (𝒗𝐺𝐵𝑀−𝐵𝑀
𝑁𝑜𝑟𝑚𝑎𝑙 = 240).  

2.1.8. Identification of metabolic targets for therapeutic intervention 

The results of the double reaction knockout analysis were used to identify feasible 

therapeutic combinations to target glioblastoma growth. For performing in-silico 

therapeutic interventions, we divided the reactions into two broad categories: (i) 

essential (𝒗𝐺𝐵𝑀−𝐵𝑀 = 0) and (ii) growth reducing (GR) reaction pairs (𝒗𝐺𝐵𝑀−𝐵𝑀
𝑀𝑎𝑥 >

𝒗𝐺𝐵𝑀−𝐵𝑀) as per their essentiality in determining glioblastoma growth. Note that 

𝒗𝐺𝐵𝑀−𝐵𝑀
𝑀𝑎𝑥 = 285 that represented the maximum flux observed through the GBM_BM 

objective function in the glioblastoma model. The growth reducing pairs were further 

classified into partial growth reducing reactions (𝒗𝐺𝐵𝑀−𝐵𝑀
𝑀𝑎𝑥 > 𝐺𝑅 > 𝒗𝐺𝐵𝑀−𝐵𝑀

𝑁𝑜𝑟𝑚𝑎𝑙 ) and normal 

growth reducing reactions (𝐺𝑅 = 𝒗𝐺𝐵𝑀−𝐵𝑀
𝑁𝑜𝑟𝑚𝑎𝑙 ). We further predicted the putative feasible 

ranges for each of these reaction combinations, in which therapeutics can effectively 

target glioblastoma growth either by complete inhibition of growth or by reducing the 

glioblastoma growth rate back to the normal astrocytic growth rate. 
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2.2. Dynamic analysis of important regulators of ROS generation and 

antioxidant machinery  

The systems-level understanding of metabolic reprogramming in glioblastoma 

highlighted the role of glutathione metabolism in guiding the preferred flux routes 

through different pathways. Intrigued by this finding, a detailed evaluation of the 

glutathione metabolism in glioblastoma was performed. Glutathione is a thiol that acts as 

an antioxidant to protects the cells from oxidative stress-related responses by scavenging 

reactive oxygen species (ROS). The antioxidant machinery maintains the redox balance 

of the cells. Motivated by the observations of the previous work, the effect of changes in 

redox and thiol status and the role of antioxidants in managing the oxidative balance of 

glioma cell is analyzed in Chapter 4, using a dynamic ordinary differential equation 

model. Note that the dynamics of the antioxidant system and related properties are 

subject to changes upon changing oxidative stress in and around the tumor cells. The 

study has been initiated with the antioxidant properties observable in glial cells and 

astrocytes and eventually modified with changes that result in gliomagenesis. The 

dynamics observed through the study hold true for all grades of glioma, including 

glioblastoma, and hence, the term glioma has been used for this study. Hydrogen peroxide 

(h2o2) was considered as the stable ROS, scavenged by the antioxidant glutathione (gsh) 

in normal glial cells and gliomas. A set of sequential changes in metabolic events that 

determines the transformation from a normal glial to glioma condition were introduced 

in the model by tweaking the kinetic parameters of important reactions. Three scenarios: 

normal glial, hypoxic, and glioma scenarios, were created, and the dynamics of ROS 

generation and antioxidant machinery were compared between the scenarios. 

Simulations demonstrating the changes in redox ratio represented by nadph/nadp+ and 

thiol ratio represented by gsh/gssg with respect to the h2o2 levels in normal glial, hypoxic, 

and glioma conditions were performed. The effect of other enzymes that are re-routed 

towards antioxidant production during gliomagenesis for the management of ROS levels 

was analyzed. Changes in the activity of enzymes that could augment pro-oxidant and 

anti-oxidant therapeutic strategies in glioma were proposed. The details of methods used 

in this study are provided in the following subsections. 
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2.2.1. Definition of model system 

The model (Figure 2.2) captured the dynamic changes in the metabolism regulating the 

interplay of glutathione and ROS (oxygen radicals and hydrogen peroxide) in normal glial 

cells and in gliomas. The model is biologically motivated by the previous work in which a 

subset of metabolic reactions has been observed to be directed towards gsh production 

in gliomas (185). A re-routing of the glycolytic, pentose phosphate, glycine-serine, 

glutamate, and cystine pathway was observed to be directed towards glutathione 

metabolism from the analysis. The present model was designed considering these 

pathways in order to understand the dynamics of this re-routing and their effect in 

determining the role of glutathione during ROS scavenging. ROS, which typically shows a 

paradoxical behavior in tumor progression and proliferation, is represented by hydrogen 

peroxide (h2o2) in the model, and the model includes the ROS production machinery. 

Glutathione (gsh) is a tri-peptide composed of cystine (cys), glycine (gly), and glutamate 

(glut) is the prime anti-oxidant involved in ROS scavenging. The model comprised of 

reactions required for the production of the components of tri-peptide units of gsh. A part 

of glycolytic pathways along with the glycine-serine metabolism has been included, 

which directs the glucose metabolism towards glycine production. Cystine metabolism 

and a part of the glutamate metabolism were incorporated to represent the metabolism 

of these two components into the complex- glutamyl-cysteine (glucys). The gsh-gssg cycle 

consisting of glutathione peroxidase (GTHP) and glutathione oxidoreductase (GTHO) 

were included along with the ROS production machinery comprising of NADPH Oxidase 

(NOX) and Superoxide Dismutase (SOD). Although these enzymes are present as multiple 

isoforms, all the isoforms were considered as one, as the basic mechanism and function 

of the isoforms remain the same. Other ROS scavenging machineries like the 

peroxiredoxin/thioredoxin systems, catalases, etc., were not considered in the model for 

the time being, as we intended to focus on the dynamics of glutathione during ROS 

scavenging and in determining the paradox. The scavenging of h2o2 by other mechanisms 

was represented by the parameter 𝑑ℎ2𝑜2
 which was defined as the decay of intracellular 

hydrogen peroxide in other cellular processes. The model was limited to two 

compartments only: extracellular matrix (e) and cytosol (c), and intracellular 

compartments were not considered as the availability of compartment-wise parameters 
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creates a limitation, and the introduction of intracellular compartments for such a large 

ODE model would make it complex. The details of abbreviations used for all the reaction 

parameters specific to Chapter 4 are provided in APPENDIX B: Table B. 1 and the 

abbreviations used for the metabolite variables are elaborated in APPENDIX B: Table B. 

2.  

 

Figure 2.2: Diagrammatic representation of the metabolites belonging to different 

pathways directed towards the production of the glutathione along with the ROS 

generation machinery. The metabolites and the pathways to which they belong have been 

grouped into five groups viz.-(i) Central Carbon metabolism (glce, glcc, g6p, f6p, f16bp, gap, dhap, 

1,3bpg, 3pg, akg), (ii) Amino Acid metabolism (3php, pser, ser, gly, cyse, cys, cysL, glute, glut), (iii) 

Thiol metabolism (glucys, gsh, gssg), (iv) h2o2 production and metabolism (O2(ex), O2, oxrad, h2o2) 

(v) Redox metabolism (nadph, nadp+).  
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2.2.2. Model formulation 

The model consisted of 35 metabolite variables involved in 25 reactions required for the 

production of gsh and ROS and for ROS scavenging. As per the available information of 

the reaction kinetics of these reactions, equations were formulated as forms of uni-uni, 

bi-bi, bi-uni, or ter-bi Michaelis-Menten kinetics. The equations were written in Cleland 

nomenclature. We considered initial reaction kinetics with first-order reaction rates. The 

values of all the parameters and initial values of all the parameters are provided in 

APPENDIX B: Table B. 1 & Table B. 2.   

The general form of the initial kinetics of reaction equations considered in the model are 

given below:      

Uni-Uni / Uni-Bi: 
𝑉𝑚

𝑅.𝑎

𝐾𝑚
𝑅 +𝑎

                                                                                               …Eq. 3 

Bi-Bi mechanism (Rapid equilibrium/ Ordered): 
𝑉𝑚

𝑅.(𝑎.𝑏)

(𝑘𝑖(𝑎)
𝑅 .𝑘𝑏

𝑅+ 𝑘𝑏
𝑅.𝑎+ 𝑘𝑎

𝑅.𝑏+𝑎.𝑏) 
   …Eq. 4 

Partial Rapid Equilibrium Random Bi-Bi mechanism: 
𝑉𝑚

𝑅.(𝑎.𝑏)

(𝑘𝑖(𝑎)
𝑅 .𝑘𝑏

𝑅+ 𝑘𝑏
𝑅.𝑎+ 𝑎.𝑏) 

     …Eq. 5 

Ordered Ter-Bi: 
𝑉𝑚

𝑅.(𝑎.𝑏.𝑐)

(𝑘𝑖(𝑎)
𝑅 .𝑘𝑖(𝑏)

𝑅 .𝑘𝑐
𝑅+ 𝑘𝑖(𝑏)

𝑅 .𝑘𝑐
𝑅.𝑎+ 𝑘𝑖(𝑎)

𝑅 .𝑘𝑏
𝑅.𝑐+ 𝑘𝑐

𝑅.𝑎.𝑏+ 𝑘𝑏
𝑅.𝑎.𝑐

+ 𝑘𝑎
𝑅.𝑏.𝑐+ 𝑎.𝑏.𝑐) 

           …Eq. 6 

Where R is the reaction, a, b and c represent the substrates, 𝑉𝑚
𝑅 represents the Vmax of the 

reaction, 𝑘𝑖
𝑅 the rate constant for dissociation of enzyme-substrate complex and 𝑘𝑎

𝑅/ 𝑘𝑏
𝑅/ 

𝑘𝑐
𝑅

 represent the rate constant for the association of a substrate with the enzyme.  

The motivation behind considering a larger metabolic network for dynamic analysis 

comes from the observed metabolic re-routing of these pathways, which was directed 

towards glutathione production. In the model presented in Chapter 4, our main focus 

was to understand the strategies of h2o2 manipulation within cells and its effect on cell 

proliferation or death along with the effect of glutathione in scavenging h2o2 while 

considering the changes in the redox ratio represented by nadph/nadp+ and thiol ratio 

represented by gsh/gssg.  
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2.2.3. Model equations 

Initial kinetics with first-order reaction rates of the enzymatic reactions were considered 

for writing the equations. Since initial rates are usually measured in the presence of 

substrates only, there are no product terms present in the equations. Values of all the 

parameters are listed in APPENDIX B: Table B. 1, and initial values of all the variables 

are provided in APPENDIX B: Table B. 2. 

Rate Equations 

Glycolysis: Kinetic rate equations for the enzymes belonging to the first half of glycolysis, 

from where it branches to the glycine-serine pathway, were considered in the model. The 

kinetics is mostly represented by uni-uni and bi-bi mechanisms. The equation forms for 

most of the reactions were similar except for GAPDH and PGK. Competitive inhibition of 

GAPDH by h2o2 was considered. The rate kinetics of PGK follows a partial rapid 

equilibrium random bi-bi steady-state kinetics (186) where the binding of 1,3bpg with 

the enzyme is transient and hence was not considered in the denominator following the 

convention of partial rapid equilibrium random bi-bi mechanism. 

𝑣𝐺𝐿𝐶𝑇 =
𝑉𝑚

𝐺𝐿𝐶𝑇.𝑔𝑙𝑐𝑒

𝑘𝑔𝑙𝑐𝑒
𝐺𝐿𝐶𝑇+𝑔𝑙𝑐𝑒

                                                                                                             …Eq. 7   

𝑣𝐻𝐾 =
𝑉𝑚

𝐻𝐾.(𝑎𝑡𝑝.𝑔𝑙𝑐𝑐)

(𝑘𝑖(𝑎𝑡𝑝)
𝐻𝐾 .𝑘𝑔𝑙𝑐𝑐

𝐻𝐾 + 𝑘𝑔𝑙𝑐𝑐
𝐻𝐾 .𝑎𝑡𝑝+ 𝑘𝑎𝑡𝑝

𝐻𝐾 .𝑔𝑙𝑐𝑐+𝑎𝑡𝑝.𝑔𝑙𝑐𝑐)
                                …Eq. 8 

𝑣𝑃𝐺𝐼 =
𝑉𝑚

𝑃𝐺𝐼.𝑔6𝑝

𝑘𝑔6𝑝
𝑃𝐺𝐼+𝑔6𝑝

                                                                                       …Eq. 9 

𝑣𝑃𝐹𝐾 =
𝑉𝑚

𝑃𝐹𝐾.(𝑎𝑡𝑝.𝑓6𝑝)

(𝑘𝑖(𝑎𝑡𝑝)
𝑃𝐹𝐾 .𝑘𝑓6𝑝

𝑃𝐹𝐾+ 𝑘𝑓6𝑝
𝑃𝐹𝐾.𝑎𝑡𝑝+ 𝑘𝑎𝑡𝑝

𝑃𝐹𝐾.𝑓6𝑝+𝑎𝑡𝑝.𝑓6𝑝)
                            …Eq. 10 

𝑣𝐹𝐵𝐴 =
𝑉𝑚

𝐹𝐵𝐴.𝑓16𝑏𝑝

𝑘𝑓16𝑏𝑝
𝐹𝐵𝐴 +𝑓16𝑏𝑝

                                                                             …Eq. 11 
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𝑣𝑇𝑃𝐼 =
𝑉𝑚

𝑇𝑃𝐼.𝑑ℎ𝑎𝑝

𝑘𝑑ℎ𝑎𝑝
𝑇𝑃𝐼 +𝑑ℎ𝑎𝑝

                                                                                …Eq. 12 

𝑣𝐺𝐴𝑃𝐷𝐻 =
𝑉𝑚

𝐺𝐴𝑃𝐷𝐻.(𝑔𝑎𝑝.𝑛𝑎𝑑)

(𝑘𝑖(𝑔𝑎𝑝)
𝐺𝐴𝑃𝐷𝐻.𝑘𝑛𝑎𝑑

𝐺𝐴𝑃𝐷𝐻+𝑘𝑔𝑎𝑝
𝐺𝐴𝑃𝐷𝐻.𝑛𝑎𝑑.(1+ 

ℎ2𝑜2

𝑘𝑖𝑖(ℎ2𝑜2)
𝐺𝐴𝑃𝐷𝐻 )+𝑘𝑛𝑎𝑑

𝐺𝐴𝑃𝐷𝐻.𝑔𝑎𝑝 +𝑔𝑎𝑝.𝑛𝑎𝑑 )

  …Eq. 13 

𝑣𝑃𝐺𝐾 =
𝑉𝑚

𝑃𝐺𝐾.(1,3𝑏𝑝𝑔.𝑎𝑑𝑝)

(𝑘𝑖(1,3𝑏𝑝𝑔)
𝑃𝐺𝐾 .𝑘𝑎𝑑𝑝

𝑃𝐺𝐾+ 𝑘𝑎𝑑𝑝
𝑃𝐺𝐾.1,3𝑏𝑝𝑔+1,3𝑏𝑝𝑔.𝑎𝑑𝑝)

                              …Eq. 14 

Pentose Phosphate Pathway:  The pentose phosphate pathway was represented only 

partially by considering the enzymatic reaction G6PDH. The assumption here was that 

the final products of the pathway, i.e., fructose and glyceraldehyde 3-phosphate re-enter 

the glycolytic pathway. The whole pathway was reduced to a single equation, and the 

parameter values for the equation were determined by parameter estimation technique 

so as to represent the real biological situation focussing on the oxidant-antioxidant 

balance. Competitive inhibition of the pathway by atp was considered. 

𝑣𝐺6𝑃𝐷𝐻 =

𝑉𝑚
𝐺6𝑃𝐷𝐻.(𝑔6𝑝.𝑛𝑎𝑑𝑝)

(𝑘𝑖(𝑔6𝑝)
𝐺6𝑃𝐷𝐻.𝑘𝑛𝑎𝑑𝑝

𝐺6𝑃𝐷𝐻+𝑘𝑔6𝑝
𝐺6𝑃𝐷𝐻.𝑛𝑎𝑑𝑝).(1+

𝑎𝑡𝑝

𝑘𝑖𝑖(𝑎𝑡𝑝)
𝐺6𝑃𝐷𝐻)+𝑘𝑛𝑎𝑑𝑝

𝐺6𝑃𝐷𝐻.𝑔6𝑝+𝑔6𝑝.𝑛𝑎𝑑𝑝

     …Eq. 15 

Glutamate Metabolism: A part of the glutamate metabolism was considered, which 

included the transport of glutamate from the extracellular matrix to the cytoplasm where 

a part of it is utilized in the glutathione metabolism, and a part is converted into akg 

production by the activity of glutamate dehydrogenase, and the rest is utilized in other 

cellular processes.  

𝑣𝐺𝐿𝑈𝑇𝐸𝑋 =
𝑉𝑚

𝐺𝐿𝑈𝑇𝐸𝑋.𝑔𝑙𝑢𝑡𝑒

𝑘𝑚
𝐺𝐿𝑈𝑇𝐸𝑋+𝑔𝑙𝑢𝑡𝑒

                                                                         …Eq. 16 

𝑣𝐺𝐿𝑈𝐷 =
𝑉𝑚

𝐺𝐿𝑈𝐷.(𝑔𝑙𝑢𝑡.𝑛𝑎𝑑𝑝)

(𝑘𝑖(𝑔𝑙𝑢𝑡)
𝐺𝐿𝑈𝐷 .𝑘𝑛𝑎𝑑𝑝

𝐺𝐿𝑈𝐷+𝑘𝑛𝑎𝑑𝑝
𝐺𝐿𝑈𝐷.𝑔𝑙𝑢𝑡+𝑘𝑔𝑙𝑢𝑡

𝐺𝐿𝑈𝐷.𝑛𝑎𝑑𝑝+𝑔𝑙𝑢𝑡.𝑛𝑎𝑑𝑝)
            …Eq. 17 
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Glutathione Metabolism: This pathway included the involvement of two important 

enzymes, glutamyl-cysteine ligase, and glutathione synthase. The former catalyzes the 

formation of glutamyl-cysteine, which is converted into the tripeptide complex of 

glutathione in the later reaction. Both the reactions involve the utilization of atp for the 

conversion and hence represented by three metabolites ordered ter-bi equation form.  

 𝑣𝐺𝐶𝐿 =

          
𝑉𝑚

𝐺𝐶𝐿.(𝑎𝑡𝑝.𝑔𝑙𝑢𝑡.𝑐𝑦𝑠𝐿)

(𝑘𝑖(𝑎𝑡𝑝)
𝐺𝐶𝐿 .𝑘𝑖(𝑔𝑙𝑢𝑡)

𝐺𝐶𝐿 .𝑘𝑐𝑦𝑠𝐿
𝐺𝐶𝐿 + 𝑘𝑖(𝑔𝑙𝑢𝑡)

𝐺𝐶𝐿 .𝑘𝑐𝑦𝑠𝐿
𝐺𝐶𝐿 .𝑎𝑡𝑝 +𝑘𝑖(𝑎𝑡𝑝)

𝐺𝐶𝐿 .𝑘𝑔𝑙𝑢𝑡
𝐺𝐶𝐿 .𝑐𝑦𝑠𝐿 

+𝑘𝑐𝑦𝑠𝐿
𝐺𝐶𝐿 .𝑎𝑡𝑝.𝑔𝑙𝑢𝑡+ 𝑘𝑔𝑙𝑢𝑡

𝐺𝐶𝐿 .𝑎𝑡𝑝.𝑐𝑦𝑠𝐿 +𝑘𝑎𝑡𝑝
𝐺𝐶𝐿.𝑔𝑙𝑢𝑡.𝑐𝑦𝑠𝐿 +𝑎𝑡𝑝.𝑔𝑙𝑢𝑡.𝑐𝑦𝑠𝐿)

…Eq. 18 

𝑣𝐺𝑆 =

   
𝑉𝑚

𝐺𝑆.(𝑎𝑡𝑝.𝑔𝑙𝑦.𝑔𝑙𝑢𝑐𝑦𝑠)

(𝑘𝑖(𝑎𝑡𝑝)
𝐺𝑆 .𝑘𝑖(𝑔𝑙𝑦)

𝐺𝑆 .𝑘𝑔𝑙𝑢𝑐𝑦𝑠
𝐺𝑆 + 𝑘𝑖(𝑔𝑙𝑦)

𝐺𝑆 .𝑘𝑔𝑙𝑢𝑐𝑦𝑠
𝐺𝑆 .𝑎𝑡𝑝 +𝑘𝑖(𝑎𝑡𝑝)

𝐺𝑆 .𝑘𝑔𝑙𝑦
𝐺𝑆 .𝑔𝑙𝑢𝑐𝑦𝑠 

+𝑘𝑔𝑙𝑢𝑐𝑦𝑠
𝐺𝑆 .𝑎𝑡𝑝.𝑔𝑙𝑦+ 𝑘𝑔𝑙𝑦

𝐺𝑆 .𝑎𝑡𝑝.𝑔𝑙𝑢𝑐𝑦𝑠 +𝑘𝑎𝑡𝑝
𝐺𝑆 .𝑔𝑙𝑦.𝑔𝑙𝑢𝑐𝑦𝑠 +𝑎𝑡𝑝.𝑔𝑙𝑦.𝑔𝑙𝑢𝑐𝑦𝑠)

…Eq. 19 

Glycine Serine Metabolism: All the enzymatic reactions involved in the production of 

serine from 3pg and conversion of serine to glycine were considered. Along with it, the 

exchange of glycine from the extracellular matrix was also considered. 

𝑣𝐺𝐿𝑌𝑒𝑥 =
𝑉𝑚

𝐺𝐿𝑌𝑒𝑥.𝑔𝑙𝑦𝑒

𝑘𝑚
𝐺𝐿𝑌𝑒𝑥+𝑔𝑙𝑦𝑒

                                                                            …Eq. 20 

𝑣𝑃𝐺𝐶𝐷𝐻 =
𝑉𝑚

𝑃𝐺𝐶𝐷𝐻.(3𝑝𝑔.𝑛𝑎𝑑)

(𝑘𝑖(3𝑝𝑔)
𝑃𝐺𝐶𝐷𝐻.𝑘𝑛𝑎𝑑

𝑃𝐺𝐶𝐷𝐻+𝑘𝑛𝑎𝑑
𝑃𝐺𝐶𝐷𝐻.3𝑝𝑔+𝑘3𝑝𝑔

𝑃𝐺𝐶𝐷𝐻.𝑛𝑎𝑑+3𝑝𝑔.𝑛𝑎𝑑)
        …Eq. 21 

𝑣𝑃𝑆𝑃 =
𝑉𝑚

𝑃𝑆𝑃.𝑝𝑠𝑒𝑟

𝑘𝑚
𝑃𝑆𝑃+𝑝𝑠𝑒𝑟

                                                                                   …Eq. 22 

𝑣𝐺𝐻𝑀𝑇 =
𝑉𝑚

𝐺𝐻𝑀𝑇.(𝑠𝑒𝑟.𝑡ℎ𝑓)

(𝑘𝑖(𝑠𝑒𝑟)
𝐺𝐻𝑀𝑇.𝑘𝑡ℎ𝑓

𝐺𝐻𝑀𝑇+𝑘𝑡ℎ𝑓
𝐺𝐻𝑀𝑇.𝑠𝑒𝑟+𝑘𝑠𝑒𝑟

𝐺𝐻𝑀𝑇.𝑡ℎ𝑓+𝑠𝑒𝑟.𝑡ℎ𝑓)
                   …Eq. 23

 

𝑣𝑃𝑆𝑇 =
𝑉𝑚

𝑃𝑆𝑇.(𝑔𝑙𝑢𝑡.3𝑝ℎ𝑝)

(𝑘𝑖(𝑔𝑙𝑢𝑡)
𝑃𝑆𝑇 .𝑘3𝑝ℎ𝑝

𝑃𝑆𝑇 +𝑘3𝑝ℎ𝑝
𝑃𝑆𝑇 .𝑔𝑙𝑢𝑡+𝑘𝑔𝑙𝑢𝑡

𝑃𝑆𝑇 .3𝑝ℎ𝑝+𝑔𝑙𝑢𝑡.3𝑝ℎ𝑝)
                    …Eq. 24  
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Cysteine metabolism: This was comprised of the transport of cystine from the 

extracellular matrix via the glutamate-cystine antiporter (xCT) and the conversion of 

cystine into cysteine, which is used as a component for building the tripeptide complex 

of glutathione. 

𝑣𝑥𝐶𝑇 =
𝑉𝑚

𝑥𝐶𝑇.(𝑐𝑦𝑠𝑒.𝑔𝑙𝑢𝑡)

(𝑘𝑖(𝑐𝑦𝑠𝑒)
𝑥𝐶𝑇 .𝑘𝑔𝑙𝑢𝑡

𝑥𝐶𝑇 +𝑘𝑔𝑙𝑢𝑡
𝑥𝐶𝑇 .𝑐𝑦𝑠𝑒+𝑘𝑐𝑦𝑠𝑒

𝑥𝐶𝑇 .𝑔𝑙𝑢𝑡+𝑐𝑦𝑠𝑒.𝑔𝑙𝑢𝑡)
                        …Eq. 25 

𝑣𝐶𝑅 =
𝑉𝑚

𝐶𝑅.(𝑐𝑦𝑠.𝑔𝑙𝑢𝑡)

(𝑘𝑖(𝑐𝑦𝑠)
𝐶𝑅 .𝑘𝑛𝑎𝑑𝑝ℎ

𝐶𝑅 +𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅 .𝑐𝑦𝑠+𝑘𝑐𝑦𝑠

𝐶𝑅 .𝑛𝑎𝑑𝑝ℎ+𝑐𝑦𝑠.𝑛𝑎𝑑𝑝ℎ)
                  …Eq. 26 

GSH-GSSG cycle: This was represented by two enzymes, glutathione peroxidase, which 

catalyzes the conversion of gsh into gssg while neutralizing h2o2 to h2o, and glutathione 

oxidoreductase, which replenishes gsh back into the system by converting gssg  to gsh

with the involvement of nadph. The equations for the reactions were formulated using 

ordered bi-bi mechanism. 

𝑣𝐺𝑇𝐻𝑃 =
𝑉𝑚

𝐺𝑇𝐻𝑃.(ℎ2𝑜2.𝑔𝑠ℎ)

(𝑘𝑖(ℎ2𝑜2)
𝐺𝑇𝐻𝑃 .𝑘𝑔𝑠ℎ

𝐺𝑇𝐻𝑃+𝑘𝑔𝑠ℎ
𝐺𝑇𝐻𝑃.ℎ2𝑜2+𝑘ℎ2𝑜2

𝐺𝑇𝐻𝑃.𝑔𝑠ℎ+ℎ2𝑜2.𝑔𝑠ℎ)
               …Eq. 27 

𝑣𝐺𝑇𝐻𝑂 =
𝑉𝑚

𝐺𝑇𝐻𝑂.(𝑔𝑠𝑠𝑔.𝑛𝑎𝑑𝑝ℎ)

(𝑘𝑖(𝑔𝑠𝑠𝑔)
𝐺𝑇𝐻𝑂 .𝑘𝑛𝑎𝑑𝑝ℎ

𝐺𝑇𝐻𝑂 +𝑘𝑛𝑎𝑑𝑝ℎ
𝐺𝑇𝐻𝑂 .𝑔𝑠𝑠𝑔+𝑘𝑔𝑠𝑠𝑔

𝐺𝑇𝐻𝑂.𝑛𝑎𝑑𝑝ℎ+𝑔𝑠𝑠𝑔.𝑛𝑎𝑑𝑝ℎ)
    …Eq. 28

 

ROS production machinery: This was represented by two enzymatic reactions: NADPH 

oxidase (NOX) that converts oxygen into oxygen free radicals, and superoxide dismutase 

(SOD) that converts the free radicals into h2o2. The equation for the former reaction was 

represented by the ordered bi-bi mechanism and the latter by the uni-uni mechanism.   

𝑣𝑁𝑂𝑋 =
𝑉𝑚

𝑁𝑂𝑋.(𝑛𝑎𝑑𝑝ℎ.𝑂2)

(𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋 .𝑘𝑂2

𝑁𝑂𝑋+𝑘𝑂2
𝑁𝑂𝑋.𝑛𝑎𝑑𝑝ℎ+𝑘𝑛𝑎𝑑𝑝ℎ

𝑁𝑂𝑋 .𝑂2+𝑛𝑎𝑑𝑝ℎ.𝑂2)
               …Eq. 29 

𝑣𝑆𝑂𝐷 =
𝑉𝑚

𝑆𝑂𝐷.𝑜𝑥𝑟𝑎𝑑

𝑘𝑜𝑥𝑟𝑎𝑑
𝑆𝑂𝐷 +𝑜𝑥𝑟𝑎𝑑

                                                                             …Eq. 30

 



Chapter 2: Methodologies 

 

P a g e |  48  

 

 

Oxygen Uptake: The uptake of oxygen was represented using simple Michaelis-Menten 

equation form. Here Vmax represents the maximum rate of uptake of oxygen by the cell, 

and km represents the affinity of the cell for external oxygen. The lower the value of km, 

the higher is the affinity for external oxygen. 

𝑣𝑂2
=

𝑉𝑚
𝑂2 .𝑂2(𝑒𝑥)

𝑘𝑚
𝑂2+𝑂2(𝑒𝑥)

                                                                                   …Eq. 31 

Differential Equations 

The differential equations for each of the 35 metabolite variables were formulated by 

considering reactions and parameters in which they were either produced or consumed.  

𝑑(𝑔𝑙𝑐𝑒)

𝑑𝑡
= 𝑙𝑔 − 𝑣𝐺𝐿𝐶𝑇 − 𝑑𝑔[𝑔𝑙𝑐𝑒]                                                                         …Eq. 32 

𝑑(𝑔𝑙𝑐𝑐)

𝑑𝑡
= 𝑣𝐺𝐿𝐶𝑇 − 𝑣𝐻𝐾                                                                                           …Eq. 33 

𝑑(𝑔6𝑝)

𝑑𝑡
= 𝑣𝐻𝐾 − 𝑣𝑃𝐺𝐼 − 𝑣𝐺6𝑃𝐷𝐻                                                                           …Eq. 34 

𝑑(𝑓6𝑝)

𝑑𝑡
= 𝑣𝑃𝐺𝐼 + 𝑣𝐺6𝑃𝐷𝐻 − 𝑣𝑃𝐹𝐾                                                                         …Eq. 35 

𝑑(𝑓16𝑏𝑝)

𝑑𝑡
= 𝑣𝑃𝐹𝐾 − 𝑣𝐹𝐵𝐴                                                                                       …Eq. 36 

𝑑(𝑔𝑎𝑝)

𝑑𝑡
= 𝑣𝐹𝐵𝐴 + 𝑣𝐺6𝑃𝐷𝐻 + 𝑣𝑇𝑃𝐼 + 𝑣𝐺𝐴𝑃𝐷𝐻                                                       …Eq. 37 

𝑑(𝑑ℎ𝑎𝑝)

𝑑𝑡
= 𝑣𝐹𝐵𝐴 − 𝑣𝑇𝑃𝐼                                                                                           …Eq. 38 

𝑑(1,3𝑏𝑝𝑔)

𝑑𝑡
= 𝑣𝐺𝐴𝑃𝐷𝐻 − 𝑣𝑃𝐺𝐾                                                                                  …Eq. 39 

𝑑(3𝑝𝑔)

𝑑𝑡
= 𝑣𝑃𝐺𝐾 − 𝑣𝑃𝐺𝐶𝐷𝐻 − 𝑑3𝑝𝑔[3𝑝𝑔]                                                             …Eq. 40 

𝑑(𝑎𝑡𝑝)

𝑑𝑡
= 𝑙𝑎𝑡𝑝 + 𝑣𝑃𝐺𝐾 − 𝑣𝐻𝐾 − 𝑣𝑃𝐹𝐾 − 𝑣𝐺𝐶𝐿 − 𝑣𝐺𝑆 − 𝑑𝑎𝑡𝑝[𝑎𝑡𝑝]                …Eq. 41 

𝑑(𝑎𝑑𝑝)

𝑑𝑡
= 𝑙𝑎𝑡𝑝 + 𝑣𝐻𝐾 + 𝑣𝑃𝐹𝐾 + 𝑣𝐺𝐶𝐿 + 𝑣𝐺𝑆 − 𝑣𝑃𝐺𝐾 − 𝑑𝑎𝑑𝑝[𝑎𝑑𝑝]              …Eq. 42 
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𝑑(𝑛𝑎𝑑𝑝ℎ)

𝑑𝑡
= 𝑙𝑛𝑎𝑑𝑝ℎ + 𝑣𝐺6𝑃𝐷𝐻 + 𝑣𝐺𝐿𝑈𝐷 − 𝑣𝐺𝑇𝐻𝑂 − 𝑣𝑁𝑂𝑋 − 𝑣𝐶𝑅 −

                      𝑑𝑛𝑎𝑑𝑝ℎ[𝑛𝑎𝑑𝑝ℎ]                                                                                …Eq. 43 

𝑑(𝑛𝑎𝑑𝑝)

𝑑𝑡
= 𝑙𝑛𝑎𝑑𝑝 + 𝑣𝐺𝑇𝐻𝑂 + 𝑣𝑁𝑂𝑋 + 𝑣𝐶𝑅 − 𝑣𝐺6𝑃𝐷𝐻 − 𝑣𝐺𝐿𝑈𝐷 −

                     𝑑𝑛𝑎𝑑𝑝[𝑛𝑎𝑑𝑝]                                                                                      …Eq. 44 

𝑑(𝑛𝑎𝑑ℎ)

𝑑𝑡
= 𝑙𝑛𝑎𝑑ℎ + 𝑣𝐺𝐴𝑃𝐷𝐻 + 𝑣𝑃𝐺𝐶𝐷𝐻 − 𝑑𝑛𝑎𝑑ℎ[𝑛𝑎𝑑ℎ]                                  …Eq. 45 

𝑑(𝑛𝑎𝑑)

𝑑𝑡
= 𝑙𝑛𝑎𝑑 − 𝑣𝐺𝐴𝑃𝐷𝐻 − 𝑣𝑃𝐺𝐶𝐷𝐻 − 𝑑𝑛𝑎𝑑[𝑛𝑎𝑑]                                           …Eq. 46 

𝑑(3𝑝ℎ𝑝)

𝑑𝑡
= 𝑣𝑃𝐺𝐶𝐷𝐻 − 𝑣𝑃𝑆𝑇                                                                                     …Eq. 47 

𝑑(𝑔𝑙𝑢𝑡)

𝑑𝑡
= 𝑣𝐺𝐿𝑈𝑇𝐸𝑋 − 𝑣𝐺𝐶𝐿 − 𝑣𝑃𝑆𝑇 − 𝑣𝑥𝐶𝑇 − 𝑣𝐺𝐿𝑈𝐷                                        …Eq. 48 

𝑑(𝑎𝑘𝑔)

𝑑𝑡
= 𝑣𝑃𝑆𝑇 + 𝑣𝐺𝐿𝑈𝐷 − 𝑑𝑎𝑘𝑔[𝑎𝑘𝑔]                                                                …Eq. 49 

𝑑(𝑝𝑠𝑒𝑟)

𝑑𝑡
= 𝑣𝑃𝑆𝑇 − 𝑣𝑃𝑆𝑃                                                                                           …Eq. 50 

𝑑(𝑠𝑒𝑟)

𝑑𝑡
= 𝑣𝑃𝑆𝑃 − 𝑣𝐺𝐻𝑀𝑇                                                                                          …Eq. 51 

𝑑(𝑡ℎ𝑓)

𝑑𝑡
= 𝑙𝑡ℎ𝑓 − 𝑣𝐺𝐻𝑀𝑇 − 𝑑𝑡ℎ𝑓[𝑡ℎ𝑓]                                                                   …Eq. 52 

𝑑(𝑚𝑙𝑡ℎ𝑓)

𝑑𝑡
= 𝑙𝑚𝑙𝑡ℎ𝑓 + 𝑣𝐺𝐻𝑀𝑇 − 𝑑𝑚𝑙𝑡ℎ𝑓[𝑚𝑙𝑡ℎ𝑓]                                                 …Eq. 53 

𝑑(𝑔𝑙𝑦)

𝑑𝑡
= 𝑣𝐺𝐿𝑌𝑒𝑥 + 𝑣𝐺𝐻𝑀𝑇 − 𝑣𝐺𝑆 − 𝑑𝑔𝑙𝑦[𝑔𝑙𝑦]                                                  …Eq. 54 

𝑑(𝑐𝑦𝑠𝐿)

𝑑𝑡
= 𝑣𝐶𝑅 − 𝑣𝐺𝐶𝐿                                                                                              …Eq. 55 

𝑑(𝑔𝑙𝑢𝑐𝑦𝑠)

𝑑𝑡
= 𝑣𝐺𝐶𝐿 − 𝑣𝐺𝑆 − 𝑑𝑔𝑙𝑢𝑐𝑦𝑠[𝑔𝑙𝑢𝑐𝑦𝑠]                                                      …Eq. 56 

𝑑(𝑔𝑠ℎ)

𝑑𝑡
= 𝑣𝐺𝑆 + 𝑣𝐺𝑇𝐻𝑂 − 𝑣𝐺𝑇𝐻𝑃 − 𝑑𝑔𝑠ℎ[𝑔𝑠ℎ]                                                  …Eq. 57 

𝑑(𝑐𝑦𝑠)

𝑑𝑡
= 𝑣𝑥𝐶𝑇 − 𝑣𝐶𝑅                                                                                               …Eq. 58 
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𝑑(ℎ2𝑜2)

𝑑𝑡
= 𝑣𝑆𝑂𝐷 − 𝑣𝐺𝑇𝐻𝑃 − 𝑑ℎ2𝑜2

[ℎ2𝑜2]                                                            …Eq. 59 

𝑑(𝑔𝑠𝑠𝑔)

𝑑𝑡
= 𝑣𝐺𝑇𝐻𝑃 − 𝑣𝐺𝑇𝐻𝑂 − 𝑑𝑔𝑠𝑠𝑔[𝑔𝑠𝑠𝑔]                                                         …Eq. 60 

𝑑(𝑔𝑙𝑢𝑡𝑒)

𝑑𝑡
= 𝑙𝑔𝑙 + 𝑣𝑥𝐶𝑇 − 𝑣𝐺𝐿𝑈𝑇𝐸𝑋 − 𝑑𝑔𝑙[𝑔𝑙𝑢𝑡𝑒]                                               …Eq. 61 

𝑑(𝑐𝑦𝑠𝑒)

𝑑𝑡
= 𝑙𝑐𝑦 − 𝑣𝑥𝐶𝑇 − 𝑑𝑐𝑦[𝑐𝑦𝑠𝑒]                                                                       …Eq. 62 

𝑑(𝑂2(𝑒𝑥))

𝑑𝑡
= 𝐿𝑜𝑥𝑦 − 𝑣𝑂2

− 𝑑𝑜𝑥𝑦[𝑂2(𝑒𝑥)]                                                           …Eq. 63 

𝑑(𝑂2)

𝑑𝑡
= 𝑣𝑂2

+ 𝑣𝑆𝑂𝐷 − 𝑣𝑁𝑂𝑋 − 𝑑𝑖𝑛[𝑂2]                                                              …Eq. 64 

𝑑(𝑜𝑥𝑟𝑎𝑑)

𝑑𝑡
= 𝑣𝑁𝑂𝑋 − 𝑣𝑆𝑂𝐷                                                                                       …Eq. 65 

𝑑(𝑔𝑙𝑦𝑒)

𝑑𝑡
= 𝑙𝑔𝑙𝑦𝑒

− 𝑣𝐺𝐿𝑌𝑒𝑥 − 𝑑𝑔𝑙𝑦𝑒
[𝑔𝑙𝑦𝑒]                                                             …Eq. 66 

2.2.4. Positivity and Boundedness 

Positivity: The system of equations described in the previous section (Eq. 32-Eq. 66) can 

be analyzed with the initial conditions (APPENDIX B: Table B. 2) defined in the thirty-

five-dimensional variable space 

𝑅+
35 = [(𝑔𝑙𝑐𝑒 , 𝑔𝑙𝑐𝑐, 𝑔6𝑝, 𝑓6𝑝, 𝑓16𝑏𝑝, 𝑔𝑎𝑝, 𝑑ℎ𝑎𝑝, 1,3𝑏𝑝𝑔, 3𝑝𝑔, 𝑎𝑡𝑝, 𝑎𝑑𝑝, 𝑛𝑎𝑑𝑝ℎ, 𝑛𝑎𝑑𝑝,

𝑛𝑎𝑑ℎ, 𝑛𝑎𝑑, 3𝑝ℎ𝑝, 𝑔𝑙𝑢𝑡, 𝑎𝑘𝑔, 𝑝𝑠𝑒𝑟, 𝑠𝑒𝑟, 𝑡ℎ𝑓, 𝑚𝑙𝑡ℎ𝑓, 𝑔𝑙𝑦, 𝑐𝑦𝑠𝐿, 𝑔𝑙𝑢𝑐𝑦𝑠, 𝑔𝑠ℎ, 𝑐𝑦𝑠, ℎ2𝑜2, 𝑔𝑠𝑠𝑔,

𝑔𝑙𝑢𝑡𝑒 , 𝑐𝑦𝑠𝑒 , 𝑂2(𝑒𝑥), 𝑜𝑥𝑟𝑎𝑑, 𝑔𝑙𝑦𝑒) ∈ ℜ35|(𝑔𝑙𝑐𝑒 , 𝑔𝑙𝑐𝑐, 𝑔6𝑝, 𝑓6𝑝, 𝑓16𝑏𝑝, 𝑔𝑎𝑝, 𝑑ℎ𝑎𝑝, 1,3𝑏𝑝𝑔,

3𝑝𝑔, 𝑎𝑡𝑝, 𝑎𝑑𝑝, 𝑛𝑎𝑑𝑝ℎ, 𝑛𝑎𝑑𝑝, 𝑛𝑎𝑑ℎ, 𝑛𝑎𝑑, 3𝑝ℎ𝑝, 𝑔𝑙𝑢𝑡, 𝑎𝑘𝑔, 𝑝𝑠𝑒𝑟, 𝑠𝑒𝑟, 𝑡ℎ𝑓, 𝑚𝑙𝑡ℎ𝑓, 𝑔𝑙𝑦, 𝑐𝑦𝑠𝐿,

𝑔𝑙𝑢𝑐𝑦𝑠, 𝑔𝑠ℎ, 𝑐𝑦𝑠, ℎ2𝑜2, 𝑔𝑠𝑠𝑔, 𝑔𝑙𝑢𝑡𝑒 , 𝑐𝑦𝑠𝑒 , 𝑂2(𝑒𝑥), 𝑜𝑥𝑟𝑎𝑑, 𝑔𝑙𝑦𝑒) ≥ 0]  

It can be proven that all the solutions of the system in 𝑅+
35 remain in 𝑅+

35. Hence, 𝑅+
35 is 

positively invariant, and it is appropriate to consider solutions only in 𝑅+
35. The usual 

existence, uniqueness, and continuation of the results hold for the system-defined within 

this region. From our numerical simulations, we have observed the existence of positive 

solutions. The solution set we obtain for the set of ODEs represents the effective 

concentrations of the metabolites considered in the model at different time points during 
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the normal, hypoxia, and glioma development. The steady-state attained by all the 

variables of the model is a part of this positive solution space.  

We observe that the right-hand side of Eq. 32-Eq. 66 are smooth functions of the 

variables: 

(𝑔𝑙𝑐𝑒 , 𝑔𝑙𝑐𝑐, 𝑔6𝑝, 𝑓6𝑝, 𝑓16𝑏𝑝, 𝑔𝑎𝑝, 𝑑ℎ𝑎𝑝, 1,3𝑏𝑝𝑔, 3𝑝𝑔, 𝑎𝑡𝑝, 𝑎𝑑𝑝, 𝑛𝑎𝑑𝑝ℎ, 𝑛𝑎𝑑𝑝, 𝑛𝑎𝑑ℎ, 𝑛𝑎𝑑,

3𝑝ℎ𝑝, 𝑔𝑙𝑢𝑡, 𝑎𝑘𝑔, 𝑝𝑠𝑒𝑟, 𝑠𝑒𝑟, 𝑡ℎ𝑓, 𝑚𝑙𝑡ℎ𝑓, 𝑔𝑙𝑦, 𝑐𝑦𝑠𝐿, 𝑔𝑙𝑢𝑐𝑦𝑠, 𝑔𝑠ℎ, 𝑐𝑦𝑠, ℎ2𝑜2, 𝑔𝑠𝑠𝑔, 𝑔𝑙𝑢𝑡𝑒 , 𝑐𝑦𝑠𝑒 ,

𝑂2(𝑒𝑥), 𝑜𝑥𝑟𝑎𝑑, 𝑔𝑙𝑦𝑒) 

Since all the parameters are non-negative, the local existence and uniqueness properties 

hold in 𝑅+
35, if the following necessary conditions are satisfied, 

1. 𝑙𝑔 > 𝑑𝑔[𝑔𝑙𝑐𝑒] 

2. 𝑙𝑎𝑡𝑝 > 𝑑𝑎𝑡𝑝[𝑎𝑡𝑝] 

3. 𝑙𝑎𝑑𝑝 > 𝑑𝑎𝑑𝑝[𝑎𝑑𝑝] 

4. 𝑙𝑛𝑎𝑑𝑝ℎ > 𝑑𝑛𝑎𝑑𝑝ℎ[𝑛𝑎𝑑𝑝ℎ] 

5. 𝑙𝑛𝑎𝑑𝑝 > 𝑑𝑛𝑎𝑑𝑝[𝑛𝑎𝑑𝑝] 

6. 𝑙𝑛𝑎𝑑ℎ > 𝑑𝑛𝑎𝑑ℎ[𝑛𝑎𝑑ℎ] 

7. 𝑙𝑛𝑎𝑑 > 𝑑𝑛𝑎𝑑[𝑛𝑎𝑑] 

8. 𝑙𝑡ℎ𝑓 > 𝑑𝑡ℎ𝑓[𝑡ℎ𝑓] 

9. 𝑙𝑚𝑙𝑡ℎ𝑓 > 𝑑𝑚𝑙𝑡ℎ𝑓[𝑚𝑙𝑡ℎ𝑓] 

10. 𝑣𝑆𝑂𝐷 > 𝑑ℎ2𝑜2
[ℎ2𝑜2] 

11. 𝑙𝑔𝑙 > 𝑑𝑔𝑙[𝑔𝑙𝑢𝑡𝑒] 

12. 𝑙𝑐𝑦 > 𝑑𝑐𝑦[𝑐𝑦𝑠𝑒] 

13. 𝐿𝑜𝑥𝑦 > 𝑑𝑜𝑥𝑦[𝑂2(𝑒𝑥)] 

14. 𝑙𝑔𝑙𝑦𝑒
> 𝑑𝑔𝑙𝑦𝑒

[𝑔𝑙𝑦𝑒] 

Boundedness: 

Let, 𝑊1 = [𝑔𝑙𝑐𝑒] + [𝑔𝑙𝑐𝑐] + [𝑔6𝑝] + [𝑓6𝑝] + [𝑓16𝑏𝑝] + [𝑔𝑎𝑝] + [𝑑ℎ𝑎𝑝] + [1,3𝑏𝑝𝑔] +

[3𝑝𝑔] + [𝑎𝑡𝑝] + [𝑎𝑑𝑝] + [𝑛𝑎𝑑𝑝ℎ] + [𝑛𝑎𝑑𝑝] + [𝑛𝑎𝑑ℎ] + [𝑛𝑎𝑑] + [3𝑝ℎ𝑝] + [𝑔𝑙𝑢𝑡] +
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[𝑎𝑘𝑔] + [𝑝𝑠𝑒𝑟] + [𝑠𝑒𝑟] + [𝑡ℎ𝑓] + [𝑚𝑙𝑡ℎ𝑓] + [𝑔𝑙𝑦] + [𝑐𝑦𝑠𝐿] + [𝑔𝑙𝑢𝑐𝑦𝑠] + [𝑔𝑠ℎ] +

[𝑐𝑦𝑠] + [ℎ2𝑜2] + [𝑔𝑠𝑠𝑔] + [𝑔𝑙𝑢𝑡𝑒] + [𝑐𝑦𝑠𝑒] + [𝑂2(𝑒𝑥)] + [𝑜𝑥𝑟𝑎𝑑] + [𝑔𝑙𝑦𝑒]   

Then taking time derivative and using the above equation, we have  

𝑑𝑊1

𝑑𝑡
≤ 𝑙𝑤𝑙 + 𝑣𝐺6𝑃𝐷𝐻 + 𝑣𝐹𝐵𝐴 + 𝑣𝑆𝑂𝐷 − 𝑣𝐺𝐶𝐿 − 𝑣𝐺𝑆 − 𝑣𝐺𝑇𝐻𝑃 − 𝑑𝑤𝑙𝑊1, where 

𝑑𝑤𝑙 = min {𝑑𝑔 + 𝑑3𝑝𝑔 + 𝑑𝑎𝑡𝑝 + 𝑑𝑎𝑑𝑝 + 𝑑𝑛𝑎𝑑𝑝ℎ + 𝑑𝑛𝑎𝑑𝑝 + 𝑑𝑛𝑎𝑑ℎ + 𝑑𝑛𝑎𝑑 + 𝑑𝑎𝑘𝑔 + 𝑑𝑡ℎ𝑓 +

𝑑𝑚𝑙𝑡ℎ𝑓 + 𝑑𝑔𝑙𝑦 + 𝑑𝑔𝑙𝑢𝑐𝑦𝑠 + 𝑑𝑔𝑠ℎ + 𝑑ℎ2𝑜2
+ 𝑑𝑔𝑠𝑠𝑔 + 𝑑𝑔𝑙 + 𝑑𝑐𝑦 + 𝑑𝑜𝑥𝑦 + 𝑑𝑖𝑛 + 𝑑𝑔𝑙𝑦𝑒

}, and  

 𝑙𝑤𝑙 = max {𝑙𝑔 + 𝑙𝑎𝑡𝑝 + 𝑙𝑛𝑎𝑑𝑝ℎ + 𝑙𝑛𝑎𝑑𝑝 + 𝑙𝑛𝑎𝑑 + 𝑙𝑡ℎ𝑓 + 𝑙𝑚𝑙𝑡ℎ𝑓 + 𝑙𝑔𝑙 + 𝑙𝑐𝑦 + 𝐿𝑜𝑥𝑦 + 𝑙𝑔𝑙𝑦𝑒
} 

Let 𝐿𝑝 = 𝑉𝑚
𝐺6𝑃𝐷𝐻 + 𝑉𝑚

𝐹𝐵𝐴 + 𝑉𝑚
𝑆𝑂𝐷 and 𝐿𝑛 = 𝑉𝑚

𝐺𝐶𝐿 + 𝑉𝑚
𝐺𝑆 + 𝑉𝑚

𝐺𝐻𝑇𝑃 , where 

 𝑣𝐺6𝑃𝐷𝐻 + 𝑣𝐹𝐵𝐴 + 𝑣𝑆𝑂𝐷 ≤ 𝐿𝑝 since 𝑣𝐺6𝑃𝐷𝐻 ≤ 𝑉𝑚
𝐺6𝑃𝐷𝐻 and so on and 𝑣𝐺𝐶𝐿 + 𝑣𝐺𝑆 + 𝑣𝐺𝑇𝐻𝑃 ≤

𝐿𝑛 since 𝑣𝐺𝐶𝐿 ≤ 𝑉𝑚
𝐺𝐶𝐿 and so on. 𝐿𝑛 ≤ 𝐿𝑝, given the values of 𝑉𝑚 of G6PDH, FBA, SOD, GCL, 

GS, and GTHP. 

⇒
𝑑𝑊1

𝑑𝑡
≤ 𝑙𝑤𝑙 + 𝐿𝑝 − 𝑑𝑤𝑙𝑊1  

⇒
𝑑𝑊1

𝑑𝑡
+ 𝑑𝑤𝑙𝑊1 ≤ 𝑙𝑤𝑙 + 𝐿𝑝  

⇒
𝑑𝑊1

𝑑𝑡
+ 𝑑𝑤𝑙𝑊1 ≤ 𝜃1where 𝜃1 = 𝑙𝑤𝑙 + 𝐿𝑝 

From the theory of differential inequalities, we then obtain 

0 < 𝑊1([𝑔𝑙𝑐𝑒] + [𝑔𝑙𝑐𝑐] + [𝑔6𝑝] + [𝑓6𝑝] + [𝑓16𝑏𝑝] + [𝑔𝑎𝑝] + [𝑑ℎ𝑎𝑝] + [1,3𝑏𝑝𝑔] +

[3𝑝𝑔] + [𝑎𝑡𝑝] + [𝑎𝑑𝑝] + [𝑛𝑎𝑑𝑝ℎ] + [𝑛𝑎𝑑𝑝] + [𝑛𝑎𝑑ℎ] + [𝑛𝑎𝑑] + [3𝑝ℎ𝑝] + [𝑔𝑙𝑢𝑡] +

[𝑎𝑘𝑔] + [𝑝𝑠𝑒𝑟] + [𝑠𝑒𝑟] + [𝑡ℎ𝑓] + [𝑚𝑙𝑡ℎ𝑓] + [𝑔𝑙𝑦] + [𝑐𝑦𝑠𝐿] + [𝑔𝑙𝑢𝑐𝑦𝑠] + [𝑔𝑠ℎ] +

[𝑐𝑦𝑠] + [ℎ2𝑜2] + [𝑔𝑠𝑠𝑔] + [𝑔𝑙𝑢𝑡𝑒] + [𝑐𝑦𝑠𝑒] + [𝑂2(𝑒𝑥)] + [𝑜𝑥𝑟𝑎𝑑] + [𝑔𝑙𝑦𝑒]) <
𝜃1

𝑑𝑤𝑙
(1 −

𝑒−𝑑𝑤𝑙𝑡) + 𝑊1([𝑔𝑙𝑐𝑒](0) + [𝑔𝑙𝑐𝑐](0) + [𝑔6𝑝](0) + [𝑓6𝑝](0) + [𝑓16𝑏𝑝](0) + [𝑔𝑎𝑝](0) +

[𝑑ℎ𝑎𝑝](0) + [1,3𝑏𝑝𝑔](0) + [3𝑝𝑔](0) + [𝑎𝑡𝑝](0) + [𝑎𝑑𝑝](0) + [𝑛𝑎𝑑𝑝ℎ](0) +

[𝑛𝑎𝑑𝑝](0) + [𝑛𝑎𝑑ℎ](0) + [𝑛𝑎𝑑](0) + [3𝑝ℎ𝑝](0) + [𝑔𝑙𝑢𝑡](0) + [𝑎𝑘𝑔](0) + [𝑝𝑠𝑒𝑟](0) +

[𝑠𝑒𝑟](0) + [𝑡ℎ𝑓](0) + [𝑚𝑙𝑡ℎ𝑓](0) + [𝑔𝑙𝑦](0) + [𝑐𝑦𝑠𝐿](0) + [𝑔𝑙𝑢𝑐𝑦𝑠](0) + [𝑔𝑠ℎ](0) +

[𝑐𝑦𝑠](0) + [ℎ2𝑜2](0) + [𝑔𝑠𝑠𝑔](0) + [𝑔𝑙𝑢𝑡𝑒](0) + [𝑐𝑦𝑠𝑒](0) + [𝑂2(𝑒𝑥)](0) +

[𝑜𝑥𝑟𝑎𝑑](0) + [𝑔𝑙𝑦𝑒](0)). 𝑒−𝑑𝑤𝑡𝑡  

and for t → ∞, it follows 0 < 𝑊1 <
𝜃1

𝑑𝑤𝑙
 , hence all solutions of  𝑊1(𝑡) that initiates at 
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𝑊1(0) ∈ 𝑅35 are confined to the region: 𝐺1 = {(𝑊1)𝑇 ∈ 𝑅35: 𝑊1 =
𝜃1

𝑑𝑤𝑙
+ 𝜀1 for any 𝜀1 > 0 

for all 𝑡 ≥ 𝑇∗ where 𝑇∗ depends on the initial value (𝑊1(0))𝑇. 

2.2.5. Numerical simulation and model calibration 

The system of differential equations (Eq. 32 - Eq. 69) was simulated using ODE15s in 

MATLAB 2017a. Calibration of the model was performed upon available experiment data 

on the change in gsh over a period of time in retinal Muller glial cells under normal and 

amino acid supplemented scenarios (187). This was used to create the normal glial 

scenario, to which changes were introduced to create the hypoxic and glioma scenario. 

The basal parameters and initial values to the variables were considered within a 

biologically feasible range as obtained through literature search and are provided in 

APPENDIX B: Table B. 1 & Table B. 2. Few of the parameters and initial values were 

assumed within biologically feasible range as had been reported in the literature. A set of 

23 parameters remained unknown, which were determined using the parameter 

estimation technique. The model was ensured to reach a stable steady-state with the 

basal parameter states and initial values. Also, the simulations performed using the above 

parameters showed that at steady states, the basal extracellular glucose concentration 

and intracellular gsh concentration along with nadph/nadp+ and atp/adp ratios resemble 

true biological concentrations as reported in the literature. 

2.2.6. Parameter estimation 

Parameter estimation of the 23 unknown parameters was performed using the Delayed 

Rejection Adaptive Metropolis (DRAM) algorithm of Markov Chain Monte Carlo (MCMC) 

Toolbox (188) in MATLAB 2017a. The algorithm generates posterior distribution 

calibrated using the sample path of the MCMC chain to estimate unknown parameters for 

a known experimental result. In the ODE model, parameter estimation was performed 

using experimental data on the change in gsh in retinal Muller glial cells (187), as has 

been specified in the previous section (Figure 2.3A). Distributions plots and trace plots 

of all the 23 estimated parameters have been provided in Figure 2.4. Values for the 

parameters 𝑉𝑚
𝐺𝐿𝑈𝑇𝐸𝑋 and 𝑘𝑚

𝐺𝐿𝑈𝑇𝐸𝑋 were estimated using available data on glutamate 

exchange in astrocytes (Figure 2.3B) (189).  



Chapter 2: Methodologies 

 

P a g e |  54  

 

 

 
Figure 2.3: Predictive plot demonstration of model fitting with experimental data. (A) for 
reduced glutathione (gsh) and (B) for extracellular glutamate (glute). The blue circles represent 
the data points obtained from experiments, and the pink line represents the result obtained 
through model simulation. 

 

Figure 2.4: Parameter distribution and trace plot of estimated parameters. (A) Parameter 
distribution plot of the estimated parameters within the minimum and maximum range provided 
for the simulations, (B) Trace plots of the estimated parameters generated after 5 lakh chains of 
MCMC DRAM. 
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2.2.7. Sensitivity analysis 

Extended Fourier Amplified Sensitivity Test (eFAST) algorithm was used for identifying 

sensitive parameters to the system (190). The algorithm makes use of the variance 

decomposition method to predict the sensitivity of parameters in a nonlinear non-

monotonic system. The analysis was carried out using the whole set of parameters 

[k=123]. 150 samples were chosen per search curve, and the resampling of the search 

curves was carried out five times [NS =150, NR =5]. Hence, the total number of model 

simulations was N=(k+1)*NS*NR=93000. First-order sensitivity index Si, and total order 

sensitivity index, STi, were calculated for different transient time points and steady states 

of gsh, gssg, h2o2, and oxrad. Plots of Sensitivity indices (Si) of parameters with a p-value 

< 0.05 for gsh (reduced glutathione), gssg (oxidized glutathione), h2o2(hydrogen 

peroxide), and oxrad (oxygen radical) are provided in Figure 2.5. The analysis was 

repeated for high intracellular oxygen demand (hypoxic) and glioma conditions to check 

the changes in sensitivity of parameters at different conditions. 

 

Figure 2.5: Plots of sensitive parameters for different variables obtained for the three 
scenarios- normal, hypoxia, and glioma respectively: (A-C) gsh; (D-F) gssg; (G-I) h2o2; (J-L) 
oxrad 
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2.2.8. Parameter variation analysis 

Parameter variation analyses for a single parameter and two parameters were performed 

to understand the effect of sensitive parameters on the variables that govern the 

dynamics of oxidant-antioxidant balance. Parameters were varied over a feasible 

biological range at any given time point. For most of the instances, changes in the enzyme 

concentrations were introduced by varying the Vmax of the enzyme, as Vmax is determined 

by the enzyme concentration and substrate availability. For two-parameter variation 

analysis, two parameters were simultaneously varied, and the results were plotted as 3D 

surface plots to show their effect on the respective variable. 

2.2.9. Changing oxygen demand: creation of hypoxia scenario 

The oxygen uptake by cells was approximated by Michaelis-Menten kinetics (Eq. 31) in 

the model where Vmax represents the rate of oxygen uptake by the cell and Km represents 

the affinity of the cell for extracellular oxygen. Low Km signifies a high affinity for oxygen. 

The value of Km for extracellular oxygen was varied to create low to high intracellular 

oxygen demand. A low Km value created high oxygen demand within the cell which was 

used to represent a hypoxic condition in the extracellular environment.  

To create the hypoxic scenario, oxygen uptake rates of the cell was enhanced by reducing 

the Km of Oxygen (𝑘𝑚
𝑂2). The initial Km value for oxygen uptake was 164mM for the normal 

condition. This was reduced down to a very low value of 1mM, which signifies a high 

affinity for the substrate, which in the present model is the external oxygen. The hypoxic 

condition that resulted was a consequence of the rapid uptake of oxygen by the cell. 

Hence, in the model, hypoxia was represented as a consequence of the high oxygen 

demand of the cell. 

2.2.10. Creation of glioma scenario 

In order to create a glioma-like scenario in the model, changes were introduced in the 

values of multiple parameters to induce the change in the activities of the respective 

enzymes. The selection of these parameters was based on literature evidence of their 

malfunctioning in gliomas and also from the analysis of sensitive parameters. Differential 
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regulation of the enzymes NADPH oxidase (NOX) (191, 192), glutathione peroxidase 

(GTHP) (193, 194), and glutathione oxidoreductase (GTHO) (195) were previously 

reported in the literature. The sensitivity analysis further added to the understanding of 

the parameters that govern these changes. These include 𝑉𝑚
𝑁𝑂𝑋 , 𝑉𝑚

𝐺𝑇𝐻𝑂 , 𝑉𝑚
𝐺𝑇𝐻𝑃 and 𝑘𝑚

𝑂2 

where 𝑘𝑚
𝑂2 has been considered to alter the oxygen demand of the cell, thereby 

representing a hypoxic scenario as described in the previous section. An increase in h2o2 

concentration was considered as a signature to ensure that the model represents a 

glioma-like situation (196, 197). 

2.2.11. Identification of combination targets for ROS manipulation 

The parameter sensitivity of the three different model conditions: normal glial, hypoxic, 

and glioma, were reassessed. Parameters exclusive for the h2o2 in the glioma scenario 

were obtained. 11 parameters including were found exclusive for the glioma 

scenario: 𝑑𝑚𝑙𝑡ℎ𝑓 , 𝑘3𝑝𝑔
𝑃𝐺𝐶𝐷𝐻, 𝐿𝑜𝑥𝑦, 𝑑𝑝ℎ𝑝, 𝑘𝑔𝑙𝑢𝑡

𝑥𝐶𝑇 , 𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋 , 𝑘𝑛𝑎𝑑𝑝ℎ

𝑁𝑂𝑋 , 𝑉𝑚
𝐹𝐵𝐴, 𝑘𝑔𝑙𝑢𝑐𝑦𝑠

𝐺𝑆 , 𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅 , 𝑙𝑎𝑡𝑝. A 

combination of 2 parameters from the 11 parameters was varied, and the effect of their 

variation on the h2o2, gsh/gssg, and nadph/nadp+ profiles were computed. The values of 

the parameters were varied between a wide range (0.0001 to 100 units), and the 

observed changes were proposed to augment the pro-oxidative or anti-oxidative 

therapeutic approach.  

2.3. Network analysis of microRNA regulated metabolic genes, 

pathway and cellular phenotypes  

Genomic insults are the primary cause of evolving landscape of cellular metabolism 

during tumorigenesis that build the foundation for phenotype switching in glioblastoma. 

Functional genomic studies correlating mutations, epigenetic modifications, and 

transcriptional regulations that affect metabolic genes with the observed phenotypic 

changes have contributed much to our understanding of the adaptive phenotypes 

exhibited by glioblastoma (Section 1.5.3). In the past decade, growing evidence of the 

microRNA-dependent regulation of metabolism has gained an appreciation and is being 

explored in cancer metabolism. MicroRNAs are potent post-transcriptional regulators of 
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gene expression that participate in almost all cellular processes. Parallel investigation of 

microRNA regulation of cellular metabolism and metabolic control on cellular 

phenotypes can provide the opportunity to identify miRNA targets that can regulate 

oncogenic phenotypes by taking control of cellular metabolism. Hence, the next work in 

Chapter 5 is focussed on the post-transcriptional regulation imposed by microRNAs on 

the metabolic genes and their role in regulating cellular phenotypes in glioblastoma. 

Formal analyses of miRNA regulated metabolism were done using a graph-theoretical 

approach. Graph networks of miRNA - metabolic target gene and miRNA - metabolic 

pathway created using patient-derived differential expression data of miRNAs and 

metabolic genes were considered for the study. Functional annotation was done to 

identify the most frequently regulated metabolic pathways. Bipartite projection and 

backbone analysis were performed to identify important miRNAs that regulate important 

metabolism in glioblastoma. MiRNA - metabolic gene subnetworks were identified for 

various cellular phenotypes exhibited by glioblastoma. The identified subnetworks were 

further used to predict target combinations of miRNAs that could regulate the oncogenic 

phenotypes. MiRNA targets predicted were proposed as testable targets for in-vivo and 

in-vitro studies to test their feasibility as miRNA-based therapeutics in glioblastoma. 

2.3.1. MicroRNA expression dataset 

MicroRNA (miRNA) Expression data from Glioblastoma Multiforme (GBM) patient tumor 

samples and healthy brain tissue (partly from GBM patients) were obtained from the GEO 

dataset GSE90603 (198). The dataset was based on the GPL21572 (Affymetrix 

Multispecies miRNA-4 Array) platform and contained 16 fresh-frozen GBM samples, 3 

fresh frozen healthy brain tissue samples from healthy volunteers, and 4 samples from 

healthy brain tissues of GBM patients. Differentially expressed miRNAs obtained from the 

dataset were used for further analyses. A flow diagram of the protocol followed for the 

present work has been provided in Figure 2.6. 
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Figure 2.6: Flow diagram of the protocol followed for screening of potential miRNAs 
regulating metabolic genes and cellular phenotypes in glioblastoma.  

2.3.2. Differential expression of miRNA 

The differentially expressed miRNAs in GBM patients were identified by performing 

differential expression analysis using the GEO2R online tool. GEO2R is an R-based web 

application that allows users to analyze, identify and visualize the differential expression 

of transcriptomics data (199). The tool uses established R Bioconductor packages at the 

backend to transform and analyze GEO datasets and presents the results as a table 

ordered by the significance of differential expression (FDR). The processed data can be 

visualized with GEO Profile graphics. Three different groups, including GBM [GBM tumor 

tissue samples (n = 16)], Normal [normal brain tissue samples from healthy volunteer (n 

= 3)], and Normal from GBM [normal brain tissue samples from GBM patients (n = 4)] 

were defined. Two sets of differentially expressed miRNA were obtained by comparing 

GBM samples with Normal and Normal from GBM samples. We compared the 

differentially expressed miRNAs of the two sets to identify common miRNAs that are 

differentially expressed in both sets. A final set of 26 upregulated and 46 downregulated 

miRNAs were selected by considering -1.5 > logFC > 1.5 and FDR < 0.05 as the threshold. 
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2.3.3. Identification of predicted target genes 

The predicted target genes of the differentially expressed miRNAs were obtained from 

the miRDB database (200). The database allows the identification of miRNA target genes 

for specific cell lines of interest by determining target expression level through RNA-Seq 

using the RPKM method. The target genes for each of the 26 upregulated and 46 

downregulated miRNAs that had detectable expression in the U87-MG glioblastoma cell 

lines were selected. The abbreviations used for the metabolic genes in Chapter 5 are the 

conventional Uniprot gene symbols for Homo sapiens. 

2.3.4. Validation of differentially expressed miRNAs and predicted targets 

Additional datasets of miRNA expression were analyzed along with the GSE90603 dataset 

to validate the differential expression of miRNAs in glioblastoma. Dataset GSE65626, 

GSE25631, GSE165937, and GSE103229 were used for the validation. All the datasets 

were obtained from the GEO database. The distribution of data across the datasets was 

checked within the inbuilt platform of the GEO database that uses the R package “limma”. 

Volcano plots of the data distribution of all the five datasets have been provided in 

APPENDIX C: Figure C. 1. GSE90603, built on the GPL21572 platform, was the most 

stable dataset and hence chosen as the primary dataset for the analysis. While the rest of 

the datasets were used for validation of the upregulation or downregulation of the 

differentially expressed miRNAs obtained from GSE90603 as described in Section 2.3.2. 

The U87-MG specific predicted targets of the differentially expressed miRNAs obtained 

from miRDB were verified with the predicted target genes of a few additional 

glioblastoma cell lines. miRDB provides a repertoire of cell-line specific predicted targets 

of miRNAs. LN229, A172, SF126, and T98G were the additional cell line chosen for the 

verification of predicted targets and can be obtained from the miRDB database. 

2.3.5. Differential expression analysis of gene expression data 

Further filtering of the predicted target genes for the upregulated and downregulated set 

of miRNAs was done by mapping them with glioblastoma patient-derived gene 

expression data. RNA-Seq gene expression data for 169 glioblastoma patients and 5 

normal individuals were obtained from the TCGA GBM project. Differential expression 
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analysis of the RNA-Seq data was performed using the “limma” and “edgeR” package of R 

Bioconductor version 3.10 (BiocManager 1.30.10) (201, 202). Significant differentially 

expressed genes were obtained considering FDR < 0.05 as the threshold. Genes involved 

in glioblastoma metabolism were filtered out for further analyses. Only the significantly 

downregulated target metabolic genes of upregulated miRNAs and significantly 

upregulated target metabolic genes of downregulated miRNAs were considered for 

network analysis. 

2.3.6. Integration of additional gene interactions in miRNA-target metabolic 

gene network  

The identified target metabolic genes were integrated into two miRNA-target gene 

networks for the upregulated and downregulated sets. In order to trace the effect of 

differentially expressed miRNA-target genes on the metabolic reaction network, 

additional genes were identified that work together with the target genes. These genes 

were considered on the basis of evidence of their involvement in the formation of protein 

complexes that catalyze a particular metabolic reaction or were involved in other 

coregulatory activities in the reaction network. Interactions within the target genes of 

each of the networks were obtained from the STRING database (203). Interactions with 

the highest confidence score (0.009) and active interaction sources from experiments, 

databases, co-expression, neighbourhood, and gene-fusion were considered to establish 

the interactions.  

2.3.7. Pathway enrichment analysis  

To identify the metabolic pathways that were regulated by the miRNA-target genes, 

pathway enrichment analysis was performed. The enrichment was done using GeneCodis 

4.0 (204). The significantly enriched pathway entries (p < 0.05) from annotation against 

the KEGG and Reactome database were obtained and are tabulated in APPENDIX C: 

Table C. 1 & Table C. 2.  

An extensive pathway search was done for each target metabolic gene of the miRNA-

target gene networks using KEGG Mapper (205). KEGG Mapper allows mapping of 

molecular objects like genes, proteins, small molecules, etc., to molecular 
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interaction/reaction/relational networks like KEGG pathway maps, BRITE hierarchies, 

and KEGG modules. The search pathway query was used to map all the pathways 

regulated by the query genes. The output data was used to create a gene-pathway 

network that was further used to identify the specific pathways regulated by each miRNA. 

2.3.8. Network propagation using Diffusion algorithm 

Network propagation provides a robust estimate of the nodes proximal to a set of initial 

seed nodes by considering the overall connectivity of the network, shortest paths, and 

degree distribution of the seed nodes. The algorithm is widely used in biological network 

analysis for disease gene prioritization. We used the diffusion method of Cytoscape for 

network propagation (206) in both the miRNA-target gene network and the gene-

pathway network to prioritize gene sets and corresponding pathways that were most 

proximal to each differentially expressed miRNA. 

The diffusion method follows the heat diffusion algorithm (207). The calculation is given 

by: 

𝑑 = ℎ ∗ 𝑒𝑥𝑝(−𝐿𝑡)                                                    …Eq. 67 

where h is a vector representing the initial seed nodes, and d is the resultant vector of 

output nodes proximal to h. L is the graph Laplacian defined by D − A, where D is a 

diagonal matrix of the degree of each node and A is the graph adjacency matrix of the 

input network. t is a scalar parameter defined as the total time of diffusion that controls 

the extent to which the original signal is allowed to spread over the network. exp (*) is 

the exponential of the matrix. 

The d was calculated repeatedly for each miRNA (h) in the miRNA-target gene network 

and a set of miRNA target genes in the gene-pathway network. 

