# INFRARED SPECTROSCOPIC STUDY OF THE ASSOCIATION BEHAVIOUR OF SOME DIOL MONOALKYL ETHERS 

A THESIS SUBMITTED TO THE UNIVERSITY OF POONA FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

by<br>L. S. PRABHUMIRASHI<br>DEPARTMENT OF CHEMISTRY UNIVERSITY OF POONA<br>PUNE - 411007 (India)

## ACKNOWLGOGRMENTS

```
    I am very happy to express my sincere thanks and
gratefulness towards
Dr. C.I. JOSis (Scientist, National Chemical Laboratory, Poona),
    for valuable guidance and constant encouragement throughout
    the work;
Dr. A.P.B. SINHA (Deputy Director, National Chemical Laboratory,
    Pcona), for valuable help during the initial course of
    the work;
Prof.Dr. H.J. ARNIKAR (Head of the Department of Chemistry,
        University of Poona), for kind consideration which enabled
    me to caryy out the work at N.C.L.;
The Director, National Chemical Laboratory, Poona, for granting
    me permission as a guest-worker at N.C.L. and allowing
    to submit the work done there in the form of a thesis;
and all my friends and colleagues, for their indispensable
        co-operation at every stage of the woric.
```

Decenber 31, 1976.
(L.S.PRABHUM IRASHI)

## CONTMNTS

Pree
1
PREPACA ..... 4
Chanter I : SRLF-ASSOCIATION OF ALCOHOLS - A REV IRH
Chanter I : SRLF-ASSOCIATION OF ALCOHOLS - A REV IRH
I. 1 : Internolecular H-Bonding .....  (4)
I. 2 : Intramolecular H-Bonding ..... (9)
I. 3 : Sumary ..... (15)1
Chantor II : INFRARED SPECTROSCOPY ..... 16
II. 1 : Vibrations and Infrared Spectra of Polyatomic Molecules .. (16)
II.2 : Integrated Absorption Intensity ..... (18)
II. 3 : quantitative Analysis ..... - (25)
Ghaptar III : HYUROGZN BONDIMG ..... 28
III. 1 : Nature of H-Bonding ..... (28)
III. 2 : Self-Association ..... - (31)
III.3. : Bifects of H-Bondin ..... (32)
III. 4 : Thermodynamies of H-Bonding ..... (34)
Chantar IV : EXPRRTMENTAT: ..... 37
IV. 1 : Preparation/Purification of Compounds and Preparation of Solutions .. (37)
IV. 2 : Spectroscopic Measurements .....  (38)
IV. 3 : Computation of Band Area ..... -. (39)
IV. 4 : Determination of Concentrations and Integrated Intensities of Different Species in solutions .. (41)
IV. 5 : Determination of Themodynamic guantitios ..... (44)
Chanter $\vee$ A GHYCOL MONOALKYY ETHERS ..... 49
V. 1 : Introduotion - (49)
V. 2 : Intramolecular H-Bonding .....  (62)V. 3 : Internolecular H-Bonding .. (64)V. 4 : Structure of the Dimer .. (68)
Chapter VI : ASSOCTATION BEHAVIOUR OF DLHTHYIWNEGIYCOL MONOALKYL ETHERS74
VI. 1 : Introduction .....  (74)
VI. 2 : Intramolecular H-Bonding .....  (77)
VI. 3 : Structure of the Dimer .....  (80)
CHAPTER VII: ASBOCIATTON BAHAVTOTR OF TRT- AND TETRAMATHYLYNE GLYCOL MONOALKYY ETHICRS ..... 93
VII. 1 : Introduction ..... -. (93)
VII. 2 : Intramolecular H-Bonding ..... -. (97)
VII.3 : Intermolecular Association ..... (98)
Ghanter VIII : GLNQRAL DISGUSSION AND CONCLUSIONS ..... 113
VIII.1 : Introduction .. (113)
VIII.2 8 Intramol ecular H-Bonding .. (113)
VIII.3 : Intermolecular Association .. (119)
VIII. 4 : Spectroscopic Properties .....  (120)
VIII. 5 : Conclusions .. (122)
RGRAR PMCRS ..... 128

```
Appendix_1 : A reprint of
        Infrared Study and Thermodynamics of
        Hydrogen Bonding in ilthylene alyool
        Monoalkyl Ethers. Bridence for a
        Ten Mombered Ring Dimer
        By L.S. PRABHOMIRASHI and C.I. JOSE
        Publishod in LeGase Faraday Transactions II,
        1975, 21, pp. 1545-54.
Appendix_2: A reprint of
    Infrared Study and Thermodynamics of
    Hydrogen Bonding in Dlethylone Glycol
    Monoalkgl Ethers.
    By L.S. PRASHOMIRANHI and C.I. JOSa
    Published in J.G.S. Rapadyy Tringactions II,
    1976, 22, pp. 1721-29.
```



## PRGFACR

Self association of alcohols is an interesting phenomenon resulting from hydrogen bonding. As the OH group can act as a proton donor as wall as an acceptor, H-bonding of alcohols in nonpolar solvants gives pise to a variety of self associated species such as open and/or closed dimers, trimers, tetramers otc. Alcohols containing an additional proton acceptor such as halo-ethanols, diols, diol mono thers tc. can also exhibit intramolecular H-bonding when the hydroxyl proton lies at a distance of 1.4 - 2.5 from the additional proton accoptor. Due to their small strength ( $\sim 0.1-60 \mathrm{k} \mathrm{mol}^{-1}$ ) and frequant intermolecular collisions, the E-bonds in 11 quids and Vapours are constantly breaking and reforing resulting in rapid, dymanic equilibria botween the free and rarious types of H-bonded molecules.

The literature on H-bonding in alcohols is quite extensive. The self-association of alcohols capable of intranolecular E-bonding is howerer little studied. This would be specially interesting because of the additional proton accoptor in them, which can lead to different types of self-associated species not possible in simple acohols. With this view the association behaviour, i.e. the nature of self-associated species of a number of diol monoalkyl thers in carbon tetrachloride solutions, has been investigated in the present work. Infrared spectroscopy is used as the analytical tool since this is the most versatile technique enabling the observation
and study of individual types of species by theis characteristic absorption bands. The method of integrated absorption intensities has been adopted for estimating the required concentrations. The equilibrium constants for the equilibria between different types of H-bonded species and free monomers have been determined to estimate the thermodynamic quantitios which are further analysed to arrive at the most likely associated species in the concentration range studied. The subject matter in the thesis is presented in elght chapters as outlined balow.

The present state of understanding of the self-association of alconols is briafly reviewed in Chapter I. The relevent theory of infrared spectroscopy is outlined in Chapter II. some of the important aspects of H -bonding such as its theory, offects, thermodynamics etc. are summarized in Chapter III. The experimental procedure for preparation/purification of the compounds studied, spectroscopic measurements and the method of calculations are explained in Chapter IV.

The results on the self association of ethylene glycol monoalky thers $\mathrm{BO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ are discussed in Chapter $V$. The offect of an additional ther oxygen on the association bahaviour was investigated by studying the H-bonding in diethylene glycol monoalkyl ethers $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, the results of which are presented in Chapter VI. The alkyl group $R$ was varied from $\mathrm{CH}_{3}$ to $C_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{4} \mathrm{H}_{9}$ for finding the effect of its chain length on H-bonding behaviour of these systems. The H-bonding in tri- and tetramethylene glycol monomethyl ethers, $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ and
$\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$, was investigated for understanding the offect of the number of methylene groups between the ether and hydroxylic oxygen atoms and the results are discussed in Chapter VII. A general discussion of the spectroscopic and thermodynamic properties associated with H-bonding in the different types of systems studied together with the conclusions are presented in Chapter VIII. This is followed by a collective list of all the References in the order of their occurrence in the text. The rasults on the study of ethyleno- and diethylene glycol monoalkyl ethers have been published as two papers, the reprints of which are presented in the form of two Appendices.


## Chaptan I

## 

## I.1. Litarmolemuar figameon ionding:

3xtramaly dilute solutions of alcohols in non-polar solvents ( $C \sim 10^{-3}$ mol $\left(\mathrm{dm}^{-3}\right.$ ) exhibit a single band in the 3640-3620 $\mathrm{cm}^{-1}$ region due to the hydroxyl strotehing vibrations of the monower ${ }^{1-3}$ units. The corresponding band in alconol - ajours at very low pressure occurs in the $3690-3640 e n^{-1}$ region. The monoweric of bands of a number of alcohols, other than methenol and tertiary butanol, are founci to be asymaterice ${ }^{2,5-1}$ This has been attplbited to conformational latuerism, i.e. oxdstance of moleoules in alfferent configurations in which the OH groups vibrate in silghtiy difforent foree flelds. Vith increasine concentration, additional of bands appear, first at $\sim 3500 \mathrm{an}^{-1}$ and then in the $3300 \mathrm{c}^{-1}$ rogion. While it is aceopted that tho $3500 \mathrm{~cm}^{-1}$ bards are due to polymeric speeles ${ }^{3}$; the type of species giving rise to the $3500 \mathrm{~cm}^{-1}$ bands is not vell-establizhod. Thus thls band has been ascribed to open aimers ${ }^{1,4,13-27}$ closed dieors ${ }^{28-34}$ or to a flature of both ${ }^{35-40}$. In son cases trieers ${ }^{22,34,41-45}$ andor totramers ${ }^{46-52}$ are al so considered to contribute to this bend.
salleay and Pace ${ }^{2}$, using the cancellation technique, here shown that the dimors of methanol $\left(\bar{v}=363 \mathrm{~cm}^{-1}\right)$ and
phenol ( $\bar{y}=3431 \mathrm{~cm}^{-1}$ ) in $\mathrm{CCl}_{4}$ are of an open type. Study of overtone bands by Fleteher and Nellor ${ }^{23}$ and the theoretioal calculations by Hurtiny ot al ${ }^{26}$ and those by Hoyl and and $\mathrm{Kler}^{27}$ are in agreasent wh th open diser structure for mothanol. The $\Delta H^{e}$ value of $N S$ keal mol ${ }^{-1}$ for the dimer of ethanol in $\mathrm{CCl}_{4}$, obtainod by Coburn and Crunvil $d^{17}$, 13 attributes to a single hydrogen bond implying the diaer to be of open typu. Ibbition and Hoore ${ }^{22}$, from dielectric polarization study of ethanol in CCI. have show that at low concentrations (welght fraction $\sim 0.002$ open dimers are the absorbing speoies at $\sim 3500 \operatorname{cn}^{\mathbf{- 1}}$. Simllarly sordowifk ot al ${ }^{\text {º }}$, from static dial sctric constant woasurements, have concluded the dimers of n-hoptenol in $\mathrm{CCl}_{4}$ to be of open type. Barnes and ooworisers ${ }^{13,24}$ erom 1.r. study of mothanol, ethanol and haxafluoso propan-z-01 in Argon matrix and later rrow a slifilar study of zetionol, ethanol, isopropenol, tortiary butanol and telfluoro othanol in vapour phase have concluded that the aleaers of these alcohols have an open chain structure.

Liddel and 3ecik ${ }^{28}$, using the method of 1 initing slopes of apparent extinction coefficient vs concentration curves, have obtained $\Delta H^{\nu}$ values of $\sim 5-7 \mathrm{kcal}$ mol ${ }^{-1}$ for the difer-monomer equilibrium in aethanol, ethanol and tertiary butanol. Considering this value of $\Delta H^{\circ}$ to be quite high for a single hyarogen bond, they have proposed the disiers to be cyelic, containing two bent ifbonds. The cyollc structure for the dimer of othanol has been supported ${ }^{29}$ on the basis of the chenical shift and equilibriug
constants oulculated from the 11riting slopes of polior. frequency vis concentration ourves. Jan thiol ot al ${ }^{30}$, using the matrix 1solation technique, have shown that methanol diners are oyclic in solld nitrogen at 20 os woll as in solutions at room temperature. Following Liddel and Becker ${ }^{28}$, a nutuber of other workers ${ }^{31-33}$ also have proposed eyclle ilmers for various alcohola from the observed $\Delta l^{\circ}$ values. cold anci ferrine ${ }^{34}$, from dielsetric polarization study have concluded that cyclic duers ano/or ayolic trimers are favoured in dilute solutions.
sevoral other woricers ${ }^{36-40}$, fromi 1.r. and noliop. study of a variaty of alcohols such as sathanol, ethanol, isopropanol, tortiary butanol, pentanol, cyclohaxanol, ditertlary butyl carbinol etc. have proposed the dimurs to be the associated species responsible for the $3500 \mathrm{am}^{-1}$ bands. However in the absence of a definite evidence for elther the open or the cyalic structure, they have concluded that dieers of olther type of a wixture of - 0 tin ifight be present.

The infra reì freq̧uancy shifts for polymers ( $\sim 260-400$ en are found to be considerably larger than those for almers ( $\sim 100-150 \mathrm{a}^{-1}$ ). Thls has boen explained by Lidofel; Secker etc. 28,30 by assuming the $0-\mathrm{H}_{0} . .0$ atons in polymers - whether open or closed - to be naarly collinear giving plse to nortial hydroen bonds. The bant and hance weaker hydrogon bonds in avalle dimers would then explain the sewler frequency shifts than those for polywers. The results for methenol are explained on
this basis using the matrix isolation technique ${ }^{30}$. bellacy and face ${ }^{21}$ on the other hand proposed that the dimers are open chain systems wh nomal hydrogen bonds. They further argued that the oxygen atom of an OH group whose proton is engaged in hydrogen bonding would be wore basic than that of the free On group and siuliarly the hydrogon atom of an Of group whose oxygen is engeged In hyarogen bonding would be more acidic than that of the sree OH group. Ine polymers would therefore tend to be cyalic due to the cooperativo interactions giving rise to 3 tronger hyarogen bonds and hence larger frequonay shifts than those for the dimers. The sea all frequency shifts for trimers ( $\sim 200 \mathrm{~cm}^{-1}$ ) aro attributed ${ }^{63}$ to the dyclic structure witi bent hydrogen bonds and the constant froquency shifts for tetraters and all higher polymers ( $\sim 250-400 \mathrm{~m}^{-1}$ ) are supposed to indleate that the hydrogen bonds in tetrancors have beome nearly collinear so that an increase in polymerio size produces no further change in the hyarogen bond energy.

It has been proposed by Hecke 41 that there are practically no dineric species in alcohol solutions and the association bagins with trimors-presumably cyelic. The moan association energy for methenol and tertiary butanol in cci has consequentiy been reported to be $\sim 4.7$ and $\sim 5.3 \mathrm{kcal}$ mo1 ${ }^{-1}$ respectively. Cohen and Ro1d ${ }^{42}$, from pom. 5 . study of a series of alconols in CCl 4 , found almost zero 1 imiting slopes for the curves of the proton chemical shift 7 concentration, concluding trimors and tatrasers to be more atable than dimers. Similarly Saunders and lyne ${ }^{43}$,
using the nolmor. and curve fitting methods have proposed cyelic triners for alcohols. Tuaiser and coworicers 44,45 using l.f., n.w.r. and vapour prassure mothods have also shown that the $3600 \mathrm{~cm}^{-1}$ band of mathanol and tertiary butanal solutions is ascribable to open trifers. Ibbitson and hoore ${ }^{22}$ from dielectric polarization study of alcohols in CUl, at high concontrations (velgat fraction $>0.007$ ) have concluded that the species absorbing at $\sim 3600 \mathrm{~cm}^{-1}$ may be opain trizers in addition to open dimers.
naitner and fitzer ${ }^{46}$ from vapour pressure study have deteruinec aycilc tetramer $\left(\Delta H^{\circ}=24.2 \mathrm{kcal}\right.$ mol $\left.1^{-1}\right)$ as the stable species in metilanol vapour. Study of P-V-2 relationehips ${ }^{47}$ and now.r. stulies ${ }^{49-51}$ of methanol in $\mathrm{CCl}_{4}$ are in agroement with this. ans and Murray ${ }^{\text {as }}$, studying the overtone bends ( $\lambda \sim 2.42 \mu$ ) of mothanol, othanol, iso-butanol, tertiary amyl alcohol and octan-2-01 in $\mathrm{CHI}_{4}$ over a wide conceatration range ( $\sim 0.1-7 \mathrm{mal} \mathrm{dm}^{-3}$ ) have suggested the fomation of cyclic tetranars. Inskeop and conorkers ${ }^{18,19}$, fross rapour phase 1.r. study of methanol and deaterated methanol ( $\mathrm{CH}_{3} 0 \mathrm{O}$ ) have concluded that the equilibria consiat of the monomers, open dimers ( $4 \mathrm{H}^{\bullet} \sim 3.5 \mathrm{kosi}_{\mathrm{k}}^{\mathrm{c}} \mathrm{ml}^{-1}$ ) and eyclle tetramers ( $\Delta \mathrm{H}^{*} \sim 14-18 \mathrm{keal}_{\mathrm{k}}^{\mathrm{m}} \mathrm{l}^{-1}$ ). Hetcher and Hellor ${ }^{60,52}$, have criticised the 'a priori' assifnmant of the $3600 \mathrm{om}^{-1}$ bana to dimers. Iney have showa that the first overtone bands ( $A \sim 1.4-1.6 \mu$ ) of n-butanol, n-octanol and deutoratod othanol ( $\mathrm{CH}_{3} \mathrm{CH}_{2} O D$ ) in a-decane cen be explained oniy in torms of monowers, open tetramors ( $\angle \mathrm{i}^{\circ} \sim 5.4 \mathrm{keal} \mathrm{mol}^{-1} \mathrm{bona}^{-1}$ ) and cyclic tetramers (ail $\sim 4.8 \mathrm{keul}_{\mathrm{kol}}{ }^{-1}$ bond ${ }^{-1}$ ); the smaller value of $\Delta \mathrm{H}^{\circ}$ for the
cyalic structures being ascribed to bent hydrogen bonds. Hameker et ai ${ }^{38}$ agree with Fletcher and Heller in that the $3500 \mathrm{~cm}^{-2}$ band should be carerully consliered for each system soparately as it may not always be due to OH-w-0h dimers only. They heve hovever conflimed that in the case of sethanol, ethanol and ditertiary butyl carbinol this band is due to dieors only. Later study by Hetcher and HoNler ${ }^{23}$ on methanol in $\mathrm{CCl}_{4}$, using the overtone bands is in agrecment with this.
I. 2. Intrmolemut Hyserien Bonding:

The 1.8. frequencles and pamer. ohemical shifts for a Variety of compounds containing intramolecular li-bonas are oxtensively reported (ef. e.g. the reviow by M. Ilchy ${ }^{54}$ and the roforences sited thoroin). dowover the thormodynaic proporties ( $\Delta i^{\circ}$ and $\Delta S^{\circ}$ ) which aro more usorul in understanding the extent of thbonding and interaction enorgios are estimated in a fow cases anly. The thernodynamic and structural aspects of alcohols capabie of intramolecular H-bonding such as $\beta$-substituted othanols $\mathrm{XCa}_{2} \mathrm{CH}_{2} \mathrm{OH}\left(\mathrm{S}=\mathrm{P}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{NH}_{2}\right.$ and $\mathrm{C}_{6} \mathrm{H}_{5}$ ), alkane d.013 and thoir monoelkyl/aryl ethors are summarized belov because of their similarity with the ecapounds studied in the present woris. Of the cis, trans and cauche rotamers possible for these compounds, the sauche/cis conformers are stabllized by intramolecular hydrogen bonding.

Hisurhice ot al ${ }^{55}$, from 1. F. and Rean study, have
determined the siceletal rrequencies and force constants of the
stretching vibrations of z-chloroethanol. The enorgy difference Detween the i-bonded and non-bonded conformations obtained by them $\left(0.35 \mathrm{hsal}\right.$ no1 $\left.{ }^{-1}\right)$ is consiciarably smaller than that doterained oy $a u$ walt and Badger ${ }^{56}\left(2 \mathrm{koal}\right.$ mol ${ }^{-2}$ ) from the study of overtone bends. Krueger and Hettee $31,57,02$, rem 1. r. study, have estinated the $\Delta H^{\circ}$ values for gauche-trans conversion in Various haio as vell as cyano-, nitro- and amino thanols by aswualng the absorption coefficients of the freo and intramoleoulariy H-bonded OH's to be identicel and indopendent of teaperature. dowevar, as these assuptions are not veild, thoir values are not reliable. In the case of 0-and Homethyl derivatives of $y$-anino othenol, their results indicated ${ }^{58}$ the intramolecularly H-bonded दaucho ocnformers to be less stable than the non-bonded trans isoders with they have explained by considering the rupulsive Corces between the $N$ and $O$ atom to be greater then the attrantive foreos responsible for il-bonding. sucaloy, aiguere and Yomoto ${ }^{59}$, rrow 1. $r$. and Raman study of $2-1$ voroethanol in sol1d, 1iquid and vapour phases have shown that these molecules exist, Imost entirely, in the gauche form ( $4 H^{\circ} \sim 3-4 \mathrm{kcal}_{\mathrm{m}}^{\mathrm{m}} \mathrm{cl}^{-1}$ ) and only in vayours at tomparatures above $60^{\circ} \mathrm{C}$, wosk bands due to trens isoners are ooservod. 3im1lariy, zohloro and 2-bromo thanol are found ${ }^{60}$ to axist mainly as intranoleousarly h-bonded gauche isomers wh th $\Delta H^{\circ}$ values of 1.46 and 1.20 keal $m o l^{-1}$ respeotively, obtalnod fram the measurements on earbon-halogen stretching bands. The correspondin: $\Delta H^{\prime \prime}$ s derived from measurements on OH stretching bands ware 1.90 and 1.66 scal mol ${ }^{-1}$; the apparent discrepancy
between the two sets of falues belng ascrived to the presence of a secont, non-bonded gauche 1sumer. The forco constants obtained from nozmal coordinate enalysio of 2echoro, 2-broso and 2 cyano ethenols are in agreement with the gauche forms ${ }^{62}$. The interaction of the OH group with the E-alectrons in 2-phonyl ethanol 13 roported ${ }^{62}$ to result in intramoleoular hydrogen bonding with $A H^{*} \sim 2-2.5 \mathrm{kcal} m 01^{-1}$ and $\Delta S^{\circ} \sim 3-4$ e.u. mol $1^{-1}$.

Aruager and hattee ${ }^{63}$ fron 1. F. stuay of 1,2 ethane dial ( $\left.\mathrm{CH}_{2}{ }^{\mathrm{OH}}\right)_{2}$ have proposed a 'box-type' structure for the intrgolecularly $H$-bonded monow or involviag two mutual hyarogen bonds between the two hytroxyl groups. Howover such a structure coula be highly strained and heace seens unilicely. Enciclay and Ulguare from 1.F. stuay of $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2},\left(\mathrm{CD}_{2} \mathrm{OH}\right)_{2}$ and $\left(\mathrm{CH}_{2} \mathrm{OD}\right)_{2}$ in the solid, 11quid and vapour pheses, have shom that these moleoules exist only as Eaucho isomers. From study of torsional frequencies, thoy hevo further estinated the barrierg to intemal rotation about the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=0$ bonds as 10 and $3-4 \mathrm{keal}$ mol ${ }^{-1}$ pespectively. buc and coworicers ${ }^{66}$ have determined the spectral characteristies of the iree und intramoleculsiy H-bonded OH bends of 1,3 propane 1101 ( Pree oh : $\bar{v} 3635 \mathrm{~cm}^{-1}, ~ \Delta \bar{w} / / 2=40 \mathrm{~cm}^{-1}$ and $\mathrm{B}=5.6 \times 10^{3} \mathrm{man}^{3} \mathrm{~mol} \mathrm{~cm}^{-2}$ intra. OH: $5=3657 \mathrm{~cm}^{-1}$, $\Delta_{1 / 2}=59 \mathrm{~cm}^{-1}$ and $B=6.8 \times 10^{3} \mathrm{am}^{3} \mathrm{~mol}^{-1} \mathrm{an}^{-2}$ ) and reportod the $\Delta H^{\circ}$ for bonded-nonbonded conversion as $2-2.9 \mathrm{keal} \mathrm{mol}^{-1}$. Ihe different conformations and offect of substituents on the C-G-L boad ancle in 1,3 propane 1101 have been investigated by $3 \operatorname{chleyer}{ }^{66}$. Johansson and Koilman ${ }^{67}$ have carried out 'ab initio'
molecular orbital eal oulations for the bonded and non-bonded conformations of 1,3 propane diol. tha energy difference between the H-bonded and non-bonded cis conformations is calculated to be $0.9 \mathrm{keal} \mathrm{mol}{ }^{-1}$ wile that betwern the cia and trans conformations is $4.8 \mathrm{kcal}_{\mathrm{kol}}{ }^{-1}$. Fisiman and Chen ${ }^{68}$ round that the $\Delta H^{\circ}$ Values for intramolacular hydrogen bonding in 1-2, 1-3 and 1-4 butane diols, wore in the order: 1-4 diol>1-3 diol>1-2 diol; while the 0....H distances followed the reverse order, 1z. 1.2, 1.8 and 2.1 a respectively.

A number of workers ${ }^{69-73}$ have studied रow diols $H O\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} 0 \mathrm{H}$ with $n=2-6$. Kum ${ }^{69}$ has proposed a correl ation between the frequency shift ( $\Delta \mathrm{m}_{\mathrm{en}} \mathrm{ch}^{-1}$ ) on intramoleoular myarogen bonding and the $0 . .$. . H alstance $\left(\mathrm{L} \mathrm{cm}\right.$ ) as $\Delta \bar{v}=250 \times 10^{-8} / \mathrm{L}-74$. Kuhn and covorisers ${ }^{70}$ have determined the intensity ratios for the free anc. H-bonded 011 beads of Various diols from which it is observod that intranolecular association persists to a large extent in 1,2 ethane 1,3 propano and 1,4 butane diols but falls drastically in 1,5 and higher diols. Yonezawa at $\mathrm{al}^{71}$, from moasurements of proton chmical shifts moleoular orbital calculations, have estimated the digmagnetic shialding constents of the protons and shialaing due to paramagetie anisotropy of the oxygen atocis. Morantz and faite 72 , from a study of the first ovortone bands (at $\sim 7000-7200 \mathrm{em}^{-1}$ ) of a number of diols in $\operatorname{sc1_{4}}(C \sim 0.005-0.010$ mol $\mathrm{dm}^{-3}$ ), have found that the mechanical anharmonicity of, the free and intremolecularly fobonded OH stretchlag vibrations is nearly the same ( $\sim 0.02$ ) suggesting the observed spectral changes
(1.e. those in $\Delta \bar{v}, \Delta \bar{v}_{1 / 2}$ and B) to depend mainly on the lectrieal anharmonicity. susfiald and coworkers ${ }^{73}$ heve dotermined the thermodynuale quantitles for the equilibria betwoen the free and 1atramolecularly H-bonded monomera for various diols and found the Badger-3guor mile $0^{74}$ (1.e. I inerity of $\Delta H^{\circ}$ and $\Delta n$ ) to be obeyod.

The intremolecular hyrogen bonding in monoalkyl/aryl -tiaers of diols has been investlgated by sevaral woricers 2,75-86. The larger frequency shifta of the intranoleculanly H-bonded $O H$ groups of alol monoetherg as compered to those of simple diols have been attributed ${ }^{76-77}$ to groater basicity of the ether oxysen than that of the hydroxylie one. Infrared atuay of z-aryloxy othanals showod 78 that alectron donor substituents in se and popositions favourod intramol ecular H-bonding; the OH... . $H$ bonding and sterle ofrects wore however found to be neglgible. Miyake ${ }^{79}$ and 3 rinivasan ot $1^{80,81}$. from a study of $\mathrm{cH}_{2}$ doformation modes of monoalkyl othors of mono-, di- and triethylone glycols have show that the $\mathrm{OCH}_{2} \mathrm{CiF}_{2} \mathrm{O}$ skeletons exist predominanty in the gameho fome uncial ay and jrochu ${ }^{82}$, frow microvare study of Zamethoxy ethanol have detamined 1 ts dipole morsent (2.36 D), rotational constants and the dipole moment corponents alons the three principal axes. Kuh and lires ${ }^{83}$, fros. 1.f. study of Intral ecul ar H-bonding in 2-aethoxy thanol, 3-mothoxy propanol and imethoxy butenol have reported that, thougin the $\Delta \bar{v}$ for these compounds varied as 30,86 and $1900^{-1}$ respectively, the $\Delta H^{\circ}$ was practically constant ( $\sim 2.2-2.7 \mathrm{scal} \mathrm{mol}^{-1}$ ). The non-applicabilit
of the Badger-Bauer mule has been attributed to oonformational intaractions. It may howevar be noted that the results on intrenolocular hyarogen bonding in various diols ${ }^{68,73}$ are consistent with the Badger-bauer rule.

The 3635 and 3600 an $^{-1}$ bands of alkoxy othenols are generally attributed to the free and intramolecularly H-bonded OH groups respectively. Flott ${ }^{2}$ however has ascribed both these bands to 'froe' OR groups restilting from two different molecular configurations with slightly difforent force flolds. Shapotico -t $a^{84}$ on the other hand have showed the presence of intramolecular H-bonding in wathoxy othanol from the chamical shift of the OH protons at infinite dilution. Salto et a1 ${ }^{77}$ did not obsorve the $3636 \mathrm{cs}^{-1}$ band of alkoxy etinunols and have tharefore concluded intramolecularly H-bonded monomers (absorbing at $\sim 3610 \mathrm{~cm}^{-1}$ ) as the only species in dilute $\mathrm{CCl}_{4}$ solutions. Lodygina ot al ${ }^{86}$, who also did not obsorve the $3630^{-1}$ band of ethoxy etheual, on the other hand, have considered intramolecular Hobonding to be absent and oniy 'free' monomera ( $\bar{v} \sim 360 \mathrm{~cm}^{-1}$ bend) to be present in dilute $\mathrm{CCl}_{4}$ solutions. Earikevioh ot $a^{86}$ have reported three $O H$ bands, viz. at $\sim 3617, \sim 3586$ and $\sim 3486 \mathrm{~cm}^{-1}$ in dilute ccl solutions of diethylene glycol monoethyl other and attributed then to the free and the intremolecularly fi-bonded five and el ght membered ring monowers respectivoly. Lodygina et $a 1^{85}$, in this case also, did not observe the $3617 \mathrm{~cm}^{-1}$ band and have ascribed the latter two bands to the free and
intranoleularly h-bonded al ght mextered ring monomers respectively.

## 3. EMamaxy:

from the 11 terature on intermol ocular assoclation of alconols, it is thus observed that the results obtained for different systems are hardy comparabie uth one another as the aloohol studied togethor with the solvent and concontrations used, aothod of lnvestlgation and the nature of approxiations have varied widely. Sinde no ilrect method is avallable for the identification of different types of hyurogen bonded species, the interpretation of experimental data rests heavily on the association riocal proposed and the curve fitting procedure. Most of the oarlier i.r. work is restricted to low concentrations whure the flrst associated species absorbing at $\sim 3500 \mathrm{~cm}^{-1}$ could, dmost cartainly, be the dimers only. In the woris based on pem.r., 1.F. overtone rezion, ilelectric polarisation and vasour pressure methods, relativoly high ooncentrations have been ployeci. In sucin systews containing various types of polymers, it is obvious that tha dicers may not be the major assoalated species and the species absoraing at $3500 \mathrm{~cm}^{-1}$ are ilixaly to be trisers in addition to tho dimers. Tisero is hovever no evidence for tetramers or still higher asociated species absorbing at $\sim 3600 \mathrm{~cm}^{-1}$. The tructure of the dimer (open or closed) 13 also not woll established. In the case of intrenolecular hydrogen bonding, there is relativaly littil coatroversy as the nature of species is vell defined. There is however iltile woris on intermol ecular assoctation of alcohols capable of intrmal ocular H-bonding.


## GHAPTER II

## INFRA RAD SPUCFHOSCOPY

II.1. Vibrations and Infra Red Snactra of Polyatomic Moleques :

An n-atomic molecule possesses $3 n$ degrees of freedom, out of which 3 each in general correspond to the translational and rotational motions of the molecule as a whole, leaving $3 n-6$ as the vibrational degrees of freedom. (Linear molecules form a special case as they have only 2 rotational and hence $3 n-5$ Vibrational degrees of freedom). These independent vibrations a molecule can undergo are termed the 'nomal' or 'fundamental' mode: of vibration. The apparently complicated vibrational motion of a molecule can be understood in terms of its normal modes.

The energy levels of the molecule corresponding to each of the $1(=1,2, \ldots 3 n-6)$ normal modes are given by

$$
\epsilon_{v_{1}}=\left(v_{1}+1 / 2\right)\left[1-\left(v_{1}+1 / 2\right) x_{1}\right] \bar{w}_{1} \mathrm{~cm}^{-1}
$$

where $v_{i}(=0,1,2, \ldots), \bar{w}_{1}$ and $x_{1}$ are respectively the vibrational quantum number, natural frequency (in $\cos ^{-1}$ ) and the anharmonicity ( $\sim 10^{-2}$ ) corresponding to the $i^{\text {th }}$ normal mode. The force constant $\left(x_{i}\right)$, which is a measure of the stiffness of a cheaical bond, is related to the natural frequency by the relation

$$
\mathbf{k}_{1}=4 \pi^{2} c^{2} \bar{w}_{1}^{2} \mu
$$

c being the speed of 11 ght $\left(3 \times 10^{10} \mathrm{~cm} \mathrm{sec}{ }^{-1}\right)$ and $\mu$ the reduced
mass of the system. The normal modes associated with a change of dipole moment are infrared active and can give rise to Fibrational bands in the infrared region. For a particular normal mode, the absorption frequency for a transition $\nabla^{\prime \prime} \rightarrow \nabla^{\prime}$ (where the single and double primes refer to the upper and lower states respectivaly) is given by

$$
\vec{v}_{v^{\prime}, v^{\prime \prime}}=\left(v^{\prime}-v^{\prime \prime}\right) 2-\left(v^{\prime}+v^{\prime \prime}+1\right) x_{1} \bar{w}_{1} \mathrm{~cm}^{-1}
$$

Wh the selection rule $\Delta V=1,2,3, \ldots$ etc. At ordinary temperatures, almost all the molecules are in the vibrational ground leval $\left(v^{n}=0\right)$ so that the transitions from all the higher (1.e. $\nabla^{\prime \prime}=1,2 \ldots$ ) levels are of negligible intensity. The transition from the ground level $\left(\nabla^{*}=0\right)$ to the first excited level ( $v^{\prime}=1$ ), known as the fundamental transition, gives rise to the band at frequency $\bar{v}_{1,0}=\left(1-2 x_{1}\right) \bar{w}_{1} \approx \bar{w}_{1} \mathrm{~cm}^{-1}$ (as $x_{1} \ll 1$ ) similarly the transitions from $\nabla^{\prime \prime}=0$ to $v^{\prime}=2,3, \ldots$ levels, termed as the first overtone, second overtone, ... etce give rise to bands at frequencies $\sim 2 \bar{w}_{1}, \sim 3_{1}, \ldots$ etc. The intensities of the overtone bends are 1-2 orders of magnitude lower than those of the fundementals and therefore of little use in quantitative analysis.

