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Abstract 

Crystallization is a critical unit operation for the separation and/or purification of solid 

products in the pharmaceutical, specialty and bulk chemical industries. Recent investigations 

have demonstrated that continuous crystallization potentially offers several advantages over 

batch crystallization (improved product consistency, reduced operating costs, faster 

processing, better control etc.). However, widespread implementation of continuous 

crystallization processes is still lacking due to the complex process dynamics involved. 

Mathematical modeling can go a long way towards reducing the uncertainties involved in the 

scale up and design of crystallization processes. The present thesis hopes to build a 

generalized framework to model continuous crystallization processes. The first chapter 

reviews recent advances in the fields of: 

1. Process Analytical Technologies typically used to characterize crystallization processes 

2. Batch Crystallization: Modeling and Control Strategies 

3. Continuous Crystallization 

Key gaps were identified which formed the basis for further investigation. Chapter 2 

presented a simple model for interpreting the Chord Length Distribution (CLD) data measured 

by the Focused Beam Reflectance Measurement (FBRM) probe to obtain the Particle Size 

Distribution (PSD). The model was demonstrated to provide useful information for the PSD of 

various particle systems from FBRM probe measured CLD data. The model in conjunction with 

the FBRM probe can potentially enable the rapid, online and in-situ measurement of the PSD. 

Chapter 3 presented a generalized methodology to model batch crystallization processes 

using the Population Balance Equation (PBE). An approach to estimate key crystallization 

kinetic parameters was also described and implemented for an industrially relevant 

paracetamol-ethanol system. The model was successful in capturing key trends observed in 

batch crystallization experiments. Chapter 4 focused on developing a generalized framework 

to model variable density batch and continuous crystallization processes. Continuous 

crystallization experiments were performed in a novel crystallizer using an industrially 

relevant sodium nitrite-water system. The procedure described in Chapter 3 was used to 

estimate key crystallization kinetic parameters in conjunction with batch crystallization 

experiments. Using the model, it was identified that increasing the plug flow behavior of the 

continuous crystallizers favored higher yields, narrower PSDs and faster response times.  
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Chapter 1. Introduction 

The manufacturing of specialty chemicals, bulk chemicals and pharmaceutical or 

agrochemical active ingredients often involve products or intermediates in a solid form. 

Crystallisation plays an important role as the separation and purification unit operation to 

obtain these solid products. The crystal size distribution and the crystal shape are the 

important parameters to judge the product quality. The width of the distribution and the 

mean size are important product specifications. These attributes influence desirable product 

properties depending on the area of application and in downstream solid’s handling.  

The first step in optimizing any crystallisation operation is to develop tools to assess the 

product quality. In this regard, recently there has been a lot of progress in terms of measuring 

the product characteristics. Advanced process analytical technologies are now capable of 

delivering those characteristics accurately and inline. Further, technologies have also 

developed to reliably measure the variables that directly affect the product quality such as 

the degree of super-saturation. Having sophisticated measurement techniques in turn allows 

for the effective control and rapid advancement of the crystallisation processes.  

Typically, crystallisation is carried out in a batch mode of operation. The batch mode of 

operation is easy to implement in terms of process understanding as also in terms of 

engineering. However, it is observed that during the batch mode of operation, there is a batch 

to batch variability in the product quality. This variability causes problems in the downstream 

processing and as such is not desirable. The variability in the product quality is caused due to 

fluctuations in industrial operating conditions, presence of external seeds etc. Recently, a lot 

of efforts have been directed in developing control strategies to mitigate this fluctuation.  

Due to limitations imposed by the batch mode of operation, recently there has been a surge 

of interest in the continuous mode of operation for crystallisation. The continuous process is 

more challenging to understand in terms of the process physics and more cumbersome to 

implement. However, it has been shown by many researches to potentially offer numerous 

advantages over the batch mode of operation. Different configurations of crystallizers have 

been investigated which opened up new avenues for process optimization and enable utilizing 
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process conditions which were unattainable in the batch operation. This in turn offers the 

possibility for more control over the particle size and shape of the product.  

The present chapter aims to set the background for presenting the results of this work by 

briefly reviewing key contributions in crystallisation technology with regards to process 

analytical technology, batch crystallisation and continuous crystallisation. The next three 

subsections briefly review the previous work done along three key aspects: characterizing 

crystallisation processes, batch crystallisation processes and continuous crystallisation 

processes. This is followed by a brief summary of previous work. Finally the scope and the 

organization of the present thesis is discussed.  

 

1.1. Characterizing Crystallisation Processes 

Process Analytical Technologies (PAT’s) are critical in optimization of crystallisation processes 

as they identify the key measures of product quality (such as crystal morphology, size etc.) as 

also critical process variables that affect them (super-saturation, solid’s loading etc.). The data 

collected by the PAT’s can be used to develop improved process understanding, evolve better 

operating protocols, achieve continuous improvement in technology and develop better 

control strategies. Especially in the pharmaceutical industry and in general for crystallisation, 

PAT’s are indispensable especially due to the high amounts of uncertainties and the lack of 

understanding in such systems. Excellent reviews for the state of the art in PAT’s were 

provided by Lawrence et. al. (2004) and Simon et. al. (2015).  

The criteria for the product quality used in crystallisation are typically the crystal size 

distribution and the crystal shape. The product specifications are important as they affect the 

downstream processing unit operations as also are specific depending upon the area of 

applications. For example, different polymorphic forms have different solubility, different 

sizes/shapes of crystals have different flowability and filterability. PAT’s are thus 

indispensable for the monitoring of such product characteristics to ensure the products meet 

their specifications. The PAT’s may be characterized as being:  

1. Online: Measurements done as the experiment is progressing. A sample may be 

diverted to the measurement unit which may or may not be returned.  



3 
 

2. At-line: Measurements done on the site of the experiments  

3. Offline: Measurements done at a separate site 

4. In-line: Measurements done real time at the location where the process is occurring. 

However, these may affect the flow profile 

5. Non-invasive: Same as in-line with the difference that the sensor is never in contact 

with the process fluid and thus does not affect the process 

Typically for crystallisation processes, at-line or offline methods are not the first choice 

because of the time delays in collecting the sample and analyzing the sample. Especially in a 

highly transient process such as crystallisation, such a time delay, and perturbations caused 

in the sample state due to exposure to the environment introduce errors into the analysis. 

Thus in-line or non-invasive methods are generally the preferred methods for crystallisation 

processes.  