2.3.9. Identification of miRNA regulated metabolic pathway 

The diffusion algorithm was used to identify a set of proximal genes for each miRNA of 

the miRNA-regulated target gene interaction network. The output genes were used as 

seed nodes for the gene-pathway network to extract pathways that were highly regulated 

by these gene sets. Nodes belonging to only the top 90th percentile of the diffusion output 
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rank were chosen as the output nodes to ensure only highly regulated genes and 

pathways were selected. Following the sequential network propagation, individual 

miRNAs were linked to the set of output pathways, and a network of miRNA-regulated 

metabolic pathways was obtained. The network integrated both upregulated and 

downregulated miRNAs and their target metabolic pathways. Gephi 0.9.2 was used for 

the visualization of the network (208). 

2.3.10. Bipartite projection and backbone extraction of important miRNAs 

regulating metabolism 

The miRNA-pathway network created was a true bipartite network defined by two 

mutually exclusive sets of nodes: top nodes formed by the miRNAs and bottom nodes 

formed by the pathways. The bipartite projection was used to compress the information 

of the network onto the top nodes. Bipartite projection allows compressing large 

bipartite graphs into unipartite network while retaining the information in the form of a 

weighted projected network (209). In the present work, the information of pathways was 

projected onto the miRNAs based on their connectivity to the pathways regulated by 

them. The final projected network of miRNAs contained edge weights that are defined by 

the number of common pathways targeted by a pair of connected miRNAs. R packages 

RCy3 and igraph were used for bipartite projection using the overlap count method (209, 

210). 

Further, backbone extraction was performed on the projected weighted miRNA network 

(Figure 2.7A). Ideally, backbone extraction yields a subgraph composed of the most 

significant nodes and edges in a network. The core miRNAs regulating different metabolic 

processes were obtained by filtering out all the redundant information. The extraction of 

the core component involves the use of a threshold. Edge weights exceeding the threshold 

value are retained in the backbone, while those weighing below the threshold value are 

eliminated. We used the unconditional threshold method (211) in the present work, 

where a single threshold was applied to all the edges, and edges with weights higher than 

the defined threshold were retained. R package backbone was used for the backbone 

extraction (212). 
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Figure 2.7: Illustration of methods. (A) Illustration of miRNA backbone extraction from miRNA-
pathway bipartite network; (B) Comparison of the difference in Katz centrality with low and high 
α values. 

2.3.11. Identification of miRNA-gene subnetwork for glioblastoma specific 

cellular phenotype 

Cellular phenotypes that are dominantly regulated by metabolic changes in glioblastoma 

were considered for the analysis. These included proliferation and growth, survival, cell 

migration and invasion, stemness, and drug resistance. With an extensive literature 

search, a set of key regulatory metabolic genes associated with each of these cellular 

phenotypes were identified. Many of the key regulatory genes identified through 

literature were not essentially differentially regulated and were identified through 

experimental perturbations. Hence, to take into account all such genes, an integrated 

network of both upregulated and downregulated miRNAs and all the U87-MG specific 

predicted target metabolic genes from the miRDB database was used. We used the same 
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diffusion algorithm as discussed in Section 2.3.8 to initiate network propagation, and the 

key regulatory genes were used as the seed nodes. Nodes belonging to the top 70th 

percentile of the diffusion output rank were chosen, and the group of highly connected 

nodes was selected as a subnetwork. Gephi 0.9.2 was used for the visualization of the 

network, and the R package tidyverse was used to generate the circular plot of miRNAs 

in the subnetworks (213). 

2.3.12. Knockout analysis for identification of targetable miRNAs 

A set of miRNAs for each of the cellular phenotypes was obtained from the respective 

miRNA-target gene subnetwork. These miRNAs were analyzed to identify targetable 

miRNAs for miRNA-based therapeutic approaches. Given the gene regulatory structure 

of the network, which was directed and partially bipartite, the network was studied as a 

two-mode graph, where the influence of the top nodes formed by the miRNAs over the 

bottom nodes formed by the target genes was studied. The usual network centrality 

measures face limitations in identifying the central nodes in such networks due to the 

partial connectivity of the nodes. Hence, the cruciality of the miRNAs in the subnetwork 

was determined by calculating their Pairwise Disconnectivity Index (PDI) in the 

subnetwork (214).  

The PDI considers an ordered pair of nodes synonymously called vertices and 

mathematically represented as vertices {i, j}| i ≠ j and i, j ∈ V of a directed graph G (V, E) 

of the regulatory network formed by vertices ʋ ∈ V denoting biological entities, i.e., genes, 

proteins, transcription factors or miRNAs, and connected by directed edges e ∈ E. An 

ordered pair of vertices i and j in G are connected if they are linked by at least one path. 

PDI quantifies the importance of a node by measuring the effect of elimination of the 

vertex on the number of connected ordered pairs of vertices. It is mathematically defined 

as the fraction of initially connected pair of vertices of a network that become 

disconnected when the vertex ʋ is deleted from the network 

 𝑃𝐷𝐼 (ʋ) = 1 −
𝑁−𝑣

𝑁0
                                                            …Eq. 68  

where 𝑁0 is the initial number of connected ordered pairs of vertices in the network and 

𝑁−𝑣 is the number of ordered pairs that still remain connected after the deletion of the 
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vertex ʋ from the network. PDI ranges between 0 to 1. The higher the value of 𝑃𝐷𝐼 (ʋ), 

the more disconnected the network is upon deletion of the vertex ʋ. Biologically, it 

quantifies the extent of regulation imposed by a regulatory node on the other connected 

pair of nodes in the network. The PDI of each miRNA in the subnetworks was calculated, 

and the miRNAs with high PDI were considered for knockout analysis.  

The impact of miRNA regulation on the key regulatory genes of a subnetwork was 

determined by performing knockout analysis. The knockout analysis was performed on 

the integrated miRNA- metabolic target gene network (Section 2.3.11). MiRNAs with 

high PDI were knocked out from the network, individually and in combinations. Double 

and triple knockout combinations were designed to identify combinations that could 

target the maximum number of key regulatory genes in each subnetwork. Katz centrality 

(215, 216) of the genes were compared before and after the deletion of a miRNA to 

measure the impact of a miRNA deletion on these genes. Katz centrality (𝐾) of a node 𝑖 is 

computed as 

𝐾𝑖 = 𝛼 ∑ (𝐴𝑖𝑗 ∗ 𝐾𝑗) +  𝛽𝑗                                                 …Eq. 69  

where 𝐴 is the adjacency matrix of graph 𝐺 with eigenvalues 𝜆. 𝛽 is a bias constant used 

to avoid zero centrality values, and 𝛼 is the attenuation factor and 𝛼 < 1/ 𝜆𝑚𝑎𝑥. Katz 

centrality measures the relative influence of a node 𝑖 in a network by calculating the 

number of first-degree interactors of the node as well as all other nodes in the network 

that are connected to node 𝑖 through the first-degree interacting nodes (217). The value 

of 𝛼 is important in determining the local and global properties of the network using Katz 

centrality. Katz centrality with a low value of 𝛼 measures the local influence of a node on 

the network, whereas a high 𝛼 value close to 1/ 𝜆𝑚𝑎𝑥 value measures the global influence 

of the node (217). The influence of the target gene nodes was computed using different 𝛼 

values. The difference in Katz centrality of the top 100 influential nodes in the network 

with 𝛼 = 0.01 and 𝛼 = 0.2 are shown in Figure 2.7B. 𝛼 = 0.2 was used for further 

analysis. This centrality was used to compute the change in the influence of a gene in the 

network before and after a miRNA deletion. The R package centiserve was used to 

compute both pairwise disconnectivity index and Katz centrality of the nodes (218). 
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CHAPTER 3 

ANOMALOUS BEHAVIOR OF METABOLIC PATHWAYS IN 

GLIOBLASTOMA AND THEIR EFFECT ON INTERNAL CELLULAR 

MECHANISMS 

3.1. Rationale of the study 

Adaptive phenotype switching is a characteristic feature of cancer cells. The dynamic 

molecular crosstalk within the cell and a cumulative behavior of heterogenous tumor 

masses support phenotypic plasticity and rapid adaptation to stress in glioblastoma. 

Metabolic remodelling supports the high proliferative requirements of these cancer cells 

and is often associated with tumor cell plasticity. Heterogenous glioblastoma tumor 

masses exhibiting metabolic signatures like IDH mutation (64), IDO overexpression 

(219), MTAP deletion (63), accumulation of kynurenine, and cysteine sulfinic acid (57) 

act cumulatively to evade anti-cancer therapies. Deregulated expression of GLUT1, 3, and 

4, phosphofructokinase, pyruvate kinase M2, glutathione oxidoreductase, glucose-6-

phosphate dehydrogenase, phosphoglycerate dehydrogenase, glutaminase, and many 

other enzymes across different metabolic pathways are frequently observed in these 

tumors (Section 1.5.3), enabling metabolic plasticity. The study of the rewired metabolic 

network provides an understanding of the effect of metabolic regulations on the global 

outputs, manifested as phenotypes. The challenge, however, is to understand the 

condition-specificity of metabolic adaptations along with the overall picture of metabolic 

re-routing at a large-scale in these cancer cells. In this context, systems-level analysis of 

metabolic flux networks helps generate nonintuitive, testable hypotheses about 

metabolic reprogramming.  

Several studies have been carried out to delineate the advantage of such metabolic 

modification in glioblastoma, enabling them to suffice their rapacious requirements (15). 

Several experimental and statistical analyses have been conducted to delineate the 

phenomenal changes in the properties of glioblastoma as an effect of metabolic 

alterations in different enzymes belonging to different pathways like tryptophan 

metabolism(16), cysteine metabolism(17), glutamine, and glutamate metabolism(2). 

Bulk of this chapter has been taken verbatim from our previously published article: Bhowmick R, 

Subramanian A, and Sarkar RR (2015) Exploring the differences in metabolic behavior of astrocyte and 

glioblastoma: A flux balance analysis approach, Systems and Synthetic Biology, 9, 159 - 177(2015), 

DOI:10.1007/s11693-015-9183-9 
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Properties of these individual metabolic pathways have been studied in both astrocytes 

and glioblastoma. A new arena of in-silico studies has also been employed in the past 

decade to get a large-scale network understanding of glioblastoma. Different types of 

dynamic modelling approaches, such as spatiotemporal modelling (129, 131), partial 

differential equation modelling (134), ordinary differential equations, have been used to 

detect the growth and invasion of glioblastoma cells (220). However, these studies have 

been mostly limited to understand the metabolism of glioblastoma in parts. These studies 

only provide a partial picture to the unaddressed questions, and further studies are 

required to address the same.  

Hence, in line with the thesis objectives, in this chapter, we began with a systems-level 

analysis of a context-specific metabolic model of glioblastoma. The aim of this chapter is 

to understand what is the effect of change in metabolic flux through a deregulated 

pathway on the overall metabolic landscape of glioblastoma and what are the conditions 

under which the cell displays a particular change in flux route? It also aims to understand 

how this reprogramming favours the proliferation and growth of glioblastoma? The 

chapter partially fulfils the second objective by investigating the metabolic vulnerabilities 

that can be used as a potential therapeutic target.  

The present work involves the specific comparison between the astrocyte and 

glioblastoma scenarios by taking into account those pathways which are known to get 

deregulated in glioblastoma when compared to the normal astrocytes. Our constraint-

based model accommodates a total of 13 pathways, the abnormal functioning of which 

has been reported in glioblastoma. The model has 247 reactions, with 39 exchange 

reactions and 69 transport reactions associated with 147 genes (Section 2.1.1). By 

analyzing this large network using flux balance analysis, the differences in the individual 

pathway response as a part of a large metabolic network in astrocyte and glioblastoma 

scenarios were delineated (Section 2.1.2). Specific questions were addressed using the 

model, like how glioblastoma cells fuel their growth requirement? Is there an overlap 

between the energy and growth demand of these cells? Two objective functions: ATPSyn 

(Eq. 1) and GBM_BM (Eq. 2) were defined to capture the energy and growth demand of 

the model.  
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The model was validated for both astrocytic and glioblastoma scenarios with the 

experimentally available information to ensure that it generates results that are 

biologically reasonable (Section 2.1.5). By analyzing the steady-state flux profiles 

generated by the model, the fate of the input metabolites and their essentiality in 

glioblastoma growth was interpreted (Section 2.1.6). Single and double reaction 

knockouts analyses were performed to determine the essentiality of the reactions 

involved in the metabolic network in governing the growth properties of glioblastoma 

(Section 2.1.7). Potential drug targets were identified from those sets of essential 

reactions. To determine the extent of regulation that could be imposed on those drug 

targets and to analyze them quantitatively, they were further simulated for therapeutic 

intervention scenarios with the motive of either reducing the glioblastoma growth to zero 

or to reduce it to the growth rate of a normal astrocyte (Section 2.1.8). The classification 

of reaction knockouts combined with simulations of therapeutic interventions could 

predict reaction pairs as feasible drug targets, supporting the large-scale applicability of 

constraint-based models in predicting reasonable therapeutic target combinations. 

3.2. Results 

3.2.1. Properties of the reconstructed metabolic network  

The present context-specific model for metabolism provides a composite understanding 

of metabolic re-routing in glioblastoma at the pathway level. The details of reactions 

involved in the thirteen frequently deregulated pathways in glioblastoma were collated 

and verified from multiple data sources, including databases and literature (Section 

2.1.1). The reconstructed model comprised of a total of 247 reactions, with 39 exchange 

reactions and 69 transport reactions. Most of the internal reactions, along with a few 

transport reactions, were associated with their corresponding genes, which accounts for 

147 genes in the model (APPENDIX A: Table A. 1).  

The present model for glioblastoma metabolism could be classified on the basis of the 

following four categories: (i) enzyme commission number, (ii) gene non-gene 

association, (iii) sub-cellular locations, and (iv) metabolic processes (Figure 3.1). A 

large number of the reactions in the model belonged to the class 1 category of enzyme 
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classification, i.e., the oxidoreductases (22%). This set of enzymes catalyze the oxidation 

of one chemical species and the simultaneous reduction of the other by the transfer of 

electrons from one species to another. The other classes of enzymes in this classification 

scheme were the transferases (14%) followed by lyases (10%), hydrolases (4%), 

isomerases (2%), and ligases (2%).  Another 28% of the reactions belonged to transport 

reactions and 16% to extracellular exchange reactions that occurred spontaneously in 

the system (Figure 3.1A). 

The reactions were further classified on the basis of their association with genes to 

understand gene reaction associations (Figure 3.1B). 60% of the model reactions were 

gene-associated, out of which 6% are transport reactions. The rest of the reactions were 

classified as: Non-Gene associated Exchange Reactions (16%), Non-Gene associated 

Intracellular Reactions (2%), and Non-Gene associated Transport Reactions (22%). 

The classification shown in Figure 3.1C depicts the subcellular localization of the 

reactions considered in the model. The cytosolic and mitochondrial reactions 

contributed to 54% of the total reactions in the model. 2% of the reactions belonged to 

the mitochondrial intermembrane space model compartment that specifically accounts 

for oxidative phosphorylation. The transport reactions were categorized according to 

the membrane where it is localized. Transports accounted for 30% of the total reactions: 

Mitochondrial membrane-spanning (11%), Nuclear membrane-spanning (2%), and 

Plasma membrane-spanning (17%).  

In terms of metabolic processes, 23% of the reactions belonged to fatty acid metabolism, 

inclusive of both biosynthesis and beta-oxidation of palmitic acid. The rest of the 

pathways contributed to 30% of the total count of which 14% belong to Glycolytic, PPP, 

TCA cycle and Oxidative phosphorylation pathway and 2% is contributed each by 

Glycine-Serine Metabolism, Cysteine Metabolism, Methionine Metabolism, and 

Glutamate Metabolism, without taking into account the transport and exchange 

reactions. Another set of reactions, namely, cytosolic ATPase (ATPS), cytoplasmic 

malate dehydrogenase (MDH(Cyto)), Phosphoenolpyruvate carboxykinase (GTP) 

(PEP_CarbK_1), mitochondrial pyruvate carboxylase (Pyr_Carbm), which could not be 

assigned strictly under any particular pathway, were categorized as ‘Others’ which 

contributed to 2% of reactions to the (Figure 3.1D). 
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Figure 3.1: Classification of the properties of the reconstructed metabolic model. The model 
reconstruction has been classified on the basis of (A) Enzyme commission number or E.C. number, 
(B) Gene-Non gene association, (C) Cellular compartments, and (D) Metabolic processes, 
respectively. 

3.2.2. Validation of objective function for growth demand 

The cellular demands for ATP synthesis and growth were optimized separately so as to 

identify how the deregulation in mitochondrial ATP synthesis affects the flux flow 

through different pathways of the network while the cell manages to serve its energy and 

growth requirement (Section 2.1.3). The objective function that was designed to mimic 

the growth requirement of glioblastoma was validated with an experimentally observed 
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growth phenomenon. According to experimental evidence, excess glucose can retard the 

growth rate of glioblastoma cells, and high levels of glucose can even prove to be toxic 

due to excess accumulation of lactate (221). So, to check if the objective function for 

growth could display this growth property of glioblastoma, we observed the fate of 

GBM_BM with varying uptake of glucose (with glucose being taken as the carbon source 

along with cystine, and the uptake of glucose was varied). We found that GBM_BM limits 

to increase with excess glucose uptake, and after a point, the flux through it reduces to 

zero (Figure 3.2). Also, the lactate dehydrogenase activity increases rapidly with glucose 

uptake. This relationship of GBM_BM with the glucose uptake could account for the 

growth properties of glioblastoma and hence was considered to represent the growth 

demand of glioblastoma.  

 

Figure 3.2: Change in flux through GBM_BM with increasing glucose uptake. Change in flux 
through the metabolic function GBM_BM and Lac_dehyd reaction with increasing uptake of 
glucose in the model glioblastoma scenario. 

3.2.3. Analysis and validation of model properties for astrocyte and 

glioblastoma model 

The reconstructed metabolic model was validated both for the astrocytic and the 

glioblastoma scenario, using mitochondrial ATPSyn (Eq. 1) as the objective function. The 

astrocytic scenario was created first by fixing the bounds of a few reactions. Few known 

perturbations from experiments were introduced to the astrocyte model so as to create 

the glioblastoma model (Section 2.1.4). 
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Validation of astrocyte model  

Required changes were made to the bounds of certain reactions during simulation of the 

astrocyte model, and the optimal range of bounds within which it showed the properties 

of astrocyte was estimated. The astrocyte scenario was validated with experimental 

observations like pyruvate recycling, lactate production, and the effect of glutamate to 

ensure that the model mimics the properties of astrocytes. 

Astrocytes prefer a glucose-dependent metabolism where glucose is catabolized to 

pyruvate that enters the TCA cycle, thereby leading to ATP synthesis(179) and partly to 

the formation of lactate so as to suffice the neuronal requirement. This property was 

examined in the model astrocytic scenario by performing a robustness analysis of glucose 

uptake with increasing oxygen uptake. The default flux balance analysis in the model 

astrocytic scenario suggested an optimal flux of -160 for oxygen uptake. The uptake of 

oxygen was thus, varied up to its optimal flux, and its effect on glucose uptake was 

observed. An increase in oxygen uptake led to a linearly proportional increase in glucose 

uptake (Figure 3.3A). The glucose was observed to produce lactate in the astrocytes 

without affecting the mitochondrial respiratory chain. Further, above an oxygen uptake 

of 130, a slight dip in the glucose uptake rate was observed without affecting the flux 

through mitochondrial ATP synthesis, which continued to increase. This was possibly 

because of the recycling of pyruvate from the TCA cycle intermediates. Reports suggest 

that TCA cycle intermediate, citrate may give rise to oxaloacetate, which is subsequently 

converted to pyruvate through the activity of malic enzyme or by the combined activity 

of PEP carboxykinase and pyruvate kinase (222). 

Model simulations suggested that pyruvate was recycled from the TCA cycle via the 

conversion of oxaloacetate through PEP carboxykinase and pyruvate kinase reactions. 

This resulted in a reduced dependence of pyruvate production on glucose uptake. The 

pyruvate so formed was again catabolized into the TCA cycle and used for maintaining 

ATP production via the activity of the mitochondrial respiratory chain. The complex IV of 

the oxidative phosphorylation pathway consumes oxygen for its activity, and hence an 

increase in ATP Synthase activity proportional to oxygen uptake was observed. 

The activity of lactate dehydrogenase and pyruvate kinase increases during anoxic 

conditions as compared to normoxic conditions in astrocytes (180). To verify this 
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property, normoxic and hypoxic conditions were created in the model by constraining 

the oxygen uptakes at the optimum (flux value=-120) and low (flux value=-2) values and 

ensuring sufficient glucose uptake in the model. It was observed qualitatively that the 

model is capable of capturing this feature of astrocytes (Figure 3.3B). Although the actual 

experimental result was generated by incubating the astrocyte cells in a completely 

oxygen-deprived anoxic condition for 6 hours, creating such a situation in the present in-

silico model would lead to zero ATP synthesis due to its dependence on oxygen. Hence, 

the property was verified for hypoxic conditions represented by low oxygen uptake only.  

In astrocytes, the uptake of glucose increases with an increase in glutamate uptake that 

leads to increased lactate production(181). This scenario was created in the model by 

regulating the exchanges of glucose, glutamate, and oxygen. By varying the glutamate 

uptake from 0 to 450, a corresponding increase in glucose uptake and hence, lactate 

production was observed during model simulations. Further, it was observed that the 

highest lactate production was at a glutamate uptake flux of 450 (Figure 3.3C).  

 

Figure 3.3: Validation of Astrocyte model. Properties of astrocyte have been depicted in figure 
(A) increase in glucose uptake driven towards mitochondrial ATP synthesis and lactate 
production, (B) increase in the activity of lactate dehydrogenase and pyruvate kinase in hypoxia 
conditions, (C) increase in glucose utilization and lactate production with increasing glutamate 
uptake. 
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Validation of glioblastoma model  

The astrocyte model was further perturbed to create the glioblastoma scenario (Section 

2.1.4). To validate the glioblastoma scenario, steady-state fluxes of certain reactions 

obtained by simulating for glioblastoma scenario were compared with that of the 

astrocyte scenario while keeping all the nine inputs open to the system. The Warburg 

effect, which states a reduction of ATP production through mitochondrial respiration and 

an increase in glucose utilization to increase the flux towards aerobic glycolysis (15), was 

observed in the glioblastoma scenario (Figure 3.4A).  

For further validation of this scenario, few experimental observations were replicated 

from our model. Glutaminolysis is a known property of glioblastoma cells, where the 

uptake and utilization of glutamine is favoured over glutamate for compensating the loss 

of glutamate through cysteine-glutamate antiporter (2), which is a property that is 

exactly opposite to that of astrocytes (182). Also, uptake of cystine increases in the 

glioblastoma cells due to enhanced activity of cystine-glutamate antiporter (17). All these 

differences in the exchange properties of glioblastoma could be observed through our 

model when the entry of all the input metabolites was allowed (Figure 3.4B).   

 

Figure 3.4: Validation of Glioblastoma model. Properties of glioblastoma have been depicted 
in (A) reduced mitochondrial ATP synthesis and increased glucose utilization in glioblastoma 
scenario (B) reversal in glutamate and glutamine utilization and increase in cystine uptake in 
glioblastoma scenario. 

3.2.4. Comparison with experimental data 

A separate objective function, GBM_BM (Eq. 2), was designed to understand the 

metabolic requirements associated with glioblastoma growth. Considering this reaction 
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as the cellular objective, the glioblastoma scenario was further evaluated for its metabolic 

properties. All the further analyses have been performed, keeping the GBM_BM as the 

objective function. Initial validation was done to ensure that the objective function 

represents the growth properties of glioblastoma (Section 3.2.2). Further verification of 

this objective function was done via a qualitative comparison of fold change in the flux 

values of few reactions with the fold change expression values of certain reported 

reactions in the astrocytic and glioblastoma scenario. The fold change in flux profiles of 

astrocytic to glioblastoma scenario as predicted from the model was compared to existing 

proteome data extracted from young glioblastoma patients (223). The results of this 

comparison are listed in Table 3.1. Fold change expression data for eight reactions could 

be matched with the model reactions. Out of the eight reactions, predicted activity for five 

reactions was qualitatively found to be in correspondence with the experimental 

observations. 

Table 3.1: Comparison of model prediction with the data available for enzyme expression 
in the young patient. 

Uniprot 
ID 

Reaction name 
Model 
abbr. 

Fold 
Change 

Model 
Prediction 

Gene 
abbr. 

Fold 
Change 

Exp. 
Predictio

n 

O43175 
D-3-phosphoglycerate 

dehydrogenase 
PGDH 0.9313 D PHGDH 0.55 D 

P04075 
Fructose-bisphosphate 

aldolase A 
FBA 0.9175 D ALDOA 0.71 D 

P50213 

Isocitrate 
dehydrogenase [NAD] 

subunit alpha, 
mitochondrial 

IDH 0.0000 D IDH3A 0.48 D 

P18669 
Phosphoglycerate 

mutase 1 
PGM 2.4046 U PGAM1 1.6 U 

Q9Y617 
Phosphoserine 

aminotransferase 
PST 0.9313 D PSAT1 0.53 D 

P00367 

Glutamate 
dehydrogenase, 
mitochondrial 

GlutDH 0.0000 D GLUD1 1.4 U 

P60174 
Triosephosphate 

isomerase 
TPI 0.7401 D TPI1 2.1 U 

P17174 

Aspartate 
aminotransferase, 

cytoplasmic 
ASPTc 1.0732 U GOT1 0.53 D 

*Regulation in enzymatic expression. Up-regulation is represented as ‘U’ and down-regulation is represented as ‘D’. 

3.2.5. Opposing roles of glycine and glutamate uptake in astrocytes 

Evidence state that the glycine content of neuronal cells is higher than that of glial cells 

(224). Also, most of the CNS tissues suffice their glycine requirement via the internal 
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glycine-serine metabolism pathway derived from glucose via 3-phosphoglycerate (225), 

even though astrocyte cultures fed with glycine are capable of utilizing it by maintaining 

intracellular levels of glutathione, serine, and creatine (226). High uptake of glycine in 

astrocytes was observed to be tightly coupled with the high secretion of Na+ and Cl- (227). 

In the model, we have assumed a normal transport reaction of glycine that is not coupled 

with Na+ and Cl-. The effect of the ion-dependent exchange of glycine in astrocytes has 

been captured by changing the bounds of glycine transported in the astrocyte model 

scenario. Bounds on uptake of all the input metabolites were released so as to allow 

unrestricted flow of other input metabolites in the model. The model was analysed under 

this simulation condition to check the effect of excess glycine uptake on the astrocytes. It 

was observed that glycine uptake had a dominant influence on the glutamate/glutamate 

uptake cycle of astrocytes. Glutamate consumed by the cell is utilized in multiple 

metabolic processes. It is catabolized in the TCA cycle, metabolized into glutamine via the 

activity of glutamine synthase that is released out for neuronal consumption, and a part 

of it is released outside the cell through the cystine-glutamate antiporter. At low glycine 

uptake (flux value of glycine uptake < -60), most of the glutamate taken into the cell, 

produces glutamine that is released from the cell. This results in lower uptake of cystine 

and hence, less glutamate release through cysteine-glutamate antiporter (Figure 3.5). In 

contrast, increased glycine uptake is driven towards an increased synthesis of 

glutathione. For this to occur, an equally increased flux through cystine uptake (cystine-

glutamate antiporter) is observed. Cystine is then catabolized for cysteine biosynthesis, 

which combines with glycine and glutamate to form glutathione. The increased uptake of 

cystine is coupled with an equal efflux of glutamate through the antiporter. Glutamate 

required for this efflux is provided by its uptake through glutamate-ATP transporter. To 

compensate for the amount of glutamate lost through efflux, glutamine uptake increases 

that is consumed in glutamate synthesis via the activity of glutaminase. This result 

suggests that lower uptake of glycine is preferred in astrocytes under normal 

physiological conditions when it needs to suffice the glutamine requirement of the 

neurons. However, under oxidative stress, it can easily switch metabolism towards the 

production of glutathione via a higher uptake of glycine uptake so as to combat oxidative 

stress. The rerouting also associates change in flux through glutamine and cystine 

metabolism. 
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Figure 3.5: Effect of Glycine uptake on glutamate utilization by astrocyte. Change in the 
uptake and release of glutamate, glutamine, and cystine-glutamate antiporter with increasing 
uptake of glycine in the astrocyte scenario. The uptake of glutamate reduces with increasing 
uptake of glycine, and the glutamine exchange reverses its direction of flow of flux. 

3.2.6. Difference of pathway responses in astrocyte and glioblastoma  

The difference in the flux profiles of the astrocyte and glioblastoma models while the 

models were optimized for ATPSyn and GBM_BM were captured through model 

simulation and were analyzed. Distinct changes in the flux distribution of the two models 

were observed for the two objective functions. The details are provided in the following 

subsections. 

A. Maximization of energy demand 

FBA simulations for maximization of ATP synthesis revealed the difference in the flux 

through the glycolytic pathway, cystine uptake, glutamine metabolism, and glycine-

serine biosynthetic pathways of the glioblastoma scenario.  

Increase in glycolytic flux  

Simulations for maximizing ATP synthesis as the objective function demonstrated a 

significant increase in the flux through the glycolytic and pentose phosphate pathways in 

the glioblastoma scenario as compared to the astrocyte but a corresponding decrease in 
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ATP synthesis (Figure 3.6A and B). To create the glioblastoma scenario, reduced activity 

of Complex IV of the electron transport chain was considered (228). ATP Synthase is 

largely dependent on the proper functioning of complexes of the electron transport chain 

that generate the proton gradient required to drive the F0F1 pump for ATP synthesis. 

Hence, with a low flux through Complex IV, a decreased ATP synthesis was observed. 

Under the reduced activity of Complex IV, the deficiency of electrons for ATP synthesis 

was partly met through Complex I and III of the electron transport chain. An increase in 

the synthesis of oxaloacetate was also observable as a consequence of the PEP 

carboxykinase-mediated catabolism of phosphoenolpyruvate. Hence, the increased flux 

through glycolysis in the glioblastoma was generated in response to the fault in the 

complex IV of oxidative phosphorylation pathway and the increased activity of PEP 

carboxykinase. The dependence on the glycolytic pathway for ATP synthesis is a 

characteristic feature of glioblastoma cells that could be captured from the model (5). 

However, constraining the availability of glucose showed an increase in flux through the 

β-oxidation of fatty acid metabolism represented by the palmitic acid in the glioblastoma 

model. Hence, it was inferred that glucose is the preferred energy substrate of 

glioblastoma, but under the limited availability of glucose, the cell can utilize fatty acids 

as secondary energy substrates. 

Increase in cystine uptake 

Simulations demonstrated increased uptake of cystine (Figure 3.6C). The total flux of 

cystine uptaken by glioblastoma was driven towards cysteine biosynthesis, which was 

then distributed towards glutathione biosynthesis in a relatively low amount (Figure 

3.6F) and largely towards the production of pyruvate through the cysteine dioxygenase 

(CD), cysteine sulfinate transaminase (CST), and the spontaneous 3snpyr (SPON1) 

reactions. The pyruvate so produced was utilized for acetyl CoA synthesis and ended with 

the biosynthesis of fatty acids, which were further released in the extracellular 

environment. 

Increased catabolism of glutamine 

Reactions belonging to glutamine-glutamate metabolism showed a higher activity due to 

the initiation of glutaminolysis in the glioblastoma scenario (2). Simulations 
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demonstrated the uptake of glutamine by the glioblastoma cells from the external 

medium, which was converted to glutamate within the cell via the activity of glutaminase 

(Glnase). A considerable amount of glutamate that was formed was released out through 

the cystine-glutamate antiporter (xCT) in order to uptake cystine. Cystine was then 

utilized in the cysteine metabolism pathway as discussed above (Figure 3.6D). A part of 

the glutamate entered the TCA anaplerotic cycle via the reversible conversion of 

glutamate to akg catalyzed by glutamate dehydrogenase (GlutDH), and a considerably 

smaller flux was directed towards the production of glutathione by the formation of its 

initial complex glutamyl-cysteine catalyzed by the reaction γ-glutamyl cysteine ligase 

(GCL). Constraining the flux through xCT increased the reverse flux through GlutDH 

producing more amount of akg that was utilized in the TCA cycle, thereby ascertaining 

the utilization of glutamate in the anaplerotic cycle. It was inferred from the observation 

that the glutamate produced in the process of glutaminolysis would normally enter the 

anaplerotic cycle in glioblastoma to replenish the TCA cycle intermediates. However, with 

an increase in demand for cystine or glutathione, the flux of glutamate redistributes itself 

among the reactions GlutDH, xCT, and GCL.  

Decreased glycine-serine biosynthesis 

Simulations further showed increased uptake of glycine in glioblastoma (Figure 3.6E). It 

could be observed that glycine was preferred to be taken from the external source as 

compared to being synthesized within the cell, as seen in the case of the astrocyte model. 

This was because the glycolytic flux, instead of getting distributed into the various 

branching metabolic paths including the glycine-serine biosynthesis pathway, was 

directed towards the faulty mitochondrial ATP synthesis machinery to maximize flux 

through the defined objective function ATPSyn. In biological conditions, a similar 

reduction through the glycine-serine biosynthetic pathway and increased dependence on 

external glycine source is observed in glioblastoma that can be explained by the increase 

in aerobic glycolysis that serves the ATP requirement of these cells.  
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Figure 3.6: Pathway Response with maximization of ATPSyn as the objective function. The 
flow of flux through the different reactions of (A) Glycolysis, (B) Pentose phosphate pathway, (C) 
Cysteine metabolism, (D) Glutamate metabolism, (E) Glycine-serine metabolism, and (F) 
Glutathione metabolism pathway while maximizing mitochondrial ATP synthesis 

B. Maximization of growth demand 

Qualitatively, the same trend of pathway response was observed for the two scenarios 

while optimizing GBM_BM as the objective function. Although, a few differences in the 

underlying factors guiding the metabolic re-routing were observed in this case that are 

discussed below. 
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Rearranged flux through glycolysis and pentose-phosphate pathway 

While maximizing the GBM_BM objective function, rearrangement of flux through the 

reactions of glycolytic and pentose-phosphate pathway (PPP) reactions were observed 

(Figure 3.7A and B). The lower part of glycolysis was observed to be more active as 

compared to the upper reactions as reported in a study where a low activity of hexokinase 

as has been reported in the literature (229). A probable explanation for this random 

arrangement of flux through the different reactions of the glycolytic and pentose 

phosphate pathway can be the requirement to maximize r5p production through the RPI 

reaction of PPP. Being a component of the objective function, with the maximization of 

GBM_BM, the production of r5p tends to maximize. It is to be mentioned here that r5p 

was considered a component of GBM_BM as a precursor of nucleotide biosynthesis and 

amino acids (Section 2.1.3). The non-oxidative part of the PPP shows a distinct rise in 

flux in the glioblastoma model and is directed towards RPI reaction to ensure high r5p 

production that will allow the cell to maintain its high growth requirements.  

Increased cystine uptake in glioblastoma 

Simulations demonstrated an increase in cystine uptake and its utilization in cysteine 

metabolism. In the model, cystine reductase (CystRed) is considered as the reaction that 

reduces the disulfide cystine into its monosulfide form, cysteine. When compared to the 

model simulations using ATPSyn as objective, the distribution of cysteine so formed is 

restricted, and the corresponding reactions of the cysteine catabolic pathway do not 

appear to drive a flux (Figure 3.7C). The probable explanation for the observation is the 

increased demand for cysteine in the production of glutathione. Glutathione is a 

tripeptide antioxidant composed of cysteine, glutamate, and glycine, that protects the cell 

from oxidative damage. Cysteine combines with glutamate in a reaction catalyzed by 

glutamyl-cysteine ligase (GCL) to form glutamyl-cysteine that is further converted to 

glutathione via the addition of glycine in the reaction glutathione synthase (GS). Both the 

reactions are observed to have increased flux in the glioblastoma model.     
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Reversal of flux through TCA cycle towards the production of malate and fumarate 

in both scenarios 

A backward flow of flux in the TCA cycle, from oxaloacetate to fumarate, was also 

observed in experiments, in both cultured astrocytes and in in-vivo conditions, which was 

due to the activity of mitochondrial pyruvate carboxylase (230). Through the model 

simulation, similar properties in the glioblastoma model were observed (Figure 3.7D). 

The flux through the fumarate hydratase (FUMH) and malate dehydrogenase (MDH) 

reactions were reversed and enhanced in the glioblastoma model. The reason for this 

reversal was to maximize succinate production through the TCA cycle, which was an 

important component of the objective function for growth. 

 

Figure 3.7: Pathway Response with maximization of GBM_BM as the objective function. The 
flow of flux through the different reactions of (A) Glycolysis, (B) Pentose phosphate pathway, (C) 
Cysteine metabolism, (D) TCA Cycle, and while maximizing GBM_BM for glioblastoma growth. A 
positive flux shows the progression of reaction in the forward direction, and a negative flux 
implies the flow of flux in the reverse direction.  
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3.2.7. Essential uptake metabolites for glioblastoma growth 

Glioblastoma cell lines can show extremely long survival under glucose starved 

conditions by undergoing physiological adaptations to utilize alternatives and thus, 

bypass nutrient deprivation (229). In order to determine those metabolites which 

essentially contributed to glioblastoma survival, even at glucose starved conditions, the 

metabolic fate of eight carbon sources, namely, glucose (Glu), cystine (Cys), methionine 

(Met), tryptophan (Try), palmitate (PA), glutamate (Glut), glutamine (Gln), and glycine 

(Gly) in the network, was investigated (Section 2.1.6). GBM_BM was used as the objective 

function for this analysis. From the simulation results, cystine was found to be an 

essential metabolite for glioblastoma growth. As glucose is required to meet the 

glioblastoma growth demands, complete deprivation of glucose considerably reduced the 

flux through the objective function but did not lead to zero flux.  Previous experimental 

findings have suggested a large reduction in cell growth due to glycolytic blockade by 

glucose starvation (231). In parity with the available experimental evidence, the model 

yielded that cystine was essential, and its deficiency might cause a disruption in the 

glioblastoma growth (19). Also, glucose uptake in combination with cystine could drive 

considerable flux through the objective function determining their contribution to 

glioblastoma growth instead of cystine alone as input (Figure 3.8). The simultaneous 

uptake and utilization of cystine and glucose served as the minimal metabolites that could 

maintain the growth requirement of glioblastoma by driving flux through necessary 

pathways that could generate the components of GBM_BM (Eq. 2). Cystine contributes to 

the production of glutathione that is required to combat oxidative stress.  And glucose 

contributes to the production of ribulose-5-phosphate, oxaloacetate, and succinate 

through PPP and TCA cycle. Consequently, this minimal accounted for optimal 

glioblastoma growth. Restricting the uptake of either of these metabolites led to a highly 

reduced growth rate of glioblastoma (< 20% of the optimal value). 
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Figure 3.8: Essential input metabolites determining glioblastoma growth. Flux through 
different pathways and metabolic function in different input conditions to the glioblastoma 
scenario. Here flux through the different pathways and the metabolic function is maximum for 
cystine and glucose as input.  

3.2.8. Metabolic reactions crucial for maintaining glioblastoma growth 

To identify the essential reactions involved in maintaining glioblastoma growth, single 

and double reaction knockout analyses were performed (Section 2.1.7). All the single 

and double reaction knockout results were categorized as cases of lethal, trivial and non-

trivial lethal and non-trivial solutions (Table 3.2). Knockout analysis was performed on 

the network using GBM_BM as the objective function. Those reactions whose knockout 

resulted in a zero flux through the objective function were considered “lethal” for 

glioblastoma growth.  

Table 3.2: Total number of single and double lethal reactions obtained from the knockout 
analysis  

Deletion Lethal Trivial 
Lethal 

Non-trivial 
Lethal 

Non-trivial 
Total 

Total  

Single 6 NA 6 208 208 
Double 1268 1227 41 20301 21528 

The lethal double reactions knockouts are categorized as trivial and non-trivial lethal. Those knockout combinations, 

of which at least one is a single lethal reaction, are considered to be “trivial”. Those combinations in which neither of 

the reactions is involved in single lethal reaction knockout are considered to be “non-trivial”.  

NA – Not applicable 

Glioblastoma cells can thrive on different metabolic pathways for survival and show great 

metabolic heterogeneity (231). In parity to this, it was observed that around 3% (6 
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reactions) (APPENDIX A: Table A. 2) of the total single knockouts (208 reactions) and 

6% (1268 reactions) of the total double knockouts (21528) were lethal for the 

glioblastoma scenario. A low number of single lethal knockouts suggested the robustness 

of the metabolic network and sustenance of the glioblastoma growth through alternative 

routes.  

Knockout analysis identified ribulose phosphate isomerase (RPI); a reaction of the 

pentose phosphate pathway, as lethal. In many types of cancers, it has been 

experimentally observed that PPP drives the glycolytic flux for the production of ribose-

5-phosphate and NADPH that are used by cancers cells for maintaining redox balance and 

detoxification of reactive oxygen species (232). RPI is the rate-limiting step for ribose-5-

phosphate production in the PPP pathway. As ribose-5-phosphate is essential to meet the 

cellular growth demand, RPI was predicted to govern a lethal phenotype in glioblastoma. 

Also, in different types of cancers, high levels of glutathione contents have been 

experimentally observed to protect the cells from oxidative stress (170). Glutamate-

cysteine ligase (GCL), the rate-limiting step in the production of glutathione, was 

predicted to govern a lethal phenotype as it is the penultimate step for glutathione 

production. Similarly, glutathione synthase (GS), the ultimate step of glutathione 

synthesis, was also predicted to govern a lethal phenotype. The cystine-glutamate 

antiporter (Anti_cystine_glut) and cystine reductase (CystRed) reactions are involved in 

the production of cysteine. In the previous results, it was demonstrated that cystine was 

sufficient and important in maintaining the growth requirement of glioblastoma. Hence, 

both the reactions were predicted to demonstrate lethality when knocked out.  

Of the 1268 lethal double knockout reactions, 41 were non-trivial (APPENDIX A: Table 

A. 3), which included reactions from glycolytic, pentose phosphate, TCA cycle, and 

glycine-serine metabolism pathway and a few transport reactions. The most typical 

observation of glioblastoma metabolism through experiments was the increased flux 

through glycolysis for high production of ATP and a corresponding reduction in 

glioblastoma growth under glucose starvation, even though the survival was maintained 

(231). Combinatorial targeting of the glycolytic pathway with the PPP, TCA cycle, and 

glycine-serine metabolic pathways was hence, found to be more effective in reducing 

glioblastoma growth. The knockdown of a glycolytic pathway reaction in combination 
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with a pentose phosphate pathway reaction or a TCA cycle reaction hindered the 

production of r5p or oaa or succ. Consequently, the double knockouts proved to be lethal 

to glioblastoma growth. The in-silico results also yielded reactions belonging to glycine-

serine metabolism as good targets in combination with each other. Glycine was 

necessarily required for glutathione production. When the availability of glycine was 

blocked through the knockdown of both the internal glycine-serine metabolism and the 

external source of glycine uptake, this paired knockout led to the production of 

glutathione and hence proved lethal.  Consequently, dual-targeting of the reactions of this 

pathway was effective in reducing the growth (APPENDIX A: Table A. 4). 

The knockout reaction results were further classified as lethal, growth reducers, and null 

reducers on the basis of percentage inhibition in the growth demand reaction in the 

glioblastoma scenario (Figure 3.9). Knockouts that led to 100% inhibition of growth 

demand were considered to be “lethal”. Reaction knockouts that caused a flux reduction 

of greater than 80% of the flux through the objective function for growth were considered 

to be “Partial growth reducers”. Those set of reaction knockouts that reduced the flux 

through the objective function within 20% to 80% of the default value were considered 

as “Marginal growth reducers”. The class of ‘sub-marginal growth reducers’ was 

considered for those set of knockouts which could not bring effective reduction (0% to 

20% inhibition) through the objective function. Analysis of the double knockout showed 

that 48% of the partial growth reducers belonged to the glycolytic pathway. The rest of 

the 52% were mostly constituted by the reactions of the TCA cycle, PPP, Oxidative 

phosphorylation, and Glycine-serine metabolism. The larger fraction of both single and 

double reaction knockouts belonged to sub-marginal growth reducers and null reducers, 

which were indicative of the robust and redundant reactions of the glioblastoma 

metabolic network. 
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Figure 3.9: Single and double reaction knockout classification 

3.2.9. Identification of reaction targets for therapeutic intervention 

The reaction knockout analyses could predict a subset of reactions that were crucial in 

glioblastoma growth. To identify the feasibility of targeting these reactions and their 

effectiveness, these reactions were simulated for their effect as therapeutic targets for 

either inhibiting or reducing the growth rate of the glioblastoma cells to a normal range. 

For this analysis, the previously identified growth reducer reactions leading to reduced 

growth (0 < GBM_BM solution < glioblastoma optimum) were chosen (Section 2.1.8). 

From the simulation, it was observed that in order to completely reduce the flux through 

the objective function, a complete reduction of flux through the lethal single knockout 

reactions is required. Whereas targeting the lethal double knockout reactions was more 

effective, as partial reduction of flux through those combinations brought a complete 

reduction in the flux through the objective function for growth. As such, combinations 

from non-trivial lethal knockout reactions were simulated, which could be targeted most 

effectively for efficient growth reduction.  

Of the 41 non-trivial lethal double knockout predictions, 36 combinations were chosen 

for testing their growth intervening properties, which excluded a few transport reactions. 

Each reaction combination was simulated by varying the flux through individual 

reactions of the combination simultaneously to obtain the effective reduction of flux 

through both of these reactions, which reduced glioblastoma growth completely and to 

obtain a feasible flux range through both the reactions for which the growth was reduced 

to the normal level. The effective reduction of flux was depicted in percentage, which was 
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defined as the percentage reduction of flux through any particular reaction. The 

simulation results for the 10 most effective combinations have been shown as contour 

plots in Figure 3.10, and the rest of the 26 combinations have been listed in APPENDIX 

A: Table A. 4. The percentage reduction of flux value for complete reduction of growth 

and for Normal growth for each reaction of the combinations has been listed in 

APPENDIX A: Table A. 5. 

Inhibitors for a few of these target reactions are already available (APPENDIX A: Table 

A. 6). In-silico study on the core metabolism in cancer cells showed that reactions of 

glycolytic, TCA cycle, oxidative phosphorylation, and pentose phosphate pathway could 

be good targets to check cancer cell progression (233). Our context-specific constraint-

based metabolic model specific to glioblastoma interestingly could identify additional 

reactions belonging to the cysteine metabolism and reaction combinations belonging to 

the glycine-serine pathway as potential targets for controlling glioblastoma growth. 

These potent reaction pairs of the glycine-serine metabolism give way to the 

discovery/formulation of combinatorial drugs that can inhibit them. Therapeutic agents 

to target the glycine receptors are already known. Inhibitors like Picrotoxin targeted the 

neuronal γ-aminobutyric acid and homomeric glycine receptors (234), whereas 

strychnine hydrochloride was found to be a potent antagonist specific to the glycine 

receptor(235). These could be employed beneficially to understand the activity of the 

glycine transporters in glioblastoma, too, as evidence state a correlation between the 

glycine transporter activities with the distribution of its receptors(236). In recent years, 

many pharmaceutical companies have also developed potent and selective inhibitors for 

glycine transporters. SSR 504734 and SSR 103800 by researchers at Sanofi-Synthelabo 

Recherche, a series of N-(2-aryl-cyclohexyl) substituted spiropiperidines by researchers 

at F. Hoffmann-La Roche, Ltd. and ORG 25935 are a few compounds that showed 

promising results as inhibitors of glycine transporters (237). Our predictions can be 

further validated through experiments, thus providing testable targets to chemists and 

biologists for discovering small molecule inhibitors against glioblastoma. 
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Figure 3.10: Therapeutic intervention scenarios and effective combination of target 
reactions. Percentage reduction of flux through the combination of essential double knockout 
reactions (A) Hexokinase (HEX) and fructose-1,6-bisphosphate aldolase (FBA), (B) ribulose 
phosphate-3 epimerase (RPE) and 6-phosphogluconolactonase (6PGLase), (C) fumarate 
hydratase (FUMH), and alpha-ketoglutarate dehydrogenase (AKGDH), (D) glycine transport 
(Trans_glycine) and Phosphoglycerate dehydrogenase (PGDH), (E) Hexokinase (HEX) and 
triosephosphate isomerase (TPI), (F) glucose transport (Trans_glucose) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), (G) phosphofructokinase (PFK) and Hexokinase (HEX), (H) 
succinyl-CoA synthetase (SCS) and fumarate hydratase (FUMH), (I) ribulose phosphate-3 
epimerase (RPE) and glucose-6-phosphate dehydrogenase (G6PDH) and (J) glucose transport 
(Trans_glucose) and phosphoglycerate kinase (PGK), and its effect on the flux through the 
metabolic function, GBM_BM (colored region of the contour plot). 
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3.3. Discussion 

In the present work, a context-specific metabolic network for astrocyte and glioblastoma 

has been developed, which considers a biological context and a systems-level metabolic 

network to define a biological goal (238). The metabolic network for glioblastoma defines 

the biological context, and the interaction between the different pathways builds the 

physical structure of the network to ensure that the biological goal of ATP maximization 

and glioblastoma growth is achieved. Through this model, we tried to investigate the 

cumulative effect of a large-scale metabolism on the metabolic functioning of 

glioblastoma, the effect of the mutual connectivity of the individual pathways within the 

metabolic network, and the difference in response they show in the astrocytic and 

glioblastoma scenarios. Also, through the in-silico approach, we tried to gain some insight 

into the alternative metabolic routes and metabolites which contributed to the metabolic 

heterogeneity of glioblastoma. The present model was capable of yielding results that 

were in correspondence to the experimentally proved phenomena of both astrocytes and 

glioblastoma (2, 15, 179-181, 223) 

Individual pathways interact mutually to propagate a network-level response. A 

cooperative effect of a few pathways could be contemplated in the present metabolic 

network, some of which have been observed experimentally, and a few were inferred 

through model predictions. Predictions of cooperative responses, which have been 

experimentally affirmed, include that of the cysteine metabolism pathway with the 

glutamate metabolism pathway in glioblastoma (17) and the glycolytic pathway with the 

glutamate metabolism pathway in astrocytes (11). A correlation of the glycine uptake 

with the glutamate and glutamine utilization in astrocytes was predicted from the model.  

The evidence stated that glycine content of neuronal cells was higher than that of glial 

cells (224), and most of the CNS tissues sufficed their glycine requirement via the internal 

glycine-serine metabolism pathway derived from glucose via 3-phosphoglycerate (225), 

even though astrocyte cultures fed with glycine were capable of utilizing it by maintaining 

intracellular levels of glutathione, serine, and creatine (226). Based on these literature 

evidence and predictions from the model, it was inferred that astrocytes’ dependence on 

glycine uptake from external sources at a low, and most of its requirement is fulfilled by 

the internal glycine-serine biosynthesis pathway. Further, a higher uptake of glycine by 
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astrocytes from an external source resulted in a reduction in its glutamate uptake rate, 

and an excess of glycine caused glutaminolysis in the astrocytes. On the contrary, 

glioblastoma showed an increased glycine uptake which was driven towards the 

increased synthesis of glutathione. This increased production of glutathione was 

simultaneously accompanied by the increased uptake of cystine, which is taken in by the 

cystine-glutamate antiporter. Hence, a higher amount of glutamate was lost through 

efflux. This loss was compensated by glutamine uptake which is subsequently converted 

into glutamate within the cell. 

Glioblastoma cell lines can show extremely long survival under glucose starved 

conditions, which are indicative of the fact that these cells undergo physiological 

adaptations to overcome nutrient deprivation (231). From the model, it was predicted 

that cystine could be one essential metabolite that could serve to glioblastoma survival 

and growth, even at glucose starved conditions. The utilization of glucose was found to be 

coupled to the cystine uptake in the model. This was perhaps because of the choice of the 

objective function. The objective function included ribulose-5-phosphate, oxaloacetate, 

succinate, and glutathione, which were generated by glycolysis and cysteine metabolism 

pathways. Consequently, a minimal combination of cystine and glucose could drive a 

considerable amount of flux through the objective function, as compared to any other 

minimal combination. 

In-silico study on the core metabolism in cancer cells showed that reactions of glycolytic, 

TCA cycle, oxidative phosphorylation, and pentose phosphate pathway were good targets 

to check cancer cell progression (233), suggesting that the centrality-lethality hypothesis, 

which states that ‘The most highly connected proteins in the cell are the most important 

for its survival’ (239), also holds good for the metabolic networks. These pathways 

belonging to the central carbon metabolism essentially meet the energy requirements of 

the cell and hence are important. However, without disregarding the fact that central 

metabolism might be critical in complex networks but might not sufficiently predict 

lethality (153), reactions other than those belonging to the central carbon metabolism 

were also simulated for lethal responses. From the present context-specific constraint-

based metabolic model for glioblastoma, it was observed that in addition to the above-

mentioned pathways, targeting the reactions belonging to cysteine metabolism (Cystine 
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glutamate antiporter, Anti_cystine_glut, and cystine reductase, CystRed) and dual 

targeting of the reactions belonging to glycine-serine metabolism along with glycine 

transporter could potentially down-regulate the glioblastoma growth.  

Thus, to summarize the present study, the constraint-based model could predict that most 

of the astrocytic glycine requirement was fulfilled by the internal glycine-serine 

metabolism pathway and excess glycine in the environment of growing astrocytes might 

have an effect on its glutamate metabolism. It could further demonstrate that cystine and 

glucose were two vital input metabolites, which could significantly contribute to 

glioblastoma growth. From model analysis for identification of therapeutic interventions, 

it was inferred that, reactions belonging to cysteine metabolism and combinatorial 

targeting of reactions belonging to glycine-serine metabolism could potentially reduce 

glioblastoma growth and hence can be proposed as prospective therapeutic targets. Our 

predictions can be further validated through experiments so as to enable the use of these 

targets in glioblastoma treatment. Thus, our study not only contributes to understanding 

the complexities, differences, and consequences of glioblastoma metabolic 

reprogramming but also provides an insight into the identification of important targets 

for therapeutic interventions. 
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CHAPTER 4 

DYNAMICS OF ANTI-OXIDANT MACHINERY AND REGULATION 

OF OXIDANTS IN GLIOMAS 

4.1. Rationale of the study 

Reactive Oxygen Species (ROS) generation has been used as one of the non-surgical 

therapeutic approaches for cancer, as these are associated with the signalling cascade 

inducing cell death. Ironically, increased ROS production in cancer cells due to activation 

of oncogenes, reduced blood supply, and other factors cause progression and metastasis 

of cancer (240). ROS shows a paradoxical behavior, which can be stated as: increase in 

ROS to a certain non-lethal level serve normal biological processes, but a sustained high 

level for a long time might help in cancer progression (241). Antioxidants like glutathione 

(gsh), thioredoxin (trx), superoxide dismutase (SOD), etc., maintain a sustainable level of 

ROS within the cell. However, an increased redox capacity of gsh can cause 

chemoresistance in cancer (242). An intricate balance between the ROS and the 

antioxidants is maintained within the cell that ensures its proper functioning. 

Manipulative strategies of ROS in cancer are exhibited as changes in the redox and thiol 

ratio of the cells through regulations of various metabolic processes. However, the 

mechanism by which metabolic changes manage the ROS paradox in cancer remains 

poorly understood and debatable. 

The differential suitability of ROS manipulation in tumor cells is explained by different 

theories. One of the most prevalent theories is the “Threshold concept for cancer therapy,” 

which states that as the level of ROS within the cancer cell increases, the ratio of ROS and 

antioxidants reaches a balance, beyond which any further increase in ROS or decrease in 

antioxidant activity will lead to cell death or increased sensitivity of tumor cells to 

cytotoxic treatments (243). According to an alternate threshold theory, when both tumor 

and normal cells are exposed to the equal intensity of exogenous ROS-producing or 

stimulating agents, the intracellular ROS levels of tumor cells increase more easily than 

the normal cells to reach a threshold and to trigger death due to higher basal level of ROS 

in tumors (240). While the validity of these theories in cancer has been proven with 

Bulk of this chapter has been taken verbatim from our previously published article: Bhowmick R and Sarkar 

RR (2020) Differential suitability of Reactive Oxygen Species and the role of Glutathione in regulating their 

paradoxical behavior in Gliomas. PLoS ONE, 15(6): e0235204. DOI: 10.1371/journal.pone.0235204  
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increasing number of evidence, the quantifiable definition of ROS levels determining 

different cellular responses is subject to changes in the oxidant-antioxidant balance. The 

transformation of a cell from normal to tumor is governed by a sequence of events. 

Changes induced by these events are readily reflected as a change in the redox status of 

the cells mostly triggering ROS production. The applicability and effectiveness of ROS 

promotion or ROS depletion strategies in cancer therapeutics depend on where the cell 

is in the sequence of events. Change in the thiol ratio of the cell is another important 

determinant of the cellular response towards an oxidative insult. Reportedly, changes in 

the nadph/nadp+ ratio and gsh/gssg ratio have been considered important in gaining a 

perspective towards the cellular response to such insults. The nadph/nadp+ ratio is 

indicative of the reducing potential of the cell, which is required to be maintained high in 

order to keep the overall redox pool at a significantly reduced state for the proper 

functioning of the cell (244, 245). Changes in gsh/gssg ratio might induce the initiation of 

the induction phase of apoptosis (85, 246). A decrease in gsh/gssg ratio can induce 

apoptosis by causing Bcl-2 loss and activating caspase enzymes, whereas an increase in 

the ratio may have an effect otherwise (247). 

The present chapter that fulfils the third objective of the thesis focuses on understanding 

the changing dynamics of oxidant-antioxidant balance and its effect on the redox and thiol 

status of the cell. Motivated by the findings of the previous chapter in which a subset of 

reactions belonging to different metabolic pathways was observed to be directed towards 

gsh production, we look deeper into the dynamics of this subset of reactions. The present 

ordinary differential equation model consists of 35 variables with 123 parameters 

(APPENDIX B: Table B. 1 & Table B. 2), capturing the dynamics of 25 reactions from 5 

different metabolic processes (Section 2.2.1 & 2.2.3). The rationale behind considering 

these metabolic processes in understanding the oxidant-antioxidant dynamics is 

specified hereunder. 

Central carbon metabolism: The glycolytic pathway branches out to various other 

pathways which are precursors to nucleotide, amino acid synthesis and other important 

biosynthesis pathways. A part of the glycolytic pathway which branches to serine 

metabolism has been considered, which allows the de novo synthesis of the amino acids, 

serine, and glycine within the cell (Eq. 7 - Eq. 14). Also, the pentose phosphate pathway 



Chapter 4: Dynamic Analysis of Reaction Kinetics 

 

P a g e |  96  

 

 

has been represented by the inclusion of glucose-6-phosphate dehydrogenase (G6PDH), 

which is a major source of nadph (Eq. 15).  

Amino acid metabolism: A part of glutamate metabolism has been considered in the 

model. This forms another source of nadph, and glutamate supports the production of 

glutathione and also manages the uptake of cystine through the cystine-glutamate 

antiporter (Eq. 16 - Eq. 17). All the reactions belonging to serine and glycine metabolism 

have been considered in the model. This metabolism support generation of glutathione 

and maintains the redox status of the cell. Serine and glycine can be produced de novo 

from glycolytic intermediate 3pg, and this part of the metabolism has been considered in 

the model (Eq. 20 - Eq. 24) (248). Cysteine metabolism has also been considered. The 

initiation of the metabolism has been considered with the uptake of cystine which is 

metabolized to cysteine (Eq. 25 - Eq. 26) (249). This reacts with glutamate to form 

glutamyl-cysteine (glucys), the precursor complex which reacts with glycine to produce 

glutathione (Eq. 18 - Eq. 19) (246). 

Thiol metabolism: The thiol metabolism in represented by the glutathione metabolism 

itself. Two important enzymes which maintain glutathione homeostasis, i.e., glutathione 

peroxidase (Eq. 27) and glutathione oxidoreductase (Eq. 28), have been considered (85). 

Pertaining to the objective of looking into the glutathione and h2o2 dynamics, other thiol 

metabolisms like the peroxiredoxins, thioredoxins, and catalase systems have not been 

considered currently.  

h2o2 production and metabolism: The model considers the activity of NADPH oxidase 

(250) and superoxide dismutase (193) as a part of h2o2 production. The formation of 

oxygen free radicals and their subsequent conversion into h2o2 is catalyzed by NADPH 

oxidase (Eq. 29) and superoxide dismutase (Eq. 30) respectively. The metabolism of h2o2 

is linked to the thiol metabolism. Other mechanisms through which h2o2 are scavenged is 

represented by the parameter 𝑑ℎ2𝑜2
, which is defined as the decay of intracellular 

hydrogen peroxide in other cellular processes. 

Redox metabolism: nadph-nadp+ has been considered as the prime redox balancer in 

the model. The homeostasis and metabolism of nadph-nadp+ have been considered in 
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reactions belonging to the earlier pathways where these function as cofactors to catalyze 

the reactions. 

The oxygen uptake of the cell has been defined using the Michaelis-Menten equation (Eq. 

31). 

The model was calibrated using experimental data available for the temporal expression 

of gsh in retinal Muller glial cells under normal and amino acid supplemented scenarios 

(Section 2.2.5). Out of the 123 parameters, exact values of 31 parameters could be 

obtained from literature, and 69 parameters were assigned within the specified 

biologically ranges. 23 parameters remained unknown that were computed using the 

MCMC DRAM algorithm (Section 2.2.6). Using the model, we have demonstrated the role 

of the antioxidants in maintaining ROS levels under normal glial, hypoxic, and glioma 

conditions. Sensitive parameters associated with the regulation of metabolite variables 

that determine oxidant-antioxidant balance were identified using the eFAST algorithm 

(Section 2.2.7). Three different model conditions mimicking the normal glial, hypoxic, 

and glioma scenarios were simulated by introducing changes in the values of different 

parameters determined through parameter variation analyses (Section 2.2.8, 2.2.9 & 

2.2.10). The model conditions were used to identify the changes in sensitivity of 

parameters in the three different scenarios. The parameters exclusive for the glioma 

scenario were used to identify the effect on the h2o2 level and to proposed therapeutic 

strategies of ROS manipulation in glioma (Section 2.2.11). Our hypothesis is the 

effectiveness of ROS manipulation as a therapeutic strategy depends on the ability to alter 

the redox and thiol status of the cell. Hence, throughout the study, the subsequent 

changes in the nadph/nadp+ and the gsh/gssg ratio were continuously assessed.  

4.2. Results 

4.2.1. Dynamics of cells under normoxic conditions 

The temporal behavior of reduced glutathione (gsh) (Eq. 57) and oxidized glutathione 

(gssg) (Eq. 60), hydrogen peroxide (h2o2) (Eq. 59) and oxygen radicals (oxrad) (Eq. 65) 

over time in the normal scenario were studied. The chemical kinetics of the enzyme GTHP 

have been included, which uses h2o2 and gsh as the substrates to yield gssg. From 
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simulations, we observe that the model was capable of maintaining h2o2 concentration 

within a biologically feasible range of ~4μM, which was initiated at a high h2o2 

concentration of 1.5mM (Figure 4.1A), while there was a decrease in the gsh 

concentration (from 3.83mM to 2.33mM) and increase in the gssg concentration (from 

0.5mM to 2.09mM) at steady state. Meanwhile, the oxygen radicals (oxrad) generated as 

an action of NADPH oxidase (NOX) was readily metabolized into h2o2 due to the high 

activity of superoxide dismutase (SOD) as has been reported and was considered in the 

model (𝑉𝑚
𝑆𝑂𝐷= 11.4*103 mM hr-1). Hence, a consistent reduced level of oxrad was 

observed through our simulations.  

As has been observed experimentally, a proliferating cell maintains a high nadph/nadp+ 

ratio to maintain its redox balances and atp/adp ratio to suffice its proliferative 

requirements. In Figure 4.1C, we compared the experimentally reported values of 

nadph/nadp+ (251) and average atp/adp   (252, 253) ratios with the simulated values, 

which were comparable.  The dynamics of the components of tripeptide that result in the 

formation of gsh were dictated by the gsh-gssg cycle. Figure 4.1B shows the changes in 

the intracellular concentration of cystine (cys) (Eq. 58), glutamate (glut) (Eq. 48), glycine 

(gly) (Eq. 54) and glutamyl-cysteine (glucys) (Eq. 56) corresponding to changes in gsh 

and gssg over time. Simulation results showed that in response to high oxidant (h2o2) 

concentration within the cell, available intracellular cystine and glutamate was used for 

the production of glutamyl-cysteine, which subsequently forms a complex with glycine to 

produce gsh. gsh then enters the gsh-gssg cycle where gsh and h2o2 are used as substrate 

to produce gssg. As such, we observed a decline in the concentration of all other 

metabolites except for gssg, which was produced in response to nullify the high h2o2 

concentration. Intracellular concentration of cystine and glutamate remained limiting in 

normal scenario.   
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Figure 4.1: Model properties. (A) Temporal plot of gsh, gssg, h2o2, and oxrad. (B) Temporal plot 

of the tri-peptides cystine (cys), glutamate (glut) and glycine (gly), and glutamyl-cysteine (glucys) 

along with changes in gsh and gssg. (C) Comparison of experimentally obtained range of 

nadph/nadp+ and atp/adp ratio with values obtained through model simulation. 
 

4.2.2. Analyses of sensitive parameters 

Sensitivity analysis yielded a set of parameters crucial for determining the h2o2 level and 

the regulation of the gsh-gssg cycle. Enzymes GTHP, NOX, and GTHO were observed to be 

most sensitive in determining model properties. Changes in the uptake rate of oxygen 

also affected the model dynamics. Varying parameters for these enzymes showed 

interesting results, which are discussed in the subsequent subsections.  

Effect of variation in Vmax of Glutathione Peroxidase (GTHP) 

The enzyme GTHP was crucial in neutralizing h2o2 with the help of gsh, which itself 

converted to gssg, converting h2o2 into h2o. The Vmax of the reaction is an important 

determinant of the rate of conversion of h2o2. From our analysis, we could see that an 

increase in the 𝑉𝑚
𝐺𝑇𝐻𝑃 (from 0.001 mM hr-1 to 1.5 mM hr-1) resulted in a reduced level of 
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h2o2. Simulations were performed at different time points (6hrs, 12hrs, 18hrs, 24hrs, and 

32 hrs), and a similar trend was observed for all time points. A sharp decrease was 

observed at a Vmax value between 0.1 mM hr-1 to 0.3 mM hr-1 when the h2o2 concentration 

was maintained at micromolar concentration, which initiated at a millimolar 

concentration (Figure 4.2A). However, the corresponding nadph/nadp+ ratio remained 

unaltered, which suggests that the redox balance of the system largely remains unaffected 

by the change in 𝑉𝑚
𝐺𝑇𝐻𝑃 although the gsh/gssg ratio reduces significantly (Figure 4.2B 

and C). It is important to mention that the normal physiological expression of GTHP 

ranges between 0.2874 to 2.697 mM hr-1 (APPENDIX B: Table B. 1), and interesting 

dynamics in h2o2 level, nadph/nadp+, and gsh/gssg ratios were only observable for a very 

low value of 𝑉𝑚
𝐺𝑇𝐻𝑃 . By varying the value of 𝑉𝑚

𝐺𝑇𝐻𝑃 from 0.001 mM hr-1 to 1.5 mM hr-1 we 

observed that high GTHP activity maintained a steady and low micromolar concentration 

of h2o2, but h2o2 started accumulating as the activity lowered, which might induce 

oxidative damage to the cell. This observation could be compared with the diminished 

level of GTHP in brain tumors (254) and can be interpreted as a characteristic for gliomas 

with a very low expression of GTHP. 

Effect of variation in Vmax of NADPH Oxidase (NOX) 

NADPH Oxidase catalyzes the production of oxygen free radicals from available oxygen 

using NADPH reduction. We could observe that an increase in the 𝑉𝑚
𝑁𝑂𝑋 (from 0.0001 mM 

hr-1 to 1 mM hr-1) resulted in an increase in the h2o2 concentration for the specified time 

points (6hrs, 12hrs, 18hrs, 24hrs, and 32 hrs). A marked decrease in the nadph/nadp+ 

ratio and gsh/gssg ratio was observed at later time points (24hrs and 32hrs) with the 

increase in Vmax value (Figure 4.2D, E, F). This could be interpreted as one of the 

important factors determining the cancerous transformation of the glial cells. 
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Figure 4.2: Parameter variation plot. (A-C) Vmax of GTHP (𝑉𝑚
𝐺𝑇𝐻𝑃) and (D-F) Vmax of NOX (𝑉𝑚

𝑁𝑂𝑋) 

under the normal condition at different time points. 

Effect of two-parameter variation of Vmax of GTHP and Vmax of GTHO 

Figure 4.3 (A-C) illustrates the effect of simultaneous change in 𝑉𝑚
𝐺𝑇𝐻𝑃 and  𝑉𝑚

𝐺𝑇𝐻𝑂 on h2o2 

level, nadph/nadp+ and gsh/gssg ratios. The h2o2 level reduced with increasing activity of 

𝑉𝑚
𝐺𝑇𝐻𝑃 , although change in the kinetics of GTHO did not have an effect (Figure 4.3A). 

When nadph/nadp+ was taken into account, we observed that at a very low 𝑉𝑚
𝐺𝑇𝐻𝑂, the 

effect of 𝑉𝑚
𝐺𝑇𝐻𝑃 remained minimum. With a gradual increase in the 𝑉𝑚

𝐺𝑇𝐻𝑂 there was a 

reduction in the nadph/nadp+ ratio, which furrowed deeper at a higher value of 𝑉𝑚
𝐺𝑇𝐻𝑃 . 

The enzyme GTHO facilitates the reduction of gssg into gsh in a nadph-nadp+ dependent 

manner, and hence with an increasing enzyme availability and activity, the nadph/nadp+ 

ratio was reduced. Here, we considered the dynamics of nadph/nadp+ at 12hrs and could 
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observe that the initial dynamics were dependent on 𝑉𝑚
𝐺𝑇𝐻𝑂. At high 𝑉𝑚

𝐺𝑇𝐻𝑃 , with increase 

in 𝑉𝑚
𝐺𝑇𝐻𝑂 there was a decrease in the nadph/nadp+ ratio (Figure 4.3B) which was due to 

the active involvement of the enzyme in nullifying the persistent levels of the substrate, 

h2o2. We observed the decrease in the ratio till 𝑉𝑚
𝐺𝑇𝐻𝑂  reached a value of 0.2 mM hr-1 at 12 

hours. However, the decrease was compensated back with further increase in the Vmax. As 

a high level of h2o2 was metabolized to a non-toxic micromolar level, we observed from 

our model simulation that a Vmax of 0.2 mM hr-1 for the enzyme GTHO was sufficient to 

metabolize the persisting levels of h2o2 at 12 hours. At a Vmax value lower than this, the 

enzyme became the limiting factor, and beyond this value, the activity of the enzyme was 

limited by the availability of the substrate (h2o2). Meanwhile, at lower values of 𝑉𝑚
𝐺𝑇𝐻𝑃 

(<0.5 mM hr-1), persisting level of h2o2 at 12hrs was higher due to the slow activity of 

GTHP (Figure 4.3A). The substrate remained available for GTHO activity which 

continued to metabolize the conversion (at higher 𝑉𝑚
𝐺𝑇𝐻𝑂 which was limited by substrate 

concentration in the earlier case) and nadph pool diminished resulting into a reduction 

in nadph/nadp+ ratio. The dip in the nadph/nadp+ ratio was compensated by the action of 

other reactions that replenished the nadph pools represented in the model as 𝑙𝑛𝑎𝑑𝑝ℎ. 

Trends were similar for gsh/gssg ratio which was dependent on the substrate availability 

(h2o2) except at a very low value of 𝑉𝑚
𝐺𝑇𝐻𝑃 (0.001 mM hr-1) which limited the conversion 

of gsh to gssg thereby resulting in an accumulation of gsh and leading to very high 

gsh/gssg ratios. h2o2 level persisted in the sub-micromolar range (~0.045mM) at a Vmax 

of 0.5 mM hr-1 for GTHP, which was subsequently metabolized to micromolar levels 

(0.002mM) with further increase in Vmax (Figure 4.3A). This governed the change in 

gsh/gssg ratio and an increase in both 𝑉𝑚
𝐺𝑇𝐻𝑃 and 𝑉𝑚

𝐺𝑇𝐻𝑂 coordinated to metabolize h2o2 

till it reached micromolar levels by cyclic production and consumption of gsh and gssg. 

As h2o2 reached a micromolar level, the activity of GTHP was limited due to h2o2 

availability, whereas gsh production continued by the action of GTHO till gssg reached a 

basal level. At this point, we observed an increase in the gsh/gssg ratio (Figure 4.3C). 
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Figure 4.3: Surface plots of two-parameter variation for the sensitive parameters on h2o2 

level, nadph/nadp+ ratio, and gsh/gssg ratio. (A-C) Effect of variations in 𝑉𝑚
𝐺𝑇𝐻𝑃 and 

𝑉𝑚
𝐺𝑇𝐻𝑂under normoxic conditions (𝑘𝑚

𝑂2= 164mM). (D-F) Effect of variation in 𝑉𝑚
𝐺𝑇𝐻𝑃under 

changing oxygen demand (164mM ≥ 𝑘𝑚
𝑂2≥ 1mM). (G-I) Effect of variation in 𝑉𝑚

𝐺𝑇𝐻𝑂 under changing 

oxygen demand (164mM ≥ 𝑘𝑚
𝑂2≥ 1mM). (J-L) Effect of variation in 𝑉𝑚

𝑁𝑂𝑋 under changing oxygen 

demand (164mM ≥ 𝑘𝑚
𝑂2≥ 1mM). (M-O) Combined effect of simultaneous variation in 𝑉𝑚

𝑁𝑂𝑋 and 

𝑉𝑚
𝐺𝑇𝐻𝑂under 𝑘𝑚

𝑂2= 164mM and 𝑘𝑚
𝑂2= 1mM. 