The interactions among different normal modes give rise to a number of combination bands at frequencies $\bar{w}_{i} \pm \bar{w}_{j} \pm \bar{w}_{k} \pm$ etc. (where $a, b, c, \ldots$ are integers $0,1,2,3$ etc.) which make the 1. r. spectra very complex and characteristic of the molecules. Purther, various chemical groups are round to display absorption
bands at essentially constant frequencies. e.g. All the molecule: containing an OH-group consistently have an absorption band in the $3600 \mathrm{~cm}^{-1}$ region. Such empirical correlations between various functional groups and their absorption bands have led to the concept of characteristic group frequencies, which also includes the bands arising from vibrations of multiple bonds. The unique nature of the 1.r. spectra of different molecules together with the approximate constancy of absorption frequancies of various functional groups are of great help in the identification of different compounds. However it must be realized that the concept of characteristic group frequencies is only a simpliflcation. The group frequancies are dependent on several factors such as the ralative positions of different groups in the molecule, their polarities, staric factors, physical state of the system, (1.e. solid, liquid or gaseous), the solvent etc. These factors give rise to various intra- and intermolecular interactions which influence the positions of absorption bands as well as their intensities. All such factors have therefore to be taken into account while using i.r. spectroscopy for identification and analytical purposes.
II. 2. Intacratad Ahsorntion Intensity ${ }^{87-89}$ :

Normally an 1.r. absorption band is characterized by its frequency at the absorption maximum $\left(\bar{v}_{\max }\right.$ or $\left.\bar{v}_{0} \mathrm{~cm}^{-1}\right)$, half-band width 1.e. the width of the band at half the maximum intensity $\left(\Delta \bar{v}_{1 / 2} \mathrm{~cm}^{-1}\right)$. similarly whan a certain group is present in
different molecules, the integrated absorption intensity (see below) can help in characterizing the immodiate surrounding of the group. For example, the integrated intensities of carbonyl groups in certain steroid acetates, ketones and $\delta$-lactones, all of which absorb in the $1735-1745 \mathrm{~cm}^{-1}$ region were found to be appreciably different to enable their characterization ${ }^{80}$.

The fundamental absorption law (Beor-Lambert law) is expressed as

$$
I_{v}=I_{o v} e^{-x} v
$$

where $I_{o v}$ and $I_{v}$ are the incident and transmitted intensities of monochromatic radiation of frequency $v ; \mathcal{L}_{v}$ is the absorption coefficient (or absorptivity) at frequency $\nu$; $C$ is the concentration of the absorbing species and $I$ is the path length in w. The absorption coefficient is therefore given by

$$
\psi=(1 / C) \ln \left(I_{0} / I\right)_{v}
$$

and is measure of absorption of radiation of frequency $v$ by the absorbing group. The true integrated absorption intensity (A) of a band is dofined as

$$
A=\int \alpha v=(1 / \omega)_{\ln }\left(I_{0} / I\right)_{v} d v
$$

and is a measure of total energy absorbed by the group over the entire absorption region. The integrated intensity is thus a better eriterion of band intensity than the maximum absorption coefficient ( $V_{\text {max }}$ ) as the former takes cognizance of variations in band heights as well as in band widths. Further the
integrated intensity is related to cther fundamentally important quantities as noted below.
(1) The dipole moment derivative near the equilibrium position (du/dr) ${ }_{0}$, i.e. the variation of dipole moment associated with a particular pibration is related to $A$ as

$$
A=\left(m n_{0} / 3 c\right)(d \mu / d r)_{0}^{2}
$$

where $n_{0}$ is the number of molecules per $\mathrm{cm}^{3}$.
(1i) The matrix elements of spectral transition probability given by expressions of the form $M_{x}=(\partial \mu / \partial x)_{0} \int \Psi_{i}^{*} x \Psi_{j} d \tau$ are related to A through the expression

$$
A=\left(8 \pi^{3} n_{0} v / 3 c h\right)\left(M_{x}^{2}+M_{J}^{2}+M_{z}^{2}\right)
$$

where the F's are the wave functions of the states participating in the transition and $v$ is the absorption frequency. (ii1) The molecular polarizability $\left(\mathcal{q}_{\mathrm{m}}\right)$ and the molar atomic polarization ( $\mathrm{P}_{\mathrm{a}}=4 \pi \mathrm{~N} x_{\mathrm{m}}$, $\mathrm{H}=$ Avogadro number) are related to A through the expressions

$$
y_{m}=\left(d / 4 \pi^{3} n_{0} \nu^{2}\right)_{A} \quad \text { and } \quad P_{a}=\left(e r_{m} / 3 \pi^{2} v^{2}\right)_{A}
$$

where $\nabla_{m}=N / n_{0}$ is the molar volume.
The integrated intensity of a band is thus a fundamental and hence characteristic property of the absorbing group which can therefore be used to distinguish between similar groups absorbing in the same spectral region.

The definitions of the absorption coefficient and integrated intensity given above are true for monochramatic
radiations only. In practice however, due to the use of finite slit width, the radiation cannot be strictly monochromatic. Further, the quantity recorded is not the intensity (I) of the radiation but the transmittance (T) which is the ratio of transmitted and incident radiant powers ( $T=P / P_{0}$ ). The quantitie: actually measured are therefore the apparent absorption coefficient ( $f$ ) and the apparent integrated intensity (B) which are given by
and

$$
\begin{aligned}
& \alpha_{v}^{a}=(1 / C \omega) \ln \left(T_{0} / T\right)_{v} \\
& B=(1 / C L) \int \ln \left(T_{0} / T\right)_{v} d v
\end{aligned}
$$

where $T_{0}$ and $T$ are the transmittances (1.e. apparent intensities) of the incident and transmitted radiation when the spectrometer is set at frequency $v$.

The values of apparent absorptivities depend on the spectra slit with. Increase in spectral slit width results in a decrease in peak height $\left(\ln \left(T_{0} / T\right)_{v_{\text {max }}}\right)$ and an increase in band width. The apparent absorptivities therefore can differ considerably from the true values (by~10-20\%). The true and apparent integrated intensities are however found to differ only by $\sim 3-5 \%$, the decrease in peak height being roughly compensated by the increase in band width. The integrated intensities therefore are more raliable measures for quantitative analysis then the absorption coefficients.

The infrared absorption bands of 11 quids are in general much broader $\left(\Delta N_{1} 1 / 2^{\sim} 10^{1}-10^{2} \cos ^{-1}\right)$ then those of gases and vapours
$\left(\Delta \bar{v}_{1 / 2} \sim 10^{-2}-10^{-1} \mathrm{~cm}^{-1}\right)$. The detemination of integrated intensity therefore requires a knowledge of the band shape for evaluating the quantity $\int \ln \left(T_{0} / T\right)_{v} d v$, which can be treated as the band area. There are mainly four factors which determine the shape of an 1.F. absorption band; Viz. (1) Vibration-rotation structure, (ii) radiation damping (or natural line width), (iii) Doppler broadening and (iv) collision broadening. However it has been observed that the vibrational bands of liquids do not show rotational fine structure ${ }^{91}$ except those of 11 quid hydrogen, 11quid methane, ammonia in aqueous solution and water in $\mathrm{CCl}_{4}$ or $\mathrm{CS}_{2}$. The band broadening due to radiation damping and Doppler effect are shown to be of the order of $10^{-6}$ and $10^{-3} \mathrm{~cm}^{-1}$ respectively, which are entirely negligible in comparison with the large half-band widths of liquids. The principal cause of band broadening in 11 quids is the collision broadening 88,89 resulting from perturbation of energy levels of the absorbing molecules by close approach of others. Inis aspect of line broadening was first dealt wh th by Lorentz and later by Van Vleck and Weisskopf who were primarily interested with electronic processes in atoms. The line shape derived by them can be expressed as

$$
\ln \left(I_{0} / I\right)_{\bar{v}}=a /\left[(\bar{v}-\bar{v})^{2}+b^{2}\right]
$$

which is known as the 'Lorentz shape'. The constants ' $a$ ' and ' $b$ ' are ralated to the peak intensity and half intensity width by the expressions

$$
\ln \left(I_{0} / I\right)_{v_{0}}=a / b^{2} \text { and } \quad \Delta \bar{v}_{1 / 2}=2 b
$$

The Lorentz shape has been widely assumed to apply also to the proflles of infrared absorption bands of liquids. sheshadri and Jones ${ }^{89}$ have show that for the 1.r. absorption bands of $11 q u i d s$, the absorption coefficient at frequency $\bar{v}$ is given by

$$
\alpha_{\bar{v}}=(K / \pi)\left\{1 / 2 \Delta \bar{v}_{1 / 2} /\left[\left(\bar{v}-\bar{v}_{0}\right)^{2}+\left(1 / 2 \Delta \bar{v}_{1 / 2}\right)^{2}\right]\right\}
$$

where $K$ is a constant for the absorption band under consideration. The shape functions given above are of the form

$$
y=a /\left(x^{2}+b^{2}\right)
$$

and are more generally known as the Cauchy functions. Band Wdening also results from the presence of different species of absorbing molecules, different conformational forms of polyatomic moleoules and complex solute-solvent interactions ${ }^{89}$. These factors induce a Gaussian component in the band shape which is of the form

$$
y_{g}=\left(a / b^{2}\right) \exp \left(-x^{2} \ln 2 / b^{2}\right) \quad \text { where } \quad x=\left(\bar{v}-\bar{v}_{0}\right)
$$

The 1.r. absorption bands of liquids would thus be a superposition of the Cauchy and Gaussian forms giving rise to the so-called 'true band shape'. This is further modified by a number of instrumental factors which cause optical, electronic and mechanical distortions while recording the band resulting in the 'apparent band shape'. These factors $V i z$., the spectral slit widh (s), signal-to-noise ratio (R), filter time constant ( $\mathcal{C}$ ) and the scanning speed ( $d \stackrel{J}{\mathrm{~L}} \mathrm{~d} t$ ), are not entirely independent of one another. In practice the determining factor is tha maximum
obtainable resolution with optimum signal to noise ratio and scanning speed, the instrumental operating conditions being regulated by the expressions 89

$$
\mathrm{A} \propto \mathrm{~s}^{2} /(d \bar{v} / d t)^{1 / 2} \text { and }(d \bar{v} / d t) \propto 1 / \pi
$$

Having know the shape of an absorption band, its integrated intensity can be determined by a number of methods ${ }^{88}$, such as (1) the method of direct integration, (i1) the method of Wilson and weils and (1i1) the method of absorption areas. There are no universally accepted units for the integrated intensity and hence a variety of units having different physical significance are observed in the literature. Io curb the introduction of still more units, the Commission on Molecular Structure and Spectroscopy of I. U.P.A.C. has provisionally recommended the following units ${ }^{89}$.
(1) An absolute unit $1 / n_{0} L \int \ln \left(I_{0} / I\right)_{v} d v$ where $n_{0}$ is the number of molecules per $\mathrm{cm}^{3}$, $L$ the path length in cm and $v$ the frequency in Hz. The dimensions of this intensity unit are therefore $\mathrm{cm}^{2}$ mol ecule ${ }^{-1} \sec ^{-1}$.
(ii) A secondary unit $1 / n_{0} I \int \ln \left(I_{0} / I\right)_{v}$ dinv with dimensions of $e^{2}$ molecul $e^{-1}$.
(iii) A practical unit $1 / \mathrm{CL} \int \log \left(I_{0} / I\right)_{i} d J$ with $C$ in mole $\mathrm{dm}^{-3}$, $L$ in an and $\bar{v}$ in $\mathrm{cm}^{-1}$. The dimensions of this unit are $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$.

The chemical spectroscopists concerned mainly with empirical or semiempirical applications of intensity measurements commonly use the unit proposed by Ramsay and Jones ${ }^{83}$ viz.

$$
1 / C L \int \ln \left(I_{0} / I\right)_{v} d \nu=\frac{20303}{C L} \int \log \left(I_{0} / I\right)_{v} d \bar{v}
$$

with $C$ in mole $\mathrm{dm}^{-3}$, L in and $\bar{v}$ in $\mathrm{em}^{-1}$. This unit differs from the IUPAC practical unit by a factor of 2.303.

## II.3. guantitative Analysis :

I.R. spectroscopy can be conveniently used for quantitative analysis when the substance to be analysed is soluble in some organic solvent such as $\mathrm{CCl}_{4}$ with its components exhibiting characteristic and reasonably strong absorption bands that are relatively free from others. The concentration of the desired component can then be estimated by either of the following two methods.
(1) The Use of Absorbance Measurements : The absorbance at the band maximum is given by

$$
\log \left(I_{0} / I\right)_{\hat{v}_{0}}=\alpha_{\tilde{\nu}_{0}}^{C L}
$$

The concentration of a particular species can therefore be easily evaluated by comparing the absorbance at the band maximum of one of its characteristic bands with that of a standard solution of the same substance. This method is quite convenient if the bands to be used for analysis are free from overlap. In the case of overlapping bands however the estimated concentnation can be in error due to improper choice of the base line ( $I_{0}$ level) for the band concenned. Further in the case of systems involving intermolecular association, particularly H-bonding; this method becomes inapplicable since, due to the presence of various
associated species, the linearity of the absorbances, of different bands and the stoiciometric concentration as demanded by the above quation is not obeyed. A serious limitation arising from the dependance of peak height on the spectral slit width is that the data obtained by this method are not transferable from one instrument to another.
(1i) The Use of Integrated Intensities: The absorbance has iittle theoretical significance when inherent oscillator strength of a particular vibration is to be considered, for it does not differentiate between narrow and broad absorption bands. Obviously a broad band results from greater absorption of 1.r. energy than a narrow band of equal pear height. The integrated intensity B on the other hand is a measure of the total energy absorbed by a Fibrational mode and as mentioned previously, is of much deeper theoretical significance.

Since $B=1 / C L \int \ln \left(T_{0} / \Phi\right)_{V} d J=A / C L$ where $A$ is the area of the absorption band, the concentration $C$ can be evaluated fram $C=A / B L$. Since the $B$ value is effectively the area of the absorption band per unit concentration and unit path length, only a single measurement (at the desired temperature) of a standard solution is needed for the calibration. As the area beneath the absorption curve is independent of the spectral slit function, the data obtained using the integrated intensity is transferable to other spectrometers of comparable resolving power. This method suffers from two main limitations viz. for obtaining accurate band areas, the base line chosen must be precise over the entire
frequency range of integration which is sometimes difficult in practice; and a great deal of labour is involved in resolving the absorption bands and measuring their areas. This method is however very useful in the study of systams involving intermolecular association if the overlapping bands can be resolved satisfactorily and as such is employed in the present work.


## CHAPTRB ILI

## HXDROGEY BONDTNG

III.1. Nature of Hydrogen Bonding :

H-bonding is a type of inter- or intramolecular interaction that occurs because of an involvement of the H-atom of a proton donor group $A-H$ with a proton acceptor group $B$, where $A$ is an electronegative atom such as $0, N, F, S$, etce and $B$ is a localized site of high electron density such as a lone electron pair of an alectronegative atom, a $\pi$-alectron orbital of unsaturated or aromatic system etc. H-bonding is a distinctiy directional and specific interaction whereby it is more localized than any other type of weak intermolecular interaction such as repulsione, polarization-, dispersion- or charge transfer interactions. The strength of H -bonds is small ( $0.5-60 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ ) in comparison with ordinary chemical bonds $\left(200-800 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. Due to the weakess of the $H$-bonding interaction and frequent collisions of molecules in gases and 11 quids, the H-bonds in them are continually breaking and reforming resulting in a rapid dynamic equilibrium between the nonbonded and various types of H-bonded species so that at ordinary temperatures, only a fraction of molecules is in the associated form.

Garly attempts to explain the phenomenon of H-bonding were based on simple electrostatic models ${ }^{92}$ which considered the H-bonding interaction in a complex A-H... B to be the sum of the interactions between the aharge distributions associated with the
unperturbed groups $A-H$ and B. These electrostatic interactions Include the mutual Coulombic interactions of the charges, dipoles and multipoles with one another. However the simple alectrostatic models were inadequate in explaining several experimental results regarding the energy of H-bond, its length, band intensities of H-bonded groups etc. It is also known that the formation of a H-bond perturbs the charge distributions of the donor and acceptor groups as against the assumption of unperturbed charge distributions underlying the electrostatic model. It is therefore an over-simplification to consider the H-bond to be a purely electrostatic interaction.

There are several reviews dealing with the modern (1.e. quantum mechanical) theory of H-bonding notable of them being those by Bratoz ${ }^{93}, \mathrm{Lin}^{94}$, Kollman ot $a^{95}$. The quantum mechanical treatments can be classified into the Molecular Orbital-, Valency Bond- and Charge Transfer Theories. Since rigorous calculations of energy of H-bonded systems are not possible and the errors resulting from various approximations are very large (of the same magnitude as the H-bond energy itself!); the quantum mechanical treatments have generally been semiquantitative.

Coulson ${ }^{96}$ has considered four distinct interactions in H-bonding, viz.
(1) Electrostatic interaction resulting from Coulombic attractions between the positive charge on the H-atom and negative charge on the acceptor atom; (ii) Dolocalization interaction due to the approach of the proton donor $A-H$ to the proton acceptor $B$
resulting in mutual distortion and redistribution of their charge clouds; (1i1) Dispersion interaction due to the coordinated motion of electrons in the donor and acceptor groups giving rise to fluctuating dipole in the former and an induced fluctuating dipole in the latter; and (1v) Repulsive interaction resulting from the overlapping of the charge clouds of $A, H$ and $B$ whereby too many electrons are crowded in a certain small volume. All these effects have a simple physical model associated with each of them and within certain limitations, the details of each of these effects and their contributions to the bond onergy, vibration frequency, dipole moment etc. can be calculated.

Sami quantitative models of H-bonds in A-H... B systems consider the potential function of the H-atom to be a combination of indifidually analytical potential functions for the $A-H$ and H...B bonds. The combined potential is substituted in the Schrodinger equation for obtaining the vibrational energies of the proton in the A-H..B system. Lippincott et al ${ }^{97}$, in their one dimensional potential function model for the H-bond, have expressed the complete potential (V) for the A-H..B system as made up of four terms, $\nabla 1 z_{0}, \nabla=V_{1}+V_{2}+V_{3}+V_{4}$ where the functions $V_{1}$ to $V_{4}$ correspond respectively to the covalent potential for the $A-H$ bond, covalent potential for the H-bond (H..B), Van der Waals repulsive potential between atoms $A$ and $B$ and the electrostatic attractive potential for the atoms $A$ and $B$. "By choosing appropriate forms for these functions, these authors have shown that the proposed model agrees reasonably well with the observed
data for a number of H -bonded systems such as $0-\mathrm{H} . . \mathrm{O}, \mathrm{N}-\mathrm{H} . . \mathrm{O}$, $\mathrm{N}-\mathrm{H} . . \mathrm{N}, \mathrm{O}-\mathrm{H} . . \mathrm{N}, \mathrm{N}-\mathrm{H} . . \mathrm{Cl}, \mathrm{O}-\mathrm{H} . \mathrm{Cl}$ etc. One important feature of this model is that only one empirically evaluated parameter is necessary to describe the H-bonding properties of various systems. Further, the model can also be used for bent bonds by introducing an additional parameter viz. an angle between the normal A-H direction and the A..B axis.

## III.2. Self-Association :

The molecules capable of H-bonding can be conveniently Classified into three groups such as those having (1) only donor groups, e.g. acetylenes, halogenated compounds, haloforms etc.; (1i) only acceptor groups, e.g. ketones, ethers, esters, olefins etce; and (111) both donor as well as acceptor groups, e.g. water, alcohols, phenols, amines, carboxylic acids etc.

Molecules in group (1) can form H-bonded complexes, generally in $1: 1$ ratio, with those in group (i1), the strength of H-bonding being dependent on the acidity and basicity of the groups concerned. Molecules in group (1) or (ii) can also form H-bonded complexes with those in group (1i1) giving rise to severel H-bonding equilibria depending on competing nature of the donor groups of (i) or the acceptor groups of (ii) and those of (ii1). holecules in group (iii) can self-associate giving rise to inter- or intra-molecularly H-bonded species. Because of the donor and acceptor sites within the same molecule, the nature and strength of H-bonding depends on the relative acidity and
basicity of the donor and acceptor sites and in the case of intramolecular H-bonding, on their spatial arrangement.

Intramolacular hydrogen bonding can occur whon the proton-donor and-acceptor sites on the same molecule are in a favourable spatial configuration, i.e. the distance between the acceptor and the hydrogan atom of the proton donor is between 1.4-2.7 A and the angular orientation of the acceptor site does not deviate greatly from the A-H bond axis. Typical molecules exhibiting intramolecular H-bonding are: 1,2 dicarboxylic acids and their mono-anions, or thohalophenols, o-hydroxy ketones, some difols and their mono-alkyl- or aryl ethers etc. A cis- or gauche configuration is necessary for intra-molecular H-bonding. Self-association through intermolecular H-bonding can lead to a variety of species such as open and/or closed (i.e. cyclic) dimers, trimers, tetramers etc. The H-bonds that form part of a ring as in the intramolecularly or cyclic intermolecularly associated species are generally stronger than those in the simple lis type complexes between similar proton-donor and acceptor groups.

## III.3. Sffecte of H-londing :

Intremolecular H-bonding affects only the shape and electronic structure of the molecule while intermolecular H-bonding changes the number, mass, shape as well as electronic structure of the participants. The physical properties such as molecular weight, melting and boiling points, heat of vaporization and Trouton's constant, viscosity, polarity, dielectric constant and
dipole moment etc. for the intermolecularly H-bonded species are generally larger than those of the participants whereas they are generally unaffected on intramolecular H-bonding. Similarly intramolecular H-bonding generally does not affect the molar volume wereas intermolecular H-bonding in inorganic crystals shows an increase and that in orgenic compounds a decrease of molar volume, the changes being of the order of $2-10 \mathrm{~cm}^{3}$. Such changes in physical properties however do not provide an unambiguous proof or a quantitative measure of H-bonding as other intermolecular interactions such as orientation and charge transfer forces also result in similar effects.

Spectroscopic methods are powerful tools for investigating the nature of H-bonding as they are capable of providing definite evidence regarding the fomation of these bonds, the involvement of a specific covalontly bound sydrogen atom and the participation of a specific acceptor group. The spectroscopic methods userul in H-bonding study are (1) Proton Magnetic Resonance spectroscopy for investigating the effects on the chemical shift of the A-H proton; (i1) Blectronic Absorption and Fluorescence spectroscopy for studying the changes in electronic levels of the participants and (1i1) Infra-Red and Raman spectrosoopy for studying the chenges in the stretching and bending vibration frequencies of the A-H bonds and the acceptor group. Since the present work is based on the use of infrared spectroscopy; the effects of H-bonding on the vibrational spectra are summarized below.
(a) Since $H$-bonding as in A-H...B weakens the force constant of the A-H stretching mode, the absorption band due to the $A-H$ stretching vibration is shifted to a lower frequency, the shift belng of the order of $10^{1}-10^{3} \mathrm{~cm}^{-1}$. The anharmonicity and rate of change of dipole monent ( $d \mu / d r$ ) associated with the A-H stretching vibration increase on H-bonding resulting in an increase in the half band width (from a few to a few hundred an ${ }^{-1}$ ) and the integrated absorption intensity (by a factor of 2 to 100). The extent of these changes depends more or less directly on the strength of H -bonding interaction.
(b) Pormation of H-bona increases the A-H deformation force constants by constraining the deformation modes thereby shifting the latter to higher frequencies. These shifts however are appreciably smaller than that for the A-H stretching wode. The half band widths and integrated absorption intensities of the deformation modes, though not well investigated, show very littie changes.
(c) The vibrational modes of the proton acceptor $B$ are also shifted by H-bonding. These shifts, which may be positive or negative, are however much smaller than those for the donor A-H vibrations.
(d) New vibrational modes corresponding to the H..B bond stretching and bending are found in the far infrared region (at 100-200 $\mathrm{m}^{-1}$ ).
III.4. Thermorivamice of He Bonding :

The extent of interaction between a proton donor and an acceptor can be understood from the thermodynamic quantities $\Delta H^{\circ}$, $\Delta s^{\circ}$ etc. assoclated with the formation of the H-bond. There have
been many efforts to correlate such thermodynamic quantities with the spectroscopio properties such as 1.r. frequency shift, change of intensity, p.m.r. chemical shift etc. A large Variety of such correlations have been reviewed by Joesten and schaad ${ }^{98}$. Again, because of the use of 1.r. spectroscopy in the present work, the corralations of 1.r. frequency shifts and changes of integrated intensities with $\Delta H^{\circ}$ values are briefly considered here.

A linear relationship between the shift in i.r. stretching frequency caused by $H$-bonding $(\Delta \bar{\omega})$ and $\Delta H^{\circ}$ was first suggested by Badger and Bauer ${ }^{74}$ from a study of $H$-bonding of phenols with Various bases. Since $\Delta \bar{v}$ depends on the extent of interaction between the proton donor ana acceptor, it is reasonable to expect larger frequency shifts for stronger H-bonds, 1.e. those with larger $\Delta H^{\circ}$. This idea seems to be widely accepted because of its simplicity. There have been attempts to provide some theoretical basis for the linear $\Delta \bar{N}-\Delta H^{\circ}$ relationships ${ }^{99}$. However there are also several systems where such linear $\Delta \bar{v}-\Delta H^{\circ}$ relationships are found to be inapplicable. Ha0 and co-workers ${ }^{100}$ have observed that the ilnear $\Delta \bar{v}-\Delta H^{\circ}$ relationship is approximately applicable for $\Delta H^{\circ}$ 's in the range $22-24 \mathrm{~kJ}$ mol ${ }^{-1}$ only, with serious deviations outside this range. Kuhn and Wires ${ }^{83}$ from their study of intramolecular H-bonding in 2-methoxy ethanol, 3-methoxy propanol and 4 -methoxy butanol have reported that while $\Delta \overline{0}$ increased from 30 to $180 \mathrm{~cm}^{-1}, \Delta H^{\circ}$ was practically the same. In the case of phenol-cyalohexyl halide systems ${ }^{101}$ as well as in orthohalophenols ${ }^{10 \varepsilon}$ a reversal of $\Delta \bar{v}-\Delta H^{\circ}$ relationship has bean reported; i.e. $\Delta \bar{v}$ changes

In the order $I>B r>C l$ whereas $\Delta H^{\bullet}$ varies in the opposite order. The nonapplicability of the Badger-Bauer rule is attributed to special factors such as conformational interactions ${ }^{83}$, differences In atomic size and polarizability ${ }^{101,102}$ ralative basicity and acidity of the proton acceptor and donor ${ }^{103}$ etc.

Such frequency shift correlations have been restricted to the fundamental bond stretching vibrations only. Far less data are available for the overtone vibrations as the band intensities are much less than those of the fundamentals ${ }^{104}$ and the bands cannot always be located with certainty. In the case of bending vibrations, the frequency shifts are found to oecur in opposite directions ${ }^{105}$.

Logansen ${ }^{106}$ has proposed a relationship
$\Delta H^{\circ}=5.3\left(\Gamma_{2}^{1 / 2}-\Gamma_{2}^{1 / 2}\right)$ where $\Gamma=1 / C L \int \ln \left(I_{0} / I\right) \bar{v} d \operatorname{lnv} \approx B / \bar{v}_{0}$, $\Gamma_{1}$ and $\Gamma_{2}$ being the intensities of the $H$-bonded and the free OH groups respectively. This relationship is apparently found to be obeyed by a variety of H-bonded systems such as phenol-ether, phenol-alcohol, self association of carboxylic acids etc. Accurate measurements of $\Gamma$ are however difficult because of a large width of the H-bonded OH. . O band and its overlap with the neighbouring bands.

Because of the empiricism involved in such correlations, they are of ilttle use in quantitative analysis. A proper understanding of the interaction energy and the types of associated species present in an H-bonding system is based on experimental detemation of the themodynamic quantities $\Delta H^{\circ}, \Delta s^{\circ}$ and $\Delta 0^{\circ}$, which is explained in the next chapter.


## CHAPTER IV

## EXPRRTMENTAT

IV.1. Preparation/Purification of Comoounds and Preparation of solutions :

Ethanol (spectros01), ethylene glycol monomethyl, -thyl and -butyl ethers (Merck, Analar grade, purity > 98\%) and diethylene glycol monomethyl and -ethyl ethers ( $B D H$, purity > 98.5\%) used in the present woric were freed from the traces of moisture by treating them successively with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, sodium metal and LiAlH $A_{4}$. The midale fractions of the final distillations were collected over activated $A l_{2}{ }_{2}{ }_{3}$ and stored in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$. The final purity of the compounds, as checked by v.p.c., was found to be $>99 \%$,

Tri- and tetramethylene glycol monomethyl ethers were prepared by the method of Smith and Sprung ${ }^{107}$. Por this a large quantity ( $\sim 160-180 \mathrm{~g}$ ) of the respective diol was heated to $\mathrm{N} 120^{\circ} \mathrm{C}$ In a Mask fitted with a stirrer and reflux condenser and 5 of sodivm dissolved plecewise with vigorous stirring. The solution was cooled to $20^{\circ} \mathrm{C}$ and 30 g methyl iodide added dropuise. The reaction mixture was then heated slowly and refluxed at $70^{\circ} \mathrm{C}$ for about three hours. During the addition of methyl iodide and the process of refluxing, ice water was constantly circulated through the reflux condenser. The desired monoether in each case was separated by fractional distillation (yield $\sim 10-11 \mathrm{~g}$; boiling points $-\mathrm{H}_{3} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}, 147^{\circ} \mathrm{C}$ and $\left.\mathrm{H}_{3} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}, 164^{\circ} \mathrm{C}\right)$. These wore
further refractionated twice to obtain the final products of $99 \%$ purity as checied by v.p.c.

AnalaR grade carbon tetrachloride (Merck, Pro-Analyst), stored over $\mathrm{P}_{2} \mathrm{O}_{5}$, was used as the solvent. Before use, it was filtered through a fine sintered glass. Generally a stock solution of concentration $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ was first prepared, the solutions of desired concentration being then obtained by successive dilutions. Preparation of solutions and filling the cells were carried out in a dry box maintained at positive pressure with a stream of dry air.

## IV.2. Speatrogaonic Measurements :

The spectra in the hydroxyl stretching vibration region (3700-3200 $\mathrm{cm}^{-1}$ ) were recorded on a Perkin-imer 221 spectrophotomets calibrated with the atmospheric moisture-and $\mathrm{CO}_{2}$ bands. The spectral slit widt at $3500 \mathrm{~cm}^{-1}$ was determined to be $1.2 \mathrm{~cm}^{-1}$. 3 tandard settings of the Slit Programe (927), Attenuator Speed (1100), Amplifier Gain (2) and Suppression (4) were used. To facilitate the resolution of overlapping bands; the frequency scale was expanded four times ( $12.5 \mathrm{~cm}^{-1} / \mathrm{cm}$ ) and the recording speed reduced to $25 \mathrm{~cm}^{-1} / \mathrm{min}$.

Variable path length cells (Perikin-slmer) fitted with NaCl windows were used throughout the work. The cell-zero was periodically checked by obtaining interference fringes and using the relationship $h=n / 2\left(\bar{v}_{1}-\bar{v}_{2}\right)$ where $h$ is the path length in cm and $n$ the number of fringes between the frequencies $\bar{v}_{1}$ and $\bar{v}_{2}$. The
path length of the cells could be varied from 0.01 to 1.0 mm .
The solution cell was fitted with a nichrome heating element the current passing through which was controlled by a variac. A copper-constantan thermocouple inserted in one of the cell-windows was used to determine the temperature. Measurements were made over the temperature range of 298 to 338 K at intervals of 6 K . No detectable change in the base line was observed by heating the sample cell upto 338 K against the reference cell at room temperature ( 298 K ), both the cells being filled with $\mathrm{CCl}_{4}$ at equal path lengths. The spectra of solutions at various temperatures were therefore recorded against the reference cell at room temperature.

## IV.3. Compatation of Bond_ARaa:

The overlapping bands of the free and H-bonded OH groups were f1rst resolved, the procedure for which人described at appropriate places in the following chapters. The area of an individual band $\int \ln \left(T_{0} / T\right)_{v} d \bar{v}$ can be obtained by the method of direct integration if its exact shape (Loretzian, Gaussian etc.) is known. As the experinental bands were neither purely Lorentzian nor Gaussian due to several factors mentioned earlier (Section II-2) their areas $A^{\prime}$ were evaluated by graphical integration, i.e. by sumaing the respactive $\ln \left(T_{0} / T\right)_{V}$ values over the entire band and multiplying by the comvion frequency interval $\delta \bar{v}$ (generally $2.5 \mathrm{~cm}^{-1}$ used. Thus

$$
A^{\prime}=\sum \ln \left(T_{0} / T\right)_{v} \delta \bar{v}=2.303 \times 2.5 \times \sum \log \left(T_{0} / T\right)_{\bar{v}}
$$

Winc Correction ${ }^{88}$ - As the absorption falls to $\sim 1 \%$, the experimental error becomes of the same order of magnitude as the absorbance reading. The area of an experimental band can therefore be measured over only a finite frequency range $\left|\bar{v}-\bar{v}_{o}\right| \approx 50-100 \mathrm{~cm}^{-1}$ on both sides of the band center. Since the band is considered to extend indefinitely, the residual area under the 'wings' becomes an appreciable fraction of the total band area; for though the absorption is small, the frequency interval by which it is multiplied is very large. The correction for this residual area called the 'wing correction' can be conveniently expressed as a percentage of the measured band area and depends on the value of $\left(\bar{v}-\bar{v}_{0}\right) / b$ where $b=1 / 2 \Delta \bar{v}_{1 / 2}$. Ramsay ${ }^{88}$ has determined the wing corrections for various values of $\left(\bar{v}-\bar{v}_{0}\right) / b$. The experimental band areas ( $A^{\prime}$ ) were corrected by using appropriate wing corrections (Table IV.1) derived from Ramsay's tables ${ }^{88}$.

Density Correation - The expansion of $\mathrm{CCl}_{4}$ at higher temperatures results in lowering of the effective concentrations of different species in solution and thereby diminishing the band areas. A correction to the measured band areas due to a change in the density of $\mathrm{CCl}_{4}$ is therefore necessary. The density corrections (Table IV. 2) were determined using the relation 108

$$
d_{t}=1.63255-1.911 \times 10^{-3} t-0.69 \times 10^{-6} t^{2}
$$

where $d_{t}$ is the density of $\mathrm{CCl}_{4}$ at the temperature $t^{\circ} C_{\text {. The band }}$ areas so obtained i.e. after applying the wing- and density corrections are denoted by $A$.

$$
\text { Th } 4632
$$

The uncertainty in the measured band areas ( $A^{\prime}$ ) was estimated to be $\sim 3-4 \%$. This together with various instrumental and experimental factors involved ${ }^{89,90}$ results in an overall error of $\sim 5 \%$ in the final band areas (A). In the case of the weais bands of the free OH groups of ethylene- and diethylene glycol monoalkyl ethers, this error might be somewhat larger ( $\sim 10 \%$ ).

## IV.4. Detemination of concentrations and Integrated Intensities of Different Snecies in Solutions :

Since the free as well as H-bonded molecules are present in solutions of the present compounds at all concentrations, their Individual concentrations cannot be determined by any direct method. The concentrations of the free and intramolecularly H-bonded OH groups were first determined from the respective band areas and integrated intensities as explained below.

The concentration of the free OH group was determined by assuming its integrated intensity to be identical with that of the free $O H$ band of ethanol. This assumption is reasonable in view of the observad constancy of the position, half-band width and Intensity of the free OH band of a number of primary, unbranched alcohols $\left(\bar{v}_{0}=3630-3640 \mathrm{~cm}^{-1}, \Delta \bar{v}_{1 / 2}=25-30 \mathrm{~cm}^{-1}\right.$ and $\varepsilon_{\text {max }}^{\text {a }} \sim 60$ at 300 K$)^{2,3,109}$. To determine the integrated intensity, the free OH band of ethanol in $\mathrm{CCI}_{4}\left(C=0.075 \mathrm{~mol} \mathrm{dm}{ }^{-3}, \mathrm{~L}=1.0 \mathrm{~cm}\right)$ was recorded at various temperatures in the range $298-338 \mathrm{~K}$ and its area determined as explained above. The values of the measured and corrected band areas together with the integrated intensities ( $\mathrm{B}_{\mathrm{F}}$ )
calculated from the relation $B=A / C L$ are given in Table IV. $3_{\text {* }}^{*}$ The spectroscopic properties of this band measured in the present study $\bar{v}_{0}=3635 \pm 2.5 \mathrm{cmi}^{-1}, \Delta \bar{v}_{1 / 2}=27.5 \pm 2.5 \mathrm{~cm}^{-1}, B_{F}=4.7 \times 10^{3} \mathrm{dm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-2}$ and $\mathrm{d} 8 / \mathrm{dT}=-19 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-1}$ ) are in good agreement with those reported in literature ${ }^{2,28}$.