The key thermodynamic variable that affects the crystallisation process is the degree of super 

saturation. Both the nucleation rates and growth rates are known to be functions of the 

degree of super-saturation. The super-saturation may be represented as:  

𝑆 =
𝐶 − 𝐶∗

𝐶∗
 (1.1) 

 

Thus, PAT’s in crystallisation processes are primarily devoted towards monitoring the super-

saturation profile and key product qualities such as the crystal size distribution, morphology 

and in some cases, the solid’s loading. The different technologies for monitoring each of these 

variables are briefly discussed below. 

1.1.1. Super-saturation 

For the measurement of the super-saturation, the Attenuated total reflectance-Fourier 

transform infrared (ATR-FTIR) spectroscopy has been widely utilized (Lawrence et. al., 2004). 

The main purpose of this probe is to analyze the contents of the solution phase. It is even 

possible to track the concentrations of multi-component solutions as is often seen in 

pharmaceutical applications (Figure 1.1.1). 
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Figure 1.1. Concentration of the solute and the impurity simultaneously measured in-line 

using an ATR-FTIR probe during crystallisation (Lawrence et. al., 2004) 

 
In some cases, it is also possible to use conductivity measurements for tracking the solute 

concentration. However, such an effort requires considerable calibration before it can be 

used as the conductivity values change with respect to concentration and temperature rather 

than just concentration.  

1.1.2. Particle Size 

There are several techniques available to directly measure the particle size distribution (PSD). 

The most popular ones are the Laser Diffraction and the Microscopy methods. These enable 

a complete characterization of the PSD curve, however, are offline methods. Hence, it is 

difficult to obtain PSD results using these methods for transient processes such as 

crystallisation as we are limited to only investigating the ‘equilibrated’ samples. As described 

earlier, offline methods of size analysis inevitably introduce errors into the characterization 

of the sample for crystallisation processes.  

Particle Vision and Measurement (PVM) is another widely used measurement device which 

extends the microscopy technique and enables the measurement of PSD in-situ and online. 

Two dimensional images of the particles as viewed from the probe window are recorded 

which are later processed to obtain the PSD. The Focused Beam Reflectance Measurement 

(FBRM) probe is also widely used to study crystallisation. The FBRM probe works on the 
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principle of laser back-scattering. Both these methods are important because of the fact that 

they enable in-line measurements as described above. Although these methods do affect the 

internal flow, careful placement of the probe helps to give reliable measurements.    

1.1.3. Particle Shape 

Essentially the only way to monitor particle shape is to in some sense ‘directly’ view the 

crystals. In such cases, offline microscopy based methods are useful as they enable this view. 

Apart from this, the inline method of PVM as described above also enables the direct 

detection of the particle shape. In some case, the data recorded by the FBRM can also be 

interpreted in some way to infer the particle shape although this requires previous validation.   

1.1.4. Solid’s Loading 

A nephelometer (or turbidity probe) is often used to study crystallisation systems. The 

nephelometer is a light scattering based technique that records the concentration of solid’s 

in the solution. It allows for the in-line measurements for solid’s loading, however, the results 

provided by this method do not give any information regarding the PSD. The main advantage 

of this method is that it is relatively cheap and easy to implement. Moscosa-Santillan et. al. 

(2000) demonstrated the use of a turbidity probe to reliably control the dynamics of the 

crystallisation processes. 

1.1.5. FBRM for PSD measurement 

From all the PAT’s, in the present work, we will focus on the use of the Focused Beam 

Reflectance Measurement (FBRM) probe for characterizing particle size. The FBRM is a useful 

tool to monitor the PSD because it is inline. In a FBRM, a laser is emitted from a laser source 

inside the probe. The source is rotated around the probe axis such that the laser revolves 

remaining parallel to the probe axis. The laser traces a cylindrical surface around the probe 

axis inside the probe. A very high speed of rotation is used (in the present study the tangential 

speed of the source was set to 2 m/s). At the probe tip is a sapphire window which is in contact 

with the solution wherein the particle measurements are to be made. A schematic of the 

inner mechanism of the FBRM is shown in the Figure 1.1.2. Whenever the revolving laser 

encounters a particle along its circular path it gets reflected back into the probe. Each instance 

of this reflection is treated as one count of particle detection and the duration of time for 
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which the beam is reflected multiplied by the tangential speed of the laser becomes the 

length of the chord which the laser ‘traces’ on the particle surface (Figure 1.1.3). Thus, in 

course of time and in dense solutions, multiple particles are recorded by the FBRM probe and 

hence we obtain the number of counts and the particle chord length distribution (CLD) data. 

The CLD measured by the FBRM probe, although related to the PSD, bears no obvious 

resemblance to the PSD as is evident from the system description. The CLD data needs to be 

interpreted in some way to obtain information regarding the PSD. 

 
Figure 1.2. Inner mechanisms of an FBRM probe (Mettler Toledo training manual) 

 

 
Figure 1.3. Signal detection in an FBRM probe (Mettler Toledo training manual) 
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1.1.6. Interpreting FBRM data  

Much work has been done recently to address the problem of translating the CLD as recorded 

by the FBRM to the PSD. Li et. al. (2013) developed an empirical method for the determination 

of the PSD from the CLD. Multiple fingerprint CLD’s for known particle sizes were first 

meticulously determined over the size range of interest. The actual PSD was estimated as the 

one which yielded the same CLD as the measured CLD by a linear combination of the 

fingerprint CLD’s. However, this method requires a lot of standardized data (fingerprint CLD’s) 

in order to calibrate the model for a specific system before it starts to make predictions. 

Gathering this standardized data is not always possible and is definitely time consuming and 

cumbersome. Besides, the aforementioned publication, other efforts directed towards 

solving the CLD to PSD problem all follow a definite methodology. First the CLD of a single 

isolated particle (or equivalently a mono-disperse system) is derived theoretically. Then, the 

CLD is derived theoretically for a system with a known PSD. Finally, the inverse problem of 

determining the PSD for a known CLD is addressed. Having established the first part, the 

second part is relatively straightforward. Several efforts have been directed to specifically 

address the first part of the problem. Li et. al. (2005) presented a two part study to determine 

the PSD from the CLD measurements for non-spherical particles. First, a model to determine 

the CLD for a spherical particle. The model was extended to allow for various particle shapes 

using a 2D super ellipsoidal function. However, the model only considered a fixed 2D particle 

projection to determine the CLD and did not account for the different particle orientations 

and the subsequent effect on the 2D projections. In the model presented by Ruf et. al. (2000) 

all possible 2D projections of the 3D shape (with different orientations) were considered for 

determining the CLD. The approach to calculate the CLD from the 2D particle projection is 

fundamentally similar to the 2D model proposed previously. 