4.2.3. Dynamics of cells under high oxygen demand: induction of hypoxia  

To mimic the changing oxygen demand of cells during cancerous transformation, we 

tuned the model parameter 𝑘𝑚
𝑂2 which determined the affinity for substrate (Section 

2.2.9). A low Km value implies an increase in the affinity for the substrate. To represent 

an increased affinity of the cell for oxygen, lowering values of Km was tried (𝑘𝑚
𝑂2=164, 50, 



Chapter 4: Dynamic Analysis of Reaction Kinetics 

 

P a g e |  104  

 

 

10 and 1mM). As the value lowered, the cellular demand for oxygen increases, and the 

concentration of external oxygen reduced, creating a mild to severe hypoxic condition 

(APPENDIX B: Figure B. 2). Parameter variation of sensitive parameters was tried at 

𝑘𝑚
𝑂2= 1mM to investigate the changes in the reaction dynamics with induction of hypoxia 

and the results are discussed below.  

Effect of changing Glutathione Peroxidase (GTHP) enzymatic activity 

We observed a change in dynamics of h2o2, nadph/nadp+, and gsh/gssg ratios with 

changing 𝑉𝑚
𝐺𝑇𝐻𝑃 and 𝑘𝑚

𝑂2 . Hydrogen peroxide (h2o2) concentration (Figure 4.3D) and 

gsh/gssg ratio (Figure 4.3F) primarily depended on 𝑉𝑚
𝐺𝑇𝐻𝑃 and remain unaffected by the 

change in 𝑘𝑚
𝑂2 . The enzyme GTHP metabolized the conversion of h2o2 into water by 

oxidizing gsh to gssg, and hence the enzyme concentration directly affected the h2o2 

concentration and gsh/gssg ratio. Redox ratio (nadph/nadp+) however, depended on 𝑘𝑚
𝑂2 

and remained unaltered with change in the 𝑉𝑚
𝐺𝑇𝐻𝑃 (Figure 4.3E). We inferred that high 

level of oxidants generated in response to increased uptake of oxygen (which eventually 

creates a hypoxic microenvironment for the cell) could be dealt with increased activity of 

GTHP within the cell but at the cost of reduced nadph/nadp+ and gsh/gssg ratios.  

Effect of changing Glutathione Oxidoreductase (GTHO) enzymatic activity 

At 12 hours, h2o2 was maintained between sub-micromolar to micromolar levels 

(0.045mM to 0.005mM) for changing values of 𝑉𝑚
𝐺𝑇𝐻𝑂and 𝑘𝑚

𝑂2 . The concentration of h2o2 

reduced with increasing 𝑉𝑚
𝐺𝑇𝐻𝑂. Simultaneously with increasing 𝑘𝑚

𝑂2 , a further reduction 

in h2o2 level was observed (Figure 4.3G). The nadph/nadp+ ratio showed a dip at the Vmax 

value of 0.2 mM hr-1 for GTHO, which was compensated back with a further increase in 

the Vmax (Figure 4.3H). We plotted the temporal plots of varying 𝑉𝑚
𝐺𝑇𝐻𝑂 at high oxygen 

demand (𝑘𝑚
𝑂2=1mM) and checked the nadph/nadp+ ratios at different time points 

(APPENDIX B: Figure B. 3). We inferred from our model simulations that the 

nadph/nadp+ ratio in the model depends upon two factors: (i) concentration of the 

enzyme GTHO available to convert the gssg into gsh in order to maintain the gsh-gssg 

cycle necessary for neutralizing h2o2 levels (ii) the amount of oxidant (h2o2) concentration 
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persisting at any point of time. The gsh/gssg ratio showed different patterns at different 

values of the two parameters (Figure 4.3I). At low values of 𝑉𝑚
𝐺𝑇𝐻𝑂, the enzymatic activity 

was limited and hence the conversion of gssg to gsh was slower. With a low 𝑉𝑚
𝐺𝑇𝐻𝑂 (< 

0.2mM), gssg accumulated and the difference in gsh and gssg concentration reduced, 

resulting in a low gsh/gssg ratio. As the Vmax increased, the conversion of gssg to gsh 

enhanced, which added to the gsh production pool, and the difference in gsh and gssg 

concentration widened, giving high values of gsh/gssg ratio. Adding to it was the effect of 

oxygen within the cell. As 𝑘𝑚
𝑂2 increased, the oxidant production was limited (due to 

limited substrate availability for NOX and SOD), and hence the conversion of gsh to gssg 

was reduced, leading to a further increase in the gsh/gssg ratio.  

Effect of changing NADPH Oxidase (NOX) enzymatic activity 

Characteristic changes in h2o2, nadph/nadp+ ratio, and gsh/gssg ratio with changing 𝑉𝑚
𝑁𝑂𝑋 

was observed under normoxic conditions. When we simulated the variation of the 

parameter over varying 𝑘𝑚
𝑂2 , the concentration of h2o2 took a leap as 𝑉𝑚

𝑁𝑂𝑋 increased and 

𝑘𝑚
𝑂2 decreased (Figure 4.3J). At smaller Km value, cellular uptake of oxygen increased, and 

an increase in 𝑉𝑚
𝑁𝑂𝑋 ensured rapid metabolism of oxygen into free radicals. These free 

radicals were readily metabolized into h2o2 due to the high 𝑉𝑚
𝑆𝑂𝐷 which catalyzed the 

conversion. Hence, with the increasing activity of NOX, the free radicals so formed were 

directed towards the production of h2o2. An inverse pattern of nadph/nadp+ and gsh/gssg 

ratio was observed in response to the changing h2o2 concentration (Figure 4.3J) due to 

the activity of the gsh-gssg cycle (Figure 4.3K-L). 

We inferred from the above simulations that GTHP is an important determinant of h2o2 

levels in the cell. An increase in the activity of GTHP is helpful in reducing the h2o2 levels 

to a feasible range without affecting the nadph/nadp+ ratio much, although it alters the 

gsh/gssg ratio. The effect of changing affinity for oxygen was nullified with a change in 

𝑉𝑚
𝐺𝑇𝐻𝑃 . We attempted varying the activity of GTHP with other sensitive parameters only 

to observe a reduction in the h2o2 while maintaining the redox balance of the cell within 

a feasible range. As such, we propose here that an increase in the activity of GTHP is 

desirable for an antioxidant therapy as it reduces the h2o2 levels irrespective of oxygen 
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demand, simultaneously lowering the gsh/gssg ratio, which is considered an initiation 

factor in the induction of apoptosis, thereby guiding the cell to an apoptotic fate in case 

of major oxidative damage.  

While GTHP can be used for antioxidant therapy, analyses with NOX and GTHO suggested 

that they are favourable targets for pro-oxidant therapies.  An increase in NOX activity at 

high oxygen demand clearly increased h2o2 production along with simultaneous lowering 

of nadph/nadp+ and gsh/gssg ratio, indicating cellular toxicity and initiation of apoptotic 

pathways. Changes in GTHO activity have differing patterns in brain tumors. A decrease 

in h2o2 concentration was observed with increasing GTHO activity in the model. However, 

nadph/nadp+ and gsh/gssg ratio at around a Vmax value of 0.2 mM hr-1 of GTHO showed an 

ideal condition to initiate cellular toxicity. We further analyzed the effect of the two 

enzymes in reducing the redox potential and gsh/gssg ratio of the cell at different oxygen 

demands of the cell.  

An increase in NOX and GTHO activity had a synergistic effect in increasing the h2o2 

concentration (Figure 4.3M) and lowering the nadph/nadp+ ratio (Figure 4.3N) under 

high oxygen demand. Thiol ratio (gsh/gssg), however, lowered down with increasing 

activity of NOX, which otherwise increased with increasing GTHO activity at low NOX 

activity (<0.3 mM hr-1) (Figure 4.3O).  

4.2.4. Redox and thiol status of the cell under glioma scenario 

From the previous set of analyses, we observed that the system showed a characteristic 

change in its behavior for changes in sensitive parameters that were related to oxidant 

and antioxidant production. We used these parameters to create the glioma model 

scenario (Section 2.2.10). The system remained robust for most of the other parameter 

changes. The sensitivity of the h2o2 increased for GTHO during high oxygen demand which 

otherwise remained mostly unaffected in normoxic conditions. Also, the sensitivity of 

h2o2 increased for NOX during high oxygen demand. Parameter values to 𝑉𝑚
𝑁𝑂𝑋 , 𝑉𝑚

𝐺𝑇𝐻𝑂, 

𝑉𝑚
𝐺𝑇𝐻𝑃 and 𝑘𝑚

𝑂2 were changed to 1 mM hr-1, 0.2 mM hr-1, 0.19 mM hr-1and 1mM from 

0.0468 mM hr-1, 0.5 mM hr-1, 0.00216 mM hr-1and 164mM respectively to create the 

glioma scenario. Temporal plots generated for this model showed an excess increase in 

http://blazonsart.com/bengali-calendar.html
http://blazonsart.com/bengali-calendar.html


Chapter 4: Dynamic Analysis of Reaction Kinetics 

 

P a g e |  107  

 

 

h2o2 concentration due to limited regulation by gsh and gssg. A decline in nadph/nadp+ 

and gsh/gssg ratio was also observed. 

With an observable difference in the cellular redox status and the ROS level, we tried to 

understand if the changes in nadph/nadp+ and gsh/gssg ratios associated with the 

changes in h2o2 level during the introduction of mutations in the model could be used to 

determine the pro-apoptotic or anti-apoptotic fates of the cell. Temporal dynamics of the 

changes in h2o2 level and the two ratios for normal, hypoxia, and glioma conditions for a 

duration of 48hrs are shown in Figure 4.4. Under normal conditions, the h2o2 level was 

readily reduced to micromolar concentration (4μM), and the resulting values of 

nadph/nadp+ and gsh/gssg ratios at steady state were 2.63 and 1.2 (Figure 4.4A). The 

values mostly remained unaltered during a shift to hypoxia except for a slight reduction 

in the gsh/gssg ratio over time (Figure 4.4B). Changes were, however, distinct in the case 

of glioma. Reports suggest a difference in the expression of GTHO in gliomas: some show 

a high expression and some low (195). We created both the conditions in the model and 

observed a characteristic difference in the gsh/gssg ratio and h2o2 level in the two 

scenarios. Under high GTHO expression (𝑉𝑚
𝐺𝑇𝐻𝑂= 0.19 mM hr-1), the gsh/gssg ratio 

remained higher than the normal (Figure 4.4C) whereas, under low GTHO expression 

(𝑉𝑚
𝐺𝑇𝐻𝑂= 0.001 mM hr-1) the ratio diminished to a very low value of 0.01 with an abrupt 

increase in h2o2 level (Figure 4.4D). Through the simulations, we propose that at high 

values of 𝑉𝑚
𝐺𝑇𝐻𝑂, the increased level of gsh/gssg ratio helps the cell to evade programmed 

cell death, which would otherwise lead to apoptosis by the induction of toxicity due to an 

uncontrolled increase in h2o2 levels. However, at lower values of 𝑉𝑚
𝐺𝑇𝐻𝑂, a sharp decline 

in the gsh/gssg ratio drives the cell towards an apoptotic fate. As such employing an anti-

oxidant approach at high 𝑉𝑚
𝐺𝑇𝐻𝑂 and a pro-oxidant approach at low 𝑉𝑚

𝐺𝑇𝐻𝑂 will provide a 

better surveillance strategy to eliminate cancer cell progression. We observed only a 

slight difference in the nadph/nadp+ ratio under present simulation conditions. 

Regulation of nadph/nadp+ ratio, however, can be employed to facilitate the pro- or anti-

oxidant approach by modulating the nadph/nadp+ ratio either by inhibition or activation 

of NAD kinase, a potent regulator of the nadph-nadp+ pool within the cell (255, 256). 
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Figure 4.4: Temporal area plots of changing nadph/nadp+ and gsh/gssg ratios along with a 
change in h2o2 concentration. (A) Normal condition, (B) Hypoxia, (C) Glioma at high 𝑉𝑚

𝐺𝑇𝐻𝑂 (0.19 

mM hr-1), (D) Glioma at low 𝑉𝑚
𝐺𝑇𝐻𝑂  (0.001 mM hr-1). 

In order to identify parameters that influence the cellular properties under these 

different conditions, sensitivity analyses were performed for the model with high oxygen 

demand (hypoxia scenario, by changing 𝑘𝑚
𝑂2) and for the model with multiple mutations 

(glioma scenario). A comparison of the sensitive parameters (p-value <0.05) for the 

variables h2o2, gsh, and gssg for the three conditions: normal, hypoxic, and glioma, showed 

common and unique sensitive parameters for each scenario (Figure 4.5 & Table 4.2). 

The kinetics of the enzyme GTHP remained crucial in all three scenarios owing to its 

direct involvement in the production of gsh. Apart from the parameters which directly 

regulated the variables, a few non-intuitive parameters were found to be sensitive for the 

different scenarios. Analyses of these parameters show that the influence exerted by 

them on the variables resulted in micromolar and nanomolar concentrations changes for 

the present simulation conditions. The set of parameters that were unique and common 

to the three different simulation scenarios are shown in Figure 4.5. We suggested that 

regulation of these parameters might help in facilitating pro- or anti-oxidant therapeutic 

strategies.  
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Figure 4.5: Comparison of sensitive parameters in Normal, Hypoxia, and Gliomas for the 
variables gsh, gssg, and h2o2. The abbreviations used here are N: Normal, H: Hypoxia, G: 

Gliomas, NH: Normal and Hypoxia, NG: Normal and Gliomas, HG: Hypoxia and Gliomas, and NHG: 

Normal, Hypoxia and Gliomas. The sensitive parameters for each variable under each condition 

have been tabulated in Table 4.1. 

Table 4.1: List of sensitive parameters for gsh, gssg, and h2o2 
under normal, hypoxic, and 

glioma scenarios. 

gsh 

N18 
𝑉𝑚

𝑃𝐺𝐼 , 𝑘3𝑝ℎ𝑝
𝑃𝑆𝑇 , 𝑘𝑎𝑡𝑝

𝐺𝑆 , 𝑘𝑚
𝑂2 , 𝑘𝑖(3𝑝𝑔)

𝑃𝐺𝐶𝐷𝐻, 𝑘𝑎𝑡𝑝
𝐺𝐶𝐿, 𝑘𝑖(𝑐𝑦𝑠)

𝐶𝑅 , 𝑉𝑚
𝐺𝐻𝑀𝑇 , 𝑘𝑐𝑦𝑠

𝐶𝑅 , 𝑘𝑓6𝑝
𝑃𝐹𝐾 , 𝑑𝑜𝑥𝑦, 𝑘𝑖(𝑔𝑙𝑢𝑡)

𝑃𝑆𝑇 , 

𝑉𝑚
𝐺𝐿𝑈𝑇𝐸𝑋 , 𝑉𝑚

𝑃𝑆𝑃 , 𝑘𝑖(𝑔𝑎𝑝)
𝐺𝐴𝑃𝐷𝐻, 𝑘𝑔𝑎𝑝

𝐺𝐴𝑃𝐷𝐻, 𝑘𝑖(𝑔𝑙𝑦)
𝐺𝑆 , 𝑉𝑚

𝑃𝐹𝐾  

H4 𝑘𝑖(𝑎𝑡𝑝)
𝐻𝐾 , 𝑘𝑜𝑥𝑟𝑎𝑑

𝑆𝑂𝐷 , 𝑘𝑖(𝑎𝑡𝑝)
𝑃𝐹𝐾 , 𝑘𝑂2

𝑁𝑂𝑋 

G6 𝑘𝑖(𝑔𝑠𝑠𝑔)
𝐺𝑇𝐻𝑂 , 𝑉𝑚

𝑁𝑂𝑋, 𝑉𝑚
𝐺𝑆 , 𝑙𝑛𝑎𝑑𝑝, 𝑙𝑛𝑎𝑑𝑝ℎ, 𝑑𝑛𝑎𝑑𝑝ℎ 

NH2 𝑘𝑎𝑑𝑝
𝑃𝐺𝐾, 𝑉𝑚

𝐺𝐶𝐿 

HG0 - 

NG4 𝑉𝑚
𝐺𝑇𝐻𝑂 , 𝑘𝑔𝑠𝑠𝑔

𝐺𝑇𝐻𝑂 , 𝑘𝑖(𝑎𝑡𝑝)
𝐺𝑆 , 𝑘𝑛𝑎𝑑𝑝ℎ

𝐺𝑇𝐻𝑂  
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NHG4 𝑘𝑖(ℎ2𝑜2)
𝐺𝑇𝐻𝑃 , 𝑉𝑚

𝐺𝑇𝐻𝑃 , 𝑘ℎ2𝑜2

𝐺𝑇𝐻𝑃 , 𝑘𝑔𝑠ℎ
𝐺𝑇𝐻𝑃 

gssg 

N19 
𝑉𝑚

𝑃𝐺𝐼 , 𝑘3𝑝ℎ𝑝
𝑃𝑆𝑇 , 𝑘𝑎𝑡𝑝

𝐺𝑆 , 𝑘𝑚
𝑂2 , 𝑘𝑖(3𝑝𝑔)

𝑃𝐺𝐶𝐷𝐻, 𝑘𝑎𝑡𝑝
𝐺𝐶𝐿, 𝑘𝑖(𝑐𝑦𝑠)

𝐶𝑅 , 𝑉𝑚
𝐻𝐾, 𝑉𝑚

𝐺𝐻𝑀𝑇 , 𝑘𝑐𝑦𝑠
𝐶𝑅 , 𝑘𝑓6𝑝

𝑃𝐹𝐾 , 𝑑𝑜𝑥𝑦, 

𝑘𝑖(𝑔𝑙𝑢𝑡)
𝑃𝑆𝑇 , 𝑉𝑚

𝐺𝐿𝑈𝑇𝐸𝑋 , 𝑉𝑚
𝑃𝑆𝑃, 𝑘𝑖(𝑔𝑎𝑝)

𝐺𝐴𝑃𝐷𝐻, 𝑘𝑔𝑎𝑝
𝐺𝐴𝑃𝐷𝐻, 𝑘𝑖(𝑎𝑡𝑝)

𝐺𝑆 , 𝑉𝑚
𝑃𝐹𝐾 

H4 𝑘𝑖(𝑎𝑡𝑝)
𝐻𝐾 , 𝑘𝑜𝑥𝑟𝑎𝑑

𝑆𝑂𝐷 , 𝑘𝑖(𝑎𝑡𝑝)
𝑃𝐹𝐾 , 𝑘𝑂2

𝑁𝑂𝑋 

G5 𝑘𝑖(𝑔𝑠𝑠𝑔)
𝐺𝑇𝐻𝑂 , 𝑉𝑚

𝑁𝑂𝑋, 𝑙𝑛𝑎𝑑𝑝ℎ, 𝑙𝑛𝑎𝑑𝑝, 𝑑𝑛𝑎𝑑𝑝ℎ 

NH2 𝑘𝑎𝑑𝑝
𝑃𝐺𝐾, 𝑉𝑚

𝐺𝐶𝐿 

HG0 - 

NG3 𝑉𝑚
𝐺𝑇𝐻𝑂 , 𝑘𝑔𝑠𝑠𝑔

𝐺𝑇𝐻𝑂 , 𝑘𝑛𝑎𝑑𝑝ℎ
𝐺𝑇𝐻𝑂  

NHG4 𝑘𝑖(ℎ2𝑜2)
𝐺𝑇𝐻𝑃 , 𝑉𝑚

𝐺𝑇𝐻𝑃 , 𝑘ℎ2𝑜2

𝐺𝑇𝐻𝑃 , 𝑘𝑔𝑠ℎ
𝐺𝑇𝐻𝑃 

h2o2 

N25 

𝑉𝑚
𝑃𝐺𝐼 , 𝑘3𝑝ℎ𝑝

𝑃𝑆𝑇 , 𝑘𝑎𝑡𝑝
𝐺𝑆 , 𝑘𝑚

𝑂2 , 𝑘𝑖(3𝑝𝑔)
𝑃𝐺𝐶𝐷𝐻, 𝑑𝑛𝑎𝑑ℎ, 𝑘𝑎𝑡𝑝

𝐺𝐶𝐿 , 𝑘𝑖(𝑐𝑦𝑠)
𝐶𝑅 , 𝑉𝑚

𝐻𝐾 , 𝑑𝑔𝑙𝑢𝑡, 𝑉𝑚
𝐺𝐻𝑀𝑇 , 𝑘𝑐𝑦𝑠

𝐶𝑅 , 𝑘𝑓6𝑝
𝑃𝐹𝐾,  

𝑉𝑚
𝑃𝐹𝐾 , 𝑘𝑖(𝑔𝑙𝑢𝑡)

𝑃𝑆𝑇 , 𝑉𝑚
𝐺𝐿𝑈𝑇𝐸𝑋 , 𝑉𝑚

𝐺𝑇𝐻𝑂 , 𝑉𝑚
𝑃𝑆𝑃, 𝑘𝑖(𝑔𝑎𝑝)

𝐺𝐴𝑃𝐷𝐻, 𝑘𝑔𝑠𝑠𝑔
𝐺𝑇𝐻𝑂 , 𝑘𝑔𝑎𝑝

𝐺𝐴𝑃𝐷𝐻, 𝑑ℎ2𝑜2
, 𝑉𝑚

𝐺𝐿𝑌𝑒𝑥, 

 𝑘𝑖(𝑎𝑡𝑝)
𝐺𝑆 , 𝑘𝑖(𝑔𝑙𝑢𝑡)

𝐺𝐿𝑈𝐷  

H2 𝑘𝑖(𝑎𝑡𝑝)
𝐻𝐾 , 𝑘𝑜𝑥𝑟𝑎𝑑

𝑆𝑂𝐷  

G11 𝑑𝑚𝑙𝑡ℎ𝑓 , 𝑘3𝑝𝑔
𝑃𝐺𝐶𝐷𝐻, 𝐿𝑜𝑥𝑦, 𝑑𝑝ℎ𝑝, 𝑘𝑔𝑙𝑢𝑡

𝑥𝐶𝑇 , 𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋 , 𝑘𝑛𝑎𝑑𝑝ℎ

𝑁𝑂𝑋 , 𝑉𝑚
𝐹𝐵𝐴, 𝑘𝑔𝑙𝑢𝑐𝑦𝑠

𝐺𝑆 , 𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅 , 𝑙𝑎𝑡𝑝 

NH2 𝑉𝑚
𝐺𝐶𝐿, 𝑉𝑚

𝑂2 

HG4 𝑉𝑚
𝑁𝑂𝑋, 𝑙𝑛𝑎𝑑𝑝ℎ, 𝑑𝑖𝑛, 𝑘𝑂2

𝑁𝑂𝑋 

NG4 𝑙𝑔𝑙𝑢𝑡, 𝑘𝑖(𝑎𝑡𝑝)
𝐺𝐶𝐿 , 𝑙𝑛𝑎𝑑𝑝, 𝑑𝑜𝑥𝑦 

NHG5 𝑘𝑎𝑑𝑝
𝑃𝐺𝐾, 𝑘𝑖(ℎ2𝑜2)

𝐺𝑇𝐻𝑃 , 𝑉𝑚
𝐺𝑇𝐻𝑃 , 𝑘ℎ2𝑜2

𝐺𝑇𝐻𝑃 , 𝑘𝑔𝑠ℎ
𝐺𝑇𝐻𝑃 

4.2.5. Identification of combinatory targets for pro and anti-oxidant therapy 

We analyzed the influence of parameters sensitive in regulating h2o2 levels under the 

glioma scenario using the parameters listed in G11 in Table 4.1. These parameters did 

not regulate the ROS levels directly yet showed differences in the ROS levels along with 
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changes in gsh/gssg and nadph/nadp+ ratios when varied individually or in combination.  

Enzymes and metabolites associated with a few of these parameters like 

methyltetrahydrofolate (mlthf) (257, 258), NADPH Oxidase (NOX) (250, 259, 260), 

cystine-glutamate antiporter (xCT) (261), etc., have already been implicated in having a 

crucial role in regulating ROS levels in the cell. A few parameters associated with enzymes 

that did not directly regulate the ROS and glutathione production, like Phosphoglycerate 

Dehydrogenase (PGCDH), Cystine Reductase (CR), and Fructose Bis-phosphate Aldolase 

(FBA), were also identified. These parameters did not necessarily show a significant 

difference in the ROS levels when varied individually but showed characteristic 

difference when varied in combinations. These changes can be utilized for designing pro-

oxidant or anti-oxidant approaches for therapeutic targeting. A few of the combinations 

which brought distinct changes in the h2o2 level, gsh/gssg, and nadph/nadp+ ratio under 

the glioma model condition, have been listed in Table 4.2. 𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅 , a parameter that was 

considered in the model, which catalyzes the conversion of cystine into cysteine 

subsequently using it for glutathione production, was found to have an effect on the h2o2 

level, gsh/gssg, and nadph/nadp+ ratio when varied in combination with other 

parameters. Availability of oxygen in the ECM for cellular uptake (𝐿𝑜𝑥𝑦) when modulated 

in combination with 𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅  showed significant change in level. Interestingly, a 

combinatorial variation of 𝐿𝑜𝑥𝑦 with 𝑉𝑚
𝐹𝐵𝐴 caused a decline in the h2o2 concentration, 

which can be utilized for antioxidant therapy, and a variation of 𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅  with 𝑘𝑔𝑙𝑢𝑐𝑦𝑠

𝐺𝑆  

induced changes the h2o2 concentration which can possibly be used for pro-oxidant 

therapeutic design. Table 4.2 provides the value of parameters in combinations and their 

pro- or anti-oxidant fate depending upon their influence on the h2o2 level, gsh/gssg, and 

nadph/nadp+ ratio. The changes in h2o2, gsh/gssg, and nadph/nadp+ profiles as a result of 

these combinatorial variations in the glioma scenario are shown in APPENDIX B: Figure 

B. 4 and the regulation for which the profiles are obtained have been listed in APPENDIX 

B: Table B. 3. These combinations could be explored for their possible role in the 

development of future therapeutic strategies. Altering the kinetic parameters like the 

Vmax or km of an enzyme is challenging, though possible with the help of enzyme 

modulators and competitive and non-competitive inhibitors. Non-competitive inhibitors 

are capable of altering the Vmax of an enzyme while keeping the km unaltered, while 
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competitive inhibitors can alter the km of the enzyme (262). A few of the inhibitors for the 

aforementioned enzymes are already available in the market, that could be checked for 

their effectiveness in the present context. For e.g., iodoacetate, N-ethylmaleimide (NEM), 

and 5,5 ́-dithiobis-(2-nitrobenzoate) (DTNB) have been reported as potent inhibitors of 

glutathione synthase (263), and neopterin, magnolol, apocyanin and gliotoxin for NADPH 

oxidase (264). However, the exact type of inhibition for these inhibitors i.e., competitive 

or non-competitive is not yet known and has to be understood. A context-based 

understanding of the involvement of these parameters in ROS production or scavenging 

mechanism under different conditions has to be made through experiments in order to 

employ them for therapeutic strategies.       

Table 4.2: Values of parameters for which pro- and anti-oxidant effects could be induced 
in the glioma scenario. 

Sr. 

No. 
Parameter 1 Parameter 2 

Value of 

Parameter 1 

Value of 

Parameter 2 
Effect 

1. 𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋  𝑘𝑛𝑎𝑑𝑝ℎ

𝐶𝑅  1 mM 15 mM Pro-oxidant 

2. 

 
𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)

𝑁𝑂𝑋  𝑘𝑛𝑎𝑑𝑝ℎ
𝑁𝑂𝑋  

20 mM 10 mM Anti-oxidant 

1 mM 0.0001 mM Pro-oxidant 

3. 𝐿𝑜𝑥𝑦 𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅  20 mM hr-1 15 mM Pro-oxidant 

4. 𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋  𝑙𝑎𝑡𝑝 0.5 mM 20 mM hr-1 Pro-oxidant 

5. 𝑉𝑚
𝐹𝐵𝐴 𝐿𝑜𝑥𝑦 0.0001 mM hr-1 5 mM hr-1  Anti-oxidant 

6. 𝑘𝑔𝑙𝑢𝑐𝑦𝑠
𝐺𝑆  𝑘𝑛𝑎𝑑𝑝ℎ

𝐶𝑅  0.0001 mM 0.5 mM Pro-oxidant 

4.3. Discussion 

ROS, produced as a by-product of cellular metabolism, are often considered toxic to the 

cells. Nonetheless, in recent years, their functions as second messengers in signal 

transduction processes have been highly appreciated. In normal cells, any excess 

production of ROS is scavenged by the antioxidant machinery. ROS, however, exhibit a 

paradoxical behavior in augmenting or hindering tumor progression. It is described to 

have a “double-edged sword” property having both tumor-promoting and tumor-

suppressing functions. Currently, both pro-oxidant and anti-oxidant approaches are 
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employed as cancer therapeutics. However, owing to the paradoxical behavior, the 

employment and effectiveness of which strategy will suit a better therapeutic approach 

for any particular cancerous situation still remains unclear.  

The oxidative status and functioning of anti-oxidant machinery have a crucial role in 

determining the proliferative fates of the cancer cells. The cellular nadph/nadp+ ratio is a 

measure of the reducing potential of the cells, which is usually maintained high for proper 

cellular functioning (244, 245). A decline in the nadph/nadp+ ratio is observed in many 

cancer types (265, 266), although a high nadph/nadp+ ratio was observed to promote 

cancer cell growth and proliferation by stimulating anabolism and by protecting cancer 

cells against oxidative stress during nutrient limitation (267). Thiol ratios are another 

important determinant of cellular apoptotic or anti-apoptotic fates. A high gsh/gssg ratio 

is maintained under normal conditions, which often changes during cancerous 

transformations. A decline in the gsh/gssg ratio induces initiation of apoptosis, while an 

increase might help the cells escape apoptosis. The puzzling duality of ROS in exhibiting 

varying cellular fates is determined by a coordinated response of these factors. 

Understanding the effect of these factors cumulatively under different cancerous 

scenarios is a challenge.  

Motivated by these findings, we designed a kinetic metabolic framework for glial cells to 

trace the possible changes that might be occurring within them during their 

transformation into gliomas. The model took into account the metabolic reactions 

involved in the production of the components of the tri-peptide complex, glutathione, and 

ROS-producing machinery. A part of the glycolytic pathway which enters the glycine-

serine metabolism was considered along with cysteine and glutamate metabolism, which 

result in the production of the components of the tri-peptide: glycine, cysteine, and 

glutamate, respectively. Herein, we considered the effect of these pathways on the anti-

oxidant production machinery, simultaneously looking for their effect on ROS production 

and scavenging and vice versa. To understand the effect of glutathione over ROS 

metabolism, reactions metabolizing the production of glutathione and ROS, along with 

the gsh-gssg cycle, were considered. Important reactions involving the nadph-nadp+ 

conversions were considered to take into account the changes in the nadph/nadp+ ratio 

while manipulating ROS-glutathione profiles. We postulated that the paradoxical 
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behavior of ROS is governed by changes in the nadph/nadp+ and gsh/gssg when 

considered together. An increase in h2o2 along with a decline in both gsh/gssg and 

nadph/nadp+ will disrupt the cellular redox status and drive the cell towards apoptosis 

by inducing toxicity due to the accumulation of ROS.  

Numerical simulations of the model provide us with a set of sensitive enzyme parameters, 

which are affected during a transition from normal glial conditions to hypoxia to the 

development of gliomas. Upon introducing variations into the parameters, which were 

sensitive under normal glial conditions, interesting changes in the dynamics of h2o2, 

nadph/nadp+, and gsh/gssg were observed. The uptake of oxygen by the cells was 

represented in Michaelis-Menten equation form where 𝑘𝑚
𝑂2 determined the affinity of the 

cell for external oxygen. Decrease in 𝑘𝑚
𝑂2 resulted in a decline in the external oxygen 

concentration as the cellular affinity for external oxygen increases. This represented a 

condition with high cellular oxygen demand, which is reflected as hypoxia in the external 

microenvironment.  

GTHP is one of the important enzymes involved in the regulation of gsh/gssg, along with 

controlling the cellular content of h2o2 and maintaining nadph/nadp+. Through our 

simulation on the glial cell model, we observed that with an increase in 𝑉𝑚
𝐺𝑇𝐻𝑃 there was 

a considerable decline in the h2o2 level and gsh/gssg ratio, although the effect on the 

nadph/nadp+ ratio was only trivial. GTHO is another important enzyme, and the GTHP-

GTHO duo completes the gsh-gssg cycle. Not much difference in gsh/gssg and 

nadph/nadp+ could be observed for a change of GTHO alone, keeping all other parameters 

fixed. However, simultaneously varying GTHP and GTHO resulted in interesting changes 

in nadph/nadp+ and gsh/gssg with a decrease in h2o2 concentration. We interpreted that 

at any given time point under the normal condition, there is a decline in the nadph/nadp+ 

and gsh/gssg until the gsh-gssg cycle neutralizes h2o2 concentration to micromolar levels 

rendering it non-toxic to cellular processes, after which the cell regains a stable 

nadph/nadp+ and gsh/gssg ratio. The involvement of NADPH Oxidase (NOX) was found to 

be crucial in the present simulation scenario. The activity of NOX determines the rate of 

production of free oxygen radicals which act as a substrate for superoxide dismutase 

(SOD) and is readily converted into h2o2 given 𝑉𝑚
𝑆𝑂𝐷 is sufficiently high. An increase in the 
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NOX activity rapidly increased the h2o2 level, decreasing both the nadph/nadp+ and 

gsh/gssg ratio. 

While analyzing the dynamics of these parameters under changing affinity for oxygen, we 

observed that under hypoxic conditions increase in 𝑉𝑚
𝐺𝑇𝐻𝑃

 
acts as the protective barrier 

against ROS by readily neutralizing h2o2 levels at the cost of reduced gsh/gssg, although 

the change in nadph/nadp+ ratio remains trivial. A decrease in the 𝑉𝑚
𝐺𝑇𝐻𝑃

 
can, however, 

help cancer development by causing h2o2 accumulation and inducing oncogenic signal 

transductions. The changes occurring due to the increase in activity of NOX and GTHO 

under hypoxia could also be interpreted as a condition initiating cancer development. 

While increasing NOX activity under hypoxia certainly disrupted cellular redox balance 

by reducing gsh/gssg and nadph/nadp+, the effect of changes in GTHO activity was 

minimal at the cost of a sudden decrease in nadph/nadp+ and reduced gsh/gssg, with its 

effect being severe at lower values. When considered together, changes in NOX and GTHO 

activity under normal and hypoxic conditions showed substantial differences suggesting 

their involvement in tumor initiation.  

A decrease in 𝑉𝑚
𝐺𝑇𝐻𝑃and 𝑉𝑚

𝐺𝑇𝐻𝑂 , and an increase in 𝑉𝑚
𝑁𝑂𝑋

 
along with a low 𝑘𝑚

𝑂2

 
were 

considered to create a situation under hypoxia with multiple mutations representing a 

glioma-like situation. Comparisons of sensitive parameters under normal, hypoxic, and 

glioma-like situations provided an insight into the directly and distantly related 

parameters which affect the production of gsh, gssg, and h2o2. Through parameter 

variation analysis of sensitive parameters under the glioma-like scenario, it was observed 

that different values of 𝑉𝑚
𝐺𝑇𝐻𝑂

 
had a differing effect on the overall redox status of the cell. 

We interpreted that differing GTHO activity during cancerous transformation can govern 

the pro-apoptotic or anti-apoptotic fate. This partially accounts for the paradoxical 

behavior of ROS and helps in the therapeutic determination of pro-oxidant or anti-

oxidant approaches either by augmenting glioma cell death and clearance or by 

controlling it by using antioxidant therapies. We proposed that under high GTHO activity, 

an antioxidant approach will be suitable to control glioma progression, whereas, under 

low GTHO activity, a pro-oxidant approach will be appropriate to induce apoptosis of the 

glioma cells.  
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Further analysis of the glioma scenario created in-silico in the model showed the 

involvement of non-trivial parameters in the regulation of gsh, gssg, and h2o2. It was 

interesting to note that a combinatorial parameter variation of enzymes belonging to the 

glycolytic pathway (𝑉𝑚
𝐹𝐵𝐴) and cysteine metabolism (𝑘𝑛𝑎𝑑𝑝ℎ

𝐶𝑅 ) could induce changes in the 

h2o2 level along with changes in nadph/nadp+ and gsh/gssg profiles during glioma. 

Additionally, a combinatorial variation of a few other parameters like 𝑘𝑔𝑙𝑢𝑐𝑦𝑠
𝐺𝑆 , 𝐿𝑜𝑥𝑦, 𝑙𝑎𝑡𝑝 

and 𝑘𝑛𝑎𝑑𝑝ℎ
𝑁𝑂𝑋 which were not directly involved in ROS manipulation also showed changes in 

the h2o2 level. Combinatorial response of these parameters was captured, which 

suggested the possibility of utilizing these combinations in designing pro- or anti-oxidant 

therapeutic approaches based on their effect on ROS manipulation. 

To summarize, GTHP, GTHO, and NOX were important in determining the transition from 

normal glial to hypoxia to glioma situation and in regulating ROS levels with the cell. 

Additionally, changes in the redox and thiol status represented by the nadph/nadp+ and 

gsh/gssg ratios along with changes in the enzymes could determine the pro-apoptotic or 

anti-apoptotic fate of gliomas. The differing activity of GTHO during glioma development 

helped in understanding the paradoxical behavior of ROS in gliomas and hence was 

helpful in determining the selection of therapeutic strategies: pro-oxidant or anti-oxidant 

against glioma progression. Also, the involvement of enzymes that were not directly 

involved in the regulation of ROS but affected the process by inducing effect distantly in 

the metabolic network was important in augmenting the effectiveness of the selected 

therapeutic approach. The understanding of these mechanisms and identification of 

important enzymes which affect the ROS manipulation process can potentially build a 

better prospect of developing effective and efficient therapeutic strategies for the 

treatment of gliomas. 
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CHAPTER 5 

POST-TRANSCRIPTIONAL REGULATION BY MICRORNAS ON 

METABOLISM AND CELLULAR PHENOTYPES IN GLIOBLASTOMA 

5.1. Rationale of the study 

The increase in omics and high-throughput research has enabled the identification of 

genetic factors regulating the expression of metabolic genes. The mutations, epigenetic 

modifications, and transcriptional regulations affecting metabolic genes are one of the 

primary underlying factors responsible for the metabolic alterations in glioblastoma 

(Section 1.5.1). Additional regulatory mechanisms on metabolism are currently being 

explored. Growing evidence of the microRNAs dependent regulation of metabolism has 

initiated research interest to explore their role in cancer metabolism (34). In the present 

chapter, which fulfils the second and the fourth objectives of the thesis, we investigate 

the effect of post-transcriptional regulation imposed by differentially expressed 

microRNAs on the metabolic gene and associated phenotypes in glioblastoma. 

MicroRNAs (miRNAs) are 18-25 nucleotide long small non-coding RNAs produced 

endogenously within the cell. miRNAs bind to the 3’ UTR of the target genes via base 

complementarity between the seed sequences of the miRNAs and the 3’ UTR of the gene 

and regulate gene expression (35). The role of miRNAs is currently being explored for 

prospects of miRNA-based therapeutics in glioblastoma (36-38). Computational analysis 

of omics and high-throughput data on the miRNA and gene expression has been 

successful in establishing a cause-and-effect relationship between differential expression 

of miRNAs and target genes (268). Graph network-based approaches are being popularly 

used for such gene regulatory networks. While such analyses are incremental in the 

identification of key regulators of gene expression and the highly targeted genes (37), the 

regulatory effect on metabolic genes often remains abeyant in these studies.  

MicroRNAs have been implicated in the regulation of cellular phenotypes as well (269). 

Multiple oncogenic phenotypes like proliferation (270), cell invasion (271, 272), tumor 

survival (273), multi-drug resistance (274), and stemness (275) of glioblastoma are 

influenced by miRNA regulation. The effect of miRNA binding on important regulatory 

Bulk of this chapter has been taken verbatim from our submitted article: Bhowmick R and Sarkar RR 

(2021) Identification of potential microRNAs regulating metabolic plasticity and cellular phenotypes in 

glioblastoma. (Submitted) 
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genes associated with these phenotypes is tested to define a possible mechanism of 

action. However, despite their role in controlling cancerous phenotypes and regulating 

phenotype switching, the metabolic aspect of these regulations mostly remains 

unravelled. Studying the effect of miRNA regulation on the metabolism associated with 

these phenotypes will be helpful to delineate the role of miRNAs in metabolic plasticity 

that aid phenotype switching in glioblastoma and will help identify targets for miRNA-

based therapeutics. The heterogeneity in patient-derived omics data adds complexity to 

the identification of unique targetable miRNAs. This heterogeneity necessitates the 

requirement of personalized treatment strategies. Continuous assessment of these data 

has helped to identify repeated patterns in expression profiles and correlate them with 

oncogenic phenotypes to classify patients categorically for suitable treatment strategy. 

The use of computational pipelines can be instrumental in this context to simplify the 

formidable data into useful information that can be utilized to decide treatment strategy. 

Hence, the present work focusses on the miRNA regulation of metabolism and its role in 

regulating cellular phenotypes in glioblastoma. Graph networks of miRNA - metabolic 

target gene and miRNA - metabolic pathway created using patient-derived differential 

expression data of miRNAs and metabolic genes were used for the study (Section 2.3.1 

& 2.3.5). The effect of 26 upregulated and 46 downregulated miRNAs (Section 2.3.2) on 

the metabolism of glioblastoma were studied. Glioblastoma-specific target metabolic 

genes of these differentially expressed miRNAs were obtained from the miRDB database 

(Section 2.3.3). Functional annotation using pathway enrichment was performed to 

identify frequently regulated metabolic pathways (Section 2.3.7). Bipartite projection 

and backbone analysis were performed to identify important miRNAs that regulate 

central carbon metabolism, fatty acid, lipid, glycan, amino acid, and nucleotide 

metabolism (Section 2.3.10). MiRNA – metabolic gene subnetworks were identified for 

proliferation and growth, survival, cell migration and invasion, stemness, and drug 

resistance in glioblastoma using network diffusion (Section 2.3.11). The identified 

subnetworks were further used for miRNA knockout analysis to predict target 

combinations of miRNAs that regulate these phenotypes maximally. New centrality 

measures, pairwise disconnectivity index, and Katz centrality are used to predict the 

influence of miRNA on the subnetworks and the impact of miRNA deletion on target genes 

(Section 2.3.12). MiRNA targets predicted from the analyses can be tested through in-
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vivo and in-vitro studies to test their feasibility as miRNA-based therapeutics in 

glioblastoma. The strategies employed can be used for the identification of in-silico leads 

for experimental verification in other gene regulatory networks as well.  

5.2. Results 

5.2.1. Differentially expressed miRNAs and target metabolic genes 

To identify differentially expressed miRNAs that potentially regulate the expression of 

metabolic genes in glioblastoma, patient-derived miRNA dataset GSE90603 was 

screened. Comparison of miRNA expression profiles from GBM patient-derived tumor 

tissue samples vs. normal brain tissue sample from healthy volunteers and GBM patient-

derived normal tissue samples yielded 26 upregulated and 46 downregulated miRNAs 

(Section 2.3.2). The upregulated set of miRNAs consists of hsa-miR-106b-3p, hsa-miR-

10b-5p, hsa-miR-155-5p, hsa-miR-15b-5p, hsa-miR-181a-2-3p, hsa-miR-18a-5p, hsa-

miR-21-5p, hsa-miR-23a-3p, hsa-miR-24-2-5p, hsa-miR-25-3p, hsa-miR-28-3p, hsa-miR-

320a, hsa-miR-320b, hsa-miR-320c, hsa-miR-320d, hsa-miR-339-5p, hsa-miR-3651, hsa-

miR-424-3p, hsa-miR-4429, hsa-miR-455-3p, hsa-miR-500a-5p, hsa-miR-6872-3p, hsa-

miR-92a-3p, hsa-mir-92b, hsa-miR-92b-3p and hsa-miR-93-5p. And the downregulated 

set comprises of hsa-mir-1225, hsa-miR-1236-5p, hsa-mir-124-1, hsa-mir-124-2, hsa-

mir-124-3, hsa-miR-124-3p, hsa-miR-124-5p, hsa-miR-128-1-5p, hsa-miR-128-2-5p, 

hsa-miR-128-3p, hsa-miR-129-1-3p, hsa-miR-137, hsa-miR-138-2-3p, hsa-mir-139, hsa-

miR-139-3p, hsa-miR-139-5p, hsa-miR-211-3p, hsa-miR-218-5p, hsa-miR-3188, hsa-

miR-3200-3p, hsa-miR-323a-5p, hsa-miR-330-3p, hsa-miR-330-5p, hsa-miR-338-3p, 

hsa-miR-4257, hsa-miR-4281, hsa-miR-4322, hsa-miR-433-3p, hsa-miR-4433b-3p, hsa-

miR-4447, hsa-miR-4463, hsa-miR-4525, hsa-miR-485-5p, hsa-miR-490-5p, hsa-miR-

5698, hsa-miR-6782-5p, hsa-miR-6790-5p, hsa-miR-6810-5p, hsa-miR-6861-5p, hsa-

miR-758-5p, hsa-miR-7-5p, hsa-miR-769-5p, hsa-mir-770, hsa-miR-770-5p, hsa-miR-

873-3p and hsa-miR-874-3p.  

A few of the miRNAs in both sets were observed to share the same seed sequence and 

target similar genes. Such miRNAs belonged to the same family and were considered 

together as a single entity in further analyses. These miRNAs are hsa-miR-25-3p, hsa-
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miR-92a-3p, hsa-miR-92b and hsa-miR-92b-3p of MIR25/92 family and hsa-miR-320a, 

hsa-miR-320b, hsa-miR-320c and hsa-miR-320d of MIR320 family in the upregulated set 

and hsa-miR-124-1, hsa-miR-124-2, hsa-miR-124-3 and hsa-miR-124-3p of MIR124 

microRNA precursor family, hsa-miR-128-1-5p and hsa-miR-128-2-5p of MIR128 family 

and hsa-miR-770, hsa-miR-770-5p of MIR770 family in the downregulated set. Further 

analysis showed that hsa-miR-4429 shared the same target genes as that of the MIR320 

family miRNAs and have been predicted to share the same seed sequence with the family. 

Hence, hsa-miR-4429 was considered a member of the MIR320 family. The identified 

differentially expressed miRNAs were further validated with additional datasets as 

described in Section 2.3.4. Figure 5.1A shows the observed difference in the differential 

expression of miRNAs across all the datasets considered for validation. 

Predicted target genes specific to glioblastoma for each of the differentially expressed 

miRNAs were obtained from the miRDB database (Section 2.3.3). Only metabolic genes 

were considered for the study. A composite list of 1865 unique metabolic genes was 

obtained from the Recon3D human genome model (APPENDIX C: Section C). The 

predicted metabolic genes from all the predicted target genes of each miRNA were 

identified and filtered by mapping over this list. The predicted metabolic target genes 

were matched with the differentially expressed genes obtained from the TCGA GBM 

project (Section 2.3.5). Only those predicted genes that showed differential expression 

were considered as the target for the differentially expressed miRNAs. Since miRNA 

regulated gene expression by gene silencing, the effect of an upregulated miRNA would 

be mediated by a downregulation of its target genes and vice versa. Hence, the 

downregulated metabolic genes were considered as targets of upregulated miRNAs and 

the upregulated metabolic genes as potential targets of downregulated miRNAs. Pathway 

enrichment of each miRNA-regulated target gene set was performed. A list of all the 

upregulated and downregulated miRNAs, their target metabolic genes, and the enriched 

pathways is tabulated in APPENDIX C: Table C. 1 & Table C. 2. 
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Figure 5.1: Validation of differentially expressed miRNAs and network visualization. (A) 
Validation of miRNA expression with other GEO datasets; miRNA- target metabolic gene 
interaction network of (B) Upregulated miRNAs (C) Downregulated miRNAs. 

5.2.2. Identification and analysis of hub miRNAs and metabolic genes 

With the identification and inclusion of additional genes relevant to the expression of 

miRNA-regulated targets at the network level, two composite miRNA-target metabolic 

gene interaction networks were formulated for the upregulated and downregulated sets 

of miRNAs. Figure 5.1B provides a visualization of the upregulated miRNA- target gene 
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interaction network with 109 nodes and 696 interactions and Figure 5.1C of 

downregulated miRNA-target gene interaction network with 225 nodes and 650 

interactions.  

The miRNA-target gene network exhibited anti-modularity, a property in which nodes 

from one functional group tend to have lesser interaction as compared to their 

interaction with the nodes of the other functional group. This property holds true for 

bimodal gene-regulatory networks, for, e.g., the flow of regulatory information from the 

transcriptional regulators is more likely to pass down to the promoters of genes than to 

other transcription regulators (276). However, the information flow is modular at the 

gene-reaction level, defined as the high connectivity of nodes within each functional 

group (277). The gene network was expanded based on the modularity of genes encoding 

enzymes/proteins that interact at the reaction level, and the effect of each miRNA 

regulation on the network was checked.  

Directed network analyses of miRNA-target gene interaction networks were performed. 

The degree distribution of indegree and outdegree of these networks followed a power 

law, indicating the scale-free nature of these networks (APPENDIX C: Figure C. 2). Based 

on the topological properties, important upregulated and downregulated miRNAs were 

identified. 

Upregulated miRNA-target metabolic gene interaction network 

Hsa-miR-15b-5p, MIR25/92 family miRNAs, hsa-miR-93-5p, hsa-miR-23a-3p, and 

MIR320 family miRNAs were the top five upregulated miRNAs regulating metabolic 

genes, identified based on total degree and topological coefficient. Topological coefficient, 

by definition, is a relative measure for the extent to which a node shares neighbours with 

other nodes. High degree and low topological coefficients provide an idea about the 

exclusiveness of target genes for each miRNA. Hsa-miR-15b-5p combined with hsa-miR-

21 forms a diagnostic biomarker for glioma patients with high sensitivity and specificity 

(278). We observe an overexpression of both hsa-miR-15b-5p and hsa-miR-21-5p from 

our patient-derived data analysis. Crucial metabolic targets of hsa-miR-15b-5p include 

GLUD1, IDH3A, MTHFR, FASN, and PTEN (APPENDIX C: Table C. 1). Expression of 

GLUD1 is regulated by mTOR via mTORC1 activity that is often enhanced to allow 
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switching to glutamine uptake as an alternate energy source. Targeting GLUD1 

expression by regulating hsa-miR-15b-5p expression is a possible strategy to regulate 

this phenotype switching. A similar approach can be used for IDH3A expression, which is 

often enhanced in IDH mutant glioblastomas with loss-of-function mutation of IDH1 and 

IDH2. MTHFR c.677C>T variant of MTHFR is an identified risk factor for the survival of 

glioblastoma patients (279). Also, MTHFD2, an enzyme that metabolizes the product of 

MTHFR, is often overexpressed in glioblastoma via MYC transcription regulation. miRNA-

based therapy is in use for MTHFD2 regulation via hsa-miR-920 (280). Using hsa-miR-

15b-5p based therapy can have added advantages as it can regulate MTHFR directly and 

MTHFD2 by limiting its substrate production. Furthermore, hsa-miR-15b-5p regulates a 

large number of genes belonging to fatty acid metabolism (ACACB, ACSL4, ACSS2, FASN). 

FASN overexpression has been reported in some cases of glioblastoma due to SREBP-1 

transcription regulation (281).  FASN expression can be regulated by hsa-miR-15b-5p 

based therapy. 

Upregulation of MIR25/92 family miRNAs is identified as a biomarker and potential 

therapeutic target in different types of cancer. From the present study, we identified an 

upregulation of hsa-miR-25-3p, hsa-miR-92a-3p, hsa-miR-92b and hsa-miR-92b-3p. 

Important target genes include ELOVL4, ATP6V1B2, ADCY3, PTEN, and PLD1. Fatty acid 

elongase ELOVL4 supports extracellular vesicle formation and release in glioblastoma 

and is implicated in controlling tumorigenesis (282). Downregulated expression of 

ATP6V1B2 is implicated in chemo-resistant protein expression patterns of glioblastoma 

(283). Downregulation of these genes in glioblastoma patient samples and upregulated 

expression of MIR25/92 family miRNAs suggest the possibility of correlation, although 

testing the hypothesis was beyond the scope of this work. The understanding provides 

an opportunity for miRNA-based targeting of these genes. Besides, hsa-miR-25-3p, hsa-

miR-10b, and hsa-miR-21, and the miR-106b∼25 cluster are frequently upregulated in 

glioblastoma, all of which could be captured in the present analysis. The miR-106b∼25 

cluster comprises hsa-miR-25, hsa-miR-93, and hsa-miR-106b, all of which show 

cooperated response to decrease PTEN expression in different cancer. In our study, PTEN 

was a predicted target of hsa-miR-25-3p and was downregulated in patient-derived data. 
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Hsa-miR-23a-3p is another prognostic marker frequently upregulated in glioblastoma. 

Sponging hsa-miR-23a-3p results in antiproliferative and antimetastatic response via 

elevated expression of PTEN. Apart from this, hsa-miR-23a-3p potentially targets a 

number of important metabolic genes, namely ATP6V1E1, GLS, AGPAT4, NDUFA5, AACS, 

ACADSB, OXCT1, PDHA1, and ATP6V1B2, many of which assist metabolic switching in 

glioblastoma. c-MYC regulation allows GLS overexpression by repressing hsa-miR-23a. 

The mechanism can be used for miRNA-based therapy to target glioblastoma with high 

GLS expression. The MIR320 family miRNAs also have a pool of important target 

metabolic genes consisting of PFKM, ACOT7, ADCY3, PTEN, GLS, NDUFA10, and 

ATP6V1C1. Downregulation of the MIR320 family is associated with the promotion of 

growth and invasion and poor prognosis in glioblastoma (284), and their upregulation 

has anti-tumor effects. PTEN was a common target of many of the upregulated miRNAs 

suggesting miRNA regulation as one of the primary factors controlling downregulation of 

PTEN in glioblastoma. Due to the high modularity of genes encoding subunits of ETC 

complexes, these genes appeared as a highly connected hub. The effect of miRNA 

regulation is expected to propagate faster within the hub. Several miRNAs have been 

identified as mitomiRs that regulate mitochondria-related mechanisms, particularly 

related to the ETC. From our study, we identified hsa-miR-93-5p, hsa-miR-181a-2-3p, 

hsa-miR-23a-3p, MIR25/92 family miRNAs, MIR320 family miRNAs, and hsa-miR-6872-

3p regulate genes belonging to mitochondrial ETC complexes. 

Downregulated miRNA-target metabolic gene interaction network  

MIR124 family miRNAs, hsa-miR-137, hsa-miR-485-5p, hsa-miR-128-3p, and hsa-miR-

3188 were the top five downregulated miRNAs based on the highest degree and lowest 

topological coefficient. MIR124 family miRNAs, particularly hsa-miR-124-3p, are a crucial 

mediator of glioblastoma growth and angiogenesis. Studies on the regulation of signalling 

genes by this family of miRNAs suggest the potential for therapeutic targeting in brain 

tumors (285). In the present study, we observe that a large number of genes belonging to 

β-oxidation of fatty acids (ACAA2, ECI2, ALDH9A1, HADHA, PECR, and HADH) in 

glioblastoma are targeted by miRNAs of this family. The involvement of these miRNAs in 

the regulation of fatty acid and triglyceride metabolism indicates their role in cancer 

proliferation and progression. Apart from the β-oxidation, these miRNAs also regulate 
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the expression of ATP6V0A2, SUCLG2, ATP6V0E1, and PGM2. The ability of hsa-miR-137 

to target multiple genes of central carbon metabolism, including PFKFB4, AGPAT5, PGM2, 

IDH1, and PEPD, makes it a crucial therapeutic target. Both hsa-miR-124 and hsa-miR-

137 are downregulated in glioblastoma, and inducing these miRNAs promote 

antiproliferative and pro-differentiation effects (270). Their ability to regulate the fatty 

acid oxidation, glycolysis, and TCA cycle potentially contribute to the antiproliferative 

effect. 

Experimental analysis shows hsa-miR-485-5p in glioblastoma acts as a tumor-

suppressive miRNA (286), although it is frequently downregulated in these tumors. The 

downregulation of the miRNA upregulates a large number of metabolic genes, including 

ATP6V0D2, CROT, AK2, ADH5, UEVLD, and UQCRQ, that regulate energy metabolism and 

drug metabolism. Upregulated expression of these genes is likely to aid tumor 

proliferation by providing for the excess energy requirement of the tumor cells. hsa-miR-

128-3p has a distinct difference in expression patterns in low-grade gliomas and 

glioblastoma (287, 288). It functions to inhibit proliferation and differentiation in all 

grades of glioma and enhance TMZ sensitivity in glioblastoma (289). Regulation of 

metabolic targets like G6PC3, PFKFB4, AK2, GYS1, HMOX1, ADH5, and GLRX possibly 

confers the miRNA the ability to control energy metabolism in glioblastoma. Both hsa-

miR-485-5p and hsa-miR-128-3p are suitable targets of miRNA-based targeted therapy.  

Hsa-miR-3188 is one of the less explored miRNAs in glioblastoma. Its metabolic targets 

ADH5 and PLCB3 confers it the ability to target multiple metabolic functions, including 

drug and xenobiotic metabolism and signalling responses, owing to the involvement of 

these genes in multiple cellular processes. Other important metabolic targets are CROT, 

UQCRQ, AKR7A2, and GNPDA1. Some of the additional downregulated miRNAs identified 

from the analysis include hsa-miR-7-5p, hsa-miR-139-5p, hsa-miR-218-5p, hsa-miR-330-

3p, and hsa-miR-4463 (APPENDIX C: Table C. 2).  

5.2.3. Metabolic pathway regulation by differentially expressed miRNA   

Functional analysis of the target genes was done using pathway enrichment. The target 

genes of each miRNA were enriched against the KEGG and Reactome databases (Section 

2.3.7). A list of the top 30 pathways targeted by the upregulated and downregulated 
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miRNAs has been shown in Figure 5.2A and B, and a list of all enriched pathways for each 

miRNA target is provided in APPENDIX C: Table C. 1 & Table C. 2.  

 

Figure 5.2: Metabolic Pathways regulated by differentially expressed miRNAs. (A) Top 30 

enriched pathways of the upregulated miRNA-target metabolic gene network, (B) Top 30 

enriched pathways of the downregulated miRNA-target metabolic gene network, (C) Integrated 

miRNA-metabolic pathway network of the differentially expressed miRNAs. 
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While pathways belonging to the carbon metabolism, fatty acid metabolism, and central 

carbon metabolism in cancer were common targets of both upregulated and 

downregulated miRNAs, lipid metabolism was a major target of the upregulated miRNAs, 

and purine and pyrimidine metabolism were exclusive targets of the downregulated 

miRNAs. Lipid and inositol-phosphate metabolism are the most enriched pathways 

regulated by the upregulated miRNAs (Figure 5.2A). Drug and glutathione metabolism 

are common targets of the downregulated miRNAs (Figure 5.2B). The upregulation of 

drug metabolism results in rapid drug metabolization eliminating effective concentration 

of drugs in blood and tissues.  

With an extensive functional analysis (Section 2.3.7), an integrated miRNA-pathway 

network was formed (Figure 5.2C). Hsa-miR-137 and MIR128 family downregulated 

miRNAs, and MIR25/92 family, MIR320 family, and hsa-miR-23a-3p upregulated miRNAs 

are the top regulators of various metabolic processes. Differential regulation of lipid 

metabolism, carbon metabolism, amino sugar, and nucleotide sugar metabolism, 

glycolysis/gluconeogenesis, inositol phosphate metabolism, one-carbon pool, and fatty 

acid metabolism by a number of differentially expressed miRNAs make metabolic 

plasticity and acquiring adaptive phenotypes easier.  

Further, we used the miRNA pathway network to identified important miRNAs that 

regulate central carbon metabolism, fatty acid metabolism, glycan metabolism, lipid 

metabolism, amino acid metabolism, and nucleotide metabolism with backbone analysis. 

The bipartite structure of the miRNA-pathway network was transformed to a unipartite 

weighted graph of miRNAs with network projection (Section 2.3.10), and a backbone of 

crucial miRNAs was obtained. The extracted backbone preserved the most significant 

miRNAs that could regulate each of the aforementioned metabolism (Figure 5.3). A 

description has been provided below. 

Central Carbon Metabolism 

A total of 16 pathways regulated by 42 differentially expressed miRNAs were considered 

as a part of central carbon metabolism from the miRNA pathway network (APPENDIX C: 

Table C. 3). A significant total of 3 miRNAs were obtained from the backbone extraction 
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consisting of hsa-miR-1225, hsa-miR-211-3p, and MIR770 family miRNAs hsa-miR-770 

and hsa-miR-770-5p. All three miRNAs were downregulated in glioblastoma patient-

derived data. Together, this set of miRNAs could regulate 7 of the 16 pathways of central 

carbon metabolism. Figure 5.3A shows the whole set of miRNAs consisting of both 

upregulated and downregulated miRNAs that control central carbon metabolism.  

Fatty Acid Metabolism 

Eight pathways from the integrated miRNA-pathway network were classified to 

contribute to the fatty acid metabolism. These pathways were regulated by 23 miRNAs 

(Figure 5.3B). Two groups of miRNAs, first consisting of hsa-miR-24-2-5p and hsa-miR-

28-3p, and the second consisting of hsa-miR-124-3p, hsa-miR-181a-2-3p, and hsa-miR-

6790-5p, were obtained as the backbone. Each group could target 2 of the 8 pathways 

belonging to fatty acid metabolism. The fatty acid metabolism was largely controlled by 

the miRNA regulation of genes belonging to β-oxidation and fatty acid elongation.  

Lipid Metabolism 

As many as 44 miRNAs regulated 12 pathways of lipid metabolism. Upregulated miRNAs 

hsa-miR-24-2-5p, hsa-miR-500a-5p, MIR25/92 family and downregulated hsa-miR-137 

were extracted as backbone (Figure 5.3C). Glycerophospholipid metabolism was the 

most common miRNA-regulated pathway of lipid metabolism. Glycerophospholipids are 

reportedly one of the most significantly expressed lipids in glioblastoma, and regulation 

by these backbone miRNAs provides the opportunity for miRNA-based therapy. 

Glycan Metabolism 

hsa-miR-4257 and hsa-miR-758-5p were identified as crucial regulators of glycan 

metabolism. There were 13 pathways of glycan metabolism regulated by 36 miRNAs 

(Figure 5.3D). Aberrant expression of glycan has been implicated in brain cancer and 

plays a role in cancer development and progression (290). The proper function of glycan 

metabolism is crucial to carry out glycosylation of proteins and produce glycoproteins. 

Glycosaminoglycan metabolism was a key pathway targeted by the two miRNAs (and 

most other miRNAs). As observed from the patient-derived data, the upregulation of the 

glycosaminoglycan metabolism can prevent proteins (especially growth factors) from 
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proteolysis, generating prolonged growth signals. Identifying miRNA regulators of this 

metabolism can be used for therapeutic gain. 

Amino Acid Metabolism 

Seventeen pathways were classified under the amino acid metabolism, targeted by 48 

miRNAs (Figure 5.3E). The miRNA regulation of the amino acid metabolism was sparse 

and widely distributed. Two groups of miRNAs, the first comprising of hsa-miR-10b-5p, 

hsa-miR-155-5p, and hsa-miR-424-3p, and the second comprising of MIR124 family 

miRNAs, hsa-miR-455-3p, hsa-miR-6790-5p, and hsa-miR-128-3p, were obtained. Each 

of these groups could target at least 3 of the 17 amino acid metabolism-related pathways. 

The ability of these miRNAs to control arginine and glutamate metabolism can be used to 

modulate the effect of therapeutic strategies like arginine depletion in glioblastoma. 

Nucleotide Metabolism 

As many as 31 miRNAs regulated the 3 pathways classified under nucleotide metabolism. 

hsa-miR-1225, hsa-miR-155-5p, MIR320 family miRNAs, hsa-miR-433-3p, hsa-miR-4463 

and hsa-miR-490-5p were identified (Figure 5.3F). Capable of regulating the purine and 

pyrimidine metabolism and the formation of nucleotide sugars, these miRNAs can be 

targeted to restrict nucleotide synthesis restricting rapid cell proliferation during 

tumorigenesis.  

Lipid and amino acid metabolism were regulated by the widest range of miRNAs, 

followed by the central carbon metabolism. Due to the modular nature of the central 

carbon metabolism, the effect of miRNA regulation propagates faster in the close-knit 

network of reactions, thereby affecting the energy metabolism as a whole.   
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Figure 5.3: MicroRNA backbone of metabolic processes. (A) Central Carbon metabolism, (B) 
Fatty Acid metabolism, (C) Lipid metabolism, (D) Glycan metabolism, (E) Amino Acid metabolism, 
(F) Nucleotide metabolism. 
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5.2.4. Identification of miRNA regulated metabolic gene sub-network of 

cellular phenotypes 

Cellular phenotypes in cancer are often guided by changes in metabolic regulations that 

facilitate re-wiring of the metabolic network, allowing rapid proliferation, invasion, and 

stemness, thereby regulating survival. With increasing evidence, the regulatory role of 

miRNAs on the metabolic genes critical to oncogenic phenotypes is being established and 

explored further. We attempted to identify a subnetwork of miRNA target genes that 

regulate proliferation and growth, survival, cell migration and invasion, stemness, and 

drug resistance in glioblastoma using an integrated network as described in Section 

2.3.11. With an extensive literature search, we identified key metabolic genes directly 

associated with each of the phenotypes, determined experimentally. A list of all the key 

regulatory genes used as seed sequences for each of the phenotypes, along with their 

literature references, is provided in APPENDIX C: Table C. 4. These genes were used as 

seed nodes in the integrated network of miRNA-predicted target genes to induce network 

diffusion. A subset of highly connected miRNA-target genes obtained from the top 70th 

percentile of the diffusion output rank was selected as the subnetwork (Figure 5.4). 

Statistics of these networks, along with the miRNAs identified to be associated with the 

gene regulation of each of the cellular phenotypes, are provided in Figure 5.5. 

We identified an additional set of genes that are functionally associated with the key 

regulators and may have a concomitant effect on the expression of these phenotypes in 

glioblastoma. Detail list of all the genes and miRNAs of the subnetwork is provided in 

APPENDIX C: Table C. 5. The majority of the genes associated with proliferation and 

growth were functionally related to the inositol-phosphate metabolism, central carbon 

metabolism, and amino acid metabolism (APPENDIX C: Table C. 6). This trend differed 

from phenotype to phenotype. Similar to proliferation and growth, the functional 

responses of cell migration and invasion were primarily associated with the central 

carbon metabolism and partly with the amino acid metabolism. Interestingly, survival 

was mostly determined by the lipid, fatty acid, and glycan metabolism. The role of fatty 

acids as alternate energy sources under nutrient deprivation, lipids as an integral part of 

the cell membrane formation, and glycan metabolism in glycosylation and proteolytic 

mechanisms make them crucial regulators of survival. Amino acid metabolism 
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contributed significantly to the generation of stemness in glioblastoma, followed by fatty 

acid metabolism. The ABC/MDR transporters and the Glutathione S-Transferase genes 

GSTM1 and GSTM2 are important regulators of drug resistance as they are involved in 

the exocytosis of xenobiotics and drugs from the cell. Genes belonging to the carbon and 

fatty acid metabolism are associated with the sensitization of cells to drugs and 

therapeutics by targeting resistance mechanisms. 

The reliability of the subnetworks was strengthened by the identification of additional 

genes that are implicated to be involved in the regulation of corresponding phenotypes. 

For example, the ALDHs, ACLY, COX, ME2, and MTHFD2 contribute to glioblastoma 

growth and proliferation (291-294). Concurrent evidence of the role of MTHFR in 

influencing survival of glioblastoma patients (279) and ME2 in inducing cell migration 

and invasion (293) validate that the additionally identified genes potentially participate 

in the regulation of these phenotypes. 
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Figure 5.4: MiRNA-metabolic gene subnetwork of cellular phenotypes in glioblastoma. (A) 
Proliferation and growth, (B) Survival, (C) Cell migration and invasion, (D) Stemness, and (E) 
Drug resistance 
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5.2.5. Prediction of miRNA targets for miRNA-based therapeutic approaches 

Pairwise disconnectivity index was used to quantify the regulatory effect of miRNAs in 

the subnetworks (Section 2.3.12). The values of PDI ranged between 0.001 to 0.08. We 

considered miRNAs with PDI > 0.02 for the knockout analysis. All the miRNAs associated 

with the gene regulation of each of the cellular phenotypes ranked based on their PDI 

values are shown in Figure 5.5. It was observed that most of the miRNAs with high PDI 

also had a higher stress centrality than the rest of the miRNAs, further strengthening our 

inference that these miRNAs were heavily involved in the regulation of target genes in 

the subnetworks.  

 

Figure 5.5: MiRNAs involved in the regulation of genes associated with cellular phenotypes 
in glioblastoma. 
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The effect of miRNA knockout on the key regulatory genes controlling each cellular 

phenotype in glioblastoma was measured by comparing the change in Katz centrality of 

the gene nodes before and after a miRNA deletion. Figure 5.6 shows the percentage 

change in Katz centrality of the important nodes upon deletion of individual and 

combination of miRNAs, the initial values without knockout being 100% forming the 

periphery of the radar. All possible double and triple knockout combinations of miRNA 

were checked. Combinations of miRNAs that could impact the maximum number of key 

regulatory genes were proposed as a suitable target combination for miRNA-based 

therapy and have been shown in Figure 5.6. A combination of hsa-miR-15b-5p + hsa-

miR-500a-5p + hsa-miR-129-1-3p was proposed suitable for targeting proliferation of 

glioblastoma (Figure 5.6A). Important genes whose activity in the network was 

influenced by the deletion of this combination were ACSS2, ALDH1A3, ACACA, COX4|1, 

SLC1A3, FASN, HK2, SHMT1, PTEN, CPT1A, PFKP, and PHGDH. The involvement of these 

genes in regulating the carbon and fatty acid metabolism is crucial in sustaining the 

proliferative requirement of the tumors. Similarly, a combination of hsa-miR-15b-5p + 

hsa-miR-124-3p + hsa-miR-138-2-3p was observed suitable for targeting survival 

(Figure 5.6B), hsa-miR-7-5p + hsa-miR-128-3p + hsa-miR-485-5p for cell migration and 

invasion (Figure 5.6C), hsa-miR-15b-5p + hsa-miR-23a-3p for stemness (Figure 5.6D) 

and hsa-miR-124-3p + hsa-miR-300-5p + hsa-miR-23a-3p was found suitable for 

managing genes associated with drug resistance in glioblastoma (Figure 5.6E). 

It is worth mentioning here that the role of hsa-miR-7-5p is vital in the regulation of cell 

migration and invasion that has been established experimentally (271). This finding 

corroborates with the observations of the present study where hsa-miR-7-5p has been 

identified as the most important miRNA in the cell migration and invasion subnetwork 

with the highest PDI (0.069230769) and also the most stress central miRNA in the 

subnetwork. hsa-miR-15b-5p showed efficiency as a component of multiple 

combinations targeting proliferation and growth, survival, and stemness in glioblastoma. 

hsa-miR-15b-5p has been identified as a diagnostic marker for glioblastoma (295) and is 

associated with the regulation of a number of target genes (APPENDIX C: Table C. 1). It 

was observed that genes with isoforms like PFKP, B3GALNT1, B3GALNT7, GSTM1, and 

GSTM2, were difficult to be targeted due to the compensatory connections formed by the 

other isoforms in the network. A combinatory elimination of multiple miRNAs regulating 
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multiple isoforms was deemed fit for targeting such genes. The identified miRNA targets 

were verified with existing literature and experimental evidence that are discussed in the 

next subsection. 

 

Figure 5.6: Radar plot representing percentage change in Katz centrality of key regulatory 
target genes upon miRNA knockout. (A) Proliferation and Growth, (B) Survival, (C) Cell 
Migration and Invasion, (D) Stemness, and (E) Drug Resistance in glioblastoma. 

5.2.6. Verification of miRNA targets using prior literature and experimental 

evidence 

Identified miRNA targets were further reviewed for any prior literary evidence of their 

involvement in the regulation of the respective cellular phenotypes to substantiate the 

credibility of the study. Restoration of downregulated miRNA hsa-miR-129-1-3p was 

previously observed to reduce cell proliferation (296), and hsa-miR-24-2-5p was 

observed to promote it (297). The impact of hsa-miR-15b-5p upregulation on 

proliferation, invasion, and migration is verified in other types of cancer (298) but not in 
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glioblastoma, although a definite upregulation of the miRNA is frequently observed. Hsa-

miR-770, hsa-miR-485-5p, hsa-miR-500a-5p, and hsa-miR-128-3p were also verified for 

their involvement in the regulation of proliferation and growth of glioblastoma (299-

302).  