The concentrations of the free $O H$ groups $C_{O H(F)}$ in all the systams at various temperatures were estimated from the respective band areas and the corresponding values of $\mathrm{B}_{\mathrm{F}}$ using the relation $C=A B C$. The concentrations of the intramolecularly $H$-bonded $O H$ groups $\mathrm{C}_{\mathrm{OH}(\mathrm{I})}$ in very dilute solutions of ethylene-, trimethyleneand tetramethylene glycol monoalkyl ethers were obtained by subtracting $\mathrm{C}_{\mathrm{OH}(F)}$ from the solution concentration ( $C_{3}$ ), i.e. $C_{\mathrm{OH}(\mathrm{I})}=\mathrm{C}_{\mathrm{S}}-\mathrm{C}_{\mathrm{OH}(\mathrm{F})}$. The integrated intensities of the intramolecularly H-bonded OH groups ( $B_{I}$ ) were then calculated from the respective band areas. The method of calculations is illustrated in Table IV. 4 . similar procedure has been used by Buc and Neel ${ }^{65}$ and by Kuhn and Wires ${ }^{83}$.

Because of the presence of two ether oxygens in diethylene glycol monoalkyl ethers, there are two types of intramolecularly H-bonded OH groups, Viz . those in the fire- and el ght membered ring monomers ( $H_{5}$ and $H_{8}$ respectively). The spectral characteristics of the intramolecularly H -bonded OH band of $\mathrm{K}_{5}$ are identical with those of the intramolecularly H-bonded (five membered ring) monomer of ethylene glycol monoalkyl ethers, viz. $\bar{v}_{0}=3600 \pm 2.5 \mathrm{~cm}^{-1}$ and $\Delta \bar{j}_{1 / 2}=32.5 \pm 2.5 \mathrm{~cm}^{-1}$. The integrated intensity of the former $\left(B_{5}\right)$
was therefore assumed to be identical with that of the latter. The concentration of the five membered ring of group $\left(C_{5}\right)$ could then be determined from the respective band areas ( $A_{5}$ ) as usual viz. $C_{5}=A_{5} / B_{6} L$ where $B_{5}=B_{I}$ of ethylene glycol monoalkyl ethers. The concentration of the eight membered ring OH group $\left(\mathrm{C}_{8}\right)$ in dilute solutions was then estimated by subtracting the $C_{F}$ and $C_{5}$ Prom the solution concentration $C_{S}$, i.e. $C_{8}=C_{S}-\left(C_{F}+C_{5}\right)$. The integrated intensities of the eight membered ring $O H$ band $\left(B_{8}\right)$ at Various temperatures were then calculated using the corresponding band areas and concentrations.

In very dilute solutions where only the monomers (Iree and intremolecularly H-bonded) are present, their concentrations ( $C_{F}$ and $C_{I}$ respectively) are the same as the corresponding free and intramolecularly H -bonded OH group concentrations, $V 1 z$. $C_{F}=C_{O H(F)}$ and $C_{I}=c_{O H(I)}$. At higher concentrations containing intermolecularly associated species (n-mers), the group concentrations $C_{O H(F)}$ and $C_{O H(I)}$ may not be the same as the monomer concentrations $C_{F}$ and $C_{I}$ because the n-mers are also likely to contribute to $C_{O H}(F)$ or $C_{O H}(I)$ depending on their exact structure such as open, closed etc. The procedure for determining the concentrations of the $n$-mer and monowers is based on the assumption of only one type of n-mer (such as dimer, trimer etc.) making a significant contribution to the self association over the concentration range studied. This assumption is justifiable since the solutions used were relatively dilute. Similar method has been adopted by saunciers and Hyna ${ }^{43}$. The concentration of the
namer would then be given by

$$
c_{n}=\frac{1}{n}\left(c_{S}-\left(c_{F}+c_{I}\right)\right)
$$

where $C_{S}$ is the concentration of the solution used. The values of $C_{F}, C_{I}$ and $C_{n}$ are then determined in terms of $C_{3}, C_{O H}(F)$ and $C_{O H}(I)$ based on the particular self-association model such as open or closed dimer, trimer etc. Since the exact nature of the n-mer would depend on the type of compound and the concentration range studied, the method for determining the concentrations of the n-mer $\left(C_{n}\right)$ and the two types of monomers $\left(C_{F}\right.$ and $\left.C_{I}\right)$ is separately explained at appropriate places.
IV.5. Detamination of Thermodynamic puantities :

Thus the systems under investigation exhibit multiple equilibria involving free monomer ( $M_{F}$ ), intramolecularly H-bonded monomer/s ( $M_{I}$ ) and intermol ecularly H-bonded species ( $n-m e r$ ). As the temperature is increased, the concentrations of the H-bonded species decrease resulting in an overall increase in the concentration of the free monomer. The significant equilibria are therefore represented as

$$
\mathrm{n} \text {-ier }=\mathrm{nM}_{\mathrm{F}} \quad \text { and } \quad \mathrm{M}_{\mathrm{I}}=\mathrm{M}_{\mathrm{F}} \text {, }
$$

with the equilibrium constants defined as

$$
K_{n F}=c_{F}^{n} / c_{n} \quad \text { and } \quad K_{I F}=c_{F} / c_{I}
$$

The thermodynamic quantities $\Delta Q^{\circ}, \Delta H^{\circ}$ and $\Delta S^{\circ}$ for each of the equilibrium are then determined using the relations
$\Delta G^{\bullet}=-R \operatorname{InNK}_{\mathrm{K}}=\Delta \mathrm{H}^{\bullet}-T \Delta S^{\circ}$
or alternatively
$\operatorname{lnK}=-\left(\Delta H^{\bullet} / R\right)(1 / T)+\left(\Delta S^{\circ} / R\right)$
The values of $\Delta H^{\circ}$ and $\Delta s^{\circ}$ are calculated respectively from the slope and intercept of the graph of $\log \mathrm{K}$ Vs $1 / T$, the best values together with their orror limits being estimated by the method of least squares.

TABHETVAL: Wing corrections (\%) for various OH bands

| Compound | Free | Type of ol Bend <br> Intra. H-bonded | Associated |
| :--- | :---: | :---: | :---: |
| Rthanol <br> athylene glycol <br> monoalkyl ethers | 20 | - | - |
| Dlethylene glycol <br> monoalkyl ethers | 28 | 20 | 26 |
| Trimethylene glycol <br> monomethyl ether | 14 | $17^{\mathrm{a}}, 24^{\mathrm{b}}$ | 20 |
| Tetramethylene glycol <br> monomethyl ether | 16 | 28 | $*$ |

a and $b$ : for the five and eight membered ring monomers resp.

* : Association band not resolvable.

TABLRAKL2 : Density corrections for $\mathrm{CCl}_{4}$

| Temperature <br> $T / K$ | Density <br> correction <br> $\%$ | Tamperature <br> $T / K$ | Density <br> correction <br> $\%$ |
| :---: | :---: | :---: | :---: |
| 298 | 0.0 | 323 | 3.2 |
| 303 | 0.6 | 328 | 3.8 |
| 308 | 1.3 | 333 | 4.6 |
| 313 | 1.9 | 338 | 5.3 |
| 318 | 2.6 | 343 | 6.0 |

TABLEIV. 3 : Areas and integrated intensities of the free $O H$ band of ethanol ( $C=7.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}, L=1.0 \mathrm{~cm}$ )

| Temp. <br> I/K | Band area |  | $\begin{aligned} & \text { Integrated Intensity } \\ & B=\mathrm{N}^{\prime} \mathrm{CL} \\ & / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \times 10^{-3} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | $\frac{\text { Measured }}{\mathrm{A}^{\prime}}$ | $\frac{\text { Corrected }}{\mathrm{A}}$ |  |
| 298 | 29.6 | 35.4 | 4.7 |
| 303 | - | - | 4.6 * |
| 308 | 27.9 | 33.8 | 4.5 |
| 313 | 27.3 | 33.2 | 4.4 |
| 318 | 26.4 | 32.5 | 4.3 |
| 323 | 25.4 | 31.4 | 4.2 |
| 328 | - | - | $4.1{ }^{*}$ |
| 333 | 24.2 | 30.3 | 4.0 |
| 338 | 23.6 | 29.7 | 3.8 |

*Obtained fram the graph of Bp vs I (of Fig. VIII.2).

TABLainet : The method of calculations - an illustration: Sthylene Glycol Mononethyl Bther

$$
C_{S}=10 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}, \mathrm{~L}=1.0 \mathrm{~cm}, \mathrm{~T}=298 \mathrm{~K} .
$$

|  | Free OH $\quad$Intramolecularly <br> H-bonded OHy |
| :---: | :---: |
| Measured band area $A^{\prime}$ | 3.17 48.9 |
| Wing correction | 287 20\% |
| Area corrected for wings | 4.1 58.7 |
| Density correction | - - |
| Final band area A | $A_{T}=4.1 \quad A_{I}=58.7$ |
| Concentration C/mol dm-3 | $\begin{aligned} C_{O H(F)} & =A_{F} / B_{P}^{*} & C_{O H(I)} & =C_{S}-C_{O H(F} \\ & =0.87 \times 10^{-3} & & =9.13 \times 10^{-3} \end{aligned}$ |
| Integrated intensity $\mathrm{B} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ |  |
| Bquillbrium constant | $K_{I F}=C_{F} / C_{I}=9.5 \times 10^{-2}$ |
| Free energy change | $\Delta G^{\circ} \mathrm{IF}=-2.303 \mathrm{Rr} \mathrm{LogK}=5.9 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ |

[^0]

## CHAPTER I

## ASSOCIATION BREAV TOUR OR BTHYLZNE GLYCOL

KONOALKY GTHERS

## V.1. Introduction:

Sthylene glycol monoalkyl thers $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2}^{\mathrm{OH}}$ in very dilute $\mathrm{CCl}_{4}$ solutions ( $\mathrm{C}_{\mathrm{S}} \leqslant 0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ) exhibit two OH bands at $\sim 3635$ and $3600 \mathrm{~cm}^{-1}$, the relative intensities of which are constant and independent of concentration. With increasing concentration, an additional $O H$ band appears at $\sim 3475 \mathrm{~cm}^{-1}$, the ralative intensity and asymmetry of which increase rapidiy with concentration (Fig. V.1). The 3635 and $3600 \mathrm{~cm}^{-1}$ banda are attributed to the OH groups of free (trans or not h-bondec gauche) and intramolecularly H -bonded (cis or gauche) monomers respectively ${ }^{63,76,80,83}$. (cf FIg. V. 3 (a) and (b)). The $3475 \mathrm{~cm}^{-1}$ band is symmetric in the concentration range $0.01-0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ and comparable with the first association band of simple alcohols at $3500 \mathrm{~cm}^{-1}$. The asymmetry of the $3475 \mathrm{~cm}^{-1}$ band above 0.1 mol am ${ }^{-3}$ and the absence of any additional OH bands unlike simple alcohols (in the 3300 region) then suggest the formation of alosely similar associated species.

The symmetric $3475 \mathrm{~cm}^{-1}$ band in the case of solutions having concentrations $C_{S} \leqslant 0.1 m 01 \mathrm{dm}^{-3}$ must be due to a single type of intermolecularly associated species (n-mer). The free monomer ( $M_{F}$ ), intramolecularly H-bonded monomer ( $H_{I}$ ) and the

## ETHYLENE GLYCOL MONOALKYL ETHERS



FIG-V.1:OH BANDS AT VARIOUS CONCENTRATIONS ( $T=298 \mathrm{~K}$ )


FIG-V-2: BAND RESOLUTION ( $\left.\mathrm{C}=0.01 \mathrm{~mol}_{\mathrm{dm}} \mathrm{m}^{-3}, \mathrm{~L}=1.0 \mathrm{~cm}, \mathrm{I}=298 \mathrm{k}\right)$
namer in the concentration range $C_{S}=0.01-0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ would then be in a three way equilibrium viz.

$$
\mathrm{n} \text {-mar } \rightleftharpoons n M_{P^{\prime}} \quad n \text {-mer } \rightleftharpoons n M_{I} \text { and } M_{I} \rightleftharpoons M_{F} \quad \ldots \text { (1) }
$$ the equilibrium constants for which can be defined as

$$
\begin{equation*}
K_{n F}=c_{F}^{n} / C_{n}, \quad K_{n I}=c_{I}^{n} / C_{n} \text { and } K_{I F}=c_{F} / c_{I} \tag{2}
\end{equation*}
$$

where $C_{F}$ and $C_{I}$ are the concentrations of the respective monomers and $C_{n}$ that of the $n$-mir calculated as

$$
\begin{equation*}
c_{n}=\frac{1}{n}\left(c_{3}-\left(c_{F}+c_{I}\right)\right) \tag{3}
\end{equation*}
$$

To determine $C_{P}, C_{I}$ and $C_{n}$, it is necessary to know the concentrations of the free and intramoleculariy H-bonded OH groups which were calculated from the respective band areas. The overlapping bands were therefore first resolved as follows (Fig. V.2)

The low frequency side of the $3476 \mathrm{~cm}^{-1}$ band is free from any overlap which was reflected across the band maximum to generate the high frequency side. The low frequency 31 de of the $3600 \mathrm{~cm}^{-1}$ band was then obtained by subtracting the high frequency side of the $3476 \mathrm{~cm}^{-1}$ band from the experimental spectrum in the region 3600-3500 $\mathrm{cm}^{-1}$ which in turn was reflected across the band maximum at $3600 \mathrm{~cm}^{-1}$ to obtain the high frequency side. The same procedure was repeated to resolve the $3635 \mathrm{~cm}^{-1}$ band. At concentrations $\leqslant 0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, there are only two OH bands (at $\sim 3635$ and $\sim 3600$ $\mathrm{cm}^{-1}$ ) which were resolved in the same manner by starting with the low frequency side of the $3600 \mathrm{~cm}^{-1}$ band.

The areas of the resolved bands were measured and corrected by applying appropriate wing- and density corrections. Using very
dilute solutions $\left(C \leqslant 0.01 \mathrm{~mol} \mathrm{dm}^{-3}\right)$, the integrated intensities of the intramolecularly H-bonded $0 H$ bands ( $B_{I}$ ) were determined (Table V.12). In more concentrated solutions (containing associatad species), the concentrations of the free and intramolecularly H -bonded OH groups $\left(\mathrm{C}_{\mathrm{OH}(\mathrm{F})}\right.$ and $\left.\mathrm{C}_{\mathrm{OH}(\mathrm{I})}\right)$ were estimated from the corresponding band areas and integrated intensities using the relations

$$
C_{O H(F)}=A_{F} / B_{F} L \quad \text { and } \quad C_{O H(I)}=A_{I} / B_{I} L \quad \text {.. (4) }
$$

The measured areas of various OH bands of ethylene glycol mononethyl-, -ethyl- and -butyl ethers in $\mathrm{CCl}_{4}$ solutions of different concentrations are given in Tables ${ }^{*} \mathrm{~V}$.1-3. A comparison of the respective band areas of the three compounds at comparable concentrations shows that they are directily proportional to one another indicating the association behaviour of these compounds (i.e. type of associated species present, the thermodynamic quantities involved etc.) to be identical. The detailed treatmont of the experimental data for ethylene glycol monomethyl ether only is therefore presented in Tables $V .4-9$, while the final results for all the three monoethers are summarized in Tables ${ }^{*}$ V.10-13.

## V.2. Intramolecular H-Bonding :

The spectroscopic properties of the intramolecularly H-bonded OH's (Tables $V$. 13) as well as the thermodynamic quantities associated with the $M_{I} M_{F}$ equilibrium (Table $\nabla$. 11) are found to be the same for the three monoethers studied showing little effect of chain length of the alkyl group on intramolecular H-bonding. The
present values of $\bar{v}_{0}, \Delta \bar{v}_{1 / 2}$ and $B$ for the free and intramolecularly H-bonded OH's are in close agreement with literature values $2,69,80,83$, The values of $\Delta H_{I F} \sim 14 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $\Delta G_{I F}^{\circ}=5.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ are comparable with those of Kuhn and wires ${ }^{83}$, viz. $10 \pm 2$ and 5.4 kJ mol ${ }^{-1}$ respectively, the differences between the two sets of values being due to different procedures used. The frequency shift on intramolecular H-bonding in ethylene glyool monoalkyl ethers ( $\Delta \bar{v}=35 \mathrm{~cm}^{-1}$ ) is found to be larger than that for ethylene glycol $\left(\Delta \bar{v}=2 \omega \mathrm{~cm}^{-1}\right)^{75,76}$ suggesting higher basicity of the ether oxygen as a proton acceptor than that of the hydroxylic oxygen. It is notable that this small difference in the basicity of the proton acceptors in simple diols and diol monoalkyl ethers results in an appreciable difference in relative populations of their free and intramolecularly H-bonded monomers. Thus while the intramolecularly H-bonded monomer predominates over the free monomer in the case of ethylene glycol monoalkyl ethers (Table V.8), the reverse is true for ethylene glycol ${ }^{73}$.

The gauche isomers are stabilized by intramolecular H-bonding of the hydroxylic proton oriented towards one of the lone electron pairs on the ether oxygen resulting in a monplaner flve membered ring. The OH... 0 bond angle would be much less than 180 ${ }^{\circ}$ resulting in a bent H-bond. The 0...H distance of 2.3 A calculated using the relation proposed by $K_{u n n}{ }^{69}$ ( $\mathrm{viz} . \Delta \bar{v}=250 \times 10^{-\AA}$ -74 , I in cm ) is comparable with that of 2.1 A in butane $1,2 \mathrm{diol}$ reported by Fishman and Chen ${ }^{68}$. Thus the proton cannot got very close to the acceptor resulting in small H-bonding interaction.

The bent and weak $H$-bond so formed gives rise to an enthalpy change of $\sim 14 \mathrm{~kJ}$ mol ${ }^{-1}$ only. It is however noteworthy that this small $\Delta H^{\circ}$ stabilizes the gauche isomers to such an extent that only a small fraction of molecules ( $\sim 8-10 \%$ at 298 K ) is in the free form (Table V.8) . Miyake ${ }^{79}$ and Srinivasan et al ${ }^{80}$, from study of $\mathrm{CH}_{2}$ rocking modes (at $\sim 800 \mathrm{~cm}^{-1}$ ) have found that the $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ skeletons of various ethylene glycol monoalkyl ethers in the liquid state as well as in solutions exist, almost exclusively, in the gauche form.

## V.3. Intermolecular H-Bonding :

As mentioned earlier (Section IV. 4 ), it is reasonable to assume a single type of associated species predominating over others because the solutions used were relatively dilute. The possibility of different types of dimers (Fig. V.3(c)-(g)) as well as similar trimers and tetramers was therefore examined as explained below.

Feeney and Walker ${ }^{49}$ have suggested an open dimer for ethylene glycol monomethyl ether from n.m.r. study (concentration range $0.1-1.3 \mathrm{~mol} \mathrm{dm}^{-3}$ ). At such high concentrations, more than one type of associated species are indeed forned as shown by asymnetric nature of the $3475 \mathrm{~cm}^{-1}$ band above $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. To test the possibility of any open n-mer, it can be seen that its free 0il group would absorb in the same spectral region as that of the free monomer thus contributing to the $3636 \mathrm{~cm}^{-1}$ band. Therefore

$$
\begin{equation*}
c_{\mathrm{OH}(F)}=c_{F}+c_{n} \tag{5}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
c_{n}=\frac{1}{n}\left(c_{S}-\left(c_{0 H(F)}+c_{O H(I)}\right)\right) \quad \text { and } \quad c_{I}=c_{O H(I)} \tag{6}
\end{equation*}
$$

These equations imply $C_{O H(F)}>C_{n}$. The concentrations of open dimer, trimer and tetramer along with the $C_{0 H(F)}$ values for ethylene glycol monomethyl ether solutions at 298 K , as an illustration, are shown in Table V. 6, from which it is evident that the requirement of $C_{O H(F)}>C_{n}$ is in general not satisfied by the present systems. Equilibria involving open n-mers were therefore ruled out.

Saito et al ${ }^{77}$ have suggested a dimer involving association of a free monomer with an intramolecularly H-bonded monomer (Fig. V. $3(e)$ ). The intramol ecularly H -bonded OH group of such a dimer would absorb in the same spectral region as that of the intramolecularly H -bonded monomer, contributing to the $3600 \mathrm{~cm}^{-1}$ band. thus

$$
\begin{equation*}
c_{\mathrm{OH}(\mathrm{I})}=c_{I}+c_{D} \tag{7}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
c_{D}=\frac{1}{2}\left(c_{S}-\left(C_{\mathrm{OH}(F)}+C_{\mathrm{OH}(I)}\right)\right) \text { and } C_{F}=C_{\mathrm{OH}(F)} \tag{8}
\end{equation*}
$$

(In the case of dimer, here and hereafter, the letter ' $n$ ' has been replaced by 2 and/or 0 for convenience).

Pinally in the case of cyclic n-mers, their 0 OH groups (e.g. Fig. V. $3(f) /(g)$ ) would contribute neither to the 3635 - nor to the $3600 \mathrm{~cm}^{-1}$ band and hence

$$
c_{O H(F)}=c_{F}, \quad c_{O H(I)}=c_{I} \text { and } c_{n}=\frac{1}{n}\left(c_{s}-\left(c_{O H(F)}+c_{O H(I)}\right)\right) \ldots(9)
$$

ethylene glycol monoalkyl ethers

(a)
FIG v.3:ITPICAL STRUCTURES FOR MONOMERS $(060)$ AND

The concentrations of various species calculated on the basis of equations (7)-(9) are included in Table V. 6 . The corresponding equilibrium constants calculated using equations (2) are given In Table V. 7 . As can be seen, the equilibrium constants for cyalic trimers, cyalic tetramers and those for the dimer suggested by saito et al ${ }^{77}$ exhibit wide variations eliminating these as the possible predominant species. The equilibrium constants for cyclic dimers (Fig. V. $3(f) /(g)$ ) on the other hand show good constancy and the corresponding plots of $\log \mathrm{K} v s 1 / T$ exhibit good linearity (Fig. V.4) suggesting these as the possible predominant species in the present systems.

The concentrations of the two monomers and the dimer calculated on the basis of cyclic dimers as the associated species in different solutions of ethylene glycol monomethyl ether at Various temperatures are therefore given in Table V. 8. The corresponding equilibrium constants are presented in Table V. 9 and the mean values of various K's over the concentration range studied in TableV. 10. The graphs of $\log \bar{K}$ vs $1 / T$ for the three equilibria are shown in Fig. V.4, the good linearity of which supports the association model considered. The thermodynamic quantities obtained from these graphs are presented in Table V. 11. The integrated intensities of the dimer band at various temperatures were determined from its areas in the spectra of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ concentrated solution and are given in Table V. 12. As mentioned before, since the association behaviour of the other two monoethers (-othyl, and-butyl) was found to be almost identical with that of
the monomethyl ether, only the final results for them viz. the integrated intensities, mean values of the equilibrium constants and the thermodynamic and spectroscopic properties are presented along with those for the monomethyl other in respective tables.

## V.4. Structure of The Dimer :

The constancy of the equilibrium constants and the linearity of the $\log K \quad 2 / T$ plots have shown cyclic dimers as the main associated species. The cyclic dimer nowever can be either a four- or a ten membered ring species depending upon the involvement of the hydroxylic or the ether oxygens in H-bonding (Fig. V.3(f) and (g)). As the themodynamic quantities $\Delta H_{D F}^{\circ}$ and $\Delta S_{D F}^{\circ}$ would be considerably different for these two types, the observed thermodynamic quantities were analysed to arrive at the final structure.

The four membered ring (Pig. V. $3(f)$ ) with the hydroxyl oxy gens involved in 11 -bonding will be considerably strained because of the unfavourable 0-H. 0 angle. The weak H -bonds of such species would result in small $\Delta H^{\circ}$ value. The $\Delta S^{\circ}$ value would also be small as the free rotations of only the $O H$ groups are restricted leaving rest of the groups free to rotate as in the free monomers. Such dimers have been proposed ${ }^{28-31}$ for some alcohols $w 1$ th $\Delta H^{\circ}$ and $\Delta s^{\circ}$ Values ranging over $12-24 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $30-80 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The observed values of $\Delta H_{D F}^{\circ}=55 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S_{D F}^{\circ}=136 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, which are considerably higher, therefore do not favour the four membered ring structure for the dimer.

The ten membered ring (Fig. V. $3(\mathrm{~g})$ ) is strain free and involves the more basic ether oxygens in H-bonding. The H-bonds in such a structure would therefore be stronger resulting in larger $\Delta H_{D F}^{\circ}$ value. The $\Delta S_{D F}^{\circ}$ value will also be much higher due to the larger ring size restricting rotations about various C-C and $C-0$ bonds. The observed values of $\Delta H_{D F}^{\circ}$ and $\Delta S_{D F}^{\circ}$ thus clearly favour the ten membered ring structure for the dimer. The ten meabered ring structure had earlier been suggested for ethoxy ethanol by Srinivasan et al ${ }^{90 b}$ from a qualitative study and by Lodygina et al ${ }^{85}$ from the shift of the ether absorption frequency from $1132 \mathrm{~cm}^{-1}$ in pure liquid to $1125 \mathrm{~cm}^{-1}$ in very dilute $\mathrm{CCl}_{4}$ solutions. Lodygina et al ${ }^{85}$ have reported the thermodynamic quantities for the equilibrium between the species represented by the 3470 and $3610 \mathrm{~cm}^{-1}$ bands, assuming them to be due to the dimer and 'free' monomer respectively, but not taking into account the $3635 \mathrm{~cm}^{-1}$ band due to the free monomer. (Mey probably ald not observe this band). The present thermodynamic values therefore cannot be compared with theirs.

Formation of the ten membered ring dimer naturally requires the $0-\mathrm{CH}_{2} \mathrm{CH}_{2}-0$ skeletons of the constituent monomers in gauche conformation. The intramolecularly H-bonded monomers with the $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ group in gauche conformation are already present in large numbers. The formation of the ten membered ring dimer can therefore be understood in terms of an association of two gauche monomers, preserving their configurations. The stronger intermolecular H-bonding would stabilize the system by lowering
the free energy. The probability of fomation of such a dimer would of course be small because of the requirement of a greater number of bonds in suitable orientations resulting in larger decrease of entropy than that for the intramolecularly II-bonded monomer. The observation that $C_{I} \gg C_{D}$ (TableV. 8) in spite of $\Delta H_{I F}^{\circ} \ll \Delta H_{D F}^{\circ}(T a b l e V .11)$ is thus explained. The larger values of $\Delta \bar{u}_{2 / 2}$ and $B$ for the dimer than those for the intramolecularly H-bonded monomer (Table V.13) are consistent with the larger H-bonding interaction in the former. Similarly the larger magnitudes of $\Delta \bar{w}_{1 / 2}$ and $B$ for the dimer are explainable on the flexibility of the ten membered ring structure causing larger anharmonicity and change of dipole moment associated with the Vibrations of the H-bonded OH's of the dimer than that in the ralatively rigid five membed ring of the intramolecularly H-bonded monomer.
TABLE Val : Measured areas ( $A^{\prime}$ ) of various $O H$ bands of athylene glycol

| C/ L/ | $\begin{aligned} & 10 \\ & 1.0 \end{aligned}$ |  | $\begin{gathered} 40 \\ 0.48 \\ \hline \end{gathered}$ |  | $\begin{aligned} & 60 \\ & 0.32 \end{aligned}$ |  | $\begin{aligned} & 80 \\ & 0.24 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T/K | a | b | a | b | a | b | a | b | $a$ | $b$ | c |
| 298 | 3.17 | 48.9 | 5.22 | 83.2 | 4.81 | 78.6 | 4.66 | 73.1 | 4.06 | 65.6 | 111 |
| 303 | - | - | - | - | - | - | - | - | 4.21 | 66.7 | 96.8 |
| 308 | - | - | 5.98 | 80.1 | 5.67 | 77.0 | 5.48 | 73.0 | $\cdots$ | - | - |
| 313 | 3.50 | 45.7 | 6. 64 | 79.0 | 6.04 | 76.5 | 5.73 | 73.0 | 5.29 | 67.2 | 74.8 |
| 318 | 3.61 | 44.6 | 6.52 | 78.2 | 6.06 | 76.2 | 6.10 | 72.5 | - | - | - |
| 323 | 3.82 | 43.8 | 7.16 | 77.1 | - | - | 6. 25 | 72.9 | 5.79 | 66.8 | 54.8 |
| 328 | 4.05 | 42.3 | 7.63 | 75.9 | 7.38 | 73.9 | 7.17 | 71.8 | 6.56 | 66.2 | 47.3 |
| 333 | 4.27 | 41.2 | 7.68 | 74.8 | - | - | 7.91 | 70.4 | - | - | - |
| 338 | 4.48 | 39.8 | 7.86 | 73.9 | 8.30 | 72.4 | 7.60 | 71.5 | $7 \cdot 27$ | 65.4 | 35.5 |

[^1]TABLEVE3 : Measured areas ( $A^{\prime}$ ) of various OH bands of ethylene glycol monobutyl ether
SABCB Vet : Corrected areas (A) of various OH bands of ethylene glycol monomethyl ether

TARCB V 5 : Concentrations of the free- and intramolecularly H-bonded OH groups in
ethylene glycol monomethyl ether solutions of different concentrations
(All concentrations in mol $\mathrm{dm}^{-3} \times 10^{3}$ )

| $\begin{aligned} & \mathrm{C}_{\mathrm{S}} \\ & \mathrm{~T} / \mathrm{K} \end{aligned}$ | 10 |  | 40 |  | 60 |  | 80 |  | 100 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CoH}_{\mathrm{OH}(\mathrm{F})}$ | $\mathrm{C}_{\mathrm{OH}(\mathrm{I})}$ | $\mathrm{C}_{\mathrm{OH}(\mathrm{F})}$ | $\mathrm{COH}_{\mathrm{OH} \text { ( }}$ | $\mathrm{C}_{\mathrm{OH}(\mathrm{F})}$ | $\mathrm{COH}_{\mathrm{OH} \text { ( }}$ | $\mathrm{C}_{\mathrm{OH}(\mathrm{F})}$ | $\mathrm{C}_{\mathrm{OH}(\mathrm{I})}$ | $\mathrm{C}_{\mathrm{OH}(\mathrm{F})}$ | $\mathrm{COH}_{\mathrm{OH} \text { ( })}$ |
| 298 | 0.87 | 9.13 | 2.97 | 32.3 | 4.11 | 45.8 | 5.31 | 56.7 | 6.16 | 67.9 |
| 303 | - | - | - | - | - | - | - | - | 6.56 | 70.2 |
| 308 | - | - | 3.60 | 32.1 | 5.11 | 46.4 | 6.59 | 58.5 | - | - |
| 313 | 1.04 | 8.96 | 4.10 | 32.2 | 5.60 | 46.8 | 7.08 | 59.5 | 8.72 | 73.1 |
| 318 | 1.10 | 8.90 | 4.14 | 32.4 | 5.78 | 47.4 | 7.75 | 60.1 | - | - |
| 323 | 1.20 | 8.80 | 4.68 | 32.5 | - | - | 8.12 | 61.4 | 10.1 | 75.1 |
| 328 | 1.31 | 8.69 | 5.14 | 32.5 | 7.45 | 47.5 | 9.66 | 61.5 | 11.8 | 75.6 |
| 333 | 1.42 | 8.58 | 5.33 | 32.6 | - | - | 10.9 | 61.2 | - | - |
| 338 | 1.54 | 8.46 | 5.62 | 32.7 | 8.91 | 48.1 | 10.9 | 63.4 | 13.9 | 77.2 |

TABLB V. 6 : Concentrations of various species (in mol $\mathrm{dm}^{-3} \times 10^{3}$ ) in ethylene glycol monomethyl ether solutions at 298 K . -
C $\times 10^{3} /$

| structure type (ef FIg.V.3) | Species | $\mathrm{C}_{\mathrm{S}} \times 10^{3} / \mathrm{mol} \mathrm{dm}{ }^{-3}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 40 | 60 | 80 | 100 |
|  |  | Concentrations $\times 10^{3} / \mathrm{mol} \mathrm{dm}{ }^{-3}$ |  |  |  |
| (c)/(d) | free OH | 2.97 | 4.11 | 5.31 | 6.16 |
|  | intramolecularly bonded OH | 32.3 | 45.8 | 56.8 | 67.9 |
|  | open dimer | 4.72 | 10.1 | 17.9 | 25.9 |
|  | open trimer | 2.36 | 5.04 | 8.96 | 12.9 |
|  | open tetramer | 1.57 | 3.36 | 5.98 | 8.63 |
| (e) | 'Saito' dimer | 4.72 | 10.1 | 17.9 | 25.9 |
|  | intramolecularly H-bonded monoraer | 27.6 | 35.7 | 38.83 | 42.0 |
| (f)/(g) | cyclic dimer | 2.36 | 5.04 | 8.96 | 12.9 |
|  | cyalic trimer | 1.57 | 3.36 | 5.97 | 8.63 |
|  | cyclic tetramer | 1.18 | 2.52 | 4.48 | 6.47 |

TABLSY. 7 : Equilibrium constants in ethylene glycol monomethyl ether solutions

| associated species | equilibrium constant K | Solution concentration$C_{S} \times 10^{3} \mathrm{~mol} \mathrm{dm}^{-3}$ |  |  |  |  | $\bar{K}$ | maximum <br> deviation (\%) <br> from $\overline{\mathbf{K}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 40 | 60 | 80 | 100 |  |  |
| Fig.V.3(e) | $\mathrm{K}_{\mathrm{IF}} \times 10^{2}$ | 9.49 | 10.4 | 21.5 | 13.7 | 14.7 | 11.9 | 22 |
|  | $\mathrm{K}_{\mathrm{DF}} \times 10^{3}$ | - | 1.87 | 1.67 | 1.57 | 1.47 | 1.65 | 12 |
|  | $\mathrm{K}_{\mathrm{DI}} \times 10$ | - | 1.73 | 1.27 | 0.84 | 0.68 | 1.13 | 47 |
| cyclic dimer (Fig.V.3(f)/(g) | ${ }^{K_{I F}} \times 10^{2}$ | 9.49 | 9.18 | 8.95 | 9.35 | 9.07 | 9.21 | 3 |
|  | $K_{D F} \times 10^{3}$ | - | 3.67 | 3.31 | 3.14 | 2.93 | 3.26 | 12 |
|  | $\mathrm{K}_{\mathrm{DI}} \times 10$ | - | 4.35 | 4.12 | 3.60 | 3.56 | 3.97 | 10 |
| cyclic trimer | $\mathrm{K}_{\text {IF }} \times 10^{2}$ | 9.49 | 9.18 | 8.95 | 9.35 | 9.07 | 9.21 | 3 |
|  | $K_{3 F} \times 10^{5}$ | - | 1.66 | 2.06 | 2.50 | 2.71 | 2.23 | 24 |
|  | $K_{31} \times 10^{2}$ | - | 2.14 | 2.86 | 3.06 | 3.63 | 2.92 | 26 |
| cyclic tetramer | $\mathrm{K}_{\mathrm{IF}} \times 10^{2}$ | 9.49 | 9.18 | 8.95 | 9.35 | 9.07 | 9.21 | 3 |
|  | $\mathrm{K}_{4 \mathrm{~F}} \times 10^{7}$ | - | 0.66 | 1.13 | 1.77 | 2.23 | 1.45 | 54 |
|  | $\mathrm{K}_{4 \mathrm{I}} \times 10^{3}$ | - | 0.92 | 1.75 | 2.32 | 3.31 | 2.07 | 58 |