The inverse problem of determining the PSD from a known CLD is more troublesome. 

Typically, the PSD is estimated iteratively by starting from a guess PSD and comparing the 

predicted CLD and the measured CLD to evaluate the direction of the iteration. However, due 

to the non-linear nature of the CLD expressions obtained from the single particle models, the 

inverse problem becomes an ill posed mathematical problem. The most popular methods 

include the Least Squares (LS) and the Constrained Least Squares (CLS) algorithms (Li et. al., 

2005). However, when CLD measurements are noisy, as are typically observed for the case of 
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crystallisation systems, oscillations or negative values are obtained for the PSD’s using these 

methods. To overcome this pitfall, Li et. al. (2005) proposed an iterative Non-Negative Least 

Squares algorithm for the inversion problem. Worlitschek et. al. (2003) extended the model 

proposed by Ruf et. al. (2000) by considering the method of projection onto convex sets 

(POCS) to solve the inversion problem. Agimelen et. al. (2015) reported an algorithm to 

estimate the PSD from CLD measurements for needle shaped crystals. Appropriate single 

particle CLD models reported in literature were used and the algorithm required no additional 

information such as approximate particle size range or particle aspect ratio to constrain the 

iterative procedure as for previous efforts. Along similar lines as in previous works, in Chapter 

2 a model was proposed for the CLD to PSD problem. Appropriate modeling assumptions led 

to a simpler expression for the single particle CLD than obtained in previous studies. This 

coupled with the assumption of standard size distribution shapes to represent particle 

populations, enabled the implementation of the model using simple spread sheeting tools.  

These efforts and some continuing advances are enabling the use of FBRM technology for the 

reliable monitoring of PSD. This is evidenced by the rise in the use of the FBRM technology 

specifically with regards to crystallisation.  

 

1.2. Batch Crystallisation Processes 

1.2.1. Introduction 

Batch processes are the most commonly used crystallisation unit operations. Hence, it is 

obvious that a large body of research in crystallisation is devoted towards specifically 

understanding the dynamics of batch crystallisation and specifically in evolving reliable 

control strategies. Batch processes are preferred as they are easy to implement from a 

process understanding point of view as well as from an engineering point of view. However, 

the convenience of batch processes comes at the potential costs of time, money and product 

quality. It is said potential because continuous processes have yet to be established 

completely as being the preferred choice for crystallisation. 

One of the major limitations of the batch processes is the batch to batch variability in the 

product quality. The variability occurs due to fluctuating industrial operating conditions. As 
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such the nucleation kinetics are very sensitive to changes in operating conditions and the 

effect of fluctuations are immediately translated into variable product quality. One of the way 

to get around it is to develop robust control strategies. Recently a lot of work has been 

focused on developing sophisticated control strategies for batch crystallisation processes. 

These have in some sense to some extent mitigated the effect of fluctuations on the product 

quality.  

Chapter 3 presents a general protocol to estimate key parameter values for the crystallisation 

kinetic model. A novel experimentation scheme coupled with appropriate modeling studies 

was proposed as a robust method to estimate key parameter values.  The review presented 

in the following section helped identify important tools to implement the said protocol. First, 

the general modeling framework for batch crystallisation processes is discussed. Then 

numerical methods used to obtain the solution for the model equations are discussed. The 

next section highlights how crystallisation kinetics is dealt with in batch processes. Finally, a 

discussion is presented dealing with different control strategies investigated for batch 

crystallisation.  

 

1.2.2. Mathematical Model 

Population balance equations are used to develop models for batch crystallisation process. 

The population balance equations track the change in the number density distribution 

function of the crystals in the crystallizer with time. Since the process is operated in a batch 

mode, a transient population balance equation needs to be solved. The transient PBE may be 

written as (Ramakrishna, 2000): 

𝜕𝑛(𝐿, 𝑡)

𝜕𝑡
+

𝜕𝐺(𝐿, 𝑡)𝑛(𝐿, 𝑡)

𝜕𝐿
= 𝐵0(𝑡)𝛿(𝐿 − 𝐿𝑛𝑢𝑐) 

(1.2) 

 

Here B0 stands for the rate of nucleation of particles. L is the particle size co-ordinate, G is the 

crystal growth rate, δ is the Kronecker delta function, Lnuc is the size of the nucleating particles 

and n(L,t) is the number density distribution function. Other phenomena such as breakage 

and agglomeration may also be represented by adding suitable source terms on the right hand 

side however, this is beyond the scope of the present text. For a detailed description of these 
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phenomena kindly refer to Ramakrishna (2000). It is also necessary to solve the dissolved 

solute’s concentration equation along with the PBE as the growth rates and nucleation rates 

are typically represented using a super-saturation driving force rate expression. The 

expression for the rate of change of dissolved solid’s concentration may be obtained by 

differentiating the expression for the total solute mass with time and by suitably re-arranging 

the expression to suit the numerical method used. The total mass of solute will not change 

and hence the differential will equate to zero. The expression for the total solute mass may 

be written as (Pandit et. al., 2015):  

𝑀𝑆 = 𝑉𝑅𝐶𝑀𝑤 +  𝑉𝑅𝜌𝑝

𝜋

6
∫ 𝐿3

∞

0

𝑛(𝐿, 𝑡)𝑑𝐿 
(1.3) 

 

Suitable energy balance equations may also be evolved if the heat of 

crystallisation/dissolution is high enough and an adiabatic process is considered. However, 

typically, batch crystallizers are operated such that the temperature profile is controlled 

externally and precisely. So, any changes due to the liberation of heat of 

crystallisation/dissolution are typically compensated for by the control system.  

1.2.3. Numerical Methods  

Analytical solutions for the steady state population balance were provided by Randolph and 

Larson11. However, owing to the transient nature of the problem at hand and the increasingly 

complex expressions for nucleation rates and growth rates, an analytical solution to the 

problem is not always possible. It is imperative then to use numerical methods to solve the 

population balance equation. Several methods are available to solve the PBE. Population 

balance equations (PBEs) have been widely used to model crystallisation and dissolution 

processes. A detailed review of a subset of the methods to solve population balance equations 

is given by Ramkrishna (2000). Analytical solutions, moment based methods (standard 

method of moments and quadrature method of moments), discretization based methods 

(fixed pivot and moving pivot), and the method of weighted residuals were reviewed. It is 

possible to obtain analytical solutions to the PBE, however, this is limited to a few cases 

depending upon the type of mathematical expressions used to represent growth/nucleation 

kinetics as well as for other phenomena considered (aggregation/breakage). Analytical 



11 
 

solutions for the population balance equation for simple cases such as size independent 

crystal growth rate and a power law type nucleation rate are provided in the work of 

Ramakrishna (2000).  