Hsa-miR-124-3p, which was observed to be important in regulating survival scenarios of 

glioblastoma, is associated with the inhibition of viability of the glioblastoma (303). Hsa-

miR-137 overexpression inversely correlates with glioblastoma proliferation, migration, 

and survival (304). The miRNA was identified in all the three subnetworks associated 

with these phenotypes, the influence being maximum on the genes associated with 

survival. Downregulated expression of hsa-miR-138 is associated with progression-

related poor survival of glioblastoma patients (305). Hsa-miR-128-3p has been 

implicated in the clinical prognosis of glioblastoma and has the potential to inhibit 

proliferation, migration, and invasion in these tumors (289). Hsa-miR-330-5p is 

associated with the suppression of invasiveness of glioblastoma (306). Hsa-miR-10b and 

hsa-miR-18a are associated with the generation of stemness in glioblastoma cells (307). 

Increased expression of hsa-miR-124 target genes due to its downregulation is observed 

to regulate epigenetic changes that promote tumor survival and resistance against 

chemotherapeutic drugs (308). Evidence also suggests the role of hsa-miR-23a in 

chemoresistance in different types of cancer, although its effect in the development of 

resistance in glioblastoma is yet not confirmed (309). 

5.3. Discussion 

Graph theoretical analyses of differentially expressed miRNAs and metabolic genes 

deduced meaningful inferences on miRNA regulated metabolism and cellular phenotypes 

in glioblastoma. Patient-derived data were used, and systematic verification with 

available literature evidence was done to ensure the reliability of the results obtained. 

Hsa-miR-15b-5p, MIR25/92 family miRNAs, hsa-miR-93-5p, hsa-miR-23a-3p, and 

MIR320, were the top upregulated miRNAs, and MIR124 family miRNAs, hsa-miR-137, 

hsa-miR-485-5p, hsa-miR-128-3p, and hsa-miR-3188 were the top downregulated 

miRNAs. Functional annotation of the target genes of these miRNAs showed their effect 

on metabolic pathways. Genes encoding the subunits of the ubiquinol-cytochrome 
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complex, NADH: ubiquinone complexes and the F0F1 complex were the most frequent 

targets of both upregulated and downregulated miRNAs, thus affecting the oxidative 

phosphorylation. The carbon metabolism was another common target. The inositol 

phosphate metabolism and glycerophospholipid metabolism were frequently targeted by 

the upregulated miRNAs, whereas purine and pyrimidine metabolism were frequent 

targets of the downregulated miRNAs.  

Bipartite projection of pathways onto the regulatory miRNAs showed that the miRNAs 

highly regulated the central carbon metabolism, lipid, and amino acid metabolism. MiRNA 

regulation of crucial genes associated with energy metabolism can be exploited for 

miRNA-based therapeutic designs. The key miRNAs identified for the central carbon 

metabolism were hsa-miR-1225, hsa-miR-211-3p, and MIR770 family miRNAs. The 

backbone of miRNAs identified for fatty acid, lipid, glycan, amino acid, and nucleotide 

metabolism could be subjugated for regulating these metabolisms in glioblastoma.   

Subnetworks obtained using network diffusion algorithm ensured identification of key 

regulatory genes, additional functionally related genes, and miRNAs associated with each 

of the cellular phenotypes. Subnetworks were obtained for proliferation and growth, 

survival, cell migration and invasion, stemness, and drug resistance in glioblastoma. The 

additional related genes like ACLY, COX, ME2, MTHFD2, GLS, GOT2, LDHA, and GLUD1, 

identified from the subnetwork, were able to regulate the functional response of the key 

regulatory genes at the reaction level. Hence, these genes can be considered important 

determinants of metabolic rerouting that allow phenotype switching. All the genes were 

controlled by miRNAs, and hence, could be controlled via the differential regulation of the 

miRNAs.  

Due to the partial connectivity of the subnetworks, the commonly used centrality 

measures were inadequate to identify the important miRNAs and their impact on the key 

regulatory genes. Hence, the pairwise disconnectivity index was used to quantify the 

impact of a miRNA on the genes, and Katz centrality was used to determine the effect on 

the key regulatory genes of a subnetwork. The PDI was developed and discussed 

previously in context to gene regulatory networks, while Katz centrality was discussed in 

context to partially connected networks. The miRNA combination hsa-miR-15b-5p + hsa-

miR-500a-5p + hsa-miR-129-1-3p was found to affect most of the regulatory genes 
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associated with proliferation and growth. Similarly, miRNA combinations hsa-miR-15b-

5p + hsa-miR-124-3p + hsa-miR-138-2-3p, hsa-miR-7-5p + hsa-miR-128-3p + hsa-miR-

485-5p, hsa-miR-15b-5p + hsa-miR-23a-3p and hsa-miR-124-3p + hsa-miR-300-5p + 

hsa-miR-23a-3p were identified as respective miRNA target combinations for survival, 

cell migration and invasion, stemness and drug resistance in glioblastoma.  

The present study provides a strategy for a miRNA-based therapeutic design using graph-

theoretical approaches. The combinations can be decided and altered as per the target 

genes of interest, allowing flexibility in the usage of the strategy. However, a major 

drawback of the present work is the acquisition of data from different sources. Since the 

data for differentially expressed miRNA and target genes have been obtained from 

different sources, it remains beyond the scope of this work to correlate the cause of 

differential gene expression with the miRNA expression. The miRNA targets obtained 

solely from the graph-theoretical analyses should be corroborated with experimental 

analysis. Despite the limitations, inferences drawn from the graph-theoretical analyses 

are useful for generating testable hypotheses and designing context-specific miRNA-

based therapeutic approaches for personalized treatment using patient-specific 

expression data. 
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CHAPTER 6 

CONCLUSION AND FUTURE PERSPECTIVES 

“As for the future, your task is not to foresee it, but to enable it.” 

- Antoine de Saint Exupery 

6.1. Conclusion 

The management of cellular metabolism in cancer is a complex process governed by 

multiple intracellular and extracellular factors. The characteristic changes in the 

metabolism of glioblastoma are of particular interest. Originating from the astrocyte glial 

cells, the disruption of metabolic homeostasis between these cells and the neurons 

severely affects the brain function. The stress generated in these tumors due to the insults 

incurred within the genome and the highly oxidative extracellular tumor 

microenvironment is manifested as altered metabolic phenotypes. Within the 

glioblastoma cell, the metabolic network reprogrammes itself as per the growth 

conditions, giving rise to complex adaptive phenotypes. With rationalized evaluation and 

computational analyses of the deregulated metabolic network, the present thesis has 

provided explanations to some of the commonly observed but less understood 

phenomena in glioblastoma and generated testable hypotheses for potential therapeutic 

targets against cancer.  

With the aim to understand the pathway-level changes in metabolic flux distribution, the 

constraint-based metabolic model in Chapter 3 showed the condition-specific 

differences in the preferred metabolic route to meet the energy and growth requirement 

of glioblastoma. The model showed a distinct increase in flux through the glycolytic and 

pentose phosphate pathway while optimizing the energy requirement of glioblastoma. 

The distribution of flux differed while optimizing the growth requirement of the cancer 

cell, where the flux flow was redistributed to ensure optimal production of ribose-5-

phosphate. An assessment of the excess glutamate generated as a result of glutaminolysis 

in glioblastoma showed that the flux of glutamate could have three different fates: (i) 

consumption of glutamate in anaplerotic TCA cycle via glutamate dehydrogenase 

catalyzed formation of akg, (ii) formation of glutathione, and (iii) release to the 
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extracellular matrix via the cystine-glutamate antiporter (xCT) with a simultaneous 

uptake of cystine from the extracellular matrix. It was observed that the consumption of 

glutamate in the anaplerotic cycle was preferred in glioblastoma. However, as the 

metabolic demand shifted to enhance the glutathione production with the optimization 

of glioblastoma growth, the flux through xCT increased, releasing glutamate to the 

extracellular space. The cystine that was uptaken by the cell was converted to its 

monosulfide form, cysteine. Subsequently, cysteine and a considerable amount of the 

remaining glutamate formed the complex glutamyl-cysteine by the activity of γ-glutamyl-

cysteine ligase that was converted to glutathione with the addition of glycine into the 

complex. The dependence of glioblastoma on the exogenous glycine and the 

overexpression of glycine transporters could also be explained in context to the increased 

growth demands of glioblastoma. A major flux re-routing was observed to be associated 

with the production of glutathione, which was an important component of the growth 

requirement of glioblastoma. 

Evaluation of the minimal nutrient requirement of glioblastoma to sustain growth under 

nutrient-stressed conditions revealed the essentiality of cystine and glucose. Together, 

the two uptake metabolites were capable of driving considerable flux through the growth 

objective as compared to any other input metabolite considered in the model. The 

understanding of flux re-routing through metabolic pathways and essentiality of 

reactions and metabolites in context to maximization of growth in glioblastoma enabled 

the identification of blind spots within the network that could be exploited for 

therapeutic gain. The faulty endogenous glycine-serine biosynthesis and dependence of 

glioblastoma on exogenous glycine supplies created the opportunity for therapeutic 

targeting to reduce glioblastoma growth. It was observed under model conditions that 

the knockout of glycine transporter in combination with the serine biosynthesis enzymes 

phosphoglycerate dehydrogenase, or phosphoserine phosphatase, or phosphoserine 

transaminase effectively reduced glioblastoma growth. Analyses yielded additional non-

intuitive target options that work effectively in combination as opposed to individual 

knockouts (185).  

Exploring further, the additional challenges in glioblastoma were taken into account. 

Microenvironmental stress generated due to limited nutrient availability and oxidative 
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stress further shape the metabolic changes within the tumor cells (Section 1.5.2). In 

addition to the identification of essential nutrients for growth under limited nutrient 

availability, the constraint-based model for glioblastoma also showed shifting 

dependence on glutamine and fatty acids as alternate energy substrates under certain 

model conditions. Furthermore, to understand the metabolic responses generated within 

these tumors against oxidative stress, in Chapter 4, the dynamics between oxidant and 

antioxidant machinery were studied in depth using a dynamic model of reaction kinetics. 

The observed metabolic re-routing towards the glutathione metabolism was a 

preliminary motivation to proceed with the in-depth study of the reprogrammed 

metabolism. With initial analyses, the reactions glutathione peroxidase (GTHP), 

glutathione oxidoreductase (GTHO), NADPH oxidase (NOX), and superoxide dismutase 

(SOD) were identified as keepers of the antioxidant and oxidant producing machinery. 

Sensitivity analysis of the model parameters showed the involvement of GTHP, GTHO, 

and NOX in gliomagenesis. As we delved deeper into the dynamics of these machineries, 

their effect on the redox and thiol status of the cell was realized (310).  

Assessment of the three model conditions: normal glial, hypoxic, and glioma showed that 

GTHP could primarily drive the proper functioning of antioxidant machinery, effectively 

scavenging reactive oxygen species produced under normal glial conditions. However, 

the activity of GTHO was more crucial in ROS scavenging in hypoxic and glioma model 

conditions. The dynamics of NOX was important in determining ROS levels. The changes 

in both GTHO and NOX determined the changes in the ROS levels and the redox and thiol 

status of the cell under hypoxic and glioma model conditions. Evaluation of unique 

sensitive parameters for hydrogen peroxide under glioma condition helped identification 

of parameters that would augment pro-oxidant and/or antioxidant therapeutic 

approaches against gliomas. All reactions and parameters in the re-routed metabolism 

towards glutathione production obtained from the previous study were considered for 

the analysis. Parameters of non-intuitive reactions in the network like cystine reductase, 

glutathione synthase, and fructose-bisphosphate aldolase were observed to influence the 

ROS level and thiol ratio of the cells and were proposed to alter the ROS manipulative 

strategies in glioma treatment.  
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In Chapter 5, we investigated the gene regulatory effect of microRNA on the metabolic 

genes that are associated with oncogenic phenotypes in glioblastoma. Our aim was to 

identify microRNA targets that could regulate metabolic processes and control cancerous 

phenotypes in glioblastoma and could be used for microRNA-based therapeutic designs. 

Graph theoretical analyses of microRNA-controlled metabolic networks helped identify 

microRNAs that controlled a large number of metabolic genes. Upregulated microRNAs 

hsa-miR-15b-5p, MIR25/92 family, and hsa-miR-23a-3p, and downregulated microRNAs 

MIR124 family, hsa-miR-137, and hsa-miR-485-5p were associated with the regulation 

of the maximum number of differentially expressed metabolic genes. Using bipartite 

projection and backbone extraction techniques, the key regulatory microRNAs 

controlling central carbon, fatty acid, lipid, glycan, amino acid, and nucleotide metabolism 

were identified. It was evident from the backbone analysis that the central carbon 

metabolism, lipid, and amino acid metabolism were highly regulated by the microRNAs. 

The microRNA regulated metabolic gene networks associated with oncogenic 

phenotypes were traced back using network diffusion method. Pairwise disconnectivity 

indices of microRNAs and Katz centrality of target metabolic genes were used to identify 

knockout combination of miRNAs that could regulate the oncogenic phenotypes. The 

microRNA combinations hsa-miR-15b-5p + hsa-miR-500a-5p + hsa-miR-129-1-3p, hsa-

miR-15b-5p + hsa-miR-124-3p + hsa-miR-138-2-3p, hsa-miR-7-5p + hsa-miR-128-3p + 

hsa-miR-485-5p, hsa-miR-15b-5p + hsa-miR-23a-3p and hsa-miR-124-3p + hsa-miR-

300-5p + hsa-miR-23a-3p were identified as respective target combinations for 

proliferation and growth, survival, cell migration and invasion, stemness and drug 

resistance in glioblastoma. 

The graph-theoretical approaches of network diffusion, backbone extraction, and 

measures like the pairwise disconnectivity index and Katz centrality and the strategies 

used in the study provide the opportunity to identify miRNA targets. The strategy can be 

implemented for other gene regulatory networks as well. However, a major drawback of 

the present work is the acquisition of data from different sources. Since the data for 

differentially expressed miRNA and target genes have been obtained from different 

sources, it remained beyond the scope of the work to correlate the cause of differential 

gene expression to miRNA expression. The miRNA targets obtained solely from the 
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graph-theoretical analyses need to be corroborated with experimental analysis. Despite 

the limitations, inferences drawn from the graph-theoretical analyses generate testable 

hypotheses for miRNA-based therapeutic design and reduce down the wide range of 

possibilities generated by the high throughput data to a feasible number. 

6.2. Future perspectives 

The present thesis provides answers to many of the observable but less understood 

phenomena of glioblastoma metabolism by performing thorough computational analyses 

of events occurring across different biological scales. While the computational models 

have generated plausible testable hypotheses, further validation of these testable 

hypotheses with experimental verification will provide the opportunity for their proper 

bench to bedside application. 

The very essence of systems biology models is to provide a comprehensive understanding 

of the biological processes as integrated system, that can be served better with the 

incorporation of real-time omics data. The correlational pattern between genes under a 

pathophysiological condition can be deciphered using gene correlated network analysis. 

The use of weighted gene correlation network analysis (WGCNA) has gained popularity 

over the years. The integration of metabolomic and metabonomic data in the 

computational models of metabolism can provide insightful inference on the extent of 

change in the transcriptome, proteome and other regulatory interactions influencing 

metabolic profile in response to changing stimulus under pathological condition. 

Metabonomics is an emerging field of metabolomic study that considers the dynamic 

changes in the metabolomic profile of a cell under environmental, pathological or genetic 

perturbation (311). The incorporation of real time metabolomic data from single-cell 

analysis into multi-scale model of multicellular tissues might be a challenging thought-

experiment, but with extremely beneficial results, if realized, in determining personalized 

approach of therapeutic design for heterogenous tumor population.  

In line with the thesis outcomes, an important area that can be included as the future 

endeavour of the study is the crosstalk between signalling and metabolism in cancer. 

Dynamic crosstalk between signalling and metabolism supports phenotypic plasticity. 

The consequence of these mutual crosstalk is reflected during the therapeutic 
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intervention and create challenges in designing effective treatment protocols. These 

assist metabolic rewiring during the administration of drugs or therapies and make the 

prognosis difficult. In continuation to our thesis outcomes, we have thoroughly reviewed 

the crosstalking molecular interactions between signalling and metabolism. The 

understanding has been insightful in identifying suitable drug targets, developing 

therapeutics, and repurposing existing drugs for better efficacy. In an ongoing work, we 

are trying to integrate these understandings into a computational model with the 

addition of interaction with the immune cell as well, that can be used to infer important 

immunomodulatory responses generated by cancer cells.  

Another important aspect of studying metabolism in cancer is to understand the changes 

in immune cell metabolism or immunometabolism. Immunometabolism is a flourishing 

area in the study, and its understanding in context to cancer cells can help in the 

development of strategies for immunotherapy following the standard treatment protocol 

to ensure a better prognosis. We have been able to gain an understanding of the 

metabolism of T-cells by reviewing through the signalling and metabolic pathways and 

their mutual crosstalk in guiding the activation and differentiation of naïve T-cells into 

the different subtypes (70). Further studies on the changing immunometabolism under 

the tumor microenvironment by considering different types of immune cells will be 

insightful in delineating the tumor-immune responses that will be of great prognostic 

value. 

To overcome the limitations of existing therapies and drugs, drug repurposing and 

combinatorial approaches are increasingly gaining attention. Repurposing of metformin 

and disulfiram, two popular drugs used to treat type 2 diabetes and alcohol dependence, 

respectively, have been successful in glioblastoma treatment. Although, in a very recent 

update, the use of metformin has been revoked by FDA due to the presence of N-

nitrosodimethylamine (NDMA) above the acceptable intake limit and associated side-

effects. Popular drugs like bevacizumab, enzastuarin, rapamycin, etc., that target key 

regulatory proteins often associate severe off-target responses. Yet, the treatment 

protocols continue to largely rely on them, as the discovery of suitable drugs to replace 

them is still on the way. Understanding the crosstalk mechanism will help anticipate such 

off-target responses and identify the side effects. Furthermore, prospects created by the 
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crosstalk at the intercellular level will pave the way to design immune-modulatory 

therapeutic strategies against cancer. Association of arginine depletion strategy in 

gliomas having auxotrophic dependence on arginine with the immune effector cells is one 

such example. Undoubtedly, the future of drug and therapeutic discovery and 

development that aims to automate the whole process using cutting-edge technology 

must consider building a holistic platform that includes the understanding of crosstalking 

molecular interactions, with the option to continuously update the platform with new 

findings. 
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APPENDIX A 

Table A. 1: Details of reactions and pathways considered in the constraint-based 
metabolic model 

Abbrv. Reaction Name Reaction Subcel 
Loc. 

EC No. NCBI 
Gene 
ID 

Pathway 

ASPTAm Aspartate 
Transaminase 

akg[m] + asp-
L[m] <=> 
oaa[m] + 
glut[m] 

m 2.6.1.1 2805 Alanine and 
Aspartate 
Metabolism 

ASPTc Aspartate 
Transaminase 
Cyt 

akg[c] + asp-
L[c] <=> oaa[c] 
+ glut[c] 

c 2.6.1.1 2806 Alanine and 
Aspartate 
Metabolism 

2OADOX 2-Oxoadipate: 
Lipoamde 2-
Oxidoreductase 

2oxoadp[m] + 
co-A-SH[m] + 
nad+[m] -> 
nadh[m] + 
co2[m] + 
glutcoa[m] 

m 1.2.4.2 4967 Beta 
Oxidation of 
Fatty acid 

AAAT Acetyl-
Coa:Acetyl-Coa 
C-
Acetyltransferas
e 

co-A-SH[m] + 
acacoa[m] <=> 
2 accoa[m] 

m 2.3.1.9 38 Beta 
Oxidation of 
Fatty acid 

AMT Acetylcoa C-
Myristoyltransfe
rase 

co-A-SH[m] + 
opacoa[m] <=> 
accoa[m] + 
tdcoa[m] 

m 2.3.1.16 10449; 
30; 
3032 

Beta 
Oxidation of 
Fatty acid 

BAT Butanoyl-
Coa:Acetyl-Coa 
C-
Butanoyltransfer
ase 

co-A-SH[m] + 
3ohcoa[m] <=> 
accoa[m] + 
bcoa[m] 

m 2.3.1.16 10449; 
30; 
3032 

Beta 
Oxidation of 
Fatty acid 

BTCR Butanoyl-
Coa:FAD 
Oxidoreductase 

bcoa[m] + 
fad[m] <=> 
fadh2[m] + 
b2coa[m] 

m 1.3.8.7 34 Beta 
Oxidation of 
Fatty acid 

DAT Decanoyl-
Coa:Acetyl-Coa 
C-
Acyltransferase 

co-A-SH[m] + 
3oddcoa[m] 
<=> accoa[m] + 
dcoa[m] 

m 2.3.1.16 10449; 
30; 
3032 

Beta 
Oxidation of 
Fatty acid 

DCFR Decanoyl-
Coa:FAD 
Oxidoreductase 

fad[m] + 
dcoa[m] <=> 
fadh2[m] + 
td2coa[m] 

m 1.3.8.7 34 Beta 
Oxidation of 
Fatty acid 

ECOAH 3-
Hydroxybutanoy
l-Coa Hydro-
Lyase 

h2o[m] + 
b2coa[m] <=> 
3hbcoa[m] 

m 4.2.1.17 1892; 
1962; 
3030 

Beta 
Oxidation of 
Fatty acid 
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GLUTCO
ADH 

Glutaryl-Coa 
Dehydrogenase 

glutcoa[m] + 
h+[m] + fad[m] 
<=> co2[m] + 
fadh2[m] + 
b2coa[m] 

m 1.3.8.6 2639 Beta 
Oxidation of 
Fatty acid 

HBR 3-
Hydroxybutanoy
l-Coa: NAD+ 
Oxidoreductase 

nad+[m] + 
3hbcoa[m] <=> 
nadh[m] + 
acacoa[m] + 
h+[m] 

m 1.1.1.35 1962; 
3028; 
3033; 
3295 

Beta 
Oxidation of 
Fatty acid 

HCFR Hexanoyl-
Coa:FAD 
Oxidoreductase 

fad[m] + 
hcoa[m] <=> 
fadh2[m] + 
th2coa[m] 

m 1.3.8.7 34 Beta 
Oxidation of 
Fatty acid 

HCT Hexanoyl-
Coa:Acetyl-Coa 
C-
Acyltransferase 

co-A-SH[m] + 
3oocoa[m] <=> 
accoa[m] + 
hcoa[m] 

m 2.3.1.16 10449; 
30; 
3032 

Beta 
Oxidation of 
Fatty acid 

HDDL 3-
Hydroxydodecan
oyl-Coa Hydro-
Lyase 

h2o[m] + 
tdecoa[m] <=> 
3hddcoa[m] 

m 4.2.1.17 1892 Beta 
Oxidation of 
Fatty acid 

HDDR 3-
Hydroxydodecan
oyl-Coa: NAD+ 
Oxidoreductase 

nad+[m] + 
3hddcoa[m] 
<=> nadh[m] + 
h+[m] + 
3oddcoa[m] 

m 1.1.1.35 2194 Beta 
Oxidation of 
Fatty acid 

HDL Hydroxydecanoy
l-Coa Hydro-
Lyase 

h2o[m] + 
td2coa[m] <=> 
2hdcoa[m] 

m 4.2.1.17 1892 Beta 
Oxidation of 
Fatty acid 

HDR Hydroxydecanoy
l-Coa: NAD+ 
Oxidoreductase 

nad+[m] + 
2hdcoa[m] <=> 
nadh[m] + 
h+[m] + 
3odcoa[m] 

m 1.1.1.35 1962 Beta 
Oxidation of 
Fatty acid 

HHDY Hydroxyhexadec
anoyl-Coa 
Hydro-Lyase 

h2o[m] + 
hdd2coa[m] 
<=> 
3hhdcoa[m] 

m 4.2.1.17 1892 Beta 
Oxidation of 
Fatty acid 

HHHL Hydroxyhexanoy
l-Coa Hydro-
Lyase 

h2o[m] + 
th2coa[m] <=> 
hhcoa[m] 

m 4.2.1.17 1892 Beta 
Oxidation of 
Fatty acid 

HHL Hydroxyoctanoyl
-Coa Hydro-
Lyase 

h2o[m] + 
to2coa[m] <=> 
3hocoa[m] 

m 4.2.1.17 1892 Beta 
Oxidation of 
Fatty acid 

HHNO 3-
Hydroxyhexadec
anoyl-Coa: NAD+ 
Oxidoreductase 

nad+[m] + 
3hhdcoa[m] 
<=> nadh[m] + 
opacoa[m] + 
h+[m] 

m 1.1.1.211 3030 Beta 
Oxidation of 
Fatty acid 
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HHOR Hydroxyhexanoy
l-Coa: NAD+ 
Oxidoreductase 

nad+[m] + 
hhcoa[m] <=> 
nadh[m] + 
h+[m] + 
3ohcoa[m] 

m 1.1.1.35 1962 Beta 
Oxidation of 
Fatty acid 

HOR Hydroxyoctanoyl
-Coa: NAD+ 
Oxidoreductase 

nad+[m] + 
3hocoa[m] <=> 
nadh[m] + 
h+[m] + 
3oocoa[m] 

m 1.1.1.35 1962 Beta 
Oxidation of 
Fatty acid 

HTDCL 3-
Hydroxytetradec
anoyl-Coa 
Hydro-Lyase 

h2o[m] + 
tt2coa[m] <=> 
3htdcoa[m] 

m 4.2.1.17 1892 Beta 
Oxidation of 
Fatty acid 

HTDR 3-
Hydroxytetradec
anoyl-Coa: NAD+ 
Oxidoreductase 

nad+[m] + 
3htdcoa[m] 
<=> nadh[m] + 
h+[m] + 
3otdcoa[m] 

m 1.1.1.211 3030 Beta 
Oxidation of 
Fatty acid 

LAT Lauroyl-
Coa:Acetyl-Coa 
C-
Acyltransferase 

co-A-SH[m] + 
3otdcoa[m] 
<=> accoa[m] + 
lcoa[m] 

m 2.3.1.16 10449; 
30; 
3032 

Beta 
Oxidation of 
Fatty acid 

LCFR Lauroyl-Coa:FAD 
Oxidoreductase 

fad[m] + 
lcoa[m] <=> 
fadh2[m] + 
tdecoa[m] 

m 1.3.8.7 34 Beta 
Oxidation of 
Fatty acid 

LCPT L-Carnitine O-
Palmitoyltransfe
rase 

pacoa[c] + 
crn[c] <=> co-
A-SH[c] + 
pacrn[c] 

c 2.3.1.21 126129
; 1374; 
1375; 
1376 

Beta 
Oxidation of 
Fatty acid 

LCPT2 L-Carnitine O-
Palmitoyltransfe
rase 2 

co-A-SH[m] + 
pacrn[m] <=> 
pacoa[m] + 
crn[m] 

m 2.3.1.21 126129
; 1374; 
1375; 
1376 

Beta 
Oxidation of 
Fatty acid 

OACT Octanoyl-
Coa:Acetyl-Coa 
C-
Acyltransferase 

co-A-SH[m] + 
3odcoa[m] <=> 
accoa[m] + 
ocoa[m] 

m 2.3.1.16 10449; 
30; 
3032 

Beta 
Oxidation of 
Fatty acid 

OCFR Octanoyl-
Coa:FAD 
Oxidoreductase 

fad[m] + 
ocoa[m] <=> 
fadh2[m] + 
to2coa[m] 

m 1.3.8.7 34 Beta 
Oxidation of 
Fatty acid 

PCFR Palmitoyl-
Coa:FAD 
Oxidoreductase 

fad[m] + 
pacoa[m] <=> 
fadh2[m] + 
hdd2coa[m] 

m 1.3.8.7 34 Beta 
Oxidation of 
Fatty acid 

PCH Palmitoyl-Coa 
Hydrolase 

co-A-SH[c] + 
pa[c] <=> 
h2o[c] + 
pacoa[c] 

c 3.1.2.2 122970
; 10965; 
11332; 

Beta 
Oxidation of 
Fatty acid 
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570; 
641371 

TCFR Tetradecanoylco
a:FAD 
Oxidoreductase 

tdcoa[m] + 
fad[m] <=> 
fadh2[m] + 
tt2coa[m] 

m 1.3.8.7 34 Beta 
Oxidation of 
Fatty acid 

CD Cysteine 
Dioxygenase 

cys-L[c] + o2[c] 
-> 2 h+[c] + 
3sala[c] 

c 1.13.11.2
0 

1036 Cysteine 
Metabolism 

CGL Cystathionine 
Gamma-Lyase 

h2o[c] + cyst-
L[c] -> cys-L[c] 
+ nh4+[c] + 
2obut[c] 

c 4.4.1.1 1491 Cysteine 
Metabolism 

CST Cysteine 
Sulfinate 
Transaminase 

akg[c] + 
3sala[c] <=> 
glut[c] + 
3snpyr[c] 

c 2.6.1.1 2805 Cysteine 
Metabolism 

CystRed Cystine 
Reductase 

h+[c] + nadh[c] 
+ cystine[c] 
<=> nad+[c] + 2 
cys-L[c] 

c 1.8.1.6 1109 Cysteine 
Metabolism 

SPON1 Spontaneous 
3snpyr 

h2o[c] + 
3snpyr[c] -> 
h+[c] + pyr[c] + 
so3[c] 

c 3.13.1.-   Cysteine 
Metabolism 

Ex_adn Adenosine 
Exchange 

adn[e] <=> e     Exchange 
Reaction 

Ex_akg Ketoglutarate 
Exchange 

akg[e] <=> e     Exchange 
Reaction 

Ex_ala Alanine 
Exchange 

ala-L[e] <=> e     Exchange 
Reaction 

Ex_asp-L Aspartate 
Exchange 

asp-L[e] <=> e     Exchange 
Reaction 

Ex_cit Citrate Exchange cit[e] <=> e     Exchange 
Reaction 

Ex_co2 Carbon Dioxide 
Exchange 

co2[e] <=> e     Exchange 
Reaction 

Ex_co-A-
SH 

Coenzyme A 
Exchange 

co-A-SH[e] <=> e     Exchange 
Reaction 

Ex_crn L-Carnitine 
Exchange 

crn[e] <=> e     Exchange 
Reaction 

Ex_cystin
e 

Cystine 
Exchange 

cystine[e] <=> e     Exchange 
Reaction 

Ex_for Formate 
Exchange 

for[e] <=> e     Exchange 
Reaction 

Ex_gdp Gdp Exchange gdp[e] <=> e     Exchange 
Reaction 
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Ex_gln(c) Glutamine 
Exchange 

gln[e] <=> e     Exchange 
Reaction 

Ex_glt Glutathione 
Exchange 

glt[e] <=> e     Exchange 
Reaction 

Ex_glu Glucose 
Exchange 

b-D-glu[e] <=> e     Exchange 
Reaction 

Ex_glut L-Glutamate 
Exchange 

glut[e] <=> e     Exchange 
Reaction 

Ex_glycin
e 

Glycine 
Exchange 

gly[e] <=> e     Exchange 
Reaction 

Ex_gtp Gtp Exchange gtp[e] <=> e     Exchange 
Reaction 

Ex_h+ Proton Exchange h+[e] <=> e     Exchange 
Reaction 

Ex_h2o Water Exchange h2o[e] <=> e     Exchange 
Reaction 

Ex_hco3 Bicarbonate 
Exchange 

hco3[e] <=> e     Exchange 
Reaction 

Ex_K+ Potassium Ion 
Exchange 

K+[e] <=> e     Exchange 
Reaction 

Ex_lac Lactate 
Exchange 

lac[e] <=> e     Exchange 
Reaction 

Ex_mlthf 5,10-
Methylenetetrah
ydrofolate 
Exchange 

mlthf[e] <=> e     Exchange 
Reaction 

Ex_Na+ Sodium Ion 
Exchange 

Na+[e] <=> e     Exchange 
Reaction 

Ex_nh4+ Ammonium 
Exchange 

nh4+[e] <=> e     Exchange 
Reaction 

Ex_nmg N-Methyl-
Glycine 
Exchange 

Nmg[e] <=> e     Exchange 
Reaction 

Ex_o2 Oxygen 
Exchange 

o2[e] <=> e     Exchange 
Reaction 

Ex_oaa Oxaloacetate 
Exchange 

oaa[e] <=> e     Exchange 
Reaction 

Ex_obut 2-Oxobutanoate 
Exchange 

2obut[e] <=> e     Exchange 
Reaction 

Ex_pa Palmitic Acid 
Exchange 

pa[e] <=> e     Exchange 
Reaction 

Ex_pi Phosphate 
Exchange 

pi[e] <=> e     Exchange 
Reaction 

Ex_po Orthophosphate 
Exchange 

po[e] <=> e     Exchange 
Reaction 



Appendix  

 

P a g e |  153  

 

 

Ex_ppi Pyrophosphate 
Exchange 

ppi[e] <=> e     Exchange 
Reaction 

Ex_quln Quinolinate 
Exchange 

quln[e] <=> e     Exchange 
Reaction 

Ex_succ Succinate 
Exchange 

succ[e] <=> e     Exchange 
Reaction 

Ex_sulfite Sulfite Exchange so3[e] <=> e     Exchange 
Reaction 

Ex_thf Tetrahydrofolate 
Exchange 

thf[e] <=> e     Exchange 
Reaction 

Ex_try Tryptophan 
Exchange 

try[e] <=> e     Exchange 
Reaction 

Ex-met L-Methionine 
Exchange 

met-L[e] <=> e     Exchange 
Reaction 

ATA Alanine 
Transaminase 

glut[c] + pyr[c] 
<=> akg[c] + 
ala-L[c] 

c 2.6.1.2 2875 Glutamate 
Metabolism 

Glnase Glutaminase glut[m] + 
nh4+[m] -> 
h2o[m] + 
gln[m] 

m 3.5.1.2 2744 Glutamate 
Metabolism 

GlnSyn Glutamine 
Synthetase 

atp[c] + glut[c] 
+ nh4+[c] <=> 
h+[c] + adp[c] 
+ pi[c] + gln[c] 

c 6.3.1.2 2752 Glutamate 
Metabolism 

GlutDH Glutamate 
Dehydrogenase 

akg[m] + h+[m] 
+ nh4+[m] + 
nadph[m] <=> 
h2o[m] + 
glut[m] + 
nadp[m] 

m 1.4.1.4 2747 Glutamate 
Metabolism 

GCL Glutamate-
Cysteine Ligase 

atp[c] + glut[c] 
+ cys-L[c] -> 
h+[c] + adp[c] 
+ pi[c] + 
glucys[c] 

c 6.3.2.2 2730; 
2729 

Glutathione 
Metabolism 

GS Glutathione 
Synthase 

atp[c] + gly[c] + 
glucys[c] -> 
h+[c] + adp[c] 
+ pi[c] + glt[c] 

c 6.3.2.3 2937 Glutathione 
Metabolism 

GHMT Glycine 
Hydroxymethylt
ransferase 

ser-L[c] + thf[c] 
<=> h2o[c] + 
gly[c] + 
mlthf[c] 

c  2.1.2.1 6470 Glycine-
Serine 
Metabolism 

PGDH Phosphoglycerat
e Dehydrogenase 

nad+[c] + 3-
pg[c] <=> h+[c] 
+ nadh[c] + 
3php[c] 

c 1.1.1.95 26227 Glycine-
Serine 
Metabolism 
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PSP Phosphoserine 
Phosphatase 

h2o[c] + pser-
L[c] <=> pi[c] + 
ser-L[c] 

c 3.1.3.3 5723 Glycine-
Serine 
Metabolism 

PST Phosphoserine 
Transaminase 

glut[c] + 
3php[c] <=> 
akg[c] + pser-
L[c] 

c 2.6.1.52 29968 Glycine-
Serine 
Metabolism 

ENO Enolase 2-pg[c] <=> 
h2o[c] + pep[c] 

c 4.2.1.11 2026 Glycolysis 

FBA Fructose-1,6-
Bisphoasphate 
Aldolase 

f16bp[c] <=> 
dhap[c] + 
gap[c] 

c 4.1.2.13 226; 
229 

Glycolysis 

GAPDH Glyceraldehyde-
3-Phosphate 
Dehydrogenase 

nad+[c] + pi[c] 
+ dhap[c] <=> 
h+[c] + nadh[c] 
+ 13dpg[c] 

c 1.2.1.12 2597 Glycolysis 

HEX Hexokinase atp[c] + b-D-
glu[c] <=> 
h+[c] + adp[c] 
+ g6p-B[c] 

c 2.7.1.1 3098; 
3099; 
3101 

Glycolysis 

Lac_dehy
d 

L-Lactate 
Dehydrogenase 

h+[c] + nadh[c] 
+ pyr[c] <=> 
nad+[c] + lac[c] 

c 1.1.1.27 3939; 
3945; 
3948 

Glycolysis 

PFK Phosphofructoki
nase 

atp[c] + f6p[c] 
<=> h+[c] + 
adp[c] + 
f16bp[c] 

c 2.7.1.11 5211; 
5213; 
5214 

Glycolysis 

PGI Phosphoglucose 
Isomerase 

g6p-B[c] <=> 
f6p[c] 

c 5.3.1.9 2821 Glycolysis 

PGK Phosphoglycerat
e Kinase 

adp[c] + 
13dpg[c] <=> 
atp[c] + 3-pg[c] 

c 2.7.2.3 5230; 
5232 

Glycolysis 

PGM Phosphoglycerat
e Mutase 

3-pg[c] <=> 2-
pg[c] 

c 5.4.2.11 441531
; 5223; 
5224; 
669 

Glycolysis 

PYK Pyruvate Kinase h+[c] + adp[c] 
+ pep[c] <=> 
atp[c] + pyr[c] 

c 2.7.1.40 5315 Glycolysis 

TPI Triose 
Phosphate 
Isomerase 

gap[c] <=> 
dhap[c] 

c 5.3.1.1 7167 Glycolysis 

AHC Adenosylhomocy
steinase 

h2o[c] + 
ahcys[c] -> 
adn[c] + hcys-
L[c] 

c 3.3.1.1 191 Methionine 
Metabolism 

CBS Cystathionine 
Beta-Synthase 

hcys-L[c] + ser-
L[c] -> h2o[c] + 
cyst-L[c] 

c 4.2.1.22 875 Methionine 
Metabolism 
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HCMT Homocysteine S-
Methyltransferas
e 

amet[n] + 
gly[n] -> 
Nmg[n] + 
ahcys[n] 

n 2.1.1.10 23743 Methionine 
Metabolism 

MAT Methionine 
Adenosyltransfer
ase 

h2o[c] + atp[c] 
+ met-L[c] -> 
h+[c] + pi[c] + 
amet[c] + 
ppi[c] 

c 2.5.1.6 27430; 
4143; 
4144 

Methionine 
Metabolism 

GBM_BM Metabolic 
Demand 
Reaction 

oaa[m] + glt[c] 
+ r5p[c] + 
succ[m] ->  

 
    Objective 

Function 

ATPS_1 Cytosolic Atpase h2o[c] + atp[c] 
-> h+[c] + 
adp[c] + pi[c] 

c 3.6.1.3 954 Others 

MDH 
(Cyto) 

Cytoplasmic 
Malate 
Dehydrogenase 

nad+[c] + 
mal[c] <=> 
nadh[c] + 
co2[c] + pyr[c] 

c 1.1.1.38 4190 Others 

PEP_Carb
K_1 

Phosphoenolpyr
uvate 
Carboxykinase 
(GTP) 

oaa[c] + gtp[c] 
<=> co2[c] + 
pi[c] + pep[c] + 
gdp[c] 

c 4.1.1.32 5105; 
5106 

Others 

Pyr_Carb
m 

Mitochondrial 
Pyruvate 
Carboxylase 

atp[m] + 
pyr[m] + 
hco3[m] <=> 
oaa[m] + 
adp[m] + pi[m] 
+ h+[m] 

m 1.2.4.1 5160; 
5161; 
5162 

Others 

ATPSyn ATP Synthase adp[m] + pi[m] 
+ 4 h+[i] <=> 
h2o[m] + 
atp[m] + 3 
h+[m] 

i 3.6.3.14 514; 
506; 
91647 

Oxidative 
Phosphoryla
tion 

Cytox(Co
mplex 
IV) 

Cytochrome 
Oxidase 
(Complex IV) 

8 h+[m] + 4 
focytc[m] + 
o2[m] <=> 2 
h2o[m] + 4 
h+[i] + 4 
ficytc[m] 

i 1.9.3.1 9997; 
6341 

Oxidative 
Phosphoryla
tion 

NADH:Ub
ioxred(C
omplex I) 

NADH:Ubiquino
ne 
Oxidoreductase(
Complex I) 

nadh[m] + 5 
h+[m] + Q[m] 
<=> nad+[m] + 
4 h+[i] + 
QH2[m] 

i 1.6.5.3 4537 Oxidative 
Phosphoryla
tion 

Ubi:Cytco
xred(Co
mplex 
III) 

Ubiquinone: 
Cytochrome C 
Oxidoreductas 
(Complex III) 

2 h+[m] + 2 
ficytc[m] + 
QH2[m] <=> 4 
h+[i] + 2 
focytc[m] + 
Q[m] 

i 1.10.2.2 7386 Oxidative 
Phosphoryla
tion 
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ACOC Acetyl-Coa 
Carboxylase 

atp[c] + 
accoa[c] + 
hco3[c] -> 
adp[c] + malo-
CoA[c] + po[c] 

c 6.4.1.2 31 Palmitic 
Acid 
Biosynthesis 

AMAT Acyl-Malonyl-
Acyltransferase 

aACP[c] + 
malACP[c] -> 
hs-acp[c] + 
aacACP[c] + 
co2[c] 

c 2.3.1.39 2194 Palmitic 
Acid 
Biosynthesis 

ATF S-
Acetyltransferas
e 

accoa[c] + hs-
acp[c] -> 
aACP[c] + co-A-
SH[c] 

c 2.3.1.38 1737 Palmitic 
Acid 
Biosynthesis 

BAAT Butyryl-[Acyl-
Carrier 
Protein]:Malonyl
-ACP C-
Acyltransferase 

malACP[c] + 
butACP[c] -> 
hs-acp[c] + 
co2[c] + 
3ohACP[c] 

c 2.3.1.85 2194 Palmitic 
Acid 
Biosynthesis 

BNTO Butyryl-[Acp]: 
NADP+ Trans-2-
Oxidoreductase 

butACP[c] + 
nadp[c] <=> 
h+[c] + 
nadph[c] + 
tbut2eACP[c] 

c 1.3.1.39 2194 Palmitic 
Acid 
Biosynthesis 

DDMT Dodecanoyl-
[Acyl-Carrier-
Protein]: 
Malonyl-ACP- C-
Acyltransferase 

malACP[c] + 
ddcaACP[c] -> 
hs-acp[c] + 
co2[c] + 
3ottdcACP[c] 

c 2.3.1.85 2194 Palmitic 
Acid 
Biosynthesis 

DENTO Decanoyl-[Acp]: 
NAP+ Trans-2-
Oxidoreductase 

nadp[c] + 
dcaACP[c] <=> 
h+[c] + 
nadph[c] + 
tdc2eACP[c] 

c 1.3.1.39 2194 Palmitic 
Acid 
Biosynthesis 

DMACT Decanoyl-[Acyl-
Carrier 
Protein]:Malonyl
-ACP C-
Acyltransferase 

malACP[c] + 
dcaACP[c] -> 
hs-acp[c] + 
co2[c] + 
3oddcACP[c] 

c 2.3.1.85 2194 Palmitic 
Acid 
Biosynthesis 

DNTO Dodecanoyl-
[Acp]: NADP+ 
Trans-2-
Oxidoreductase 

nadp[c] + 
ddcaACP[c] 
<=> h+[c] + 
nadph[c] + 
tddcACP[c] 

c 1.3.1.39 2194 Palmitic 
Acid 
Biosynthesis 

HAMAT Hexanoyl-[Acyl-
Carrier 
Protein]:Malonyl
-ACP- C-
Acyltransferase 

malACP[c] + 
hexACP[c] -> 
hs-acp[c] + 
co2[c] + 
3ooctACP[c] 

c 2.3.1.85 2194 Palmitic 
Acid 
Biosynthesis 
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HAOR 3-
Hydroxyoctanoyl
-[Acyl-Carrier-
Protein]: NADP+ 
Oxidoreductase 

h+[c] + 
nadph[c] + 
3ooctACP[c] -> 
nadp[c] + 
3hoctACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

HBACL 3-
Hydroxybutanoy
l-[Acyl-Carrier-
Protein] Hydro-
Lyase 

3hoctACP[c] -> 
h2o[c] + 
toct2eACP[c] 

c 4.2.1.59 2194 Palmitic 
Acid 
Biosynthesis 

HBAL 3-
Hydroxybutanoy
l-[Acyl-Carrier-
Protein] Hydro-
Lyase 

3hbutACP[c] -> 
h2o[c] + 
tbut2eACP[c] 

c 4.2.1.59 2194 Palmitic 
Acid 
Biosynthesis 

HBAR 3-
Hydroxybutanoy
l-[Acyl-Carrier 
Protein]:NADP+ 
Oxidoreductase 

h+[c] + 
aacACP[c] + 
nadph[c] -> 
nadp[c] + 
3hbutACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

HDDHL 3-
Hydroxydodecan
oyl-ACP Hydro-
Lyase 

3hddecACP[c] -
> h2o[c] + 
tddcACP[c] 

c 4.2.1.59 2194 Palmitic 
Acid 
Biosynthesis 

HDDOR 3-
Hydroxydodecan
oyl-[Acyl-
Carrier-Protein]: 
NADP+ 
Oxidoreductase 

h+[c] + 
nadph[c] + 
3oddcACP[c] -> 
nadp[c] + 
3hddecACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

HDHL 3-
Hydroxydecanoy
l-[Acyl-Carrier-
Protein] Hydro-
Lyase 

3hdeACP[c] -> 
h2o[c] + 
tdc2eACP[c] 

c 4.2.1.59 2194 Palmitic 
Acid 
Biosynthesis 

HDMT Hexadecanoyl-
[Acyl-Carrier 
Protein]:Malonyl
-Coa C-
Acyltransferase 

h+[c] + 
nadph[c] + 
th2eACP[c] -> 
nadp[c] + 
hdecACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

HDOR 3-
Hydroxydecanoy
l-[Acyl-Carrier-
Protein]: NADP+ 
Oxidoreductase 

h+[c] + 
nadph[c] + 
3odcaACP[c] -> 
nadp[c] + 
3hdeACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

HHAL 3-
Hydroxyhexanoy
l-[Acyl-Carrier-
Protein] Hydro-
Lyase 

3hhexACP[c] -> 
h2o[c] + 
thex2eACP[c] 

c 4.2.1.59 2194 Palmitic 
Acid 
Biosynthesis 
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HHAR 3-
Hydroxyhexanoy
l-ACP: NADP+ 
Oxidoreductase 

h+[c] + 
3ohACP[c] + 
nadph[c] -> 
nadp[c] + 
3hhexACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

HNTO Hexanoyl-[Acp]: 
NADP+ Trans-2-
Oxidoreductase 

nadp[c] + 
hexACP[c] <=> 
h+[c] + 
nadph[c] + 
thex2eACP[c] 

c 1.3.1.39 2194 Palmitic 
Acid 
Biosynthesis 

HPHL 3-
Hydroxypalmito
yl-[Acyl-Carrier-
Protein] Hydro-
Lyase 

2hpaACP[c] -> 
h2o[c] + 
th2eACP[c] 

c 4.2.1.17 1892 Palmitic 
Acid 
Biosynthesis 

HPOR 3-
Hydroxypalmito
yl-[Acyl-Carrier-
Protein]: NADP+ 
Oxidoreductase 

h+[c] + 
nadph[c] + 
3ohdcACP[c] -> 
nadp[c] + 
2hpaACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

HTDHL 3-
Hydroxytetradec
anoyl-[Acyl-
Carrier-Protein] 
Hydro-Lyase 

3httdcACP[c] -
> h2o[c] + 
tttdc2eACP[c] 

c 4.2.1.17 1892 Palmitic 
Acid 
Biosynthesis 

HTDOR 3-
Hydroxytetradec
anoyl-[Acyl-
Carrier-Protein]: 
NADP+ 
Oxidoreductase 

h+[c] + 
nadph[c] + 
3ottdcACP[c] -
> nadp[c] + 
3httdcACP[c] 

c 1.1.1.100 2194 Palmitic 
Acid 
Biosynthesis 

MT S-
Malonyltransfera
se 

h+[c] + malo-
CoA[c] + hs-
acp[c] -> 
malACP[c] + 
co-A-SH[c] 

c  2.3.1.39 27349 Palmitic 
Acid 
Biosynthesis 

OH Oleoyl-[Acyl-
Carrier Protein] 
Hydrolase 

h2o[c] + 
hdecACP[c] 
<=> hs-acp[c] + 
pa[c] 

c 3.1.2.14 2194 Palmitic 
Acid 
Biosynthesis 

OMACT Octanoyl-[Acyl-
Carrier 
Protein]:Malonyl
-ACP C-
Acyltransferase 

malACP[c] + 
ocACP[c] -> hs-
acp[c] + co2[c] 
+ 3odcaACP[c] 

c 2.3.1.85 2194 Palmitic 
Acid 
Biosynthesis 

ONTO Octanoyl-[Acp]: 
NADP+ Trans-2-
Oxidoreductase 

nadp[c] + 
ocACP[c] <=> 
h+[c] + 
nadph[c] + 
toct2eACP[c] 

c 1.3.1.39 2194 Palmitic 
Acid 
Biosynthesis 
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TDTNO Tetradecanoyl-
[Acp]: NADP+ 
Trans-2-
Oxidoreductase 

nadp[c] + 
ttdcACP[c] <=> 
h+[c] + 
nadph[c] + 
tttdc2eACP[c] 

c 1.3.1.39 2194 Palmitic 
Acid 
Biosynthesis 

TTDT Tetradecanoyl-
[Acyl-Carrier 
Protein]:Malonyl
-ACP C-
Acyltransferase 

malACP[c] + 
ttdcACP[c] -> 
hs-acp[c] + 
co2[c] + 
3ohdcACP[c] 

c 2.3.1.85 2194 Palmitic 
Acid 
Biosynthesis 

6PGLase 6-
Phosphogluconol
actonase 

h2o[c] + 
6pgl[c] <=> 
h+[c] + 6-
pgc[c] 

c 3.1.1.31 25796 PPP 

G6PDH Beta-D-Glucose-
6-Phosphate 
Dehydrogenase 

nadp[c] + g6p-
B[c] <=> 
6pgl[c] + h+[c] 
+ nadph[c] 

c 1.1.1.49 2539 PPP 

PGCDH 6-
Phosphogluconol
actone 
Dehydrogenase 

6-pgc[c] + 
nadp[c] <=> 
co2[c] + 
nadph[c] + 
ru5p-D[c] 

c 1.1.1.44 5226 PPP 

RPE Ribulose 
Phosphate-3 
Epimerase 

ru5p-D[c] <=> 
xu5p-D[c] 

c 5.1.3.1 6120; 
729020 

PPP 

RPI Ribulose 
Phosphate 
Isomerase 

ru5p-D[c] <=> 
r5p[c] 

c 5.3.1.6 22934 PPP 

TA Transaldolase gap[c] + s7p[c] 
<=> f6p[c] + 
e4p[c] 

c 2.2.1.2 6888 PPP 

TK1 Transketolase 1 r5p[c] + xu5p-
D[c] <=> gap[c] 
+ s7p[c] 

c 2.2.1.1 7086; 
8277; 
84076 

PPP 

TK2 Transketolase 2 xu5p-D[c] + 
e4p[c] <=> 
gap[c] + f6p[c] 

c 2.2.1.1 7086; 
8277; 
84076 

PPP 

2OXOAD
PTm 

2-Oxoadipate 
Shuttle 

2oxoadp[m] + 
akg[c] <=> 
2oxoadp[c] + 
akg[m] 

mms   89874 Shuttle 

Sh_cit-
mal 

Citrate-Malate 
Shuttle 

cit[m] + mal[c] 
<=> mal[m] + 
cit[c] 

mms     Shuttle 

Sh_glut-
asp 

Glutamate-
Aspartate 
Shuttle 

asp-L[m] + 
glut[c] <=> 
glut[m] + asp-
L[c] 

mms   6507 Shuttle 

Sh_mal-
asp1 

Malate-Aspartate 
Shuttle 

akg[m] + 
mal[c] <=> 

mms     Shuttle 
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akg[c] + 
mal[m] 

AH_1 Aconitate 
Hydratase 

cit[m] <=> cis-
acon[m] + 
h2o[m] 

m 4.2.1.3 48 TCA Cycle 

AH_2 Aconitate 
Hydratase 

cis-acon[m] + 
h2o[m] <=> 
isocit[m] 

m 4.2.1.3 50 TCA Cycle 

AKGDH Alpha 
Ketoglutarate 
Dehydrogenase 

co-A-SH[m] + 
nad+[m] + 
akg[m] <=> 
nadh[m] + 
co2[m] + 
succoa[m] 

m 1.2.4.2 4967 TCA Cycle 

CS Citrate Synthase accoa[m] + 
h2o[m] + 
oaa[m] <=> co-
A-SH[m] + 
cit[m] + h+[m] 

m 2.3.3.1 1431 TCA Cycle 

FUMH Fumarate 
Hydratase 

h2o[m] + 
fum[m] <=> 
mal[m] 

m 4.2.1.2 2271 TCA Cycle 

IDH Isocitrate 
Dehydrogenase 

nad+[m] + 
isocit[m] <=> 
nadh[m] + 
co2[m] + 
akg[m] 

m 1.1.1.41 3419 TCA Cycle 

IDH 
(nadp) 

Isocitrate 
Dehydrogenase(
nadp) 

isocit[m] + 
nadp[m] <=> 
co2[m] + 
akg[m] + 
nadph[m] 

m 1.1.1.42 3418 TCA Cycle 

MDH Malate 
Dehydrogenase 

nad+[m] + 
mal[m] <=> 
nadh[m] + 
oaa[m] + h+[m] 

m 1.1.1.37 4191 TCA Cycle 

PYDH Pyruvate 
Dehydrogenase 

co-A-SH[m] + 
nad+[m] + 
pyr[m] <=> 
nadh[m] + 
co2[m] + 
accoa[m] 

m 1.2.4.1 5160; 
5161; 
5162 

TCA Cycle 

SCS Succinyl-Coa 
Synthetase 

succoa[m] + 
adp[m] + pi[m] 
<=> co-A-
SH[m] + atp[m] 
+ succ[m] 

m 6.2.1.5 8801; 
8802; 
8803 

TCA Cycle 

SDH Succinate 
Dehydrogenase  

succ[m] + 
fad[m] <=> 
fadh2[m] + 
fum[m] 

m 1.3.5.1 6389; 
6390 

TCA Cycle 
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SDH 
(Complex 
II) 

Succinate 
Dehydrogenase 
(Complex II) 

succ[m] + Q[m] 
<=> fum[m] + 
QH2[m] 

m 1.3.5.1 6389; 
6390 

TCA Cycle 

Anti_cyst
ine_glut 

Cystine 
Glutamate 
Antiporter 

glut[c] + 
cystine[e] <=> 
cystine[c] + 
glut[e] 

pms   23657 Transport 
Reaction 

Na+/K+_
glut_up 

Na+/K+ 
Dependent 
Glutamate 
Uptake 

h+[c] + atp[c] + 
glut[c] + K+[e] 
+ hco3[e] + 2 
Na+[c] <=> 
hco3[c] + 
adp[c] + pi[c] + 
glut[e] + 2 
Na+[e] + h+[e] 
+ K+[c] 

pms   6506 Transport 
Reaction 

Trans_ac
coa 

Acetyl-Coa 
Transport 

accoa[m] <=> 
accoa[c] 

mms   9197 Transport 
Reaction 

Trans_ad
n 

Adenosine 
Transport 

adn[c] <=> 
adn[e] 

pms     Transport 
Reaction 

Trans_ad
p 

Adp Transport adp[m] -> 
adp[c] 

mms     Transport 
Reaction 

Trans_adp 
(m) 

Adp Transport adp[c] <=> 
adp[m] 

mms     Transport 
Reaction 

trans_ahc
ys 

S-Adenosyl-L-
Homocysteine 

ahcys[n] -> 
ahcys[c] 

nms     Transport 
Reaction 

Trans_ak
g 

Ketoglutarate 
Transport 

akg[c] <=> 
akg[e] 

pms     Transport 
Reaction 

Trans_ala Alanine 
Transport 

ala-L[c] <=> 
ala-L[e] 

pms   6509 Transport 
Reaction 

Trans_a
met 

S-Adenosyl-L-
Methionine 

amet[c] -> 
amet[n] 

nms   115286 Transport 
Reaction 

Trans_as
p-L 

Aspartate 
Transport 

asp-L[c] <=> 
asp-L[e] 

pms     Transport 
Reaction 

Trans_as
p-L(m) 

Mitochondrial 
Aspartate 
Transport 

asp-L[c] <=> 
asp-L[m] 

mms     Transport 
Reaction 

Trans_at
p 

Atp Transport atp[m] -> 
atp[c] 

mms     Transport 
Reaction 

Trans_at
p (m) 

Atp Transport atp[m] <=> 
atp[c] 

mms     Transport 
Reaction 

Trans_cit 
(c) 

Cytoplasmic 
Citrate 
Transport 

cit[c] <=> cit[e] pms     Transport 
Reaction 

Trans_co
2 (c) 

Cytoplasmic 
Carbon Dioxide 
Transport 

co2[c] <=> 
co2[e] 

pms     Transport 
Reaction 
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Trans_co
2 (m) 

Mitochondrial 
Carbon Dioxide 
Transport 

co2[m] <=> 
co2[c] 

mms     Transport 
Reaction 

Trans_co
-A-SH(c) 

Cytoplasmic 
Coenzyme A 
Transport 

co-A-SH[c] <=> 
co-A-SH[e] 

pms     Transport 
Reaction 

Trans_co
-A-SH(m) 

Mitochondrial 
Coenzyme A 
Transport 

co-A-SH[m] 
<=> co-A-SH[c] 

mms   284439 Transport 
Reaction 

Trans_cr
n 

L-Carnitine 
Transport 

crn[c] <=> 
crn[e] 

pms     Transport 
Reaction 

Trans_cr
n (m) 

L-Carnitine 
Transport (m) 

crn[m] <=> 
crn[c] 

mms     Transport 
Reaction 

Trans_for Formate 
Transport 

for[c] <=> 
for[e] 

pms   65010 Transport 
Reaction 

Trans_gd
p 

Gdp Transport gdp[c] <=> 
gdp[e] 

pms     Transport 
Reaction 

Trans_gl
n (c) 

Cytoplasmic 
Glutamine 
Transport 

gln[c] <=> 
gln[e] 

pms     Transport 
Reaction 

Trans_gl
n (m) 

Mitochondrial 
Glutamine 
Transport 

gln[m] <=> 
gln[c] 

mms     Transport 
Reaction 

Trans_glt Glutathione 
Transport 

glt[c] <=> glt[e] pms     Transport 
Reaction 

Trans_gl
u 

Glucose 
Transport 

h+[c] + b-D-
glu[c] <=> b-D-
glu[e] + h+[e] 

pms   6513 Transport 
Reaction 

Trans_Gl
ut(ATP) 

ATP Dependent 
Glutamate 
Uptake 

adp[c] + glut[c] 
+ pi[c] <=> 
atp[c] + glut[e] 

pms   6506 Transport 
Reaction 

Trans_gl
ut(c) 

L-Glutamate 
Transport 

glut[c] <=> 
glut[e] 

pms     Transport 
Reaction 

Trans_gly Glycine 
Transport 

gly[c] <=> 
gly[n] 

nms     Transport 
Reaction 

Trans_gly
cine 

Glycine 
Transport 

gly[c] <=> 
gly[e] 

pms   6536 Transport 
Reaction 

Trans_gt
p 

Gtp Transport gtp[c] <=> 
gtp[e] 

pms     Transport 
Reaction 

Trans_h+ 
(c) 

Cytoplasmic 
Proton 
Transport 

h+[c] <=> h+[e] pms     Transport 
Reaction 

Trans_h+ 
(m) 

Mitochondrial 
Proton 
Transport 

h+[c] <=> 
h+[m] 

mms     Transport 
Reaction 

Trans_h2
o (c) 

Cytoplasmic 
Water Transport 

h2o[c] <=> 
h2o[e] 

pms     Transport 
Reaction 
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Trans_h2
o (m) 

Mitochondrial 
Water Transport 

h2o[m] <=> 
h2o[c] 

mms     Transport 
Reaction 

Trans_hc
o3 

Bicarbonate 
Transport 

hco3[c] <=> 
hco3[e] 

pms   8671 Transport 
Reaction 

Trans_hc
o3(m) 

Mitochondrial 
Bicarbonate Ion 
Transport 

hco3[m] <=> 
hco3[c] 

mms   8671 Transport 
Reaction 

Trans_K+ Potassium Ion 
Transport 

K+[c] <=> 
K+[e] 

pms     Transport 
Reaction 

Trans_lac Lactate 
Transport 

lac[c] <=> 
lac[e] 

pms     Transport 
Reaction 

Trans_ml
thf 

5,10-
Methylenetetrah
ydrofolate 
Transport 

mlthf[c] <=> 
mlthf[e] 

pms     Transport 
Reaction 

Trans_Na
+ 

Sodium Ion 
Transport 

Na+[c] <=> 
Na+[e] 

pms   6558 Transport 
Reaction 

Trans_na
d+(m) 

Mitochondrial 
Nad+ Transpory 

nad+[m] <=> 
nad+[c] 

mms     Transport 
Reaction 

Trans_na
dh(m) 

Mitochondrial 
Nadh Transpory 

nadh[m] <=> 
nadh[c] 

mms     Transport 
Reaction 

Trans_na
dp(m) 

Mitochondrial 
Nadp Transport 

nadp[c] <=> 
nadp[m] 

mms     Transport 
Reaction 

trans_na
dph(m) 

Mitochondrial 
Nadph Transport 

nadph[c] <=> 
nadph[m] 

mms     Transport 
Reaction 

Trans_nh
4+ 

Ammoniun Ion 
Transport 

nh4+[m] <=> 
nh4+[c] 

mms     Transport 
Reaction 

Trans_nh
4+(c) 

Cytoplasmic 
Ammoniun Ion 
Transport 

nh4+[c] <=> 
nh4+[e] 

pms     Transport 
Reaction 

Trans_N
mg 

N-Methyl-
Glycine 
Transport 

Nmg[c] <=> 
Nmg[n] 

nms     Transport 
Reaction 

Trans_n
mg 

N-Methyl-
Glycine 
Transport 

Nmg[c] <=> 
Nmg[e] 

pms     Transport 
Reaction 

Trans_o2 Oxygen 
Transport 

o2[c] <=> o2[e] pms     Transport 
Reaction 

Trans_o2 
(m) 

Mitochondrial 
Oxygen 
Transport 

o2[m] -> o2[c] mms     Transport 
Reaction 

Trans_oa
a (c) 

Cytoplasmic 
Oxaloacetate 
Transport 

h+[c] + oaa[c] 
<=> h+[e] + 
oaa[e] 

pms     Transport 
Reaction 

Trans_oa
a (m) 

Mitochondrial 
Oxaloacetate 
Transport 

oaa[m] + h+[m] 
<=> h+[c] + 
oaa[c] 

mms     Transport 
Reaction 
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Trans_ob
ut 

2-Oxobutanoate 
Transport 

2obut[c] <=> 
2obut[e] 

pms     Transport 
Reaction 

Trans_pa Palmitic Acid 
Transport 

pa[c] <=> pa[e] pms     Transport 
Reaction 

Trans_pa
crn(m) 

L-
Palmitoylcarniti
ne Transport 

pacrn[c] <=> 
pacrn[m] 

mms     Transport 
Reaction 

Trans_pi 
(c) 

Cytoplasmic 
Phosphate 
Transport 

pi[c] <=> pi[e] pms     Transport 
Reaction 

Trans_pi 
(m) 

Phosphate 
Transport 

pi[c] <=> pi[m] mms     Transport 
Reaction 

Trans_po Orthophosphate 
Transport 

po[c] <=> po[e] pms     Transport 
Reaction 

Trans_pp
i 

Pyrophosphate 
Transport 

ppi[c] <=> 
ppi[e] 

pms     Transport 
Reaction 

Trans_py
r (m) 

Mitochondrial 
Pyruvate 
Transport 

h+[m] + pyr[m] 
<=> h+[c] + 
pyr[c] 

mms   51660 Transport 
Reaction 

Trans_qu
ln 

Quinolinate 
Traansport 

quln[c] <=> 
quln[e] 

pms     Transport 
Reaction 

Trans_su
cc (c) 

Cytoplasmic 
Succinate 
Transport 

h+[c] + succ[c] 
<=> h+[e] + 
succ[e] 

pms     Transport 
Reaction 

Trans_su
cc (m) 

Mitochondrial 
Succinate 
Transport 

h+[m] + 
succ[m] <=> 
h+[c] + succ[c] 

mms     Transport 
Reaction 

Trans_sul
fite 

Sulfite Transport so3[c] <=> 
so3[e] 

pms     Transport 
Reaction 

Trans_thf Tetrahydrofolate 
Transport 

thf[c] <=> 
thf[e] 

pms     Transport 
Reaction 

Trans_try Tryptophan 
Transport 

try[c] <=> 
try[e] 

pms     Transport 
Reaction 

Trans-
met 

L-Methionine 
Transport 

met-L[c] <=> 
met-L[e] 

pms     Transport 
Reaction 

AM6SAD Aminomuconate-
Semialdehyde 
Dehydrogenase 

h2o[c] + 
nad+[c] + 
am6sa[c] -> 2 
h+[c] + 
amuco[c] + 
nadh[c] 

c 1.2.1.32   Tryptophan 
Metabolism 

AMCOXO Aminomuconate 
Reductase_1 

h2o[c] + h+[c] 
+ amuco[c] + 
nadh[c] -> 
2oxoadp[c] + 
nad+[c] + 
nh4+[c] 

c 1.5.1.-   Tryptophan 
Metabolism 
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HADO 3-
Hydroxyanthrani
late 3,4-
Dioxygenase 

o2[c] + 
3hanthrn[c] -> 
h+[c] + 
cmusa[c] 

c 1.13.11.6 23498 Tryptophan 
Metabolism 

KF Arylformamidas
e 

h2o[c] + 
Lfmkynr[c] -> 
h+[c] + for[c] + 
Lkynr[c] 

c 3.5.1.9 125061 Tryptophan 
Metabolism 

KMO Kynurenine 3-
Monooxygenase 

h+[c] + 
nadph[c] + 
o2[c] + 
Lkynr[c] -> 
h2o[c] + 
nadp[c] + 
hLkynr[c] 

c 1.14.13.9 8564 Tryptophan 
Metabolism 

KY Kynureninase h2o[c] + 
hLkynr[c] -> 
ala-L[c] + 
3hanthrn[c] 

c 3.7.1.3 8942 Tryptophan 
Metabolism 

PCLAD Picolinic Acid 
Decarboxylase 

h+[c] + 
cmusa[c] -> 
am6sa[c] + 
co2[c] 

c 4.1.1.45 130013 Tryptophan 
Metabolism 

SPON2 Spontaneous 
Quln 

cmusa[c] -> 
h2o[c] + h+[c] 
+ quln[c] 

c 4.1.1.45 130013 Tryptophan 
Metabolism 

TDO Tryptophan 2,3-
Dioxygenase 

o2[c] + try[c] -> 
Lfmkynr[c] 

c 1.13.11.1
1 

6999 Tryptophan 
Metabolism 

c: cytoplasm; e: extracellular space; i: intermembrane space; m: mitochondria; n: nucleus; mms: 

mitochondrial membrane spanning; nms: nuclear membrane spanning; pms: plasma membrane spanning  
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Figure A. 1: Pathway Diagram of the reconstructed constraint-based metabolic network 
for Glioblastoma  
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Table A. 2: Lethal Single Knockout Reactions 

Reaction Name % Growth 

RPI 0.000 

GBM_BM 0.000 

GCL 0.000 

GS 0.000 

Anti_cystine_glut 0.000 

CystRed 0.000 

Table A. 3: Lethal Non-trivial Double Knockouts Reaction Combinations 

Reaction combination % Growth 

AKGDH FUMH 0 

FBA HEX 0 

GAPDH HEX 0 

HEX PFK 0 

HEX PGK 0 

6PGLase RPE 0 

G6PDH RPE 0 

HEX RPE 0 

PGCDH RPE 0 

FUMH SCS 0 

6PGLase TA 0 

G6PDH TA 0 

HEX TA 0 

PGCDH TA 0 

6PGLase TK1 0 

G6PDH TK1 0 

HEX TK1 0 

PGCDH TK1 0 

6PGLase TK2 0 

G6PDH TK2 0 

HEX TK2 0 

PGCDH TK2 0 

HEX TPI 0 

FBA Trans_glu 0 

GAPDH Trans_glu 0 

PFK Trans_glu 0 

PGK Trans_glu 0 

RPE Trans_glu 0 

TA Trans_glu 0 

TK1 Trans_glu 0 
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TK2 Trans_glu 0 

TPI Trans_glu 0 

GHMT Trans_glycine 0 

PGDH Trans_glycine 0 

PSP Trans_glycine 0 

PST Trans_glycine 0 

Trans_glycine Trans_mlthf 0 

PEP_CarbK_1 Trans_pi (c) 0 

Trans_gdp Trans_pi (c) 0 

Trans_gtp Trans_pi (c) 0 

Trans_glycine Trans_thf 0 

Table A. 4: Identified combinations of therapeutic targets 

Reaction combination % Growth 

6PGLase RPE 0.00 

6PGLase TA 0.00 

6PGLase TK1 0.00 

6PGLase TK2 0.00 

AKGDH FUMH 0.00 

FBA HEX 0.00 

FBA Trans_glu 0.00 

FUMH SCS 0.00 

G6PDH RPE 0.00 

G6PDH TA 0.00 

G6PDH TK1 0.00 

G6PDH TK2 0.00 

GAPDH HEX 0.00 

GAPDH Trans_glu 0.00 

GHMT Trans_glycine 0.00 

HEX PFK 0.00 

HEX PGK 0.00 

HEX RPE 0.00 

HEX TA 0.00 

HEX TK1 0.00 

HEX TK2 0.00 

HEX TPI 0.00 

PFK Trans_glu 0.00 

PGCDH RPE 0.00 

PGCDH TA 0.00 

PGCDH TK1 0.00 

PGCDH TK2 0.00 

PGDH Trans_glycine 0.00 
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PGK Trans_glu 0.00 

PSP Trans_glycine 0.00 

PST Trans_glycine 0.00 

RPE Trans_glu 0.00 

TA Trans_glu 0.00 

TK1 Trans_glu 0.00 

TK2 Trans_glu 0.00 

TPI Trans_glu 0.00 

Table A. 5: Percentage reduction of flux through combinatorial reaction targets 

Reaction Combination 
Percentage reduction of flux 
for complete reduction of 
growth 

Percentage reduction of flux 
for Normal growth 

HEX + FBA 
HEX 
85-100% 

FBA 
95-100% 

HEX 
10-40% 

FBA 
15-60% 

RPE + 6PGLase 
RPE 
80-100% 

6PGLase 
50-100% 

RPE 
15-35% 

6PGLase 
10-100% 

FUMH + AKGDH 
FUMH 
60-100% 

AKGDH 
70-100% 

FUMH 
25-65% 

AKGDH 
5-55% 

Trans_Glycine + PGDH 
Trans_Glycine 
80-100% 

PGDH 
80-100% 

Trans_Glycine 
10-55% 

PGDH 
10-100% 

TPI + HEX 
TPI 
80-100% 

HEX 
85-100% 

TPI 
10-60% 

HEX 
15-40% 

Trans_Glucose + GAPDH 
Trans_Glucose 
85-100% 

GAPDH 
85-100% 

Trans_Glucose 
10-40% 

GAPDH 
15-55% 

PFK + HEX 
PFK 
80-100% 

HEX 
85-100% 

PFK 
15-55% 

HEX 
15-45% 

SCS + FUMH 
SCS 
70-100% 

FUMH 
65-100% 

SCS 
25-55% 

FUMH 
10-60% 

RPE + G6PDH 
RPE 
80-100% 

G6PDH 
50-100% 

RPE 
15-35% 

G6PDH 
10-100% 

Trans_Glucose + PGK 
Trans_Glucose 
85-100% 

PGK 
85-100% 

Trans_Glucose 
10-30% 

PGK 
45-55% 
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Table A. 6: List of available inhibitors for the predicted reaction targets. 

Sr. 

No. 