$K_{n F}$ and $K_{n I}$ in $\left(m o l \mathrm{dm}^{-3}\right)^{(n-1)}$ at 298 K (7x
TABLE V. 8 : Concentrations of $M_{F},{ }^{M} I$ and cyclic dimer (D) in ethylene glycol monomethyl ether solutions of different concentrations (All concentrations in mol $\mathrm{dm}^{-3} \times 10^{3}$ )

| $\begin{aligned} & \mathrm{C}_{\mathbf{S}} \\ & \mathrm{T} / \mathbb{K} \end{aligned}$ | 10 |  | 40 |  |  | 60 |  |  | 80 |  |  | 100 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{C}_{\mathrm{F}}$ | $\mathrm{C}_{\text {I }}$ | $\mathrm{C}_{F}$ | $\mathrm{C}_{\text {I }}$ | $C_{\text {D }}$ | $\mathrm{C}_{\mathrm{F}}$ | ${ }^{C}$ I | $\mathrm{c}_{\mathrm{D}}$ | $\mathrm{C}_{\mathrm{F}}$ | $\mathrm{C}_{\text {I }}$ | $C_{\text {d }}$ | $\mathrm{C}_{\mathrm{F}}$ | $\mathrm{C}_{\text {I }}$ | $C_{\text {d }}$ |
| 298 | 0.87 | 9.13 | 2.97 | 32.3 | 2.36 | 4.11 | 45.8 | 5.04 | 5.31 | 56.7 | 8.97 | 6.16 | 67.9 | 12.9 |
| 303 | - | - | - | - | - | - | - | - | - | - | - | 6.56 | 70.2 | 11.6 |
| 308 | - | - | 3.60 | 32.1 | 2.14 | 5.11 | 46.4 | 4.26 | 6.59 | 58.5 | 7.43 | - | - | - |
| 313 | 1.04 | 8.96 | 4.10 | 32.2 | 1.85 | 5.60 | 46.8 | 3.82 | 7.08 | 59.5 | 6.71 | 8.72 | 73.1 | 9.12 |
| 318 | 1.10 | 8.90 | 4.14 | 32.4 | 1.73 | 5.78 | 47.4 | 3.43 | 7.75 | 60.1 | 6.10 | - | - | - |
| 323 | 1.20 | 8.80 | 4.68 | 32.5 | 1.42 | - | - | - | 8.12 | 61.4 | 5.20 | 10.1 | 75.1 | 7.41 |
| 328 | 1.31 | 8.69 | 5.14 | 32.5 | 1.18 | 7.45 | 47.5 | 2.54 | 9.66 | 61.5 | 4.44 | 11.8 | 75.6 | 6.31 |
| 333 | 1.42 | 8.58 | 5.33 | 32.6 | 1.05 | - | - | - | 10.9 | 61.2 | 3.89 | - | - | - |
| 338 | 1.54 | 8.46 | 5.62 | 32.7 | 0.82 | 8.91 | 48.1 | 1.48 | 10.9 | 63.4 | 2.88 | 13.9 | 77.2 | 4.45 |

FABLS V.9 : Equilibrium constants in different solutions of ethylene glycol monomethyl ethex (cf Table V. 8 for the respective concentrations)

| $\begin{aligned} & \overline{\mathrm{C}_{\mathrm{S}}{ }^{*}} \end{aligned}$ | $\frac{10}{\mathrm{~K}_{\mathrm{IF}} \times 10^{2}}$ | 40 |  |  | 60 |  |  |  |  |  | 100 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{K}_{\text {IF }} \times 10^{2}$ | $K_{D F} \times 10^{3}$ | $\mathrm{K}_{\mathrm{DI}} \mathrm{X10}$ | $\overline{\mathrm{K}}_{\mathrm{IP}} \times 10^{2}$ | $K_{D F^{*}} \times 10^{3}$ | $K_{D I} \times 10$ | $\overline{\mathrm{K}_{1 P^{*}} \times 10^{2}}$ | ${ }^{\mathrm{K}_{\mathrm{DF}} \times 10^{2}}$ | $\mathrm{K}_{\mathrm{DI} \times 10}$ | $\mathrm{K}_{1 \mathrm{~F}} \times 10$ | ${ }^{2} \mathrm{~K}_{\mathrm{DF}} \times 10$ | $0^{3} \mathrm{~K}_{\mathrm{DI}} \mathrm{XI}^{10}$ |
| 298 | 9.49 | 9.18 | 3.67 | 4.35 | 8.95 | 3.31 | 4.12 | 9.35 | 3.14 | 3.59 | 9.07 | 2.93 | 3.56 |
| 303 | - | - | - | - | - | - | - | - - | - | - | 9.35 | 3.70 | 4.24 |
| 308 | - | 11.2 | 6.04 | 4.82 | 11.5 | 6.11 | 5.04 | 11.3 | 5.85 | 4.61 | - | - | - |
| 313 | 11.6 | 12.7 | 8.88 | 5.60 | 12.0 | 8.21 | 5.72 | 11.9 | 7.47 | 5.28 | 11.9 | 8.30 | 5.82 |
| 318 | 12.4 | 12.8 | 9.94 | 6.07 | 12.2 | 9.73 | 6.54 | 12.9 | 9.86 | 5.91 | - | - | - |
| 323 | 13.6 | 14.4 | 15.4 | 7.43 | - | - | - | 13.3 | 12.9 | 7.26 | 13.4 | 13.7 | 7.61 |
| 328 | 15.1 | 15.8 | 22.4 | 8.95 | 15.7 | 21.9 | 8.88 | 15.7 | 21.0 | 8.51 | 15.6 | 22.0 | 9.16 |
| 333 | 16.6 | i6.4 | 27.1 | 10.1 | - | - | - | 17.9 | 31.0 | 9.65 | - | - | - |
| 338 | 18.2 | 17.2 | 38.7 | 13.2 | 18.5 | 53.8 | 15.7 | 19.0 | 45.1 | 12.5 | 18.0 | 43.2 | 13.4 |

${ }^{*} C_{S}$ in mol dm ${ }^{-3} \times 10^{3} . \quad K_{D F}$ and $K_{D I}$ in mol $\mathrm{dm}^{-3}$.
TaBlervelo : Mean values of the equilibrium constants ( $\overline{\mathbb{K}}$ ) in the three-way equilibrium

$\mathrm{K}_{\mathrm{DF}}$ and $\mathrm{K}_{\mathrm{DI}}$ in mol $\mathrm{dm}^{-3}$.
$K ' s$ and $\Delta G^{\circ}$ 's at 298 K .
TABGH Yell : Themodynamic quantities associated with the three-way equilibrium in ethylene glycol monoalkyl ethers

| Type of equilibrium | Thermodynamic property | $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{\prime} \rightleftharpoons \sim M_{F}$ | $\mathrm{K}_{1 F} \times 10^{2}$ | 9.2 | 9.7 | 9.5 |
| $D \rightleftharpoons{ }^{2}$ | $\Delta G_{1 F} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$ | 5.9 | 5.8 | 5.8 |
|  | $\Delta \mathrm{H}_{\mathrm{IF}}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | $15 \pm 0.8$ | $\cdots 14 \pm 0.6$ | $14 \pm 0.6$ |
|  | $\Delta S_{\mathrm{IF}}^{*} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ | $29 \pm 2$ | $27 \pm 2$ | $20 \pm 0$ |
|  | $\mathrm{K}_{\mathrm{DF}} \times 10^{3} / \mathrm{mol} \mathrm{dm}{ }^{-3}$ | 3.3 | 3.1 | 3.0 |
|  | $\Delta G_{D F}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 14.2 | 14.3 | 14.5 |
|  | $\Delta \mathrm{H}_{\mathrm{DF}}^{\circ} / \mathrm{kas} \mathrm{mol}^{-1}$ | $55 \pm 2.4$ | $57 \pm 2.8$ | $57 \pm 2.3$ |
|  | $\Delta S^{\circ} \mathrm{DF} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ | $136 \pm 8$ | $142 \pm 9$ | $142 \pm 7$ |
| $\mathrm{D} \rightleftharpoons \mathrm{an}_{\mathrm{I}}$ | $K_{\text {DI }} \times 10 / \mathrm{mol} \mathrm{dma}^{-3}$ | 3.9 | 3.1 | 3.3 |
|  | $\Delta \mathrm{G}_{\mathrm{DI}}^{0} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 2.3 | 2.9 | 2.7 |
|  | $\Delta \mathrm{H}_{\mathrm{DI}} / \mathrm{kJJ} \mathrm{mol}{ }^{-1}$ | $26 \pm 1.8$ | $30 \pm 1.7$ | $28 \pm 1.4$ |
|  | $\Delta \mathrm{S}_{\mathrm{DI}}^{\circ} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ | $76 \pm 6$ | $89 \pm 5$ | $83 \pm 5$ |

TABLGYol2 : Calcilated integrated intensities (B) of different OH bands of ethylene glycol monoalkyl ethers at various temperatures

| T/K | Ethylene glycol monomethyl ether |  | Ethylene glycol monoethyl ether |  | Ethylene glycol monobutyl ether |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{\text {I }}$ | $B_{D}$ | $B_{1}$ | ${ }^{3} 1$ | $B_{1}$ | $B_{D}$ |
| 298 | 6.42 | 59.5 | 6.25 | - | - | - |
| 303 | - | 58.2 | - | 60.8 | 6.32 | 57.1 |
| 308 | - | - | - | - | 6.23 | 55.8 |
| 313 | 6.24 | 58.1 | 6.08 | 59.1 | 6.14 | 56.3 |
| 3.18 | 6.16 | - | 6.02 | 58.5 | 6.08 | 55.8 |
| 323 | 6.12 | 56.8 | 5.94 | - | 6.04 | 55.8 |
| 328 | 6.07 | 57.4 | 5.87 | 58.9 | 5.98 | 55.9 |
| 333 | 6.03 | - | 5.84 | 57.4 | 5.90 | 54.6 |
| 338 | 5.94 | 55.4 | 5.73 | 58.1 | 5.81 | 54.1 |

(I - intramolecularly H-bonded OH band, D - dimeric OH band).
Tadhivel3 : Spectroscopic properties of OH groups of ethylene glycol

| Type of <br> OH | Spectral property | $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}{ }^{\mathrm{OH}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Free | $\bar{v} \pm 2.5 / \mathrm{cm}^{-1}$ | 3635 | 3635 | 3635 |
|  | $\Delta \bar{v}_{1 / 2} \pm 2.5 / \mathrm{cm}^{-1}$ | 26 | 28 | 87 |
|  | $\mathrm{B}_{\mathrm{F}} \times 10^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ | - | - |  |
| $\underbrace{}_{\substack{\text { Intra- } \\ \text { mol ecul } \\ \text { H-bonded }}}$ | $\bar{v} \pm 2.5 / \mathrm{cm}^{-1}$ | 3600 | 3600 | 360 |
|  | $\Delta \bar{v} \pm 2.5 / \mathrm{cm}^{-1}$ | 35 | 35 | 35 |
|  | $\Delta v_{1 / 2} \pm 2.5 / \mathrm{cm}^{-1}$ | 32.5 | 32.5 | 32.5 |
|  | ${ }^{B} \mathrm{I} \times 1 \mathrm{c}^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ | 6.4 | 6.3 | 6.4 |
| Dimeric | $\bar{v} \pm 5 / \mathrm{cm}^{-1}$ | 3475 | 3475 | 3475 |
|  | $\Delta \bar{v} \pm 5 / \mathrm{cm}^{-1}$ | 160 | 160 | 160 |
|  | $\Delta \bar{v}_{1 / 2} \pm 5 / \mathrm{cm}^{-1}$ | 150 | 150 | 145 |
|  | $\mathrm{B}_{\mathrm{D}} \times 10^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ | 59 | 61 | 57 |



## CHAPTRR VI

## AJJOGIACION BEHAVIOUR OF DLETAYL GNE GLYCOL MONO ALKYL ETHERS

## Vi.1. Intraduation :

Diethylene glycol monoalkyl ethers $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ in dilute carbon tetrachloride solutions ( $C \leqslant 0.03 \mathrm{~mol} \mathrm{dm}^{-3}$ ) exhibit three bands in hydroxyl stretching region, at $\sim 3635$, 3600 and $3470 \mathrm{~cm}^{-1}$. The relative intensities of these bands remain constant and independent of further dilution (Fig. VI.IA). indicating them to be due to three types of monomeric species (FIg. VI.2) in equilibrium. The bands at 3635 and $3600 \mathrm{~cm}^{-1}$ can be ascribed to free monomer $\left(M_{F}\right)$, and intramolecularly $H$-bonded five membered ring monomer $\left(M_{5}\right)$ respectively from their similarity with the corresponding bands of ethylene glycol monoalkyl ethers. (ef Tables V.13 and VI.7). The $3470 \mathrm{~cm}^{-1}$ band is then attributable only to the eight membered ring monomer ( $\mathrm{M}_{8}$ ) formed by intramolecular H-bonding of the hydroxylic proton with the second ether oxygen. The three monomeric bands were resolved like those of ethylene glycol monoalkyl ethers (cf Fig. V.2). The concentrations of $M_{F}, M_{5}$ and $M_{8}\left(C_{F}, C_{5}\right.$ and $C_{8}$ respectively) were determined from the respective band areas as explained in section IV.4.

$$
\begin{equation*}
C_{F}=A_{F} / B_{F} L, C_{5}=A_{5} / B_{5} L \text { and } C_{8}=C_{S}-\left(C_{F}+C_{5}\right) \tag{1}
\end{equation*}
$$

The equilibrium constants for the three equilibria (Fig. VI




$$
M_{5} \rightleftharpoons M_{F}, M_{8} \rightleftharpoons M_{F} \text { and } M_{8} \rightleftharpoons M_{5},
$$

were then calculated as

$$
\begin{equation*}
K_{5 F}=C_{F} / C_{5}, K_{8 F}=C_{F} / C_{8} \text { and } K_{85}=C_{5} / C_{8} \tag{2}
\end{equation*}
$$

At higher concentrations ( $C>0.03 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ) till $\sim 0.5 \mathrm{~mol}$ $\mathrm{dm}^{-3}$, there are no new $0 H$ bands but the band near $3475 \mathrm{~cm}^{-1}$ becomes increasingly asymetric on the lower frequency side. Its relative intensity also increases rapidly indicating the presence of intermolecularly associated species. Since these absorb nearly In the same spectral region as the dimers of ethylene glycol monoalkyl ethers, the major associated species in the concentration range $0.03-0.15 \mathrm{~mol} \mathrm{dm} \mathrm{d}^{-3}$ were assumed to be dimeric and the equilibrium constants for the equilibrium $D \rightleftharpoons 2 M_{g}$ in the multiple equilibria (Fig. VI.3B) were calculated as

$$
\begin{equation*}
K_{D F}=c_{F}^{2} / c_{D} \tag{3}
\end{equation*}
$$

The constancy of the calculated $K_{D F}$ Values (Table VI.5) ** supports the assumption of dimer as the main associated species upto concentration $0.16 \mathrm{~mol} \mathrm{dm}^{-3}$.

The individual bands of $M_{8}$ and $D$ are not resolvable aue to extensive overlap. The coimposite $3470 \mathrm{~cm}^{-1}$ band was isolated by extending its high frequency side from $\sim 3525 \mathrm{~cm}^{-1}$ down/ to zero absorbance at $\sim 3625 \mathrm{~cm}^{-1}$. The high frequency side of the $3470 \mathrm{~cm}^{-1}$ band so obtained was subtracted from the experimental spectrum in the region $3525-3625 \mathrm{~cm}^{-1}$ to obtain the low frequency side of the $3600 \mathrm{om}^{-1}$ band. Similar procedure has been used by Pox and Martin ${ }^{1}$, Baker and Teaman ${ }^{110}$ etc. The $3600 \mathrm{~cm}^{-1}$.band was then resolved in
the usual manner and used for the estimation of $\mathrm{M}_{5}$. Concentrations of $\mathrm{M}_{8}$ and $\mathrm{M}_{\mathrm{F}}$ were then calculated from $\mathrm{M}_{5}$ using the equilibrium constants determined for dilute solutions as in equations (2). Thus

$$
\begin{equation*}
C_{5}=A_{5} / B_{5} 1, C_{F}=K_{5 F} C_{5} \text { and } C_{8}=C_{6} / K_{80} \tag{4}
\end{equation*}
$$

The dimer concentration $C_{D}$ was then calculated by subtracting the total monomer concentration $\left(=C_{5}+C_{8}+C_{F}\right)$ from the solution concentration $C_{S}$ and dividing by 2 viz.

$$
\begin{equation*}
c_{D}=\left(c_{S}-\left(c_{5}+c_{8}+c_{F}\right)\right) / 2 \tag{5}
\end{equation*}
$$

The measured areas of various bands of diethylene glycol monomethyl- and -ethyl ethers (abbrivated as DEGM and DEGE, respectively, for convenience) are given in Tables VI. 1 and 2 Which were corrected and used to estimate the concentrations of the corresponding species as usual. The calculated concentrations of different species in a number of solutions of DEGM and DEGE at 298 K and the corresponding equilibrium constants are shown in Table VI. 3 from which it is evident that the association behaviour of these compounds is identical. The equilibrium constants for various equilibria over the temperature range $298-338 \mathrm{~K}$ are given in Tables VI. 4 and 5: The thermodynamic and spectroscopic properties are summarized in Tables VI. 6 and VI. 7 respectively.

## VI.2. Intramolecular H-Bonding:

For DEGM and DEGE, the equilibrium constants in the triangular equilibrium (Fig. VI.3A, eq.(2)) over the temperature range $298-338 \mathrm{~K}$ and the respective thermodynamic and spectroscopic
properties are found to be nearly the same (Tables VI.4, 6 and 7) confiming their intramolecular H-bonding behaviour to be identical. The spectral characteristics $\left(\bar{v}, \Delta \bar{v}, \Delta \bar{v}_{1 / 2}\right)$, of the free and intramolecularly $H$-bonded five membered ring monomar OH bands as well as the thermodynamic quantities for the equilibrium $\mathrm{M}_{5} \rightleftharpoons \mathrm{M}_{\mathrm{F}}$ for the present compounds are observed to be nearly the same as those for ethylene glycol monoalkyl ethers (of Tables V.11, V.13, VI. 6 and VI.7). This is expected since the participants in H-bonding as well as their relative positions are identical in both the cases. The values of $\bar{v}$ and $\Delta \bar{v}_{1 / 2}$ for the OH bands of these compounds are in good agreement with those reported for similar compounds $2,80,81$. Markevich et al ${ }^{86}$ however reported somewat different frequancies and relative intensities for the three OH bands of DEGS, viz. a broad and strong $3617 \mathrm{~cm}^{-1}$ band well separated from a weak $3586 \mathrm{~cm}^{-1}$ band. Similarly Lodygina et al ${ }^{85}$ did not report the $3636 \mathrm{~cm}^{-1}$ band in DEGG and ascribe, erronously, the $3610 \mathrm{~cm}^{-1}$ band to Iree $0 H$. (Probably they, as in the case of ethylene glycol monoalkyl ethers, did not observe the $3635 \mathrm{~cm}^{-1}$ band). It may be noted that as the free and intramolecularly H-bonded $O H$ bands of the present compounds arise from groups identical with those in ethylene glycol monoalkyl ethers their relative intensities should also be similar. All other reported data ${ }^{2,76,80,81,83}$ are in agreement with a strong $3600 \mathrm{~cm}^{-1}$ band (due to intramolecularly H-bonded $O H$ ) with $3635 \mathrm{~cm}^{-1}$ band (due to Pree OH) appearing as a shoulder in various ethylene- and diethylene glycol monoalkyl ethers as observed in the present work.

A comparison of the $\Delta \bar{v}, \Delta \bar{v}_{1 / 2}$ and $B$ values for the intramolecularly H -bonded hydroxyl of the eight and five membered ring monomers shows that they are $3-4$ times larger for the former (Table VI.7). Similarly the $\Delta H^{\circ}$ for the $M_{8}-M_{F}$ equilibrium is nearly 1.6 times larger than that for the $M_{5}{ }^{-} M_{F}$ equilibrium (Table VI.6). This is understandable since the OH group can get closer to the second ether oxygen resulting in a shorter hydrogen bond and hence larger H-bonding interaction. The $\Delta \bar{v}_{1 / 2}$ and $B$ values, in addition to being measures of H-bonding interaction also depend on the anharmonicity and the rate of change of dipole moment $(\partial \mu / \partial r)$ associated with the vibration. The higher values of these quantities for the eight membered ring monomer are attributable to its larger flexibility as compared to that of the five membered ring monomer.

FInally the larger value of $\Delta S^{\circ}$ for the eight membered ring structure is explainable from the larger ring size and increased restriction on rotation about various bonds. This last factor results in smaller population of the eight membered ring monomer compared to the five membered one (Table VI.3) because the number of favourable conformations and hence the probability of formation is smaller for the former. Lodygina et al ${ }^{85}$ also have reported the themodynamic quantities for the equilibrium between the spacies absorbing at 3450 and $3610 \mathrm{~cm}^{-1}$ assuming them, as mentioned before, due to $\mathrm{M}_{8}$ and ' $\mathrm{M}_{\mathrm{F}}$ ' respectively. However as the assignment of the latter band is incorrect and the participation of the actual free monomer (absorbing at $\sim 3635 \mathrm{~cm}^{-1}$ )

In the equilibria unaccounted, their values cannot be compared with the present ones.

In both the five- and eight-membered ring monomers, the gauche configurations of the $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ groupings are stabilized by intramolecular H-bonding. This is in agreament with the earlier observation 81 of predominantly gauche conformations of the two $0 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ groups of diethylene glycol monoalkyl ethers in solution.

## VI.3. Struature of the Dimer :

The assumption of a dimer as the most likely associated spectes in the concentration range $0.03-0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ is valid from the constancy of the $K_{D F}$ values (Table VI.5) and Iinearity of the $\log K_{D F}$ VS $1 / T$ plot (VI.4). Amongst the three equilibria between the dimer and the three monomers (Fig. VI.3B), the thermodynamic quantities for the $D \rightleftharpoons 2 A_{F}$ equilibrium only are significant because of their direct iuplications on the structure Of the dimer. Because of the presence of three proton acceptors (oxygen atoms) in these molecules, there are several ways in which dimerisation can occur (Fig. VI. $5(a)-(f)$ ). Though it is rather difficult to decide on a unique structure from the thermodynamic quantities alone; a consideration of various factors enables one to arrive at the most probable structure as discussed below.

An open dimer (a) having a single hydrogen bond and very littile restriction to internal rotation would yield relatively small values of $\Delta H_{D F}^{\circ}$ and $\Delta S_{D F^{*}}^{\circ}$. The high values of $\Delta H_{D F}^{\circ}$ and $\Delta S_{D F}^{\circ}$ of $\sim 58 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $\sim 153 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively (Table VI.6)

## diethylene glycol monoalkyl ethers


$\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}^{\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH} \cdots{ }^{\mathrm{R}} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OlCH}_{2}\right)_{2} \mathrm{OH}}$
©


(e)

(b)




FIG-YI-5:TYPICAL STRUCTURES FOR DIMER,
therefore exclude open dimers．The dimer involving intermolecular association of a free monomer with a five membered ring monomer （b）also seems to be unlikely for the same reason．Further，if dimers of this type were present，the relative intensities of the 3635 and $3600 \mathrm{~cm}^{-1}$ bands in the spectra of concentrated solutions （containing almers）yould be different from those of dilute solutions（with no dimers）．This possibility was tested by recording the spectra of solutions of two different concentrations wth the path lengths adjusted so as to have the $3600 \mathrm{~cm}^{-1}$ band intensities same in both．Then the $3635 \mathrm{~cm}^{-1}$ band intensities also were observed to be the same（F1g．VI．Ib）showing the absence of such dimers．For the dimer resulting from H－bonding of a free monomer with an elght membered ring monomer（c），the $\Delta S^{\circ}$ value would be nearly the same as that for $M_{8}$ since the latter is mainly responsible for the entropy change．Actually $\Delta \mathcal{S}_{\mathrm{DF}}^{\circ} \gg \Delta S_{8 F}^{\circ}$ （ 153 vs $56 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ）which makes such a structure improbable． The four membered ring structure（d）can be ruled out on the same basis as for ethylene glycol monoalkyl ethers．The present values of $\Delta H ⿱ D ⿴ 囗 十 ⿱ 一 口 𧘇_{\circ}^{\circ}$ and $\Delta S_{D F}^{\circ}$ are comparable with those for ethylene glycol monoalkyl ethers for which the ten membered ring dimer resulting from mutual H－bonding of two molecules via their ether oxygens （in $\beta$－position）was found to be the most likely associated species （section V．4）．Such dimer（e）would therefore be the most probabl associated species in DISCM and DEGE．The somewhat larger magnitudes of the present $\Delta H_{D F}^{\rho}$ and $\Delta S_{D F}^{\circ}$ as compared to those for ethylane glycol monoalkyl ethers might be due to the sixteen
membered ring dimer ( $(1)$ present in small amount. The population of this will, of course, be very small as compared to that of (e) because of the larger ring size leading to considerably larger decrease of entropy. These last two structures are also in agreement with the earlier results showing the existence of the $0 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ groups predoninantly in gauche conformations ${ }^{81}$.

The concentration of the dimer as compared to the two intramolecularly H-bonded monomers is very small (Table VI.3), which can be understood as the former requires a larger number of bonds in suitable conformations (larger decrease of entropy). This, together with the formation of the eight membered ring monomer having hydrogen bond strength comparable to that of the dimer (of $\Delta \bar{\omega}, \Delta \bar{u}_{1 / 2}$ and $\Delta H^{\circ}$ values) but requiring relatively smaller entropy decrease, results in a smaller extent of dimerization. This explains larger values of $K_{D F}$ for the present compounds than those for ethylene glycol monoalkyl ethers (cf Tables V. 10 and Vi.5).

Since the dimer band overlaps with the $\mathrm{M}_{8}$ band very extensively, its spectral characteristics ( $\bar{v}, \Delta \bar{v}_{1 / 2}, B$, etc. $)$ could not be determined with certainty. In order to have an approximate idea, a number of spectra at higher concentrations (upto $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ ) were studied from which the dimer band appears to have its maximum at $\sim 3440 \mathrm{~cm}^{-1}\left(\Delta v \sim 195 \mathrm{~cm}^{-1}, \Delta \bar{v}_{1 / 2} \sim 160 \mathrm{~cm}^{-1}\right)$. As the concentration of $\mathrm{M}_{8}$ was already determined, its equivalent area was calculated using the relation $A_{8}=B_{8}$ CL. An approximate area for the dimer band was then obtained by subtracting the $\mathrm{M}_{8}$ band area fran total area of the $3470 \mathrm{~cm}^{-1}$ band. The integrated

Intensity calculated from the estimated values of band area and concentration was thus found to be $N 12 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ at 298 K. (Table VI.8). The larger value of $\Delta \bar{v}$ for the dimer is consistent with large $\Delta H_{D F}^{\circ}$ value. Similarly the large magnitudes of $\Delta \bar{\omega}_{1 / 2}$ and $B$ suggest greater anharmonicity and dipole moment derivative associated with hydroxyl group vibration. This is uncerstandable in view of greator flexibility of the ten membered ring structure.

TARMGVIC : Measured areas ( $\mathrm{A}^{\prime}$ ) of various OH bands of diethylene glycol monomethyl ether

| $\mathrm{C}_{\mathrm{S}}{ }^{*}$ $\mathrm{~L} / \mathrm{cm}$ | $\begin{aligned} & 10 \\ & 1.0 \end{aligned}$ |  |  | $\begin{gathered} 80 \\ 0.26 \\ \hline \end{gathered}$ | $\begin{aligned} & 100 \\ & 0.25 \\ & \hline \end{aligned}$ | $\begin{aligned} & 125 \\ & 0.20 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T/K | $A_{F}^{\prime}$ | $A_{6}^{\prime}$ | $A_{8}^{\prime}$ | $A_{5}^{\prime}$ | ${ }^{4} 5$ | $A_{5}$ |
| 298 | 2.34 | 34.3 | 56.4 | 64.7 | 75.8 | 75.4 |
| 303 | 2.50 | 34.0 | 50.7 | 65.3 | 76.4 | 76.4 |
| 308 | 2.56 | 33.8 | 47.2 | 66.6 | 77.3 | 77.5 |
| 313 | 2.76 | 33.3 | 42.7 | 65.4 | 77.5 | 77.4 |
| 318 | 2.91 | 32.8 | 38.3 | 66.4 | 77.5 | 77.4 |
| 323 | 3.06 | 32.4 | 36.7 | 64.9 | 77.7 | 77.2 |
| 328 | 3.20 | 32.0 | 31.9 | 64.7 | 77.5 | 76.7 |
| 333 | 3.40 | 31.7 | 26.6 | 64.5 | 77.1 | 76.3 |

${ }^{*} \mathrm{C}_{\mathrm{S}}$ (solution concentration) in $701 \mathrm{dm}^{-3} \times 10^{3}$.

SABLA V1. 2 : Measured areas ( $A^{\prime}$ ) of various OH bands of diethylene glycol monoethyl ether

| $\mathrm{CS}^{*}{ }^{\text {a }}$ ( mm | $\begin{aligned} & 12.5 \\ & 1.0 \\ & \hline \end{aligned}$ |  |  | $\begin{gathered} 75 \\ 0.28 \\ \hline \end{gathered}$ | $\begin{array}{r} 95 \\ 0.25 \\ \hline \end{array}$ | $\begin{aligned} & 120 \\ & 0.20 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T/K | $\mathrm{A}_{\mathrm{F}}{ }^{\text {P }}$ | $A_{5}^{\prime}$ | $A_{8}^{1}$ | $A_{5}^{1}$ | $A_{5}^{\prime}$ | $A_{5}^{\prime}$ |
| 298 | 2.86 | 43.1 | 87.5 | 65.6 | 73.9 | 72.5 |
| 303 | 3.09 | 42.5 | 81.8 | 66.0 | 74.4 | 72.8 |
| 308 | 3.19 | 42.1 | 74.6 | 66.4 | 74.6 | 73.7 |
| 313 | 3.42 | 42.0 | 66.4 | 66.8 | 74.6 | 74.0 |
| 318 | 3.63 | 41.5 | 60.1 | 66.3 | 74.6 | 74.1 |
| 323 | 3.81 | 41.1 | 54.2 | 66.1 | 74.3 | 74.4 |
| 328 | 3.99 | 40.5 | 49.6 | 66.1 | 74.0 | 74.0 |
| 333 | 4.23 | 40.1 | 44.4 | 65.9 | 73.9 | 73.9 |

${ }^{*} C_{S}$ (solution concentration) in mol $\mathrm{dm}^{-3} \times 10^{3}$.
TARUGVIAB : Concentrations of different species and equilibrium constants
in solutions of DEGM and DEGE at 298 K .

TABLEVINA : Intramolecular H-bonding in diethylene glycol monoalkyl ethers

| T/K | D1ethylene glycol monomathyl ather $\left(\mathrm{C}_{\mathrm{s}}=0.01 \mathrm{~mol}\right.$ Equilibrium constants$(C)=0.01$ |  |  | (DEGM)$\begin{gathered} \mathrm{B}_{8} \times 10^{-3} \\ \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \end{gathered}$ | Diethylene glycol monoethyl other ${ }^{\text {siquilidrium constants }}\left(\mathrm{C}_{\mathrm{s}}=0.0125 \mathrm{~mol} / \mathrm{dm}\right.$ ) |  |  | (DEGE)$\begin{gathered} \mathrm{B}_{8} \times 10^{-3} \\ \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{K}_{5 \mathrm{~F}} \times 10^{2}$ | $\mathrm{K}_{8 F} \times 10^{2}$ | $\mathrm{K}_{85}$ |  | $\mathrm{K}_{6 \mathrm{~F}} \times 10^{2}$ | $\mathrm{K}_{8 \mathrm{~F}} \times 10^{2}$ | ${ }_{8} \mathrm{~K}_{85}$ |  |
| 298 | 10 | 23 | 2.1 | 23 | 9.8 | 21 | 2.1 | 29 |
| 303 | 11 | 24 | 2.2 | 22 | 11 | 24 | 2.2 | 28 |
| 308 | 11 | 26 | 2.3 | 21 | 12 | 26 | 2.3 | 27 |
| 313 | 13 | 30 | 2.4 | 20 | 12 | 31 | 2.5 | 25 |
| 318 | 14 | 34 | 2.5 | 19 | 13 | 35 | 2.6 | 24 |
| 323 | 15 | 38 | 2.6 | 18 | 14 | 39 | 2.7 | 23 |
| 328 | 16 | 43 | 2.7 | 17 | 16 | 44 | 2.8 | 22 |
| 333 | 17 | 50 | 2.9 | - 15 | 17 | 52 | 3.1 | 21 |

CABTEVILS : Equilibrium constants $K_{D F}\left(\times 10^{3} / \mathrm{mol} \mathrm{dm}{ }^{-3}\right)$ for the $D-M_{F}$ equilibrium

| T/K | Diethylene glycol monomethyl ether$\mathrm{C}_{\mathrm{s}} \times 10^{3} / \mathrm{mol} \mathrm{dm}^{-3}$ |  |  | $\bar{X}_{D F}$ | Diethylene glyool monoethyl ether$c_{S} \times 10^{3} / \mathrm{mol} \mathrm{dm}^{-3}$ |  |  | $\bar{X}_{D F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 80 \\ & \mathrm{~K}_{\mathrm{DF}} \end{aligned}$ | $\begin{aligned} & 100 \\ & \mathbf{K}_{D F} \end{aligned}$ | $\begin{aligned} & 125 \\ & K_{D F} \end{aligned}$ |  | $\begin{aligned} & 75 \\ & K_{D F} \end{aligned}$ | $\begin{aligned} & 95 \\ & K_{D F} \end{aligned}$ | $\begin{aligned} & 120 \\ & K_{D F} \end{aligned}$ |  |
| 298 | 6.1 | 5.7 | 6.8 | 6.2 | 5.2 | 6.3 | 6.9 | 5.8 |
| 303 | 9.2 | 8.3 | 10 | 9.3 | 8.1 | 9.9 | 8.5 | 8.8 |
| 308 | 12 | 11 | 14 | 12 | 12 | 13 | 12 | 12 |
| 313 | 18 | 18 | 19 | 18 | 17 | 17 | 16 | 17 |
| 318 | 24 | 23 | 28 | 25 | 22 | 25 | 23 | 23 |
| 323 | 33 | 37 | 39 | 36 | 30 | 33 | 35 | 33 |
| 328 | 48 | 63 | 51 | 61 | 51 | 48 | 48 | 49 |
| 333 | 78 | 82 | 74 | 78 | 79 | 75 | 69 | 74 |

TABLEVL, 6 : Thermodynamic quantities associated with the multiple equilibria in diethylene glycol monoalkyl ethers

| Type of equilibrium | Thermodynamic property | Disam | DEGS |
| :---: | :---: | :---: | :---: |
| $\mathrm{M}_{5} \rightleftharpoons \mathrm{M}_{\mathrm{F}}$ | $\mathrm{K}_{5 F} \times 10^{2}$ | 10.1 | 9.8 |
|  | $\Delta a_{5 F}^{\circ} / \mathrm{kJ}$ mol ${ }^{-1}$ | 5.70 | 5.8 |
|  | $\triangle \mathrm{H}_{6}^{\circ} \mathrm{F} / \mathrm{kJ}$ mol ${ }^{-1}$ | $11.9 \pm 0.4$ | $12.6 \pm 0.3$ |
|  | ${ }^{3}{ }_{5 \mathrm{~F}}^{\circ} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ | $21 \pm 1.3$ | $23 \pm 0.8$ |
| $\mathrm{M}_{8} \rightleftharpoons \mathrm{M}_{F}$ | $\mathrm{K}_{8 \mathrm{~F}} \times 10^{2}$ | 20.3 | 20.8 |
|  | $\Delta a_{8 F}^{6} / \mathrm{kJ}$ mol ${ }^{-1}$ | 3.9 | 3.9 |
|  | $\Delta_{88}^{\circ} \mathrm{F} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$ | $19.7 \pm 0.6$ | $21.2 \pm 0.5$ |
|  | $\Delta_{8 \mathrm{gF}^{\circ} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}}$ | $63 \pm 1.8$ | $58 \pm 1.7$ |
| ${ }^{\mathrm{H}} \rightleftharpoons^{\sim} \rightleftharpoons \mathrm{H}_{5}$ | $\mathrm{K}_{85}$ | 2.0 | 2.1 |
|  | $\Delta 0_{85}^{\circ} / \mathrm{kJ}_{\mathrm{mol}}{ }^{-1}$ | -1.8 | -1.9 |
|  | $\mathrm{HH}_{85}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | $7.8 \pm 0.3$ | $8.6 \pm 0.4$ |
|  | $\Delta_{85}^{\circ} / \mathrm{JK}^{-1} \mathrm{~mol}{ }^{-1}$ | $32 \pm 0.8$ | $35 \pm 1.2$ |
| $D \rightleftharpoons 2 \mathrm{M}_{\mathrm{F}}$ | $\mathrm{K}_{\mathrm{DF}} \times 10^{3} / \mathrm{mol} \mathrm{dm}^{-3}$ | 6.2 | 5.8 |
|  | $\Delta G_{\text {DF }}^{0} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 12.6 | 12.8 |
|  | $\Delta H_{D F}^{\circ} / \mathrm{kJ}$ mol ${ }^{-1}$ | $58.4 \pm 1.4$ | $68.3 \pm 1.7$ |
|  | $\Delta \mathrm{S}_{\mathrm{DF}}^{\circ} / \mathrm{JK}^{-1} \mathrm{mOl}^{-1}$ | $153 \pm 4.4$ | $152 \pm 5.3$ |

$\mathrm{K} \cdot \mathrm{s}$ and $\Delta \theta^{\circ} \mathrm{s}$ at 298 K .