Another class of methods for the solution of the PBE are those which track moments of the 

particle size distribution rather than tracking complete distribution also known as moment 

based methods. Simple systems (not involving breakage or aggregation), may be addressed 

suitably by using the standard method of moments (Randolph et. al., 1988). For more complex 

systems, involving aggregation and breakage, several new methods such as the quadrature 

method of moments (Marchisio et. al., 2003) and the direct quadrature method of moments 

have been proposed (Marchisio et. al., 2005). The solutions obtained from such methods are 

computationally efficient, however, are less descriptive as it is difficult to extract the complete 

particle size distribution information from only the known moments. This inverse problem is 

not a mathematically well-posed problem, that is, there may exist multiple solutions to the 

problem. There are methods of extracting the particle size distribution from known moments 

however; those are not besides their own limitations.  

Table 2.1: Overview of methods available for the solution of the population balance 
equation (Pandit et. al., 2015) 

Method Name Brief Description Strengths Weaknesses 

Discretization 
Based 
Methods 

Solution by discretization of the 
particle size co-ordinate and 
transforming PBE into a set of ODE’s  

Enable the complete 
determination of the PSD 

Computationally 
expensive 

(a) Fixed Pivot  
The change in number of particles in 
each discretization element tracked 

Relatively easy to 
implement 

Prone to 
numerically induced 
errors 

(b) Moving 
Pivot 

The change in the location of the 
boundaries of each discretization 
element tracked 

Computationally more 
efficient than fixed pivot; 
Not prone to numerically 
induced errors 

Relatively more 
complex to 
implement 

Moment 
Based 
Methods 

Solution by transforming PBE into set 
of ODE’s representing rate of change 
of a chosen set of moments 

Computationally efficient; 
Easy to implement 

Does not enable the 
complete 
determination of 
the PSD 

Method of 
Characteristics 

Set of characteristics of the PBE is 
obtained enables the reduction of 
the PBE into a set of ODE’s  

Highly efficient for simple 
physics  

Approach difficult to 
implement for 
complex physics  

High 
Resolution 
Finite Volume 

Extends the mathematical treatment 
of solution of equations of flow by 
finite volume methods to solve PBE 

Allows coarser gird; 
Prevents numerical errors  

Computationally 
expensive; relatively 
new and hence 
invalidated 
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Discretization based methods for the solution of the PBE enable the complete description of 

the particle size distribution. In these methods, typically, the domain of the particle size is 

broken into discrete bins and the number of particles in these bins is tracked with time. 

However, one should be careful in implementing these methods as they are prone to 

numerically induced errors. Recently, high resolution finite volume (HRFV) methods have 

been gaining importance for the solution of PBEs (Gunawan et. al., 2004). These methods are 

derived from a general finite volume class of methods which are typically used to solve flow 

and wave propagation problems (Leveque, 2002). The method has the advantages of tapping 

the sophisticated numerical methods which have been developed to solve the more popular 

flow and wave propagation problems and as such is very robust. Apart from this, the fixed 

and moving pivot methods are also two popular discretization based methods for the solution 

of the population balance equations (Ramakrishna, 2000) . A comparison between the pros 

and cons of using each method are shown in Table 2.1.  

1.2.4. Crystallisation Kinetics 

One of the most difficult things in modeling crystallisation processes is determining the 

crystallisation kinetics. The crystallisation kinetics includes both the kinetics of crystal growth 

and kinetics of nucleation. Even in nucleation there are two types: primary and secondary. 

One of the primary confusions in this section is that the phenomena themselves are not well 

understood. This leads to a wide array of rate expressions which have been reported to 

represent both nucleation and growth rates. Owing to the wide range of expressions, there is 

no consensus in terms of characterizing the kinetics of a system.  

1.2.4.1. Crystal Growth 

Crystal growth is typically modeled as a two-step process. In the first step, the solute 

molecules are moved to near the crystal surface by convection and diffusion. In the second 

step, the molecules near the crystal surface attach to the crystal lattice and cause the ‘growth’ 

of the crystal. The first step is thus the mass transfer step and the second step is the surface 

integration step (Karpinski, 1985). Typically, it can be assumed that the crystal growth is 

limited by the surface integration step and the mass transfer step is sufficiently faster in 

comparison (Pandit et. al., 2015; Worlitschek et. al., 2004). The surface integration step can 
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be related to the degree of super-saturation in the form of a reaction rate type of expression 

to obtain the growth of the crystal surface as: 

𝐺 = 𝑘𝑟0exp (−
𝐸𝐴

𝑅𝑇
) (𝐶 − 𝐶∗(𝑇))𝑔 

(1.4) 

 

The value of the activation energy for the growth rate expression is known to lie in range of 4 

x 107 to 8 x 107 J/kmol-K. The value of the growth rate exponent, g, is reported to be 

approximately equal to 2. Nothing was reported with regards to the pre-exponential constant, 

kr0.  

1.2.4.2. Nucleation 

For an unseeded crystallisation, the onset of crystallisation is caused by homogeneous 

primary nucleation. Primary nucleation is the nucleation where the solute molecules in a 

supersaturated solution within themselves aggregate to form nuclei. By unseeded it is implied 

that no external seeds or crystals were added to induce nucleation. Now as the crystals in the 

solution grow in number and size, secondary nucleation starts to gain importance. Secondary 

nucleation is the generation of nuclei which may be attributed to the breakage by some 

mechanism of already existing crystals (Davey et. al., 2001; Myerson, 2002; Mersmann, 1995). 