Protein Name Inhibitor Name Reference 

1 Alpha-ketoglutarate dehydrogenase 

(AKGDH) 

a. CPI-613 (312, 313) 

2 Hexokinase (HEX) a. Lonidamine 

b. 3-Bromopyruvate 

c. Imatinib (Gleevec) 

(314, 315) 

3 Glucose transporter 

(Trans_Glucose) 

a. UDP-glucose 

b. N-(4-Azidosalicyl)-6-amido-

6-deoxyglucopyranose 

(316, 317) 

4 Glycine transporter (Trans_Glycine) a. SSR 504734 

b. SSR 103800 

c. ORG 25935 

d. 2-methoxy-N-{1-[4-phenyl-

1-(propylsulfonyl) piperidin-

4-yl]-methyl} benzamide 

(237) 

 

 

 

5 6-phosphogluconolactone 

dehydrogenase (PGCDH) 

a. 6-Aminonicotinamide (318) 

6 Glucose-6-phosphate dehydrogenase 

(G6PDH) 

a. Imatinib (Gleevec) 

b. 6-aminonicotinamide 

(319) 

(319) 

7 Transketolase 1 (TK1) a. Oxythiamine (319) 
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APPENDIX B 

Table B. 1: Parameter values and their units used for the dynamic model simulation 
and their references 

Sr. 

No. 
Parameter Description Value Unit Reference 

1.  𝑉𝑚
𝐺𝐿𝐶𝑇 Vmax of Glucose transporter 7.67 mM hr-1 (186) 

2.  𝑘𝑔𝑙𝑐𝑒

𝐺𝐿𝐶𝑇 
Rate constant for association of   
cytosolic glucose with Glucose 

transporter 
2.1 mM (186) 

3.  𝑙𝑔  
Rate of glucose influx from 

other extracellular sources in 
the ECM 

5.6 mM hr-1 

Expected* 

4.  𝑑𝑔 
Depletion of extracellular 

glucose for utilization by other 
cell types 

0.2 hr-1 

5.  𝑉𝑚
𝐻𝐾  Vmax of Hexokinase 9.59*102 mM hr-1 (186) 

6.  𝑘𝑖(𝑎𝑡𝑝)
𝐻𝐾  

Rate constant for dissociation of 
ATP with Hexokinase 

1 mM (186) 

7.  𝑘𝑔𝑙𝑐𝑐

𝐻𝐾  
Rate constant for association of   

cytosolic glucose with 
Hexokinase 

0.47 mM ** 

8.  𝑘𝑎𝑡𝑝
𝐻𝐾  

Rate constant for association of 
ATP with Hexokinase 

1 mM (186) 

9.  𝑉𝑚
𝑃𝐺𝐼 

Vmax of Phosphoglucose 
Isomerase 

2.4*103 mM hr-1 (186) 

10.  𝑘𝑔6𝑝
𝑃𝐺𝐼  

Rate constant for association of 
G6P with Phosphoglucose 

Isomerase 
9.6*10-1 mM (186) 

11.  𝑉𝑚
𝑃𝐹𝐾  Vmax of Phosphofructokinase 2.63*102 mM hr-1 (186) 

12.  𝑘𝑓6𝑝
𝑃𝐹𝐾  

Rate constant for association of 
F6P with Phosphofructokinase 

6*10-2 mM (186) 

13.  𝑘𝑎𝑡𝑝
𝑃𝐹𝐾  

Rate constant for association of 
ATP with Phosphofructokinase 

6.8*10-2 mM (186) 

14.  𝑘𝑖(𝑎𝑡𝑝)
𝑃𝐹𝐾  

Rate constant for dissociation of 
ATP from Phosphofructokinase 

10.204 mM Estimated 

15.  𝑉𝑚
𝐹𝐵𝐴 

Vmax of Fructose Bisphosphate 
Aldolase 

1.33*102 mM hr-1 (186) 
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16.  𝑘𝑓16𝑏𝑝
𝐹𝐵𝐴  

Rate constant for association of 
F16BP with Fructose 

Bisphosphate Aldolase 
5*10-2 mM (186) 

17.  𝑉𝑚
𝑇𝑃𝐼 

Vmax of Triosephosphate 
Isomerase 

5.10*102 mM hr-1 (186) 

18.  𝑘𝑑ℎ𝑎𝑝
𝑇𝑃𝐼  

Rate constant for association of 
Triosephosphate Isomerase 

1.62*10-1 mM (186) 

19.  𝑉𝑚
𝐺𝐴𝑃𝐷𝐻 

Vmax of Glyceraldehyde 
phosphate dehydrogenase 

781 mM hr-1 (320) 

20.  𝑘𝑔𝑎𝑝
𝐺𝐴𝑃𝐷𝐻 

Rate constant for association of 
GAP with Glyceraldehyde 
phosphate dehydrogenase 

1.4 mM (321) 

21.  𝑘𝑖(𝑔𝑎𝑝)
𝐺𝐴𝑃𝐷𝐻 

Rate constant for dissociation of 
GAP from Glyceraldehyde 
phosphate dehydrogenase 

1.59*10-

16 
mM (186) 

22.  𝑘𝑖𝑖(ℎ2𝑜2)
𝐺𝐴𝑃𝐷𝐻  

Inhibition constant of H2O2 for 
Glyceraldehyde phosphate 

dehydrogenase 
21.044 mM Estimated 

23.  𝑘𝑛𝑎𝑑
𝐺𝐴𝑃𝐷𝐻 

Rate constant for association of 
NAD with Glyceraldehyde 
phosphate dehydrogenase 

1.3 mM (321) 

24.  𝑙𝑛𝑎𝑑  
Rate of formation of 

intracellular NAD+ from other 
internal sources 

12.5 mM hr-1 

Expected 

25.  𝑑𝑛𝑎𝑑  
Depletion of NAD+ in other 

intracellular reactions 
0.5 hr-1 

26.  𝑉𝑚
𝑃𝐺𝐾 Vmax of Phosphoglycerate kinase 2.21*102 mM hr-1 (320) 

27.  𝑘𝑖(1,3𝑏𝑝𝑔)
𝑃𝐺𝐾  

Rate constant for dissociation of 
BPG from Phosphoglycerate 

kinase 
1.6 mM (186) 

28.  𝑘𝑎𝑑𝑝
𝑃𝐺𝐾 

Rate constant for association of 
ADP with Phosphoglycerate 

kinase 
0.1 mM (186) 

29.  𝑑𝑝𝑔 
Natural decay of intracellular 3-

phosphoglycerate 
1.8 hr-1 Expected 

30.  𝑉𝑚
𝑃𝐺𝐶𝐷𝐻 

Vmax of Phosphoglycerate 
dehydrogenase 

0.0021 mM hr-1 (322) 

31.  𝑘𝑛𝑎𝑑
𝑃𝐺𝐶𝐷𝐻 

Rate constant for association of 
NAD with Phosphoglycerate 

kinase 
0.022 mM (323) 

32.  𝑘3𝑝𝑔
𝑃𝐺𝐶𝐷𝐻 

Rate constant for association of 
PG with Phosphoglycerate 

kinase 
0.26 mM (323) 
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33.  𝑘𝑖(3𝑝𝑔)
𝑃𝐺𝐶𝐷𝐻 

Rate constant for dissociation of 
PG from Phosphoglycerate 

kinase 
20 mM Estimated 

34.  𝑑𝑝ℎ𝑝 
Natural decay of intracellular 
phosphohydroxy phosphate 

0.005 hr-1 Expected 

35.  𝑉𝑚
𝑃𝑆𝑇 

Vmax of Phosphoserine 
transaminase 

0.081 mM hr-1 (324) 

36.  𝑘𝑖(𝑔𝑙𝑢𝑡)
𝑃𝑆𝑇  

Rate constant for dissociation of 
Glutamate from Phosphoserine 

transaminase 
7.42 mM (324) 

37.  𝑘3𝑝ℎ𝑝
𝑃𝑆𝑇  

Rate constant for association of 
PHP from Phosphoserine 

transaminase 
0.005 mM (324) 

38.  𝑘𝑔𝑙𝑢𝑡
𝑃𝑆𝑇  

Rate constant for association of 
Glutamate with Phosphoserine 

transaminase 
1.2 mM (324) 

39.  𝑑𝑎𝑘𝑔 
Utilization of α-ketoglutarate 

into intracellular reactions 
0.8 hr-1 Expected  

40.  𝑉𝑚
𝑃𝑆𝑇 

Vmax of Phosphoserine 
Phosphatase 

0.162 mM hr-1 (325) 

41.  𝑘𝑚
𝑃𝑆𝑇 

Km of Phosphoserine 
transaminase 

0.1 mM (326) 

42.  𝑉𝑚
𝐺𝐻𝑀𝑇  

Vmax of Glycine 
hydroxymethyltransferase 

40 mM hr-1 (327) 

43.  𝑘𝑡ℎ𝑓
𝐺𝐻𝑀𝑇  

Rate constant for association of 
THF with Glycine 

hydroxymethyltransferase 
0.05 mM (327, 328) 

44.  𝑘𝑠𝑒𝑟
𝐺𝐻𝑀𝑇  

Rate constant for association of 
Serine with Glycine 

hydroxymethyltransferase 
0.6 mM (327, 328) 

45.  𝐾𝑖(𝑠𝑒𝑟)
𝐺𝐻𝑀𝑇  

Rate constant for dissociation of 
Serine from Glycine 

hydroxymethyltransferase 
14 mM Estimated 

46.  𝑉𝑚
𝐺𝐿𝑈𝑇𝐸𝑋 Vmax of Glutamate exchanger 38.691 mM hr-1 Estimated 

47.  𝑘𝑚
𝐺𝐿𝑈𝑇𝐸𝑋 Km of Glutamate exchanger 0.097371 mM Estimated 

48.  𝑙𝑡ℎ𝑓 
Rate of formation of 

tetrahydrofolate from internal 
reactions 

4 mM hr-1 Expected*** 

49.  𝑑𝑡ℎ𝑓 
Depletion of tetrahydrofolate in 

other intracellular reactions 
0.5 hr-1 Expected 

50.  𝑙𝑚𝑙𝑡ℎ𝑓 
Rate of formation of methyl-
tetrahydrofolate from other 

internal reactions 
6 mM hr-1 Expected*** 
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51.  𝑑𝑚𝑙𝑡ℎ𝑓 
Depletion of methyl- 

tetrahydrofolate in intracellular 
reactions 

0.5 hr-1 Expected 

52.  𝑉𝑚
𝐺𝐿𝑈𝐷 

Vmax of Glutamate 
dehydrogenase 

5.55*103 mM hr-1 (186) 

53.  𝑘𝑖(𝑔𝑙𝑢𝑡)
𝐺𝐿𝑈𝐷  

Rate constant for dissociation of 
Glutamate from Glutamate 

dehydrogenase 
3.5 mM (186) 

54.  𝑘𝑔𝑙𝑢𝑡
𝐺𝐿𝑈𝐷 

Rate constant for association of 
Glutamate with Glutamate 

dehydrogenase 
3.5 mM (186) 

55.  𝑘𝑛𝑎𝑑𝑝
𝐺𝐿𝑈𝐷 

Rate constant for association of 
NADP with Glutamate 

dehydrogenase 
5.6 mM Estimated 

56.  𝑙𝑔𝑙𝑢𝑡 
Rate of glutamate influx into the 

ECM from other cellular 
processes 

3 mM hr-1 

Expected 

57.  𝑑𝑔𝑙𝑢𝑡 
Depletion of extracellular 

glutamate from other cellular 
processes 

0.3 hr-1 

58.  𝑉𝑚
𝐺𝐶𝐿 Vmax of Glutamyl-cysteine Ligase 14 mM hr-1 Estimated 

59.  𝑘𝑐𝑦𝑠𝐿
𝐺𝐶𝐿  

Rate constant for association of 
Cysteine with Glutamyl-cysteine 

Ligase 
0.07 mM (329) 

60.  𝑘𝑔𝑙𝑢𝑡
𝐺𝐶𝐿  

Rate constant for association of 
Glutamate with Glutamyl-

cysteine Ligase 
0.46 mM (329) 

61.  𝑘𝑎𝑡𝑝
𝐺𝐶𝐿 

Rate constant for association of 
ATP with Glutamyl-cysteine 

Ligase 
0.44 mM (329) 

62.  𝑘𝑖(𝑎𝑡𝑝)
𝐺𝐶𝐿  

Rate constant for dissociation of 
ATP from Glutamyl-cysteine 

Ligase 
9.73 mM Estimated 

63.  𝑘𝑖(𝑔𝑙𝑢𝑡)
𝐺𝐶𝐿  

Rate constant for dissociation of 
Glutamate from Glutamyl-

cysteine Ligase 
9.72 mM Estimated 

64.  𝑑𝑔𝑙𝑢𝑐𝑦𝑠 
Natural decay of intracellular 

gamma- glutamyl cysteine 
0.08 hr-1 Expected 

65.  𝑉𝑚
𝐺𝑆 Vmax of Glutathione synthase 0.1174 mM hr-1 (330)# 

66.  𝑘𝑔𝑙𝑢𝑐𝑦𝑠
𝐺𝑆  

Rate constant for association of 
Glutamyl-cysteine with 

Glutathione synthase 
0.99 mM (331) 
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67.  𝑘𝑔𝑙𝑦
𝐺𝑆  

Rate constant for association of 
Glycine with Glutathione 

synthase 
1.37 mM (331) 

68.  𝑘𝑎𝑡𝑝
𝐺𝑆  

Rate constant for association of 
ATP with Glutathione synthase 

0.23 mM (331) 

69.  𝑘𝑖(𝑎𝑡𝑝)
𝐺𝑆  

Rate constant for dissociation of 
ATP from Glutathione Synthase 

11.8 mM Estimated 

70.  𝑘𝑖(𝑔𝑙𝑦)
𝐺𝑆  

Rate constant for dissociation of 
Glycine from Glutathione 

Synthase 
6.0699 mM Estimated 

71.  𝑉𝑚
𝑁𝑂𝑋 Vmax of NADPH Oxidase 0.0468 mM hr-1 (332) 

72.  𝑘𝑂2

𝑁𝑂𝑋 
Rate constant for association of 

Oxygen with NADPH Oxidase 
0.22 mM (333) 

73.  𝑘𝑛𝑎𝑑𝑝ℎ
𝑁𝑂𝑋  

Rate constant for association of 
NADPH with NADPH Oxidase 

0.055 mM (333) 

74.  𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋  

Rate constant for dissociation of 
NADPH from NADPH Oxidase 

11.624 mM Estimated 

75.  𝑙𝑛𝑎𝑑𝑝ℎ 
Rate of formation of 

intracellular NADPH from other 
internal sources 

8 mM hr-1 Expected 

76.  𝑑𝑛𝑎𝑑𝑝ℎ 
Depletion of NADPH in other 

intracellular reactions 
0.8 hr-1 Expected 

77.  𝑉𝑚
𝑆𝑂𝐷 Vmax of Superoxide Dismutase 11.4*103 mM hr-1 (334) 

78.  𝑘𝑜𝑥𝑟𝑎𝑑
𝑆𝑂𝐷  

Rate constant for association of 
free oxygen radical with 
Superoxide Dismutase 

0.054 mM (334) 

79.  𝑉𝑚
𝐺𝑇𝐻𝑃 Vmax of Glutathione Peroxidase 0.438 mM hr-1 

(335, 336) 

(Ranges: 
0.2874 to 

2.697 
mM/hr) 

80.  𝑘𝑔𝑠ℎ
𝐺𝑇𝐻𝑃 

Rate constant for association of 
GSH with Glutathione 

Peroxidase 
0.2 mM (337) 

81.  𝑑𝑔𝑠ℎ 
Natural decay of intracellular 

reduced glutathione 
0.00016 hr-1 Expected 

82.  𝑘ℎ2𝑜2

𝐺𝑇𝐻𝑃 
Rate constant for association of 

H2O2 with Glutathione 
Peroxidase 

0.45 mM (337) 

83.  𝐾𝑖(ℎ2𝑜2)
𝐺𝑇𝐻𝑃  

Rate constant for dissociation of 
H2O2 from Glutathione 

Peroxidase 
5.3677 mM Estimated 
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84.  𝑑ℎ2𝑜2 
Natural decay of intracellular 

hydrogen peroxide 
0.001 hr-1 Expected 

85.  𝑉𝑚
𝐺𝑇𝐻𝑂 

Vmax of Glutathione 
Oxidoreductase 

0.00216 mM hr-1 (338) 

86.  𝑘𝑛𝑎𝑑𝑝ℎ
𝐺𝑇𝐻𝑂  

Rate constant for association of 
NADPH with Glutathione 

Oxidoreductase 
0.063 mM (339) 

87.  𝑘𝑔𝑠𝑠𝑔
𝐺𝑇𝐻𝑂 

Rate constant for association of 
GSSG with Glutathione 

Oxidoreductase 
0.154 mM (339) 

88.  𝑘𝑖(𝑔𝑠𝑠𝑔)
𝐺𝑇𝐻𝑂  

Rate constant for dissociation of 
GSSG from Glutathione 

Oxidoreductase 
5.05 mM Estimated 

89.  𝑑𝑔𝑠𝑠𝑔 
Natural decay of intracellular 

oxidized glutathione 
0.00020 hr-1 Expected 

90.  𝑉𝑚
𝑥𝐶𝑇 

Vmax of Cystine-glutamate 
antiporter 

0.001272 mM hr-1 (340) 

91.  𝑘𝑖(𝑐𝑦𝑠𝑒)
𝑥𝐶𝑇  

Rate constant for dissociation of 
Cystine from Cystine-glutamate 

antiporter 
0.0249 mM (341) 

92.  𝑘𝑔𝑙𝑢𝑡
𝑥𝐶𝑇  

Rate constant for association of 
Glutamate with Cystine-

glutamate antiporter 
0.084 mM (342) 

93.  𝑘𝑐𝑦𝑠𝑒
𝑥𝐶𝑇  

Rate constant for association of 
Cystine with Cystine-glutamate 

antiporter 
0.084 mM (342) 

94.  𝑙𝑐𝑦𝑠𝑒
 Rate of cystine influx into the 

ECM via other cellular processes 
3 mM hr-1 Expected 

95.  𝑑𝑐𝑦𝑠𝑒
 

Depletion of extracellular 
cystine into other cellular 

processes 
0.6 hr-1 Expected 

96.  𝐿𝑜𝑥𝑦 
Rate of Oxygen diffusing into 

the ECM and available for 
cellular uptake 

10 mM hr-1 Expected 

97.  𝑑𝑜𝑥𝑦 
Utilization of Oxygen by other 

cell types 
0.7 hr-1 Expected 

98.  𝑉𝑚
𝑂2 Vmax of external Oxygen uptake 15.278 mM hr-1 (343) 

99.  𝑘𝑚
𝑂2 Km of external Oxygen uptake 164 mM (320) 

100.  𝑑𝑖𝑛 
Utilization of Oxygen in other 

intracellular reactions 
50.313 hr-1 Estimated 

101.  𝑙𝑔𝑙𝑦𝑒
 

Rate of glycine influx into the 
ECM via other cellular processes 

4 mM hr-1 Expected 
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102.  𝑑𝑔𝑙𝑦𝑒
  

Depletion of extracellular 
glycine into other cellular 

processes 
0.5 hr-1 Expected 

103.  𝑉𝑚
𝐺𝐿𝑌𝑒𝑥 Vmax of Glycine Exchanger 0.0287 mM hr-1 (344) 

104.  𝑘𝑚
𝐺𝐿𝑌𝑒𝑥 Km of Glycine Exchanger 0.029 mM (344, 345) 

105.  𝑑𝑔𝑙𝑦 
Natural decay of intracellular 

glycine 
0.0586 hr-1 Expected 

106.  𝑉𝑚
𝐺6𝑃𝐷𝐻 

Vmax of Glucose-6-phosphate 
dehydrogenase 

5.337 mM hr-1
 Estimated 

107.  𝑘𝑖(𝑔6𝑝)
𝐺6𝑃𝐷𝐻 

Rate constant for dissociation of 
G6P from Glucose-6-phosphate 

dehydrogenase 
6.904 mM Estimated 

108.  𝑘𝑛𝑎𝑑𝑝
𝐺6𝑃𝐷𝐻 

Rate constant for association of 
NADP with Glucose-6-

phosphate dehydrogenase 
4.9725 mM Estimated 

109.  𝑘𝑔6𝑝
𝐺6𝑃𝐷𝐻 

Rate constant for association of 
G6P with Glucose-6-phosphate 

dehydrogenase 
6.627 mM Estimated 

110.  𝑘𝑖𝑖(𝑎𝑡𝑝)
𝐺6𝑃𝐷𝐻 

Inhibition constant of ATP for 
Glucose-6-phosphate 

dehydrogenase 
6.0885 mM Estimated 

111.  𝑙𝑛𝑎𝑑𝑝 
Rate of formation of 

intracellular NADP+ from other 
internal sources 

6 mM hr-1 Expected 

112.  𝑑𝑛𝑎𝑑𝑝 
Depletion of NADP+ in other 

intracellular reactions 
0.5 hr-1 Expected 

113.  𝑉𝑚
𝐶𝑅 Vmax of Cystine Reductase 12 mM hr-1 Estimated 

114.  𝑘𝑖(𝑐𝑦𝑠)
𝐶𝑅  

Rate constant for dissociation of 
Cystine from Cystine Reductase 

10 mM Estimated 

115.  𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅  

Rate constant for association of 
NADPH with Cystine Reductase 

5.536 mM Estimated 

116.  𝑘𝑐𝑦𝑠
𝐶𝑅  

Rate constant for association of 
Cystine with Cystine Reductase 

5.1175 mM Estimated 

117.  𝑑𝑐𝑦𝑠𝐿 
Natural decay of intracellular 

cysteine 
0.0517 hr-1 Expected 

118.  𝑙𝑎𝑡𝑝 
Rate of formation of 

intracellular ATP from other 
internal reactions 

8 mM hr-1 (346) 

119.  𝑑𝑎𝑡𝑝 
Depletion of ATP in other 

intracellular reactions 
0.5 hr-1 Expected 
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120.  𝑙𝑎𝑑𝑝 
Rate of formation of 

intracellular ADP from other 
internal reactions 

0.8 mM hr-1 (347) 

121.  𝑑𝑎𝑡𝑝 
Depletion of ADP in other 

intracellular reactions 
0.4 hr-1 Expected 

122.  𝑙𝑛𝑎𝑑ℎ 
Rate of formation of 

intracellular NADH from other 
internal sources 

5 mM hr-1 Expected 

123.  𝑑𝑛𝑎𝑑ℎ 
Depletion of NADH in other 

intracellular reactions 
0.7 hr-1 Expected 

* Assumptions to the values of rate of influx of glucose and depletion from extracellular matrix are 

assumed such that they yielded an extracellular concentration of around 3.9 to 5.4 mM.  

** The value has been taken from Brenda and it ranges between 0.37 mM to 0.76 mM (348, 349) 

*** The values are assumed based on the reported value of 𝑉𝑚
𝐷𝐻𝐹𝑅 and 𝑉𝑚

𝑀𝑇𝐻𝐹𝑅  to be 5000 μM/hr (or 5 

mM/hr) (350). 
# The value ranges around the reported value. 

Table B. 2: Initial values to all the variables considered in the model and their 
reported range in the biological systems 

Variable Description 
Reported 

Range 
Initial Value Reference 

𝑔𝑙𝑐𝑒 Extracellular Glucose 2.0 – 4.0 mM 4 mM (351) 

𝑔𝑙𝑐𝑐 Cytoplasmic Glucose 1.0 – 7.0 mM 4 mM (352) 

g6p Glucose-6-phosphate ~ 0.12 mM 0.38 mM (353) 

f6p Fructose-6-phosphate ~ 0.016 mM 0.016 mM (354) 

f16bp 
Fructose-1,6-

bisphosphate 
~ 0.0076 mM 0.0076 mM (354) 

gap 
Glyceraldehyde 

Phosphate 
~ 0.0076 mM 0.0076 mM (354) 

dhap 
Dihydroacetone 

phosphate 
~ 0.14 mM 0.14 mM (354) 

1,3bpg 1,3-bisphosphoglycerate ~ 0.0004 mM 0.0004 mM (354) 

3pg 3-phosphoglycerate ~ 0.045 mM 0.045 mM (354) 

3php 
3-

Phosphohydroxypyruvate 
0.01 to 0.4 mM 0.45 mM (355) 

pser Phosphoserine ~ 0.446 mM 0.446 mM (356) 

ser Serine 0.5 – 1.0 mM 0.7 mM (352) 

gly Cytoplasmic Glycine 4.4 – 8.4 mM 5 mM (352) 

thf Tetrahydrofolate  2.5 mM Expected 

mlthf Methyl-tetrahydrofolate  2.5 mM Expected 

𝑔𝑙𝑢𝑡𝑒 Extracellular Glutamate 
0.00002 - 0.02 

mM 
0.02 mM (357) 

glut Cytoplasmic Glutamate 2.6 – 4.6 mM 2.5 mM (352) 

𝑐𝑦𝑠𝑒 Extracellular Cystine ~1.6 mM 1.5 mM (358) 

cys Cytoplasmic Cystine  3.6 mM Expected 

cysL Cysteine 0.5 – 5 mM 1.6 mM (352) 
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glucys ɣ-glutamyl cysteine  2.5 mM Expected 

gsh Reduced Glutathione  2.0 – 3.0 mM 3.83 mM (247) 

gssg Oxidised Glutathione 0.024 – 3.0 mM 0.5 mM  (156) 

h2o2 Hydrogen peroxide 0.01 – 2 mM 1.55 mM (359, 360) 

oxrad Oxygen free radicals  0.05 mM Expected 

atp Adenosine tri-phosphate 1.5 – 6.0 mM 1.54 mM (353) 

adp Adenosine di-phosphate ~ 0.27 mM 2.7 mM (354) 

nad 
Nicotinamide adenine 

Dinucleotide (oxidized) 
~ 0.05840 mM 0.0584 mM (354) 

nadh  
Nicotinamide adenine 

Dinucleotide (reduced) 
~ 0.03060 mM 0.03060 mM (354) 

nadp+ 

Nicotinamide adenine 

dinucleotide phosphate 

(oxidized) 

~ 0.0002 mM 0.0002 mM (354) 

nadph 

Nicotinamide adenine 

dinucleotide phosphate 

(reduced) 

~ 0.0658 mM 0.0658 mM (354) 

akg α-ketoglutarate ~ 0.157 mM 1.4 mM (356) 

𝑂2(𝑒𝑥) Extracellular oxygen 12 - 22mM 15 mM (343) 

𝑂2 Intracellular oxygen  5 mM Expected 

𝑔𝑙𝑦𝑒 Extracellular glycine    0.2-2 mM 0.2 mM (344) 

 

A. Parameter Estimation of glutamate exchange reaction 

The values of parameters 𝑉𝑚
𝐺𝐿𝑈𝑇𝐸𝑋 and 𝑘𝑚

𝐺𝐿𝑈𝑇𝐸𝑋 were evaluated with an available data for 

glutamate exchange in astrocytes [45] in the ODE model presented in Chapter 4. The 

predictive plot for the same has been provided in Figure B. 1A and the distribution plot and 

trace plot of estimated parameters have been shown in Figure B. 1B and Figure B. 1C 

respectively.  
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Figure B. 1: Parameter estimation of glutamate exchange reaction. A. Predictive plot 
demonstrating the fitted model for glutamate exchange and uncertainty regions; B. Parameter 
distribution curve of the estimated parameters; C. Trace plots of the estimated parameters 
generated after 5 lakh chains of MCMC DRAM. 

B. Effect of changing 𝒌𝒎
𝑶𝟐  on uptake of Oxygen 

The 𝑘𝑚
𝑂2 represented the cellular affinity for external oxygen in the dynamic ODE model. 

The model was simulated for different values of 𝑘𝑚
𝑂2 . A lowering in the value of 𝑘𝑚

𝑂2 

showed a reduction in the concentration of external oxygen representing increasing 

affinity for external oxygen. The changing concentration of external oxygen with changing 

values of 𝑘𝑚
𝑂2 is shown in Figure B. 2. 
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Figure B. 2: Change in external oxygen concentration with respect to changing 𝒌𝒎
𝑶𝟐  

C. Effect of changing 𝑽𝒎
𝑮𝑻𝑯𝑶 on nadph/nadp+ ratio 

A change in the nadph/nadp+ ratio was observed depending on the changing value of 

𝑉𝑚
𝐺𝑇𝐻𝑂. This change is captured in Figure B. 3. A dip in nadph/nadp+ ratio is observed for 

all the values of 𝑉𝑚
𝐺𝑇𝐻𝑂. However, with increasing value of 𝑉𝑚

𝐺𝑇𝐻𝑂, the decline in the 

nadph/nadp+ ratio increases which is regained back to normal and the dynamics depend 

on the value of 𝑉𝑚
𝐺𝑇𝐻𝑂 and the persisting amount of oxidant (h2o2) concentration at any 

point of time.   
 

 

Figure B. 3: Temporal plot of changes in nadph/nadp+ ratio with varying 𝑽𝒎
𝑮𝑻𝑯𝑶 at 𝒌𝒎

𝑶𝟐 =
𝟏𝒎𝑴 
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D. Evaluation of parameter combinations for pro- and anti- oxidant therapy 

Glioma scenario was created in the model by incorporating changes in the parameter 

values  𝑉𝑚
𝑁𝑂𝑋 , 𝑉𝑚

𝐺𝑇𝐻𝑂 , 𝑉𝑚
𝐺𝑇𝐻𝑃 𝑎𝑛𝑑 𝑘𝑚

𝑂2

 
which were changed to 1mM hr-1, 0.2 mM hr-1, 0.19 

mM hr-1and 1mM from 0.0468 mM hr-1, 0.5 mM hr-1, 0.00216 mM hr-1 and 164mM 

respectively. Combinatorial variations of sensitive parameters reported in the glioma 

scenario G11 specified in Table 1 of main text were made. The values of the parameters 

were varied between a wide range (0.0001 to 100 units) and changes were observed. 

Here we have reported the temporal variation in the h2o2, gsh/gssg and nadph/nadp+ 

profiles for a particular value of the parameters. The changes in parameter values for 

which the pro-oxidant or anti-oxidant properties were observable have been specified in 

Table B. 3 and the temporal plots have been shown in the Figure B. 4.  

Table B. 3: Combinatorial effect of sensitive parameters on gliomas 

Sr. 

No. 
Parameter 1 Parameter 2 

Variation of 

Parameter 

1* 

Variation of 

Parameter 

2* 

Effect 

1. 𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋  𝑘𝑛𝑎𝑑𝑝ℎ

𝐶𝑅  Decrease Increase Pro-oxidant 

2. 

 
𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)

𝑁𝑂𝑋  𝑘𝑛𝑎𝑑𝑝ℎ
𝑁𝑂𝑋  

Increase Increase Anti-oxidant 

Decrease Decrease Pro-oxidant 

3. 𝐿𝑜𝑥𝑦 𝑘𝑛𝑎𝑑𝑝ℎ
𝐶𝑅  Increase Increase Pro-oxidant 

4. 𝑘𝑖(𝑛𝑎𝑑𝑝ℎ)
𝑁𝑂𝑋  𝑙𝑎𝑡𝑝 Decrease Increase Pro-oxidant 

5. 𝑉𝑚
𝐹𝐵𝐴 𝐿𝑜𝑥𝑦 Decrease Decrease Anti-oxidant 

6. 𝑘𝑔𝑙𝑢𝑐𝑦𝑠
𝐺𝑆  𝑘𝑛𝑎𝑑𝑝ℎ

𝐶𝑅  Decrease Decrease Pro-oxidant 

*Increase or decrease in the parameter value with respect to normal value 
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Figure B. 4: Temporal area plots of changing nadph/nadp+ and gsh/gssg ratios along with 
change in h2o2 concentration with combinatorial variation of parameters made in glioma 

scenario. 
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APPENDIX C 

A. Data distribution of patient-derived differentially expressed miRNA 

Patient-derived datasets from GEO database were used to obtain differentially expressed 

miRNAs in glioblastoma. GSE90603, GSE165937, GSE25631, GSE65626, and GSE103229 

were used for the study. The distribution of the data was checked for each dataset. This 

ensures selection of proper dataset with significant amount of relevant data that can be 

used to infer meaningful understanding of the biological system in concern. The data 

distribution of all the five datasets were checked. The volcano plots of data distribution 

are provided in Figure C. 1. Based on the distribution, GSE90603 was selected as the 

primary dataset to obtain differentially expressed miRNAs. All other datasets were used 

to validate the differential upregulation or downregulation of miRNAs obtained from the 

dataset GSE90603. 

 

Figure C. 1: Volcano plot of data distribution for differentially expressed miRNA obtained 
from GEO datasets. Data distribution for (A) GSE90603, (B) GSE165937, (C) GSE25631, (D) 
GSE65626 and (E) GSE103229. The blue dots represent significantly downregulated miRNAs and 
the red dots represent significantly upregulated miRNAs. 
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B. Structural properties of the network 

The topological properties of miRNA- target metabolic gene networks for upregulated 

and downregulated miRNA sets were computed as directed networks. Degree 

distribution of the networks were observed to follow the power law determining their 

scale-free nature. This holds true for the biological networks, where it implies that a few 

nodes have a higher degree of connectivity in the network as compared to others nodes. 

Analysis of such nodes help determine targetable components of the biological systems 

that can affect the whole network maximally. 

 

Figure C. 2: Degree distribution in the directed graphs of upregulated and downregulated 
miRNA- target gene network with power law fit. (A) In-degree, (B) Out-degree of upregulated 
miRNA-target gene network, (C) In-degree and (D) Out-degree of downregulated miRNA-target 
gene network. The red line represents the power law fit. 
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C. List of 1865 unique metabolic genes obtained from Recon3D 

A4GALT 
A4GNT 
AACS 
AADAC 
AADAT 
AANAT 
AASS 
ABAT 
ABCA1 
ABCA3 
ABCA4 
ABCA8 
ABCB1 
ABCB11 
ABCB4 
ABCB6 
ABCC1 
ABCC11 
ABCC2 
ABCC3 
ABCC4 
ABCC5 
ABCC8 
ABCC9 
ABCD1 
ABCD2 
ABCD3 
ABCG2 
ABCG5 
ABCG8 
ABHD5 
ABO 
ACAA1 
ACAA2 
ACACA 
ACACB 
ACAD10 
ACAD11 
ACAD8 
ACAD9 
ACADL 
ACADM 
ACADS 
ACADSB 
ACADVL 
ACAT1 
ACAT2 
ACE 
ACE2 
ACER1 
ACER2 
ACER3 
ACHE 
ACLY 
ACMSD 
ACO1 
ACO2 
ACOT1 
ACOT11 
ACOT12 
ACOT13 

ACOT2 
ACOT4 
ACOT6 
ACOT7 
ACOT8 
ACOX1 
ACOX2 
ACOX3 
ACP1 
ACP2 
ACP5 
ACP6 
ACP7 
ACPP 
ACPT 
ACSBG1 
ACSBG2 
ACSL1 
ACSL3 
ACSL4 
ACSL5 
ACSL6 
ACSM1 
ACSM2A 
ACSM2B 
ACSM3 
ACSM4 
ACSM5 
ACSS1 
ACSS2 
ACSS3 
ACY1 
ACY3 
ACYP1 
ACYP2 
ADA 
ADCY1 
ADCY10 
ADCY2 
ADCY3 
ADCY4 
ADCY5 
ADCY6 
ADCY7 
ADCY8 
ADCY9 
ADH1A 
ADH1B 
ADH1C 
ADH4 
ADH5 
ADH6 
ADH7 
ADHFE1 
ADI1 
ADK 
ADO 
ADSL 
ADSS 
ADSSL1 
AFMID 

AGA 
AGK 
AGL 
AGMAT 
AGPAT1 
AGPAT2 
AGPAT3 
AGPAT4 
AGPAT5 
AGXT 
AGXT2 
AHCY 
AHCYL1 
AICDA 
AK1 
AK2 
AK3 
AK4 
AK5 
AK7 
AKR1A1 
AKR1B1 
AKR1B10 
AKR1B15 
AKR1C1 
AKR1C2 
AKR1C3 
AKR1C4 
AKR1D1 
AKR7A2 
ALAD 
ALAS1 
ALAS2 
ALDH18A1 
ALDH1A1 
ALDH1A2 
ALDH1A3 
ALDH1B1 
ALDH1L1 
ALDH1L2 
ALDH2 
ALDH3A1 
ALDH3A2 
ALDH3B1 
ALDH3B2 
ALDH4A1 
ALDH5A1 
ALDH6A1 
ALDH7A1 
ALDH9A1 
ALDOA 
ALDOB 
ALDOC 
ALG10 
ALG12 
ALG1L 
ALG1L2 
ALG5 
ALOX12 
ALOX15 
ALOX15B 

ALOX5 
ALPI 
ALPL 
ALPP 
ALPPL2 
AMACR 
AMD1 
AMDHD1 
AMDHD2 
AMPD1 
AMPD2 
AMPD3 
AMT 
AMY1A 
AMY1B 
AMY1C 
AMY2A 
AMY2B 
ANPEP 
AOC1 
AOC2 
AOC3 
AOX1 
APRT 
AQP1 
AQP10 
AQP2 
AQP3 
AQP4 
AQP5 
AQP7 
AQP8 
AQP9 
ARG1 
ARG2 
ARSA 
ARSB 
ASAH1 
ASAH2 
ASH1L 
ASL 
ASMT 
ASNS 
ASPA 
ASPG 
ASRGL1 
ASS1 
ATHL1 
ATIC 
ATP10A 
ATP11A 
ATP11C 
ATP1A1 
ATP1A2 
ATP1A3 
ATP1A4 
ATP1B1 
ATP1B2 
ATP1B3 
ATP1B4 
ATP2B1 

ATP2B2 
ATP2B3 
ATP2B4 
ATP4A 
ATP4B 
ATP5A1 
ATP5B 
ATP5C1 
ATP5D 
ATP5E 
ATP5F1 
ATP5G1 
ATP5G2 
ATP5G3 
ATP5H 
ATP5I 
ATP5J 
ATP5J2 
ATP5L 
ATP5L2 
ATP5O 
ATP5S 
ATP6V0A1 
ATP6V0A2 
ATP6V0A4 
ATP6V0B 
ATP6V0C 
ATP6V0D1 
ATP6V0D2 
ATP6V0E1 
ATP6V1A 
ATP6V1B1 
ATP6V1B2 
ATP6V1C1 
ATP6V1C2 
ATP6V1D 
ATP6V1E1 
ATP6V1E2 
ATP6V1F 
ATP6V1G1 
ATP6V1G2 
ATP6V1G3 
ATP6V1H 
ATP8A1 
ATP8B1 
ATP8B2 
AUH 
AZIN2 
B3GALNT1 
B3GALNT2 
B3GALT1 
B3GALT2 
B3GALT4 
B3GALT5 
B3GALT6 
B3GAT1 
B3GAT2 
B3GAT3 
B3GLCT 
B3GNT2 
B3GNT3 

B3GNT4 
B3GNT5 
B3GNT6 
B3GNT7 
B3GNT8 
B3GNT9 
B3GNTL1 
B4GALNT1 
B4GALNT2 
B4GALNT3 
B4GALNT4 
B4GALT1 
B4GALT2 
B4GALT3 
B4GALT4 
B4GALT5 
B4GALT6 
B4GALT7 
B4GAT1 
BAAT 
BBOX1 
BCAT1 
BCAT2 
BCHE 
BCKDHA 
BCKDHB 
BCO1 
BDH1 
BDH2 
BHMT 
BHMT2 
BLVRA 
BLVRB 
BPGM 
BPNT1 
BSG 
BTD 
C1GALT1 
CA1 
CA12 
CA13 
CA14 
CA2 
CA3 
CA4 
CA5A 
CA5B 
CA6 
CA7 
CA8 
CA9 
CAD 
CANT1 
CARNS1 
CAT 
CBR1 
CBR3 
CBR4 
CBS 
CBSL 
CD36 

CD38 
CDA 
CDIPT 
CDO1 
CDS1 
CDS2 
CEL 
CEPT1 
CERK 
CERS1 
CERS2 
CERS3 
CERS4 
CERS5 
CERS6 
CES1 
CES2 
CES3 
CES5A 
CFTR 
CH25H 
CHAT 
CHDH 
CHIA 
CHIT1 
CHKA 
CHKB 
CHPF 
CHPF2 
CHPT1 
CHST1 
CHST11 
CHST12 
CHST13 
CHST14 
CHST2 
CHST3 
CHST4 
CHST5 
CHST6 
CHST7 
CHSY1 
CHSY3 
CKB 
CKM 
CKMT1A 
CKMT1B 
CKMT2 
CLC 
CLPS 
CLYBL 
CMA1 
CMAS 
CMPK1 
CMPK2 
CNDP1 
CNDP2 
CNP 
COASY 
COL4A3BP 
COMT 

COMTD1 
COQ2 
COQ3 
COQ5 
COQ6 
COQ7 
COX1 
COX2 
COX3 
COX4I1 
COX4I2 
COX5A 
COX5B 
COX6A1 
COX6A2 
COX6B1 
COX6B2 
COX6C 
COX7A1 
COX7A2 
COX7A2L 
COX7B 
COX7B2 
COX7C 
COX8A 
COX8C 
CP 
CPA1 
CPA2 
CPA5 
CPA6 
CPOX 
CPS1 
CPT1A 
CPT1B 
CPT1C 
CPT2 
CRAT 
CRLS1 
CROT 
CS 
CSAD 
CSGALNACT1 
CSGALNACT2 
CTBP1 
CTDSPL2 
CTH 
CTPS1 
CTPS2 
CTSA 
CYB5D1 
CYB5R1 
CYB5R2 
CYB5R3 
CYBRD1 
CYC1 
CYP11A1 
CYP11B1 
CYP11B2 
CYP17A1 
CYP19A1 
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CYP1A1 
CYP1A2 
CYP1B1 
CYP21A2 
CYP24A1 
CYP27A1 
CYP27B1 
CYP2A13 
CYP2A6 
CYP2A7 
CYP2B6 
CYP2C18 
CYP2C19 
CYP2C8 
CYP2C9 
CYP2D6 
CYP2E1 
CYP2F1 
CYP2J2 
CYP2S1 
CYP2U1 
CYP39A1 
CYP3A4 
CYP3A43 
CYP3A5 
CYP3A7 
CYP46A1 
CYP4A11 
CYP4B1 
CYP4F11 
CYP4F12 
CYP4F2 
CYP4F22 
CYP4F3 
CYP4F8 
CYP4V2 
CYP4X1 
CYP4Z1 
CYP51A1 
CYP7A1 
CYP7B1 
CYP8B1 
CYTB 
DAGLA 
DAGLB 
DAO 
DBH 
DBI 
DBT 
DCK 
DCT 
DCTD 
DCTPP1 
DCXR 
DDC 
DDO 
DECR1 
DECR2 
DEGS1 
DEGS2 
DERA 
DGAT1 
DGAT2 
DGKA 

DGKB 
DGKD 
DGKE 
DGKG 
DGKH 
DGKI 
DGKQ 
DGKZ 
DGUOK 
DHCR24 
DHCR7 
DHFR 
DHODH 
DHRS2 
DHRS3 
DHRS4 
DHRS9 
DIO1 
DIO2 
DIO3 
DLAT 
DLD 
DLST 
DMGDH 
DOLPP1 
DOT1L 
DPEP1 
DPEP2 
DPEP3 
DPM2 
DPYD 
DPYS 
DPYSL2 
DPYSL3 
DTYMK 
DUOX1 
DUOX2 
DUSP11 
DUT 
EBP 
ECH1 
ECHDC2 
ECHS1 
ECI1 
ECI2 
EHHADH 
EHMT1 
EHMT2 
ELOVL1 
ELOVL2 
ELOVL3 
ELOVL4 
ELOVL5 
ELOVL6 
ELOVL7 
ENO1 
ENO2 
ENO3 
ENOPH1 
ENPP1 
ENPP2 
ENPP3 
ENPP6 
ENPP7 

ENTPD1 
ENTPD2 
ENTPD3 
ENTPD4 
ENTPD5 
ENTPD6 
ENTPD8 
EPHX2 
EPT1 
EPX 
ESD 
ETFA 
ETFB 
ETFDH 
ETNK1 
ETNK2 
ETNPPL 
EXT1 
EXT2 
EXTL1 
EXTL2 
EXTL3 
FAAH2 
FABP1 
FABP12 
FABP2 
FABP3 
FABP4 
FABP5 
FABP6 
FABP7 
FABP9 
FADS1 
FADS2 
FADS3 
FADS6 
FAH 
FAM20B 
FASN 
FAXDC2 
FBP1 
FBP2 
FDFT1 
FDPS 
FECH 
FGGY 
FH 
FIG4 
FLAD1 
FLVCR1 
FN3K 
FN3KRP 
FOLR1 
FOLR2 
FOLR3 
FPGS 
FPGT 
FTCD 
FTH1 
FTL 
FTMT 
FUCA1 
FUCA2 
FUK 

FUT1 
FUT10 
FUT11 
FUT2 
FUT3 
FUT4 
FUT5 
FUT6 
FUT7 
FUT9 
G6PC 
G6PC2 
G6PC3 
G6PD 
GAA 
GAD1 
GAD2 
GAL3ST1 
GALC 
GALE 
GALK1 
GALK2 
GALNS 
GALNT1 
GALNT10 
GALNT11 
GALNT12 
GALNT13 
GALNT14 
GALNT15 
GALNT2 
GALNT3 
GALNT4 
GALNT5 
GALNT6 
GALNT7 
GALNT8 
GALNT9 
GALNTL5 
GALT 
GAMT 
GANC 
GAPDH 
GAPDHS 
GART 
GATM 
GBA 
GBA2 
GBE1 
GBGT1 
GCAT 
GCDH 
GCH1 
GCK 
GCLC 
GCLM 
GCNT1 
GCNT2 
GCNT3 
GCNT4 
GCNT7 
GCSH 
GDA 
GFPT1 

GFPT2 
GGCT 
GGH 
GGPS1 
GGT1 
GGT2 
GGT5 
GGT6 
GGT7 
GGTLC1 
GGTLC2 
GK 
GK2 
GLA 
GLB1 
GLB1L 
GLCE 
GLDC 
GLO1 
GLRX 
GLRX2 
GLS 
GLS2 
GLT6D1 
GLT8D1 
GLT8D2 
GLTP 
GLUD1 
GLUD2 
GLUL 
GLYAT 
GLYCTK 
GM2A 
GMDS 
GMPPA 
GMPPB 
GMPR 
GMPR2 
GMPS 
GNE 
GNMT 
GNPDA1 
GNPDA2 
GNPNAT1 
GNS 
GOT1 
GOT2 
GPAA1 
GPAM 
GPAT4 
GPCPD1 
GPD1 
GPD2 
GPI 
GPT 
GPT2 
GPX1 
GPX2 
GPX3 
GPX4 
GPX5 
GPX6 
GPX7 
GPX8 

GRHPR 
GSR 
GSS 
GSTM1 
GSTM2 
GSTZ1 
GUCA1A 
GUCY1A2 
GUCY1A3 
GUCY1B3 
GUCY2C 
GUCY2D 
GUCY2F 
GUK1 
GUSB 
GYG1 
GYG2 
GYS1 
GYS2 
H6PD 
HAAO 
HACD1 
HACD2 
HACD3 
HACD4 
HACL1 
HADH 
HADHA 
HADHB 
HAGH 
HAGHL 
HAL 
HAO1 
HAO2 
HAS1 
HAS2 
HAS3 
HCST 
HDC 
HDLBP 
HEPH 
HEXA 
HEXB 
HEXDC 
HGD 
HIBADH 
HIBCH 
HIGD2A 
HK1 
HK2 
HK3 
HKDC1 
HLCS 
HMBS 
HMGCL 
HMGCLL1 
HMGCR 
HMGCS1 
HMGCS2 
HMOX1 
HMOX2 
HNMT 
HPD 
HPGD 

HPGDS 
HPRT1 
HS2ST1 
HS3ST1 
HS3ST2 
HS3ST3A1 
HS3ST3B1 
HS3ST4 
HS3ST5 
HS3ST6 
HS6ST1 
HS6ST2 
HS6ST3 
HSD11B1 
HSD11B1L 
HSD11B2 
HSD17B1 
HSD17B10 
HSD17B11 
HSD17B12 
HSD17B14 
HSD17B2 
HSD17B3 
HSD17B4 
HSD17B6 
HSD17B7 
HSD17B8 
HSD3B1 
HSD3B2 
HSD3B7 
HTATIP2 
HYAL3 
HYKK 
IDH1 
IDH2 
IDH3A 
IDH3B 
IDH3G 
IDI1 
IDI2 
IDO1 
IDO2 
IDS 
IDUA 
IL4I1 
IMPA1 
IMPA2 
IMPDH1 
IMPDH2 
INPP1 
INPP4A 
INPP4B 
INPP5A 
INPP5B 
INPP5D 
INPP5E 
INPP5F 
INPP5J 
INPPL1 
IP6K1 
IP6K2 
IP6K3 
IREB2 
ISYNA1 

ITPA 
ITPK1 
ITPKA 
ITPKB 
ITPKC 
IVD 
KCNJ11 
KCNJ8 
KDSR 
KHK 
KL 
KMO 
KMT2A 
KMT2B 
KMT2C 
KMT2D 
KMT2E 
KMT5A 
KMT5B 
KMT5C 
KYAT1 
KYNU 
LALBA 
LAP3 
LBR 
LCAT 
LCLAT1 
LCT 
LDHA 
LDHAL6A 
LDHAL6B 
LDHB 
LDHC 
LDHD 
LGALS13 
LGSN 
LHPP 
LIPA 
LIPC 
LIPE 
LIPF 
LIPG 
LOXL2 
LPIN1 
LPIN2 
LPIN3 
LPL 
LPO 
LRAT 
LRTOMT 
LSS 
LTA4H 
LTC4S 
LYZL1 
MAGEA2B 
MAN2B1 
MANBA 
MANSC1 
MAOA 
MAOB 
MAT1A 
MAT2A 
MAT2B 

MBOAT1 



Appendix 

 

P a g e |  188  

 

 

MBOAT2 
MCCC1 
MCCC2 
MCEE 
MDH1 
MDH1B 
MDH2 
MDP1 
ME1 
ME2 
ME3 
MECR 
MGAM 
MGAT4C 
MGAT4D 
MGAT5 
MGAT5B 
MGEA5 
MGLL 
MGST2 
MGST3 
MIA3 
MINPP1 
MIOX 
MIP 
MLYCD 
MMAA 
MOGAT1 
MOGAT2 
MOXD1 
MPC1 
MPC2 
MPI 
MPO 
MPST 
MSMO1 
MTAP 
MTHFD1 
MTHFD1L 
MTHFD2 
MTHFD2L 
MTHFR 
MTHFS 
MTMR1 
MTMR14 
MTMR2 
MTMR3 
MTMR6 
MTMR7 
MTMR8 
MTR 
MUT 
MVD 
MVK 
MYO5B 
NADK 
NADSYN1 
NAGA 
NAGK 
NAGLU 
NAGS 
NAMPT 
NANP 
NANS 

NAPRT 
ND1 
ND2 
ND3 
ND4 
ND4L 
ND5 
ND6 
NDST1 
NDST2 
NDST3 
NDST4 
NDUFA1 
NDUFA10 
NDUFA11 
NDUFA12 
NDUFA13 
NDUFA2 
NDUFA3 
NDUFA4 
NDUFA5 
NDUFA6 
NDUFA7 
NDUFA8 
NDUFA9 
NDUFAB1 
NDUFB1 
NDUFB10 
NDUFB11 
NDUFB2 
NDUFB3 
NDUFB4 
NDUFB5 
NDUFB6 
NDUFB7 
NDUFB8 
NDUFB9 
NDUFC1 
NDUFC2 
NDUFS1 
NDUFS2 
NDUFS3 
NDUFS4 
NDUFS5 
NDUFS6 
NDUFS7 
NDUFS8 
NDUFV1 
NDUFV2 
NDUFV3 
NEU1 
NEU2 
NEU3 
NEU4 
NIT2 
NME1 
NME2 
NME3 
NME4 
NME6 
NME7 
NMNAT1 
NMNAT2 
NMNAT3 

NMRK1 
NNMT 
NNT 
NOL9 
NOS1 
NOS2 
NOS3 
NPC1 
NPC1L1 
NPR1 
NPR2 
NQO1 
NSD1 
NSDHL 
NSF 
NT5C 
NT5C1A 
NT5C1B 
NT5C1B-
RDH14 
NT5C2 
NT5C3A 
NT5DC3 
NT5E 
NT5M 
NUDT12 
NUDT5 
OAT 
OCRL 
ODC1 
OGDH 
OGT 
OPLAH 
OTC 
OXCT1 
OXCT2 
OXSM 
P4HA1 
P4HA2 
P4HA3 
PAFAH1B1 
PAFAH1B2 
PAFAH1B3 
PAFAH2 
PAH 
PAICS 
PANK1 
PANK2 
PANK3 
PANK4 
PAPSS1 
PAPSS2 
PC 
PCBD1 
PCBD2 
PCK1 
PCK2 
PCYT1A 
PCYT1B 
PCYT2 
PDE10A 
PDE11A 
PDE1A 
PDE1B 

PDE1C 
PDE2A 
PDE3A 
PDE3B 
PDE4A 
PDE4B 
PDE4C 
PDE4D 
PDE5A 
PDE6A 
PDE6B 
PDE6C 
PDE6D 
PDE6G 
PDE6H 
PDE7A 
PDE7B 
PDE8A 
PDE8B 
PDE9A 
PDHA1 
PDHA2 
PDHB 
PDHX 
PDPR 
PDXK 
PDXP 
PECR 
PEMT 
PEPD 
PFAS 
PFKFB1 
PFKFB2 
PFKFB3 
PFKFB4 
PFKL 
PFKM 
PFKP 
PGAM1 
PGAM2 
PGAP1 
PGD 
PGK1 
PGK2 
PGLS 
PGM1 
PGM2 
PGM2L1 
PGM3 
PGS1 
PHEX 
PHGDH 
PHOSPHO1 
PHPT1 
PHYH 
PHYKPL 
PI4K2A 
PI4KA 
PI4KB 
PIGA 
PIGB 
PIGC 
PIGF 
PIGG 

PIGH 
PIGK 
PIGL 
PIGM 
PIGN 
PIGO 
PIGP 
PIGQ 
PIGS 
PIGT 
PIGU 
PIGV 
PIGW 
PIGX 
PIGZ 
PIK3C2A 
PIK3C2B 
PIK3C2G 
PIK3C3 
PIK3CA 
PIK3CB 
PIK3CD 
PIK3CG 
PIK3R1 
PIK3R2 
PIK3R3 
PIK3R5 
PIKFYVE 
PIP4K2A 
PIP4K2B 
PIP4K2C 
PIP5K1A 
PIP5K1B 
PIP5K1C 
PIP5KL1 
PIPOX 
PISD 
PKLR 
PKM 
PLA2G10 
PLA2G12A 
PLA2G1B 
PLA2G2A 
PLA2G2D 
PLA2G2E 
PLA2G2F 
PLA2G3 
PLA2G4A 
PLA2G4B 
PLA2G4E 
PLA2G5 
PLA2G6 
PLA2G7 
PLCB1 
PLCB2 
PLCB3 
PLCB4 
PLCD1 
PLCD3 
PLCD4 
PLCE1 
PLCG1 
PLCG2 
PLCH1 

PLCH2 
PLCL1 
PLCXD2 
PLCZ1 
PLD1 
PLD2 
PLD3 
PLD4 
PLD6 
PLPP1 
PLPP2 
PLPP3 
PLPP4 
PLPP5 
PLPP6 
PLPP7 
PLPPR2 
PLPPR3 
PLPPR4 
PLPPR5 
PMM1 
PMM2 
PMPCA 
PMVK 
PNLIP 
PNLIPRP1 
PNLIPRP2 
PNLIPRP3 
PNMT 
PNP 
PNPLA2 
PNPLA3 
PNPLA4 
PNPO 
POGLUT1 
POMGNT1 
PON3 
PPA1 
PPA2 
PPAT 
PPCDC 
PPCS 
PPIP5K1 
PPIP5K2 
PPOX 
PPT1 
PPT2 
PRDX1 
PRDX2 
PRDX3 
PRDX6 
PRODH 
PRODH2 
PROSC 
PRPS1 
PRPS1L1 
PRPS2 
PSAP 
PSAT1 
PSPH 
PTDSS1 
PTDSS2 
PTEN 
PTGDS 

PTGES 
PTGES2 
PTGES3 
PTGIS 
PTGS1 
PTGS2 
PTPDC1 
PTPMT1 
PTPRQ 
PTS 
PXDN 
PXDNL 
PXYLP1 
PYCR1 
PYCR2 
PYCRL 
PYGB 
PYGL 
PYGM 
QDPR 
QPRT 
RALBP1 
RBKS 
RBP1 
RBP2 
RBP4 
RDH10 
RDH11 
RDH12 
RDH13 
RDH14 
RDH16 
RDH5 
RDH8 
RENBP 
RFK 
RHAG 
RHBG 
RHCG 
RPE 
RPIA 
RPL14 
RPP14 
RRM1 
RRM2 
RRM2B 
RWDD2A 
SACM1L 
SARDH 
SAT1 
SAT2 
SC5D 
SCARB1 
SCARF2 
SCD 
SCD5 
SCP2 
SDHA 
SDHB 
SDHC 
SDHD 
SDR16C5 
SDR42E1 
SDR42E2 

SDR9C7 
SDS 
SDSL 
SEC11A 
SEC11C 
SETD1A 
SETD1B 
SETD2 
SETD7 
SETDB1 
SETDB2 
SETMAR 
SGMS1 
SGMS2 
SGPL1 
SGPP1 
SGPP2 
SGSH 
SHMT1 
SHMT2 
SI 
SLC10A1 
SLC10A2 
SLC10A6 
SLC11A1 
SLC11A2 
SLC12A1 
SLC12A2 
SLC12A3 
SLC12A4 
SLC12A5 
SLC12A6 
SLC12A7 
SLC13A1 
SLC13A2 
SLC13A3 
SLC13A4 
SLC13A5 
SLC14A1 
SLC14A2 
SLC15A1 
SLC15A2 
SLC16A1 
SLC16A10 
SLC16A2 
SLC16A3 
SLC16A7 
SLC16A8 
SLC17A1 
SLC17A2 
SLC17A3 
SLC17A4 
SLC17A5 
SLC17A6 
SLC17A7 
SLC17A8 
SLC18A1 
SLC18A2 
SLC18A3 
SLC19A1 
SLC19A2 
SLC19A3 
SLC1A1 
SLC1A2 
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SLC1A3 
SLC1A4 
SLC1A5 
SLC1A6 
SLC1A7 
SLC20A1 
SLC20A2 
SLC22A1 
SLC22A10 
SLC22A11 
SLC22A12 
SLC22A13 
SLC22A2 
SLC22A3 
SLC22A4 
SLC22A5 
SLC22A6 
SLC22A7 
SLC22A8 
SLC22A9 
SLC23A1 
SLC23A2 
SLC24A1 
SLC24A2 
SLC24A3 
SLC24A4 
SLC25A1 
SLC25A10 
SLC25A11 
SLC25A12 
SLC25A13 
SLC25A14 
SLC25A15 
SLC25A16 
SLC25A17 
SLC25A18 
SLC25A19 
SLC25A2 
SLC25A20 
SLC25A21 
SLC25A22 
SLC25A26 
SLC25A27 
SLC25A28 
SLC25A29 

SLC25A37 
SLC25A4 
SLC25A5 
SLC25A6 
SLC26A1 
SLC26A11 
SLC26A2 
SLC26A3 
SLC26A4 
SLC26A6 
SLC26A7 
SLC26A8 
SLC26A9 
SLC27A1 
SLC27A2 
SLC27A3 
SLC27A4 
SLC27A5 
SLC27A6 
SLC28A1 
SLC28A2 
SLC28A3 
SLC29A1 
SLC29A2 
SLC29A3 
SLC29A4 
SLC2A1 
SLC2A10 
SLC2A11 
SLC2A12 
SLC2A13 
SLC2A14 
SLC2A2 
SLC2A3 
SLC2A4 
SLC2A5 
SLC2A6 
SLC2A7 
SLC2A8 
SLC2A9 
SLC30A1 
SLC32A1 
SLC33A1 
SLC34A1 
SLC34A2 

SLC34A3 
SLC35A1 
SLC35A2 
SLC35A3 
SLC35B2 
SLC35B4 
SLC35C1 
SLC35D1 
SLC35D2 
SLC36A1 
SLC36A2 
SLC36A4 
SLC37A1 
SLC37A4 
SLC38A1 
SLC38A2 
SLC38A3 
SLC38A4 
SLC38A5 
SLC3A1 
SLC3A2 
SLC40A1 
SLC43A1 
SLC43A2 
SLC46A1 
SLC47A1 
SLC47A2 
SLC4A1 
SLC4A10 
SLC4A2 
SLC4A3 
SLC4A4 
SLC4A5 
SLC4A7 
SLC4A8 
SLC4A9 
SLC51A 
SLC51B 
SLC52A1 
SLC52A2 
SLC52A3 
SLC5A1 
SLC5A10 
SLC5A11 
SLC5A12 

SLC5A2 
SLC5A3 
SLC5A5 
SLC5A6 
SLC5A7 
SLC5A8 
SLC5A9 
SLC6A1 
SLC6A11 
SLC6A12 
SLC6A13 
SLC6A14 
SLC6A18 
SLC6A19 
SLC6A2 
SLC6A20 
SLC6A3 
SLC6A4 
SLC6A5 
SLC6A6 
SLC6A7 
SLC6A8 
SLC6A9 
SLC7A1 
SLC7A10 
SLC7A11 
SLC7A2 
SLC7A3 
SLC7A5 
SLC7A6 
SLC7A7 
SLC7A8 
SLC7A9 
SLC8A1 
SLC8A2 
SLC8A3 
SLC9A1 
SLC9A2 
SLC9A3 
SLC9A4 
SLC9A5 
SLC9A7 
SLC9A8 
SLCO1A2 
SLCO1B1 

SLCO1B3 
SLCO1C1 
SLCO2A1 
SLCO2B1 
SLCO3A1 
SLCO4A1 
SMPD1 
SMPD2 
SMPD3 
SMPD4 
SMS 
SMYD3 
SOAT1 
SOAT2 
SOD1 
SOD2 
SOD3 
SORD 
SPCS1 
SPCS2 
SPCS3 
SPHK1 
SPHK2 
SPR 
SPTLC1 
SPTLC2 
SPTLC3 
SQLE 
SRD5A1 
SRD5A2 
SRD5A3 
SRM 
ST3GAL1 
ST3GAL2 
ST3GAL3 
ST3GAL4 
ST3GAL5 
ST3GAL6 
ST6GALNAC1 
ST6GALNAC2 
ST6GALNAC3 
ST6GALNAC4 
ST6GALNAC5 
ST6GALNAC6 
ST8SIA1 

ST8SIA4 
ST8SIA5 
STARD3 
STRA6 
STS 
STT3A 
STT3B 
SUCLA2 
SUCLG1 
SUCLG2 
SULT1A1 
SULT1A2 
SULT1A3 
SULT1B1 
SULT1C2 
SULT1E1 
SULT2A1 
SULT2B1 
SULT4A1 
SUOX 
SUV39H1 
SUV39H2 
SYNJ1 
SYNJ2 
TALDO1 
TAT 
TBCB 
TBXAS1 
TCIRG1 
TDO2 
TECR 
TECRL 
TH 
THNSL1 
THTPA 
TK1 
TK2 
TKFC 
TKT 
TKTL1 
TKTL2 
TM7SF2 
TMEM27 
TMEM91 
TMLHE 

TNNI3K 
TNS2 
TPH1 
TPH2 
TPI1 
TPK1 
TPO 
TPP1 
TPSAB1 
TPSB2 
TPSD1 
TPTE2 
TREH 
TST 
TSTA3 
TUSC3 
TXNRD1 
TXNRD2 
TYMP 
TYMS 
TYR 
TYRP1 
UAP1 
UAP1L1 
UCK1 
UCK2 
UCKL1 
UCP1 
UCP2 
UCP3 
UEVLD 
UGCG 
UGDH 
UGGT1 
UGGT2 
UGP2 
UGT1A1 
UGT1A10 
UGT1A3 
UGT1A4 
UGT1A5 
UGT1A6 
UGT1A7 
UGT1A8 
UGT1A9 

UGT2A1 
UGT2A3 
UGT2B10 
UGT2B11 
UGT2B15 
UGT2B17 
UGT2B28 
UGT2B4 
UGT2B7 
UGT8 
UMPS 
UPB1 
UPP1 
UPP2 
UPRT 
UQCR10 
UQCR11 
UQCRB 
UQCRC1 
UQCRC2 
UQCRFS1 
UQCRH 
UQCRQ 
UROC1 
UROD 
UROS 
UST 
UXS1 
VNN1 
VNN2 
VNN3 
WHSC1 
WHSC1L1 
WWOX 
XDH 
XYLB 
XYLT1 
XYLT2 
ZADH2 
 

 
 

Table C. 1: Upregulated miRNAs with downregulated target metabolic genes and 
enriched pathways  

 

Sr. 
No. 

miRNA 
(Upregulated) 

Target Metabolic Genes 
(Downregulated) 

Enriched Metabolic Pathways (p 
value < 0.05) 

1.  hsa-miR-10b-5p 

GLS, ATP6V1B2, 
CSGALNACT1, PAFAH1B1, 

AGPAT3, ST6GALNAC6, 
XYLT1 

D-Glutamine and D-glutamate 
metabolism, Glycosaminoglycan 

biosynthesis 

2.  hsa-miR-18a-5p 
HMGCS1, XYLT1, SLC12A6, 

INPP5F 

Glycosaminoglycan biosynthesis, 
Terpenoid backbone biosynthesis, 

Butanoate metabolism, Valine, 
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leucine and isoleucine degradation, 
Inositol phosphate metabolism 

3.  hsa-miR-93-5p 

SGMS1, SLC24A2, PFKP, 
KMT2A, OCRL, ACSL4, 

DPYSL2, SLC4A8, 
ST6GALNAC6, PIK3R1, 

ENTPD4, PTPDC1, 
PAFAH1B1, ATP1A2, 
PAFAH1B2, SLC16A7, 
ZADH2, CSGALNACT1, 

MVK, GPAM, DGKH, PANK3, 
CERS6, DGKE, LPIN1, 

PIP4K2A, CPOX, ACADSB, 
SCD 

Glycerolipid metabolism, 
Glycerophospholipid metabolism, 

Fatty acid metabolism, Choline 
metabolism in cancer, Sphingolipid 

signalling pathway, AMPK signalling 
pathway, Fatty acid degradation, 
Inositol phosphate metabolism, 

Central carbon metabolism in cancer, 
Biosynthesis of cofactors, mTOR 

signalling pathway, HIF-1 signalling 
pathway, Glycosaminoglycan 

biosynthesis - chondroitin sulfate / 
dermatan sulfate 

4.  
hsa-miR-106b-

3p 
- - 

5.  hsa-miR-155-5p 
GLUL, ENTPD4, ZADH2, 

SLC4A8, DGKH, RFK, LPIN1, 
SLC16A7, SLC12A6 

Glycerolipid metabolism, Arginine 
biosynthesis, Glycerophospholipid 

metabolism, Riboflavin metabolism, 
Nitrogen metabolism, SLC-mediated 

transmembrane transport, 
Pyrimidine metabolism, Alanine, 

aspartate and glutamate metabolism 

6.  hsa-miR-15b-5p 

ABCC5, ACACB, ACSL4, 
ACSS2, ALDH6A1, ASH1L, 

CDS2, ETNK1, FASN, 
GLUD1, IDH3A, IP6K1, 
KMT2A, LHPP, MTHFR, 

OCRL, PAFAH1B1, 
PAFAH1B2, PANK2, 

PIK3R1, PISD, PLPP6, 
PTEN, RDH13, RFK, 

SLC12A2, SLC25A22, 
SLC2A3, SLC4A8, SYNJ1, 

UROS 

Phosphatidylinositol signalling 
system, Carbon metabolism, Fatty 

acid biosynthesis, Inositol phosphate 
metabolism, Propanoate metabolism, 

SLC-mediated transmembrane 
transport 

7.  
hsa-miR-181a-2-

3p 

DGKG, SLC9A5, PTGES2, 
ATP6V0A1, NT5C2, 

SLC2A13, ABCC5, ACYP1, 
ATP1A3, SLC12A2, 

ACADSB, PGS1, SLC24A2 

Arachidonic acid metabolism, 
Glycerophospholipid Biosynthetic 

Pathway, SLC-mediated 
transmembrane transport 

8.  hsa-miR-21-5p 
MIA3, INPP4A, SC5D, 

PIK3R1, PIKFYVE, FAM20B, 
ELOVL7, PDHA1, SACM1L 

Inositol phosphate metabolism, 
Central carbon metabolism in cancer, 

Fatty acyl-CoA biosynthesis 

9.  hsa-miR-23a-3p 

AUH, ETNK1, PTEN, 
SLC1A1, ATP6V1E1, 

SLC12A2, PIP4K2B, GLS, 
SYNJ1, SLC38A1, INPP5A, 

Inositol phosphate metabolism, 
Valine, leucine and isoleucine 

degradation, Glycerophospholipid 
metabolism, Glycerolipid 
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AGPAT4, NDUFA5, CDS2, 
B4GAT1, AACS, NDST1, 
PIKFYVE, ABCC5, CPOX, 
DGKH, ACADSB, OXCT1, 

ALAS1, IDS, PDHA1, 
ATP6V1B2, SLC9A7, LPIN1 

metabolism, Central carbon 
metabolism in cancer, Butanoate 

metabolism, Glutamatergic synapse, 
Astrocytic Glutamate-Glutamine 

Uptake and Metabolism, SLC-
mediated transmembrane transport 

10.  hsa-miR-24-2-5p 
CERS6, ACADSB, SGMS1, 

UGT8, DGKH, IDI1, 
SLCO3A1, ACACA 

Sphingolipid metabolism, Fatty acid 
metabolism, Glycerophospholipid 

metabolism, Fatty acid biosynthesis, 
Ether lipid metabolism 

11.  
hsa-miR-25-3p, 

92a-3p, 92b, 
92b-3p 

PIKFYVE, UGP2, NSF, PTEN, 
MIA3, SYNJ1, NPC1, 

PIK3CB, SGPP1, ADCY3, 
SLC9A7, SLC25A16, 

SLC4A8, PCYT1B, ELOVL4, 
ATP6V1B2, SLC9A1, 

PIP5K1C, DBT, PTGES2, 
CHKA, CHST1, PANK3, 
SLC12A2, ADO, LPIN1, 
PIK3R1, PLD1, SPHK2, 

MGLL 

Inositol phosphate metabolism, 
Glycerophospholipid metabolism, 

Central carbon metabolism in cancer, 
Coenzyme A biosynthesis, 

Metabolism of carbohydrates, 
Degradation of cysteine and 

homocysteine, Fatty acid 
metabolism, SLC-mediated 
transmembrane transport 

12.  hsa-miR-28-3p NMNAT2, ACSL4, CERS6 
Fatty acid metabolism, Sphingolipid 

metabolism 

13.  
hsa-miR-320a, 

320b, 320c, 320d 

ENTPD4, IDS, PFKM, 
ABCC5, PIGK, ACOT7, 

ADCY3, ITPK1, PTEN, GNE, 
MTMR6, SLC12A2, SUCLA2, 

GLS, B4GALT6, DGKH, 
FAM20B, HACD3, 
NDUFA10, DIO2, 

ATP6V1C1, PIK3R1, 
SLCO3A1 

Central carbon metabolism in cancer, 
Inositol phosphate metabolism, Fatty 

acid elongation, MicroRNAs in 
cancer, Oxidative phosphorylation, 

Purine metabolism, D-Glutamine and 
D-glutamate metabolism 

14.  hsa-miR-339-5p KMT2A, PAFAH1B1 Lysine degradation 

15.  hsa-miR-3651 NEU3, SYNJ1 
Inositol phosphate metabolism, 

Sphingolipid metabolism 

16.  hsa-miR-424-3p GFPT1, UQCRC2, PLPPR4 

Alanine, aspartate and glutamate 
metabolism, Respiratory electron 

transport, ATP synthesis by 
chemiosmotic coupling, 

Lysosphingolipid and LPA receptors 

17.  hsa-miR-4429 

ENTPD4, IDS, PFKM, 
ABCC5, PIGK, ACOT7, 

ITPK1, ADCY3, PTEN, GNE, 
MTMR6, SLC12A2, SUCLA2, 

B4GALT6, GLS, DGKH, 
HACD3, FAM20B, 
NDUFA10, DIO2, 

Central carbon metabolism in cancer, 
Inositol phosphate metabolism, Fatty 

acid elongation, MicroRNAs in 
cancer, Oxidative phosphorylation, 

Purine metabolism, D-Glutamine and 
D-glutamate metabolism 
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ATP6V1C1, PIK3R1, 
SLCO3A1 

18.  hsa-miR-455-3p 

PIK3R1, KMT2A, IDS, 
HACD3, PIGA, CNDP2, 
CSGALNACT1, MIA3, 

SUCLA2 

Pyruvate metabolism and Citric Acid 
(TCA) cycle, respiratory electron 

transport, Central carbon 
metabolism in cancer, Arginine and 

proline metabolism, Lysine 
degradation 

19.  hsa-miR-500a-5p 

SPTLC2, HMGCS1, 
PLA2G12A, MTMR6, SYNJ2, 

GPAM, PAFAH1B1, OCRL, 
SUCLA2, SLC2A13, SLC9A7 

Inositol phosphate metabolism, Lipid 
metabolism, Glycerophospholipid 

metabolism, Synthesis and 
degradation of ketone bodies, SLC-

mediated transmembrane transport 

20.  
hsa-miR-6872-

3p 

ATP1B1, ST6GALNAC6, 
DIO2, SLC1A1, NDUFS2, 
SPTLC2, SLC25A4, PGS1, 

DGKG 

Electron Transport Chain (OXPHOS 
system in mitochondria), Synthesis 

of Prostraglandin 

 
 

Table C. 2: Downregulated miRNAs with upregulated target metabolic genes and 
enriched pathways 
 

Sr. 
No. 

miRNA 
(Downregulated) 

Target Metabolic 
Genes (Upregulated) 

Enriched Metabolic Pathways (p 
value < 0.05) 

1.  hsa-miR-1225 

NDUFB11, PNP, 
ATP6V0A2, AK2, 

ST6GALNAC4, PGLS, 
GNPDA1, GANC 

Purine metabolism, Sphingolipid 
Metabolism, Pentose Phosphate 

Metabolism, Mitochondrial complex I 
assembly model OXPHOS system 

2.  
hsa-miR-1236-5p 

 

ALDH3A2, HNMT, 
AKR1B1, SLC25A5 

Histidine metabolism, Glycerolipid 
metabolism, Arginine and proline 
metabolism, Fructose metabolism, 

Metabolism of lipids 

3.  

hsa-miR-124-1/ 
124-2/124-3/ 

124-3p 

 

B4GALT1, P4HA1, 
ACAA2, ECI2, FPGS, 

CHSY1, SLC16A1, 
ATP6V0A2, STT3A, 

CHST14, ABCC4, 
GALNT10, SUCLG2, 
PAPSS2, ALDH9A1, 

SLC35B2, SGPL1, 
GGPS1, ATP6V0E1, 
HADHA, POGLUT1, 

LCLAT1, PECR, GLT8D1, 
NME4, HADH, PGM2, 

ABHD5, RDH10, SPCS2, 
SORD 

Fatty acid degradation, Valine, leucine 
and isoleucine degradation, 

Tryptophan metabolism, Lysine 
degradation, Glycosaminoglycan 

biosynthesis, Galactose metabolism, 
beta-Alanine metabolism, Arginine and 

proline metabolism, Purine 
metabolism. 