TaBLe VIe? : Spectroscopic properties of different types of OH groups of diethylene glycol monoalkyl ethers ( $\mathrm{T}=298 \mathrm{~K}$ )

| Type of the OH group | spectral property | DECM | DEGE |
| :---: | :---: | :---: | :---: |
| Pree | $\bar{v} \pm 2.5 / \mathrm{cm}^{-1}$ | 3635 | 3635 |
|  | $\Delta_{1 / 2} \pm 2.5 / \mathrm{cm}^{-1}$ | 25 | 25 |
|  | $\mathrm{BF}_{5} \times 10^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ | - | - |
| Intramolecularly <br> H-bonded <br> five- <br> membered <br> ring | $\bar{v} \pm 2.5 / \mathrm{cm}^{-1}$ | 3600 | 3600 |
|  | $\Delta \bar{v} \pm 2.5 / \mathrm{cm}^{-1}$ | 35 | 35 |
|  | $\Delta_{1 / 2} \pm 2.5 / \mathrm{cm}^{-1}$ | 32.5 | 32.5 |
|  | $\mathrm{B}_{5} \times 10^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ | - | - |
| Intramolecularly <br> H-bonded elghtmembered ring | $\bar{v} \pm 5 / \mathrm{cm}^{-1}$ | 3475 | 3470 |
|  | $\Delta \bar{u} \pm 5 / \mathrm{cm}^{-1}$ | 160 | 165 |
|  | $\Delta \mathrm{v}_{1 / 2} \pm 5 / \mathrm{cm}^{-1}$ | 100 | 105 |
|  | $\mathrm{B}_{8} \times 10^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ | 23 | 29 |
| Dimeric | $\bar{\nu} \pm 5 / \mathrm{cm}^{-1}$ | 3440 | 3440 |
|  | $\Delta \bar{u} \pm 5 / \mathrm{cm}^{-1}$ | 196 | 195 |
|  | $\Delta v_{1 / 2} \pm \subseteq / \mathrm{cm}^{-1}$ | 160 | 160 |
|  | $\mathrm{B}_{\mathrm{D}} \times 10^{-4} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ | 12.6 | 11.3 |

TABLGULe8 : calculation of integrated intensity of the dimer ( $B_{\mathrm{D}}$ ) of



## CHAPTER VII

## ASSOCIATTON RQHAV IOUR OF TRI- AND TETRA-KBTHYLENE <br> GLYCOL MONOM ATHYL ETHGRS

VII.1. Introduction:

Tri- and tetra-methylene glycol monomethyl ethers
$\left(\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}\right)$ in carbon tetrachloride show two OH bands, one of them is common at $\sim 3630 \mathrm{~cm}^{-1}$ and the second at $\sim 3540$ and $3450 \mathrm{~cm}^{-1}$ respectively. In very dilute solutions ( $c_{s} \leqslant 0.03 \mathrm{~mol} \mathrm{dm}^{-3}$ ), the relative intensities of these bands are constant (Fig. VII.1 and VII.2) indicating them to be due to monomeric species in equilibrium. The $3630 \mathrm{~cm}^{-1}$ band is due to the free $0 H$ group whereas the 3540 and $3450 \mathrm{~cm}^{-1}$ bands are attributable to intramolecularly H-bonded monomeric $\mathrm{OH}^{\prime}$ 's of $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ forming six- and seven membered rings respectively. The free and intramolecularly $H$-bonded $O H$ bands of these compounds are well separated from one another. Because of the asymmetry of the intramolecularly H-bonded OH bands (cf Section VII.2), the free OH band was first resolved by reflecting its high frequency side across the band maximum. The concentrations of the two monomers and the equilibrium constants in the $M_{I} \rightleftharpoons M_{F}$ equilibria were determined as before viz.,

$$
c_{F}=A_{F} / B_{F} L, \quad C_{I}=C_{S}-C_{F} \text { and } K_{I F}=C_{F} / C_{I}
$$

At higher concentrations upto $\sim 02 \mathrm{~mol} \mathrm{dm}^{-3}$, there are no new OH bands but the relative intensity and asymmetry of the lower frequency

TRI-ANO TETRAMETHYLENE GLYCOL MONOALKYL ETHERS


FIG-VIIHOH RANDS OF $\left.\mathrm{CH}_{3} \mathrm{O}_{\mathrm{O}} \mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ AT VARIOUS CONCENTRATIONS (T=298K). B) BAND RESOLUTION.


FIG-YII-2:OH BANDS OF $\left.\mathrm{CH}_{3} \mathrm{O}^{(\mathrm{CH}} \mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ AT VARLOUS CONCENCENTRATIONS ( $T=298 \mathrm{~K}$ ). (B) BAND RESOLUTION.
bands increase rapidly suggesting the presence of intermolecularly H-bonded species. At still higher concentrations additional $O H$ bands appear in the $3350-3400 \mathrm{~cm}^{-1}$ region as in the case of simple alcohols, indicating the formation of still higher associated species. The solution concentrations were therefore restricted upto $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$. Due to their extensive overlap, the bands of intra- and intermolecularly associated $O H$ groups are not resolvable. Concentrations of only the free OH groups $\mathrm{C}_{\mathbf{O H}(F)}$ were therefore estimated from the respective band areas, those of the free monomers and associated species (n-mers) being determined from $\mathrm{C}_{\mathrm{OH}}(\mathrm{F})$ and $\mathrm{C}_{\mathrm{S}}$ as follows.

Since the concentrations of the free and intramolecularly H-bonded monomers are related by $K_{I F}=C_{F} / C_{I}$ (equation (1)), the total concentration of these two monomers will be

$$
C_{F}+C_{I}=C_{F}+C_{F} / K_{I F}=K^{\prime} C_{F} \quad \text { where } K^{\prime}=1+1 / K_{I F} \quad \text {.. (2) }
$$

The concentration of the n-mer $\left(C_{n}\right)$ and the equilibrium constant $\left(K_{n F}\right)$ in the equilibrium $n-m e r \rightleftharpoons M_{F}$ will be

$$
\begin{equation*}
c_{n}=\left(c_{S}-K^{\prime} C_{F}\right) / n \quad \text { and } \quad K_{n F}=c_{F}^{n} / C_{n} \tag{3}
\end{equation*}
$$

To estimate $C_{n}$ and $K_{n F}$, it is first necessary to determine the type of the associated species (open/closed dimer, trimer etc.) present. Since the solutions used were relatively dilute $\left(C_{S}=0.02-0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ ), the major associated species were assumed to be dimer or trimers only. The possible structures for the dimers and trimers along with those for the free and intramolecularly H-bonded monomers are shown in Fig. VII.3. The concentrations of
open/cyclic dimers and trimers were determined as follows.
In the case of any open n-mer, its end OH group would absorb in the same region as that of the free monomer ( $\sim 3630 \mathrm{~cm}^{-1}$ ) thus contributing to $\mathrm{C}_{\mathrm{OH}(\mathrm{F})}$. The concentrations of the free monomer and open n-mer would then be related by the equations

$$
c_{F}=c_{O H(F)}-c_{n} \text { and } c_{n}=\left(c_{S}-K^{\prime} c_{O H(F)}\right) /\left(n-K^{\prime}\right) \quad . \quad \text { (4) }
$$

In the case of closed $n-m e r s$, the $3630 \mathrm{~cm}^{-1}$ band results from OH groups of the free monomers only so that

$$
c_{F}=C_{O H(F)} \text { and hence } c_{n}=\left(c_{S}-K^{\prime} C_{O H(F)}\right) / n \quad \text {.. (5) }
$$

The measured and corrected areas of the free and intramolecularly $H$-bonded $O H$ bands in solutions of different concentrations are given in Tables VII. 1 and 2. The calculated concentrations and equilibrium constants in the systems $M_{I} \rightleftharpoons M_{F}$ at various temperatures along with the integrated intensities of the intramol ecularly H-bonded OH bands are given in Table VII.3. The calculated concentrations of the free of group ( $\mathrm{C}_{\mathrm{OH}(\mathrm{F})}$ ), free monomer ( $C_{F}$ ) and open and cyclic dimers and trimers in different solutions of the two compounds at 298 K , as an illustration, are shown in Table VII.4. The calculated equilibrium constants for the equilibria $D \rightleftharpoons 2 \mathrm{M}_{F}$ and $\mathrm{T} \rightleftharpoons 3 \mathrm{M}_{F}(\mathrm{D}=$ Dimer, $\mathrm{T}=$ Trimer $)$ over the concentration and temperature range studied are presented in Tables ${ }^{\dot{\alpha}}$ VII. 5 and 6 and the thermodynamic quantities summarized in Table ${ }^{*}$ VII.7. These are further analysed to understand the association behaviour of these compounds.

## VII.2. Intramolecular H-Bonding:

The assignment of the 3540 and $3450 \mathrm{~cm}^{-1}$ bands of $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ to OH groups of the respective intramolecularly H-bonded monomers is in agreement with the reported ilterature on these compounds ${ }^{76,83}$ and the related diols ${ }^{68-70,73}$. These bands are found to be asymmetric (Fig. VII.IB and VII.2B) which however has not been reported by previous workers. similar asymmetry has been observed ${ }^{2,5-13}$ in the free $O H$ bands of a number of simple alcobols and ascribed to the 0 g groups of different rotational conformers oscillating in slightly different force fields. The asymmetry in the present case is therefore attributable to two or more conformational isomers of the intramolecularly H-bonded monomers with their hydroxyl protons lying at somewhat different distances from the respective ether oxygens.

The frequency shifts and half-bands widths of the
intramolecularly H-bonded OH bands, $\left(\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}: \Delta \bar{v}=90 \mathrm{~cm}^{-1}\right.$, $\left.\Delta \bar{v}_{1 / 2}=60 \mathrm{~cm}^{-1} ; \mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}: \Delta \bar{v}=180 \mathrm{~cm}^{-1}, \Delta \hat{v}_{1 / 2}=95 \mathrm{~cm}^{-1}\right)$ are in good agreement with the ilterature ${ }^{68-70,73,76,83}$ values for similar bands. The appaxent integrated intensities ( 19 and 39 $\times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ for tri- and tetramethylene glycol monomethyl ethers respectively) are comparable with those reported by Kuhn and wires ${ }^{83}$ ( 14 and $34 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~cm}^{-2}$ respectively). The differences in the numerical values might be due to the difference in procedures adopted for determining the integrated intensities. e.g. The B's in the present work are determined by computing the actual band areas whereas those of Kuhn and Wires are based on the
formula $B=2.3 \log \left(I_{0} / I\right)_{v_{\text {max }}} \times \Delta \bar{v}_{1 / 2} /$ 2CL which is applicable only to single symmetric bands having Lorentz shape.

The present thermodynamic quantities for the $M_{I}-M_{F}$ equilibria $\left[\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}_{8} \mathrm{~K}_{\mathrm{IF}}=1.4\right.$ at $298 \mathrm{~K}, \Delta \mathrm{H}^{\bullet}=15 \mathrm{~kJ}$ mol ${ }^{-1}$ and $\Delta S^{\bullet}=62 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}: \mathrm{K}_{\mathrm{IF}}=2.2$ at $298 \mathrm{~K}, \Delta \mathrm{H}^{\bullet}=18 \mathrm{~kJ}_{\mathrm{mol}}{ }^{-1}$ and $\Delta 3^{\circ}=68 \mathrm{JK}^{-1}$ mol $\mathrm{I}^{-1}$ ] are higher than those reported by Kuhn and Wires ${ }^{83}\left[\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}: \mathrm{K}_{\mathrm{IF}}=0.7\right.$ at $293 \mathrm{~K}, \Delta \mathrm{H}^{\circ}=8.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{\circ}=28 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; \mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} 0 \mathrm{H}: \mathrm{K}_{\mathrm{IF}}=1.5$ at $293 \mathrm{~K}, \Delta \mathrm{H}^{\circ}=21.3 \mathrm{~kJ}$ $m 01^{-1}$ and $\left.\Delta s^{\circ}=44 \mathrm{JK}^{-1} \mathrm{~mol}{ }^{-1}\right]$. These differences, like those in the case of $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ (Chapter $V$ ) are due to the different estimates of integrated intensities of the free 0H groups and therefore人their concentrations. The present thermodynamic values are all higher than those for $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH} \nabla \mathrm{Az}$. $\mathrm{K}_{\mathrm{IF}}=0.1$ at $298 \mathrm{~K}, \Delta \mathrm{H}^{\circ}=14 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{\bullet}=30 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The $\Delta \bar{N}, \Delta \bar{N}_{1 / 2}$ and $B$ values for intramolecular H-boading in the present compounds are also higher than those for $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, (of Chapter V ). The observed increasing trends in the thermodynamic and spectroscopic properties in the series $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{OH}$ are consistent with each other indicating higher H-bonding interaction and smaller extent of intramolecular H-bonding with increasing $n$. (ef Chapter VIII, Section 2).

## VII.3. Internoleavhar Association:

The presence of two proton acceptors (1.e. the other and hydroxalic oxygen atoms) in the present compounds can give rise to, as in the case of ethylene glycol monoalkyl ethers, several types of associated species. Thus the dimers, for example, can be 'open'
with a free OH group, 'closed' resulting from E-bonding of a free monomer with an intramolecularly H-bonded monomer or 'cyclic' involving either the hydroxylic or the ether oxygens in mutual H-bonding of two monomer units. Such possibilities are shown in FIg. VII.3. In the relatively dilute solutions used in the present work ( $C_{S}=0.02-0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ ) the assumption of only dimers or at the most trimers as the major associated species present is reasonable. The themodysamic quantities ( $K, \Delta H^{\circ}$ and $\Delta 5^{\circ}$ ) cal culated on the assumption of different types of dimers and trimers (Table VII.7) were therefore analysed to decide the most probeble associated species (Refer to Pig. VII.3).

The values of $\Delta H{ }^{\circ}$ and $\Delta S^{\circ}$ for open dimers (c) would be sinall because of a single hydrogen bond and very little restriction to internal rotation. Por the closed dimer resulting from E-bonding of a Pree monomer with an intramolecularly H-bonded monomer (d) there would be two hydrogen bonds resulting in $\Delta H^{\circ}$ value nearly double of that for the intramolecularly H-bonded monomer alone. The $\Delta s^{\circ}$ for such a diner would however be nearly the same as that for the intramolecularly $H$-bonded monomer (b) since the latter is mainly responsible for the entropy change. The cy clic four membered sing dimer resulting from mutual H-bonding of two monomers via their hydroxglic oxygen atoms (e) would be associated with $\Delta H^{\circ}$ and $\Delta S^{\circ}$ Values comparable with those for similar dimers of simple alcohols, Fiz. 12-34 kJ mol ${ }^{-1}$ and $30-80 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively ${ }^{28-31}$. The ring size of the cyalic dimers resulting from mutual H-bonding of two monomers via their ether oxygens (f) would be very large

## TRH-AND TETRAMETHYLENE GLYCOL MONOALKYL ETHERS





FIG-VIL4: PLOTS OF LOg KIF (1\&2) AND LOg KOF( 344 ) AGAINST 1/T.


$$
\text { Th } 4632
$$

(twelve-membered for $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ and fourteen-membered for $\left.\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}\right)$. The $\Delta \mathrm{H}^{\circ}$ and $\Delta S^{\circ}$ Values for such associated species would be comparable with (in fact larger than) those for similar ten-meabered ring dimers of ethylene- and diethylene glycol monoalkyl ethers ( $\sim 56 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $140 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ). open trimers (s with two hydrogen bonds and relativaly small restriction to internal rotation would result in small $\Delta H^{\bullet}$ and $\Delta S^{\circ}$ values. The cyalic trimers resulting from H-bonding via the ether axygens would give rise to large entropy changes because of very big rings (eighteen-membered for $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ and twentyone-membered for $\left.\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}\right)$ and as such the formation of such species would be less probable. The six-membered ring oyclic trimars ( $h$ ) involving the hydroxylic oxygens in H-bonding would result in $\Delta H^{\circ}$ comparable with that for similar structures in alcohols for which a value of $\sim 22 \mathrm{~kJ}$ mol ${ }^{-1}$ has been reported ${ }^{41}$.

Primethylene Glyeol Koncmathyl Gther: (cf Tables VII.5, VII. 7 and Fig. VII.4) : The equilibrium constants calculated on the assumption of dimers and trimers of open type showed large variations The calculated $\Delta H^{\circ}$ and $\Delta s^{\circ}$ values of $94 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $266 \mathrm{JK}^{-1}$ $\mathrm{mol}^{-1}$ for open dimers and $61 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $254 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ for open trimers are too high to be compatible with such structures. Open dimers and trimers were therefore ruled out as major associated species. The equilibrium constants calculated on the basis of closed/cyclic dimers and trimers showed good constancy. In the case of closed dimers, the calculated $\Delta H^{\circ}=30 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $\Delta \mathrm{S}^{\circ}=89 \mathrm{JK}^{-1}$ mol ${ }^{-1}$ cannot be ascribed to any single type of closed or cyclic
structure. For the closed dimer (d), though the $\Delta \mathrm{H}^{\circ}=30 \mathrm{~kJ} m o \mathrm{l}^{-1}$ might be consistent with two hydrogen bonds, the $\Delta s^{\circ}=89 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is much higher than that for the intramolecularly H-bonded monomer ( $\Delta S^{\circ}=52 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ) which is mainiy responsible for the entropy change. The present $\Delta H^{\circ}$ and $\Delta S^{\bullet}$ values are somewhat high for the four menbered ring dimer (e) but considerably low for the twolvo-menbered ring dimer ( $f$ ). The $\Delta \mathrm{H}^{\circ}=37 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $\Delta J^{\circ}=92 \mathrm{JK}^{-1}$ mol ${ }^{-1}$, obtained on the assumption of cyclic trimer are in fevour of the six membered ring structure $(h)$ only since the other 1.e. the eighteen membered ring structure would result in a much larger $\Delta S^{\circ}$ value. Thus the calculated thermodynamic quantities cannot be ascribed to a single association model. The calculated $\Delta H^{\bullet}$ and $\Delta s^{\bullet}$ values indicate the presence of a mixture of the fourand twolve membered ring dimers whith possibly a larger proportion of the former. Alternatively, the six membered ring trimer seams to be equally possible. It is therefore quite likely that all these three species might be cooxisting as an equilibrium mixture.

Tatereathricne Giyool Yonomethyl Bther: (of Tables VII.6, VII. 7 and Fig. VII.4) : The results for $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ were analysed in the same way as for $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$. Thus large variation of equilibrium constents together with relatively very high values of $\Delta H^{\bullet}=57 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}^{\bullet}=157 \mathrm{JK}^{-1}$ mol ${ }^{-1}$ for a single hydrogen boad exclude the possibility of open dimers. Cood constancy of the K's over the concentration range ( $0.02-0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ )together inth $\Delta H^{\bullet}=20 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{\bullet}=58 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ for cyallc dimers are compatible with the four membered ring structure rather than
the fourteen-meabered one. For open trimers the K's are reasonably constant over the concentration range studied; the $\Delta \mathrm{H}^{\circ}=40 \mathrm{~kJ} m o 1^{-1}$ and $\Delta S^{\circ}=96 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ are however considerably higher. In the case of cyclic trimers on the other hand, though the $\Delta \mathrm{H}^{\circ}=26 \mathrm{~kJ}$ $\mathrm{mol}^{-1}$ and $\Delta \mathrm{S}^{\bullet}=60 \mathrm{JK}^{-1}$ mol ${ }^{-1}$ are compatible with the $s 1 x$-membered ring structure, the corresponding K's show wide variation. Thus no unique type of associated species can satisfactorily explain the calculated $\Delta H^{\circ}$ and $\Delta S^{\circ}$ values. The thermodynamic quantities suggest either the four membered ring diner or a mixture of open and six-membered fing trimers as the major associated species. A mixture of these three speciss is therefore equally likely.

The association behaviour of the present compounds is thus seen to be similar to that of simple alcohols which exhibit a mixture of self-associated species in relatively dilute solutions. This is also ovident from the additional of bands which appear at $\sim 3450$ and $3350 \mathrm{~cm}^{-1}$ in more concentrated solutions of tri- and tetra-methylene glycol monomethyl ethers respectively, like those of simple alcohols in the $3500-3300 \mathrm{~cm}^{-1}$ range.
TABHZVIIAL : Measured areas ( $A^{\circ}$ ) of the free and intramolecularly H-bonded OH bands

| $\begin{aligned} & c_{s} \\ & \mathrm{~L}^{*} / \mathrm{cm} \\ & \mathrm{~T} / \mathrm{k} \end{aligned}$ | Trimethylene glycol monomethyl ether |  |  |  |  |  | Tetramethylene glycol monomethyl |  |  |  |  | $\begin{gathered} \hline \text { ether } \\ \hline 200 \\ 0.05 \\ A_{F}^{1} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 20 \\ & 1.0 \\ & \hline \end{aligned}$ |  | $\begin{gathered} 80 \\ 0.26 \\ A_{F}^{1} \end{gathered}$ | $\begin{aligned} & 100 \\ & 0.20 \\ & A_{F}^{\prime} \end{aligned}$ | $\begin{aligned} & 125 \\ & 0.16 \\ & \mathrm{~A}_{\mathrm{F}}^{1} \end{aligned}$ | $\begin{aligned} & 150 \\ & 0.133 \\ & \mathrm{~A}_{F}^{\prime} \end{aligned}$ | $\begin{aligned} & 20 \\ & 1.0 \end{aligned}$ |  | $\begin{gathered} 80 \\ 0.25 \\ A_{F}^{\prime} \end{gathered}$ | $\begin{aligned} & 100 \\ & 0.15 \\ & A_{F}^{\prime} \end{aligned}$ | $\begin{aligned} & 150 \\ & 0.08 \\ & A_{F}^{\prime} \end{aligned}$ |  |
|  | $\mathrm{A}_{\mathrm{F}}^{\prime}$ | $A_{1}$ |  |  |  |  | ${ }^{\text {A }}$ | $\mathrm{A}_{\mathrm{I}}^{\prime}$ |  |  |  |  |
| 298 | 47.8 | 132 | 41.4 | 39.2 | 38.0 | 35.7 | 57.0 | 198 | 48.4 | 34.5 | 26.5 | 20.7 |
| 308 | 48.4 | 118 | 42.6 | 40.3 | 39.2 | 36.8 | 56.4 | 176 | 49.5 | 35.7 | 26.5 | 20.7 |
| 313 | 49.9 | 110 | 43.8 | 41.5 | 40.3 | 38.0 | 56.4 | 165 | 49.5 | 36.8 | 26.5 | 21.9 |
| 318 | 49.9 | 108 | 43.8 | 42.6 | 40.3 | 39.2 | 57.0 | 151 | 49.5 | 36.8 | 27.6 | 21.9 |
| 323 | 48.9 | 107 | 43.8 | 43.8 | 41.5 | 40.3 | 57.0 | 136 | 49.5 | 36.8 | 27.6 | 21.9 |
| 328 | 48.9 | 102 | 44.9 | 43.8 | 42.6 | 41.5 | 56.4 | 128 | 49.5 | 36.8 | 27.6 | 21.9 |
| 333 | 48.4 | 98 | 44.9 | 43.8 | 42.6 | 41.5 | 55.3 | 123 | 49.5 | 36.8 | 27.6 | 21.9 |
| 338 | 48.4 | 93 | 44.9 | 43.8 | 42.6 | 42.6 | 54.6 | 114 | 49.5 | 36.8 | 27.6 | 21.9 |



| $\begin{aligned} & \mathrm{c}_{\mathrm{s}}^{*} \\ & \mathrm{~L} / \mathrm{cm} \\ & \mathrm{~T} / \mathrm{K} \end{aligned}$ | Trimethylene glycol monomethyl ether |  |  |  |  |  | Tetramethyl ene glycol monomethyl |  |  |  |  | $\begin{aligned} & \hline \text { ether } \\ & \hline 200 \\ & 0.05 \\ & A_{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 20 \\ & 1.0 \end{aligned}$ |  | 80 0.25 | $\begin{aligned} & 100 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 125 \\ & 0.16 \end{aligned}$ | $\begin{aligned} & 150 \\ & 0.133 \end{aligned}$ |  |  | $\begin{gathered} 80 \\ 0.25 \end{gathered}$ | $\begin{aligned} & 100 \\ & 0.15 \end{aligned}$ | $\begin{aligned} & 150 \\ & 0.08 \end{aligned}$ |  |
|  | $\mathrm{A}_{F}$ | $\mathrm{A}_{\mathrm{I}}$ | $\mathrm{A}_{F}$ | $\mathrm{A}_{F}$ | $\mathrm{A}_{F}$ | $\mathrm{A}_{\mathrm{F}}$ | $\mathrm{A}_{\mathrm{F}}$ | $\mathrm{A}_{\mathrm{I}}$ | $\mathrm{A}_{\mathrm{F}}$ | $A_{F}$ | $\mathrm{A}_{\mathrm{F}}$ |  |
| 298 | 54.5 | 158 | 47.2 | 44.6 | 43.3 | 40.7 | 65.3 | 234 | 55.6 | 39.7 | 30.5 | 23.8 |
| 308 | 55.8 | 143 | 49.2 | 46.5 | 45.2 | 42.5 | 65.8 | 216 | 57.6 | 41.6 | 30.8 | 24.1 |
| 313 | 57.9 | 134 | 50.8 | 48.2 | 46.8 | 44.2 | 66.3 | 203 | 58.0 | 43.2 | 31.0 | 25.6 |
| 318 | 58.3 | 133 | 51.2 | 49.8 | 47.1 | 45.8 | 67.1 | 187 | 58.4 | 43.4 | 32.6 | 25.8 |
| 323 | 57.7 | 132 | 51.5 | 51.2 | 48.7 | 47.4 | 67.6 | 179 | 58.8 | 43.7 | 32.8 | 26.0 |
| 328 | 57.8 | 127 | 53.2 | 51.8 | 50.4 | 49.1 | 67.3 | 161 | 59.2 | 44.0 | 33.0 | 26.1 |
| 333 | 57.6 | 123 | 53.5 | 52.2 | 50.8 | 49.4 | 66.5 | 156 | 59.5 | 44.3 | 33.2 | 26.3 |
| 338 | 58.3 | 118 | 53.9 | 52.2 | 51.1 | 49.7 | 66.1 | 146 | 59.9 | 44.6 | 33.4 | 26.5 |

TARGBYI, 3 : Intramolecular H-bonding in tri- and tetramethylene glycol monomethyl ethers.

|  | Trimethylene elycol monomethyl ether$\mathrm{c}_{\mathrm{s}}=20 \times 10^{-3} \mathrm{~mol} \mathrm{~m}^{-3}$ |  |  |  | Tetramethylene glycol monomethyl other$\mathrm{c}_{\mathrm{S}}=20 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I/K | $\mathrm{C}_{\mathrm{F}}$ | $\mathrm{C}_{1}$ | $\mathrm{K}_{\text {IF }}=\mathrm{c}_{\mathrm{F}} / \mathrm{C}_{\mathrm{I}}$ | ${ }^{\text {B }}$ I | $c_{F}$ | $\mathrm{C}_{1}$ | $\mathrm{K}_{1 P}=\mathrm{C}_{\mathrm{F}} / \mathrm{C}_{\mathrm{I}}$ | ${ }^{B}$ I |
| 298 | 11.6 | 8.4 | 1.38 | 19 | 13.9 | 6.1 | 2.28 | 39 |
| 308 | 12.4 | 7.6 | 1.63 | 19 | 14.6 | 5.4 | 2.70 | 40 |
| 313 | 13.1 | 6.9 | 1.80 | 20 | 15.0 | 5.0 | 3.0 | 41 |
| 318 | 13.5 | 6.5 | 2.07 | 20 | 15.5 | 4.5 | 3.44 | 42 |
| 323 | 13.7 | 6.3 | 2.17 | 21 | 16.0 | 4.0 | 4.0 | 42 |
| 328 | 14.0 | 6.0 | 2.33 | 21 | 16.3 | 3.7 | 4.41 | 43 |
| 333 | 14.3 | 5.7 | 2.51 | 22 | 16.5 | 3.5 | 4.71 | 45 |
| 338 | 14.8 | 5.2 | 2.85 | 22 | 16.8 | 3.2 | 5.25 | 46 |

TABGicirita : Calculated concentrations of various species according to different

Tabla VII. 5 : Calculated equilibrium constants for various postulated equilibria

| $\begin{gathered} \text { Equili brium } \\ \mathrm{C}_{\mathrm{S}} \\ \mathrm{~T} / \mathrm{K} \end{gathered}$ | Open Dimer $\rightleftharpoons$ Free Monomer |  |  |  |  | $\frac{\text { Cyclic Dimer }}{80}$ |  | $\rightleftharpoons$ | Free Monomer |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 88 | 100 | 125 | 150 |  |  |  | 125 | 150 |  |
|  | $\mathrm{K}_{\mathrm{DF}}$ | $\mathrm{K}_{\mathrm{DF}}$ | $\mathrm{K}_{\mathrm{DF}}$ | $\mathrm{K}_{\mathrm{DF}}$ | $\overline{\mathrm{K}}_{\mathrm{DF}}$ | $\mathrm{K}_{\mathrm{DF}}$ | $\mathrm{K}_{\mathrm{DF}}$ | $K_{\text {DF }}$ | $K_{\text {DF }}$ | $\overline{\mathrm{K}}_{\mathrm{DF}}$ |
| 298 | 0 | * | * | * | * | 29 | 24 | 26 | 22 | 25 |
| 308 | 1 | 0 | 0 | * | 0 | 35 | 32 | 33 | 28 | 32 |
| 313 | 3 | 2 | 0 | 0 | 1 | 47 | 40 | 38 | 33 | 40 |
| 318 | 5 | 4 | 1 | 1 | 3 | 49 | 52 | 40 | 43 | 46 |
| 323 | 8 | 8 | 3 | 2 | 5 | 60 | 63 | 52 | 52 | 57 |
| 328 | 13 | 11 | 8 | 6 | 10 | 74 | 79 | 72 | 69 | 74 |
| 333 | 18 | 15 | 12 | 9 | 13 | 94 | 85 | 83 | 77 | 85 |
| 338 | 28 | 20 | 15 | 12 | 18 | 121 | 100 | 88 | 86 | 99 |

TABLE VII. 5 (continued)

| $\begin{gathered} \text { Bquilibrium } \\ c_{s} \\ T / X \end{gathered}$ | Open Trimer $\rightleftharpoons$ Free Monomer |  |  |  |  | Cyclic Trimer $\rightleftharpoons$ |  |  | Free Monomer |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 80 | 100 | 125 | 150 |  | 80 | 100 | 125 | 150 |  |
|  | $\mathrm{K}_{\text {T }} \mathbf{F}$ | ${ }_{\text {Kr }}$ | ${ }^{\text {TF }}$ | $\mathrm{K}_{\text {TF }}$ | $\overline{\mathrm{K}}_{\text {TF }}$ | ${ }_{4}$ TF | $K_{T F}$ | $\mathrm{K}_{\mathrm{TF}}$ | ${ }^{\text {K }}$ TF | $\overline{\mathrm{K}}_{\mathrm{TF}}$ |
| 398 | 3 | 3 | 3 | 1 | 3 | 17 | 17 | 24 | 22 | 20 |
| 308 | 6 | 5 | 6 | 4 | 5 | 26 | 25 | 31 | 30 | - 28 |
| 313 | 11 | 9 | 8 | 6 | 8 | 32 | 33 | 37 | 37 | 35 |
| 318 | 12 | 13 | 10 | 11 | 11 | 35 | 45 | 41 | 51 | 43 |
| 323 | 17 | 20 | 16 | 16 | 17 | 44 | 56 | 56 | 66 | 56 |
| $3 \% 8$ | 26 | 31 | 29 | 27 | 22 | 58 | 76 | 83 | 92 | 77 |
| 333 | 29 | 34 | 38 | 34 | 34 | 74 | 83 | 99 | 107 | 91 |
| 338 | 47 | 48 | 34 | 42 | 44 | 98 | 100 | 106 | 122 | 107 |

$K_{T F}$ in mol ${ }^{2} \mathrm{dm}^{-6} \times 10^{3}$.
$K_{D F}$ in mol $\mathrm{dm}^{-3} \times 10^{2}$.

TABHBVII. 6 (continued)


Table vilar: Calculated thermodynamic quantities involved in various equilibria in tri- and tetramethylene glycol monomethyl ethers.



## CHAPTLR VIII

## GENLRAL DLSCUSSION AND CONCLUS IONS

VIII.1. Introduction :

The spectroscopic properties of the free and various types of H -bonded OH stretching bands of ethylene-, trimethylene- and tetramethylene glycol monoalkyl ethers $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}(\mathrm{n}=2,3$ and 4 respectively) are sumnarised in Table VIII.1.* similarly the thermodynamic quantities associated with the conversion of different types of $H$-bonded species into the free monomers are represented in Table VIII. 2. $^{\text {*. }}$ It can be seen that all the spectroscopic as well as thermodynamic quantities associated with intramolecular $H$-bonding in the series $\mathrm{RO}_{\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}}$ show an increase with the number of methylene groups in the chain. The plots of $\Delta H^{\circ}$ and $B$ against $\Delta \nu^{-}$are found to be linear (Fig. VIII.1). No such regularities are however found in the case of intermolecular association in these systems. The spectroscopic and thermodynamic quantities associated with intramolecular H-bonding in diethylene glycol monoalkyl ethers, $\mathrm{RO}^{\left(\mathrm{CH}_{2}\right)}{ }_{2} \mathrm{O}_{\left(\mathrm{CH}_{2}\right)}^{2} \mathrm{OH}_{2}$ which are also include in the same tables and Iigures, show somewhat different trends.

## VIII.2. Intramolecular HeBonding:

As mentioned earlier (Chapter III) the frequency shift is a measure of the H-bonding interaction. Similarly the half band width $\Delta \bar{w}_{1 / 2}$ and integrated intensity $B$ of the $H$-bonded OH groups,
which are related respectively to the anhamonicity and the dipole moment derivative associated with the vibrations of the groups concemed, both depend on the extent of H-bonding interaction. The increasing magnitudes of these properties involved in intramolecular H-bonding in $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{OH}$ then imply increase in $H$-bond strength with $n$. This is expected since with an increase in the number of methylene groups in the chain, the hydroxyl proton can get closer to the acceptor 1.e. the ether oxygen atom resulting in a shorter and hence stronger H-bond. The O...H distances calculated using Kuhn's relation $\left(\Delta \bar{v}=250 \times 10^{-8} / \mathrm{L}-74\right.$, $L$ in cm$)^{69}$, viz. 2.3, 1.6 and la for intramolecularly H-bonded monomers of $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}$ with $\mathrm{n}=2,3$ and 4 respectively, are comparable with those obtained by Fishman and Chen ${ }^{68} \mathrm{Viz} .2 .1,1.8$ and 1.2A for 1-2, 1-3 and 1-4 butane diols respectively.