Typically, after this regime sets in, that is the number of crystals in the solution becomes 

sizeable, secondary nucleation is the dominant mechanism for nucleation. The primary 

nucleation rate can be represented by a simple power law relation as (Davey et. al., 2001; 

Myerson, 2002):  

𝐵0,𝑝𝑟𝑖 = 𝑘1(∆𝐶)𝑛1 (1.5) 

 
There are several relations to model secondary nucleation. The different rate laws used to 

model the secondary nucleation rate are listed in Table 2.2. The first law listed in this table 

was found to be extremely sensitive and not reliable. The second relation is too simplistic as 

it is known that the rate of secondary nucleation is dependent loosely speaking on the number 

of crystals present in the solution owing to the mechanism proposed for the secondary 

nucleation. Pandit et. al. (2015) hypothesized that secondary nucleation occurs due to some 

small parts chipping off from the surface of bigger crystals. The smaller particles which get 

chipped off then become the new ‘seed’ crystals. The rate of nucleation thus seems to be 



14 
 

directly proportional to the total surface area of the crystals in the solution as opposed to the 

total number of crystals. The secondary nucleation rate considered as such may be written 

as: 

𝐵0,𝑠𝑒𝑐 = 𝑘2𝑀2(∆𝐶)𝑛2 
(1.6) 

  

Here, M2 is the second moment of the number density distribution function. The total 

nucleation rate is thus a sum of the contributions due to primary and secondary nucleation 

and can be represented as: 

𝐵0 = 𝐵0,𝑝𝑟𝑖 + 𝐵0,𝑠𝑒𝑐 
(1.7) 

Table 2.2. Laws to represent secondary nucleation reported previously (Pandit et. al., 2015) 

No Rate Expression Parameters Reference 

1 

𝐵0,𝑠𝑒𝑐

= 𝐸
𝑘𝑎𝑀2𝐷

𝑑𝑚
4 exp (−𝜋 (

𝛾𝑠𝑙𝑑𝑚
2

𝑘𝑇
)

1

𝑙𝑛∆𝐶
) 

𝑘𝑎: Shape factor 

𝑑𝑚: Molecular diameter 

𝛾𝑠𝑙: Interfacial surface tension 

𝐷: Diffusivity 

𝑘: Boltzman constant 

∆𝐶: Supersaturation 

𝐸: Probability of nucleation 

Worlitschek et. al. 

(2004) 

2 𝐵0,𝑠𝑒𝑐 = 𝑘𝑁∆𝐶𝑛 
∆𝐶: Supersaturation 

𝑘𝑁: Rate Constant 
Myerson (2002) 

3 𝐵0,𝑠𝑒𝑐 = 𝑘𝑁
′ 𝑊𝑖𝑀𝑇

𝑗
∆𝐶𝑛 

𝑘𝑁
′ : Rate Constant 

𝑊: Agitation Rate 

𝑀𝑇: Suspension Density 

∆𝐶: Supersaturation 

Myerson (2002) 

4 𝐵0,𝑠𝑒𝑐 = 𝑘𝑁
′′𝑀𝑇

𝑗
∆𝐶𝑛 

𝑘𝑁
′ : Rate Constant 

𝑀𝑇: Suspension Density 

∆𝐶: Supersaturation 

Myerson (2002) 

 
  

1.2.4.3. Dissolution 

The dissolution rate of the particles is a strictly mass transfer problem. The solution is under-

saturated and the rate of shrinkage of the particles can be determined according to the rate 

of mass transfer from the solid phase into the solution phase. Paramount in accurately 
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calculating the rate of dissolution is to have reliable estimates for the coefficient of mass 

transfer. Once the mass transfer is known the rate of shrinkage of the particles can be written 

as: 

𝐷 = 𝑘𝑑

𝑀𝑤

𝜌𝑝
(𝐶∗(𝑇) − 𝐶) 

(1.8) 

 

The procedure to calculate the mass transfer coefficient is reported by Worlitschek et. al 

(2004) and also by Mersmann (2000). The value of the mass transfer coefficient depends upon 

the physical properties of the system as well as the critical system operating parameters such 

as the power dissipation rate.  

1.2.4.4. Estimating Kinetic Parameters 

With the advent of more reliable process analytical technologies, more reliable kinetic 

parameters may be estimated. However, the kinetic parameters that are developed are 

inherently system-specific. This is the case especially for the case of secondary nucleation. As 

the nucleation progresses and the number of particles in the system increase, the secondary 

mode of nucleation starts dominating the crystallisation process. Thus, the secondary mode 

of nucleation has a major impact on the evolution of the crystallisation processes. However, 

the inherent nature of secondary nucleation is in fact system specific. Hence, on changing 

operating parameters such as impeller speed or on changing crystallizer configuration, it is 

expected that the kinetic parameters for secondary nucleation are not transferred and need 

to be reworked.  

There are several studies that work on determining the kinetic parameters for crystallisation 

processes. These studies develop a mathematical model to represent the particular 

crystallisation processes. The model discussed earlier is the most common framework for 

modeling batch crystallisation processes. The model predictions are then made to match the 

experimental measurements for particle size distribution, super-saturation profile or the 

evolution of one of the moments by changing appropriate kinetic model parameter values. 

This then translates into an optimization problem wherein starting from an initial guess of 

kinetic parameters, the final parameters are obtained iteratively. Such a procedure was 

adopted by Worlitschek et. al. (2004)  as well as by Pandit et. al. (2015) to estimate the kinetic 
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parameters for a system of paracetamol-ethanol. The protocol mentioned in the above 

section was developed in Chapter 3. A novel experimentation scheme was coupled with 

modeling studies to estimate key parameter values. It was argued that as opposed to previous 

studies, the presented scheme validated the model parameter values over a larger range of 

operating conditions and hence were more reliable.  

1.2.5. Control of Batch Processes 

The control of batch processes is a topic of immense interest in crystallisation. This is because 

one of the chief issues in using batch crystallisation is the batch to batch variability in the 

product quality. This variability arises typically due to fluctuations in industrial operating 

conditions. It is essential to develop a robust control system so that the effect of such 

fluctuations can be mitigated. Also, another topic of interest is to identify optimum operating 

protocols and operating strategies which make it possible to achieve a finer control over the 

product quality and in some cases make accessible product characteristics which previously 

were not unattainable. In this section, some of the recent efforts directed towards evolving 

control strategies for batch processes are discussed. 

 
Figure 1.4. Temperature time trajectories employed for batch cooling crystallisation of 

glycine in water (Moscosa-Santillan et. al., 2000) 

 

Moscosa-Santillan et. al. (2000) investigated the potential of online turbidity measurements 

to identify optimum operating protocols for seeded batch cooling crystallisation processes. 
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Seeded batch-cooling crystallisation was carried out in 3 temperature-time trajectories 

(Figure 1.4). It was found that the alternating trajectory yielded much narrower CSD than the 

other two. Also, turbidity measurements were found to be effective in identifying operating 

conditions favoring secondary nucleation and thus helped in identifying alternate protocols 

to avoid that phenomenon.  

Choong et. al. (2004) developed an optimization framework for batch cooling crystallisation 

processes based on the method of simulated annealing. The optimization algorithm needs 

only a single variable referred to as the performance index from the phenomenological model 

to carry out the optimization rather than the unreliable and messy calculation of gradients. It 

was shown that the developed optimization framework could successfully identify the 

temperature profiles which yielded bigger sized particles with lesser coefficient of variation 

than would have been attained using standard linear and convex temperature profiles. Using 

the optimization framework, it was found that several operating variables such as cooling 

profile, seed size, seed mass, batch time, initial and final temperatures etc. may be optimized.  