4.  hsa-miR-124-5p 
HNMT, CHSY1, GYG1, 

SLC35C1, NADK 
Glycogen metabolism, 
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Histidine metabolism, Nicotinate and 
nicotinamide metabolism, 

Glycosaminoglycan biosynthesis 

5.  

hsa-miR-128-1-
5p/ 

hsa-miR-128-2-5p 

LRTOMT 
Steroid hormone biosynthesis, 

Dopamine clearance from the synaptic 
cleft 

6.  hsa-miR-128-3p 

POGLUT1, AK2, 
AKR7A2, GNS, G6PC3, 

CA12, PFKFB4, ASAH1, 
NME4, GYS1, CTPS2, 

CHST11, HMOX1, ADH5, 
ABCA1, GLRX, SLC26A2 

Glycogen metabolism, Pyrimidine 
metabolism, Purine metabolism, 

Glycolysis / Gluconeogenesis, 
Glycosaminoglycan metabolism, 

Metabolism of xenobiotics by 
cytochrome P450, Tyrosine 

metabolism 

 

7.  hsa-miR-129-1-3p CHST14, DPYSL3 Glycosaminoglycan biosynthesis 

8.  hsa-miR-137 

SLC1A5, TMLHE, 
SLC4A7, SGPL1, 

GALNT1, SLC25A5, 
PLPP5, PFKFB4, 

ABHD5, DUT, AGPAT5, 
PGM2, HS3ST3B1, 

IDH1, PEPD, B4GALT4, 
FLAD1 

Glycerophospholipid metabolism, 
Glycerolipid metabolism, Central 

carbon metabolism in cancer, 
Glycolysis / Gluconeogenesis, TCA 
cycle, NADPH regeneration, Lipid 

metabolism, Drug metabolism - other 
enzymes 

9.  hsa-miR-138-2-3p 
NANP, ATP11C, 

SUV39H2, SOD2, FAH, 
GNS 

Glycosaminoglycan degradation, Amino 
sugar and nucleotide sugar metabolism, 

Lysine degradation 

10.  hsa-miR-139-3p HNMT, UEVLD 
Histidine metabolism, Selenoamino 

acid metabolism 

11.  hsa-miR-139-5p 
HNMT, UEVLD, ABCA1, 

PSPH, DHRS3, FPGT, 
TMLHE, PXYLP1 

Glycine, serine and threonine 
metabolism, Lysine degradation, 

Cholesterol metabolism, Fructose and 
mannose metabolism, Retinol 

metabolism, Biosynthesis of amino 
acids, Biosynthesis of cofactors, Amino 

sugar and nucleotide sugar metabolism, 
Carbon metabolism, Histidine 

metabolism 

12.  hsa-miR-211-3p 
AHCY, SLC35D1, HK2, 

GANC 

Galactose metabolism, Starch and 
sucrose metabolism, Fructose and 

mannose metabolism, Amino sugar and 
nucleotide sugar metabolism, Cysteine 
and methionine metabolism, Glycolysis 

/ Gluconeogenesis, Central carbon 
metabolism in cancer, HIF-1 signalling 

pathway, Carbon metabolism 
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13.  hsa-miR-218-5p 

SHMT1, UEVLD, 
HS3ST3B1, CYBRD1, 

SGPL1, LTA4H, LOXL2, 
SLC35B2, HMOX1, 

BCHE 

Glycosaminoglycan biosynthesis - 
heparan sulfate / heparin, Sphingolipid 

metabolism, Arachidonic acid 
metabolism, Glycine, serine and 

threonine metabolism, One carbon pool 
by folate, Antifolate resistance, 
Glyoxylate and dicarboxylate 

metabolism, Biosynthesis of amino 
acids, Biosynthesis of cofactors, HIF-1 

signalling pathway, Carbon metabolism 

14.  hsa-miR-3188 

DPYSL3, CROT, ADH5, 
DCTD, HSD3B7, UQCRQ, 

PLCB3, SLC26A6, 
AKR7A2, GNPDA1, 

ABCD1, SLC4A7 

Metabolism of xenobiotics by 
cytochrome P450, Phosphatidylinositol 

signalling system, Glycolysis / 
Gluconeogenesis, Inositol phosphate 

metabolism, Carbon metabolism, Fatty 
acid degradation, Tyrosine metabolism, 
Oxidative phosphorylation, Pyrimidine 

metabolism, Pyruvate metabolism, 
Phospholipase D signalling pathway, 

Sphingolipid signalling pathway, Drug 
metabolism - cytochrome P450, Amino 
sugar and nucleotide sugar metabolism 

15.  hsa-miR-3200-3p - - 

16.  hsa-miR-323a-5p 
GK, G6PC3, PYCR1, 

GALNT10, MTMR14 

Glycolysis / Gluconeogenesis, Inositol 
phosphate metabolism, Glycerolipid 
metabolism, Biosynthesis of amino 

acids, Galactose metabolism 

17.  hsa-miR-330-3p 

SCP2, DPYSL3, FPGT, 
CA12, MAT2A, CRLS1, 

GALNT10, ABCA1, UST, 
PLCB3, EXT2 

Metabolism of carbohydrates, 
Methylation, alpha-linolenic acid (ALA) 

metabolism, Beta-oxidation of 
pristanoyl-CoA, Dermatan sulfate 

biosynthesis 

18.  hsa-miR-330-5p 

B4GALT1, FUCA1, 
PFKFB4, GLYCTK, 

SGPL1, SORD, DPYD, 
PPCDC 

Pantothenate and CoA biosynthesis, 
Fructose and mannose metabolism, 

Galactose metabolism, Glyoxylate and 
dicarboxylate metabolism, beta-Alanine 

metabolism, Pentose phosphate 
pathway, Glycosaminoglycan 

biosynthesis, Glycerolipid metabolism 

19.  hsa-miR-338-3p 

SLC25A20, B4GALT7, 
PIP5K1A, LDHA, 

SLC35D1, LRTOMT, 
RRM1 

Dopamine clearance from the synaptic 
cleft, Carnitine metabolism, Pyruvate 

metabolism, The citric acid (TCA) cycle 
and respiratory electron transport, 

Metabolism of lipids 

20.  hsa-miR-4257 

B4GALT4, RDH10, AK2, 
ECI2, LRTOMT, 

CYP2U1, SUV39H2, 
NAGA 

Glycosaminoglycan biosynthesis, 
Glycosphingolipid biosynthesis, 

Arachidonic acid metabolism, Steroid 
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hormone biosynthesis, Fatty acid 
degradation, Lysine degradation 

21.  hsa-miR-4281 NT5C, ODC1, DPM2 

Glutathione metabolism, Pyrimidine 
metabolism, Arginine and proline 

metabolism, Nicotinate and 
nicotinamide metabolism, N-Glycan 

biosynthesis, Purine metabolism 

22.  hsa-miR-4322 
NME6, CRLS1, 

MTHFD2L 

One carbon pool by folate, Pyrimidine 
metabolism, Glycerophospholipid 
metabolism, Purine metabolism 

23.  hsa-miR-433-3p 
HNMT, NAGA, GLRX, 
GALNT1, HSD17B11, 

UGDH, CPT2, MTMR14 

Formation of the active cofactor, UDP-
glucuronate, Metabolism of lipids, 

Carnitine metabolism, Amino sugar and 
nucleotide sugar metabolism 

24.  
hsa-miR-4433b-

3p 

NT5C3A, LRTOMT, 
MTHFS, SLC25A5, 

CANT1, FPGT, ENTPD1 

Pyrimidine metabolism, Purine 
metabolism, Dopamine clearance from 
the synaptic cleft, Metabolism of folate 

and pterines 

25.  hsa-miR-4447 

ABCD1, GALNT2, GYS1, 
SLC4A2, SLC12A4, SPR, 

LRTOMT, DHRS3, 
B4GALT7, SPCS2 

Glycogen storage, alpha-linolenic acid 
(ALA) metabolism, Metabolism of 

cofactors, Class I peroxisomal 
membrane protein import 

26.  hsa-miR-4463 

RPIA, MCCC2, LOXL2, 
NME7, PGM3, ENTPD1, 

DUSP11, NUDT5, 
B4GALT1 

Purine metabolism, Pyrimidine 
metabolism, Glycosaminoglycan 
biosynthesis, Pentose phosphate 

pathway, Lactose synthesis, Asparagine 
N-linked glycosylation 

27.  hsa-miR-4525 
MTHFD2L, FUCA2, 

SLC26A2 
One carbon pool by folate, 

Multifunctional anion exchangers 

28.  hsa-miR-485-5p 

SGPL1, DPYSL3, 
ENTPD1, HS3ST3B1, 
SLC26A2, LRTOMT, 

ATP6V0D2, CROT, AK2, 
PCBD2, SLC26A6, 

SOAT1, ADH5, PAICS, 
GNS, UEVLD, UQCRQ 

Purine metabolism, Oxidative 
phosphorylation, Glycosaminoglycan 

metabolism, Beta-oxidation of 
pristanoyl-CoA, Respiratory electron 
transport, Dopamine clearance from 

the synaptic cleft 

29.  hsa-miR-490-5p P4HA1, UGDH, ENTPD1 

Pyrimidine metabolism, Pentose and 
glucuronate interconversions, Arginine 

and proline metabolism, Purine 
metabolism 

30.  hsa-miR-5698 
CHPF, FPGS, LCLAT1, 

SLC4A2, SLC35C1, 
ENTPD1 

Glycosaminoglycan biosynthesis, 
Pyrimidine metabolism, Glycerolipid 

metabolism, Folate biosynthesis, 
Glycerophospholipid metabolism, 

Purine metabolism 
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31.  hsa-miR-6782-5p AK2, COQ5, RRM1 

Purine metabolism, Ubiquinone and 
other terpenoid-quinone biosynthesis, 

Glutathione metabolism, Pyrimidine 
metabolism 

32.  hsa-miR-6790-5p 
IDH1, HADH, SOAT1, 

PGM2, ALDH3A2 

Valine, leucine and isoleucine 
degradation, Tryptophan metabolism, 

Glycolysis / Gluconeogenesis, Fatty acid 
degradation, Pentose phosphate 

pathway, Citrate cycle (TCA cycle), 
Glutathione metabolism, Galactose 

metabolism, Central carbon 
metabolism in cancer, Arginine and 

proline metabolism 

33.  hsa-miR-6810-5p SLC1A5, ADI1, PPT1 

Central carbon metabolism in cancer, 
Fatty acid elongation, Cysteine and 

methionine metabolism, Methionine 
salvage pathway, SLC-mediated 

transmembrane transport 

34.  hsa-miR-6861-5p 
PPCDC, PFKFB4, 

LRTOMT 

Fructose and mannose metabolism, 
Steroid hormone biosynthesis, 

Dopamine clearance from the synaptic 
cleft, Glycolysis, Coenzyme A 

biosynthesis 

35.  hsa-miR-758-5p 
UQCRQ, CYP2U1, HEXA, 

B4GALT1 

Glycosaminoglycan biosynthesis, 
Glycosphingolipid biosynthesis, Amino 

sugar and nucleotide sugar metabolism, 
Oxidative phosphorylation, Galactose 

metabolism, Respiratory electron 
transport, Arachidonic acid 

metabolism, The citric acid (TCA) cycle, 
Fatty acid metabolism 

36.  hsa-miR-7-5p 

SLC4A7, LOXL2, 
DTYMK, FPGT, DPYSL3, 
CRLS1, PGM3, ABHD5, 

GALNT2 

Amino sugar and nucleotide sugar 
metabolism, Fructose and mannose 

metabolism, Mucin type O-glycan 
biosynthesis, Pyrimidine metabolism, 

Glycerophospholipid metabolism, 

37.  hsa-miR-769-5p 
BPNT1, PAPSS2, CROT, 

UGDH, CRLS1 

Sulfur metabolism, Amino sugar and 
nucleotide sugar metabolism, 

Ascorbate and aldarate metabolism, 
Glycerophospholipid metabolism, 

Purine metabolism, 
Glycerophospholipid biosynthesis 

38.  
hsa-miR-770/ 

770-5p 
HKDC1, LBR, ECI2 

Galactose metabolism, Fructose and 
mannose metabolism, Fatty acid 

degradation, Glycolysis / 
Gluconeogenesis, Central carbon 

metabolism in cancer, Amino sugar and 
nucleotide sugar metabolism 
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39.  hsa-miR-873-3p 
PGM3, CA12, COQ5, 
RRM2, ADSL, GART 

Purine metabolism, Nitrogen 
metabolism, Ubiquinone and other 

terpenoid-quinone biosynthesis, 
Pyrimidine metabolism, Glutathione 
metabolism, Alanine, aspartate and 

glutamate metabolism, One carbon pool 
by folate 

40.  hsa-miR-874-3p RRM2, PFKFB4, DPYD 

Pyrimidine metabolism, Pantothenate 
and CoA biosynthesis, Glutathione 

metabolism, Fructose and mannose 
metabolism, beta-Alanine metabolism, 

Glycolysis, Nucleobase catabolism 

 

 

Table C. 3: Details and statistics of the backbone analysis 

Metabolism Pathways 
Total 
No. of 

miRNA 

Backbone 
miRNAs 

Max. no. 
of 

pathways 
targeted 

by 
backbone 

Central 
Carbon 

Metabolism 

Glycolysis / Gluconeogenesis 
(hsa00010), Citrate cycle (TCA 

cycle) (hsa00020), Pentose 
phosphate pathway (hsa00030), 

Pentose and glucuronate 
interconversions (hsa00040), 

Fructose and mannose metabolism 
(hsa00051), Galactose metabolism 

(hsa00052), Oxidative 
phosphorylation (hsa00190), Starch 

and sucrose metabolism 
(hsa00500), Pyruvate metabolism 

(hsa0062), Carbon metabolism 
(hsa01200), 2-Oxocarboxylic acid 

metabolism (hsa01210), HIF-1 
signalling pathway (hsa04066), 

mTOR signalling pathway 
(hsa04150), PI3K-Akt signalling 

pathway (hsa04151), AMPK 
signalling pathway (hsa04152), 

Central carbon metabolism in cancer 
(hsa05230) 

42 

hsa-miR-
1225, hsa-

miR-211-3p 
and MIR770 

family 
miRNAs 

7 

Fatty Acid 
Metabolism 

Fatty acid biosynthesis (hsa00061), 
Fatty acid elongation (hsa00062), 

Fatty acid degradation (hsa00071), 
Arachidonic acid metabolism 

(hsa00590), Linoleic acid 
metabolism (hsa00591), alpha-

23 

hsa-miR-24-
2-5p, hsa-
miR-28-3p 

and  

hsa-miR-124-
3p, hsa-miR-

2 
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Linolenic acid metabolism 
(hsa00592), Biosynthesis of 

unsaturated fatty acids (hsa01040), 
Fatty acid metabolism (hsa01212) 

181a-2-3p 
and hsa-miR-

6790-5p 

Lipid 
Metabolism 

Synthesis and degradation of ketone 
bodies (hsa00072), Steroid 

biosynthesis (hsa00100), Steroid 
hormone biosynthesis (hsa00140), 

Glycerolipid metabolism 
(hsa00561), Glycerophospholipid 

metabolism (hsa00564), Ether lipid 
metabolism (hsa00565), 
Sphingolipid metabolism 

(hsa00600), Glycosphingolipid 
biosynthesis - lacto and neolacto 

series (hsa00601), 
Glycosphingolipid biosynthesis - 

globo and isoglobo series 
(hsa00603), Glycosphingolipid 

biosynthesis - ganglio series 
(hsa00604), Sphingolipid signalling 
pathway (hsa04071), Phospholipase 

D signalling pathway (hsa04072) 

44 

hsa-miR-24-
2-5p, hsa-

miR-500a-5p, 
hsa-miR-137 

and 
MIR25/92 

family 
miRNAs  

3 

Glycan 
Metabolism 

N-Glycan biosynthesis (hsa00510), 
Other glycan degradation 

(hsa00511), Mucin type O-glycan 
biosynthesis (hsa00512), Various 

types of N-glycan biosynthesis 
(hsa00513), Other types of O-glycan 
biosynthesis (hsa00514), Mannose 

type O-glycan biosynthesis 
(hsa00515), Glycosaminoglycan 

degradation (hsa00531), 
Glycosaminoglycan biosynthesis - 

chondroitin sulfate / dermatan 
sulfate (hsa00532), 

Glycosaminoglycan biosynthesis - 
keratan sulfate (hsa00533), 

Glycosaminoglycan biosynthesis - 
heparan sulfate / heparin 
(hsa00534), Glycerolipid 

metabolism (hsa00561), Inositol 
phosphate metabolism (hsa00562), 
Glycosylphosphatidylinositol (GPI)-

anchor biosynthesis (hsa00563) 

36 
hsa-miR-4257 
and hsa-miR-

758-5p 
3 

Amino Acid 
Metabolism 

Arginine biosynthesis (hsa00220), 
Alanine, aspartate and glutamate 
metabolism (hsa00250), Glycine, 
serine and threonine metabolism 

(hsa00260), Cysteine and 

48 

hsa-miR-10b-
5p, hsa-miR-
155-5p hsa-
miR-424-3p, 

and  

3 
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methionine metabolism (hsa00270), 
Valine, leucine and isoleucine 

degradation (hsa00280), Lysine 
degradation (hsa00310), Arginine 

and proline metabolism (hsa00330), 
Histidine metabolism (hsa00340), 
Tyrosine metabolism (hsa00350), 

Tryptophan metabolism 
(hsa00380), beta-Alanine 

metabolism (hsa00410), Taurine 
and hypotaurine metabolism 

(hsa00430), Phosphonate and 
phosphinate metabolism 

(hsa00440), Selenocompound 
metabolism (hsa00450), D-
Glutamine and D-glutamate 

metabolism (hsa00471), Glutathione 
metabolism (hsa00480), Amino 

sugar and nucleotide sugar 
metabolism (hsa00520) 

MIR124 
family 

miRNAs, hsa-
miR-455-3p, 

hsa-miR-
6790-5p, and 
hsa-miR-128-

3p 

Nucleotide 
Metabolism 

Purine metabolism (hsa00230), 
Pyrimidine metabolism (hsa00240), 
Amino sugar and nucleotide sugar 

metabolism (hsa00520) 

31 

hsa-miR-
1225, hsa-

miR-155-5p, 
MIR320 
family 

miRNAs, hsa-
miR-433-3p, 

hsa-miR-4463 
and hsa-miR-

490-5p 

2 

 

 

Table C. 4: Key regulatory metabolic genes selected as seed sequence for network 
diffusion and identification of cellular phenotype subnetworks. 

Cellular 
Phenotype 

Regulatory genes Reference 

Proliferation and 
growth 

HK2 (361) 
PFKP (361) 

G6PD (361) 

LDHA (361) 

COX4|1 (361) 

CPT1A (361) 

FASN (361) 

G6PC3 (361) 

ALDOC (361) 

SLC1A1 (361) 

SLC1A3 (361) 

PDK1 (361) 
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PTEN (361) 

ALDH1A3 (361) 

PKM2 (361) 

ELOVL2 (361) 

LPCAT1 (361) 

PHGDH (361) 

ACACA (361) 

ACSS2 (361) 

SHMT1 (361) 

Survival 

ALOX5AP (362) 

ACAA2 (362) 
PYGL (362) 
OAS1 (362) 

NNMT (362) 
FAH (362) 

EXTL3 (362) 
B3GALNT1 (362) 

UPP1 (362) 
NQO2 (362) 

MAN1B1 (362) 
CNGA3 (362) 

PIGB (362) 
HEXA (362) 

CYB561 (362) 
ACADSB (362) 

NPC2 (362) 
SLC12A7 (362) 

ACOX2 (362) 
B4GALT7 (362) 

IDH1 (363) 
MTHFD2 (294) 

Cell Migration and 
Invasion 

ALDOC (364) 
G6PC3 (365) 
G6PD (364) 
GPI (366) 
FH (367) 

LDHA (367) 
SDHC (367) 
SDHD (367) 

SLC1A5 (367) 

Stemness 

ACSL3 (368) 
ALOX5 (368) 

ALDH1A3 (369) 
CPE (368) 

FASN (368) 
GLS (368) 

PKM2 (368) 
SHMT1 (368) 
SLC1A3 (368) 
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SDHB (368) 

Drug Resistance 

CPT1A (370) 
G6PD (41) 
IDO (371) 
GLS (372) 
HK2 (373) 

LDHA (374) 
MTHFD2 (375) 
GSTM1 (376) 
GSTM2 (376) 
ABCC1 (377) 
SOD2 (378) 

ABCC2 (379) 
ABCC4 (379) 
ABCC5 (379) 

 
 

Table C. 5: List of metabolic genes and miRNAs in the subnetworks of cellular 
phenotypes 

Proliferation 
and growth 

ACACA, ACACB, ACAT2, ACLY, ACOX1, ACSL1, ACSL3, ACSL4, ACSS2, ACYP1, 
ALAS1, ALDH1A3, ALDH1L2, ALDH3A2, ALDH3B1, ALDH6A1, ALDOC, 
AMDHD2, ASAH1, CANT1, CNDP2, COMT, COX4I1, COX6B1, COX6C, 
COX7A2L, COX7B, COX8A, CPT1A, CPT2, DAK, DBT, DLAT, FASN, G6PC3, 
G6PD, GART, GFPT1, GFPT2, GLUD1, GNPDA1, GNPDA2, GNPNAT1, GPI, 
H6PD, HK2, HLCS, HSD17B4, IDH1, INPP4A, INPP5A, INPP5B, INPP5E, 
INPP5F, ITPKC, KHK, LDHA, LDHB, LRTOMT, LTA4H, MAOA, ME2, MPI, 
MTHFD2, MTHFD2L, MTHFR, MTR, NDUFA4, OCRL, PFKL, PFKM, PFKP, 
PGAM1, PGLS, PGM1, PGM2, PHGDH, PI4K2A, PIK3C2A, PIK3CA, PIK3CB, 
PIK3CD, PIK3R1, PIKFYVE, PIP4K2A, PIP4K2B, PIP4K2C, PIP5K1A, 
PIP5K1C, PIP5KL1, PKM2, PMM1, PSAT1, PSPH, PTEN, SACM1L, SHMT1, 
SLC1A1, SLC1A3, SOD2, SORD, SYNJ1, SYNJ2, TKT, TPI1, UQCR10, UQCR11, 
UQCRC1, UQCRC2, UQCRFS1, UQCRQ, hsa-miR-500a-5p, hsa-miR-23a-3p, 
hsa-miR-24-2-5p, hsa-miR-338-3p, hsa-miR-15b-5p, hsa-miR-129-1-3p, 
hsa-miR-770_770-5p, hsa-miR-128-1-5p_2-5p, hsa-miR-4525, hsa-miR-
873-3p, hsa-miR-6872-3p, hsa-miR-5698, hsa-miR-4463, hsa-miR-4447, 
hsa-miR-485-5p, hsa-miR-124-3p, hsa-miR-218-5p, hsa-miR-137, hsa-miR-
93-5p, hsa-miR-211-3p, hsa-miR-7-5p, hsa-miR-25-3p-92a_b, hsa-miR-
320a_b_c_d, hsa-miR-4429, hsa-miR-433-3p, hsa-miR-128-3p, hsa-miR-
323a-5p 

Survival 

A4GALT, ACAA2, ACADSB, ACAT2, ACO1, ACOX1, ACOX3, ALDH1L2, 
ALDH6A1, ALDOC, ARSB, ASAH1, B3GALNT1, B3GALT6, B4GALT1, 
B4GALT2, B4GALT3, B4GALT4, B4GALT7, CANT1, CROT, DBT, EXTL3, FAH, 
GART, GCDH, GM2A, GNS, GOT2, HADH, HADHA, HEXA, HMGCS1, HSD17B4, 
IDH1, IDH3A, IDH3B, IDH3G, LTA4H, MECR, MTHFD2, MTHFD2L, MTHFR, 
MTHFS, NAGA, NAGK, OGDH, PECR, PGM1, PIGB, PIGM, PIGO, PIGX, SCP2, 
SHMT1, XYLT1, XYLT2, hsa-miR-758-5p, hsa-miR-138-2-3p, hsa-mir-1236-
5p, hsa-miR-24-2-5p, hsa-miR-6872-3p, hsa-miR-338-3p, hsa-miR-15b-5p, 
hsa-miR-6790-5p, hsa-miR-6810-5p, hsa-miR-25-3p-92a_b, hsa-miR-181a-
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2-3p, hsa-miR-218-5p, hsa-miR-4447, hsa-miR-124-3p, hsa-miR-23a-3p, 
hsa-miR-93-5p, hsa-miR-137 

Cell migration 
and invasion 

ALDOC, ASAH1, CANT1, DAK, ENO1, ENO2, G6PC3, G6PD, GFPT1, GFPT2, 
GNPDA1, GNPDA2, GPI, H6PD, HK2, HKDC1, IDH1, KHK, LDHA, LDHB, 
LTA4H, ME2, MPI, NDUFA8, NDUFB8, NDUFS2, PFKL, PFKM, PFKP, PGAM1, 
PGLS, PGM1, PGM2, PKM, SDHC, SDHD, SLC1A5, SUCLA2, SUCLG2, TKT, 
TPI1, UQCRQ, hsa-miR-323a-5p, hsa-miR-6810-5p, hsa-miR-338-3p, hsa-
miR-3188, hsa-miR-7-5p, hsa-miR-485-5p, hsa-miR-4429, hsa-miR-
320a_b_c_d, hsa-miR-137, hsa-miR-128-3p, hsa-miR-23a-3p, hsa-miR-4257, 
hsa-miR-330-5p 

Stemness 

ACACA, ACACB, ACLY, ACOX1, ACSL1, ACSL3, ACSL4, ACSS2, ALAS1, 
ALDH1A3, ALDH1L2, CAD, CNDP2, COMT, CPS1, ELOVL1, ELOVL6, FASN, 
GART, GFPT1, GFPT2, GLS, GLUD1, GLUL, LRTOMT, MAOA, MTHFD2, 
MTHFD2L, MTHFR, MTR, PKM2, PPAT, PSPH, SHMT1, SLC1A3, hsa-miR-
500a-5p, hsa-miR-128-1-5p_2-5p, hsa-miR-4525, hsa-miR-24-2-5p, hsa-
miR-18a-5p, hsa-miR-770_770-5p, hsa-miR-10b-5p, hsa-miR-5698, hsa-
miR-15b-5p, hsa-miR-4447, hsa-miR-23a-3p, hsa-miR-218-5p, hsa-miR-
4463, hsa-miR-330-3p, hsa-miR-4429, hsa-miR-320a_b_c_d 

Drug resistance 

ABCC1, ABCC4, ABCC5, ACOX1, ACSS2, ALDH1L2, AMDHD2, CAD, CPS1, 
CPT1A, CPT2, G6PD, GART, GFPT1, GFPT2, GLS, GLUD1, GLUL, GNPDA1, 
GNPDA2, GNPNAT1, GPI, GSTM1, GSTM2, H6PD, HK2, HSD17B4, KHK, 
LDHA, LDHB, ME2, MPI, MTHFD2, MTHFD2L, MTHFR, MTHFS, PGAM1, 
PGLS, PGM1, PGM2, PMM1, PPAT, SHMT1, SOD1, SOD2, SOD3, SORD, hsa-
miR-3188, hsa-miR-339-5p, hsa-miR-873-3p, hsa-miR-330-5p, hsa-miR-
4463, hsa-miR-124-3p, hsa-miR-338-3p, hsa-miR-10b-5p, hsa-miR-181a-2-
3p, hsa-miR-320a_b_c_d, hsa-miR-4429, hsa-miR-138-2-3p, hsa-miR-23a-
3p, hsa-miR-485-5p, hsa-miR-15b-5p, hsa-miR-25-3p-92a_b, hsa-miR-
500a-5p, hsa-miR-211-3p, hsa-miR-330-3p 

 
 

Table C. 6: Significantly enriched metabolic pathways for the subnetworks of 
cellular phenotypes 

Phenotype Significantly Enriched Pathways 

Proliferation 
and growth 

hsa00562: Inositol phosphate metabolism, hsa01200: Carbon 
metabolism, hsa04070: Phosphatidylinositol signalling system, hsa00010: 
Glycolysis / Gluconeogenesis, hsa05230: Central carbon metabolism in 
cancer, hsa00190: Oxidative phosphorylation, hsa01230: Biosynthesis of 
amino acids, hsa00520: Amino sugar and nucleotide sugar metabolism, 
hsa00030: Pentose phosphate pathway, hsa00051: Fructose and mannose 
metabolism, hsa00620: Pyruvate metabolism, hsa04152: AMPK signalling 
pathway, hsa04922: Glucagon signalling pathway, hsa01212: Fatty acid 
metabolism, hsa00640: Propanoate metabolism, hsa04066: HIF-1 
signalling pathway, hsa04931: Insulin resistance, hsa00670: One carbon 
pool by folate, hsa00071: Fatty acid degradation, hsa01240: Biosynthesis 
of cofactors, hsa00052: Galactose metabolism, hsa00260: Glycine, serine 
and threonine metabolism, hsa00061: Fatty acid biosynthesis, hsa04810: 
Regulation of actin cytoskeleton, hsa04973: Carbohydrate digestion and 
absorption, hsa00500: Starch and sucrose metabolism, hsa00410: beta-
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Alanine metabolism, hsa03320: PPAR signalling pathway, hsa04068: 
FoxO signalling pathway, hsa04920: Adipocytokine signalling pathway, 
hsa05231: Choline metabolism in cancer, hsa00270: Cysteine and 
methionine metabolism, hsa04666: Fc gamma R-mediated phagocytosis, 
hsa04071: Sphingolipid signalling pathway, hsa04510: Focal adhesion, 
hsa00340: Histidine metabolism, hsa04213: Longevity regulating 
pathway - multiple species, hsa05213: Endometrial cancer, hsa05218: 
Melanoma, hsa04072: Phospholipase D signalling pathway, hsa05214: 
Glioma, hsa00350: Tyrosine metabolism, hsa00230: Purine metabolism, 
hsa04960: Aldosterone-regulated sodium reabsorption, hsa01521: EGFR 
tyrosine kinase inhibitor resistance, hsa04211: Longevity regulating 
pathway, hsa05222: Small cell lung cancer, hsa05235: PD-L1 expression 
and PD-1 checkpoint pathway in cancer, hsa04150: mTOR signalling 
pathway, hsa00280: Valine, leucine and isoleucine degradation, 
hsa03018: RNA degradation, hsa04370: VEGF signalling pathway, 
hsa01524: Platinum drug resistance, hsa04218: Cellular senescence, 
hsa04664: Fc epsilon RI signalling pathway, hsa05206: MicroRNAs in 
cancer, hsa05203: Viral carcinogenesis, hsa04662: B cell receptor 
signalling pathway, hsa04151: PI3K-Akt signalling pathway, hsa00020: 
Citrate cycle (TCA cycle), hsa04750: Inflammatory mediator regulation of 
TRP channels, hsa04550: Signalling pathways regulating pluripotency of 
stem cells, hsa04024: cAMP signalling pathway, hsa04012: ErbB 
signalling pathway, hsa00630: Glyoxylate and dicarboxylate metabolism, 
hsa04650: Natural killer cell mediated cytotoxicity, hsa04620: Toll-like 
receptor signalling pathway, hsa01523: Antifolate resistance, hsa04935: 
Growth hormone synthesis, secretion and action, hsa00330: Arginine and 
proline metabolism, hsa00250: Alanine, aspartate and glutamate 
metabolism, hsa00380: Tryptophan metabolism, hsa04668: TNF 
signalling pathway, hsa04210: Apoptosis, hsa04630: JAK-STAT signalling 
pathway, hsa04062: Chemokine signalling pathway, hsa05205: 
Proteoglycans in cancer, hsa04015: Rap1 signalling pathway, hsa04014: 
Ras signalling pathway, hsa01040: Biosynthesis of unsaturated fatty 
acids, hsa00360: Phenylalanine metabolism, hsa05200: Pathways in 
cancer, hsa00480: Glutathione metabolism, hsa00982: Drug metabolism - 
cytochrome P450, hsa00310: Lysine degradation, hsa00561: Glycerolipid 
metabolism, hsa00471: D-Glutamine and D-glutamate metabolism, 
hsa00072: Synthesis and degradation of ketone bodies, hsa00910: 
Nitrogen metabolism, hsa00770: Pantothenate and CoA biosynthesis, 
hsa00900: Terpenoid backbone biosynthesis, hsa00592: alpha-Linolenic 
acid metabolism, hsa00450: Selenocompound metabolism, hsa01210: 2-
Oxocarboxylic acid metabolism, hsa00053: Ascorbate and aldarate 
metabolism, hsa00040: Pentose and glucuronate interconversions, 
hsa00600: Sphingolipid metabolism, hsa00650: Butanoate metabolism, 
hsa00220: Arginine biosynthesis, hsa00240: Pyrimidine metabolism 

Survival 

hsa01200: Carbon metabolism, hsa01212: Fatty acid metabolism, 
hsa00071: Fatty acid degradation, hsa00280: Valine, leucine and 
isoleucine degradation, hsa00670: One carbon pool by folate, hsa01230: 
Biosynthesis of amino acids, hsa00601: Glycosphingolipid biosynthesis - 
lacto and neolacto series, hsa01210: 2-Oxocarboxylic acid metabolism, 
hsa00020: Citrate cycle (TCA cycle), hsa00534: Glycosaminoglycan 
biosynthesis - heparan sulfate / heparin, hsa00640: Propanoate 
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metabolism, hsa00563: Glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis, hsa00532: Glycosaminoglycan biosynthesis - chondroitin 
sulfate / dermatan sulfate, hsa00533: Glycosaminoglycan biosynthesis - 
keratan sulfate, hsa00603: Glycosphingolipid biosynthesis - globo and 
isoglobo series, hsa00513: Various types of N-glycan biosynthesis, 
hsa00062: Fatty acid elongation, hsa01040: Biosynthesis of unsaturated 
fatty acids, hsa00650: Butanoate metabolism, hsa00410: beta-Alanine 
metabolism, hsa00310: Lysine degradation, hsa00380: Tryptophan 
metabolism, hsa00531: Glycosaminoglycan degradation, hsa00515: 
Mannose type O-glycan biosynthesis, hsa00514: Other types of O-glycan 
biosynthesis, hsa03320: PPAR signalling pathway, hsa00510: N-Glycan 
biosynthesis, hsa00520: Amino sugar and nucleotide sugar metabolism, 
hsa00052: Galactose metabolism, hsa00630: Glyoxylate and dicarboxylate 
metabolism, hsa01523: Antifolate resistance, hsa00230: Purine 
metabolism, hsa01240: Biosynthesis of cofactors, hsa00592: alpha-
Linolenic acid metabolism, hsa00030: Pentose phosphate pathway, 
hsa00350: Tyrosine metabolism, hsa04975: Fat digestion and absorption, 
hsa00010: Glycolysis / Gluconeogenesis, hsa00400: Phenylalanine, 
tyrosine and tryptophan biosynthesis, hsa00604: Glycosphingolipid 
biosynthesis - ganglio series, hsa04024: cAMP signalling pathway, 
hsa00511: Other glycan degradation, hsa00061: Fatty acid biosynthesis, 
hsa00360: Phenylalanine metabolism, hsa00600: Sphingolipid 
metabolism, hsa00220: Arginine biosynthesis, hsa00500: Starch and 
sucrose metabolism, hsa00051: Fructose and mannose metabolism, 
hsa00240: Pyrimidine metabolism, hsa00480: Glutathione metabolism, 
hsa00330: Arginine and proline metabolism, hsa00270: Cysteine and 
methionine metabolism, hsa00250: Alanine, aspartate and glutamate 
metabolism, hsa00260: Glycine, serine and threonine metabolism, 
hsa00620: Pyruvate metabolism, hsa00590: Arachidonic acid metabolism, 
hsa00562: Inositol phosphate metabolism, hsa05230: Central carbon 
metabolism in cancer 

Cell migration 
and invasion 

hsa01200: Carbon metabolism, hsa00010: Glycolysis / Gluconeogenesis, 
hsa00030: Pentose phosphate pathway, hsa05230: Central carbon 
metabolism in cancer, hsa00520: Amino sugar and nucleotide sugar 
metabolism, hsa00051: Fructose and mannose metabolism, hsa01230: 
Biosynthesis of amino acids, hsa04066: HIF-1 signalling pathway, 
hsa00052: Galactose metabolism, hsa04922: Glucagon signalling pathway, 
hsa00500: Starch and sucrose metabolism, hsa00190: Oxidative 
phosphorylation, hsa03018: RNA degradation, hsa00020: Citrate cycle 
(TCA cycle), hsa00640: Propanoate metabolism, hsa00620: Pyruvate 
metabolism, hsa05022: Pathways of neurodegeneration - multiple 
diseases, hsa00230: Purine metabolism, hsa04152: AMPK signalling 
pathway, hsa04910: Insulin signalling pathway, hsa00480: Glutathione 
metabolism, hsa00250: Alanine, aspartate and glutamate metabolism, 
hsa00270: Cysteine and methionine metabolism, hsa01240: Biosynthesis 
of cofactors, hsa01210: 2-Oxocarboxylic acid metabolism, hsa00600: 
Sphingolipid metabolism, hsa00240: Pyrimidine metabolism, hsa00260: 
Glycine, serine and threonine metabolism, hsa00562: Inositol phosphate 
metabolism, hsa00590: Arachidonic acid metabolism, hsa00561: 
Glycerolipid metabolism, hsa04071: Sphingolipid signalling pathway 
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Stemness 

hsa00250: Alanine, aspartate and glutamate metabolism, hsa01212: Fatty 
acid metabolism, hsa00670: One carbon pool by folate, hsa01200: Carbon 
metabolism, hsa00061: Fatty acid biosynthesis, hsa01230: Biosynthesis of 
amino acids, hsa01240: Biosynthesis of cofactors, hsa00220: Arginine 
biosynthesis, hsa00640: Propanoate metabolism, hsa00620: Pyruvate 
metabolism, hsa00260: Glycine, serine and threonine metabolism, 
hsa00071: Fatty acid degradation, hsa00910: Nitrogen metabolism, 
hsa03320: PPAR signalling pathway, hsa01040: Biosynthesis of 
unsaturated fatty acids, hsa00350: Tyrosine metabolism, hsa00630: 
Glyoxylate and dicarboxylate metabolism, hsa01523: Antifolate 
resistance, hsa04922: Glucagon signalling pathway, hsa00471: D-
Glutamine and D-glutamate metabolism, hsa00230: Purine metabolism, 
hsa04931: Insulin resistance, hsa04724: Glutamatergic synapse, 
hsa04152: AMPK signalling pathway, hsa04910: Insulin signalling 
pathway, hsa00340: Histidine metabolism, hsa00062: Fatty acid 
elongation, hsa00520: Amino sugar and nucleotide sugar metabolism, 
hsa00410: beta-Alanine metabolism, hsa00330: Arginine and proline 
metabolism, hsa00010: Glycolysis / Gluconeogenesis, hsa05230: Central 
carbon metabolism in cancer, hsa00360: Phenylalanine metabolism, 
hsa00020: Citrate cycle (TCA cycle), hsa00240: Pyrimidine metabolism, 
hsa00982: Drug metabolism - cytochrome P450, hsa00830: Retinol 
metabolism, hsa00270: Cysteine and methionine metabolism, hsa00380: 
Tryptophan metabolism 

Drug resistance 

hsa00520: Amino sugar and nucleotide sugar metabolism, hsa01200: 
Carbon metabolism, hsa00250: Alanine, aspartate and glutamate 
metabolism, hsa00670: One carbon pool by folate, hsa00010: Glycolysis / 
Gluconeogenesis, hsa00030: Pentose phosphate pathway, hsa01523: 
Antifolate resistance, hsa05230: Central carbon metabolism in cancer, 
hsa00051: Fructose and mannose metabolism, hsa01240: Biosynthesis of 
cofactors, hsa00500: Starch and sucrose metabolism, hsa00220: Arginine 
biosynthesis, hsa00640: Propanoate metabolism, hsa00620: Pyruvate 
metabolism, hsa01212: Fatty acid metabolism, hsa00910: Nitrogen 
metabolism, hsa01230: Biosynthesis of amino acids, hsa04922: Glucagon 
signalling pathway, hsa00230: Purine metabolism, hsa00052: Galactose 
metabolism, hsa00480: Glutathione metabolism, hsa00630: Glyoxylate 
and dicarboxylate metabolism, hsa00071: Fatty acid degradation, 
hsa00471: D-Glutamine and D-glutamate metabolism, hsa03320: PPAR 
signalling pathway, hsa04931: Insulin resistance, hsa04066: HIF-1 
signalling pathway, hsa01040: Biosynthesis of unsaturated fatty acids, 
hsa00983: Drug metabolism - other enzymes, hsa00982: Drug 
metabolism - cytochrome P450, hsa00260: Glycine, serine and threonine 
metabolism, hsa00270: Cysteine and methionine metabolism, hsa00980: 
Metabolism of xenobiotics by cytochrome P450, hsa01524: Platinum drug 
resistance, hsa05206: MicroRNAs in cancer, hsa04024: cAMP signalling 
pathway, hsa00592: alpha-Linolenic acid metabolism, hsa00040: Pentose 
and glucuronate interconversions, hsa00240: Pyrimidine metabolism, 
hsa04973: Carbohydrate digestion and absorption, hsa00410: beta-
Alanine metabolism 
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Metabolic reprogramming is a hallmark of cancer. Changes in metabolism have been 
verified for their role in the progression of glioblastomas. Metabolic reprogramming 
allows the tumor cells to switch between phenotypes under changing growth condition 
that help these tumors to evolve and develop resistance against the therapeutic regimens. 
In the present thesis, the alternate routes of therapeutic escape, opportunistic mode of 
nutrient acquisition, and evolving metabolic routes to sustain oncogenic phenotypes 
under various growth conditions have been studied by formulating and analyzing 
computational and mathematical models.  

In order to gain a holistic perspective of the pathway behavior and condition specific 
changes in the metabolic network of glioblastoma, a constraint-based metabolic model 
was formulated and analyzed. Model simulations showed a major flux re-routing towards 
glutathione production. Cystine and glucose were observed to be the minimal essential 
nutrients that could sustain glioblastoma growth under limited nutrient availability. 
Glycine transporter in combination with the serine biosynthesis enzymes were proposed 
as potential therapeutic targets, as their knockout was observed to effectively reduce 
glioblastoma growth. 

To understand the changes in the redox and thiol status of the cells and the changes 
occurring in the oxidant-antioxidant balance during gliomagenesis, a dynamic ordinary 
differential equation model was formulated. Model analyses established that the 
changing dynamics of glutathione peroxidase, glutathione oxidoreductase and NADPH 
oxidase determines the oxidant-antioxidant balance during gliomagenesis. Parameters of 
non-intuitive reactions in the network like cystine reductase, glutathione synthase, and 
fructose-bisphosphate aldolase were observed to influence the ROS level and thiol ratio 
of the cells and were proposed to alter the ROS manipulative strategies in glioma 
treatment. 

The post-transcriptional regulation imposed by microRNAs on the metabolic genes was 
studied using graph theoretical approach. Using bipartite projection and backbone 
extraction techniques, the key regulatory microRNAs controlling central carbon, fatty 
acid, lipid, glycan, amino acid, and nucleotide metabolism were identified. Analysis 
showed that the central carbon metabolism, lipid, and amino acid metabolism were 
highly regulated by the microRNAs. The microRNA combinations (hsa-miR-15b-5p + hsa-
miR-500a-5p + hsa-miR-129-1-3p), (hsa-miR-15b-5p + hsa-miR-124-3p + hsa-miR-138-
2-3p), (hsa-miR-7-5p + hsa-miR-128-3p + hsa-miR-485-5p), (hsa-miR-15b-5p + hsa-miR-
23a-3p) and (hsa-miR-124-3p + hsa-miR-300-5p + hsa-miR-23a-3p) were proposed as 
target combinations regulating proliferation and growth, survival, cell migration and 
invasion, stemness and drug resistance in glioblastoma respectively, that could be used 
for miRNA-based therapeutic design. 
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Abstract Brain cancers demonstrate a complex meta-

bolic behavior so as to adapt the external hypoxic envi-

ronment and internal stress generated by reactive oxygen

species. To survive in these stringent conditions, glioblas-

toma cells develop an antagonistic metabolic phenotype as

compared to their predecessors, the astrocytes, thereby

quenching the resources expected for nourishing the neu-

rons. The complexity and cumulative effect of the large

scale metabolic functioning of glioblastoma is mostly

unexplored. In this study, we reconstruct a metabolic net-

work comprising of pathways that are known to be

deregulated in glioblastoma cells as compared to the

astrocytes. The network, consisted of 147 genes encoding

for enzymes performing 247 reactions distributed across

five distinct model compartments, was then studied using

constrained-based modeling approach by recreating the

scenarios for astrocytes and glioblastoma, and validated

with available experimental evidences. From our analysis,

we predict that glycine requirement of the astrocytes are

mostly fulfilled by the internal glycine–serine metabolism,

whereas glioblastoma cells demand an external uptake of

glycine to utilize it for glutathione production. Also,

cystine and glucose were identified to be the major

contributors to glioblastoma growth. We also proposed an

extensive set of single and double lethal reaction knock-

outs, which were further perturbed to ascertain their role as

probable chemotherapeutic targets. These simulation

results suggested that, apart from targeting the reactions of

central carbon metabolism, knockout of reactions belong-

ing to the glycine–serine metabolism effectively reduce

glioblastoma growth. The combinatorial targeting of gly-

cine transporter with any other reaction belonging to gly-

cine–serine metabolism proved lethal to glioblastoma

growth.

Keywords Astrocyte � Glioblastoma � Metabolic demand

reaction � Mitochondrial ATP synthesis � Glycine � Cystine

Introduction

Human brain, in order to ensure its proper functioning, has to

account for a highly perplexing conduct which is maintained

by the interplay between its distinctive cell sorts. An

emerging area of interest in the last decade, pertaining to

brainmetabolism, has been the study of behavioral aspects of

astrocytes (Bouzier-Sore and Pellerin 2013) and their

cancerous counterpart, glioblastoma (Wolf et al. 2010).

Several studies have been performed to understand the

metabolic alterations incurred within the astrocytes, which

lead to their phenotypic manifestation as glioblastoma

(Chinnaiyan et al. 2012). However, the cumulative effect of a

large scale metabolism on the metabolic functioning of

glioblastoma still remains unaddressed. The effect of the

mutual connectivity of the individual pathways within its

metabolic network and the difference in response they show

in the astrocytic and glioblastoma scenarios is also largely

unknown. Glioblastoma cells can exhibit diversified
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response to same stimulus and show a great metabolic

heterogeneity, which enable them to thrive even in a glucose

starved condition (Griguer et al. 2005). A few of the meta-

bolic phenomena, such as a higher accumulation of glycine

in the glioblastoma cells (Hattingen et al. 2009) and the

disruption of primary brain tumor growth with the inhibition

of cystine (Chung et al. 2005), are known, but the reason to

such behavior is still not understood properly. Knowledge

about the alternative metabolites, which help the glioblas-

toma cells to thrive with altered metabolism, also remains

largely unexplored.

One of the pioneering work in cancer biology was the

discovery of Warburg effect in 1924 (Warburg 1956),

which suggested that cancer cells might adapt to a primi-

tive glycolytic pattern of embryonic cells and mitochon-

drial injury as well as metabolic switching of glycolysis to

aerobic glycolysis might be essential for cancer develop-

ment. Several studies have been carried out to delineate the

advantage of such a modification in the tumorous cells.

These phenomena are also observable in glioblastoma,

enabling them to suffice their rapacious requirements

(Zhou et al. 2011). In addition to this remarkable discov-

ery, several other experimental and statistical analyses

have been conducted to delineate the phenomenal changes

in the properties of glioblastoma as an effect of metabolic

alterations in different enzymes belonging to different

pathways like tryptophan metabolism (Sahm et al. 2013),

cysteine metabolism (Ye et al. 1999), glutamine and glu-

tamate metabolism (Wise et al. 2008). Properties of these

individual metabolic pathways have been studied in both

astrocytes and glioblastoma, but the difference in their

response as a part of a large metabolic network, in the two

scenarios, is yet to be studied. A new arena of in silico

studies have also been employed in the past decade to

obtain a large-scale network understanding of glioblas-

toma. Different types of dynamic modeling approaches,

such as spatiotemporal modeling (Burgess et al. 1997;

Tracqui et al. 1995), partial differential equation modeling

(Swanson et al. 2003), ordinary differential equations, have

been used to detect the growth and invasion of glioblas-

toma cells (Mandonnet et al. 2008). These studies, how-

ever, are only a partial picture to the unaddressed

questions, and hence, further studies are required to address

the same. Further, the aforementioned studies have been

largely limited to understand the metabolism of glioblas-

toma in parts, and have not been focused to identify or

predict feasible drug targets on a network scale. Moreover,

these studies have also overlooked the context-dependent

understanding of glioblastoma metabolism and its role in

achieving specific biological goals (Banerji 2013).

Varieties of chemotherapeutic agents are available

commercially to treat cancer, possessing a high degree of

target specificity and better clinical manifestation. Gleevec

(imatinib), Iressa (gefitinib), Herceptin (trastuzumab),

rituximab are a few examples of presently available ther-

apeutics. However, due to multiple genetic and epigenetic

alterations, the progression and disease manifestation of

cancer turns out to be a complex phenomenon to under-

stand. The malignant cancer cell populations become

heterogeneous even within a specific cancer type contain-

ing diverse genetic changes, which further alters over time

due to genetic instability (Pelicano et al. 2006). A multiple

targeting approach in this scenario is favored over single

targets to effectively deal with the random mutations

generated in a cancer population. The effectiveness of the

available therapeutics also has to be monitored, as many of

the existing therapeutics are potentially harmful to the

normal tissues too and are neurotoxic in nature.

In the present work, to understand the complex differ-

ences in the metabolic behavior of astrocyte and glioblas-

toma, we develop a context-specific constraint-based

model for astrocyte/glioblastoma metabolism, and analyze

it using flux balance analysis (FBA). For specific com-

parison between the two scenarios, we have considered

those pathways which are known to get deregulated in

glioblastoma when compared to the normal astrocyte. Our

model accommodates a total of 13 pathways, the abnormal

functioning of which have been reported in glioblastoma

literature. The model has 247 reactions, with 39 exchange

reactions and 69 transport reactions associated with 147

genes. Analyzing this large network using flux balance

analysis, the differences in the individual pathway response

as a part of large metabolic network in astrocyte and

glioblastoma scenarios were delineated. It further aims to

capture the properties of the included pathways and

metabolites in glioblastoma cells (which help in its

growth), to understand the differences in the uptake and

utilization of metabolites (which can be categorized as

essential and non-essential) and release of overflow

metabolites in the two scenarios, and to predict probable

chemotherapeutic targets through in silico single and

double reaction knockout analyses of the glioblastoma

model.

The results generated from both astrocytic and

glioblastoma scenarios corroborated qualitatively with the

experimentally available information further validating its

feasibility in predicting biologically reasonable phenom-

ena. By analyzing the steady state flux profiles generated

by flux balance analysis of the model, the fate of a few

metabolites, their essentiality in glioblastoma growth and

the path followed by them to contribute to the optimization

of objective functions (mitochondrial ATP synthesis and

glioblastoma growth) were interpreted. Single and double

reaction knockout analyses were performed, to determine

the essentiality of the reactions involved in the metabolic

network, in governing the growth properties of
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glioblastoma. Potential drug targets were identified from

those set of essential reactions. To determine the extent of

regulation that could be imposed on those drug targets and

to analyze them quantitatively, they were further simulated

for chemotherapeutic intervention scenarios with the

motive of either reducing the glioblastoma growth to zero,

or to reduce it to the growth rate of a normal astrocyte.

Thus, our simple but extensive modeling approach

provides a deep insight into the consequences of glioblas-

toma metabolism substantiating the strength of suitable in

silico approaches in understanding metabolic networks and

predicting biologically reasonable disease scenarios.

Additionally, the classification of reaction knockouts

combined with simulation of chemotherapeutic interven-

tions could largely predict reaction pairs as feasible drug

targets, further supporting the large-scale applicability of

constraint-based models in predicting reasonable

chemotherapeutic target combinations.

Materials and methods

Model reconstruction

Information regarding the association of enzymes to crucial

metabolic reactions, their appropriate subcellular locations,

transports and exchanges were compiled using a variety of

data sources. The basis of this reconstruction was to

identify the gene–protein–reaction (GPR) network along

with appropriate transports and exchanges. The GPR was

reconstructed considering reactions that contribute to ATP

synthesis and glioblastoma growth.

The reactions considered in the model and their corre-

sponding Enzyme Commission Numbers (EC Numbers)

were curated from Expasy Enzyme (Bairoch 2000) and

KEGG (Kanehisa et al. 2014). The genes to the enzymatic

reactions considered in the model were obtained from

NCBI Gene (Edgar et al. 2002). Molecular function of

these reactions and their biological process was obtained

from UniProt (Consortium 2014), KEGG (Kanehisa et al.

2014) and through literature survey. Information regarding

the subcellular localization of the reactions was compiled

through extensive literature search and those reactions, for

which literature support for subcellular localization was

limited or not available; cytosol was taken to be the default

compartment of the reaction. A list of reactions, their

corresponding genes, enzymes, UniProt ID and KEGG ID

was compiled with appropriate literature support to gather

evidences related to biological significance and subcellular

localization of the reactions (Online Resource 1). Most of

the internal reactions along with 12 transport reactions

were associated with their corresponding genes, which

accounted for 147 genes in the model. All the metabolites

and the corresponding reactions in which they were

involved were distributed into five different compartments:

Extracellular space, Cytoplasm, Mitochondria, Mitochon-

drial intermembrane space and Nucleus. All these infor-

mation were organized in the rBioNet toolbox, a MATLAB

extension of the COBRA Toolbox (Schellenberger et al.

2011), to reconstruct the constraint-based metabolic model.

The reconstructed metabolic network consisted of 13

pathways that are significantly affected during the trans-

formation from astrocyte to glioblastoma (see Table S1 of

Online Resource 2). The detailed pathway diagram has

been drawn in CellDesigner version 4.3 and has been

provided in Fig. S1 of Online Resource 2.

Flux balance analysis (FBA)

Flux balance analysis is a mathematical approach to analyze

the flow of metabolites through a metabolic network, where

themetabolic reactions are represented in a tabulated form of

reaction matrix, of stoichiometric coefficients of each reac-

tion. In our metabolic network, this relationship was estab-

lished between the metabolites and the reactions in the form

of an S-matrix which comprised of 159 metabolites and 247

reactions, building up the S-matrix of dimension

‘159 9 247’. The score assigned to each element of the

S-matrix, Sxy, represented the stoichiometry of the metabo-

lite ‘x’ in the reaction ‘y’. A positive score signified the

production of the metabolite and a negative score implied its

consumption in the reaction. The column vector v had 247

fluxes, including 39 exchange reactions and 69 transport

reactions. FBA formalizes the flux distribution through the

whole metabolic network as the dot product of the S-matrix

with the vector v. All the reactions in the model were orga-

nized in the rBioNet toolbox, where their fluxes were con-

strained between a lower bound vlb and an upper bound vub.

All the reversible reactions were bounded between

vlb = -1000 and vub = 1000. The irreversible reactions in

the model were bounded either from 0 to 1000 or-1000 to 0

with respect to the substrate and products defined for that

reaction as per available information from literature. The

bounds to the exchange reactions were fixed as per the

requirement of the system for uptake or release of the

exchange metabolites. Those exchanges which were known

to be taken in were bounded between [-1000 to 0] and those

which were known to be released out were bounded between

[0 to 1000]. Rest of the exchanges was bounded between

[-1000 to 1000] to analyze their role in the metabolism by

simulating the model using FBA.

Selection of objective function

The metabolic requirement of the cancerous cells

(glioblastoma, in the present case) is not completely
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sufficed by diverting flux towards production of ATP

through Oxidative Phosphorylation, which necessitates the

requirement of an altered metabolism which can fulfill both

the energy and metabolic requirement for the growth of the

cells. Therefore, in our study, we defined two objective

functions:

1. ATP synthesis through oxidative phosphorylation

(ATPSyn)

ATPSyn ¼ adp m½ � þ pi m½ � þ 4hþ i½ �
! h2o m½ � þ atp m½ � þ 3hþ m½ � ð1Þ

2. a metabolic demand reaction that will dually fulfill the

requirements of growth and ATP (GBM_BM). To

define the metabolic requirement of the model ribose-

5-phosphate, r5p(c), oxaloacetate, oaa(m), succinate,

succ(m) and glutathione glt(c) were included as

components of the objective function, selected on the

basis of their contribution as (a) precursor to the

nucleotide biosynthesis and synthesis of amino acids

like valine, lysine, methionine, threonine, etc. (Lee

et al. 2006), (b) intermediates for maintaining redox

balance in different cellular compartments and biosyn-

thesis of other cellular components required for cell

growth (Covert et al. 2001; Pistollato et al. 2010), (c)

preventing damage to cellular components caused by

reactive oxygen species produced due to hypoxia or

other cellular stress (Chung et al. 2005):

GBM BM ¼ oaa m½ � þ glt c½ � þ r5p c½ � þ succ m½ � ð2Þ

Creation and validation of astrocytic

and glioblastoma scenario

Astrocytic brain tumors, commonly known as glioblas-

toma, are the most frequent human brain tumors, encom-

passing 50 % of the cases (Jellinger 1977). These emerge

as manifestations of multiple alterations in the metabolic

(Wolf et al. 2010) and signaling pathways (Kleihues and

Ohgaki 2000) of astrocytes. Hence, in the model, selected

pathways which were known to be deregulated in the

astrocyte-derived glioblastoma (see Table S1 of Online

Resource 2) were considered to define the metabolic dif-

ferences between astrocyte and glioblastoma scenarios.

Bounds to the flux through a few enzymes which defined

the differences between the two scenarios were assigned on

the basis of literature support. Both the objective functions

were optimized for the two scenarios. Limited bounds were

assigned to a few reactions to create the astrocyte scenario.

The rest of the reactions fluxes were allowed to vary

between a wide range of [-1000 to 1000] or [0 to 1000] or

[-1000 to 0] as per the reversibility or irreversibility of the

reactions. The model was then simulated to obtain results

that were in accordance with the experimentally available

data defining the features of astrocyte (Mangia et al. 2009;

Marrif and Juurlink 1999; Pellerin and Magistretti 1994).

Bounds to the mitochondrial reactions—‘glutaminase’

[-50, 50], ‘glutamate dehydrogenase’ [-150, 150], ‘mi-

tochondrial pyruvate carboxylase’ [-10, 10] and cyto-

plasmic reactions—‘acetyl-CoA carboxylase’ [0, 100], ‘L-

carnitine O-palmitoyltransferase’ [0, 20], and ‘cytoplasmic

malate dehydrogenase’ [-50, 50], were fixed and the

model was analyzed using FBA to create the astrocytic

scenario.

Perturbations were performed to the same astrocytic

model by varying the lower and upper bounds to a few

reactions that were experimentally found to be deregulated

in glioblastoma, and then the model was simulated to

create the glioblastoma scenario. Bounds were released to a

few reactions, which were imposed in the astrocytic sce-

nario: ‘glutaminase’ [-1000, 1000] and ‘acetyl-CoA car-

boxylase’ [0, 1000]. New bounds were assigned to another

set of reactions to generate the glioblastoma scenario:

‘glutamate dehydrogenase’ [-200, 200], ‘Cytochrome c

Oxidase (complex IV)’ [-10, 10], ‘Trans_Glutamate

(ATP)’ [-90, 90] and ‘glycine exchange’ [-500, 500].

This model was analyzed using both ‘ATPSyn’ and

‘GBM_BM’ as objective function. This model was again

validated with experimental data available for glioblastoma

(Hertz and Zielke 2004; Wise et al. 2008; Ye et al. 1999).

The effectiveness of GBM_BM in determining the growth

properties of glioblastoma was verified with experimental

evidence. The result has been provided in Fig. S2 of Online

Resource 2.

In-silico prediction of minimal essential metabolite

for glioblastoma growth

Glioblastoma cells are grown in commercially available

MEM or DMEM media (Anton and Glod 2014; Guessous

et al. 2013; Ye et al. 1999). However, due to lack of suf-

ficient literature that report the essential metabolites

required for glioblastoma growth even at glucose starved

conditions, an in silico simulation was performed to check

the fate of some key metabolites that contribute to the

growth in the glioblastoma. The entry of each carbon

source was considered in the model, one at a time and the

corresponding solution of the GBM_BM objective function

(growth) was computed. Also, the fate of the most essential

metabolite with another input carbon source within the

model was checked and the optimal solution of the

GBM_BM objective was calculated. This was performed to

identify the most important carbon sources required for

enhancing glioblastoma growth.
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Single and double reaction knockouts

in glioblastoma

A reaction knockout strategy was chosen, instead of gene

knockout approach, to completely nullify the functional

effect of the reaction in the network. Reaction knockout

predictions allowed the identification of reactions that

could be targeted for either completely inhibiting or

reducing the glioblastoma growth. Each of the 247 reac-

tions in the metabolic network was knocked down indi-

vidually to predict the mutations that could be lethal to the

glioblastoma growth. For performing the knockout, flux

through each reaction in the network was constrained to

zero and solution of the GBM_BM objective function was

computed for each knockout. Double reaction knockouts

were also performed, with a combination of two reactions

to be knocked down simultaneously. The single and double

knockouts were classified on the basis of percentage

reduction of flux through the objective function,

GBM_BM, from its optimal value. The optimal value of

the objective function for the astrocytic scenario in the

model corresponded to the normal growth rate.

Simulation of chemotherapeutic interventions

Further, we filtered the results of double reaction knockouts

for identifying feasible chemotherapeutic combinations to

target glioblastoma growth. For performing in silico

chemotherapeutic interventions, we divided the reactions

into three groups as per their essentiality. We predicted the

putative feasible ranges for each of these reaction combi-

nations, in which chemotherapeutics can effectively target

glioblastoma growth either for its complete inhibition or

bring it back to the normal astrocytic growth rate.

Results

Properties of the model

The present context-specific model for glioblastoma

metabolism has a total of 247 reactions, with 39 exchange

reactions and 69 transport reactions. Most of the internal

reactions along with a few transport reactions have been

associated with their corresponding genes, which accounts

for 147 genes in the model.

The present model for glioblastoma metabolism can be

classified on the basis of the following four categories: (1)

enzyme commission number, (2) gene non-gene association,

(3) sub-cellular locations, and (4) metabolic processes

(Fig. 1). A large number of the reactions in the model

belonged to the class 1 category of enzyme classification i.e.,

the oxidoreductases (22 %).These set of enzymes catalyze the

oxidation of one chemical species and the simultaneous

reduction of the other by transfer of electrons fromone species

to another. The other classes of enzymes in this classification

scheme were the transferases (14 %) followed by lyases

(10 %), hydrolases (4 %), isomerases (2 %), and ligases

(2 %). Another 28 % of the reactions belonged to transport

reactions and 16 % to extracellular exchange reactions,which

occurred spontaneously in the system (Fig. 1a).

The reactions can also be classified on the basis of their

association with genes to understand gene reaction asso-

ciations (Fig. 1b). 60 % of the model reactions were gene-

associated, out of which 6 % were transport reactions. The

rest of the reactions were classified as: Non-Gene associ-

ated Exchange Reactions (16 %), Non-Gene associated

Intracellular Reactions (2 %) and Non-Gene associated

Transport Reactions (22 %).

In the classification shown in Fig. 1c, the cytosolic and

mitochondrial reactions contributed to 54 % of the total

reactions in the model. 2 % of the reactions belonged to the

mitochondrial intermembrane space model compartment

that specifically accounted for oxidative phosphorylation.

The transport reactions were categorized according to the

membrane to which it is associated. Transports accounted

for 30 % of the total reactions: Mitochondrial membrane

spanning (11 %), Nuclear membrane spanning (2 %) and

Plasma Membrane spanning (17 %).

With reference to the metabolic processes, 23 % of the

reactions belonged to fatty acid metabolism inclusive of

both biosynthesis and beta oxidation of palmitic acid. The

rest of the pathways contributed to 30 % of the total count

of which 14 % belonged to Glycolytic, PPP, TCA cycle

and Oxidative phosphorylation pathway and 2 % were

contributed each by Glycine–Serine Metabolism, Cysteine

Metabolism, Methionine Metabolism and Glutamate

Metabolism, without taking into account the transport and

exchange reactions. Another set of reactions, namely,

cytosolic ATPase (ATPS), cytoplasmic malate dehydro-

genase (MDH(Cyto)), Phosphoenolpyruvate carboxykinase

(GTP) (PEP_CarbK_1), mitochondrial pyruvate carboxy-

lase (Pyr_Carbm) which could not be assigned strictly

under any particular pathway, were categorized as ‘Others’

which contributed 2 % of reactions to the (Fig. 1d).

Validation of astrocytic and glioblastoma model

The reconstructed metabolic model was validated for both

the astrocytic and the glioblastoma scenarios, using mito-

chondrial ATP synthesis as the objective function. The

astrocytic scenario was created first, by fixing bounds of a

few reactions. Few known perturbations from experiments

were introduced to the astrocytic scenario so as to create

the glioblastoma scenario (See ‘‘Materials and methods’’

section for details).
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Astrocyte

Required changes were made to the bounds of certain

reactions during simulation of the astrocyte model and the

optimal range of bounds within which it showed the

properties of astrocyte was estimated (see ‘‘Materials and

methods’’ section). The model astrocyte scenario was

analyzed and validated, using mitochondrial ATP synthesis

(ATPSyn) as the objective function. The astrocyte scenario

was validated for a number of experimental observations,

such as pyruvate recycling, lactate production and effect of

glutamate.

Astrocytes prefer a glucose-dependent metabolism

where glucose is catabolized to pyruvate that enters the

TCA cycle thereby leading to ATP synthesis (Mangia et al.

2009) and partly to the formation of lactate so as to suffice

the neuronal requirement. This property was examined in

the model astrocytic scenario by performing a robustness

analysis of glucose uptake with increasing oxygen uptake.

The default flux balance analysis (FBA) of model astro-

cytic scenario suggested an optimal flux of 160 for oxygen

uptake from the environment. The uptake of oxygen was

thus, varied up to its optimal flux and its effect on glucose

uptake was observed. Increase in oxygen uptake led to

linear but proportional increase in glucose uptake (Fig. 2a).

This inferred the utilization of glucose to produce lactate

by the astrocytes without affecting the mitochondrial res-

piratory chain. Further, a slight dip in the glucose uptake

Fig. 1 Classification of the properties of reconstructed metabolic model. The model reconstruction has been classified on the basis of a enzyme

commission number or E.C. number, b gene-non gene association, c cellular compartments, and d metabolic processes, respectively
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rate was observed when the flux through the oxygen uptake

was more than 130. But simultaneously, flux through

mitochondrial ATP synthesis continued to increase, signi-

fying that the decrease in glucose uptake did not affect the

ATP synthesis. The probable reason for this may be the

recycling of pyruvate from the TCA cycle intermediates.

Reports also suggest that one of the TCA cycle interme-

diates, citrate, may produce oxaloacetate, which is subse-

quently converted to pyruvate through the activity of malic

enzyme or by the combined activity of PEP carboxykinase

and pyruvate kinase (Sonnewald et al. 1996).

Similar to this, model simulations suggested recycling

of pyruvate by utilization of TCA produced oxaloacetate

through PEP carboxykinase and pyruvate kinase reactions.

This resulted in a reduced dependence of pyruvate pro-

duction on glucose uptake. The pyruvate so formed was

catabolized into the TCA cycle and compensated for

maintaining ATP production proportional to oxygen

uptake.

The activity of lactate dehydrogenase and pyruvate

kinase increased during anoxic conditions as compared to

normoxic conditions in astrocytes (Marrif and Juurlink

1999). To verify this property, normoxic and hypoxic

conditions were created in the model by constraining the

oxygen uptakes at the optimum (flux value = -120) and

low (flux value = -2) values and ensuring sufficient glu-

cose uptake in the model. It was observed qualitatively that

the model is capable of capturing this feature of astrocytes

(Fig. 2b). Although the actual experimental result was

generated by incubating the astrocyte cells in a completely

oxygen deprived anoxic condition for 6 h, creating such a

situation in the in silico analysis would lead to zero ATP

synthesis (objective function considered for validation) in

the model due to its dependence on oxygen. Hence, the

property was verified for hypoxic conditions only. Similar

pathway-based down-regulation in activity of certain pro-

teins under hypoxic stress has been reported earlier (Maity

et al. 2000) but for the signaling pathways.

In astrocytes, the uptake of glucose increases with

increase in glutamate uptake thus leading to increased

lactate production (Pellerin and Magistretti 1994). This

situation was created in the model by regulating the

exchanges of glucose, glutamate, glutamine and oxygen.

By varying the glutamate uptake from 0 to 450, a corre-

sponding increase in glucose uptake and hence, lactate

production was observed during model simulations.

Fig. 2 Validation of astrocyte scenario. Properties of astrocyte:

a increase in glucose uptake driven towards mitochondrial ATP

synthesis and lactate production, b increase in the activity of lactate

dehydrogenase and pyruvate kinase in hypoxia conditions, c increase
in glucose utilization and lactate production with increasing glutamate

uptake
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Further, it was observed that highest lactate production was

at a glutamate uptake flux of 450 (Fig. 2c).

Glioblastoma

In the model, the astrocytic scenario was further perturbed to

create the glioblastoma scenario. To validate the glioblas-

toma scenario, steady state fluxes of certain reactions

obtained by simulating for glioblastoma scenario was com-

pared with that of the astrocyte scenario, while keeping all

the nine inputs open to the system. The ‘‘Warburg effect’’,

which states a reduction of ATP production through mito-

chondrial respiration and an increase in glucose utilization to

increase the flux towards aerobic glycolysis (Zhou et al.

2011), was observed in the glioblastoma scenario (Fig. 3a).

For further validation of this scenario, few experimental

observations were replicated from the model. Glutaminol-

ysis is a known property of glioblastoma cells, where the

uptake and utilization of glutamine is favored over gluta-

mate for compensating the loss of glutamate through cys-

teine–glutamate antiporter (Wise et al. 2008), which is a

property that is exactly opposite to that of astrocytes (Hertz

and Zielke 2004). Also, uptake of cystine increases in the

glioblastoma cells due to enhanced activity of cystine–

glutamate antiporter (Ye et al. 1999). All these differences

in the exchange properties of glioblastoma could be

observed through our model, when the entry of all the input

metabolites was allowed (Fig. 3b).

Validation of glioblastoma metabolic demand

reaction (GBM_BM)

A separate metabolic demand reaction was also introduced

in the model glioblastoma scenario so as to understand the

influence of different metabolites on glioblastoma growth.

Considering this reaction as the cellular objective, the

glioblastoma scenario was further studied for its metabolic

properties. All the further analyses have been performed

keeping the GBM_BM metabolic demand reaction as the

objective function. For the verification of the objective

function—‘GBM_BM’ in representing the properties of

glioblastoma, a qualitative analysis was performed to

compare the activity of certain reported reactions in the

astrocytic and glioblastoma scenario. The fold change in

activity from astrocytic to glioblastoma scenario as pre-

dicted from the model was compared to existing proteome

data extracted from young glioblastoma patients (Deighton

et al. 2014). The results of this comparison are listed in

Table 1. Data was available as fold change in expression

for eight reactions of the model. Out of the eight reactions,

predicted activity for five reactions was qualitatively found

to be in correspondence with the experimental

observations.