The enthalpy change $\Delta H^{\circ}$ for the $M_{I} \rightleftharpoons M_{F}$ equilibrium is a measure of the energy difference between the free and the intramolecularly H-bonded monomers which is therefore directly related to the H-bond strength. The shorter and stronger H-bonds In bigger rings are therefore consistent with increasing magnitude of $\Delta H^{\circ}$ in the $R O\left(C H_{2}\right)_{n} O H$ series. The increasing ring size ( $5-, 6-$ and $7-m e m b e r e d$ for $n=2,3$ and 4 respectively) which is associated with increasing restriction to internal rotation, explains the larger values of $\Delta S^{\circ}$. As the chain length increases in the series $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}$, the relative number of rotational conformations favourable for intramolecular h-bonding decreases. further, the

Hevillal : Plots of (I) $\Delta H^{\circ}$ and (II) B vs $\Delta \bar{N}$ for intramolecular H-bonding

1. $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
2. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
3. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
4. $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$
5. $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$
6. $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
7. $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
(a) and (b): five and eight membered ring monomers (of (6) and (7) ) respectively.

## Fire VIILe2 : Variation of integrated intensity with temperature

1: Free OH band of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$.
2, 3 and 4 : Intramolecuiarly H-bonded OH bands of ethylene glycol monomethyl,-ethyl and -butyl ethers respectively.
5 and 6 : Intramolecularly H-bonded OH bands of triand tetramethylene glycol monomethyl ethers respectively.
7 and 8 : Intramolecularly H -bonded eight membered ring monomeric OH bands of diethylene glycol monomethyl- and -ethyl ethers respectively.


FIG-VIII-1:PLOTS OF (I) $\triangle H^{\circ}$ AND (II) B vs $\Delta \bar{v}$ FOR INIRAMOLECULAR H-BONDING


FIG-VIII-2: VARIATION OF INTEGRATED INTENSITY WITH TEMPERATURE.
larger entropy decrease required for foming the bigger rings lowers the probability of intramolecular H-bonding. The increase in the equilibrium constant $K_{I F}\left(=C_{F} / C_{I}\right)$, which is a measure of the relative populations of the free and the intramolecularly H-bonded monomers, is therefore easily understandable.

The linearity of the $\Delta H^{\circ}-\Delta \bar{v}$ plot (Fig. VIII.1(I)) for intramolecular H -bonding in the $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{OH}$ series is consistent with the well-known Badger-Bauer rule $\mathrm{e}^{74}$. Khun and Wires ${ }^{83}$ did not observe the $\Delta H^{\circ}-\Delta \bar{j}$ innearity for these compounds and coneluded that the Badger-Bauer rule is inapplicable to intramolecular H-bonding because of conformational interactions. Busfield et al, ${ }^{73}$ who have studied the intramolecular H-bonding in the corresponding aiols $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{OH}^{\mathrm{H}}$ on the other hand have shown the applicability of the Badger-Bauer rule. Fishman and Chen ${ }^{68}$ also have found that the Badger-Bauer rule is obeyed in intramolecular H-bonding in the series of 1-2, 1-3 and l-4 butane diols. It is apparent that as the ring size increases, the attractive interaction due to H-bonding should increase because of closer approach of the donor and acceptor groups whereas the repulsive interactions should decrease because of flexibility of the bigger rings. The $\Delta H^{\circ}$, which is the sum of all the interactions associated with the H-bonding should therefore increase as found in the present case.

Huggins and Pimental ${ }^{111}$ also have found linear variation of $\Delta \bar{v}_{1 / 2}$ with $\Delta \bar{N}$. Similarly Becker ${ }^{112 b_{\text {has }}}$ reported a linear relationship between the integrated intensity of the H-bonded complex and the associated $\Delta H^{\circ}$ and indicated a possibility of
correlation between $\Delta H^{\circ}$ and $\Delta \bar{v}_{1 / 2}$. The increasing magnitudes of $\Delta H^{\circ}, \Delta \bar{v}_{1 / 2}$ and $B$ are therefore consistent with an increase in $\Delta \bar{v}$ since all these properties are measures of H-bonding interaction and should therefore vary in a parallel manner. The high intensities of H-bonded stretching modes are attributed to increased ionic character of the $A-H$ bond ${ }^{113}$.

In the case of diethylene glycol monoalkyl ethers $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}_{4}$ the spectroscopic and thermodynamic quantities associated with the intramolecularly H-bonded five membered ring monomers are comparable with those for ethylene glycol monoalicyl ethers $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$. This is expected since in both the cases, the respective H-bonded monomers are quite similar. The numerical magnitudes of various quantities associated with the intramolecularly H-bonded eight membered ring monomer however do not follow the trends exhibited by the 5-, 6- and 7-membered ring monomers of $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}$ and the respective points de not lie along the otherwise linear plots. This is evidently due to the fact that the behaviour of the ether oxygen atom is markediy different from that of the methylene group. The gauche configurations of two $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ units could constrain the eight membered ring in such a way that the hydroxyl proton cannot approach the ether oxygen as close as that in the 7 -membered ring of $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ resulting In a smaller $\Delta \bar{v}$ value for the fomer. The presence of the middie oxygen atom (ether oxygen) however must be reducing the repulsive interactions which might explain the higher $\Delta H^{\circ}$ value in spite
of the lower $\Delta \bar{v}$ value.

## VIII.3. Intermolecular Association :

In the case of $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, the $\Delta \bar{v}, \Delta \bar{v}_{1} / 2$, as well as $B$ for the dimer band are appreciably larger than those for the intramolecularly H-bonded monomer which in turn are larger than those for the free monomer (Table VIII.1). This implies higher Values of the H-bonding interaction, anharmonicity and dipole moment derivative respectively for the dimer than those for the intramolecularly H-bonded monomer. These observations are consistent with higher value of $\Delta H^{\circ}$ for the dimer. In the case of $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}_{\left(\mathrm{CH}_{2}\right)}^{2} \mathrm{OH}$, because of extensive overlap of the dimer and the eight membered ring monomer bands, the $\Delta \bar{v}, \Delta \bar{v}_{1 / 2}$ and $B$ for the former could not be determined exactly. The approximate values determined as explained in Chapter VI (cf Table VI. 8 Kfound to be quite large in comparison with those for the intramolecularly H-bonded monomers and can be explained in the same way as for $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ dimer. In the case of tri- and tetramethylene glycol monomethyl ethers the bands of the inter- and intramolecularly associated species overlap so extensively that they could not be resolved. It is also found that there are more than one type of associated species present. Their spectral characteristics therefore could not be determined exactly.

Simple alcohols at concentration of $\sim 0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ in non-polar solvents are found to exhibit a number of infrared absorption bands in the $3500-3300 \mathrm{~cm}^{-1}$ region which are ascribable
to a mixture of polymeric species. The monoalkyl ethers of ethylene- and diethylene glycols on the other hand do not exhibit any additional OH bands in the $3300 \mathrm{~cm}^{-1}$ region even upto a concentration of $\sim 0.5 \mathrm{~mol} \mathrm{dm}^{-3}$. The thermodynamic quantities involved in their self-association have shown that the associated species at concentration of $\sim 0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ are mainly the ten-membered ring dimers (Chapter $V$ and VI). This peculiarity of the latter type of compounds is attributable to the ability of their $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ groups to exist predominantly in the gauche configuration in dilute as well as concentrated solutions. The $\mathrm{CH}_{2}$ rocking mode studies of a number of mono-, di- and tri-ethylene glycol monoalkyl ethers also have shown that the $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ groups of these compounds exist almost exclusively in the gauche conformation in solutions as well as in pure ilquids ${ }^{79-81}$. The tri- and tetra-methylene glycol monoalkyl ethers are found to exhibit a mixture of self-associated species at concentrations of $\sim 0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ (Ghapter VII). This shows that as the number of $\mathrm{CH}_{2}$ groups between the two oxygen atoms is increased beyond two, the association behaviour of diol monoalkyl ethers tends to be similar to that of simple alcohols.

## VIII.4. Snectrosconic Properties :

In the case of the free and the intramolecularly H-bonded hydroxyl bands, the positions of the absorption maxima ( $\bar{v}_{0}$ ) as well as the hall band widths $\left(\Delta \bar{v}_{1 / 2}\right)$ were found to be practically constant over the temperature range studied (298-338 K). The dimer band of ethylene glycol monoalkyl ethers showed a smail
increase ( of $\sim 5-10 \mathrm{~cm}^{-1}$ ) in $\bar{v}$ and a small decrease (of $\sim 5 \mathrm{~cm}^{-1}$ ) in $\Delta \bar{v}_{1 / 2}$. The int remolecularly H -bonded elght membered ring monomer band of $\mathrm{RO}\left(\mathrm{CH}_{2}\right) 2^{\mathrm{O}\left(\mathrm{CH}_{2}\right)} 2^{\mathrm{OH}}$ also showed similar varlations. In the case of the monoalkyl ethers of diethylene glycol as well as those of tri- and tetra-methylane glycols, the individual bands due to the inter- and intramolecularly associated species are not resolvabls because of extensive overlap. The combined bands however showed similar variations as in the case of dimer band of $\mathrm{RO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$.

The integrated intensity $B$ of various bands on the other hand shows relatively larger variations. In the case of ethanol and ethylene- and diethylene glycol monoalkyl ethers (of Tables IV.3, V. 12 and VI.4), it is observed that the integrated intensity B decreases with increasing temperature (Fig. VIII.2). This trend is in agreement with that reported by others ${ }^{28-30,109,114,112 .}$ The decrease of integrated intensity of the OH band with increasing temperature is suggested to be due to a change in the polariaability of the OH group and a decrease of the force fleld on the absorbing molecules due to their neighbours with an increase in temperature ${ }^{114}$. As reported in interature, ${ }^{112}$, the B's in the present case are found to vary in a manner parallel to $\Delta \mathrm{H}^{\circ}$; e.g. in the case of $\mathrm{KO}\left(\mathrm{CH}_{2}\right) 2_{2}^{\mathrm{OH}}$, it is observed that $\Delta \mathrm{H}_{\mathrm{DF}}^{\circ}>\Delta \mathrm{H}_{\mathrm{IF}}^{\circ}$ as well as $\mathrm{B}_{\mathrm{D}}>\mathrm{B}_{\mathrm{I}}>\mathrm{B}_{\mathrm{F}}$ (of Tables V.12, IV. 3 and V.13). It is however interesting to note that over the temperature range 298-338 K, the fractional decrease of the B's with reference to their values at $298 \mathrm{~K}\left(1 . e . \Delta B / B_{298} \mathrm{~K}\right.$ where $\Delta B=B_{298} K-B_{338} K$ follows exactly the opposite order.

Thus $\Delta B / B_{298} K$ for the dimer, intramolecularly H-bonded monomer and free monomer are found to be $5 \%, 8 \%$ and $16 \%$ respeotively. Similar trends have been observed in the case of the intramolecularly H-bonded eight- and the live-membered ring monomers of $\mathrm{BO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}{ }^{\mathrm{OH}}$. Becker ${ }^{112 b}$ also has noted that the magnitude of the temperature effect on integrated intensities decreases systematically with increase in $\Delta H^{\circ}$ of H-bond formation. In the case of tri- and tetramethylene glycol monomethyl ethers, the integrated intensities of the intramolecularly H-bonded monomers showed rather irregular variations, with a tendency to increase whth increasing temperature. This discrepancy is attributable to the presence of more than one type of intramolecularly H-bonded species, the intensities of which would not Vary in the same manner. The observed effect which is the resultant of all the constituents therefore shows somewhat different trends than those observed in the other cases. The temperature variation of integrated intensities of the intermolecularly associated species of diethylene and triand tetramethylene glycol monoalkyl ethers could not be studied because of extensive overlap of their bands with those of the respective intramol ecularly H-bonded monomers.

## VIII.5. Conclusions :

The results of present investigation can now be sumarized as follows:

The ethylene-, trimethylene- and tetramethylene glycol monoalkyl ethers in very dilute carbon tetrachloride solutions
( $C \sim 0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ) give rise to equilibria between free and intramolecularly H-bonded monomers. As the number of methylene groups between the two oxygen atoms is increased, the extent of intramolecular $H$-bonding (i.e. the relative population of intramolecularly H-bonded monomers with respect to the free species) is found to decrease whereas the strength of H-bonding interaction (e.g. $\Delta H^{\circ}=14,15$ and $18 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively) is found to increase because of close proximity of the H-bonding groups. The $\Delta H^{\circ}-\Delta \ddot{0}$ plot is linear, consistent with the Badger-Bauer rule.

The diethylene glycol monoalkyl ethers give rise to intramolecularly H-bonaed five- and eight- membered ring monomers in equilibrium with the iree species. The relative populations of the free and five membered ring monomers in these together with the corresponding frequencies and $\Delta H^{\bullet}$ value are comparable with those for the ethylene glycol monoalkyl others. The five- and eight membered ring monomers are prosent in the ratio of about $2: 1$ at 298 K , the $\Delta \bar{v}$ and $\Delta H^{\circ}$ values for the latter being $\sim 3.5$ and 1.6 times larger respectively. The eight membered ring monomer shows deviation in the $\Delta H^{\circ}-\Delta N^{\circ}$ plot which is attributable to structural difference of this species brought about by the presence of an additional ether oxygen atom.

At higher concentrations, these compounds associate giving rise to intermolecularly H-bonded species in equilibrium with the free and intramolecularly H-bonded monomers. The main associated species of ethylene and diethylene glycol monoalkyl ethers in the concentration range of $0.01-0.15$ are found to be ten membered
ring dimers resulting from mutual H-bonding of two molecules via their ether oxygen atoms in the $\beta$-positions. The association behaviour of these compounds is thus markedly different from that of simple alcohols, which give rise to a mixture of different types of self-associated species. This peculiar behaviour of the ethylene- and diethylene glycol monoalkyl ethers is attributable to the ability of their $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ skeletons to maintain gauche conformations in dilute as well as concentrated solutions. The extent of dimerization in diethylene glycol monoalkyl ethers is smaller than that in ethylene glycol monoalkyl ethers. This is ascribable to the formation of the eight membered ring monomer in the former having H-bond strength comparable with those in the dimer but smaller entropy decrease. The tri- and tetramethylene glycol monoalkyl thers are found to give rise to a mixture of dimers and trimers of open and/or closed type. The association behariour these compounds is thus similar to that of simple alcohols.

The frequency shifts $(\Delta \bar{u})$ and hali-band widths $\left(\Delta \bar{v}_{1 / 2}\right)$ of the hydroxyl bands of the free- and intramolecularly H-bonded five mambered Ing monomers are practically independent of tamperature whereas in the case of the other intramolecularly H-bonded monomers (1.e. the six-, seven- and eight membered ring species) as well as the intermolecularly associated species, a slight decrease is observed with increasing temperature. The integrated intensities (B) also in general showed a decrease with a rise in temperature. The $\mathrm{B}^{\prime} \mathrm{s}$ and $\Delta \mathrm{H}^{\bullet}$ ' s for different types of H -bonded species are found. to vary in a parallel manner; 1.e. those with higher value of $\Delta \mathrm{H}^{\circ}$
have also a higher value of $B$. The fractional decrease of the B's with respect to their room temperature values however followed an opposite order. All these effects arise due to the changes in force fields of the solute and solvent molecules with temperature.
TAEDE villial : Sumary of spectroscopic properties of the free- and H-bonded OH bands

| Compound | Free Monomer |  |  | Intramoleculaply H-bonded Monomer |  |  |  |  |  | Assomiated 3nectios* |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{\square}$ | $\Delta_{1 / 2}$ | $3 \times 10^{-3}$ | $\bar{v}$ | $\Delta \bar{v}$ | $\Delta \bar{v}_{1 / 2}$ | $\mathrm{B} \mathrm{\times 10}{ }^{-3}$ | Ring size | R | $\bar{\square}$ | $\Delta 0^{\circ}$ | $\Delta_{1 / 2}$ | $\mathrm{B} \times 10^{-4}$ |
| $1 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ | 3635 | 27 | 4.7 | - | - | - | - | - | - | - | - | - | - |
| $2 \mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | 3635 | 26 | - | 3600 | 35 | 32 | 6.4 | 5 | 2.3 | 3475 | 160 | 150 | 5.9 |
| $3 \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | 3635 | 28 | - | 3600 | 35 | 32 | 6.3 | 5 | 2.3 | 3475 | 160 | 150 | 6.1 |
| $4 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | 3635 | 27 | - | 3600 | 35 | 32 | 6.4 | 5 | 2.3 | 3475 | 160 | 145 | 5.7 |
| $5 \mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ | 3630 | 25 | - | 3540 | 90 | 60 | 19 | 6 | 1.5 | 3500 | 130 | - | - |
| $6 \mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ | 3630 | 26 | - | 3450 | 180 | 96 | 39 | 7 | 1.0 | 3430 | 200 | - | - |
| $7 \mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}{ }^{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}}$ | 3635 | 25 | - | 3600 | 35 | 32 | - | 5 | 2.3 | 3440 | 195 | 160 | 12.6 |
|  |  |  |  | 3475 | 160 | 100 | 23 | 8 | 1.1 |  |  |  |  |
| $8 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ | 3635 | 25 | - | 3600 | 35 | 32 | - | 5 | 2.3 | 3440 | 195 | 160 | 11.3 |
|  |  |  |  | 3470 | 165 | 105 | 29 | 8 | 1.1 |  |  |  |  |


| $\stackrel{\sim}{\sim}$ |  |  | $\begin{aligned} & \text { 'sse: } \\ & \text { 'semour } \end{aligned}$ |  иъл pөseque $[]^{X \Gamma}$ | แाร 7 <br>  <br> 4 4 º ${ }^{\prime} I$ | $\text { oI } 9$ <br> $p$ 9 1 IT | $2^{\text {toum }}$ |  | p $307 \varepsilon$ <br> II peseque <br> fx posequ <br> x peseque <br> ! 188278 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Est | 89 89 | $\varepsilon \tau$ $\varepsilon \tau$ | $8 \cdot 9$ $8 \cdot 9$ | $9^{\text {Ieutg }}$ $0^{20}$ urfo | $\begin{aligned} & q^{8 S} \\ & \varepsilon^{\varepsilon z} \\ & q^{\varepsilon s} \\ & \varepsilon^{z z} \end{aligned}$ |  |  |  | $\begin{aligned} & H 0^{z}\left({ }^{2} \mathrm{HO}\right) \\ & \\ & \mathrm{HO}^{2}\left(^{2} \mathrm{H}\right) \end{aligned}$ | 2 9 |
| 09 | 97 | 8 | 08 | دeutsix |  |  |  |  |  |  |
| 89 | $\propto$ | $9^{\circ} \mathrm{C}$ | 898 | $\mathrm{p}^{\text {xeurta }}$ | 89 | 8 T | $00^{\circ} \mathrm{Z}$ | $\varepsilon^{\bullet}{ }^{\circ}$ |  | 9 |
| 26 | 28 | $L^{\circ} 6$ | $\propto$ | 0 cemix |  |  |  |  |  |  |
| 68 | $0 ¢$ | ** | $\varepsilon 9$ | $p^{\text {xeuth }}$ | 29 | ST | $8^{\circ} 0^{-}$ | $\nabla^{\circ} \mathrm{T}$ |  |  |
| \%\%T | 29 | \% | $0 \cdot 8$ |  | 92 | \% |  | $60^{\circ} \mathrm{n}$ |  | $\varepsilon$ |
| でT | 29 | St | $\tau^{\circ} \mathrm{\varepsilon}$ | $0^{\text {د0w\% }}$ | 23 | \% | $8^{\circ} \mathrm{C}$ | $00^{\circ} \mathrm{O}$. |  |  |
| 9ع! | $9 ¢$ | \#t | $\varepsilon^{\bullet} \varepsilon$ | $9^{\text {دempa }}$ | 62 | $9 \tau$ | $6^{\circ} 9$ | $60^{\circ} 0$ |  | T |
| . 58 | - H V | -0\% | $\varepsilon^{001 \times}$ | se prods peqefoossy |  |  | . 20 | ${ }^{1}{ }_{4}$ |  |  |
| sutpuog-H sernoetomsequi sutpuog-h detnoe tourespul |  |  |  |  |  |  |  |  |  |  |
|  <br>  |  |  |  |  |  |  |  |  |  |  |



## REPSRENCES

1. J.J. Fox and A.B. Martin, ProceRoy.Soce (London), 1937, A162, 419.
2. M.St.C. Flett, SpectrochimaActa, 1957, 10, 21.
3. L.J. Bellamy, (a) 'Infra Red Spectra of Complex Nolecules', (Methuen, London, Second Edition, 1959), p. 95;
(b) 'Adyanaes in IeR. Groun Frequencies', (Methuen, London, 1968), p. 256.
4. A.J. Barnes, H.E. Hallam and D. Jones, Proceroyeboce(Iondon), 1973, 335A, 97.
5. O.R. Wulf and U. Liddel, J.Amer.Chem.Soce, 1935, 57, 1464.
6. R.M. Badger and S.H. Bauer, J.Chem.Phys., 1936, 4, 711.
7. P. Barchewitz and R. Freymann, Compt.Rend., 1937, 204, 1729.
8. J.J. Fox and A.E. Martin, Trans, Faraday Soc., 1940, 56, 897.
9. A.M. Buswell, W.H. Rodebush and R.M. Whitney, JamereCham.Soce, 1947, 69, 770.
10. M. Oki and H. Iwamura, Bul\}, ChemeSoc.Japan, 1959, 32, 567 and 590.
11. F. Dalton, G. Meakins, J. Robinson and W. Zaharia, J. Chem,Soce, 1962, 1566.
12. P.J. Krueger and H.D. Mettee, Canad.J.Chem, 1963, 42, 347.
13. A.J. Hames and H.E. Hallam, Trans. Faraday Soce, $1970,66,1920$ and 1932.
14. J. Errera, R. Gaspart and H. Sack, JeChem. Phys., 1940, 8, 63.
15. N.D. Coggeshall and E.L. Sair, J.Amer,ChemeSoc., 1951, 23, 5414.
16. F.A. Smith and E.C. Creitz, JaRes,NatheBur.S.td., 1951, 46, 145.
17. W.C. Coburn, Jr. and E. Grunwald, JeAmer, ChemeSoc., 1958, 80, 1318.
18. R.G. Inskeep, J.M. Kelliher, P.E. Makiahon and B.G. Somers, J.Chema Phys., 1958, 28, 1033.
19. R.G. Inskeep, F.E. Dickson and H.M. Olson, JeMolesipectroscopy, $1960,5,284$.
20. L.P. Kuhn and R.E. Bowman, Spectrochim.Acta, 1961, 17, 650.
21. L.J. Bellamy and R.J. Pace, SnectrochimeActa, 1966, 22, 525.
22. D.A. Ibbitson and L.F. Moore, J.Chem.ioce (B), 1967, 76 and 80.
23. A.N. Hetciner and C.A. Heller, J.Phys.Chem., 1968, 22, 1839.
24. A.J. Bames and J. Murto, JeChem.Soce, Faraday Trans.II, 1972, 68, 1642.
25. P. Bordewijk, M. Kunsit and A. Rip, J.Phys.Chem., 1973, 77, 548.
26. A.S.N. Murthy, R.E. Davis and C.N.R. RaO, Theor.Ch1m,Anta, 1969, 13, 81.
27. J.R. Hoyl and and L.B. Kier, Theor.ChimeActa, 1969, 15, 1.
28. U. Licuel and E.D. Becker, SpectrochimeActa, 1957, 20, 70.
29. H.D. Becker, U. Liddet and J.N. Shoolery, J.Mol_inectroscopz, 1958, 2, 1.
30. M. Van Thiel, B.D. Becker and G.C. Pimentel, J.ChemePhys., 1957, 2R, 96.
31. P.J. Krueger and H.D. Nettee, Canad.J.Chem., 1965, 43, 2888.
32. S. Singh and C.N.R. Rao, J.Phys.Chem., 1967, 21, 1074.
33. H.C. Van Ness, J. Van Winkle, H.H. Richtol and H.B. Hollinger, JePhys, Chem., 1967, 21, 1483.
34. P.I. Gold and R.L. Perrin, JePhys, Cheme, 1967, 71, 4218.
35. J.C. Davies, Jr., K.S. Pitzer and C.N.R. R80, J.Physefhem., 1960, 64, 1744.
36. W. Masschelein, Spectrochim,Acta, 1962, 18, 1567.
37. H. Dunken and H. Fritesche, SpectrochimeActa, 1964, 20, 785.
38. R.M. Hammeker, R.M. Clegg, L.K. Patterson, P.E. Rider and S.L. Rock, JePhys.Chem., 1968, 22, 1837.
39. W.L. Chandler and R.H. Dinius, JePhys.Chem.: 1969, 73, 1596.
40. T.S.S.R. Murthy, Canad.J.Chem., 1970, 48, 184.
41. R. Mecke, Discusstons Faraday Soc., 1950, 2, 161.
42. A.D. Cohen and C. Reid, J.Chem.Phys., 1956, 25, 790.
43. M. Saunders and J.B. Hyne, J.Chem.Phys., 1958, 29, 263.
44. E.E. Tucker, S.B. Farnham and S.D. Christian, J.Phys. Chem., 1969, 73, 3820.
45. E.A. Tucker and E.D. Becker, J.Phys.Chem., 1973, 27, 1783.
46. W. Weltner, Jr., and K.S. Pitzer, J.Amer.Chem.Soc., 1951, 23, 2606.
47. C.B. Kretscher and R. Wiebe, JeAmer, Chem.Soc., 1954, 26, 2579.
48. A. Ens and F.E. Murray, Canad, J.Chem., 1957, 35, 170.
49. J. Feeney and S.M. Walker, J.Chem.Soc. (A), 1966, 1148.
50. A.H. Fletcher and C.A. Heller, JePhys.Chem., 1967, 21, 3742.
51. W.B. Dixon, JaPhyseChen-, 1970, 24, 1396.
52. A.N. Fletcher, JePhys, Chem., 1972, 26, 2662.
53. G.C. Pimentel and A.L. MoClellan, 'The Hydrogen Bond', (W.H. Freeman, London, 1960), p. 110.
54. M. T1chy, Ady, OxzeChem-, 1965, 5, 116.
55. S. Mizushima, T. Shimanouchi, T. Miyazaw, K. Abe and A. Yasum1, J.ChemePhys., 1951, 19, 1477; S. Misushima, T. Shimanouch1, K. Kuratoni and T. Myazava, Jamer, Chem.3oc.: 1952, 24, 1378.
56. L.R. Zumwalt and R.M. Badger, JeAmer, Chemojoc.: 1940, 62, 305.
57. P.J. Kruegner and H.D. Mettee, Canad.J.Chom., 1964, 42, 326, 340 and 347.
58. P.J. Krueger and H.D. Mettee, GanadeJ. Chem. : 1965, 43, 2970.
59. P. Buckey, P.A. A1 guere and D. Yamamoto, CanadeJ.Chem., 1968, 46, 2917.
60. P. Buckley, P.A. Giguere and M. schneider, Canad.JeCheme , 1969, 47, 901.
61. P.A. Qiguere and M. Bchncider, Canad.J.Chem.: 1972, 50, 162.
62. I.M. Goldman and R.O. Crisler, J.Ora.Chem., 1958, 23, 7613
P.F.R. Schleyer, C. Wintnor, D.S. Trifan and
R. Bacskai, Tetrahedron Thett., 1969, 14, 1;
M. Oki and H. Iwamura, Aul1. Chem.Sog.Japan,

1969, 32, 960 and 965;
P.J. Krueger and H.D. Mettee, Petrahedron Lette, 1966, 16, 1687;
$\rightarrow$ H. Iwamura, Totrahedron Lett., 1970, 26, 2227.
63. P.J. Krueger and H.D. Mettee, JeMol. Spectroscopy, $1965,18,131$.
64. P. Buckley and P.A. Giguere, GanadeJ.Chem-: 1967, 45, 397.
65. H. Enc and J. Neel, CompteRend. $1961,252,1786 ;$ 1962, 255, 2947;
H. Buc, Ann.Chime(Paris), 1963, 8, 409.
66. P.V.R. Schlyer, JaAmeraChemaSoc., 1961, 83, 1368.
=67. A. Johansson and P. Kollmann, GhemePhys,hett., 1973, 18, 276.
68. E. Fishman and T.L. Chen, SpactrochimaActa, 1969, 25A. 1231.
69. L.P. Kuhn, J.Amer. ChemeSoc. , 1952, 74, 24923 1964, 26, 4323.
70. L.P. Kuhn, P.V.R. Schleyer, W.F. Baitinger, Jr. and L. Gberson, JaAmer, ChemaSoc., 1964, 86, 650.
71. T. Yonezawa, H. Saito, S. Matsuoka and K. Fukui, Bull, Chom, SoceJonan, 1965, 38, 1431.
72. D.J. Morantz and M.J. Waite, SnactroohimeActa, 1971, 27A, 1133.
-73. W.K. Busfield, M.P. Ennis and I.J. MoEwen, SpeatronimeActa, 1973, 29A, 1259.
74. R.M. Sadger and S.H. Bauer, JaChem.Phys.: 1937, 5, 839.
76. F.T. Wall and W.F. Clausen, LeAmer, ChomeSoe., 1939, 61, 2679.
76. A. Poster; A. Hains and M. Stacey, Tetrahedron, 1961, 16, 177.
77. H. Saito, T. Yonezawa, S. Matsuoka and K. Pukui, Bull.Cham.Soced apan, 1966, 39, 989.
78. C.P.N. Son, H.C. Beachell and N.H. Ngoc, Comptadend., 1971, G273, 210.
79. A. Miyake, J.AmaraChem, Boc., 1960, 82, 3040.
80. T.K.K. Srinivasan, C.I. Jose and A.B. Biswas,
(a) Molle Chem,SoceJaran, 1964, 37, 1770;
(b) Int.EonfeSpectroscopy, 1967, 2, 293.
81. T.K.K. Srinivasan, C.I. Jose and A.B. Biswas, GenadeJ.Chem., 1969, 47, 3877.
82. P. Bucicl ay and M. Brochu, Canad.J.Chem.:

1872, 50, 1149.
83. L.P. Kuhn and R.A. Wires, LeAmer.Chemasoce, 1964, 86, 21ఱ.
84. N.N. Shapetko, D.N. Sh1gorin, A.P. Skoblinov,
T.S. Ryabchikova and L.N. Reshetova,

Ontics and Spectroscopy, 1964, 17, 247.
-85. V.P. Lodygina, A.I. Iranov, S.M. Baturin and
S.G. Entelis, Russed.Phys.Chem., 1970, 44, 1068.
86. V.3. Markevich, V.A. Terent'ev and N.E. Shtivel', RussuJ.Phys.Chem., 1969, 43, 7.
87. (a) G.Herzberg, 'Infrared and Raman Spectra of Polyatomic Molecules', (D.Van Nostrand, Princeton, 1945), p. $261 ;$
(b) J.C.D. Brand and J.C. speakman, 'Molecular Structure', (Bdward Amnold Publishers, London, 1960), p. 155.
88. D.A. Remsay, JeAmer.Chemojoc., 1962, 24, 72.
89. K.S. Sheshadri and R.N. Jones, SnectrochimeActa, 1963, 12, 1013.
90. R.N. Jones, D.A. Ramsay, D.S. Keir and K. Dobriner, Ifamer.Chemeioc., 1952, 74, 80.
91. Ref. $87(\mathrm{a})$, p. 531.
92. C.G. Cannon, SpectrochimeActa, 1958, 10, 341.
93. S. Bratoz, Ady. Puanturn.Chemistry, 1967, 3, 209.
-94. S.H. Lin, 'Physical Chemistry - An Adyanced Treatise, Yale V. Valency', dited by H. Eyring (Academic Press, N.Y., 1970), p. 439.
-95. P.A. Kollman and L.C. Allen, ChemaRex., 1972, $22,283$.
96. C.A. Coulson, 'Hydroren Bonding', adited by D. Hadži and H.W. Thompson (Pergamon Press, 1959), p. 339.
97. E.R. Lippincott, J.N. Finch and R. Schroedor, 'Hydreqen sonding' ed. by D. Hadži and H.W. Thompson (Pergamon Press, 1959), p. 361.
-98. M.D. Joesten and L.J. Schaad, 'Hydrosen Bonding', (Marcel Dekker, New York, 1974), p. 195.
99. M.D. Joesten and R.S. Drago, JeAmer, Chem,Soce, 1962, 84, 3817; K.F. Purcell and R.S. Drago, J.Amer.Chem,Soc., 1967, 82, 2874.
100. S. Singh, A.S.N. Murtiny and C.N.R. Hao, Trans.Faraday Soc., 1966, 62, 1056; A.S.N. Murthy and C.N,R. RaO, apol, Spactroscepy Rey., 1968, 2, 69.
101. R. West, D.L. Powell, L.S. Whatley, M.K.T. Lee and P.F.R. Schleyer, JeAmer.Chem,Soc., 1962, 84, 3222.
102. T. Lin and E. Fishman, SpectrocinimeActar 1967, 23A, 491.
103. E.M. Amett, L. Joris, E. Mitchell, T.S.S.R. Murty, ToM. Gorrie and P.ק.R. Schleyer, JeAmer.Chem.Soc., 1970, 22, 2365.
104. W.A.P. Luck and W. Ditter, JekoheStructe, 1968, 1, 261.
105. R.A. Nyquist, SpectrochimeActa, 1963, 19, 1655;
P.V. Huong, M. Couzi and J. Lascombe, J.Chim.Phys., 1967, 64, 1056.
106. A.V. Iogansen, DoktaAked.Navk.SSSR, 1965, 164, 610:
107. L.I. Smith and J.A. Sprung, JeAmer Chem,Soc., 1943, 65, 1278.
108. 'Intemational Goiticat Tablas', 1928, 3, 28.
109. I. Motoy ama and C.H. Jarboe, J.Phys, Chem., 1966, 70, 3226.
110. A.W. Baker and M.D. Teaman, SpectromimeActa, 1966, 22, 1773.
111. C.M. Muggins and G.C. Pimentel, JePhys.Cheme, 1966, 60, 1615.
112.(a) H. Tsubomura, J.ChemePhys. : 1956, 34, 927 ;
(b) E.D. Becker, SnectrochimeActa, 1961, 12, 436.
113. Goti. Barrow, Jephys, Chem., 1955, 59, 1129.
114. S.J. Slowinski, JF. and G.C. Claver, Jopte Sornmer.: 1965, 45, 396;
R.H. Hughes, R.J. Martin and N.D. Coggeshall, J. Ghemeryy., 1956, 24, 489; U. Iiđdle and E.D. Becker, JeChemePhys., 1956, 25, 173; J.M. Finch and B.R. Lippincott, JeChemePhys., 1956, 24, 908 ; JePhys, Cheme, 1957, 61, 894.