Nagy (2009) presented a novel two-level control approach for batch crystallisation processes. 

On the higher level, a phenomenological model-based control strategy was used to determine 

the trajectory of the super-saturation curve based on the target CSD and the changing 

operating conditions. The trajectory is then fed to a lower level super-saturation controller 

which drives the system according to the desired concentration versus time trajectory by 

changing the crystallizer temperature. The control strategy was seen to be effective in 

identifying the optimal super-saturation trajectory in order to obtain a desired CSD. 

Lewiner et. al. (2002) proposed a novel method to monitor the crystallisation process online 

using the ATR-FTIR spectroscopy to measure the super-saturation. The cooling crystallisation 

of two agrochemical compounds was investigated. Using the ATR-FTIR method to measure 

super-saturation, a fines dissolution loop was implemented. First, the solution crystallizes and 

is allowed to reach equilibrium concentration while maintaining the solution temperature. 

The fines dissolution loop was then implemented. It was found that the fines dissolution loop 

was effective in providing more reproducible results as also bigger sized particles (Figure 1.5).  
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Figure 1.5. The super-saturation profile in the fines dissolution loop and the corresponding 

micrographs of the crystals as reported by Lewiner et. al. (2002) 

 

Chung et. al. (1999) investigated optimal seeding strategies for the batch cooling 

crystallisation of potassium nitrate in water. Three batch control objective functions were 

investigated: the minimization of the weight mean size, the coefficient of variation and the 

ratio of the nucleated mass of the crystals to the seed mass. It was found that the optimizing 

the seed distribution can have a larger impact on the final crystal properties than optimizing 

the super-saturation profile. 

Ward et. al. (2011) developed a dimensionless population balance modeling framework to 

model seeded batch cooling crystallisation process. The use of non-dimensional numbers 

effectively allows making more generalized conclusions which are not limited to any specific 

system. The authors investigated different optimal super saturation profiles for their 

effectiveness in minimizing secondary nucleation and maximizing growth or in minimizing the 

mass of nucleated crystals. It was found that the optimal profile suggested by Mullin-Nyvlt 

was the best as it provided good results even with no information about the kinetics available 

a-priori. It was also concluded that the distribution of the seed crystals play a more influential 

role in determining final product properties than the super saturation profile. Primarily 

optimization efforts should be directed towards evolving optimum seed profiles.  
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1.3. Continuous Crystallisation Processes 

1.3.1. Introduction 

Continuous crystallisation processes have been gaining importance in the recent years as an 

alternative to batch processes for the production of pharmaceutical, specialty and bulk 

chemicals involving crystallisation. Conventionally, industrial crystallisation processes are 

operated in batch mode. However, a continuous mode of operation potentially offers several 

advantages over the batch mode of operation. Due to fluctuations in the upstream process 

conditions and operating conditions as well as due to variability in batch handling there is 

inevitably variability in the batch to batch product quality. Continuous processes are known 

to offer more robust control on the process dynamics and hence can reduce the variability in 

the product quality.  

The continuous mode of operation also allows the utilization of operating space which was 

previously inaccessible in the batch mode of operation. This fact can be harnessed to 

effectively improve the process efficiency. Apart from the improved process efficiency, a 

utilization of a larger operating space provides access over a wider range of particle sizes (both 

bigger and smaller sized), particle shapes and crystal properties which can be produced. It is 

not always possible to produce these product characteristics in a batch mode of operation 

due to the inherent limitations imposed on the degree of super-saturation allowable. A 

continuous mode of operation effectively reduces the labor and operational costs which are 

required in batch processes and sometimes also saves on utilization of space.   

Accurate mathematical models are usually necessary to realize the advantages of the 

continuous crystallisation processes. In Chapter 4 a generalized modeling framework was 

developed for modeling both batch and continuous crystallisation processes. A tanks-in-series 

framework typically used for capturing mixing effects in chemical reactors was integrated 

with the population balance equation models popularly used for modeling crystallisation 

processes. The key aspects of mathematical modelling of continuous crystallisation are briefly 

discussed in the following.  
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1.3.2. Modeling Methodology 

Population balance equations are used to model both batch and continuous crystallisation 

processes. Models for continuous processes have additional inflow and outflow terms in all 

relevant equations (mass balance, population balance, energy balance) as opposed to the 

batch processes. Further, batch processes are variable volume processes. Continuous 

processes may be fixed volume or fixed flow rate. Models need to be suitably developed to 

account for the relevant cases.  The continuous processes typically investigated can be 

categorized as being some variation of a cascade of MSMPR crystallizers. Steady state 

population balance equations (PBE’s) are formulated for each of the MSMPR crystallizers and 

suitable connections are added to represent recycle streams and connections between the 

crystallizers. The PBE for the ith MSMPR is of the form:  

𝐺𝑖𝜏𝑖

𝑑𝑛𝑖

𝑑𝐿
+ 𝑛𝑖 = 0 

(1.9) 

 

The equations for the concentration in each of the MSMPR units can be written as: 

𝐶𝑖−1 = 𝐶𝑖 + 𝑀𝑇,𝑖 
(1.10) 

 

The equation for temperature is not written because the units are typically operated under 

isothermal conditions. The steady state population balance equations are solved analytically 

to obtain the expressions for the number density function in each of the crystallizer units. The 

above PBE is a boundary value problem with the boundary at L=0 represented by n0 or the 

nucleation rate. Simple power law relations are used to model the growth rates and 

nucleation rates by relating them to the super-saturation driving force. The kinetic 

parameters for the nucleation and growth rates are found out by fitting the model predicted 

CSD against a CSD obtained experimentally. The model is then used to simulate different 

scenarios or to study the effect of different operating parameters on the product yield and 

purity parameters.  

Although this modeling platform is fairly robust, the kinetic parameters are highly sensitive to 

the operating parameters and crystallizer geometry considered. The effect of operating 

parameters such as impeller speed on the nucleation rate constants was not investigated in 
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the studies considered here. It is known, that the secondary nucleation rate is largely affected 

by the impeller speed and the flow dynamics. As such, due to the difficulty in dealing with the 

secondary nucleation rates, the models developed here are not easily transferrable to 

different configurations and need to be calibrated independently.  