Opposing roles of glycine and glutamate uptake

in astrocytes

Evidences state that glycine content of neuronal cells was

higher than that of glial cells (Roux and Supplisson 2000).

Also, most of the CNS tissues sufficed their glycine

requirement via the internal glycine–serine metabolism

pathway derived from glucose via 3-phosphoglycerate

(Nicklas and Browning 1978), even though astrocyte cul-

tures fed with glycine were capable of utilizing it by

maintaining intracellular levels of glutathione, serine and

creatine (Dringen et al. 1998). Further, high uptake of

glycine in astrocytes was observed to be tightly coupled

with high secretion of Na? and Cl- (Zafra and Gimenez

Fig. 3 Validation of glioblastoma scenario. Properties of glioblastoma: a reduced mitochondrial ATP synthesis and increased glucose utilization

in glioblastoma scenario; b reversal in glutamate and glutamine utilization and increase in cystine uptake in glioblastoma scenario
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1986). In the model, we have assumed the uptake of gly-

cine to be a normal uptake devoid of its coupling with Na?

and Cl-. To simulate the effect of variation in extracellular

Na? and Cl- ions on glycine uptake, the bounds on glycine

uptake in the astrocytic scenario was varied. Further,

bounds on uptake of all the aforementioned input

metabolites were released so as to allow their utilization

within the model. It was observed that glycine uptake had a

dominant influence on glutamate/glutamate uptake cycle of

astrocytes. Glutamate taken in by the cell is catabolized

through TCA, glutamine production and release, and

release of glutamate through cystine–glutamate antiporter.

Under low glycine uptake (flux value of glycine uptake

\-60), most of the glutamate taken into the cell, forms

glutamine and is released from the cell ensuring lower

uptake of cystine and hence, less glutamate release through

cystine–glutamate antiporter (Fig. 4). Whereas, increased

glycine uptake is driven towards increased synthesis of

glutathione. Simultaneously, an equal increase in flux

through cystine uptake (cystine–glutamate antiporter) also

takes place. Cystine is then provided for cysteine biosyn-

thesis, which combines with glycine for glutathione pro-

duction. For increased uptake of cystine, an equal efflux of

glutamate through the antiporter is also required. Gluta-

mate required for this efflux is provided by its uptake

through glutamate-ATP transporter. To compensate for the

amount of glutamate lost through efflux, glutamine uptake

increases and this glutamine leads to glutamate synthesis.

This result suggests that the astrocyte prefers higher gly-

cine uptake so as to combat oxidative stress whereas a

lower uptake of glycine is preferred when there is a higher

requirement of glutamine by the surrounding neurons.

Difference in pathway response

between the astrocytic and glioblastoma scenarios

Cells tend to either maximize ATP synthesis or optimally

use metabolites from the environment to satisfy their cel-

lular demand for optimum growth. The choice of an

objective function that can be used to capture actual

Table 1 Comparison of model prediction with the data available for enzyme expression in young patients

Uniprot

ID

Reaction name Model

abbreviation

Fold

change

Model

prediction

Gene

abbreviation

Fold

change

Experimental

prediction

O43175 D-3-phosphoglycerate dehydrogenase PGDH 0.9313 D PHGDH 0.55 D

P04075 Fructose-bisphosphate aldolase A FBA 0.9175 D ALDOA 0.71 D

P50213 Isocitrate dehydrogenase [NAD] subunit

alpha, mitochondrial

IDH 0.0000 D IDH3A 0.48 D

P18669 Phosphoglycerate mutase 1 PGM 2.4046 U PGAM1 1.6 U

Q9Y617 Phosphoserine aminotransferase PST 0.9313 D PSAT1 0.53 D

P00367 Glutamate dehydrogenase, mitochondrial GlutDH 0.0000 D GLUD1 1.4 U

P60174 Triosephosphate isomerase TPI 0.7401 D TPI1 2.1 U

P17174 Aspartate aminotransferase, cytoplasmic ASPTc 1.0732 U GOT1 0.53 D

N.B.: Regulation in enzymatic expression (up-regulation or ‘U’ and down-regulation or ‘D’) for eight reactions present in our model could be

related to the enzymatic profile available for young glioblastoma patients

Fig. 4 Effect of glycine uptake

on glutamate utilization by

astrocyte. Change in the uptake

and release of glutamate,

glutamine and cystine–

glutamate antiporter with

increasing uptake of glycine in

the astrocyte scenario. The

uptake of glutamate reduces

with increasing uptake of

glycine and the glutamine

exchange reverses its direction

of flow of flux
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biological scenarios is a primary requirement for per-

forming FBA. To understand the roles of the aforemen-

tioned cellular objectives, the model was simulated in both

the astrocytic and glioblastoma scenarios for the two

objective functions: mitochondrial ATP synthesis and

GBM_BM metabolic demand reaction separately (See

‘‘Materials and methods’’ section).

Maximization of mitochondrial ATP synthesis

FBA simulations for maximization of ATP synthesis

revealed a number of metabolic features of the glioblas-

toma scenario.

1. Increase in glycolytic flux in glioblastoma Simulations

for ATP synthesis as the objective function demon-

strated a significant increase in the flux through the

glycolytic and pentose phosphate pathways in the

glioblastoma scenario as compared to the astrocyte but

a corresponding decrease in ATP synthesis (Fig. 5a, b).

To create the glioblastoma scenario, a reduced activity

of Complex IV of the electron transport chain was

assumed (Chatterjee et al. 2006). ATP synthesis is

largely dependent on Complex IV for redox balance.

Hence, decreased ATP synthesis is observed. Under

the reduced activity of Complex IV, the deficiency of

electrons for ATP synthesis is partly met through

Complex I and III of electron transport chain. This led

to an increased synthesis of oxaloacetate from phos-

phoenolpyruvate through the PEP carboxykinase and

aspartate aminotransferase reactions. Hence, flux

through glycolysis is largely increased in the glioblas-

toma scenario for the provision of phosphoenolpyru-

vate. The glycolytic dependence of ATP synthesis is a

unique feature of glioblastoma cells (when compared

to astrocytes) that could be captured from the model

(Vander Heiden et al. 2009). A comparison of the

steady state flux profiles of astrocyte versus glioblas-

toma with ATPSyn as objective has been provided in

Table S2 of Online Resource 2.

2. Increased cystine uptake in glioblastoma Simulations

for ATP synthesis as the objective function also

demonstrated an increased uptake of cystine (Fig. 5c).

The total flux of cystine is distributed into cysteine

biosynthesis which is then distributed towards a

relatively low amount of glutathione biosynthesis

(Fig. 5f) and largely towards production of pyruvate

through the cysteine dioxygenase (CD), cysteine

sulfinate transaminase (CST), and the spontaneous

3snpyr (SPON1) reactions. This pyruvate is utilized for

acetyl coA synthesis and hence, the biosynthesis of

fatty acids which are further released in the extracel-

lular environment.

3. Increased catabolism of glutamine in glioblastoma

Reactions belonging to glutamate metabolism showed

a higher activity which was due to higher glutaminol-

ysis in glioblastoma scenario (Wise et al. 2008). This

was due to the uptake of glutamine by the glioblastoma

cells, from external medium, which was converted to

glutamate within the cell. The glutamate that was

formed was mostly used by the cystine–glutamate

antiporter (anti_cystine_glut) in order to uptake cys-

tine. Cystine then is utilized in the cysteine metabolism

pathway for pyruvate synthesis that enters TCA cycle

(Fig. 5d).

4. Decreased glycine–serine biosynthesis in glioblastoma

Simulations of the model for ATP synthesis as the

objective function also demonstrated an increased

uptake of glycine (Fig. 5e). It could be observed that

in glioblastoma, glycine was preferred to be taken

inside the cell whereas in contrary it is being synthe-

sized within the astrocyte. This was because the

glycolytic flux was completely utilized into TCA cycle

for maximizing ATP production instead of being

distributed into the mitochondrial TCA cycle and

glycine–serine metabolism.

Maximization of the metabolic demand

Qualitatively, the same trend of pathway response was

observed for the two scenarios while optimizing the model

for the metabolic demand reaction ‘GBM_BM’. Although,

a few more differences was further observed while con-

sidering the GBM_BM demand reaction.

1. Increased flux through glycolysis and pentose-phos-

phate pathway in glioblastoma Simulating themodel for

GBM_BM objective function in both the scenarios

suggested an increased flux through the glycolysis and

pentose-phosphate pathway (PPP) reactions (Fig. 6a, b).

This increased flux is contributed by the glycine uptake

through the phosphoglycerate dehydrogenase (PGDH)

reactions into glycolysis and hence, PPP so as to provide

for ribulose-5-phosphate present in the GBM_BM

objective. Further, the lower part of glycolysis was

observed to be more active as compared to the upper

reactions as reported in a study (Oudard et al. 1996),

where a low activity of hexokinase was observed due to

the loss of chromosome 10. Apart from this, some

amount of glycine is partly distributed through the

phosphoenolpyruvate carboxykinase (PEP_CarbK_1)

reaction for production of oxaloacetate and succinate

which is part of the GBM_BM demand reaction. A

comparison of the steady state flux profiles of astrocyte

versus glioblastoma with GBM_BM as objective has

been provided in Table S3 of Online Resource 2.
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2. Increased cystine uptake in glioblastoma Simulating

the model for GBM_BM objective function in both the

scenarios further demonstrated a higher increase in

cystine uptake and its metabolism as compared to the

model simulations using ATP synthesis as objective

(Fig. 6c). This was because of the higher requirement

Fig. 5 Pathway response with maximization of mitochondrial ATP

synthase, ‘ATPSyn’ as the objective. Flow of flux through the

different reactions of a glycolysis, b pentose phosphate pathway,

c cysteine metabolism, d glutamate metabolism, e glycine–serine

metabolism and f glutathione metabolism pathway while maximizing

mitochondrial ATP synthesis

Exploring the differences in metabolic behavior of astrocyte and glioblastoma: A flux…

123



of glutathione to meet the metabolic demand of

glioblastoma cells to combat oxidative stress.

3. Reversal of TCA cycle towards production of malate

and fumarate in both scenarios A back flux in TCA

cycle, from oxaloacetate to fumarate was also observed

in experiments, in both cultured astrocytes and in

in vivo conditions, which was due to the activity of

mitochondrial pyruvate carboxylase (Brekke et al.

2012). Through the model simulation, similar proper-

ties in the glioblastoma scenario were observed too

(Fig. 6d). The flux through the fumarate hydratase

(FUMH) and malate dehydrogenase (MDH) reactions

was reversed and enhanced in the glioblastoma

scenario. The reason for this reversal was to maximize

succinate production through TCA cycle, which was

an important component of the metabolic demand

reaction.

Essentiality of metabolites and reactions

in glioblastoma growth

The important metabolites that contributed significantly to

glioblastoma growth were identified. Single and double

reaction knockouts analyses were performed to identify the

sets of reactions, which could significantly reduce

glioblastoma growth. The analyses were performed using

the GBM_BM objective function.

Determination of metabolites essential for glioblastoma

growth

Glioblastoma cell lines can show extremely long survival

under glucose starved conditions by undergoing physio-

logical adaptations to utilize alternatives and thus, combat

nutrient deprivation (Griguer et al. 2005). In order to

Fig. 6 Pathway response with maximization of metabolic function,

‘GBM_BM’ as the objective. Flow of flux through the different

reactions of a glycolysis, b pentose phosphate pathway, c cysteine

metabolism, d TCA cycle; while maximizing the metabolic function,

GBM_BM, for glioblastoma growth. A positive flux shows progres-

sion of reaction in forward direction and a negative flux implies flow

of flux in reverse direction
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determine those metabolites which essentially contributed

to glioblastoma survival, even at glucose starved condi-

tions, the metabolic fate of eight carbon sources namely,

glucose, cystine, methionine, tryptophan, palmitate, gluta-

mate, glutamine, and glycine through the network, was

investigated. From the simulation results, cystine was

found to be an essential metabolite for glioblastoma

growth, although glucose was largely required for satisfy-

ing the metabolic demand and increasing glioblastoma

growth rate. A complete deprivation of glucose did not lead

to zero growth although growth rate was largely reduced.

Previous experimental findings have also suggested a large

reduction in cell growth due to glycolytic blockade by

glucose starvation (Griguer et al. 2005). Also, effect of

glucose in combination with cystine was more pronounced

in glioblastoma growth, instead of cystine alone as input

(Fig. 7). The simultaneous uptake and utilization of cystine

and glucose served as the minimal metabolite requirement

that could drive all those pathways which lead to synthesis

of objective function components [Eq. (2)]. The essential

role of cystine is to produce glutathione that would be

required to combat oxidative stress. This observation was

in agreement with the available experimental evidences,

where cystine uptake was proven to be essential (Chung

et al. 2005) and cysteine metabolism was identified to be a

novel pathway in the glioblastoma growth (Prabhu et al.

2014). And the role of glucose was to produce ribulose-5-

phosphate, oxaloacetate and succinate through PPP and

TCA cycle. Consequently, this minimal combination

resulted in a solution higher than any other combination,

thereby accounting for optimal glioblastoma growth.

Restricting the uptake of either of these metabolites led to

either zero growth or a highly reduced growth rate (\20 %

of the optimal value).

Predictions from single and double reaction knockouts

From the observations made in the previous section,

cystine was found to be an important metabolite for

glioblastoma survival. To further analyze the essentiality of

the reactions involved in the metabolism of cystine, and

also to find the other important reactions in the model,

which could be targeted for reducing glioblastoma growth,

single and double reaction knockout analyses were per-

formed (Table 2 and Table S4 and Table S5 of Online

Resource 2). All the single and double reaction knockout

results were categorized as cases of lethal, trivial and non-

trivial lethal and non-trivial solutions.

Glioblastoma cells can thrive on different metabolic

pathways for survival and show great metabolic hetero-

geneity (Griguer et al. 2005). Similarly, it was observed

that around 3 % (6 reactions) of the total single knockouts

(208 reactions) and 6 % (1268 reactions) of the total

double knockouts (21,528) were lethal to the glioblastoma

scenario. A low number of lethal single knockouts sug-

gested the robustness of metabolism in sustenance of the

glioblastoma cells through alternative routes. Knockout

analysis was performed on the network using GBM_BM as

the objective function.

Fig. 7 Essentiality of metabolites in glioblastoma growth. Flux

through different pathways and metabolic function in different input

conditions to the glioblastoma scenario. Here flux through the

different pathways and the metabolic function is maximum for cystine

and glucose as input. The metabolites have been abbreviated as: Cys

cystine, Glut glutamate, Glu glucose, Gln glutamine, Gly glycine,Met

methionine, Try tryptophan, PA palmitic acid
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Knockout analysis identified ribulose phosphate iso-

merase (RPI), a part of the pentose phosphate pathway to

govern a lethal phenotype. In many type of cancers, it has

been experimentally observed that PPP drives the gly-

colytic flux for production of ribose-5-phosphate and

NADPH that can be used by cancers cells for detoxification

of reactive oxygen species (Boada et al. 2000). RPI rep-

resents a rate limiting-step for ribose-5-phosphate produc-

tion in the PPP pathway. As ribose-5-phosphate is an

essential component to meet the cellular metabolic

demand, RPI was predicted to govern a lethal phenotype in

the glioblastoma scenario. Also, in different types of can-

cers, high level of glutathione contents have been experi-

mentally observed to combat with the oxidative stress

experienced by the cancer cells (Ogunrinu and Sontheimer

2010). Glutamate–cysteine ligase (GCL), rate-limiting step

for production of glutathione was predicted to govern a

lethal phenotype as it is the penultimate step for glu-

tathione production. Similarly, glutathione synthase (GS),

the ultimate step of glutathione synthesis from glutamate

and cysteine was also predicted to govern a lethal pheno-

type. The cystine–glutamate antiporter (Anti_cystine_glut)

and cystine reductase (CystRed) reactions are involved in

production of cysteine. In the previous results, it was

demonstrated that cystine was sufficient for production of

the components of the GBM_BM objective. Hence, both

the reactions were predicted to demonstrate lethality when

knocked out.

Of the 1268 lethal double knockout reactions, 41 were

non-trivial, which included reactions from glycolytic,

pentose phosphate, TCA cycle and glycine–serine meta-

bolism pathway and a few transport reactions. The most

typical observation of glioblastoma metabolism through

experiments was the increased flux through glycolysis for a

high production of ATP and corresponding reduction in

glioblastoma growth under glucose starvation, even though

their survival was maintained (Griguer et al. 2005). A

combinatorial targeting of the glycolytic pathway with the

PPP, TCA cycle and glycine–serine metabolic pathways

was hence, found to be more effective in combating

glioblastoma growth. Thus, the knockdown of a glycolytic

pathway reaction in combination to a pentose phosphate

pathway reaction or a TCA cycle reaction hindered the

production of r5p or oaa or succ. Consequently, the double

knockouts proved to be lethal to the glioblastoma growth.

The in silico results also yielded reactions belonging to

glycine–serine metabolism as good targets in combination

with each other. Glycine was necessarily required for

glutathione production. When the availability of glycine

was blocked through the knockdown of both the internal

glycine–serine metabolism and the external source of gly-

cine uptake, this paired knockout led to the inhibition of

glutathione production, and hence proved lethal. Conse-

quently, dual targeting the reactions of this pathway was

effective in reducing the growth.

The knockouts reaction results were further classified as

lethal, growth reducers and null reducers on the basis of

percentage inhibition in the metabolic demand reaction rate

in the glioblastoma scenario (Fig. 8). Knockouts which led

to 100 % inhibition of metabolic demand reaction were

considered to be ‘‘Lethal’’. Reaction knockouts which

caused a flux reduction of[80 % of the flux through the

metabolic demand were considered to be ‘‘Partial growth

reducers’’. Those set of reaction knockouts which inhibited

the flux of metabolic demand within 20–80 % of the default

value, were considered as ‘‘Marginal growth reducers’’. The

class of ‘sub-marginal growth reducers’ was considered for

those set of knockouts which could not bring effective

reduction (0–20 % inhibition) through the objective func-

tion. Analysis of the double knockout showed that 48 % of

the partial growth reducers belonged to the glycolytic

pathway. The rest of the 52 % were mostly constituted by

the reactions of TCA cycle, PPP, Oxidative phosphorylation

and Glycine–serine metabolism. The larger fraction of both

single and double reaction knockouts which belonged to

sub-marginal growth reducers and null reducers which were

indicative of the robust and redundant reactions of the

glioblastoma metabolic network.

Chemotherapeutic interventions in glioblastoma

scenario

The reaction knockout analyses could predict a subset of

reactions, which were crucial in glioblastoma growth. To

Table 2 Total number of single

and double lethal reaction

knockouts

Deletion Lethal Trivial lethal Non-trivial lethal Non-trivial total Total cases

Single 6 NA 6 208 208

Double 1268 1227 41 20,301 21,528

N.B.: The lethal double reactions knockouts are categorized as trivial and non-trivial lethal. Those knockout

combinations, of which at least one is involved in single lethal reaction knockout, are considered to be

‘‘trivial’’. Those combinations in which neither of the reactions is involved in single lethal reaction

knockout are considered to be ‘‘non-trivial’’

NA not applicable
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identify the feasibility of targeting these reactions and their

effectiveness, these reactions were simulated for their

effect as chemotherapeutics for either inhibiting, or

bringing down the growth rate of the glioblastoma cells to a

normal range. For this analysis, the previously identified

growth reducer reactions leading to reduced growth

(0\GBM_BM solution\ glioblastoma optimum) were

chosen.

From the simulation studies it was observed that in order

to completely reduce the flux through the metabolic func-

tion, targeting the lethal single knockout reactions required

a complete reduction of flux through them. Whereas tar-

geting the lethal double knockout reactions were more

effective, as partial reduction of flux through those com-

binations brought a complete reduction of flux through the

metabolic demand reaction. Recent experimental approa-

ches also suggest that targeting a combination of proteins

instead of each individual protein of the combination,

could bring about a more pronounced anti-tumorigenic

effect (Oliveira-Ferrer et al. 2013). As such, combinations

from non-trivial lethal knockout reactions were simulated

which could be targeted most effectively for efficient

growth reduction.

Of the 41 non-trivial lethal double knockout predictions,

36 combinations were chosen for testing their chemother-

apeutic intervening properties, which excluded a few

transport reactions. Each reaction combination was simu-

lated by varying the flux through individual reactions of the

combination simultaneously, to obtain the effective

reduction of flux through both of these reactions which

reduced glioblastoma growth completely and to obtain a

feasible flux range through both the reactions for which the

growth rate was reduced to the normal level. The effective

reduction of flux was depicted in percentage, which was

defined as percentage reduction of flux through any par-

ticular reaction. The simulation results for the 10 most

effective combinations have been shown as contour plots in

Fig. 9. A list of all the 36 chemotherapeutic combinations

has been provided in Table S6 of Online Resource 2. The

percentage reduction of flux value for complete reduction

of growth and for Normal growth, for each reaction of the

combinations has been listed in Table S7 of Online

Resource 2.

Inhibitors to a few of these target reactions were already

available (see Table S8 of Online Resource 1). In-silico

study on the core metabolism in cancer cells showed that

reactions of glycolytic, TCA cycle, oxidative phosphory-

lation and pentose phosphate pathway could be good tar-

gets to check cancer cell progression (Resendis-Antonio

et al. 2010). Interestingly, our context-specific constraint

based metabolic model specific to glioblastoma could

identify reactions belonging to cysteine metabolism and

reaction combinations of glycine–serine pathway to be

potential targets for controlling glioblastoma growth.

These potent reaction pairs of the glycine–serine meta-

bolism give way to discovery/formulation of combinatorial

drugs that can inhibit them. Therapeutic agents to target the

glycine receptors are already known. Inhibitors like

Picrotoxin targeted the neuronal c-aminobutyric acid and

homomeric glycine receptors (Wang et al. 2006), whereas

strychnine hydrochloride was found to be a potent antag-

onist specific to the glycine receptor (Garcı́a-Colunga and

Miledi 1999). These could be employed beneficially to

understand the activity of the glycine transporters in

glioblastoma too, as evidences state a correlation between

the glycine transporter activities with the distribution of its

Fig. 8 Single and double reaction knockout predictions. The results

of single and double reaction knockout predictions are summarized. a,
b Single and double knockout reaction classifications, respectively.

The predictions are classified in five categories: (1) lethal (inhibi-

tion = 100 %), (2) partial growth reducers

(100 %\ inhibition\ 80 %), (3) marginal growth reducers

(80 %\ inhibition\ 20 %), (4) sub-marginal growth reducers

(20 %\ growth\ 0 %), (5) null reducers (inhibition = 0 %), with

the percentage inhibition imposed by them being indicated in the

parentheses
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receptors (Jursky and Nelson 1995). In recent years, many

pharmaceutical companies have also developed potent and

selective inhibitors for glycine transporters. SSR 504734

and SSR 103800, a series of N-(2-aryl-cyclohexyl) substi-

tuted spiropiperidines and ORG 25935 are a few com-

pounds, which showed promising results as inhibitors of

glycine transporters (Hashimoto 2010).

Discussion

In the present work, a context specific metabolic network

for astrocyte/glioblastoma has been developed, that studies

the adaptation of complex metabolic reactions within the

network under scenario-specific conditions to achieve

specific biological goals like growth and maximization of

ATP synthesis. Through this model, we tried to investigate

the cumulative effect of a large scale metabolism on the

metabolic functioning of glioblastoma, the effect of the

mutual connectivity of the individual pathways within the

metabolic network and the difference in response they

show in the astrocytic and glioblastoma scenarios. Also,

through the in silico approach, we tried to gain some

insight into the alternative metabolic routes and metabo-

lites which contributed to the metabolic heterogeneity of

glioblastoma. The present model was capable of yielding

results which were in correspondence to the experimentally

proved phenomena of both astrocytes and glioblastoma

(Deighton et al. 2014; Mangia et al. 2009; Marrif and

Juurlink 1999; Pellerin and Magistretti 1994; Wise et al.

2008; Zhou et al. 2011).

From our study, specific pathways were observed to

demonstrate a co-operative effect in the astrocyte and

glioblastoma scenarios. In the model astrocyte scenario,

dependence of glycolysis for mitochondrial ATP synthesis

reduced with increased uptake and utilization of glutamate

as energy source, due to coupling of both glutamate and

glucose catabolism via TCA cycle (Fig. 2c). A similar

phenomenon was reported in a previous experimental study

(Pellerin and Magistretti 1994). Similarly, in glioblastoma

scenario, conversion of glutamine to glutamate and its

extracellular release was coupled with cystine uptake and

its catabolism to produce glutathione. Previously, through

experiments, the cooperative effect of glutamate and cys-

teine metabolism was speculated and briefly studied in

glioblastoma (Ye et al. 1999). Evidences stated that glycine

content of neuronal cells was higher than that of glial cells

(Roux and Supplisson 2000), and most of the CNS tissues

sufficed their glycine requirement via the internal glycine–

serine metabolism pathway derived from glucose via

3-phosphoglycerate (Nicklas and Browning 1978), even

though astrocyte cultures fed with glycine were capable of

utilizing it by maintaining intracellular levels of glu-

tathione, serine and creatine (Dringen et al. 1998). Based

on these literature evidences and predictions from the

model, it was inferred that astrocytes take up glycine from

external sources at a lower level and most of its require-

ment in the astrocytes was fulfilled by the internal glycine–

serine metabolic pathway. Further, a higher uptake of

glycine by astrocytes from external source resulted in a

reduction in its glutamate uptake rate and an excess of

glycine caused glutaminolysis in the astrocytes. On the

contrary, glioblastoma showed an increased glycine uptake

which was driven towards increased synthesis of glu-

tathione. This increased production of glutathione was

simultaneously accompanied with the increased uptake of

cystine, which is taken in by the cystine–glutamate anti-

porter. Hence, a higher amount of glutamate was lost

through efflux. This loss was compensated by glutamine

uptake which is subsequently converted into glutamate

within the cell.

Glioblastoma cell lines can show extremely long sur-

vival under glucose starved conditions, which are indica-

tive to the fact that these cells undergo physiological

adaptations to overcome nutrient deprivation (Griguer et al.

2005). From the model, it was predicted that cystine could

be one essential metabolite that could serve to glioblastoma

survival and growth, even at glucose starved conditions.

The utilization of glucose was found to be coupled to the

cystine uptake in the model. This was perhaps because of

the choice of objective function. The objective function

included ribulose-5-phosphate, oxaloacetate, succinate and

glutathione, which were generated by glycolysis and cys-

teine metabolism pathways. Consequently, a minimal

combination of cystine and glucose could drive a consid-

erable amount of flux through the objective function, as

compared to any other minimal combination.

In-silico study on the core metabolism in cancer cells

showed that reactions of glycolytic, TCA cycle, oxidative

phosphorylation and pentose phosphate pathway are

essential for cancer cell progression (Resendis-Antonio

et al. 2010) suggesting that central and highly connected

bFig. 9 Chemotherapeutic intervention scenarios and effective com-

bination of target reactions. Percentage reduction of flux through

combination of essential double knockout reactions a hexokinase

(HEX) and fructose-1,6-bisphoasphate aldolase (FBA), b ribulose

phosphate-3 epimerase (RPE) and 6-phosphogluconolactonase

(6PGLase), c fumarate hydratase (FUMH) and alpha ketoglutarate

dehydrogenase (AKGDH), d glycine transport (Trans_glycine) and

Phosphoglycerate dehydrogenase (PGDH), e hexokinase (HEX) and

triose phosphate isomerase (TPI), f glucose transport (Trans_glucose)
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), g phos-

phofructokinase (PFK) and Hexokinase (HEX), h succinyl-CoA

synthetase (SCS) and fumarate hydratase (FUMH), i ribulose phos-

phate-3 epimerase (RPE) and glucose-6-phosphate dehydrogenase

(G6PDH) and j glucose transport (Trans_glucose) and phosphoglyc-

erate kinase (PGK), and its effect on the flux through the metabolic

function, GBM_BM (different regions in the contour plots)
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proteins (enzymes) can prove to be useful drug targets

(Jeong et al. 2001). These enzymes belong to central car-

bon and energy metabolism that essentially meet the

energy requirements of the cell and hence are important.

However, the centrality of enzymes does not always imply

lethality in complex protein networks (Raman et al. 2014).

Similar to this observation, in our metabolic network, we

identified some unique enzymatic reactions that did not

belong to the aforementioned central metabolic pathways

but still were deemed to be absolutely essential for

glioblastoma growth. Pertaining to this, targeting the

reactions belonging to cysteine metabolism (‘Cystine glu-

tamate antiporter’, Anti_cystine_glut, and ‘cystine reduc-

tase’, CystRed) and dual targeting of the reactions

belonging to glycine–serine metabolism along with glycine

transporter could potentially suppress glioblastoma growth.

Thus to summarize the present study, the designed

model could predict—that most of the astrocytic glycine

requirement was fulfilled by the internal glycine–serine

metabolism pathway, and excess glycine in the environ-

ment of growing astrocytes might have an effect on its

glutamate metabolism. Further, it was observed that cystine

and glucose were two vital metabolites, which could sig-

nificantly contribute to glioblastoma growth. From model

analysis for chemotherapeutic interventions, it was

observed that reactions of cysteine metabolism and dual

targeting of reactions belonging to glycine–serine meta-

bolism could be potential chemotherapeutic targets for

effective inhibition of glioblastoma growth.

The present metabolic model has both its advantages and

limitations. The steady state assumption is a limitation to the

model, which does not allow us to consider the intermediary

dynamic changes in the flux profiles of the reactions. Even

though, the present context-specific model suffices to

achieve the biological goal of glioblastoma growth, consid-

ering only a subset of the whole genomic networkmight lead

to results which deviate from the real biological scenario. In

order to overcome such limitations, our predictions can

further be validated through experiments, so as to help the

chemists and biologists to discover smallmolecule inhibitors

against brain cancer. An in vitro experimental approach, by

treating the astrocyte-derived glioblastoma cell lines like

LN-229 and U87MG with combinations of inhibitors/

chemotherapeutic agents mentioned in Table S8 of Online

Resource 2 for ensuring their synergy and selectivity to

inhibit cell growth and proliferation (Lehár et al. 2009), can

further validate the model predictions.

Therefore, our study not only contributes in under-

standing the complexities, differences and consequences of

glioblastoma metabolism for predicting biologically rea-

sonable disease scenarios, but also provides a deep insight

into identification of important targets as well as

chemotherapeutic interventions.
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Abstract

Manipulative strategies of ROS in cancer are often exhibited as changes in the redox and

thiol ratio of the cells. Cellular responses to oxidative insults are generated in response to

these changes which are triggered due to the rerouting of the metabolic framework to main-

tain survival under stress. However, mechanisms of these metabolic re-routing are not

clearly understood and remained debatable. In the present work, we have designed a con-

text-based dynamic metabolic model to establish that the coordinated functioning of glutathi-

one peroxidase (GTHP), glutathione oxidoreductase (GTHO) and NADPH oxidase (NOX) is

crucial in determining cancerous transformation, specifically in gliomas. Further, we propose

that the puzzling duality of ROS (represented by changes in h2o2 in the present model) in

exhibiting varying cellular fates can be determined by considering simultaneous changes in

nadph/nadp+ and gsh/gssg that occur during the reprogramming of metabolic reactions.

This will be helpful in determining the pro-apoptotic or anti-apoptotic fate of gliomas and can

be useful in designing effective pro-oxidant and/or anti-oxidant therapeutic approaches

against gliomas.

1. Introduction

Reactive Oxygen Species (ROS) have been implicated in various disease conditions and are

considered as a key driving factor in the process of aging and carcinogenesis. ROS is referred

to possess a double-edged sword property having both tumor-promoting and a tumor-sup-

pressing function [1]. An intricate balance between ROS and antioxidants and other ROS scav-

engers is maintained in a normal proliferating cell, which is a prerequisite for maintaining

redox balance and proper functioning of the cell. Human cells generally tend to function in a

reduced state (e.g. by maintaining high gsh/gssg ratio [2] and high nadph/nadp+ ratio [3]).

However, exceptions are made when the cells need to maintain a slightly oxidative environ-

ment to aid various cellular processes like folding of nascent proteins in the endoplasmic retic-

ulum, activation of gene transcription factors, etc. An increase in intracellular oxidative state
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induces apoptosis, although too much oxidation helps to evade apoptosis by oxidizing and

inactivating the caspase enzymes [4]. Thus the balance between oxidant and antioxidant activ-

ity becomes crucial, as a shift might facilitate apoptosis or might also suppress apoptosis ren-

dering therapeutic approaches ineffective.

ROS are implicated as harmful byproducts of cellular metabolism, although they perform

additional function as regulators of various intracellular signaling cascades [5–10]. Sequential

reduction of oxygen results in the formation of superoxide, hydroxyl radical, hydrogen perox-

ide (h2o2), hydroxyl ion, etc. Most of these are converted into hydrogen peroxide by the activity

of superoxide dismutase. h2o2 is one of the most stable ROS, which can penetrate membranes

and quickly reach cellular targets affecting overall cellular functioning [11]. Responses of ROS

differ under different experimental conditions; they can promote proliferation [12, 13] or can

inhibit it [14] or can also induce apoptosis [15, 16]. These responses are governed by multiple

cellular factors, anti-oxidant metabolism being the most crucial one. A constraint, however, is

to obtain a holistic understanding of ROS and its regulatory mechanisms due to contextual [1,

17, 18] and experimental complexities [12, 14, 19, 20]. The use of computational approaches

has been conducive in dealing with these limitations. Computational models allow observing

the concurrent dynamics of many variables considered simultaneously, which are often chal-

lenging to assess experimentally [10, 21].

The differential suitability of ROS manipulation in tumor cells is explained by different the-

ories. One of the most prevalent theories is the “Threshold concept for cancer therapy”.

According to this theory, as the level of ROS within the cancer cell increases, the ratio of ROS

and antioxidants reaches a balance, beyond which any further increase in ROS or decrease in

antioxidant activity will lead to cell death or increased sensitivity of tumor cells to cytotoxic

treatments [22]. According to an alternate threshold theory, when both tumor and normal

cells are exposed to equal intensity of exogenous ROS-producing or stimulating agents, the

intracellular ROS levels of tumor cells increase more easily than the normal cells to reach a

threshold and to trigger death, due to higher basal level of ROS in tumors [23]. The changes

induced during a cancerous transformation are readily reflected as a change in the redox status

of the cells mostly triggering ROS production. The applicability and effectiveness of ROS pro-

motion or ROS depletion strategies in cancer therapeutics depend on where the cell is in the

sequence of events. Change in the thiol ratio of the cell is another important determinant of

the cellular response towards an oxidative insult. Reportedly, changes in the nadph/nadp+

ratio and gsh/gssg ratio have been considered important in gaining a perspective towards the

cellular response to such insults. nadph/nadp+ ratio is indicative of the reducing potential of

the cell, which is required to be maintained high to keep the overall redox pool at a signifi-

cantly reduced state [24, 25]. Changes in gsh/gssg ratio might induce the initiation of the induc-

tion phase of apoptosis [26, 27]. A decrease in gsh/gssg ratio can induce apoptosis by causing

Bcl-2 loss and activating caspase enzymes whereas an increase in the ratio may have an effect

otherwise [28].

Thiol and redox ratios represent cumulative results of multiple changes in the metabolism

and hence are considered as indicators of various diseased states. Although, the effect of ROS

manipulation on these ratios and the metabolic re-routing that helps the cells to adapt to

stressful conditions affect the redox and thiol status of the cell are not clearly understood.

Another arguable topic of discussion is whether the redox and thiol statuses of the cell have

any role in determining cellular fate during oxidative stress. The well-orchestrated metabolic

processes related to these changes are re-routed, although the changes that govern the puzzling

duality of ROS are yet not clearly understood. The role of the gsh-gssg in determining the para-

dox is another aspect to be explored. Also, the changes in the metabolic network that affect the

effectiveness of pro-oxidant or anti-oxidant approaches during cancer therapeutic design are
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not well understood. In order to address these questions, we have designed a context-based

dynamic metabolic model including the pathways which are known to be involved in regulat-

ing the oxidant-antioxidant mechanism.

In the present work, we have demonstrated the effect of redox and thiol status of the cell,

and the antioxidants in maintaining ROS levels by considering h2o2 levels in particular in nor-

mal glial cells and gliomas. With the help of our simulations, we propose that the effectiveness

of a therapeutic strategy depends on the target’s ability to alter the redox states of the cell. We

propose a set of sequential changes in metabolic events that determines the transformation

from a normal glial to glioma condition that can be used for a pro-oxidative or anti-oxidative

therapeutic approach. We have demonstrated these changes keeping in view the changes in

nadph/nadp+ and gsh/gssg ratios with respect to the h2o2 levels in normal glial and glioma con-

ditions. A holistic understanding of the changes in h2o2 levels along with changes in the redox

and thiol statuses of the model provides convincing insight into the paradoxical behavior of

ROS in gliomas and its cellular apoptotic fates. Also, understanding the effect of other enzymes

that are not directly involved in ROS manipulation but affect the metabolic process by creating

a distant regulation in the network can help augment the effect of proposed therapeutic strate-

gies. In the future, this can be ventured to propose an effective design of pro-oxidant or anti-

oxidant therapeutic approaches against glioma progression.

2. Materials and methods

2.1. Model setup

The present model (Fig 1) captures the dynamic changes in the metabolism regulating the

interplay of glutathione and ROS (hydrogen peroxide) in normal glial cells and gliomas. The

model is biologically motivated from a previous analysis in which a subset of metabolic reac-

tions has been observed to be directed towards gsh production in gliomas [29]. A re-routing of

the glycolytic, pentose phosphate, glycine-serine, glutamate, and cystine pathway was observed

to be directed towards glutathione metabolism from the analysis. The present model has been

designed considering these pathways, to understand the dynamics of this re-routing and their

effect in determining the role of glutathione during ROS scavenging. ROS which typically

show a paradoxical behavior in tumor progression and proliferation have been represented in

the model with the inclusion of ROS production machinery. gsh is a tri-peptide composed of

cystine (cys), glycine (gly) and glutamate (glut), is the prime anti-oxidant involved in ROS scav-

enging. The model essentially comprises of reactions required for the production of the com-

ponents of tri-peptide units of gsh. A part of glycolytic pathways along with the glycine-serine

metabolism has been included which directs the glucose metabolism towards glycine produc-

tion. Cystine metabolism and a part of the glutamate metabolism have been incorporated to

represent the metabolism of these two components into the complex- glutamyl-cysteine

(glucys). The gsh-gssg cycle consisting of glutathione peroxidase (GTHP) and glutathione oxi-

doreductase (GTHO) has been included along with the ROS production machinery compris-

ing of NADPH Oxidase (NOX) and Superoxide Dismutase (SOD). Although these enzymes

are present as multiple isoforms, all the isoforms have been considered as one, as their basic

mechanism and functioning remains the same. Other ROS scavenging machinery like the per-

oxiredoxin/thioredoxin systems, catalases, etc., have not been considered in the model for

time being, as we intended to focus on the dynamics of glutathione during ROS scavenging

and its role in determining the paradox. The scavenging of h2o2 (which has been considered as

the ROS in the present model) by other mechanisms has been represented by the parameter

dh2o2, which is defined as the decay of intracellular hydrogen peroxide in other cellular pro-

cesses. The model has been limited to two compartments only: extracellular matrix (e) and
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cytosol (c) and intracellular compartments have not been considered as the availability of com-

partment-wise parameter remains a limitation and the introduction of intracellular compart-

ments for such large ODE model would make it complex.

2.2. Model description

The model consists of 35 metabolite variables involved in 25 reactions required for the produc-

tion of gsh and h2o2 and for scavenging h2o2. All reactions have been provided in supporting

information. As per the available information of the kinetics of these reactions, equations have

been formulated as forms of uni-uni, bi-bi, bi-uni or ter-bi Michaelis-Menten kinetics. The

equations have been written in Cleland Nomenclature. We have considered initial reaction

kinetics with first-order reaction rates. All the rate equations, differential equations and parame-

ter description along with the parameter values have been provided in S1 Table of S1 Text.

The general form of the initial kinetics of reaction equations considered in the model is

given below:

Uni � Uni=Uni � Bi :
VRm:a
KRm þ a

Fig 1. Diagrammatic representation of the metabolites belonging to different pathways directed towards the

production of the glutathione along with the ROS generation machinery. The metabolites and the pathways to

which they belong have been grouped into five groups viz.-(i) Central Carbon metabolism (glce, glcc, g6p, f6p, f16bp,
gap, dhap, 1,3bpg, 3pg, akg), (ii) Amino Acid metabolism (3php, pser, ser, gly, cyse, cys, cysL, glute, glut), (iii) Thiol

metabolism (glucys, gsh, gssg), (iv) h2o2 production and metabolism (O2(ex),O2, oxrad, h2o2) (v) Redox metabolism

(nadph, nadp+). Descriptions to all the abbreviated forms have been provided in S1 Text Section 4.

https://doi.org/10.1371/journal.pone.0235204.g001
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Bi � Bi mechanism ðRapid equilibrium=OrderedÞ :
VRm:ða:bÞ

ðkRiðaÞ:kRb þ kRb :aþ kRa :bþ a:bÞ

Partial Rapid Equilibrium Random Bi � Bi mechanism :
VRm:ða:bÞ

ðkRiðaÞ:kRb þ kRb :aþ a:bÞ

Ordered Ter � Bi :
VRm:ða:b:cÞ

ðkRiðaÞ:kRiðbÞ:kRc þ kRiðbÞ:kRc :aþ kRiðaÞ:kRb :cþ kRc :a:bþ kRb :a:cþ kRa :b:cþ a:b:cÞ

Where R is the reaction, a, b and c represent the substrates, VRm the Vmax of the reaction, kRi
the rate constant for dissociation of enzyme-substrate complex and kRa=k

R
b=k

R
c represent the

rate constant for the association of a substrate with the enzyme.

The motivation behind considering a larger metabolic network for dynamic analysis comes

from the observed metabolic re-routing of these pathways which is directed towards glutathi-

one production. In the present model, our main focus remains to understand the strategies of

h2o2 manipulation within cells and its effect on cell proliferation or death. With this model, we

also try to understand the effect of glutathione in scavenging h2o2 while considering the

changes in the redox ratio depicted by nadph/nadp+. The rationale behind considering the dif-

ferent pathways is specified hereunder.

Central carbon metabolism. The glycolytic pathway branches out to various other path-

ways which are precursors to the nucleotide, amino acid synthesis, and other important bio-

synthesis pathways. A part of the glycolytic pathway which branches to serine metabolism has

been considered which allows the de novo synthesis of the amino acids serine and glycine

within the cell. Also, the pentose phosphate pathway has been represented by the inclusion of

G6PDH which is a major source of nadph.

Amino acid metabolism. All reactions belonging to serine and glycine metabolism has

been considered in the model. This metabolism supports the generation of glutathione and

maintains redox status of the cell. Serine and glycine can be produced de novo from glycolytic

intermediate 3pg, and this part of the metabolism has been considered in the model [30]. Glu-

tamate metabolism has been considered partly. This forms another source of nadph, and gluta-

mate supports the production of glutathione and also manages the uptake of cystine through

the cystine-glutamate antiporter. Cysteine metabolism has also been considered. The initiation

of the metabolism has been considered with the uptake of cystine which is metabolized to cys-

teine [31]. This reacts with glutamate to form glutamyl-cysteine (glucys), the precursor com-

plex which reacts with glycine to produce glutathione [26].

Thiol metabolism. The thiol metabolism is represented by the glutathione metabolism

itself. Two important enzymes that maintain the glutathione homeostasis i.e., glutathione per-

oxidase and glutathione oxidoreductase, have been considered [27]. Pertaining to the objective

of looking into the glutathione and h2o2 dynamics, other thiol metabolisms like the peroxire-

doxins, thioredoxins, and catalase systems have not been considered currently.

h2o2 production and metabolism. The model considers the activity of NADPH oxidase

[32] and superoxide dismutase [33] as a part of h2o2 production. The formation of oxygen free

radicals and their subsequent conversion into h2o2 is catalyzed by NADPH oxidase and super-

oxide dismutase respectively. The metabolism of h2o2 is linked to thiol metabolism. Other

mechanisms through which h2o2 are scavenged is represented by the parameter dh2o2, which is

defined as the decay of intracellular hydrogen peroxide in other cellular processes.
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Redox metabolism. nadph- nadp+ has been considered as the prime redox balancer in the

model. The homeostasis and metabolism of nadph- nadp+ has been considered in reactions

belonging to the earlier pathways where these function as cofactors to catalyze the reactions.

2.3. Model simulation

The system of differential equations was simulated using ODE15s in MATLAB 2017a. Calibra-

tion of the model was performed upon available experiment data on the change in gsh over a

period of time in retinal Muller glial cells under normal and amino acid supplemented scenar-

ios [34]. This was used to create the normal glial scenario, to which changes were introduced

to create the hypoxic and glioma-like scenario. The basal parameters and initial values to the

variables were considered within a biologically feasible range as obtained through literature

search and are provided in S2 Table of S1 Text. Few of the parameters and initial values were

assumed within a biologically feasible range as had been reported in the literature. A set of 23

parameters remained unknown which were determined using the parameter estimation tech-

nique. The model was ensured to reach a stable steady state with the basal parameter states and

initial values. Also, the simulations performed using the above parameters indicate that at

steady states the intracellular gsh concentration along with nadph/nadp+ and atp/adp ratios

resemble true biological concentrations as reported in the literature.

2.4. Parameter estimation

Parameter estimation of the unknown parameters was performed using Delayed Rejection

Adaptive Metropolis (DRAM) algorithm of Markov Chain Monte Carlo (MCMC) Toolbox in

MATLAB 2017a. The algorithm generates posterior distribution calibrated using the sample

path of the MCMC chain to estimate unknown parameters for a known experimental result.

In the present model, parameter estimation was performed using experimental data on the

change in gsh in retinal Muller glial cells as has been specified in the earlier section (Fig 2A).

Distributions plots and trace plots of all the 23 estimated parameters have been provided in S1

Fig of S1 Text. Values for the parameters VGLUTEXm and kGLUTEXm were estimated using an available

data on glutamate exchange in astrocytes [35] (Fig 2B). Distributions plots and trace plots of

the two estimated parameters have been provided in S2 Fig of S1 Text.

2.5. Model Validation with experimental data

In order to validate the model properties, we used available experimental data for comparison

with model outcomes. Under normal physiological conditions, cells maintain a reduced redox

state with a high nadph/nadp+ ratio. Nadp+ primarily acts as an electron donor in metabolic

pathways, and a low nadph/nadp+ depicts an enhanced oxidative state of the cell. A properly

functional ROS machinery of a normal cell maintains a balanced nadph-nadp+ pool, which is

kept in a significantly reduced state by maintaining a high nadph/nadp+ ratio [36]. As such, we

validated the model with experimentally determined nadph/nadp+ ratio [37], which ranged

between 2.5–3 (Fig 3C). The average atp/adp ratio under functional glycolysis was also mea-

sured (Fig 3C). Non-proliferative cells maintain a very high cytosolic atp/adp ratio by metabo-

lizing respiratory substrates, which essentially inhibits glycolysis [38]. However, with the

initiation of cellular activity, glycolysis is initiated, which maintains an average cytosolic atp/
adp ratio between 2.6–10 [39, 40] that has been captured through our simulation as well.

Furthermore, the model was simulated with an initial gsh concentration of 3.83mM, as has

been reported in the case of glial cells [34]. Our simulations showed that the model was capable

of maintaining h2o2 concentration within a biologically feasible range of ~4μM while main-

taining a value of ~2.33mM of gsh at steady-state (Fig 3A), which is in agreement with the
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Fig 2. Predictive plot demonstrating of model fitting with experimental data: (A) for reduced glutathione (gsh) and

(B) for extracellular glutamate (glute). The blue circles represent the data points obtained from experiments [34, 35]

and the pink line represents the result obtained through model simulation.

https://doi.org/10.1371/journal.pone.0235204.g002

Fig 3. Model properties. A. The temporal plot of gsh, gssg, h2o2, and oxrad. B. Temporal plot of the tri-peptides cystine

(cys), glutamate (glut) and glycine (gly) and glutamyl-cysteine (glucys) along with changes in gsh and gssg. C.

Comparison of experimentally obtained range of nadph/nadp+ and atp/adp ratio with values obtained through model

simulation.

https://doi.org/10.1371/journal.pone.0235204.g003
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reported basal cytoplasmic concentration of gsh [41]. The gshmetabolizing cells maintain a

negligibly small cytosolic pool of cystine which is readily reduced to cysteine, the rate limiting

amino-acid of gsh biosynthesis [42]. This property has been captured in the model, where the

cystine concentration is readily reduced to micromolar levels upon initiation of gshmetabo-

lism (Fig 3B). Also, cystine import is coupled with glutamate through cystine-glutamate anti-

porter which allows the release of glutamate to extracellular matrix upon cystine uptake. Due

to its role as a neurotransmitter, the extracellular concentration of glutamate in brain is tightly

controlled and maintained at a micromolar concentration ranging between 2–9μM [43]. We

could observe the diminished level of extracellular glutamate through our simulation (Fig 2B)

based on temporal data available for astrocytes, which has been further used for parameter esti-

mation of glutamate exchange reaction. Note that the following validations have been made

under normal glial condition. High nadph/nadp+ and atp/adp ratios are characteristic of any

normal proliferating cell, although the values for the ratios are specific to simulation condi-

tions. The external glutamate concentration holds true for extracellular matrix of brain cells.

The concentration of gsh is specific to glial cells and the concentration of all other metabolites

upon simulation are also characteristic of glial cells.

2.6. Sensitivity analysis

Extended Fourier Amplified Sensitivity Test (eFAST) algorithm was used for identifying sensi-

tive parameters to the system. The algorithm makes use of the variance decomposition method

to predict the sensitivity of parameters in a nonlinear non-monotonic system. First-order sen-

sitivity index Si, and total order sensitivity index, STi, were calculated for different transient

time points and steady states of gsh, gssg, h2o2 and oxrad. Sensitivity plots of parameters with a

p-value < 0.05 for gsh (reduced glutathione), gssg (oxidized glutathione), h2o2 (hydrogen per-

oxide) and oxrad (oxygen radical) are provided in S3 Fig of S1 Text. The analysis was repeated

for high intracellular oxygen demand and multiple mutation conditions to check the sensitiv-

ity of parameters at different conditions.

2.7. Parameter variation

Parameter variation analyses for a single parameter and two parameters were performed to

understand their effect on the respective variables. Parameters were varied over a feasible bio-

logical range at any given time point. For most of the instances, changes in the enzyme concen-

trations have been introduced by varying the Vmax of the enzyme, as Vmax is determined by the

enzyme concentration and substrate availability. For two-parameter variation analysis, two

parameters were simultaneously varied and the results were plotted as 3D surface plots to

show their effect on the respective variable.

2.8. Changing oxygen demand: The creation of hypoxia situation

The oxygen uptake by cells is approximated by Michaelis-Menten kinetics in the model where

Vmax represents the rate of oxygen uptake by the cell and Km represents the affinity of the cell

for extracellular oxygen. Low Km signifies a high affinity for oxygen. The value of Km for extra-

cellular oxygen had been varied to create low to high intracellular oxygen demand. A low Km

value created high oxygen demand within the cell which eventually created a hypoxic condi-

tion in the extracellular environment. Hence, a lower Km value also represented a hypoxic

condition.

To create the hypoxic scenario, oxygen uptake rates of the cell was enhanced by reducing

the Km of Oxygen (kO2
m ). The initial Km value for oxygen uptake was 164mM for the normal

condition. This was reduced down a very low value of 1mM, which signifies a high affinity for
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the substrate, which in the present model is the extracellular oxygen. The hypoxic condition

which resulted was a consequence of the rapid uptake of oxygen by the cell. Hence, hypoxia

was induced as a consequence of rapid metabolism of the cells.

2.9. Creation of glioma-like situation

In order to create a glioma like scenario in the model, we introduced changes in the values of

multiple parameters to induce the change in activities of the respective enzymes. The selection

of these parameters was made based on literature evidences of their malfunctioning in gliomas

and also by the analysis of sensitive parameters. Differential regulations of the enzymes

NADPH oxidase (NOX) [44, 45], glutathione peroxidase (GTHP) [33, 46] and glutathione oxi-

doreductase (GTHO) [47] have been reported in the literature. The sensitivity analysis further

added to the understanding of the parameters which govern these changes. These include

VNOXm , VGTHOm , VGTHPm and kO2
m where kO2

m has been considered to alter the oxygen demand of the

cell as described in the earlier section. An increase in h2o2 concentration was considered as a

signature to ensure that the model represents a glioma-like situation [48, 49].

3. Results

3.1. Dynamics of cells under normoxic conditions

We illustrate the temporal behavior of glutathione (reduced and oxidized), hydrogen peroxide

(h2o2) and oxygen radicals (oxrad) over time in the normal scenario. The chemical kinetics of

the enzyme GTHP has been included which uses h2o2 and gsh as the substrate to yieldgssg.
From simulations we observe that the model is capable of maintaining h2o2 concentration

within a biologically feasible range of ~4 μM which was initiated at a high h2o2 concentration

of 1.5mM (Fig 3A), while there is a decrease in the gsh concentration (from 3.83mM to

2.33mM) and increase in the gssg concentration (from 0.5mM to 2.09mM) at steady state.

Meanwhile, the oxygen radicals (oxrad) generated as an action of NADPH oxidase (NOX) is

readily metabolized into h2o2 due to high activity of superoxide dismutase (SOD) as has been

reported and considered in the model (VSODm = 11.4�103mM hr-1). Hence, a consistent reduced

level of oxrad is observed through our simulations.

The nadph/nadp+ and atp/adp ratios of the model have also been considered. As has been

observed experimentally, a proliferating cell maintains a high nadph/nadp+ ratio to maintain

its redox balances and high atp/adp ratio to suffice its proliferative requirements. In Fig 3C, we

have compared the experimentally reported values of nadph/nadp+ [37] and average atp/adp
[39, 40] ratios with the simulated values which are comparable. The dynamics of the compo-

nents of tripeptide that result in the formation of gsh is dictated by the gsh-gssg cycle. Fig 3B

shows the changes in the intracellular concentration of cystine (cys), glutamate (glut), glycine

(gly) and glutamyl-cysteine (glucys) corresponding to changes in gsh and gssg over time. Simu-

lation results show that in response to high oxidant (h2o2) concentration within the cell, avail-

able intracellular cystine and glutamate is used for the production of glutamyl-cysteine, which

subsequently forms a complex with glycine to produce gsh. gsh then enters the gsh-gssg cycle

where gsh and h2o2 are used as a substrate to produce gssg. As such, we observe a decline in the

concentration of all other metabolites except for gssg, which is produced in response to nullify

the high h2o2 concentration. The intracellular concentration of cystine and glutamate remain

limiting in a normal scenario.

3.1.1. Parameter variation of sensitive parameters. Sensitivity analysis yielded a set of

parameters crucial for determining the h2o2 level and the regulation of the gsh-gssg cycle.

Enzymes GTHP, NOX and GTHO are observed to be most sensitive in determining model
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properties. Changes in the uptake rate of oxygen also affected the model dynamics. Varying

parameters for these enzymes show interesting results, which are discussed in the subsequent

subsections.

Vmax of Glutathione Peroxidase ðVGTHPm Þ :

The enzyme GTHP is crucial in neutralizing h2o2 with the help of gsh which itself converts

to gssg converting h2o2 into h2o. The Vmax of the reaction is an important determinant of the

rate of conversion of h2o2. From our analysis, we could see that an increase in the VGTHPm (from

0.001mM hr-1 to 1.5mM hr-1) resulted in a reduced level of h2o2. Simulations were performed

at different time points (6hrs, 12hrs, 18hrs, 24hrs, and 32 hrs) and a similar trend is observed

for all time points. A sharp decrease is observed at a Vmax value between 0.1mM hr-1 to 0.3

mM hr-1 when the h2o2 concentration is maintained at micromolar concentration, which initi-

ated at a millimolar concentration (Fig 4A). However, the corresponding nadph/nadp+ ratio

remains unaltered which suggests that the redox balance of the system largely remains unaf-

fected by the change in VGTHPm although the gsh/gssg ratio reduces significantly (Fig 4B and 4C).

It is important to mention that the normal physiological expression of GTHP ranges between

0.2874 to 2.697 mM/hr (S1 Table of S1 Text) and interesting dynamics in h2o2 level, nadph/
nadp+ and gsh/gssg ratios are only observable for a very low value of VGTHPm . By varying the

value of VGTHPm from 0.001mM hr-1 to 1.5mM hr-1 we observe that high GTHP activity main-

tains a steady and low micromolar concentration of h2o2, but h2o2 starts accumulating as the

activity lowers, which might induce oxidative damage to the cell. This observation can be com-

pared with the diminished level of GTHP in brain tumors [50] and can be interpreted as a

characteristic for gliomas with a very low expression of GTHP.

Vmax of NADPH Oxidase ðVNOXm Þ :

NADPH Oxidase catalyzes the production of oxygen free radicals from available oxygen

using NADPH reduction. We could observe that an increase in the VNOXm (from 0.0001mM hr-
1 to 1mM hr-1) results in an increase in the h2o2 concentration for the specified time points

(6hrs, 12hrs, 18hrs, 24hrs and 32 hrs). A marked decrease in the nadph/nadp+ ratio and gsh/
gssg ratio is observed at later time points (24hrs and 32hrs) with the increase in Vmax value (Fig

4D, 4E and 4F). This could be interpreted as one of the important factors determining the

cancerous transformation of the glial cells.

Two parameter variation of VGTHPm and VGTHOm :

We illustrate in (Fig 5A–5C), the effect of simultaneous change in VGTHPm and VGTHOm on h2o2
level, nadph/nadp+ and gsh/gssg ratios. The h2o2 level is reduces with increasing activity of

VGTHPm , although change in the kinetics of GTHO does not affect (Fig 5A). When nadph/nadp+

is taken into account, we observe that at a very low VGTHOm , the effect of VGTHPm remains mini-

mum. With a gradual increase in the VGTHOm there is a reduction in the nadph/nadp+ ratio,

which furrows deeper at a higher value of VGTHPm . The enzyme GTHO facilitates the reduction

of gssg into gsh in a nadph-nadp+ dependent manner and hence with an increasing enzyme

availability and activity the nadph/nadp+ ratio reduces. Here we have considered the dynamics

of nadph/nadp+ at 12hrs and could observe that the initial dynamics are dependent on VGTHOm .

At high VGTHPm , with increasing value of VGTHOm there is a decrease in the ratio (Fig 5B) which is

due to the active involvement of the enzyme in nullifying the persistent levels of the substrate,

h2o2. We observe the decrease in the ratio till VGTHOm reaches a value of 0.2mM hr-1 at 12 hours.

However, the decrease is compensated back with further increase in the Vmax. As a high level

of h2o2 is metabolized to a non-toxic micromolar level, we observe from our model simulation

that a Vmax of 0.2mM hr-1 for the enzyme GTHO is sufficient to metabolize the persisting lev-

els of h2o2 at 12 hours. At a Vmax value lower than this the enzyme becomes the limiting factor

and beyond this value, the activity of the enzyme is limited by the availability of the substrate
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(h2o2). Meanwhile, at lower values of VGTHPm (<0.5mM hr-1), persisting level of h2o2 at 12hrs is

higher due to the slow activity of GTHP (Fig 5B). The substrate remains available for GTHO
activity which continues to metabolize the conversion (at higher VGTHOm which was limited by

substrate concentration in the earlier case) and nadph pool diminishes resulting into a reduc-

tion in nadph/nadp+ ratio. The dip in the nadph/nadp+ ratio is compensated by the action of

other reactions that replenish nadph pools represented in the model as lnadph. Trends are simi-

lar for gsh/gssg ratio which is dependent on the substrate availability (h2o2) except at a very low

value of VGTHPm (0.001mM hr-1) which limits the conversion of gsh to gssg thereby resulting in

an accumulation of gsh and leading to very high gsh/gssg ratios. h2o2 level persists in the sub-

micromolar range (~0.045mM) at a Vmax of 0.5mM hr-1 for GTHP, which is subsequently

metabolized to micromolar levels (0.002mM) with further increase in Vmax (Fig 5A). This gov-

erns the change in gsh/gssg ratio and an increase in both VGTHPm and VGTHOm coordinates to

metabolize h2o2 till it reaches micromolar levels by cyclic production and consumption of gsh
and gssg. As h2o2 reaches a micromolar level the activity of GTHP is limited due to h2o2 avail-

ability whereas gsh production continues by the action of GTHO till gssg reaches a basal level.

At this point we observe an increase in the gsh/gssg ratio (Fig 5C).

3.2. Dynamics of cells under high oxygen demand: induction of hypoxia in

the microenvironment

To mimic the high oxygen demand during cancerous transformation we tuned the model

parameter kO2
m which determines the affinity for the substrate. A decrease in the Km value

implies an increase in the affinity for the substrate. To represent an increased affinity of the

cell for oxygen, lowering values of Km is tried (kO2
m = 164, 50, 10 and 1mM) and as the value

lowers, the concentration of external oxygen reduces creating a mild to severe hypoxic

Fig 4. Parameter variation plot for (A-C) Vmax of GTHP (VGTHPm ) and (D-F) Vmax of NOX (VNOXm ) under the normal

condition at different time points.

https://doi.org/10.1371/journal.pone.0235204.g004
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condition (S4 Fig of S1 Text). Parameter variation of sensitive parameters is tried for different

affinities for oxygen and results are discussed below.

3.2.1. Effect of Changing Glutathione Peroxidase (GTHP) enzymatic activity. With the

change in dynamics of h2o2, nadph/nadp+ and gsh/gssg ratios with changing VGTHPm and kO2
m , we

observe that h2o2 concentration (Fig 5D) and gsh/gssg ratio (Fig 5F) primarily depends on

VGTHPm and remain unaffected by the change in kO2
m . The enzyme GTHPmetabolizes the conver-

sion of h2o2 into water by oxidizing gsh to gssg and hence the enzyme concentration directly

affects the h2o2 concentration and gsh/gssg ratio. nadph/nadp+ ratio however, depend on kO2
m

and remain unaltered with change in the VGTHPm (Fig 5E). We infer that high levels of oxidants

created in response to increased uptake of oxygen (which eventually creates a hypoxic micro-

environment for the cell) can be dealt with increased activity of GTHP within the cell, but at a

cost of reduced nadph/nadp+ and gsh/gssg ratios.

3.2.2 Effect of Changing Glutathione Oxidoreductase (GTHO) enzymatic activity. At

12 hours, h2o2 is maintained between sub-micromolar to micromolar levels (0.045mM to

0.005mM) for varying levels of VGTHOm and kO2
m . The concentration of h2o2 reduces with increas-

ing VGTHOm . Simultaneously with increasing kO2
m , a further reduction in h2o2 level is observed

(Fig 5G). The nadph/nadp+ ratio shows a dip at Vmax value of 0.2mM hr-1 for GTHO which is

compensated back with further increase in the Vmax (Fig 5H). We plotted the temporal plots of

varying VGTHOm at high oxygen demand (kO2
m = 1mM) and checked the nadph/nadp+ ratios at dif-

ferent time points (S5 Fig of S1 Text). We infer from our model simulations that the nadph/

Fig 5. Surface plots of two parameter variation for the sensitive parameters on h2o2 level, nadph/nadp+ ratio, and

gsh/gssg ratio. (A-C) Effect of variations in VGTHPm and VGTHOm under normoxic conditions (kO2
m = 164mM). (D-F) Effect

of variation in VGTHPm under changing oxygen demand (164mM� kO2
m � 1mM). (G-I) Effect of variation in VGTHOm under

changing oxygen demand (164mM� kO2
m � 1mM). (J-L) Effect of variation in VNOXm under changing oxygen demand

(164mM� kO2
m � 1mM). (M-O) Combined effect of simultaneous variation in VNOXm and VGTHOm under kO2

m = 164mM
and kO2

m = 1mM.

https://doi.org/10.1371/journal.pone.0235204.g005
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nadp+ ratio in the model depends upon two factors: (i) concentration of the enzyme GTHO
available to convert the gssg into gsh in order to maintain the gsh-gssg cycle necessary for neu-

tralizing h2o2 levels (ii) the amount of oxidant (h2o2) concentration persisting at any point of

time. The gsh/gssg ratio shows different patterns at different values of the two parameters (Fig

5I). At low values of VGTHOm , the enzymatic activity is limited and hence the conversion of gssg
to gsh is slower. With a low VGTHOm (< 0.2mM), gssg accumulates and the difference in gsh and

gssg concentration reduces resulting in low gsh/gssg ratio. As the Vmax increases, the conversion

of gssg to gsh enhances which adds to the gsh production pool and the difference in gsh and

gssg concentration widens giving high values of gsh/gssg ratio. Adding to it is the effect of oxy-

gen within the cell. As kO2
m increases, the oxidant production in limited (due to limited sub-

strate availability for NOX and SOD) and hence the conversion of gsh to gssg is reduced leading

to further increase in the gsh/gssg ratio.

3.2.3 Effect of changing NADPH Oxidase (NOX) enzymatic activity. Characteristic

changes in h2o2, nadph/nadp+ ratio and gsh/gssg ratio with changing VNOXm is observed under

normoxic conditions. When we simulate the variation of the parameter over varying kO2
m , the

concentration of h2o2 takes a leap as VNOXm increases and kO2
m decreases (Fig 5J). At smaller Km

value, cellular uptake of oxygen increases and an increase in VNOXm ensures rapid metabolism of

oxygen into free radicals. These free radicals are readily being metabolized into h2o2 due to the

high VSODm which catalyzes the conversion. Hence, with increasing activity of NOX the free rad-

icals so formed are directed towards the production of h2o2. An inverse pattern of nadph/
nadp+ and gsh/gssg ratio is observed in response to the changing h2o2 concentration (Fig 5J)

due to the activity of the gsh-gssg cycle (Fig 5K and 5L).

We infer from the above simulations that GTHP is an important determinant of h2o2 levels

in the cell. An increase in the activity of GTHP is helpful in reducing the h2o2 levels to a feasible

range without affecting the nadph/nadp+ ratio much although it alters the gsh/gssg ratio. The

effect of changing affinity for oxygen is nullified with a change in VGTHPm . We attempted varying

the activity of GTHP with other sensitive parameters only to observe a reduction in the h2o2
while maintaining the redox balance of the cell within a feasible range. As such we propose

here that an increase in the activity of GTHP is desirable for anti-oxidant therapy as it reduces

the h2o2 levels irrespective of oxygen demand simultaneously lowering the gsh/gssg ratio which

is considered an initiation factor in the induction of apoptosis.

While GTHP can be used for anti-oxidant therapy, analyses with NOX and GTHO suggest

that they are favorable targets for pro-oxidant therapies. An increase in NOX activity at high

oxygen demand clearly increases h2o2 production along with simultaneous lowering of nadph/
nadp+ and gsh/gssg ratio indicating cellular toxicity and initiation of apoptotic pathways.

Changes in GTHO activity have differing patterns. Given the initial concentration of h2o2 in

the model, a decrease in h2o2 concentration is observed with increasing GTHO activity. How-

ever, nadph/nadp+ and gsh/gssg ratio at around a Vmax value of 0.2mM hr-1 of GTHO shows an

ideal condition to initiate cellular toxicity. We further analyzed the effect of the two enzymes

in reducing redox potential and gsh/gssg ratio of the cell at different oxygen demand of the cell.

An increase in NOX and GTHO activity has a synergistic effect in increasing the h2o2 con-

centration (Fig 5M) and lowering the nadph/nadp+ ratio (Fig 5N) under high oxygen demand.

gsh/gssg ratio, however, lowers down with increasing activity of NOX, which otherwise

increases with increasing GTHO activity at low NOX activity (<0.3mM hr-1) (Fig 5O).

3.3. Cellular behavior with multiple mutations

From the previous set of analyses, we observe that the system shows a characteristic change in

its behavior for changes in sensitive parameters which are related to the oxidant and anti-
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oxidant production. The system remained robust for most of the other parameter changes.

The sensitivity of the h2o2 increased for GTHO during high oxygen demand which otherwise

remains unaffected in normoxia conditions. Also, the sensitivity of h2o2 increased for NOX
during high oxygen demand. Parameter values to VNOXm , VGTHOm , VGTHPm and kO2

m were changed to

1mM hr-1, 0.2mM hr-1, 0.19mM hr-1and 1mM from 0.0468mM hr-1, 0.5mM hr-1, 0.00216

mM hr-1and 164mM respectively to create the glioma scenario. Temporal plots generated for

this model show an excess increase in h2o2 concentration due to limited regulation by gsh and

gssg. A decline in nadph/nadp+ and gsh/gssg ratio is also observed.

With an observable difference in the cellular redox status and the ROS level, we try to

understand if the changes in nadph/nadp+ and gsh/gssg ratios associated with the changes in

h2o2 level in the glioma scenario can be used to determine the pro-apoptotic or anti-apoptotic

fates of the cell. Temporal dynamics of the changes in h2o2 level and the two ratios for Normal,

Hypoxia and Glioma conditions for a duration of 48hrs are shown in Fig 6. Under normal

conditions, h2o2 levels are readily reduced to micromolar concentration (4μM) and the result-

ing values of nadph/nadp+ and gsh/gssg ratios at steady state are 2.63 and 1.2 (Fig 6A). The val-

ues mostly remain unaltered during a shift to hypoxia except for a slight reduction in the gsh/
gssg ratio over time (Fig 6B). Changes are however distinct in case of glioma. Reports suggest

that different GBM cell lines have different level of GTHO expression and overexpression of

GTHOmediates drug resistance in these cells. Whereas, GTHO knockdown resensitize GTHO
overexpressed cells to drug treatment [47]. We corroborated this understanding to our model

simulations to observe the effect of varying GTHO on the thiol and redox ratios and h2o2 con-

centration. We created both the conditions: high and low expression of GTHO in the model.

We observe a characteristic difference in the gsh/gssg ratio and h2o2 level in the two scenarios.

Under high GTHO expression (VGTHOm = 0.19mM hr-1), the gsh/gssg ratio remains higher than

the normal (Fig 6C) whereas, under low GTHO expression (VGTHOm = 0.001mM hr-1) the ratio

diminishes to a very low value of 0.01 with an abrupt increase in h2o2 level (Fig 6D). Through

the simulations, we propose that at high values of VGTHOm , the increased level of gsh/gssg ratio

helps the cell to evade programmed cell death which would otherwise lead to apoptosis by the

induction of toxicity due to uncontrolled increase in h2o2 levels. However, at lower values of

VGTHOm , a sharp decline in the gsh/gssg ratio drives the cell towards an apoptotic fate. As such

employing an anti-oxidant approach at high VGTHOm and a pro-oxidant approach at low VGTHOm

will provide a better surveillance strategy to eliminate cancer cell progression. We observe only

a slight difference in the nadph/nadp+ ratio under present simulation conditions. Regulation

of nadph/nadp+ ratio, however, can be employed to facilitate the pro- or anti-oxidant approach

by modulating nadph/nadp+ ratio either by inhibition or activation of NAD kinase, a potent

regulator of the nadph-nadp+ pool within the cell [51, 52].

To identify parameters, which influence the cellular properties under these different condi-

tions, sensitivity analyses are performed for the model with high oxygen demand (hypoxia sce-

nario, by changing kO2
m ) and for the model with multiple mutations (glioma scenario). A

comparison of the sensitive parameters (p-value<0.05) for the variables h2o2, gsh and gssg for

the three conditions: normal, hypoxic and glioma show common and unique sensitive param-

eters for each scenario (Fig 7). The kinetics of the enzyme GTHP remains crucial in all three

scenarios owing to its direct involvement in the production of gsh. Apart from the parameters

which directly regulate the variables, a few indistinct parameters are found to be sensitive for

the different scenarios. Analyses of these parameters show that the influence exerted by them

on the variables is at micromolar and nanomolar concentrations for the present simulation

conditions. The set of parameters which are unique and common to the three different simula-

tion scenarios are shown in Fig 7 and the detail descriptions are provided in Table 1. We
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suggest that regulation of these parameters might help in facilitating pro- or anti-oxidant ther-

apeutic strategies.