# Infra-red Studies and Thermodynamics of Hydrogen Bonding in Ethylene Glycol Monoalkyl Ethers. Evidence for a Ten Membered Ring Dimer 

By L. S. Prabhumirashi
Chemistry Department, Poona University, Poona 411 007, India
AND
C. I. JOSE*

National Chemical Laboratory, Poona 411 008, India
Received 4th October, 1974
An i.r. study in the hydroxyl stretching region of three monoalkyl (methyl, ethyl and butyl) ethers ethylene glycol in $\mathrm{CCl}_{+}$solutions (concentrations up to $0.1 \mathrm{~mol} \mathrm{din}{ }^{-3}$ ) has been carried out over temperature range $298-338 \mathrm{~K}$. Apparent integrated intensities of the bands at $\sim 3635, \sim 3600$ $1 \sim 3475 \mathrm{~cm}^{-1}$ of the free, intramolecularly and intermolecularly bonded OH groups have been asured and used to evaluate the equilibria between the monomeric and associated species. Various ssible structures including open and cyclic dimers, trimers and tetramers for the associated species sorbing at $\sim 3475 \mathrm{~cm}^{-1}$ have been considered. A cyclic ten-membered ring dimer involving the er oxygens in hydrogen bonding satisfactorily explains the observed results. Various thermonamic quantities such as $K, \Delta H^{\circ}, \Delta G^{\circ}$ and $\Delta S^{\circ}$ in the three way equilibrium involving free nomer, intramolecularly bonded monomer and the cyclic ten membered ring dimer have been lluated. The values of intra- and inter-molecular hydrogen bond strengths as calculated from the pective $\Delta H^{\circ}$ values are $\sim 14.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\sim 28.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

Intramolecular hydrogen bonding in $\beta$-substituted ethanols $\mathrm{XCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, where is a proton accepting group such as $\mathrm{Cl}, \mathrm{NH}_{2}, \mathrm{OCH}_{3}$ etc., is well known ${ }^{1-17}$ and very dilute solutions, such compounds ${ }^{2,9-12}$ exist as equilibrium mixtures of nondrogen bonded free forms and intramolecularly hydrogen bonded gauche conrmers. The intermolecular association of such compounds is particularly interest$g$ in view of the presence of the additional proton acceptor X, which can lead to fferent types of self-associated species not possible in simple alcohols. For simple zohols, the first associated species absorbing at $\sim 3500 \mathrm{~cm}^{-1}$ are usually considered be linear and/or cyclic dimers. ${ }^{18-26}$ While this assumption is supported by most cent work, ${ }^{27-36}$ there is some evidence that this band may be due to linear and/or clic trimers ${ }^{37-39}$ and/or tetramers. ${ }^{37,40,41}$ The results of self-association studies ( 2-cyanoethanol ${ }^{11}$ and 2-methoxyethanol ${ }^{12,42}$ have been interpreted on the basis cyclic and open dimers respectively. The possible participation of the additional oton acceptor X in the $\beta$-position in self-association has generally been ignored cept for 2-ethoxyethanol. ${ }^{43,44}$ However, our previous work ${ }^{43}$ was of a prelimiry nature and in that of Lodygina et al., ${ }^{44}$ the presence of the band at $\sim 3635 \mathrm{~cm}^{-1}$ te to the non-hydrogen bonded free monomer, and consequently its participation the equilibrium, was not considered. We have therefore carried out a detailed vestigation of methoxy-, ethoxy- and butoxy-ethanol in $\mathrm{CCl}_{4}$ solutions using inteated intensities in place of the usually employed absorbance maxima to determine e concentrations of the absorbing species. The data have been examined to deterine which species, open and cyclic dimers, trimers and tetramers, absorb at $\sim 3475$

The alkoxyethanols in very dilute solutions ( $C \leqslant 0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ) in $\mathrm{CCl}_{4}$ exhibit two bands at $\sim 3635 \mathrm{~cm}^{-1}$ and $\sim 3600 \mathrm{~cm}^{-1}$ which are attributed ${ }^{5,9,12}$ to free and intra-molecularly hydrogen bonded OH groups respectively. In our preliminary work, the relative intensities of these bands are observed to be independent of concentration indicating the presence of an equilibrium between the non-hydrogen bonded free monomer $\left(\mathrm{M}_{\mathrm{F}}\right)$ and the intramolecularly hydrogen bonded five membered ring monomer ( $\mathrm{M}_{1}$ ) (fig. 1). At concentrations above $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$, an additional OH band appears at $\sim 3475 \mathrm{~cm}^{-1}$, the relative intensity of which increases with concentration indicating it to be due to intermolecular association. This band is symmetric in the concentration range $0.01-0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ and may therefore be attributed to a single associated species ( $n$-mer). At higher concentrations no new OH bands are found as in the case of simple alcohols (at $\sim 3300 \mathrm{~cm}^{-1}$ ) ${ }^{2}$ but the band at $\sim 3475 \mathrm{~cm}^{-1}$ becomes increasingly asymmetric on the lower frequency side due to more highly associated species.

I

II

Fig. 1.-Free (I) and intramolecularly bonded (II) monomers.
The three species in solution (concentration up to $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ ), $\mathrm{M}_{\mathrm{F}}, \mathrm{M}_{1}$ and $n$, would be expected to be in equilibrium (fig. 2), with the equilibrium constants given by

$$
\begin{equation*}
K_{\mathrm{IF}}=c_{\mathrm{F}} / c_{\mathrm{I}}, K_{n \mathrm{~F}}=c_{\mathrm{F}}^{n} / c_{n} \text { and } K_{n \mathrm{I}}=c_{\mathrm{l}}^{n} / c_{n} \tag{1}
\end{equation*}
$$

where the subscripts $F, I$ and $n$ denote the free monomer, the intramolecularly bonded
Table 1.-Spectroscopic properties of the various OH groups at 298 K

| type of OH group | spectral property | ethanol | methoxy ethano | ethoxy ethano | butoxy ethano |
| :---: | :---: | :---: | :---: | :---: | :---: |
| free | $\overline{\mathrm{v}} / \mathrm{cm}^{-1} \pm 2.5$ | 3635 | 3635 | 3635 | 3635 |
|  | $\Delta_{v_{\frac{1}{2}} / \mathrm{cm}^{-1} \pm 2.5}$ | 27.5 | - | -- | - |
|  | $\begin{aligned} & B_{\mathrm{F}} \times 10^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \\ & (\mathrm{~d} B / \mathrm{d} T)_{\mathrm{F}} / \end{aligned}$ | 4.70 | - | - | - |
|  | $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-1}$ | -19 | - | - | - |
|  | $\left(\Delta B / B_{298}\right)_{\mathrm{F}}{ }^{*}$ | -16.2\% | - | - | - |
| intramolecularly bonded | $\bar{v} / \mathrm{cm}^{-1} \pm 2.5$ | - | 3600 | 3600 | 3600 |
|  | $\Delta_{i_{1}} / \mathrm{cm}^{-1} \pm 2.5$ | - | 32.5 | 32.5 | 32.5 |
|  | $\begin{aligned} & B_{\mathrm{I}} \times 10^{-3} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \\ & (\mathrm{~d} B / \mathrm{d} T)_{\mathrm{I}} / \end{aligned}$ | - | 6.44 | 6.26 | 6.37 |
|  | $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-1}$ | - | -12.4 | -12.8 | -13.5 |
|  | $\left(\triangle B / B_{298}\right)^{*}$ | - | -7.7\% | -8.2\% | -8.4\% |
| intermolecularly bonded | $\overline{\mathrm{v}} / \mathrm{cm}^{-1}$ | - | 3475 | 3475 | 3475 |
|  | $\Delta_{v_{\frac{1}{2}} / \mathrm{cm}^{-1} \pm 5}$ | - | 150 | 150 | 145 |
|  | $\begin{aligned} & B_{\mathrm{D}} \times 10^{-4} / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \\ & (\mathrm{~d} B / \mathrm{d} T)_{\mathrm{D}} / \end{aligned}$ | - | 5.9 | 6.1 | 5.7 |
|  | $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-1}$ | - | -50 | -80 | -50 |
|  | $\left(\Delta B / B_{298}\right)_{\mathrm{D}} *$ | - | - 5.1 \% | -5.4\% | -3.5\% |

$$
* \Delta B=B_{33 \mathrm{BK}}-B_{298 \mathrm{~K}} .
$$

monomer and the intermolecularly bonded $n$-mer respectively. [For the dimer (fig. 2, eqn (6) and tables 1-4), the subscript $n=2$ has been replaced by $D$ for convenience.] The thermodynamic quantities, $\Delta H^{\circ}, \Delta G^{\circ}$ and $\Delta S^{\circ}$ involved in the respective equilibria were then calculated from the measured equilibrium constants ( $K$ ) using the standard expressions

$$
\begin{equation*}
\Delta H^{\circ}=-R\left[\frac{\mathrm{~d} \ln \bar{K}}{\mathrm{~d}(1 / T)}\right] ; \quad \Delta G^{\circ}=-R T \ln \bar{K} \quad \text { and } \quad \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \tag{2}
\end{equation*}
$$

where $\bar{K}$ is the mean of the $K$ values over the concentration range studied.

triangular equilibrium
Fig. 2.-The three way equilibrium considered.

Table 2.-CONCENTRATIONS $\left(\times 10^{3}\right)$ of various species in methoxyethanol solutions At 298 K

| OH species |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| free ( OH ) | $10^{3} \mathrm{corl}^{\text {(F) }} / \mathrm{mol} \mathrm{dm}^{-3}$ | 2.97 | 4.11 | 5.31 | 6.16 |
| open dimer | $10^{3} c_{\mathrm{D}} / \mathrm{mol} \mathrm{dm}^{-3}$ | 4.72 | 10.08 | 17.93 | 25.90 |
| open trimer | $10^{3} c_{3} / \mathrm{mol} \mathrm{dm}^{-3}$ | 2.36 | 5.04 | 8.96 | 12.95 |
| open tetramer | $10^{3} c_{4} / \mathrm{mol} \mathrm{dm}^{-3}$ | 1.57 | 3.36 | 5.98 | 8.63 |
|  | $10^{3} c_{\mathrm{F}} / \mathrm{mol} \mathrm{dm}^{-3}$ | 2.97 | 4.11 | 5.31 | 6.16 |
| cyclic dimer | $10^{3} c_{1} / \mathrm{mol} \mathrm{dm}^{-3}$ | 32.31 | 45.81 | 56.76 | 67.94 |
|  | $10^{3} c_{\mathrm{D}} / \mathrm{mol} \mathrm{dm}^{-3}$ | 2.36 | 5.04 | 8.96 | 12.95 |

Table 3.-- Equilibrium constants in the three way equilibria in methoxyethanol solutions (at 298 K )

| associated species | equilibrium | solution concentration $\boldsymbol{c}_{\mathbf{T}} / \mathrm{mol} \mathrm{mm}^{-3}$ |  |  |  |  | $\bar{K}$ | $\begin{aligned} & \text { maximum } \\ & \text { deviation } \\ & \text { from } \bar{K} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.01 | 0.04 | 0.06 | 0.08 | 0.10 |  |  |
| cyclic | $K_{\text {IF }} \times 10^{2}$ | 9.49 | 9.18 | 8.95 | 9.35 | 9.07 | 9.21 | 3 |
| dimers | $K_{\text {DF }} \times 10^{3}$ | - | 3.67 | 3.31 | 3.14 | 2.93 | 3.26 | 12 |
| \% | $K_{\text {DI }} \times 10$ | - | 4.35 | 4.12 | 3.60 | 3.56 | 3.91 | 10 |
| cyclic trimers | $K_{\text {IF }} \times 10^{2}$ | 9.49 | 9.18 | 8.95 | 9.35 | 9.07 | 9.21 | 3 |
|  | $K_{3 F} \times 10^{5}$ | -- | 1.66 | 2.06 | 2.50 | 2.71 | 2.23 | 24 |
|  | $K_{31} \times 10^{2}$ | - | 2.14 | 2.86 | 3.06 | 3.63 | 2.92 | 26 |
| cyclic tetramers | $K_{\text {IF }} \times 10^{2}$ | 9.49 | 9.18 | 8.95 | 9.35 | 9.07 | 9.21 | 3 |
|  | $K_{4 \mathrm{~F}} \times 10^{7}$ | - | 0.66 | 1.13 | 1.77 | 2.23 | 1.45 | 54 |
| $a_{4}$ | $K_{41} \times 10^{3}$ | - | 0.92 | 1.75 | 2.32 | 3.31 | 2.07 | 58 |
| dimer type II | $K_{\text {IF }} \times 10^{2}$ | 9.49 | 10.38 | 11.49 | 13.68 | 14.66 | 11.94 | 22 |
|  | $K_{\text {DF }} \times 10^{3}$ | - | 1.87 | 1.67 | 1.57 | 1.47 | 1.65 | 12 |
|  | $K_{\text {DI }} \times 10$ | - | 1.73 | 1.27 | 0.84 | 0.68 | 1.13 | 47 |

$K_{n \mathrm{~F}}$ and $K_{n 1}$ in $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{(n-1)}$.

Table 4.-Thermodynamic quantities associated with the three way equilibrium 1 ALKOXYETHANOLS

| type of equilibrium | thermodynamic property | methoxyethanol | ethoxyethanol | butoxyethanol |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{1} \rightleftharpoons \mathrm{M}_{\mathrm{F}}$ | $\bar{K}_{11} \times 10^{2} / \mathrm{mol} \mathrm{dm}{ }^{-3}$ | 9.21 | 9.72 | 9.45 |
|  | $\Delta H_{\text {IF }}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | $14.70 \pm 0.76$ | $13.87 \pm 0.63$ | $13.78 \pm 0.62$ |
|  | $\Delta G_{1 F}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 5.91 | 5.78 | 5.85 |
|  | $\Delta S_{\text {IF }}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | $29.22 \pm 2.38$ | $26.95 \pm 1.98$ | $26.40 \pm 1.94$ |
| $\mathrm{D} \rightleftharpoons 2 \mathrm{M}_{\mathrm{F}}$ | $\bar{K}_{\text {DF }} \times 10^{3} / \mathrm{mol} \mathrm{dm}^{-3}$ | 3.26 | 3.13 | 2.95 |
|  | $\Delta H_{\mathrm{DF}}^{\circ} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$ | $55.25 \pm 2.42$ | $57.03 \pm 2.81$ | $56.93 \pm 2.30$ |
|  | $\Delta G_{\text {DF }}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 14.20 | 14.30 | 14.45 |
|  | $\Delta S_{\text {DF }}^{\text {D }} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | 136.44土 7.64 | $142.10 \pm 8.80$ | $141.65 \pm 7.25$ |
| $\mathrm{D} \rightleftharpoons 2 \mathrm{M}_{\mathrm{I}}$ | $\bar{K}_{\text {DI }} \times 10 / \mathrm{mol} \mathrm{dm}^{-3}$ | 3.91 | 3.12 | 3.34 |
|  | $\Delta H_{\text {D }}^{\circ} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$ | $25.36 \pm 1.79$ | $29.66 \pm 1.67$ | $27.65 \pm 1.41$ |
|  | $\Delta G_{\mathrm{D} 1} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$ | 2.33 | 2.89 | 2.72 |
|  | $\Delta S_{\mathrm{Dl}}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | $76.41 \pm 5.65$ | $89.22 \pm 5.22$ | $83.34 \pm 4.45$ |

$\bar{K}$ and $\Delta G^{\circ}$ at $298 \mathrm{~K} . \Delta H^{\circ}$ and $\Delta S^{\circ}$ are obtained from the merhod of least squares.

## EXPERIMENTAL

AnalaR grade (Merck, purity $>98 \%$ ) alkoxycthanois $\mathrm{ROCH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{R}=(\mathrm{H}$ $\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{C}_{4} \mathrm{H}_{9}$ ) and ethanol were dried by treating them successively with anhydrou $\mathrm{Na}_{2} \mathrm{SO}_{4}$, sodium metal and $\mathrm{LiAlH}_{4}$. The middle fractions of the final distillations wer collected over activated alumina and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$. AnalaR grade $\mathrm{CCl}_{4}$ (Merch, Pr Analyst) dried and distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ was used as the solvent. Operations including pre paration of solutions and filling the cells were performed in a dry box. Variable path lengt cells ( $l=0.01-1.0 \mathrm{~cm}$ ) with NaCl windows (calibrated by interference fringes) were usec The spectral measurements were carried out on a Perkin-Elmer 221 spectrophotometer wit an abscissa expansion of $4 \times$. The spectra were recorded over a temperature range 298 338 K at intervals of 5 K .

> band Resolution (fig. 3)

Because of overlap between the three OH bands, the apparent integrated absorptio intensities ( $B$ ) of the bands [instead of $\log \left(I_{0} / I\right)_{\text {max }}$ valucs] were used to obtain the concentra tions of the absorbing species. $B$ is defined as

$$
B=\frac{1}{c l} \int \ln \left(T_{0} / T\right)_{v} \mathrm{~d} v=A / C l
$$

where $A=\int \ln \left(T_{0} / T\right)_{E}$ d $v$ and $c$ are the band area and molar concentration of the grou concerned and $/$ is the path length (in cm ).

For determination of the band areas, the bands have first to be resolved. Reliabl resolution was possible in view of the following: (a) in solution, the absorption band of single absorbing species is symmetrical about its maximum ; (b) the absorbances of two o more species at a common frequency are additive; and in the present case, (c) the lov frequency side of the band at $\sim 3475 \mathrm{~cm}^{-1}$ was free from any overlap and the low frequenc side of the intramolecularly hydrogen bonded OH band was free from overlap with the fre OH band. The high frequency side of the $3475 \mathrm{~cm}^{-1}$ band therefore was first generated b : reflection of the low frequency side across its maximum ( $\sim 3475 \mathrm{~cm}^{-1}$ ). The low frequenc: side of the intramolecularly bonded OH band was then obtained by subtracting the reflecte side of the $3475 \mathrm{~cm}^{-1}$ band from the experimental spectrum in the region $3500-3600 \mathrm{~cm}^{-1}$ The same procedure was repeated to resolve the intramolecularly hydrogen bonded OF band at $\sim 3600 \mathrm{~cm}^{-1}$ and so also the free OH band at $\sim 3635 \mathrm{~cm}^{-1} .^{45}$

The area of each band $A$ was evaluated by graphical integration applying appropriat corrections for the area under the wings ${ }^{46}$ and the change in the density of $\mathrm{CCl}_{4}$ at highe
smperatures. ${ }^{47}$ Because of various instrumental and experimental factors ${ }^{48,49}$ involved, le accuracy of the measured band areas and intensities is estimated to be $\sim 5 \%$.


Fig. 3.-Resolution of spectral bands.

VALUATION OF CONCENTRATIONS OF FREE AND INTRAMOLECULARLY BONDED OH GROUPS: ( $\mathrm{COH}_{(\mathrm{F})}$ AND $\left.\mathrm{COH}_{\mathrm{O}} \mathrm{I}\right)$ )
Because of the presence of both free and the intramolecularly bonded species even in the ost dilute solutions of alkoxyethanols, it is not possible to evaluate the concentration of the ee OH group by any direct method. It is therefore necessary to assume that the intensity $f$ the free OH group in alkoxyethanols is identical with that of a simple alcohol (e.g., ethanol). his assumption is reasonable in view of : (a) the positions and intensities of the free OH oups of various primary unbranched saturated alkanols are found to be almost the same $\mathrm{OH}_{\mathrm{OH}} \approx 3630-3640 \mathrm{~cm}^{-1}, \varepsilon_{\mathrm{OH}}^{\mathrm{a}} \approx 60$ at 300 K$)^{3,50} ;(b)$ our observation, that the free OH equency in alkoxyethanols is the same as that of ethanol ( $\sim 3635 \mathrm{~cm}^{-1}$ ), is in good agreesent with earlier work ${ }^{3,9}$; and (c) the possible inductive effects of the alkoxy group in the -position on the intensity of free OH group are negligible. The intensity of the free OH osorption ( $B_{\mathrm{F}}$ ) oil ethanol in $\mathrm{CCl}_{4}$ solution ( $c=7.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ) was therefore meaured at various temperatures and the plot of $B_{\mathrm{F}}$ against $T$ was used as the calibration curve , estimate the concentration of the free OH group $(\mathrm{COH}(\mathrm{F})$ ) in alkoxyethanol solutions. A milar procedure was used by Buc and Neel ${ }^{6}$ and also by Kuhn and Wires. ${ }^{9}$ The concenation of the intramolecularly bonded OH group $\left(\mathrm{COH}_{\mathrm{OH}}\right)$ ) in solutions at concentrations $=0.01 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$, where the associated species are absent, was obtained by subtracting ${ }^{9}$ $\mathrm{JH}(\mathrm{F})$ from the solution concentration $c_{\mathrm{T}}\left(\leqslant 0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$. The band intensity of the itramolecularly bonded OH group ( $B_{\mathrm{I}}$ ) was then calculated at various temperatures and e corresponding plot of $B_{\mathrm{I}}$ against $T$ was used as the second calibration curve to determine $\mathrm{JH}(\mathrm{I})$ in solutions at concentrations $0.01<c_{\mathrm{T}} \leqslant 0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ where the associated species bsorbing at $\sim 3475 \mathrm{~cm}^{-1}$ are also present. The concentrations of the individual molecular ,ecies viz. $c_{F}, c_{\text {I }}$ and $c_{n}$ were then evaluated in terms of $\mathrm{coH}_{(\mathrm{F})}, \mathrm{coH}_{\mathrm{O}}$ ) and $c_{\mathrm{F}}$.

$$
\begin{aligned}
& \text { EVALUATION OF CONCENTRATIONS OF INDIVIDUAL MOLECULAR SPECIES: } \\
& \qquad\left(c_{F}, c_{1} \text { AND } c_{n}\right)
\end{aligned}
$$

As the OH groups of the associated species ( $n$ ) will absorb in different regions depending n the nature of their association, the values of $c_{\mathrm{F}}, c_{\mathrm{I}}$ and $c_{n}$ will depend on the contributions f the OH groups of the associated species to $\mathrm{COH}_{(\mathrm{F})}$ and/or $\mathrm{c}_{\mathrm{OH}(1)}$ in addition to that of $\boldsymbol{j H}(r)$. These possibilities were tested by considering various possible structures for dimer ; shown in fig. 4 as well as similar open and cyclic structures for trimers and tetramers.

In general, for an open $n$-mer of type I ( $a$ or $b$ ) (fig. 4), where the end OH group is free and will absorb in the same region as that of the free ${ }^{2,25,40,51,52}$ monomeric $\mathrm{OH}(\sim 3635$ $\mathrm{cm}^{-1}$ ), it can be shown that

$$
\begin{equation*}
c_{n}=\frac{1}{(n-1)}\left[c_{\mathrm{T}}-\left(c_{\mathrm{OH}(\mathbf{F})}+c_{\mathrm{OH}(1)}\right)\right], \quad c_{\mathrm{F}}=c_{\mathrm{OH}(\mathrm{~F})}-c_{n} \quad \text { and } \quad c_{1}=c_{\mathrm{OH}(1)} . \tag{4}
\end{equation*}
$$

For cyclic $n$-mers of type III or IV, the OH groups of the associated species would not contribute ${ }^{52}$ to $\mathrm{c}_{\mathrm{OH}(\mathrm{F})}$ or $\mathrm{c}_{\mathrm{OH}(\mathrm{I})}$ and hence

$$
\begin{equation*}
c_{n}=\frac{1}{n}\left[c_{\mathrm{T}}-\left(c_{\mathrm{OH}(\mathrm{~F})}+c_{\mathrm{OH}(\mathrm{I})}\right)\right] \text { since } c_{\mathrm{F}}=c_{\mathrm{OH}(\mathrm{~F})} \text { and } c_{1}=c_{\mathrm{OH}(\mathrm{I})} . \tag{5}
\end{equation*}
$$

For the dimer, there are five possible structures including the two open and two cyclic species mentioned above. In the fifth type (structure II, fig. 4, suggested by Saito et al. ${ }^{13}$ ) the end OH of the open dimer is intramolecularly hydrogen bonded to the ether oxygen and therefore would absorb in the same position as the intramolecularly hydrogen bonded monomer (i.e., at $\sim 3600 \mathrm{~cm}^{-1}$ ). In this case it can be shown that

$$
\begin{equation*}
c_{\mathrm{D}}=c_{\mathrm{T}}-\left[\mathrm{COH}(\mathrm{~F})+c_{\mathrm{OH}(1)}\right], \quad c_{\mathrm{F}}=c_{\mathrm{OH}(\mathrm{~F})} \quad \text { and } \quad c_{1}=c_{\mathrm{OH}(1)}-c_{\mathrm{D}} . \tag{6}
\end{equation*}
$$





c

IV •rn

FIg. 4.-Possible structures for dimer in alkoxyethanols
.. RESULTS AND DISCUSSION
Since the spectroscopic and thermodynamic properties of the three alkoxyethanols were alike, the discussion will be confined to methoxyethanol.

## SPECTROSCOPIC PROPERTIES

The band positions ( $\bar{v}$ ), half band widths ( $\Delta \bar{r}_{\frac{1}{2}}$ ), integrated intensities ( $B$ ) and the fect of temperature on the intensities ( $\mathrm{d} B / \mathrm{d} T$ etc.) of the free OH absorptions of hanol and those of the intra- and inter-molecularly bonded OH absorptions of the ree alkoxyethanols are given in table 1. The various $\bar{v}$ and $\Delta \bar{v}_{\xi}$ values are in good reement with those reported in literature. ${ }^{2,3,9}$ Our values of $B_{\mathrm{F}}=4.7 \times 10^{3} \mathrm{dm}^{3}$ $\mathrm{ol}^{-1} \mathrm{~cm}^{-2}$ at 298 K and $\mathrm{d} B_{\mathrm{F}} / \mathrm{d} T=-19$ for the free OH group in ethanol, used to timate the concentration of the free OH group in alkoxyethanol solutions, are in rod agreement with those of Liddel and Becker, ${ }^{19} 4.6 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ and 20 respectively. For the intramolecularly bonded OH group, our values of $B_{1}=$ $43 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ at 298 K and $\mathrm{d} B_{1} / \mathrm{d} T=-12.4$ for methoxyethanol can lly be compared, in the absence of other data, with those of Kuhn and Wires. ${ }^{9}$ heir values, $B_{\mathrm{I}}=7.25 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ at 298 K (calculated from their value ${ }^{\cdot} B_{\mathrm{I}}$ at 293 K ) and $\mathrm{d} B_{\mathrm{I}} / \mathrm{d} T=-50$ are considerably higher than ours. Note hower that their value of the intensity of the free OH absorption of butanol $B_{\mathrm{F}}=$ $4 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ is also considerably higher than that reported for ethanol ${ }^{19}$ id other aliphatic alcohols. ${ }^{6}$ This might be due to the use of $\Delta v_{\frac{1}{2}}$ for the free OH butanol for calculating the intensity, which is however unsymmetrical ${ }^{53,54}$ due to rerlapping of bands of two rotational isomers. The various OH band intensities und in the present work decrease with increasing temperature as reported in the erature. ${ }^{9,19-21,50,55}$ Note that the three band intensities vary in the order ,$>B_{\mathrm{I}}>B_{\mathrm{F}}$ while in the temperature range covered, the relative decrease of the values with respect to their values at 298 K , i.e., $\Delta B / B_{298}$ follows exactly the opposite der, $\left(\Delta B / B_{298}\right)_{\mathrm{D}}<\left(\Delta B / B_{298}\right)_{\mathrm{I}}<\left(\Delta B / B_{298}\right)_{\mathrm{F}}$. Becker ${ }^{55}$ also found that the mag. tude of the temperature effect on the intensities decreases systematically with the crease in $\Delta H$ of hydrogen bond formation.

## INTRAMOLECULAR HYDROGEN BONDING

The experimental values of the various thermodynamic quantities for the various uilibria in alkoxyethanol solutions are shown in table 4. Our values of 14.70 kJ $\mathrm{ol}^{-1}$ and $5.91 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\Delta H_{\mathrm{IF}}^{\mathrm{F}}$ and $\Delta G_{\mathrm{IF}}^{\circ}$ at 298 K for intramolecular hydrogen unding in methoxyethanol are comparable with those of Kuhn and Wires, ${ }^{9} 10 \pm 2$ $\mathrm{mol}^{-1}$ and $5.44 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The differences between theirs and our lues might be due to their use of $\log \left(I_{0} / I\right)_{\text {max }}$ values and ours of band resolving and values.

## NATURE OF THE ASSOCIATED SPECIES

The possible structures for the associated species, open and cyclic dimers, trimers id tetramers, were considered separately to determine the most likely species absorbg at $\sim 3475 \mathrm{~cm}^{-1}$.
Feeney and Walker ${ }^{42}$ suggested an open dimer (without specifying the type) for ethoxyethanol from their n.m.r. studies in the concentration range $0.1-1.3 \mathrm{~mol} \mathrm{dm}^{-3}$, ot covered in the present studies. However, for any open $n$-mer (type la or lb, fig. 4), obtain $c_{F}$, eqn (4) requires $c_{\mathrm{OH}(\mathrm{F})}$ to be greater than $c_{n}$. In the majority of cases the present study this requirement is not fulfilled. As an illustration, the calculated llues of $c_{\mathrm{OH}(\mathrm{F})}$ and those of $c_{n}$ for various open $n$-mers in various solutions of methoxyhanol at 298 K are given in table $2(\mathrm{~A})$. Equilibria involving open $n$-mers can therere be ruled out. For cyclic trimers, cyclic tetramers and dimer type II (fig. 4), the lculated equilibrium constants show wide variations over the concentration range udied. Again, as a typical case the various $K$ values in the three way equilibria
together with the maximum variations from their respective mean values ( $\bar{K}$ ) are show in table 3. The $\log K$ against $1 / T$ plots for these cases also showed large deviation from linearity thus eliminating these as possible predominant species. After rulini out the possibility of open $n$-mers, cyclic trimers, cyclic tetramers and dimer type II only cyclic dimers with structure III or IV (fig. 4) remain to be considered. Here, thi better constancy of the respective $K$ values in the equilibrium over the entire concen tration range studied (e.g., table 3) together with excellent linearity of the $\log \bar{K}$ agains $1 / T$ plots (fig. 5 ) and that of $\Delta G^{\circ}$ against $T$ plots suggests these as the most probabl species absorbing at $\sim 3475 \mathrm{~cm}^{-1}$.


Fig. 5.-Plots of (1) $\log K_{\mathrm{K}} \mathrm{F}$, (2) $\log \bar{K} \mathrm{DF}$ and (3) $\log \bar{K} \mathrm{DI}$ against $1 / T$ for methoxyethanol [cf. dimer structures III and [V and eqn (5)].

The four membered ring structure III in which the hydroxyl oxygen atoms art involved in hydrogen bonding will be considerably strained because of the unfavour able $\mathrm{O}-\mathrm{H}-\mathrm{O}$ angles $(\sim \pi / 2 \mathrm{rad})$. The bent hydrogen bonds in such rings will bs weak giving rise to small $\Delta H^{\circ}$ values. ${ }^{19}$ The $\Delta S^{\circ}$ value will also be small due to the small ring size. Such dimers have been proposed for simple alcohols ${ }^{19-21}$ anc cyanoethanol ${ }^{11}$ with $\Delta H^{\circ}$ and $\Delta S^{\circ}$ values ranging over $12-24 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and 30-80. $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ respectively. The present values of $\Delta H_{\mathrm{DF}}=55.25 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S_{\mathrm{DF}}$ ~ $136.44 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ (table 4) are considerably higher suggesting the strain-free ten mem
bered ring structure IV, with two hydrogen bonds involving the ether oxygens, as the most probable structure for the dimer. The larger ring restricting the rotation around various $\mathrm{C}-\mathrm{C}$ bonds would explain the larger $\Delta S_{\mathrm{DF}}^{\circ}$ value compared to that in structure III. That the hydrogen bonding interaction with an ether oxygen will be larger than that with a hydroxylic oxygen is evident from the observed ${ }^{1,2,5}$ larger frequency shifts $(\Delta v)$ and smaller $\mathrm{O}-\mathrm{O}$ distances in intramolecular hydrogen bonding in diol monomethyl ethers as compared to those in simple diols. Thus the absence of strain in the ring and the larger hydrogen-bonding interaction in structure IV explain the larger value of $\Delta H_{\mathrm{DF}}$ as compared to that in structure III. An ether oxygen atom is a better proton-acceptor than the hydroxylic oxygen so that, in a system containing both, hydrogen bonding will occur preferentially with the former. Structure IV naturally requires the $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$ skeleton to be predominantly in the gauche conformation. Earlier studies ${ }^{56}$ on $\mathrm{CH}_{2}$ rocking modes at $\sim 800 \mathrm{~cm}^{-1}$ have shown that $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$ in various ethylene glycol monoalkyl ethers in solution exist, almost exclusively, in the gauche conformation, in good agreement with the present , iructure IV for the dimer. The same ten-membered ring structure has been suggested for the ethoxyethanol dimer by Lodygina et al. ${ }^{+4}$ from an observation of the shift of the ether absorption from $1132 \mathrm{~cm}^{-1}$ in pure liquid to $1125 \mathrm{~cm}^{-1}$ in very dilute soluions. However, the values of various thermodynamic quantities as determined by hem for an equilibrium between the $3610 \mathrm{~cm}^{1}$ band (assumed due to free OH ) and limer are smafler than ours. This difference may occur since they ignore the 3635 $: \mathrm{m}^{-1}$ band (which is actually due to the free OH ) and the three way equilibrium which exists. The present data for alkoxyethanols thus establish the ten membered ring limer with the ether oxygen atoms participating in the intermolecular hydrogen bondng as the most likely associated species in solutions up to concentations $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$.

The close agreement among the various thermodynamic quantities (table 4) sup,orts the postulated three way equilibrium. The approximate constancy of the espective spectroscopic properties (table 1) and that of the thermodynamic quantities table 4) for the three alkoxyethanols indicates that the size of the alkyl group does lot affect their association behaviour. Note that the intramolecularly bonded mononer always predominates over the dimer, i.e., $c_{1}>c_{\mathrm{D}}$ (table 2 B ), in spite of $\Delta H_{\mathrm{iF}}$ reing much smaller than $\Delta H_{\mathrm{DF}}^{\circ}$. This is due to the fact that the formation of the limer requires a greater number of bonds in a suitable conformation (larger decrease n entropy) than that for the intramolecularly bonded monomer consequently reducing he probability of its formation. Finally, ignoring factors such as conformational nteractions and solvent effects, the strengths of the intra- and inter-molecular hydro,en bonds in alkoxyethanols as calculated from the $\Delta H_{\mathrm{IF}}^{\circ}$ and $\Delta H_{\mathbf{D F}}$ values, are $-14.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\sim 28.2 \mathrm{~kJ} \mathrm{~mol}^{1}$ respectively.

[^2]${ }^{15}$ H. Matsuura and T. Miyazawa, Bull. Chem. Soc. Japan, 1967, 40, 85
${ }^{16}$ P. A. Giguere, Canad. J. Chem., 1972, 50, I 52.
${ }_{17}$ W. K. Busfield, M. P. Ennis and I. J. McEwen, Spectrochim. Acta, 1973, 29A, 1259.
${ }^{18}$ F. A. Smith and E. C. Creitz, J. Res. Nat. Bur. Stand., 1951, 46, 145.
${ }^{19}$ U. Liddet and E. D. Becker, Spectrochim. Acta, 1957, 10, 70.
${ }^{20}$ M. Van Thiel, E. D. Becker and G. C. Pimentel, J. Chem. Phy's., 1957, 27, 95.
${ }^{21}$ E. D. Becker, U. Liddel and J. N. Shoolery, J. Mol. Spectr., 1958, 2, 1.
${ }^{22}$ W. C. Coburn, Jr. and E. Grunwald, J. Amer. Chem. Soc., 1958, 80, 1318
${ }_{23}$ J. C. Davies, Jr., K. S. Pitzer and C. N. R. Rao, J. Phys. Chem., 1960, 64, 1744.
${ }^{24}$ L. P. Kuhn and R. E. Bowman, Spectrochim. Acta, 1961, 17, 650.
${ }^{25}$ W. Masschelein, Spectrochim. Acta, 1962, 18, 1557.
${ }^{26}$ H. Dunken and H. Fritzsche, Spectrochim. Acta, 1964, 20, 785.
${ }^{27}$ H. C. Van Ness, J. Van Winkle, H. H. Richtol and H. B. Hollinger, J. Phws. Chem., 19t 71, 1483.
${ }^{28}$ P. I. Gold and R. L. Perrin, J. Phys. Chem., 1967, 71, 4218.
${ }_{29}$ D. A. Ibbitson and L. F. Moore, J. Chem. Soc. B, 1967, 76, 80.
${ }^{30}$ A. N. Fletcher and C. A. Heller, J. Phys. Chem., 1968, 72, 1839.
${ }^{31}$ R. M. Hammeker, R. M. Clegg, L. K. Patterson, P. E. Rider and S. L. Rock, J. Phys. Ch 1968, 72, 1837.
${ }^{32}$ W. L. Chandler and R. H. Dinius, J. Phys. Chem., 1969, 73, 1596.
${ }^{33}$ A. S. N. Murthy, R. E. Davies and C. N. R. Rao, Theor. Chim. Acta, 1969, 13, 81.
${ }^{34}$ J. R. Hoyland and L. B. Kier, Theor. Chim. Acta, 1969, 15, 1.
${ }^{35}$ T. S. S. R. Murthy, Canad. J. Chem., 1970, 48, 184.
${ }^{36}$ P. Bordewijk, M. Kunst and A. Rip, J. Phys. Chem., 1973, 77, 548.
${ }^{37}$ A. D. Cohen and C. Reid, J. Chem. Phys., 1956, 25, 790.
${ }^{33}$ E. E. Tucker, S. B. Farnham and S. D. Christian, J. Phys. Chem., 1969, 73, 3820.
${ }^{39}$ E. E. Tucker and E. D. Becker, J. Phys. Chem., 1973, 77, 1783.
${ }^{40}$ A. N. Fletcher and C. A. Heller, J. Phys. Chem., 1967, 71, 3742.
${ }^{41}$ A. N. Fletcher, J. Phys. Chem., 1972, 76, 2562.
${ }^{42}$ J. Feeney and S. M. Walker, J. Chem. Soc. A, 1966, 1148.
${ }^{43}$ T. K. K. Srinivasan, C. 1. Jose and A. B. Biswas, Proc. Int. Conf. Spectroscopy, 1967, 293
${ }^{44}$ V. P. Lodygina, A. I. Ivanov, S. M. Baturin and S. G. Entelis, Russ. J. Phys. Chem., 1 44, 1068.
45 J. J. Fox and A. E. Martin, Proc. Roy. Soc. A, 1937, 162, 419.
${ }^{46}$ D. A. Ramsay, J. Amer. Chem. Soc., 1952, 74, 72.
47 International Critical Tables, 1928, 3, 28.
${ }^{48}$ R. N. Jones, D. A. Ramsay, D. S. Keir and K. Dobriner, J. Amer. Chem. Soc., 1952, 74
${ }^{49}$ K. S. Sheshadri and R. N. Jones, Spectrochim. Acta, 1963, 19, 1013.
${ }^{50}$ 1. Motoyama and C. H. Jarboe, J. Phys. Chem., 1966, 70, 3226.
${ }^{51}$ L. J. Bellamy and R. J. Pace, Spectrochim. Acta, 1966, 22, 525.
${ }^{52}$ L. J. Bellamy, Adwances in I.R. Group Frequencies (Methuen, London, 1968), p. 256.
${ }_{54}$ M. Oki and H. Iwamura, Bull. Chem. Soc. Japan, 1959, 32, 567.
54 F. Dalton, G. Meakins, J. Robinson and W. Zaharia, J. Chem. Soc., 1962, 1566.
$5_{5}^{5}$ E. D. Becker, Spectrochim. Acta, 1961, 17, 4.43. 4.
${ }^{56}$ A. Miyake, J. Amer. Chem. Soc., 1960, 82, 3040 ; T. K. K. Srinivasan, C. I. Jose and A Biswas, Bull. Chem. Soc. Japan, 1964, 37, 1770 ; Canad. J. Chem., 1969, 47, 3877.