The model for the plug flow crystallizer is based on the standard plug flow or axial dispersion 

models. The steady state population balance for a plug flow crystallizer can be written as:  

𝑢𝑥

𝜕𝑛

𝜕𝑥
+ 𝐺

𝜕𝑛

𝜕𝐿
= 0 

(1.11) 

 

The equation for the concentration can be written as:  

𝑢𝑥

𝑑𝐶

𝑑𝑥
= −3𝜌𝑆𝑘𝑉 ∫ 𝐿2 𝑛(𝐿)𝑑𝐿 

(1.12) 

 

The constitutive laws for nucleation and growth are the same as considered in the case of the 

MSMPR crystallizers. Again the kinetic parameters need to be determined specifically for the 

case of the system investigated. The kinetic parameters are determined by fitting model 

predicted CSD’s to the experimental CSD’s. Such a model has been used to investigate cooling 

as well as anti-solvent crystallisation previously. Suitable equations may be added as may be 

relevant to the system to model different configurations (e.g. Multiple addition points, heat 

transfer etc.). The population balance equations to account for dispersion along the axial 

direction (Axial Dispersion Model) as also accounting for the fluctuations in growth rate 

(Growth Dispersion Model) have been shown to provide better accuracy to model such 

crystallizers.  

Typically, models are formulated without considering the effect of change in volume due to 

crystallisation. However, for highly soluble systems (eg. Paracetamol in ethanol), volume 

changes significantly affect the crystallisation dynamics. Recently, Su et. al. (2015) proposed 

a generic framework to model crystallisation processes – batch and continuous, which 

included the effect of changing volume. However, the model was formulated for a cascade of 

MSMPR’s and as such only accounted for fixed volumetric flow rate processes. In plug flow 

crystallisers and other similar types of ‘closed’ crystallisers, the volume of the crystalliser is 
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fixed and the outlet flow rate changes instead of the volume on account of crystallisation. 

Vetter et. al. (2014) performed an extensive simulation study specifically for the cascade of 

MSMPR crystallisers. The effect of number of stages, temperature, anti-solvent fraction and 

residence time in each crystalliser on the particle size distribution was studied.  

As the model parameters are not transferrable, it is important that the experimental data be 

available for the specific system so that system specific kinetic parameters may be 

determined. Thus, it is important to characterize the process with experimental data such as 

dissolved solids’ concentration, particle size distribution or turbidity among other things. 

Process analytical technologies (PAT’s) are used to determine these characteristics either 

online or offline. A detailed description of the PAT’s typically used for crystallisation is 

provided in earlier sections.  

1.3.3. Experimental studies 

Due to difficulty in the a-priori prediction of the system behavior for different configurations, 

it is important to investigate the configurations experimentally. The model may then be 

calibrated based on experimental data and further used to explore the operating variable 

space for determining the optimum operating protocols. Various different continuous 

crystallisation configurations have been investigated in the recent years. Alvarez et. al. (2011) 

investigated the continuous crystallisation of cyclosporine using a multistage mixed 

suspension mixed product removal cascade with recycle (Figure 1.6). It was found that the 

temperature of the third crystallizer and the recycle ratio were effective parameters to 

control the product purity and yield. However, it was found that the product yield and purity 

had an inverse relationship with each other regardless of the operating conditions. 

Quon et. al. (2012) investigated the continuous reactive crystallisation of aliskiren 

hemifumarate using two MSMPR crystallizers in series (Figure 1.7). A model was developed, 

validated and was used to study the effect of the temperatures and the residence times in 

the first and the second crystallizers on the product purity and product yield. It was found 

that the product purity and the yield had an inverse monotonic relationship.   
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Figure 1.6. A multistage mixed suspension mixed product removal crystallizer considered by 

Alvarez et. al. (2011) 

 

 
Figure 1.7. Configuration for the continuous reactive crystallisation of Aliskiren 

Hemifumarate considered by Quon et. al. (2012) 

 

 
Figure 1.8. Configuration for the continuous anti-solvent crystallisation in a plug flow 

crystallizer with multiple anti-solvent addition points as considered by Alvarez et. al. (2009) 

 

Alvarez et. al. (2010) investigated the continuous anti-solvent crystallisation of ketoconazole, 

flufenamic acid and L-glutamic acid in nonconventional plug flow crystallizers (Figure 1.8). The 

strategy to control particle size using multiple addition points for the anti-solvent was 

investigated. Kenics type static mixers were used to promote mixing inside the crystallizer. A 

growth rate dispersion model was seen to provide good results as opposed to the standard 

axial dispersion or plug flow models.   

Wong et. al. (2012) investigated the cooling crystallisation of cyclosporine and the anti-

solvent crystallisation of deferasirox using a single stage continuous mixed suspension mixed 
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product removal crystallizer with a continuous recycle (Figure 1.9). The system proposed 

offers a lower operational demand, in terms of number of unit operations and space 

constraints in comparison to equivalent cascade configurations. It was found that the recycle 

ratio was an effective operating parameter to control the product purity and yield. The 

product properties could be controlled effectively by using operating conditions of a single 

crystallizer. It was also found that the system investigated provided better results in 

comparison to the multistage MSMPR crystallizers (with and without recycle).  

 
Figure 1.9. Configuration for the continuous crystallisation in a single stage MSMPR with 

recycle system as considered by Wong et. al. (2012) 
 

Zhang et. al. (2012) investigated the continuous combined anti solvent and cooling 

crystallisation of a model API using a cascade MSMPR (Figure 1.10). The effect of changing 

the crystallizer temperatures, antisolvent addition points and the residence times on the 

crystal properties (crystallinity and morphology) purity and yield were investigated. It was 

found that addition of anti-solvent in the second crystallizer resulted in crystals of favorable 

crystallinity and morphology for downstream processing.  

Lawton et. al. (2009) investigated a novel continuously oscillating baffled crystallizer (COBC) 

for the continuous crystallisation of a model API (Figure 1.11). The COBC delivered the 

isolation of the model API in just 12 minutes as opposed to 9hr and 40 mins in a similar batch 

operated process. The advantage of the COBC assembly is that it can be scaled up very easily 

as the tube diameters do not change much while scaling up and thus maintaining the flow 

physics consequently the crystallizer behavior.  
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Figure 1.10. Cascaded MSMPR system for the continuous cooling/anti-solvent crystallisation 

of used by Zhang et. al. (2012) 

 

 

Figure 1.11. Continuously oscillating baffle crystallizer assembly used by Lawton et. al. 