3.4. Identification of Combinatorial targets for pro- and anti- oxidant

therapy

We have analyzed the influence of parameters sensitive in regulating h2o2 levels during the gli-

oma scenario using the parameters listed in G11 in Table 1. These parameters do not necessar-

ily have a role in regulating the ROS levels directly, yet show differences in the ROS levels

along with changes in gsh/gssg and nadph/nadp+ ratios when varied individually or in combi-

nation. Enzymes and metabolites associated with a few of these parameters like methyltetrahy-

drofolate (mlthf) [53, 54], NADPH Oxidase (NOX) [32, 55, 56], cystine-glutamate antiporter

(xCT) [57], etc., have already been implicated in having crucial role in regulating ROS levels in

the cell. A few parameters associated with enzymes which do not directly regulate the ROS and

glutathione production, like Phosphoglycerate Dehydrogenase (PGCDH), Cystine Reductase

(CR) and Fructose Bis-phosphate Aldolase (FBA) have also been identified. These parameters

do not necessarily show a significant difference in the ROS levels when varied individually but

show a characteristic difference when varied in combinations. These changes can be utilized

for designing pro-oxidant or anti-oxidant approaches for therapeutic targeting. A few of the

combinations which bring distinct changes in the h2o2 level, gsh/gssg and nadph/nadp+ ratio

during glioma scenario have been listed in Table 2. kCRnadph, a parameter that has been considered

in the model, which catalyzes the conversion of cystine into L-cysteine subsequently using it

for glutathione production, is found to have an effect on the h2o2 level, gsh/gssg and nadph/
nadp+ ratio when varied in combination with other parameters. Availability of oxygen in the

ECM for cellular uptake (Loxy) when modulated in combination with kCRnadph show a significant

change in level. Interestingly, a combinatorial variation of Loxy with VFBAm cause a decline in the

h2o2 level which can be utilized for anti-oxidant therapy, and a variation of kCRnadph with kGSglucys
induces changes the h2o2 level which can possibly be used for pro-oxidant therapeutic design.

Table 2 shows the possible utility of these combinations in pro- or anti-oxidant therapy

Fig 6. Temporal area plots of changing nadph/nadp+ and gsh/gssg ratios along with change in h2o2 concentration.

A. Normal condition, B. Hypoxia, C. Glioma at high VGTHOm (0.19mM hr-1), D. Glioma at low VGTHOm (0.001mM hr-1).

https://doi.org/10.1371/journal.pone.0235204.g006
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depending upon their influence on the h2o2 level, gsh/gssg and nadph/nadp+ ratio. The changes

in h2o2, gsh/gssg and nadph/nadp+ profiles due to these combinatorial variations in glioma sce-

nario are shown in S6 Fig of S1 Text and the values for which the profiles are obtained have

been listed in S3 Table of S1 Text. These combinations could be explored for their possible

therapeutic abilities in the development of future therapeutic strategies. Altering the kinetic

parameters like the Vmax or km of an enzyme is challenging, though possible with the help of

enzyme modulators and competitive and non-competitive inhibitors. Non-competitive inhibi-

tors are capable of altering the Vmax of an enzyme while keeping the km unaltered, while com-

petitive inhibitors can alter the km of the enzyme [58]. A few of the inhibitors for the

aforementioned enzymes have already been reported in literatures and have been tested in in-
vivo experiments, which could be checked for their effectiveness in the present context. For

e.g. iodoacetate, N-ethylmaleimide (NEM) and 5,5́ -dithiobis-(2-nitrobenzoate) (DTNB) have

been reported as potent inhibitors of glutathione synthase [59], and neopterin, magnolol,

apocyanin and gliotoxin for NADPH oxidase [60]. However, the exact type of inhibition for

these inhibitors i.e. competitive or non-competitive is not yet known and has to be under-

stood. A context-based understanding of the involvement of these parameters in h2o2 produc-

tion or scavenging mechanism under different conditions has to be made through

experiments in order to employ them for therapeutic strategies.

Fig 7. Comparison of sensitive parameters in Normal, Hypoxia and Gliomas for the variables gsh, gssg and h2o2.

The abbreviations used here are N: Normal, H: Hypoxia, G: Gliomas, NH: Normal and Hypoxia, NG: Normal and

Gliomas, HG: Hypoxia and Gliomas and NHG: Normal, Hypoxia and Gliomas. The sensitive parameters for each

variable under each condition have been tabulated in Table 1.

https://doi.org/10.1371/journal.pone.0235204.g007
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4. Discussion

ROS, produced as a byproduct of cellular metabolism, are often considered toxic to the cells.

Nonetheless, in recent years, their functions as second messengers in signal transduction pro-

cesses have been highly appreciated. In normal cells, any excess production of ROS is scav-

enged by the antioxidant machinery. ROS, however, exhibit a paradoxical behavior in

augmenting or hindering tumor progression. It is described to have a “double-edged sword”

property having both tumor-promoting and tumor-suppressing functions. Currently, both

pro-oxidant and anti-oxidant approaches are employed as cancer therapeutics. However,

owing to the paradoxical behavior, the employment and effectiveness of which strategy will

suit a better therapeutic approach for any particular cancerous situation still remains unclear.

The oxidative status and functioning of anti-oxidant machinery have a crucial role to deter-

mine the proliferative fates of the cancer cells. The cellular nadph/nadp+ ratio is a measure of

the reducing potential of the cells which is usually maintained high for the proper cellular

functioning [24, 25]. A decline in the nadph/nadp+ ratio is observed in many cancer types [61,

62], although high nadph/nadp+ ratio was observed to promote cancer cell growth and prolif-

eration by stimulating anabolism and by protecting cancer cells against oxidative stress during

nutrient limitation [63]. Thiol ratios are another important determinant of cellular apoptotic

Table 1. List of sensitive parameters for gsh, gssg and h2o2 under normal, hypoxic and glioma scenarios.

gsh
N18 VPGIm , kPST

3php, k
GS
atp, k

O2
m , kPGCDHið3pgÞ , kGCLatp , kCRiðcysÞ, V

GHMT
m , kCRcys , k

PFK
f 6p , doxy, kPSTiðglutÞ, V

GLUTEX
m , VPSPm , kGAPDHiðgapÞ , kGAPDHgap , kGSiðglyÞ, V

PFK
m

H4 kHKiðatpÞ, k
SOD
oxrad, k

PFK
iðatpÞ, k

NOX
O2

G6 kGTHOiðgssgÞ , V
NOX
m , VGSm , lnadp, lnadph, dnadph

NH2 kPGKadp , VGCLm

HG0 -

NG4 VGTHOm , kGTHOgssg , kGSiðatpÞ, kGTHOnadph

NHG4 kGTHPiðh2o2Þ
, VGTHPm , kGTHPh2o2

, kGTHPgsh

Gssg
N19 VPGIm , kPST

3php, kGSatp, kO2
m , kPGCDHið3pgÞ , kGCLatp , kCRiðcysÞ, VHKm , VGHMTm , kCRcys , kPFKf 6p , doxy, kPSTiðglutÞ , VGLUTEXm , VPSPm , kGAPDHiðgapÞ , kGAPDHgap , kGSiðatpÞ,

VPFKm

H4 kHKiðatpÞ, k
SOD
oxrad, k

PFK
iðatpÞ, k

NOX
O2

G5 kGTHOiðgssgÞ , V
NOX
m , lnadp, lnadph, dnadph

NH2 kPGKadp , VGCLm

HG0 -

NG3 VGTHOm , kGTHOgssg , kGTHOnadph

NHG4 kGTHPiðh2o2Þ
, VGTHPm , kGTHPh2o2

, kGTHPgsh

h2o2

N25 VPGIm , kPST
3php, kGSatp, kO2

m , kPGCDHið3pgÞ , dnadh, kGCLatp , kCRiðcysÞ, VHKm , dglut, VGHMTm , kCRcys , kPFKf 6p , kPSTiðglutÞ, VGLUTEXm , VGTHOm , VPSPm , kGAPDHiðgapÞ ,

kGTHOgssg , kGAPDHgap , dh2o2, VGLYexm , kGSiðatpÞ, V
PFK
m , kGLUDiðglutÞ

H2 kHKiðatpÞ, k
SOD
oxrad

G11 dmlthf, kPGCDH3pg , Loxy, dphp, kXCTglut , kNOXiðnadphÞ, k
NOX
nadph, V

FBA
m , kGSglucys, k

CR
nadph, latp

NH2 VGCLm , VO2
m

HG4 VNOXm , lnadph, din, kNOXO2

NG4 lglut, kGCLiðatpÞ, lnadp, doxy
NHG5 kPGKadp , kGTHPiðh2o2Þ

, VGTHPm , kGTHPh2o2
, kGTHPgsh

https://doi.org/10.1371/journal.pone.0235204.t001
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or anti-apoptotic fates. A high gsh/gssg ratio is maintained under normal conditions which

often changes during cancerous transformations. A decline in gsh/gssg ratio induces the initia-

tion of apoptosis while an increase might help the cells escape apoptosis. The puzzling duality

of ROS in exhibiting varying cellular fates is determined by a coordinated response of these

factors. To understand the effect of these factors cumulatively, under different cancerous sce-

narios is a challenge.

Motivated by these findings, we have designed a kinetic metabolic framework for glial cell,

to trace the possible changes that might be occurring within them during their transformation

into gliomas. The model takes into account the metabolic reactions involved in the production

of the tri-peptide complex, glutathione and ROS producing machinery. A part of the glycolytic

pathway which enters the glycine-serine metabolism has been considered along with cystine

and glutamate metabolism which result in the production of the components of the tri-pep-

tide: glycine, cysteine and glutamate respectively. Herein, we considered the effect of these

pathways on the anti-oxidant production machinery simultaneously looking for their effect on

ROS production and scavenging and vice versa. To understand the effect of glutathione over

ROS metabolism, reactions metabolizing the production of glutathione and ROS, along with

the gsh-gssg cycle have been considered. Important reactions involving the nadph-nadp+ con-

versions have been considered, to take into account the changes in nadph/nadp+ ratio while

manipulating h2o2-glutathione profiles. We postulate that the paradoxical behavior of ROS is

governed by changes in the nadph/nadp+ and gsh/gssg when considered together. An increase

in h2o2 along with a decline in both gsh/gssg and nadph/nadp+ will disrupt the cellular redox

status and drive the cell towards apoptosis by inducing toxicity due to accumulation of ROS.

Numerical simulations of the model provide us with a set of sensitive enzyme parameters,

which are affected during a transition from normal glial conditions to hypoxia to the develop-

ment of gliomas. Upon introducing variations into the parameters which are sensitive under

normal glial conditions, interesting changes in the dynamics of h2o2, nadph/nadp+ and gsh/
gssg could be observed. The uptake of oxygen by the cells has been represented by the Michae-

lis-Menten equation form where kO2
m determines the affinity of the cell for external oxygen. A

decrease in kO2
m results into a decline in the external oxygen concentration as the cellular affin-

ity for external oxygen increases. This represents a condition with high cellular oxygen

demand which is reflected as hypoxia in the external microenvironment.

GTHP is one of the important enzymes involved in the regulation of gsh/gssg, along with

controlling the cellular content of h2o2 and maintaining nadph/nadp+. Through our simulation

on the glial cell model, we observe that with an increase in VGTHPm there is a considerable decline

in the h2o2 level and gsh/gssg ratio, although the effect on nadph/nadp+ ratio is only trivial.

Table 2. Combinatorial effect of sensitive parameters on gliomas.

Sr. No. Parameter 1 Parameter 2 Variation of Parameter 1� Variation of Parameter 2� Effect

1. kNOXiðnadphÞ kCRnadph Decrease Increase Pro-oxidant

2. kNOXiðnadphÞ kNOXnadph Increase Increase Anti-oxidant

Decrease Decrease Pro-oxidant

3. Loxy kCRnadph Increase Increase Pro-oxidant

4. kNOXiðnadphÞ latp Decrease Increase Pro-oxidant

5. VFBAm Loxy Decrease Decrease Anti-oxidant

6. kGSglucys kCRnadph Decrease Decrease Pro-oxidant

�Increase or decrease in the parameter value with respect to normal value.

https://doi.org/10.1371/journal.pone.0235204.t002
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GTHO is another important enzyme, and the GTHP-GTHO duo completes the gsh-gssg cycle.

Not much difference in gsh/gssg and nadph/nadp+ could be observed for a change of GTHO
alone keeping all other parameters fixed. However, simultaneously varying GTHP and GTHO
result into interesting changes in nadph/nadp+ and gsh/gssg with a decrease in h2o2 level. We

interpret that at any given time point under normal condition there is a decline in the nadph/
nadp+ and gsh/gssg until the gsh-gssg cycle neutralizes h2o2 concentration to micromolar levels

rendering it non-toxic to cellular processes, after which the cell regains a stable nadph/nadp+

and gsh/gssg ratio. The involvement of NADPH Oxidase (NOX) is found to be crucial in the

present simulation scenario. The activity of NOX determines the rate of production of free

oxygen radicals which act as a substrate for superoxide dismutase (SOD) and is readily con-

verted into h2o2 given VSODm is sufficiently high. An increase in the NOX activity rapidly

increases the h2o2 level decreasing both nadph/nadp+ and gsh/gssg ratio.

While analyzing the dynamics of these parameters under changing affinity for oxygen, we

observe that under hypoxic conditions increase in VGTHPm acts as the protective barrier against

ROS by readily neutralizing h2o2 levels at the cost of reduced gsh/gssg, although the change in

nadph/nadp+ ratio remains trivial. A decrease in the VGTHPm can however help cancer develop-

ment by causing h2o2 accumulation and inducing oncogenic signal transductions. The changes

occurring due to an increase in activity of NOX and GTHO under hypoxia could also be inter-

preted as a condition initiating cancer development. While increasing NOX activity under

hypoxia certainly disrupts cellular redox balance by reducing gsh/gssg and nadph/nadp+, the

effect of changes in GTHO activity is minimal at a cost of sudden decrease in nadph/nadp+ and

gsh/gssg ratios with its effect being severe at lower values. When considered together, changes

in NOX and GTHO activity under normal and hypoxic conditions show substantial differences

suggesting their involvement in tumor initiation.

A decrease in VGTHPm and VGTHOm , and an increase in VNOXm along with a low kO2
m were consid-

ered to create a situation under hypoxia with multiple mutations representing a glioma-like

situation. Comparisons of sensitive parameters under normal, hypoxic and glioma-like situa-

tions provide an insight into the directly and distantly related parameters which affect the pro-

duction of gsh, gssg and h2o2. Through parameter variation analysis of sensitive parameters

under the glioma-like scenario, it is observed that different values of VGTHOm has differing effect

on the overall redox status of the cell. We interpret that differing GTHO activity during cancer-

ous transformation can govern the pro-apoptotic or anti-apoptotic fate. This partially accounts

for the paradoxical behavior of ROS and helps in therapeutic determination of pro-oxidant or

anti-oxidant approach either by augmenting glioma cell death and clearance or by controlling

it using anti-oxidant therapies. We propose that under high GTHO activity an anti-oxidative

approach will be suitable to control glioma progression, whereas under low GTHO activity a

pro-oxidative approach will be appropriate to induce apoptosis of the glioma cells.

Further analysis of the glioma scenario created in-silico in the model shows the involvement

of non-trivial parameters in the regulation of gsh, gssg and h2o2. It is interesting to note that a

combinatorial parameter variation of enzymes belonging to glycolytic pathway (VFBAm ) and cys-

teine metabolism (kCRnadph) could induce changes in the h2o2 level along with changes in nadph/
nadp+ and gsh/gssg profiles during glioma. Additionally, a combinatorial variation of a few

other parameters like kGSglucys,Loxy, latp and kNOXnadph which are not directly involved in ROS manipu-

lation also show changes in h2o2 level. Combinatorial responses of these parameters have been

captured which suggest the possibility of utilizing these combinations in designing pro- or

anti-oxidant therapeutic approaches based on their effect on ROS manipulation. The present

model has been tailored for glial and glioma conditions; however, the utility of the model can

be extended to simulate the dynamics of antioxidant machinery for cells under oxidative stress
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and to other tumor types exhibiting ROS manipulation. Since hypoxia and oxidative stress are

characteristics of most tumors and antioxidant machinery plays a central role in maintaining

redox balances in all cell types, this model can be used to simulate various scenarios related to

redox imbalances in other types of cancers as well. Sensitive parameters for ROS manipulation

under normal and cancerous conditions for different cancers can be obtained, and combinato-

rial targets for pro- and antioxidant therapy could be identified.

5. Conclusion

In the present work, we have demonstrated the effect of redox and thiol status of the cell and

the antioxidants in maintaining ROS levels by considering h2o2 levels in particular, in normal

glial cells and gliomas. GTHP, GTHO, and NOX are important in determining transition from

normal glial to hypoxia to glioma situation and in regulating h2o2 levels with the cell. Addition-

ally, changes in the redox and thiol status represented by nadph/nadp+ and gsh/gssg respec-

tively, along with changes in the enzymes can determine the pro-apoptotic or anti-apoptotic

fate of the gliomas. The differing activity of GTHO during glioma development helps in under-

standing the paradoxical behavior of h2o2 in gliomas and hence is helpful in determining the

selection of therapeutic strategies: pro-oxidant or anti-oxidant, against glioma progression.

Also, the involvement of enzymes which are not directly involved in the regulation of h2o2 but

affect the process by inducing effect distantly in the metabolic network are important in aug-

menting the effectiveness of the selected therapeutic approach. The effect of hypoxia in the

model has been evaluated by the affinity of the cell for oxygen uptake. Further inclusion of the

impact of endogenous factors likeHIF1α, the faulty oxidative phosphorylation, etc., inducing

hypoxia can be insightful and will be considered in the future extension of the work. The

understanding of these mechanisms and the identification of important enzymes that affect

the ROS manipulation process can potentially build a better future prospect of developing

effective and efficient therapeutic strategies for the treatment of gliomas.
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Abstract
Different types of T effector cells function centrally in the immune-regulatory 
network, which acts as a line of defense for the body and elicits immune response 
during any diseased condition. At the molecular level, this functioning is main-
tained by an intricately designed network of signaling and metabolic pathways 
that function via multiple cross-talks to regulate complex immune responses dur-
ing different antigenic challenges. These pathways regulate phenomena such as 
quiescence exit of naïve T cells, their activation, and differentiation into different 
effector T cells. Signaling properties of these T cells and their response to differ-
ent cytokine signals have been well studied. Immune-metabolism is compara-
tively a new area of research that has been identified as driver for immune 
response. However, to gain a holistic understanding of the activation and differ-
entiation of naïve T cells into the subtypes, the integration of signaling and meta-
bolic pathway information is a prerequisite. The bidirectional mode of regulation 
between these cross-talking signaling and metabolic pathways governs the dif-
ferentiation patterns. In this chapter, we review the activation and differentiation 
pattern of naïve T cells from both signaling and metabolic perspectives and also 
look into their cross-talk to understand their mutual regulation during differentia-
tion into effector T cells.
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6.1  Introduction

The immune system forms the sentinel of the body that protects it from infectious 
disease and cancer. The adaptive immune system, composed mainly of the T and B 
lymphocytes, is responsible for maintaining this defense mechanism of the body as 
it helps to generate immune responses specific to the type of antigenic challenge that 
the body encounters [1]. The helper T cells (TH) form the central orchestrators of the 
entire immune-regulatory network. They have been known to have an essential role 
in the recognition of the antigen when presented on the surface of the antigen- 
presenting cells and secrete cytokines that aid in the proliferation of the cytotoxic 
T cells and B cells, thereby playing an active role in stimulating both the humoral and 
the cell-mediated immunity [2]. The effector functions of these immune systems are 
mediated mainly by the cytokines and other microbicidal molecules secreted by 
them as a result of the activation of complex biochemical signaling pathways inside 
the immune cells. The TH cells themselves produce a high amount of interferon and 
tumor necrosis factor via TCR and co-receptor mediated pathways that mediates 
apoptosis of infected and cancerous cells [3, 4].

The differentiation of the helper T cells is primarily influenced by the changes in 
the micro-environmental conditions that favor the proliferation of a certain subset of 
T cells that leads to disruption of the balance and ratio of the normal proportions of 
T-cell subsets present in a healthy individual [5, 6].

Naive T cells circulate in the body surveying for antigens. The metabolic activ-
ity of these cells is maintained low by allowing low uptake of glucose enough to 
fuel the TCA cycle and OXPHOS to produce ATP [7]. These cells are kept in a 
quiescent state that promotes their survival and persistence. On antigen stimula-
tion, the metabolism of T cells is triggered via increased uptake of glucose, which 
allows quiescence exit and initiates clonal expansion and effector differentiation 
primarily by mTOR-mediated signaling responses [8]. Initially, the focus of stud-
ies remained on the immune receptors and transcriptional regulators involved in 
T-cell quiescence and activation, but recent findings highlight cell metabolism as 
a crucial regulator of these processes [9–12]. Receptor-induced signaling and 
metabolic networks in naïve T cells are mutually regulated by each other depend-
ing on the micro- environmental cues obtained by the cell that also influence qui-
escence exit. Here we will discuss the bidirectional communication of signaling 
and metabolic pathways that promotes proliferation, quiescence exit, and activa-
tion of naïve T cells and functioning of T cells upon activation. We will take into 
account the different signaling and metabolic events and their cross-talks that lead 
to differentiation of naïve T cells into TH1, TH2, TH17, Treg, or Tfh effector cells. 
Understanding the cross-talks between T-cell signaling and metabolism under 
different environmental cues will be vital for understanding the differentiation 
patterns of naïve T cells during different pathogenic conditions. This will provide 
better prospects of developing novel approaches to modulate protective and 
pathological T-cell responses in human diseases.
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6.2  Signaling and Metabolic Pathways Involved 
in Activation of Naïve T Cell

The activation of TH cell is mediated by a complex chain of signaling events that 
involve the activation of distinct co-stimulators and co-inhibitors present on the 
surface of the lymphocyte. The interaction between the antigen-bound major histo-
compatibility complex (MHC) on the antigen-presenting cells (APCs) and the T-cell 
receptor (TCR) on TH cells triggers the TCR-mediated signaling pathway. The phos-
phorylation of the LAT signalosome by LCK sends signal to three major cell- 
signaling pathways, viz. NFκB, MAPK, and the calcium-mediated NFAT pathways 
[13]. Along with the TCR, the T cell also expresses several other co-receptor mol-
ecules that can be classified into two major functional groups. The first group con-
sists of co-signaling receptors that have an immunoglobulin (Ig)-like fold in their 
ectodomains, such as CTLA-4, CD28, PD1, and BTLA [14]. The other co-signaling 
group belongs to the tumor necrosis factor receptor (TNFR) superfamily and 
includes DR3, OX40, 41BB, CD27, CD30, and HVEM [14]. Together with the TCR 
activation, a second signal from the co-stimulatory signal emanating from B7-CD28 
interaction is also necessary for the T-cell activation. This is called the “two signal 
hypothesis” [13]. The B7 molecule present on the APC also binds with the CTLA-4 
receptor of the T cell after the clearance of the antigen. This induces T-cell anergy 
after the antigen is cleared from the system and the T-cell activation is no longer 
required. The other co-receptor signaling pathway influences the type of cytokine 
expressed and regulates the T-cell differentiation pattern. Experimental studies have 
shown CD40-L, expressed on the surface of activated T cells, induces the APC to 
produce IL-12, thereby stimulating the TH cells to differentiate into the TH1 cells 
[15, 16]. On the other hand, the TRAF2-mediated OX40 signaling pathway contrib-
utes to long-term survival of TH cells [17]. OX40 has been implicated in the develop-
ment of memory T cells, clonal expansion, and differentiation. It also mediates 
suppression of the Treg cells [17, 18]. The negative regulators of T-cell activation are 
required to maintain homeostasis and deactivate the T cells after the antigen is cleared 
out. This is mediated by the PD1-PDL axis that provides co-inhibitory signal to the 
T-cell activation. The T cell also expresses CD45, a phosphatase, that de- phophorylates 
the carboxyl-terminal tyrosine of p56lck and p59fyn that aids T-cell activation [19]. 
Apart from these, the T cells express several other co-receptors that serve to regulate 
the cytokine expression and differentiation of the cell [20].

The calcium pathway also plays a major role in the proliferation of the TH cell 
activation [21]. The influx of Ca2+ ions from the CRAC channels leads to the activa-
tion of the NFAT (Nuclear Factor of Activated T cell) transcription factor that acts as 
the master regulator of T-cell activation and T-cell anergy [22]. The activation of the 
calcium pathway in the T cell is initiated by the binding of the TCR with an antigenic 
peptide presented on MHC complexes of the APC that induces activation of PLC-γ 
that cleaves PIP2 into IP3 and DAG. This IP3 now activates the IP3- receptors located 
on the endoplasmic reticulum membranes inside the T cell, which causes the release 
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of intracellular stores of calcium, leading to a transient elevation in cytoplasmic 
calcium level. This activates the CRAC channels on the T-cell membrane that allows an 
inward flux of calcium from the extracellular environment. This triggers the calcium-
mediated calmodulin-calcineurin pathway, which leads to the de-phosphorylation 
and nuclear translocation of NFAT proteins where it can cooperate with AP-1 com-
plexes induced by co-stimulatory pathways. The NFAT/AP-1 complexes bind to the 
sites in the promoters of many cytokine genes to activate their transcription to medi-
ate sustained T-cell activation and survival. In the absence of co-stimulation or in the 
presence of anergizing stimuli, sustained increases in intracellular calcium concen-
tration activate NFAT proteins. However, in the absence of concomitant AP-1 activa-
tion, due to lack of co-stimulatory signals, NFAT proteins dimerize and translocate 
into the nucleus, inducing the expression of anergy- inducing genes that include 
E3-ubiquitin ligases, such as Itch, Grail, and Cbl-b that is known to ubiquitinate and 
inactivate the TCR signalosome and the co-stimulatory CD40-ligand, thereby desta-
bilizing the immunological synapse in the anergic T cell. On the other hand, 
the calcium/NFAT-dependent activation of the Ikaros transcription factor in anergic 
T cells leads to the epigenetic changes in the IL-2 promoter by the recruitment of 
HDACs and other chromatin-modifying complexes, which results in stable silencing 
of the IL-2 gene expression [22].

Metabolic regulation of T cell is another aspect that determines activation and 
differentiation of naïve T cells and their functioning upon activation. Naïve T cells 
utilize glucose and glutamine metabolism for activation, and activation signals 
increase glucose and glutamine uptake by T cells through GLUT1 and ASCT2, 
respectively [23, 24]. Thus, both signaling and metabolism cooperate in a bidirec-
tional manner to influence T-cell activation and differentiation. On encountering 
pathogenic antigens, a cascade of TCR signals and co-stimulatory signals are initi-
ated, which leads to quiescence exit in naïve T cells. The first signal that initiates 
quiescence exit is the transduction of TCR signaling via PI3K/AKT/mTOR path-
way, which induces glycolysis in the naïve T cells [25]. This initiation is marked by 
a trigger in the metabolism of T cells that suffices the increasing lipid, nucleotide, 
and amino acid requirement of differentiating cells. During quiescence exit, T cells 
produce lactate to sustain glycolysis. Lactate is also imported into cells through the 
monocarboxylate transporters and converted into pyruvate by lactate dehydroge-
nase A (LDHA). This reaction limits glycolytic programming and proliferation in 
T cells, potentially owing to the attenuated generation of glycolytic intermediates 
such as PEP that sustain glycolysis and biosynthesis reactions [26].

Glutamine metabolism regulates T-cell activation in different ways. It has an 
important role in determining differentiation to TH1 and TH17 cells. TH17 cells utilize 
both glucose and glutamine to fuel the TCA cycle and OXPHOS, which otherwise 
is optional for other T effector cells [27]. It regulates leucine uptake via regulation 
of LAT1-CD98 and together with leucine activates mTORC1 signaling [28]. Other 
amino acid metabolisms like tryptophan and arginine metabolism and their inter-
mediate metabolites such as kynurenine and ornithine differentially regulate T-cell 
survival, apoptosis, and proliferation [29–31].
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Glucose and glutamine metabolism also induce lipid metabolism via mTORC1- 
dependent regulation of AMPK [32]. These pathways are metabolically connected 
to the TCA cycle and OXPHOS, which also affect the redox and oxygen-sensing 
signals in T cells. The conversion of pyruvate to lactate via NAD+-NADH-dependent 
LDH reaction regulates redox signals, and impaired oxygen-sensing machinery of 
OXPHOS results in the formation of ROS, which induces ROS-dependent signaling 
that promotes IL-2 productions and induces T-cell proliferation by activating NFAT 
transcription factor [33].

6.3  TH-Cell Differentiation and Diversity

The TH cells display high plasticity that helps them to differentiate into specialized 
TH cells according to the type of the antigenic challenge and the micro- environmental 
conditions (Fig. 6.1). The early events of the T-cell activation play a major role in 
the determination of the pattern of differentiation of the naïve T cell. The micro- 
environmental cues, in the form of cytokines, activate the signaling pathways of the 
TH cells that eventually lead to the changes at the gene-regulatory levels [34]. The 
selective activation of specific transcription factors mediates the differentiation of 
the naïve cells into specialized CD4+ TH effector cells, viz. TH1, TH2, TH17, etc. 
(Table 6.1) [35]. Additionally, another type of CD4+ TH cell called the regulatory T 
cells (iTreg) has a role in maintaining the TH cell homeostasis.

The mechanism of T-cell differentiation is governed initially by the strength of the 
stimulus that the TCR receives from the APC. The strength of stimulus results in dif-
ferential regulation of phosphatidylinositols that triggers different signaling 

Fig. 6.1 Schematic 
diagram of signature 
signaling factors, 
cytokines, metabolites, and 
metabolic paths, which 
dictate TH cell 
differentiation, 
proliferation, and effector 
function
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pathways downstream. It has been observed that while a weak TCR signal generates 
a high level of PIP2 and lower levels of PIP3, which is required for the activation of 
the focal adhesion kinase and phosphorylation of AKTThr308, stronger signal favors 
the activation of mTORC2, and as a result, elevated level of PIP3 and reduced PIP2 
are generated [36]. In vitro experiments have revealed that a stimulus of a lower 
strength induces the expression of the GATA-3 transcription factor, the master regu-
lator of TH2 cells. Simultaneously, the expression of the IL-2 cytokine activates 
STAT5 that synergizes with GATA-3 to transcribe the IL-4 gene that eventually leads 
to the differentiation of the naïve cell into the TH2 subtype [37]. Recent advances in 
the field also divulged that during viral infection low TCR signals may also favor the 
formation of Tfh and memory T cells. On the other hand, a stronger stimulus favors 
the activation of the T-bet transcription factor that helps in the differentiation into the 
TH1 subtype and triggers the production of IFN-γ and IL12 cytokines. The differen-
tiation of naive CD4+ T cells into TH17 cells is induced by TGF-β/IL-6 in combination 
with TCR stimulation. This triggers the production of IL-23R, which induces the 
transcription factor RORγt, IL-17, and IL-21. The STAT-3 protein plays an important 
role in the production of the TH17 effector molecules and requires the activation of the 
ICOS co-stimulatory pathway. However, under the TH17-inducing conditions, the 
presence of IL2/STAT5 induces the expression of the Foxp3 transcription factor that 
leads to the differentiation of the naïve cells into iTreg cells. The strength of TCR 
stimulus also plays a role in the TH17/iTreg determination process, where it has been 
observed that a weak stimulus favors the differentiation into iTreg cells that is known 
to have a role in immune- suppression [37].

The effect of signaling in TH cell differentiation is further augmented by the 
action of metabolism within these cells. On activation by the upstream TCR and 
co-stimulatory signals, metabolic pathways trigger the process of T-cell activation 
with the initiation of glycolysis in most of the cases [38]. The utilization of glucose 
is maintained nominal in naïve T cells, just to suffice ATP requirement enough to 
maintain survival during quiescence [39]. However, with the transduction of TCR 
signals via mTORC1/2 signaling, the rate of glucose utilization increases, leading to 
quiescence exit and activation of TH cells [8, 38]. Upon activation, differentiation 
patterns are regulated by differential expression of metabolic pathways. For exam-
ple, glutamine metabolism along with leucine induces proliferation and differentia-
tion of TH1 and TH17 cells [27, 28]. In addition, αKG promotes initial programming 
in TH1 cells [40]. Further, glutaminolysis results in the formation of glutathione, 
which is required for TH17 differentiation [41]. An increase in glucose metabolism 
induces lipid metabolism to promote TH2 differentiation [42]. Inhibition of glycoly-
sis and promotion of OXPHOS along with upregulated lipid and mevalonate metab-
olism induce Treg proliferation and differentiation [43, 44]. Intermediate metabolites 
of metabolic pathways, in return, regulate signaling processes as well. For example, 
tryptophan intermediate, kynurenine, and arginine intermediate ornithine regulate 
signaling processes in T cells, which have been discussed in the next section.

Each of the TH sub-type has a specific effector function to perform [34, 35, 
37, 45]. A balance between all the TH cell subtypes is necessary for the proper func-
tioning of the immune system. The effector molecules, in the form of interleukins, 
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interferons, tumor necrosis factor, etc., produced by these diverse groups of immune 
cells, maintain the integrity of the immune-regulatory network (Table 6.1). However, 
during any disease condition, this defense mechanism gets subdued. Changes in the 
micro-environmental conditions lead to alterations in the biochemical reaction net-
work that disrupts the balance between the effector cell populations that favors the 
progression of the disease. This immune-suppression is observed very frequently in 
the cases of chronic infections (e.g., chronic Leishmania infection) and cancer.

6.4  Signaling and Metabolic Cross-Talk Mediated by mTOR 
Regulate Differentiation

Activation of naïve T cells is initiated with the tonic signals generated by T-cell recep-
tor (TCR) on their interactions with self-peptides on MHC molecules. There is an intri-
cate design of the signaling and metabolic interactions of these cells, which allow them 
to proliferate and produce effector molecules (Fig. 6.2). Sensitivity toward TCR signal-
ing in the naïve T cells is partially mediated by the mechanistic target of Rapamycin 
complex (mTORC1 and mTORC2) [46]. Peripheral naive T cells circulate in the blood 
and survey antigens. They maintain a low metabolic rate and import a small amount of 
glucose to fuel the TCA cycle and OXPHOS for ATP production [39]. Naive T-cell 
homeostasis is disrupted by the activation of mTOR signaling [47]. The activation of 
mTORC1 signaling enhances glycolytic metabolism in these cells, inducing entry to 
cell cycle and cell growth. The naive T cells, which otherwise remain in a quiescence 
state, are activated by the enhanced glycolytic pathway. Different regulators of mTORC 
affect the process of naive T-cell activation [46].

Fig. 6.2 Cross-talks of signaling and metabolic pathways regulating the activation of the T-bet, 
GATA3, RORγt, and FOXP3 transcription factors that mediate T-cell differentiation
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mTOR signaling is regulated by a set of upstream signaling, which determines 
the formation of mTORC1 and mTORC2 and subsequent signaling. The signal 
induces upon activation of TCR and subsequently the PI3K/Akt pathway [48]. 
Raptor and rictor are the main components of mTORC1 and mTORC2 complexes, 
respectively. mTORC1 signaling is required for differentiation into TH1 and TH17 
effector cells, and an inhibition of mTORC1 has been observed to induce TH2 dif-
ferentiation and prevent TH1 and TH17 differentiation [25]. However, these observa-
tions differ according to the upstream signal received by the complex. Loss of 
tuberous sclerosis complex 1 (TSC1) results in mTORC1 activation [47]. The meta-
bolic activity of naive T cells can also be enhanced by the exposure to IL-2 released 
by activated CD4+ effector cells [49]. Inhibition of mTORC1 by the TSC (Tuberous 
Sclerosis Complex) via Rheb inhibition leads to failure in differentiation into TH1 
and TH17 effector cells [47].

mTORC1 is a master kinase that helps naive T cells to exit quiescence. TCR 
signaling along with costimulatory and IL-2 signals promote the activation of 
mTORC1 during quiescence exit. The magnitude and duration of mTORC1 activity 
likely determine quiescence exit. TCR signals must meet a certain threshold of acti-
vation to induce T-cell proliferation. This threshold is determined by the level of 
mTORC1 activation and expression of IRF4 and c-Myc [50, 51] that regulate ana-
bolic and mitochondrial metabolism. mTORC1 also regulates sterol regulatory 
element-binding proteins (SREBPs) that has a role in metabolic reprogramming in 
naive T cells. Metabolism in turn regulates the activity of mTORC1. Leucine and 
glutamine coordinate with TCR and CD28 signaling to activate mTORC1 and sus-
tain metabolic flux during quiescence exit [27, 28]. T-cell activation demands for 
the biosynthesis of lipids, cholesterol, nucleotides and amino acids in order to main-
tain the increase in metabolic rates of the activated cells. These increased demands 
are facilitated by the upregulation of hexokinase 2 (HK2), which is the rate-limiting 
enzyme for glycolysis [52, 53]. This induces increased utilization of glucose, which 
can also activate mTORC1 and inhibit the activation of AMP-activated protein 
kinase (AMPK) [32, 54]. AMPK induces lipid and cholesterol biosynthesis through 
the mTORC1-dependent upregulation of SREBP1 and SREBP2 [55]. mTORC1 
forms a bridge between signaling and metabolic responses in T cells that senses 
metabolic cues and mediates signaling regulation over metabolic pathways and 
vice-versa. Thus, mTORC1-dependent responses are crucial in determining prolif-
eration, activation, and functioning of T cells.

TCR signaling targets the transcription factor, c-Myc, in an mTORC1-dependent 
manner. It regulates the transcription of metabolic genes critical for T-cell activation. 
c-Myc induces the transcription factor AP4, which maintains the glycolytic tran-
scriptional program initiated by c-Myc to support T-cell population expansion [50]. 
However, c-Myc expression is not continually sustained after T-cell activation [56].

Metabolites also influence T cells in an mTORC1-independent manner. For 
example, post-translational protein modifications by glycolytic, lipid, or mevalonate 
by-products allow receptors, enzymes, and scaffolding proteins to properly posit at 
their sites of activity [57, 58]. In T cells, extracellular ATP, glucose, and glutamine 
modulate AMPK activity to promote T-cell responses against bacteria and viruses 
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[54]. The glucose metabolite PEP regulates the activation of Ca2+−calcineurin–NFAT 
signaling [59]. TCR signaling can be altered by cholesterol esters and cholesterol 
sulfate, which alter TCR clustering or affinity for antigens [60]. Also, N-glycans 
derived from the hexosamine pathway suppress TCR signaling [61].

mTORC2 also contributes to quiescence exit by enhancing glycolytic pathway. 
AKT/mTORC2 represses forkhead box protein O1 (FOXO1) function [62], which 
induces glucose transporter 1 (GLUT1) expression and enhances glycolytic flux 
[63]. Expression of glucose transporters contribute in determining naïve T-cell sur-
vival. IL-7–IL-7R signaling prevents degeneration of quiescent T cells by increas-
ing glucose and amino acid catabolism [64]. Rate or quantity of glucose uptake via 
the GLUT1 receptor may have a role in determining quiescence versus quiescence 
exit as its expression is lower on naive T cells than on activated T cells. During 
quiescence exit, cell growth and clonal proliferation are favored by glucose metabo-
lism upon survival [51].

Duration and strength of TCR signaling mediate both quiescence and activation 
of T cells. However, based on the type of initiation of these signaling cascades, 
i.e., tonic or antigen-driven, TCR signals differ in both duration and strength. In 
antigen- activated T cells, CD28-mediated co-stimulation of TCR signaling induces 
GLUT1 expression to increase glucose uptake [65]. Expression of the glutamine 
transporter ASCT2 and of sodium-coupled neutral amino acid transporters (SNATs) 
increases on TCR and CD28 co-stimulation [23]. Upregulation of SNATs on T-cell 
activation suggests that they also modulate the rate or quantity of glutamine uptake.

Glutamine metabolism plays a crucial role in determining differentiation to TH1 
and TH17 cells. Glutamine affects LAT1–CD98 activity, which promotes leucine 
uptake to induce the proliferation and differentiation of TH1 cells, TH17 cells, and 
effector CD8+ T cells [23, 66]. Glutamine along with leucine activates mTORC1 
and sustains metabolic flux during quiescence exit [28]. Further, utilization of glu-
tamine to generate glutathione via glutaminolysis is essential for T-cell proliferation 
and differentiation into TH17 cells [27]. Glutaminolysis also generates α-ketoglutarate 
(α-KG), which promotes initial programming of TH1 cells. Glutaminolysis also 
affects IL-2 signaling, as it has been observed to suppress IL-2-induced mTORC1 
activation during type 1 inflammation [27]. However, impaired glutaminolysis may 
promote abnormal leucine uptake to increase mTORC1 activation under such 
inflammatory conditions [23, 66]. Thus, glutamine and glutaminolysis have differ-
ent roles during quiescence exit and upon T-cell activation.

During impaired glutaminolysis, the oxidation of pyruvate acts as a crucial 
checkpoint. The mitochondrial pyruvate carrier (MPC) transports pyruvate into the 
mitochondria to fuel the TCA cycle and OXPHOS and depletes it from the cyto-
plasm. The inhibition of MPC favors glycolysis over OXPHOS, particularly when 
glutaminolysis is also impaired. Downregulation of OXPHOS in T cells require 
inhibition of both MPC and glutaminase 1 (GLS 1) [67]. TH17 cells suffice their 
nutrient requirement using both glucose and glutamine, which otherwise is optional 
for other activated T cells. The plausible explanation for this phenomenon is the 
high-level expression of pyruvate dehydrogenase kinase 1 (PDK1) in TH17 cells, 
which prevents conversion of pyruvate to acetyl-CoA in mitochondria [53]. 
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High expression of PDK1 diverts the pyruvate flux away from TCA in TH17 cells, 
and hence, the cell depends on glutamine to fuel the TCA cycle. The regulation of 
PDK1 is not well understood in TH17 cells; however, studies suggest that hypoxia-
inducible factor 1α (HIF1α) might induce PDK1, promoting TH17 cell responses 
[53]. Also, lactate dehydrogenase A (LDHA), which catalyzes lactate formation 
from pyruvate, sustains glycolytic metabolism and promotes interferon-γ (IFNγ) 
expression in activated T cells [68].

Upon activation, amino acids play an important role in the functioning of acti-
vated T cells. Certain amino acids promote quiescence exit and proliferation of 
naïve T cells, whereas others might suppress proliferation and promote quiescence- 
like programs in naïve T cells. Majority of the biomass of activated T cells is made 
by amino acids. Uptake of essential amino acids such as leucine or conditionally 
essential amino acids such as glutamine are taken up by amino acid transporters, 
such as LAT1–CD98 or ASCT2 [23], but non-essential amino acids accumulate in 
T cells due to influx or de novo biosynthesis from glucose or glutamine. Accumulation 
of amino acid intermediates impact the functioning of activated T cells. Accumulation 
of kynurenine, an intermediate of tryptophan metabolism, suppresses T-cell prolif-
eration [30]. Kynurenine accumulation might also result from its uptake through the 
LAT1-CD98 transporters [69]. Ornithine, an arginine intermediate, reduced glucose 
consumption via glycolysis. However, arginine supplementation increases serine 
biosynthesis and OXPHOS [31], which increases T-cell survival and promotes sec-
ondary effector responses.

Balanced redox reactions are one of the prerequisites for T-cell activation [70]. 
The NAD+-NADH-dependent conversion of pyruvate to lactate is a major redox bal-
ancer of T cells. An accumulation of NAD+ increases lysosome biogenesis, which 
can suppress T-cell activation. Mitochondrial reduction of NAD+ levels is utilized to 
promote aspartate synthesis, which is necessary for T-cell proliferation [70]. Both 
NAD+ and ATP cooperatively influence T-cell responses. Extracellular ATP aug-
ments quiescence exit and T-cell proliferation via the expression of purinergic recep-
tor P2XY, which induces IL-2 production [71]. Conversely extracellular NAD+ 
promotes T-cell death by increasing the ART2-dependent activation of P2XY [72].

Oxygen sensing by T cells also regulates their effector functioning [73]. OXPHOS, 
which requires oxygen, is essential for both T-cell quiescence and activation [70, 74]. 
OXPHOS generates ROS, which stimulates IL-2 production and promotes T-cell pro-
liferation by activating nuclear factor of activated T-cell (NFAT) transcription factors 
[75]. Under pathological conditions, increased levels of mitochondria- derived ROS can 
have antagonizing T-cell responses, including TH17 cell differentiation [27, 53].

FOXP3 is an important determinant of Treg differentiation and the Treg cell 
responses and regulated via the metabolic regulation exerted by FOXP3 [76]. It pro-
motes OXPHOS and inhibits glycolysis in Treg cells. Survival and function of these 
cells are reduced by excessive PI3K or mTOR activity as it decreases FOXP3 expres-
sion and increases glycolytic metabolism [77]. Treg cells, upon activation, upregu-
late mTOR signaling, which induces lipid synthesis, mevalonate metabolism, and 
mitochondrial function [78, 79]. These pathways influence activation programs to 
regulate Treg cell function.
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Mitochondria-derived metabolites like acetyl-Coa, succinate, αKG, and 2-hydrox-
yglutarate (2-HG) alter epigenetic programs. Acetyl-CoA induces histone acetyla-
tion, which is permissive for transcription. α-KG promotes the activity of 
demethylases that target DNA or histones, whereas 2-HG antagonizes demethylases 
[80]. Demethylation in turn allows changes in gene transcription associated with 
specific T-cell effector programs. 2-HG accumulation downstream of the von Hippel–
Lindau disease tumor suppressor (VHL)–HIF1α axis in T cells induces changes in 
DNA and histone methylation that increase CD8+ T-cell proliferation [80].

Thus, we observe metabolic regulation of T-cell activation and functioning at dif-
ferent levels. Mitochondria-derived metabolites affect the functioning and/or expres-
sion of various transcription factors through methylation-demythylation, acetylation 
processes or by mitochondria-derived ROS regulations. The effects of glucose metab-
olism in mTOR and c-Myc regulation have been implicated. Metabolites also regulate 
transcription factor activity. For example, transcriptional regulators BAZ1B, PSIP1 
are activated by arginine and lipids or sterols regulate the activities of LXRs, PPARs, 
and SREBPs [81–83]. Further, metabolic processes also regulate processes at post-
transcriptional and translational levels. For example, amino acid deprivation is sensed 
by GCN2 (or EIF2AK4) and leads to inhibition of protein translation by the EIF2α 
pathway, which supposedly leads to suppression of T-cell proliferation [84]. Also, 
GAPDH produced by the glycolytic pathway has been observed to suppress protein 
translational processes [85]. Metabolites also affect the activity of activated T cells by 
the regulation of transporter proteins and complexes. Amino acids like leucine, gluta-
mine, tryptophan, and arginine and the intermediate metabolites generated during the 
biogenesis or catabolism of these amino acids like kynurenine, ornithine, etc., affect 
the functioning of T cells upon activation via the regulation of transporter proteins like 
LAT1-CD98 or ASCT2. To summarize, metabolism can influence the processes of 
T-cell differentiation, activation, and functioning by regulating molecular processes at 
different levels starting from gene and transcription regulation.

6.5  Methodologies to Unwind the Regulations 
of the Immune Response

A comprehensive understanding of the complex regulations underlying the immune 
responses under different environmental conditions, antigenic challenges, strength 
of stimulus, and metabolic demands have challenged the implementation of suc-
cessful immunotherapy. A need to unveil these regulatory mechanisms has driven 
experimental researchers as well as computational biologists to implement different 
omic studies and model the immunome under different antigenic stimulus. In the 
following section, we have taken up examples of the studies of T-cell responses and 
differentiation during infectious diseases (e.g., Leishmaniasis) and cancer that will 
give a clear insight of how the immune responses are altered under specific anti-
genic challenges.
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6.5.1  Immunomics and Enrichment Analysis

Transcriptomic analysis, e.g., microarray, RNAseq, have opened up new avenues of 
research that allows the analysis of gene expression profile of several patient cohorts 
under various disease conditions. While microarray involves detection and quantifi-
cation of gene expression based on the pairing of an mRNA transcript with its probe 
on a chip, RNA-Seq involves direct sequencing of gene transcripts by high- 
throughput sequencing technologies. This enables the RNAseq technique to detect 
novel transcripts as it does not require transcript specific probes as well as confers 
higher specificity and sensitivity for the detection of a wider range of differentially 
expressed genes, allowing detection of genes even with low expression. Following 
the identification of differentially expressed genes, gene ontology (GO) and path-
way enrichment tools enable the identification of the biological processes (BP), 
molecular functions (MF), cellular component (CC), and biochemical pathways 
that are significantly enriched or over-represented in a given scenario. Various 
online tools and web-servers such as DAVID, GeneCodis, Gene Set Enrichment 
Analysis, and Reactome are available freely for performing enrichment analysis 
[86–90].

Researchers have exploited these techniques to unearth the immunome land-
scape in the microenvironment where the spatio-temporal dynamics of 28 different 
immune cell-types (immunome) have been studied using 105 human colorectal can-
cer patient data. Here the immunome was made up of mRNA transcripts specific for 
most innate and adaptive immune cell subpopulations. Using an integrative analy-
sis, it has been elucidated that the densities of T follicular helper (Tfh) cells and 
innate cells increased, whereas most other T-cell densities decreased along with 
tumor progression. However, the Tfh and B cell numbers are inversely correlated 
with the disease progression and recurrence, and CXCL13 and IL21 genes are 
essential for the Tfh/B cell axis that is correlated with higher chances of survival of 
the patient [91, 92].

RNAseq analyses in the case of Leishmaniasis have been performed, that has 
revealed Leishmania species–specific differences in the expression of mammalian 
macrophage genes due to infection [93]. Such analyses have helped in the under-
standing of the changes in immune response generated during infection by unveil-
ing the notable changes induced in the cytokine expression profiles during the 
Leishmania invasion. Experiments using microarray techniques have been used to 
assess the host cell genes and pathways in human dendritic cells associated with 
early Leishmania major infection. The study revealed 728 genes were signifi-
cantly differentially expressed in the infected cells, and molecular signaling path-
way revealed that the type I IFN pathway was significantly enriched. Here it was 
elucidated that L. major induces expression of IRF2, IRF7, and IFIT5, which 
indicates that the regulation of type I IFN-associated signaling pathways is 
responsible for the production of IL-12. However, this is not observed in the case 
of L.donovani [94].
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6.5.2  Computational Methods for the Study of Immune 
Responses

The understanding of intra-cellular and inter-cellular signaling pathways involved 
in the generation of immune responses requires the study of a complex network 
of biochemical pathways under different disease-affected micro-environmental 
conditions. This is an extremely challenging task that can rarely be achieved 
using in vitro or in vivo experimental techniques. In order to gain insight into the 
immune- regulatory modules involved in T-cell functioning as well as study the 
immune- modulatory mechanisms employed by pathogen and the tumor cells, 
computational tools and mathematical modeling approaches have been extremely 
useful in obtaining a systems-level understanding. These have also helped the 
researchers and medical practitioners in the prediction of immunotherapeutic 
strategies and design of treatment protocols. Here we will throw light onto some 
of the most popular tools and techniques used for such studies and also explore a 
few of the mathematical models that have helped us unravel some of the intrigu-
ing problems in immunology.

6.5.2.1  Signaling and Metabolic Pathway Databases
The signaling pathway databases are important sources of information that collate 
pathway data from experimental studies regarding the intracellular signaling path-
ways in different immune cells [95, 96]. The KEGG provides information regarding 
the core TCR-mediated pathway along with a few co-receptor signaling pathways. 
The database also contains the pathways responsible for the TH1, TH2, and TH17 dif-
ferentiation. Another popular database called Reactome provides detailed biochem-
ical reactions involved in each step of the protein–protein interactions involved in 
the T-cell signaling pathway. It also enlists the pathway information related to CD28 
and PD-1 co-signaling pathways. Simultaneously, Reactome forms a very important 
source for cytokine signaling pathways that includes different interleukin families, 
interferons, tumor necrosis factor, and a few growth hormones. A list of few of the 
available databases and the available information in each has been listed down in 
Table 6.2. However, the information regarding the intercellular cross-talks in the 
immune system is lacking in most of these databases that can be extracted through 
a thorough literature survey.

Few databases also provide data regarding the changes in the pathway during 
disease condition. The KEGG database has a sufficient amount of pathway informa-
tion regarding the endocytosis of the Leishmania pathogen as well as the signaling 
events that occurs inside the infected macrophage. BioLegend database contains the 
cancer immune-editing network that consists of the intercellular signaling cross- 
talks governing the immune responses generated during cancer.

For the analysis of these biochemical pathways, the BIOPYDB database also 
provides an integrated platform for performing network analysis, logical steady- 
state analysis, knock-out analysis, etc. It contains detailed information regarding 
each protein involved in the immunological pathways as well as links them to the 
specific diseases associated with them. Apart from the TCR co-receptor-mediated 
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and cytokine pathways, BIOPYDB also contains detailed information about the 
toll-like receptor (TLR) pathways that has an important role in the regulation of 
immune response [97].

With the realization of the importance of immune-metabolism as a decisive 
factor in eliciting immune responses, metabolic databases have started to incorpo-
rate such details into the database structure. Although the advent is very recent and 

Table 6.2 List of a few signaling and metabolic pathway databases containing T-cell-specific 
pathway data and related cytokine pathways

Database

T-cell activation/
differentiation 
pathways/network Cytokine pathways URL of database

Kyoto 
Encyclopedia of 
Genes and 
Genomes (KEGG)

T-cell receptor signaling 
pathway, TH1 and TH2 
cell differentiation,TH17 
cell differentiation

IL-17, TNF, calcium 
signaling pathway

http://www.
genome.jp/kegg/

Reactome TCR-mediated pathway, 
CD28 co-signaling 
pathway

IFN-α/β, IFN- γ, TNF- α, 
IL-1, IL-2, IL-3, 
IL-5,GM-CSF, IL-4, 
IL-13, IL-6, IL-7, IL-10, 
IL-12, IL-17, IL-20 
family cytokines

https://reactome.
org/

Wikipathways TCR-mediated pathway, 
B7-CD28, B7-CTLA4, 
PDL- PD1 pathways

IL-2, IL4, IL-5, IL-7, 
IL-9, IL-11, Type-1 IFN, 
TNF-α pathways

http://www.
wikipathways.org

NCI – Pathway 
Interaction 
Database (PID)

TCR signaling network 
in naïve CD4 cells, 
B7-CD28 signaling 
networks

IL-1, IL-2, IL-3, IL-4, 
IL-5, IL-6, IL-8, IL-12, 
IL-23, IL-27, TNF 
signaling networks

http://www.
ndexbio.org

BioLegend T-fh, TH1, TH2, TH17, 
Treg, γδ–T-cell 
signaling pathways

IL-1, IL-2, IL-4, IL-6, 
IL-10, IFN, TNF 
pathways and inter- 
cellular cytokine signaling 
network of immune cells

https://www.
biolegend.com/
pathways/

BIOPYDB TCR-mediated pathway, 
co-receptor-mediated 
T-cell activation 
pathway

IL-1 α, IL-β, IL2, IL-4, 
IL-6, IL-12, IL-18, IL-36 
α, IL-36 β, IL-36 γ, TNF 
α, TNF β, IFN α, IFN β, 
IFN γ, TGF β

http://biopydb.
ncl.res.in/
biopydb/index.
php

HumanCyc TH1, TH2, TH17, Treg- 
associated processes 
and pathways

Cytokine pathways are 
not available separately, 
but integrated with the 
other immune processes

https://biocyc.
org/HUMAN/

Brenda TH1, TH2-related 
processes

IL-1, IL-3, IL-5, IL-6, 
IL-8, IL-12, IL-17, IL-18, 
IL-21, IL-33, IFN-α, 
IFN-β, IFN-γ, TNF-α, 
TNF-β ligands

https://www.
brenda-enzymes.
org/
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only a limited number of databases have included this information. Two of the 
popularly used metabolic databases, HumanCyc [98] and Brenda [99], include 
information about immune-metabolites that are linked to immune responses. 
HumanCyc is the Homo sapiens–specific repertoire of the metabolic database 
BioCyc, which enlists metabolism specific to human. The database enlists a range 
of “Biological Process” and “Proteins” related to immune system. The biological 
processes are linked to their “Gene Ontology” term. A few of the important immune 
processes listed are “leukocyte-mediated cytotoxicity,” “adaptive immune response,” 
“immune effector process,” “regulation of immune response,” and “immune system 
development.” The GO IDs of these processes link them to pathways and processes 
to which are linked/cross-linked, which are enlisted as “Parent Classes” and metab-
olites/proteins which are involved in these processes are enlisted under “Instances”. 
These metabolites/proteins are linked to their detailed descriptions along with reac-
tions in which they are involved and the reaction mechanism [98]. Brenda also 
provides details of immune-metabolites. The database has a wide range of entries as 
search option. Upon search of immune processes, it provides a variety of immnune-
metabolites and proteins whose “Enzyme Nomenclature,” “Enzyme-Ligand 
Interactions,” “Diseases,” “Functional Parameters,” “Organism-related Information,” 
“General Information,” “Enzyme Structure,” “Molecular Properties,” “Applications,” 
and “References” are provided.

6.5.2.2  Graph Theoretical Analysis
The Graph Theory was initiated with Euler’s famous publication from 1736 on the 
Seven Bridges of Königsberg problem [100]. However, it was applied to biochemi-
cal networks much later with the advent of the concepts of small-world and scale- 
free networks in 1999 that describes the global architecture of any complex 
real-world network such as the network of biochemical reactions in a cell [101, 
102]. Computational biologists have modeled biochemical pathways as network 
where each protein or metabolite has been considered a node and the reaction 
between any two such species have been denoted as an edge, thereby translating the 
entire reaction network as an interconnected mesh of nodes and edges. Various net-
work parameters such as Degree (k), Betweenness Centrality, Closeness Centrality, 
Eccentricity, Edge Betweenness, and Clustering Coefficient are used to describe the 
topological properties of the network. These parameters help in the identification of 
important hubs, i.e., a highly connected node, and shortest paths in the biochemical 
reaction network that may have significant contribution in the functioning of the 
signaling or metabolic pathways. Tools such as Cytoscape, Gephi, Pajek are freely 
available for performing network analysis of large reaction network [103–105]. 
Cytoscape further offers downloadable plugins for identifying important motifs, 
extracting sub-networks, and performing enrichment analysis and a host of other 
functions required for visualizing and analyzing large biochemical reaction net-
works. These biochemical networks mostly follow the small-world property of a 
network that indicates a relatively short distance from any one node to another and 
a relatively high level of clustering. This network property, termed as scale-free 
property of a network, denotes a connectivity distribution that fits a power law 
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depicted in Eq. 6.1 where the value of γ lies in the range 2 < γ < 3 [106]. It has been 
observed that networks following the scale-free property are generally resistant to 
perturbations and thus are highly robust:

 
P k� � � �� k �  (6.1)

Graph Theory has successfully been applied to signaling pathway networks where 
the concept of shortest path has been used to hypothesize potential signaling mecha-
nisms in Neuro2A cells downstream of CB1R receptors. Here the cells were stimu-
lated with a CB1R agonist for the assessment of activity of transcription factors. 
This experiment revealed CB1R activation modulates the activity of 23 transcrip-
tion factors [107]. Such methods are useful in the identification of important novel 
signaling routes between a cell-surface receptor and downstream transcription. In a 
recent study, Graph theoretic network analysis has been used to identify protein 
pathways responsible for cell death after neurotropic viral infection by Chandipura 
Virus (CHPV) [108]. Another important application of network analysis is that it 
can be used to identify important hub proteins that can be used as potential drug or 
immunotherapeutic target [109, 110].

6.5.2.3  Logic-Based Models
Logical modeling is gradually being recognized as a simple yet powerful tool in 
systems biology for the study of large and complex reaction networks. Here the 
information flow from one node to another in a network is determined by a combi-
nation of input nodes and their relation is specified using logic gates – AND, OR, 
NOT. It was first explained by Kauffmann where he modeled the gene as a binary 
device that can be either in the ‘ON’ or ‘OFF’ states  signifying whether a gene 
expression is upregulated or downregulated, respectively [111]. Here he elucidated 
that a distinct advantage in this choice of a binary model for gene activity lies in the 
fact that the number of different possible rules by which a finite number (K) of 
inputs may affect the output behavior of a binary element is finite, i.e., 22K. 
Figure 6.3a shows a simple toy model of three nodes interacting with one another. 
The reaction network can be represented using Boolean rules or equations (Eqs. 6.2, 
6.3 and 6.4). The truth tables and the state transitions graphs of the reaction network 
show the temporal evolution of the states (0 or 1) of the nodes starting from different 
input combinations (Fig. 6.3a). Here, in this example we observe under the different 
input conditions the system tends to reach certain point steady-state attractors, i.e. 
1–0–0 and 1–1–1 or cyclic attractor, i.e. 1–0–1 ←→ 1–1–0:

 v v v1 1 3= OR NOT( )  (6.2)

 v v v2 1 3= AND  (6.3)

 v v3 2=  (6.4)

Several software packages such as BoolNet (R-based), BooleanNet (Python 
based), and CellNetAnalyzer (software with GUI) are available for performing logi-
cal steady-state analysis of large biochemical networks [112–114]. This concept 

6 T-Cell Activation and Differentiation: Role of Signaling and Metabolic Cross-Talk



rr.sarkar@ncl.res.in

170

was later used by Huang and Ingber to model cell signaling networks for demon-
strating that cellular phenotypes correspond to the dynamic steady states of the 
intracellular signaling molecules in a logic-based model. A key advantage of this 
strategy is that it does not require the knowledge of parameter values that is often 
not available for large biochemical networks. Later it has been extensively used for 
the study of cell signaling pathways and identification of drug targets for the treat-
ment of cancer [109, 110]. Logical models have also been developed for the study 
of T-cell signaling pathways where the observations made from the in silico analysis 
were experimentally validated to establish the authenticity of their logic-based 
model. Using this model, the authors have predicted an alternative pathway of acti-
vation from CD28 to JNK that does not involve the canonical pathway involving 
LAT signalosome, nor does it involve the activation of PLCγ1 or calcium flux, but 
depends on the activation of the nucleotide exchange factor Vav1, which activates 
MEKK1 via the small G-protein Rac1 [115]. A logical steady-state model that cap-
tures the effect of the co-receptor signaling pathway cross-talks has been developed 
that shows that simultaneous activation of the TCR:CD3, CRAC, and OX40 

Fig. 6.3 Computational techniques used for study of large biochemical pathways. (a) Interaction 
Graph, Truth Table, and State Transition Graph for a Logic-Based Toy Model; (b) Temporal 
dynamics of Tumor, Effector cells, and IL-2 from an ODE-based model (adapted from Kirshner, 
et al. 1998 [150]); (c) A toy model describing (i) the flux distribution of metabolites A, B. and C 
through different reactions, (ii) the formation of stoichiometric matrix “S” and flux vector “v,” (iii) 
defining constraints and (iv) defining objective and finding optimal solution within the solution 
space of linear optimization problem (Adapted from Kauffman et al. 2003 [157])
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pathways are important for sustained T-cell proliferation. At the same time, it has 
been shown that the co-receptor CD27 and LTBR pathways are important for regu-
lating the cytokine production [116]. A further extension of this work for the study 
of immune responses during Leishmaniasis explains how the differentiation of T 
cell is altered during infection [117]. Another model employing Boolean formalism 
has been used in the study of differentiation of naive cells into TH1, TH2, TH17, and 
Treg subtypes under different environmental conditions [118]. This model provides 
evidences that Foxp3+ Treg cells and TH17 cells are highly plastic and labile, whereas 
the TH1 and TH2 subtypes remain steady under different environmental conditions. 
However, this model also predicts the existence of hybrid states and cyclic attractors 
expressing markers characteristic of two or more canonical cell types under certain 
environmental conditions that lays the foundation for the oscillatory behavior of 
T-cell differentiation. This study further elucidates that under proper polarizing 
environments, the Treg cells may differentiate into TH1 or TH2 subtypes [118]. Later 
another model based on the Boolean formalism was developed to study the molecu-
lar mechanisms controlling the cytokine-driven TH cell differentiation and plasticity. 
This model explained the role for peroxisome proliferator–activated receptor 
gamma (PPARγ) in the regulation of TH17 to iTreg cell switching that gives promis-
ing cues for the prediction of therapeutic target for dysregulated immune responses 
and inflammation [119]. More recently, Probabilistic Boolean Control Network has 
also been employed for the study of TH cell differentiation under varied environ-
mental conditions. Here each input node is activated with a certain user-defined 
probability, which makes the system stochastic. Using this study, the authors have 
identified that the T-cell differentiation process is regulated by composition and dos-
age of signals that the cell receives from the environment. They have also predicted 
novel T-cell phenotypes using their model and have identified the specific environ-
mental conditions that give rise to them [120].

6.5.2.4  Steady-State Metabolic Models
Immunometabolism has gained momentum in recent years as an emerging field of 
investigation at the interface between two highly discussed disciplines of immunol-
ogy and metabolism [9, 10]. The idea of metabolism as a driver of the immune 
response [121] has been appreciated in recent years. However, capturing the bidi-
rectional regulation of signaling and metabolism using a single computational plat-
form is challenging. The mechanism of action of the two cascades is different, and 
the time scales in which the two processes occur also differ enormously. Mostly 
signaling cascades are faster than the metabolic reactions. This, along with the limi-
tation of availability of information about how metabolism regulates immune cell 
responses and functioning, has limited the designing of immune-metabolic models 
to a small scale, mostly considering few parameters to design smaller dynamic 
models. An integrated systems-level computational model of immunometabolism is 
yet to be undertaken. Nevertheless, the currently employed computational 
approaches can be used to address immune-metabolism at a systems-level.

Genome-scale metabolic modeling (GSMM) is currently the most widely used 
systems-level modeling approach that accounts for whole-genome metabolism of 
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biological systems. It is a constraint-based mathematical modeling approach that 
assimilates biochemical, genetic, and genomic information within a single compu-
tational platform [122–126]. It allows the study of the metabolic genotype- phenotype 
relationship of an organism. Genome-scale metabolic models have been used in in 
silico metabolic engineering for the design of studies like defining essentiality of the 
reaction/gene [127, 128], the relevance of distant pathways [129] and overexpres-
sion or knockout analyses of metabolites, reactions, and metabolic pathways [130]. 
These are efficient tools for the prediction of growth in living cells/tissues exposed 
to different external conditions [131]. They have been used to predict conditional 
and absolute essentiality of metabolites and reactions in metabolic networks.

Flux balance analysis (FBA) is the most popularly used constraint-based 
approach in systems-level metabolic modeling, which works on the basic principles 
of linear optimization [132]. The technique assumes a steady-state approach, where 
all the metabolites of the network are considered to be in steady state; i.e., the rate 
of change of metabolites over time remains zero (Fig. 6.3c). This ensures that the 
rate of formation of a metabolite in the network is always equal to the rate of its 
consumption and hence a net difference in the metabolite concentration over time 
always remains zero. All reactions of the network work as constraints to the optimi-
zation problem. The reactions are bounded between a lower and an upper bound, 
which creates the constraint. The metabolites are connected to respective reactions 
in the form of a stoichiometric matrix, “S,” where the rows represent the metabolites 
(m) and the columns represent reactions (n). Thus, a “m × n” matrix is generated in 
which the involvement of a metabolite in a reaction is represented by its respective 
stoichiometry in that reaction. A positive stoichiometric value represents the forma-
tion of the metabolite and a negative stoichiometric value represents consumption. 
The flux through the reactions is represented in a separate flux matrix “v,” which is 
a “n × 1” matrix. The outcome of the optimization is obtained by matrix multiplica-
tion of “S.v  =  0.” The matrix multiplication results in an optimized “v” matrix, 
which assigns an optimized flux to each of the reactions in the network. Generally, 
whole-genome models are large with a few hundreds of reactions and metabolites, 
which make it a multidimensional optimization problem. An objective is assigned to 
the model that depends on the biological question one wants to address. For exam-
ple, if one wants to observe the behavior of the network when it tries to maximize 
ATP production, then one can assign ATP synthase (ATPS) reaction as the objective 
and try optimizing the model by maximizing the objective function. Thus, the model 
gets optimized a per the requirement of maximizing or minimizing the objective 
function.

A further extension of the modeling technique has been done to incorporate 
dynamic regulation of metabolic regulations by signaling pathways. This is popu-
larly known as dynamic FBA (dFBA), where the initial activation of the metabolic 
FBA model depends on the output of signaling response generated by dynamic 
analysis. In yet another extension of FBA, the initial signaling response is analyzed 
using Boolean analysis. This is known as rFBA. The method that takes into account 
a combined FBA, Boolean regulatory, and ODE approach is known as integrative 
FBA (iFBA).
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There are various tools available for performing these analyses. COBRA Toolbox 
is the most widely used platform for flux balance analysis [133]. This is a Matlab 
extension, which allows user-interface for ease in analysis. Other platforms are 
COBRApy [134], PSAMM [135], OptFlux [136], FBASimVis [137], FluxViz 
[138], FlexFlux [139], FAME [140], and Escher-FBA [141].

6.5.2.5  Dynamic ODE-Based Immune Models
Several dynamic models have been developed for the study of immune responses 
for several diseases [142–146]. The study of immune responses during tumor for-
mation using mathematical ODE-based models has helped clinicians in the predic-
tion of tumor evolution and the determination of dosage schedules and treatment 
protocols [147–149]. A seminal work by Kirschner and Panetta has led to the devel-
opment of many such similar models with further improvisations [150]. The model 
developed by them represents an ODE-based model of the tumor-immune interac-
tion and the production of IL-2 that has important roles in the regulation of immune 
response generated during tumor progression (Eqs. 6.5, 6.6, and 6.7). The model 
considers that the proliferation of the effector immune cells increases proportional 
to the antigenicity of the tumor. The model equations comprise three variables, viz. 
tumor (T), effector cells (E), and IL2 (IL), that interact among themselves, and 12 
parameters that describe the rate at which these interactions occur. In this model the 
antigenicity, denoted with c, of the tumor has been considered as an essential param-
eter that regulates the dynamics of the effector cell population:
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Figure 6.3b (adapted from Kirshner et al. 1998 [150]) shows the temporal evolution 
of the system and the oscillating steady state behavior of the variables when antige-
nicity parameter c = 0.02. This model explains short-term oscillations in tumor sizes 
as well as long-term tumor relapse. This model has been further used to explore the 
effects of adoptive cellular immunotherapy for the tumor elimination [150].

A more recent tumor–immune interaction model developed for understanding 
the dynamics of immune-mediated tumor rejection focuses mainly on the role of 
natural killer (NK) and CD8+ T cells in tumor surveillance. Here the techniques of 
parameter estimation and sensitivity analysis have been exploited for the model 
calibration and validation with experimental results. This study has revealed the 
variable to which the model is most sensitive is patient specific and that there exists 
a direct positive correlation between the patient-specific efficacy of the CD8+ T-cell 
response and the likelihood of a patient favorably responding to immunotherapy 
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treatments [151]. A more detailed model of immune responses during tumor pro-
gression has been developed using 13 variables and 71 parameters. The model con-
siders cytokine feedbacks and five different immune cells present in the tumor 
microenvironment. This model is useful for optimizing combinatorial treatment 
dose and schedules for maximal tumor reduction using immunotherapy [152].

There is a range of ODE models that investigate various pathways involved in 
metabolism under different pathological conditions. Immune metabolic models are 
available for glucose metabolism [153], glutathione metabolism [154], folate- 
mediated one-carbon metabolism [154], and arsenic metabolism [155]. A compos-
ite review of these metabolic models is available in Nijhout et al.’s work [156]. The 
recent understanding from experimental research on the metabolic regulation of the 
immune response [9] will help to adapt these mathematical models to the reality of 
metabolic pathways inside immune cells.

6.6  Challenges and Future Directions

The immune-regulatory network forms a complex mesh of interacting cells and 
biochemical reactions that work in a coordinated fashion to eliminate the pathogen- 
infected cells and trigger the remission of any neoplastic growth inside the body. 
However, the intricacies of the immune signaling network are far from being com-
pletely understood, and the regulations governing the differential immune response 
of the T cells under varied antigenic challenges still remain elusive to immunolo-
gists. In this context, the knowledge regarding the signaling routes is essential to 
understand the mechanistic regulations such as the feedback and feed-forward 
loops and the alternative signaling pathways that govern the production of effector 
molecules from the lymphocytes. Hence, an in-depth study of the co-receptor sig-
naling pathways and their cross-talks is essential that will provide valuable infor-
mation regarding the pathways involved in the cytokine regulation and effector 
functions of the immune cells.

T-cell plasticity that determines their differentiation, de-differentiation, sub-
type specification, and T helper memory cell formation under different environ-
mental conditions is yet another area that has remained very less explored. Although 
the recent developments in the field elucidate the process of T-cell differentiation 
with respect to changes in the cytokine milieu under in vitro conditions, the com-
plex interactions in the human immunome needs to be studied using a holistic 
integrative approach in order to gain clear insights into the changes of immune 
responses due to changes in quality and quantity of the antigenic challenge, the 
strength of the stimulus, and the role of the other interacting immune cells. Such 
studies will throw light into the modulations of T-cell subtype ratios that has a 
substantial impact on the disease prognosis and response of a patient to an immu-
notherapeutic intervention.

Metabolic regulation of immune cell in determining T-cell activation, prolifera-
tion, and differentiation is a newer area of research; and studies are in progress to 
understand these processes. Many questions related to immune-metabolism still 
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remain unanswered. How metabolism alters during transition from quiescent T cells 
to activated effector T cells remains poorly understood. Although mTORC1 activity 
has been observed to be central to signaling and metabolic cross-talk and the master 
kinase in guiding quiescence exit of T cells, how nutrients tune mTORC1 activity 
remains to be explored further. Redox metabolism and oxygen sensing have been 
implicated in T-cell proliferation and activation; however, the exact mechanism of 
how they regulate T-cell quiescence and activation in different tissues remains unad-
dressed. Also, the cross-talks between signaling and metabolic pathways are only 
partially explored. A clear understanding of these mechanisms will help augment 
immune responses and pave way for immunotherapy under different pathogenic 
conditions.
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