# Infrared Study and Thermodynamics of Hydrogen Bonding in Diethylene Glycol Monoalkyl Ethers 

By L. S. Prabhumirashi
Department of Chemistry, University of Poona, Poona 411007 , India
AND
C. I. Jose*

National Chemical Laboratory, Pashan, Poona 411 008, India
Received 24th November, 1975
Diethylene glycol monoalkyl ethers in dilute $\mathrm{CCl}_{4}$ solutions exhibit three OH bands, viz. at $\sim 3635$, 1600 and $\sim 3475 \mathrm{~cm}^{-1}$ attributable to a free monomer ( $\mathrm{M}_{\mathrm{F}}$ ), an intramolecularly hydrogen bonded :-membered ring monomer $\left(\mathrm{M}_{5}\right)$ and an intramolecularly hydrogen bonded eight-membered ring nomer ( $\mathrm{M}_{8}$ ) respectively. In concentrated solutions, the dimer (D) band appears at $\sim 3440$ ${ }^{-1}$. The relative concentrations of these species involved in the multiple equilibria are observed $x$ in the order $C_{D} \approx C_{F} \ll C_{8} \approx \frac{1}{2} C_{5}$ at 298 K . The thermodynamic quantities for the equilibria $\rightleftharpoons \mathrm{M}_{\mathrm{F}}, \mathrm{M}_{8} \rightleftharpoons \mathrm{M}_{\mathrm{F}}$ and $\mathrm{D} \rightleftharpoons 2 \mathrm{M}_{\mathrm{F}}$ are $\Delta H_{5 \mathrm{~F}} \sim 12 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta S_{5 \mathrm{~F}} \sim 22 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} ; \Delta H_{8 \mathrm{~F}} \sim$ $\mathrm{kJ} \mathrm{mol}^{-1}, \Delta S_{8 \mathrm{~F}} \sim 56 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $\Delta H_{\mathrm{DF}}^{\circ} \sim 58 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta S_{\mathrm{DF}}^{\circ} \sim 153 \mathrm{~J} \mathrm{~K}^{-1}$ mol ${ }^{-1}$ respec:ly. Finally a ten membered ring, involving the OH group of one molecule bonded to the $\beta$ gen of the other molecule, similar to that in alkoxy ethanols is found to be the most likely structure the dimer.

Studies on the self-association of alkoxy ethanols ${ }^{1}$ in carbon tetrachloride ( $\sim 0.1$ $l \mathrm{dm}^{-3}$ ) showed the associated species to be dimers, unlike simple alcohols which st as a mixture of polymeric species. The formation of the ten membered ring ner proved the participation of the ether oxygen as the proton acceptor. With a w to studying the role of an additional ether oxygen, intra- and intermolecular drogen bonding in diethylene glycol monomethyl and ethyl ethers (DEGM and EGE respectively) have been investigated in the present work. Earlier studies ${ }^{2}$ on : rotational isomerism of this type of compound had shown that the two $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ oups preferentially adopt gauche conformations in solution.
Diethylene glycol monoalkyl ethers $\mathrm{R}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ in carbon tetrachloride ution exhibit three bands in the hydroxyl stretching region at $\sim 3635, \sim 3600$ and $3475 \mathrm{~cm}^{-1}$. In concentrated solutions, the $3475 \mathrm{~cm}^{-1}$ band is very strong and 'mmetric but, on dilution, the intensity and asymmetry decrease very rapidly until $3 \mathrm{~mol} \mathrm{dm}^{-3}$ [cf. fig. $1(a)$ ]. Below this concentration, the relative intensities of all : three bands remain constant and are independent of concentration, indicating them be due to three types of monomeric species in equilibrium [fig. 2 and 3(a)]. As orted earlier, ${ }^{2}$ the three bands at $\sim 3635, \sim 3600$ and $\sim 3475 \mathrm{~cm}^{-1}$ in dilute soluns can be ascribed to a free monomer $\left(\mathrm{M}_{\mathrm{F}}\right)$, an intramolecularly hydrogen bonded z-membered ring monomer ( $\mathrm{M}_{5}$ ) and an intramolecularly hydrogen bonded eightmbered ring monomer ( $\mathrm{M}_{8}$ ) respectively ( $c f$. fig. 2). The assignment of the 3635 $13600 \mathrm{~cm}^{-1}$ bands to $\mathrm{M}_{\mathrm{F}}$ and $\mathrm{M}_{5}$ follows from their similarity to the corresponding 1ds in alkoxy ethanols (cf. table 1). The assignment of the $3475 \mathrm{~cm}^{-1}$ band to $\mathrm{M}_{8}$ is tified in view of the stronger hydrogen bond possible in the eight-membered ring
(a)

(b)


Fig. 1.-(a) Spectra 1-7 : $c=0.5,0.2,0.08,0.02,0.012,0.008$ and $0.004 \mathrm{~mol} \mathrm{dm}^{-3} ; l=0.03$, and 0.26 cm for spectra 1 to 3 respectively and 1.0 cm for spectra 4 to 7 ; (b) (1) $c=0.02 \mathrm{~mol} \mathrm{dm}$ $l=0.6 \mathrm{~cm}$ and (2) $c=0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}, l=0.14 \mathrm{~cm}$.


(c)

Fig. 2.-Typical structures for monomers.

(a)

(b)

Fig. 3.-Equilibria in ( $a$ ) dilute and $(b)$ concentrated solutions.
here the OH can get closer to the second ether oxygen, thus giving rise to larger rdrogen bonding interaction. Markevich et al. ${ }^{3}$ and Lodygina et al. ${ }^{4}$ also have cribed the bands at $\sim 3486$ and $\sim 3450 \mathrm{~cm}^{-1}$ respectively to the $\mathrm{M}_{8}$ species in DEGE. he asymmetry and increase in relative intensity of the $3475 \mathrm{~cm}^{-1}$ band at higher conntrations then must be due to the presence of intermolecularly hydrogen bonded

Table 1.-Spectroscopic properties of the OH groups at 298 K

| type of the OH group | spectral property | ethanolt | EGM ${ }^{1}$ | DEGM | DEGE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ree | $\bar{v} / \mathrm{cm}^{-1}( \pm 2.5)$ | 3635 | 3635 | 3635 | 3635 |
|  | $\Delta \bar{v}_{1 / 2} / \mathrm{cm}^{-1}( \pm 2.5)$ | 27.5 | 25 | 25 | 25 |
|  | $B_{\mathrm{F}} \times 10^{-3} / \mathrm{dm}^{3}$ |  |  |  |  |
|  | $\mathrm{mol}^{-1} \mathrm{~cm}^{-2}( \pm 0.5)$ | 4.7 | - | - | - |
| tramolecularly onded fiveembered ring | $\bar{v} / \mathrm{cm}^{-1}( \pm 2.5)$ | - | 3600 | 3600 | 3600 |
|  | $\Delta \bar{\nu} / \mathrm{cm}^{-1}( \pm 2.5)$ | - | 35 | 35 | 35 |
|  | $\Delta \bar{v}_{1 / 2} / \mathrm{cm}^{-1}( \pm 2.5)$ | - | 32.5 | 32.5 | 32.5 |
|  | $\mathbf{B}_{5} \times 10^{-3} / \mathrm{dm}^{3}$ |  |  |  |  |
|  | $\mathrm{mol}^{-1} \mathrm{~cm}^{-2}( \pm 0.4)$ | - | 6.4 | - | - |
| tramolecularly onded eightembered ring | $\bar{v} / \mathrm{cm}^{-1}( \pm 5)$ | - | - | 3475 | 3470 |
|  | $\Delta \bar{v} / \mathrm{cm}^{-1}( \pm 5)$ | - | - | 160 | 165 |
|  | $\Delta \bar{v}_{1 / 2} / \mathrm{cm}^{-1}( \pm 5)$ | - | - | 100 | 105 |
|  | $B_{8} \times 10^{-3} / \mathrm{dm}^{3}$ |  |  |  |  |
|  | $\mathrm{mol}^{-1} \bar{v} \mathrm{~cm}^{-2}$ | - | - | $23 \pm 1.2$ | $29 \pm 1.5$ |
| meric | $\bar{v} / \mathrm{cm}^{-1}( \pm 5)$ | - | 3475 | 3440 | 3440 |
|  | $\Delta \bar{v} / \mathrm{cm}^{-1}( \pm 5)$ | - | 160 | 195 | 195 |
|  | $\Delta \bar{v}_{1 / 2} / \mathrm{cm}^{-1}( \pm 5)$ | - | 150 | 160 | 160 |
|  | $B_{\mathrm{D}} \times 10^{-3} / \mathrm{dm}^{3}$ |  |  |  |  |
|  | $\mathrm{mol}^{-1} \mathrm{~cm}^{-2}$ | - | $59 \pm 5$ | $126 \pm 13$ | 113士11 |

1BLE 2.-CONCENTRATIONS OF DIFFERENT SPECIES AND EQUILIbRIUM CONSTANTS IN SOLUTIONS
of DEGM and DEGE at 298 K

| ompound | $\begin{aligned} & \text { solution } \\ & \text { concentration } \\ & \times 10^{3} / \mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$ | concentrations o: various species $\times 10^{3} / \mathrm{mol} \mathrm{dm}^{-3}$ |  |  |  | equilibrium constants |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DEGM | $C_{\text {s }}$ | $C_{\text {F }}$ | C5 | $\mathrm{C}_{8}$ | $C_{\text {d }}$ | $K_{F S} \times 10^{2}$ | $K_{8 F} \times 10^{2}$ | $K_{85}$ | $\begin{aligned} & K_{\mathrm{DF}} \times 10^{3} / \\ & \mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$ |
|  | 10 | 0.64 | 6.33 | 3.03 | - | 10.1 | 21.1 | 2.09 | - |
|  | 20 | 1.26 | 12.6 | 6.19 | - | 10.0 | 24.1 | 2.03 | - |
|  | 80 | 4.63 | 46.0 | 22.3 | 3.51 | - | - | - | 6.10 |
| DEGE | 100 | 5.63 | 56.0 | 27.2 | 5.56 | - | - | - | 5.70 |
|  | 125 | 7.01 | 69.7 | 33.9 | 7.21 | - | - | - | 6.81 |
|  | 12.5 | 0.78 | 7.96 | 3.76 | - | 9.81 | 20.8 | 2.12 | - |
|  | 75 | 4.25 | 43.3 | 20.4 | 3.48 | - | - | - | 5.19 |
|  | 95 | 5.36 | 54.7 | 25.8 | 4.59 | - | - | - | 6.27 |
|  | 120 | 6.58 | 67.1 | 31.6 | 7.36 | - | - | - | 5.88 |

secies which absorb in the same spectral region. The similarity of the association and with that of alkoxy ethanols and the absence of any additional OH bands until concentration of $\sim 0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ is reached suggest the associated species to be mers. The constancy of the equilibrium constants caleulated on this basis (table 2) istifies this assumption.

The experimental procedure is the same as described earlier. ${ }^{1}$ Spectra in the 3700-3200 $\mathrm{n}^{-1}$ region were recorded over the temperature range $298-333 \mathrm{~K}$ at intervals of 5 K . The
accuracies of computed areas and the intensities of the 3600 and $3475 \mathrm{~cm}^{-1}$ bands are est mated to be $\sim 5-6 \%$ while area under the $3635 \mathrm{~cm}^{-1}$ band is subject to an error of $\sim 10-12$ : as the latter is very weak and appears only as a shoulder. At each temperature, the conces tration of the free monomer ( $C_{F}$ ) was evaluated using the computed area of the $3635 \mathrm{~cm}^{-}$ band and the apparent integrated absorption intensity $(B)$ of the free OH of ethanol. Tl concentration of the intramolecularly hydrogen bonded five-membered ring monomer ( $C$ was likewise evaluated using its computed band area and the intensity of the correspondir band in alkoxy ethanols. This is justified because the spectral characteristics of these bant are identical with those in alkoxy ethanols. In solutions below concentration 0.1 mol $\mathrm{dm}^{-3}$ containing the three monomers only; the concentration of the intramolecular hydrogen bonded eight-membered ring monomer ( $C_{8}$ ) was obtained by subtracting $C_{F}+C$ from the solution concentration $C_{\mathrm{s}}$. Thus

$$
C_{\mathrm{F}}=A_{\mathrm{F}} / B_{\mathrm{F}} l, C_{5}=A_{5} / B_{5} l \text { and } C_{8}=C_{\mathrm{s}}-\left(C_{\mathrm{F}}+C_{5}\right)
$$

where $A, B$ and $l$ denote the band area, integrated absorption intensity and path leng1 respectively. The equilibrium constants in the triangular equilibrium [fig. 3(a)] were calc, lated as

$$
K_{5 \mathrm{~F}}=C_{\mathrm{F}} / C_{5}, K_{8 \mathrm{~F}}=C_{\mathrm{F}} / C_{8} \text { and } K_{85}=C_{5} / C_{8}
$$

At higher concentrations, the dimer ( D ) absorbing nearly in the same region as that of I produced an asymmetry in the $3475 \mathrm{~cm}^{-1}$ band. But since the profiles and characteristi of the 3475 and $3600 \mathrm{~cm}^{-1}$ bands were already available from the dilute solution spectra, thr could be resolved satisfactorily. The concentration of the five-membered ring monom ( $C_{5}$ ) was first obtained from the $3600 \mathrm{~cm}^{-1}$ band as before. The concentrations of the oth two monomers ( $C_{\mathrm{F}}$ and $C_{8}$ ) were then calculated from $C_{5}$ using the equilibrium constan $K_{5 \mathrm{~F}}$ and $K_{85}$ obtained from dilute solutions. The dimer concentration ( $C_{\mathrm{D}}$ ) was the evaluated as

$$
C_{\mathrm{D}}=\frac{1}{2}\left[C_{\mathrm{s}}-\left(C_{\mathrm{F}}+C_{5}+C_{8}\right)\right] .
$$

The equilibrium constants for the system $\mathrm{D} \rightleftharpoons 2 \mathrm{M}_{\mathrm{F}}$ [fig. 3(b)] were calculated as

$$
\mathbf{K}_{\mathrm{DF}}=C_{\mathrm{F}}^{2} / C_{\mathrm{D}} .
$$

Finally the thermodynamic quantities for the various equilibria as defined by eqn (2) and ( were determined using the standard expressions

$$
\Delta G^{\circ}=-R T \ln K=\Delta H^{\circ}-T \Delta S^{\circ}
$$

and the method of least squares.

## RESULTS AND DISCUSSION

SPECTROSCOPIC PROPERTIES
The spectral characteristics ( $\bar{v}, \Delta \bar{v}, \Delta \bar{v}_{\frac{1}{2}}$ and $B$ ) of the various OH bands of DEG ] and DEGE observed in the present work, together with those of ethanol and ethyles glycol monomethyl ether (EGM) from the previous work, ${ }^{1}$ are given in table 1. T ! relative intensities of the 3635 and $3600 \mathrm{~cm}^{-1}$ bands in DEGM, DEGE and EGM a found to be the same [cf. fig. 1 and fig. 3, ref. (1)], showing little effect of the length the alkoxy group on the hydrogen bonding between the OH group and the $\beta$-oxyge Our values of $\bar{v}$ and $\Delta \bar{v}_{\frac{1}{2}}$ for the OH bands are in good agreement with those report in the literature ${ }^{2,5}$ for similar compounds. The positions and relative intensities the three OH bands of DEGE as reported by Markevich et al. ${ }^{3}$ are, however, differe from ours; for example, their spectrum shows a broad and strong $3617 \mathrm{~cm}^{-1}$ bat well separated from the $3586 \mathrm{~cm}^{-1}$ band with relative intensity of the latter mur smaller than the former. We, on the other hand, find the $3635 \mathrm{~cm}^{-1}$ band to be mur weaker, appearing only as a shoulder to the $3600 \mathrm{~cm}^{-1}$ band. Since these two banin the present compounds arise from groups similar to those in alkoxy ethanols, the
relative intensities should also be similar. All other reported ${ }^{1,2,5-8}$ data show a strong $3600 \mathrm{~cm}^{-1}$ band with $3635 \mathrm{~cm}^{-1}$ band as a shoulder in alkoxy ethanols and similar compounds.

A comparison of the $\Delta \bar{v}, \Delta \bar{r}_{2}$ and $B$ values for the intramolecularly hydrogen bonded hydroxyls in the eight and five-membered ring monomers reveals that they are 3-4 times larger in the former. This is clearly due to the shorter hydrogen bond and the larger hydrogen bonding interaction possible in the eight membered ring monomer as compared with that in the five membered ring monomer (see later).

## INTRAMOLECULAR HYDROGEN BONDING

The concentrations of the different molecular species and the equilibrium constants for the postulated equilibria [ff. fig. 3. eqn (1)-(4)] in some typical solutions of DEGM and DEGE at 298 K are represented in table 2 . The observed constancy of the equilibrium constants and the linearity of the ( $\log K .1 / T$ ) plots (fig. 4) support the postulated equilibria. The values of various thermodynamic quantities derived are given in table 3. Lodygina et al. ${ }^{4}$, assuming the $3610 \mathrm{~cm}^{-1}$ band in DEGE to be due to free OH , have reported the thermodynamic quantities for the equilibrium between this species and $\mathrm{M}_{8}$ absorbing at $\sim 3450 \mathrm{~cm}^{-1}$. Since these authors have not reported the $3635 \mathrm{~cm}^{-1}$ band in DEGE (as well as in ethoxy ethanol) and not considered its participation in the equilibria, our values of the thermodynamic quantities cannot be compared with theirs.


Fig. 4.-Plots of $\log K$ against $1 / T$ for DEGM.
For the equilibrium $\mathrm{M}_{5} \rightleftharpoons \mathrm{M}_{\mathrm{F}}$, the values of $K_{5 \mathrm{~F}}$ and $\Delta G_{5 \mathrm{~F}}^{\circ}$ at 298 K for the present compounds are in close agreement with those for EGM. ${ }^{1}$ The values of $\Delta H_{5 \mathrm{~F}}^{\circ}$ and $\Delta S_{5 F}^{\circ}$ are, however, somewhat smaller than those for EGM. The reason for this discrepancy might be the small relative intensity of the $3635 \mathrm{~cm}^{-1}$ band ( $<10 \%$ of the $3600 \mathrm{~cm}^{-1}$ band). which causes some uncertainty in the estimation of the free monomer at various temperatures. The larger value of $\Delta H_{8 \mathrm{~F}}$ over $\Delta H_{5 \mathrm{~F}}^{\circ}$ can be understood
since, in the eight-membered ring structure, the OH group can get closer to the etl oxygen (larger hydrogen bonding interaction) than that in the five-membered $r$ structure. Similarly, the increased restriction for rotation about various bonds in 1 eight-membered ring structure explains the greater magnitude of $\Delta S_{8 \mathrm{~F}}^{\circ}$ as compal with $\Delta S_{S F}$. The dominance of the five-membered ring monomer over the eig membered ring monomer ( $c f$. table 2 ) is explicable by the fact that, though the lat is favoured energetically, the probability of its formation (the number of favoura conformations) is small. The relatively small population of the free monomer, compared with that of the other two intramolecularly hydrogen bonded monome can be understood in view of the favourable positions of the ether oxygens leading the intramolecularly hydrogen bonded species.

Table 3.-Thermodynamic quantities associated with the multiple equilibria diethylene glycol monoalkyl ethers

| type of equilibrium | thermodynamic property* | EGM ${ }^{\text {a }}$ | DEGM | dege |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{5} \rightleftharpoons \mathrm{M}_{\mathrm{F}}$ | $K_{5 \mathrm{~F}} \times 10^{2}$ | 9.21 | 10.1 | 9.8 |
|  | $\Delta G_{5 \mathrm{~F}}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 5.9 | 5.7 | 5.8 |
|  | $\Delta H_{5 \mathrm{~F}}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | $14.7 \pm 0.8$ | $11.9 \pm 0.4$ | $12.6 \pm 0.2$ |
|  | $\Delta S_{5 \mathrm{~F}}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | $29 \pm 2.4$ | $21 \pm 1.3$ | $23 \pm 0 .\{$ |
| $\mathrm{M}_{\mathrm{s}} \rightleftharpoons \mathrm{M}_{\mathrm{F}}$ | $K_{8 \mathrm{~F}} \times 10^{2}$ | - | 20.3 | 20.8 |
|  | $\Delta G_{8 \mathrm{~F}}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | - | 3.9 | 3.9 |
|  | $\Delta H_{8 \mathrm{~F}}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | - | $19.7 \pm 0.6$ | $21.2 \pm 0.4$ |
|  | $\Delta S_{8 \mathrm{~F}}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | - | $53 \pm 1.8$ | $58 \pm 1$. |
| $\mathrm{M}_{8} \rightleftharpoons \mathrm{M}_{5}$ | $K_{85}$ | - | 2.03 | 2.12 |
|  | $\Delta G_{85}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | - | -1.8 | - 1.9 |
|  | $\Delta H_{85}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | - | $7.8 \pm 0.3$ | $8.6 \pm 0.6$ |
|  | $\Delta S_{85}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | - | $32 \pm 0.8$ | $35 \pm 1.4$ |
| $\mathrm{D} \rightleftharpoons 2 \mathrm{M}_{\mathrm{F}}$ | $K_{\text {DF }} / \mathrm{mol} \mathrm{dm}^{-3} \times 10^{3}$ | 3.26 | 6.21 | 5.78 |
|  | $\Delta G_{\text {DF }}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 14.2 | 12.6 | 12.8 |
|  | $\Delta H_{\text {DF }}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | $55 \pm 2.4$ | $58 \pm 1.4$ | $58 \pm 1.4$ |
|  | $\Delta S_{\mathrm{DF}}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | $136 \pm 8$ | $153 \pm 4$ | $152 \pm 5$ |

* $K$ values and $\Delta G^{\circ}$ values at 298 K

As mentioned earlier, the values of $\Delta \bar{v}, \Delta \bar{i}_{\frac{1}{2}}$ and $B$ for the intramolecularly hydros bonded hydroxyl in the eight-membered ring monomer are 3-4 times larger than the in the five-membered ring monomer. The corresponding $\Delta H^{\circ}$ values, however, : only about 1.6 times larger. These results demonstrate the clear difference betws the spectroscopic properties ( $\Delta \bar{v}, \Delta \bar{v}_{\frac{1}{2}}$ and $B$ ) which measure the hydrogen bond interaction of the hydroxyl group with the specific proton acceptor, and the enthal change which is the result of all the attractive and repulsive interactions associal with the hydrogen bond formation. The lack of $\left(\Delta \bar{v}, \Delta H^{\circ}\right)$ correlation (Badger-Bai rule) is attributable to the conformational interactions in intramolecular hydrog bonding. Kuhn and Wires ${ }^{6}$ also find that the $\Delta \bar{v}$ of the intramolecularly hydrog bonded hydroxyls vary from $30 \mathrm{~cm}^{-1}$ in 2-methoxyethanol to $180 \mathrm{~cm}^{-1}$ in 4-metho butanol, while the $\Delta H^{\circ}$ values change hardly at all ( $9.2 \pm 2.1$ to $11.3 \pm 2.1 \mathrm{~kJ} \mathrm{~mol}^{-}$ The Badger-Bauer rule is obeyed if the interaction between the donor and acceptor very large as compared with all other interactions, which is usually the case in int molecular association involving very little change in configuration.

## NATURE OF THE DIMER

From an analysis of the spectra at various concentrations, the dimer band appears to have its maximum at $\sim 3440 \mathrm{~cm}^{-1}\left(\Delta \bar{v} \sim 195 \mathrm{~cm}^{-1}\right.$ ) with half band width $\Delta \bar{v}_{\frac{1}{2}} \sim 160$ $\mathrm{cm}^{-1}$ and $B \sim 120 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$, indicating a large hydrogen bonding interaction. Of the three equilibria between the dimer and the three monomers [fig. 3(b)], only the equilibrium between the dimer and the free monomer is important because of its direct implications for the structure of the climer. The large values of $\Delta H_{\mathrm{DF}}$ and $\Delta S_{\mathrm{DF}}^{\circ}$ (table 3) suggest that there are two hydrogen bonds, with considerable restriction to rotation of the constituent monomers as compared to the free monomers. The larger value of $K_{\mathrm{DF}}\left(=C_{\mathrm{F}}^{2} / C_{\mathrm{D}}\right)$ in the present compounds as compared with that in EGM indicates a smaller extent of dimerization in the former. This must be clearly due to the formation of the eight-membered ring monomer with hydrogen bond strength comparable with that of the dimer (cf. $\Delta \bar{v}, \Delta \bar{v}_{\frac{1}{2}}$ and $\Delta H^{\circ}$ values) but relatively very small entropy decrease which favours the formation of $\mathrm{M}_{8}$ over D.

Because of the presence of three oxygen atoms (i.e., proton acceptors) in these molecules, there are several ways in which dimerization can occur. Some of the typical dimer structures are represented in fig. 5. Though it is difficult to decide on a unique structure for the dimer from the thermodynamic quantities alone; a consideration of various factors enables one to arrive at the most probable structure.


(a)

(c)

(f)

Fig. 5.-Typical structures for dimer.
The open dimer structure [fig. $5(a)$ ] with a single hydrogen bond and having the constituent monomer conformations not much different from the free monomer species is very unlikely in view of the high values of $\Delta H_{\mathrm{DF}}^{\circ} \sim 58 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S_{\mathrm{DF}}^{\circ} \sim 153 \mathrm{~J}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$. The dimer involving an intermolecular association of a free monomer with a five-membered ring monomer [fig. $5(b)$ ] also seems to be unlikely for the same reason. Further if such dimers were present, the relative intensities of the 3635 and $3600 \mathrm{~cm}^{-1}$ bands in the spectra of concentrated solutions (containing dimers) would
be different from those in dilute solutions (with no dimers). Fig. $1 b$ represents $t]$ spectra of solutions of two different concentrations with the path lengths adjusted such a way that the $3600 \mathrm{~cm}^{-1}$ band intensities are same in both. It is then observ that the $3635 \mathrm{~cm}^{-1}$ band intensities are also the same, showing the absence of sur dimers. For the dimer resulting from hydrogen bonding of a free monomer with intramolecularly bonded eight-membered ring monomer [fig. $5(c)$ ], though the $\Delta t$ might be comparable wih the observed $\Delta H_{\mathrm{DF}}^{\circ}$ value, the $\Delta S^{\circ}$ would not be much high than that for $\mathrm{M}_{8}$. Actually $\Delta S_{\mathrm{DF}}^{\circ} \Rightarrow \Delta S_{8 \mathrm{~F}}^{\circ}$, which makes such a structure improbab The four-membered ring structure [fig. $5(d)$ ] would be considerably strained due unfavourable $\mathrm{O}-\mathrm{H}-\mathrm{O}$ angles. Dimers of this type have been suggested ${ }^{9}$ for simf alcohols with $\Delta H^{\circ}$ and $\Delta S$ values ranging over $12-24 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $30-80 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}$ respectively, which are considerably lower than the present values. Further, in system containing ether and hydroxylic oxygens, hydrogen bonding would occur pt ferentially with the more basic ether oxygen. This structure, fig. $5(d)$, therefore, not acceptable for the dimer. The present values of $\Delta H_{\mathrm{DF}}^{\circ}$ and $\Delta S_{\mathrm{DF}}^{\circ}$ are in close agre ment with those of alkoxy ethanols ${ }^{1}$ in which a ten-membered ring dimer involvi intermolecular hydrogen bonding of the hydroxyl with the oxygen in the $\beta$-positic of the other molecule was found to be present. Such dimers [fig. $5(e)]$ would thus the most probable species in DEGM and DEGE. However, in view of the somewh larger magnitude of the present values of $\Delta H_{\mathrm{DF}}^{\mathrm{D}}$ and $\Delta S_{\mathrm{DF}}^{\mathrm{D}}$ as compared with those alkoxy ethanols, it is possible that some small amount of dimers having the structu of fig. $5(f)$ (sixteen membered ring) may also be present. The population of tl structure will of course be very small as compared with that of $5(e)$ because of t larger ring size, which leads to a larger decrease of entropy. These last two structur are in agreement with the results on $\mathrm{CH}_{2}$ rocking modes which show ${ }^{2,8,10} \mathrm{t}$ $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ groups to be present in predominantly gauche conformations in ethyler and diethylene glycol monoalkyl ethers.

## CONCLUSIONS

The present work confirms the presence of three types of monomeric species: 1 the free monomer ( $\bar{v} \sim 3635 \mathrm{~cm}^{-1}$ ) and the intramolecularly hydrogen bonded fi and eight-membered ring monomers ( $\bar{v} \sim 3600$ and $3475 \mathrm{~cm}^{-1}$ respectively) in dils carbon tetrachloride solutions ( $c<0.03 \mathrm{~mol} \mathrm{dm}^{-3}$ ) of diethylene glycol monoall ethers. The predominance of the five-membered ring monomer over the eig] membered ring monomer in spite of the stronger hydrogen bonding in the lat demonstrates how the entropy factor can influence the equilibrium. The associat power of these compounds in concentrated solutions ( $c>0.03 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ) is sme and they form mainly ten-membered ring dimers in such a way that the $\mathrm{OCH}_{2} \mathrm{CH}$ groups maintain a gauche configuration. The identity of dimers in ethylene- a diethylene glycol monoalkyl ethers shows that the second ether oxygen in the latter too far removed for participation in association.
${ }^{1}$ L. S. Prabhumirashi and C. I. Jose, J.C.S. Faraday II, 1975, 71, 1545.
${ }^{2}$ T. K. K. Srinivasan, C. I. Jose and A. B. Biswas, Int. Conf. Spectroscopy, 1967, 2, 293 ; Can
J. Chem., 1969, 47, 3877
${ }^{3}$ V. S. Markevich, V. A. Terent'ev and N. E. Shtivel', Russ. J. Phys. Chem., 1969, 43, 7.
${ }^{4}$ V. P. Lodygina, A. I. Ivanov, S. M. Baturin and S. G. Entelis, Russ. J. Phys. Chem., 1970, 1068.
${ }^{5}$ M. St. C. Flett, Spectrochim. Acta, 1957, 10, 21
${ }^{6}$ L. P. Kuhn and R. A. Wires, J. Amer. Chem. Soc., 1964, 86, 2161.
${ }^{7}$ A. B. Foster, A. H. Haines and M. Stacey, Tetrahedron, 1961, 16, 177 ; P. J. Krueger and H Mettee, J. Mol. Spectr., 1965, 18, 131; H. Saito, Bull. Chem. Soc. Japan, 1966, 39, 989.
${ }^{8}$ T. K. K. Srinivasan, C. I. Jose and A. B. Biswas, Bull. Chem. Soc. Japan, 1964, 37, 1770.
${ }^{9}$ U. Liddel and E. D. Becker, Spectrochim. Acta, 1957, 10, 70; M. Van Thiel, E. D. Becker and G. C. Pimentel, J. Chem. Phys., 1957, 27, 95 ; E. D. Becker, U. Liddel and J. M. Shoolery, J. Mol. Spectr., 1958, 2, 1 ; P. J. Krueger and H. D. Mettee, Canad. J. Chem., 1965, 43, 2888. ${ }^{10}$ A. Miyake, J. Amer. Chem. Soc., 1960, 82, 3040.
(PAPER 5/2297)


[^0]:    From Table IV. 3.

[^1]:    ${ }^{*} \mathrm{C}_{\mathrm{S}}$ (solution concentration) in mol $\mathrm{dm}^{-3} \times 10^{3}$
    a - $3635 \mathrm{~cm}^{-1}$ band; b-3600 $\mathrm{cm}^{-1}$ band and $c-3475 \mathrm{~cm}^{-1}$ band.

[^2]:    ${ }^{1}$ F. T. Wall and W. F. Clausen, J. Amer. Chem. Soc., 1939, 61, 2679.
    ${ }^{2}$ L. P. Kuhn, J. Amer. Chem. Soc., 1952, 74, 2492 ; 1954, 76, 4323.
    ${ }^{3}$ M. St. C. Flett, Spectrochim. Acta, 1957, 10, 21.
    ${ }^{4}$ M. Kuhn, W. Lüttke and R. Mecke, Z. Anal. Chem., 1959, 170, 106.

    1. ${ }^{5}$ A. Foster, A. Hains and M. Stacey, Tetrahedron, 1961, 16, 177.
    ${ }^{5} 6$ H. Buc and J. Neel, Compt. rend., 1962, 255, 2947.
    ${ }^{7}$ H. Buc, Ann. Chim., 1963, 8, 409.
    ${ }^{8}$ N. N. Shapetko, D. N. Shigorin, A. P. Skoblinov, T. S. Ryabchikova and L. N. Reshetova,
    Optics and Spectr., 1964, 17, 247.
    ${ }^{9}$ L. P. Kuhn and R. A. Wires, J. Amer. Chem. Soc., 1964, 86, 2161.
    ${ }^{10}$ P. J. Krueger and H. D. Mettee, Canad. J. Chem., 1964, 42, 326; 1965, 43, 2970.
    ${ }^{11}$ P. J. Krueger and H. D. Mettee, Canad. J. Chem., 1965, 43, 2888.
    12 P. J. Krueger and H. D. Mettee, J. Mol. Spcitr., 1965, 18, 131.
    ${ }^{13}$ H. Saito, T. Yonezawa, S. Matsuoka and K. Fukui, Bull. Chem. Sac. Japan, 1966, 39, 989.
    ${ }^{14}$ P. Buckley and P. Giguere, Canad. J. Chem., 1967, 45, 397.