(2009) 

Zhang et. al. (2014) investigated the integration of the continuous crystallisation of aliskiren 

hemifumarate within a pilot plant. Different configurations of the control systems (feedback, 

feedforward, feedback and feedforward) were investigated to control the concentrations, 

solid loading and the liquid-level in the continuous crystallizers. Process analytical 

technologies (PAT’s) were used to monitor the concentration and the solid loading online to 

provide feedback to the control systems. The flow rate of the solvent to the crystallizer was 

manipulated to achieve the required control. The feedback system was effective in mitigating 

the slow changes in concentration from upstream units. The feedback system was effective 

in mitigating the fast disturbances in flow rate. The authors proposed a combination of 
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feedback and feedforward systems to control the crystallisation process operations. The 

product produced satisfied product requirements and more importantly had consistent 

properties. 

Weidmeyer et. al. (2017) investigated the use of helically coiled flow tubes (HCT) for the 

continuous seeded shape selective crystallisation of potash alum (Figure 1.12). It was 

observed that crystallisation did not lead to blockages in HCT’s as opposed to conventional 

flow tubes. Smaller crystals also had a higher RTD which provided more time for growth. 

Because of this HCT’s were seen to have the potential to give narrower size distributions. 

 

Figure 1.12. Schematic of the experimental setup used by Weidmeyer et. al. (2017) with 

reservoir, pump, helically coiled flow tube crystallizer (HCT), and flowthrough microscope, 

and geometrical details of the HCT. Tube section 1 is dark-gray colored, tube section 2 is 

gray colored, and tube section 3 is light-gray colored 

The above mentioned studies demonstrate the potential advantages of a continuous mode 

of operation over a batch mode of operation. However, the effectiveness of the continuous 

crystallisation route were only proven on a lab scale. Issues regarding scaling up were not 

addressed in most cases. Mathematical modeling can go a long way towards reducing the 

uncertainties associated with crystalliser design and scale up. Modeling studies coupled with 

experimental studies are thus essential for good crystalliser design. In Chapter 4, a novel 
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continuous crystalliser assembly was investigated experimentally on similar lines as the 

studies presented here. Then, a generalized framework to model batch and continuous 

crystallisation processes was formulated and implemented for the specific continuous 

crystalliser assembly considered.  

 

1.4. Summary of previous work 

Significant progress has been made in Process Analytical Technologies (PAT’s) which are used 

to monitor key process and product characteristics. Product characteristics such as size, shape 

are important from the point of view of product efficacy and downstream processing 

(flowability, filterability). Key process characteristics such as solute concentration (extent of 

supersaturation) are important as they govern key crystallisation processes (nucleation, 

growth). The progress in PAT’s has served to foster the progress of the crystallisation 

technology due to improved process understanding. The Focused Beam Reflectance 

Measurement (FBRM) probe is one of the popular tools to monitor crystallisation processes 

as it allows for the online and in-situ monitoring of the Chord Length Distribution (CLD). 

Various inversion models have been developed to extract the Particle Size Distribution (PSD) 

data from the measured raw CLD data.  

Majority of the crystallisation processes in the industry are carried out in a batch mode of 

operation. However, there is often a problem of batch-to-batch variability associated with 

using batch processes. The problem of variability is mitigated by identifying better operating 

protocols and better process control strategies. To accomplish both these objectives, it is 

essential to develop sophisticated process models to capture the complex dynamics of 

crystallisation processes. Crystallisation process models are based on solving the Population 

Balance Equation (PBE). Various methods for the solution of the PBE’s are available keeping 

in mind different objectives (full resolution of the PSD, ease of implementation, simulation 

speed, robustness etc.). These models require the specification of kinetic parameter values 

which depend upon both, the specific crystallisation systems and the process equipment 

considered. By and large these parameter values are not available in literature and need to 

be estimated on a case by case basis. The PSD is an important product quality attribute 

because of the impact on the product efficacy and the downstream processing. Temperature 
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cycling has been shown to be effective operating strategy in controlling the PSD in batch 

processes. 

Continuous mode of operation offers many potential benefits over the batch mode of 

operation of crystallizers. However, there is a gap in the understanding of continuous 

processes which hinders the migration of crystallisation technology from batch to continuous 

processes. Due to system specific nature of fundamental crystallisation phenomena such as 

secondary nucleation, breakage and agglomeration, the dynamics of crystallisation processes 

is very system specific. Hence, much of the work in developing continuous crystalliser 

technology has gone into the lab scale experimental investigation of different configurations 

of continuous crystallisers. Developed mathematical models are highly system specific and 

have limited predictive capabilities. Issues with regards to scaling up are largely unaddressed. 

The COBC shows promise in this regard as scaling up for that technology is inherently easy.  

 

1.5. Scope & organization of the Thesis 

The focus of the present thesis is the modeling of batch and continuous cooling crystallisation 

processes. Modeling studies can potentially aid to improve process understanding, identify 

optimal operating protocols, assess novel experimental assemblies and reduce uncertainties 

associated with scale up. However, it should be noted that, modeling studies must always be 

coupled with experimental studies to evolve useful models. 

The chapter-wise specific objectives of the thesis were: 

(a) Chapter 2: To develop a simple model to enable the online and in-situ measurement 

of the Particle Size Distribution using the Focused Beam Reflectance Measurement 

probe 

(b) Chapter 3: To develop a generic framework to model batch crystallisation processes 

and estimate key crystallisation kinetic parameters 

(c) Chapter 4: To develop a generic framework to model variable volume batch and 

continuous crystallisation processes 

(d) Chapter 5: To summarize key results of the thesis 
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A brief description the work carried out in each of the above-mentioned Chapters is given 

below.  

The Particle Size Distribution (PSD) can be extracted from the raw CLD data using suitable 

inversion models. However, these models are cumbersome to implement and often need the 

specification of an additional parameter which needs to be determined experimentally. In 

certain cases, non-linearities imposed of the inversion problem make it impossible to obtain 

a stable solution. In Chapter 2, a simple model was proposed for the CLD to PSD inversion 

problem and was implemented using simple spread sheeting tools. The model was validated 

for different systems of regularly shaped particles (no variation in shape), irregularly shaped 

particles (variation in shape) as also for systems of practical relevance. The proposed tool 

coupled with the raw data measured by the FBRM probe can provide valuable insights into 

the evolution of the PSD in crystallisation process. 

Modeling of crystallisation processes is important from a process design point of view, 

specifically for evolving better operating protocols and control strategies. Accurate estimates 

for key crystallisation kinetic parameters are a pre-requisite for any crystallisation process 

models. These parameter values are specific to the solute-solvent pair considered and are 

typically unavailable in literature.  Previous studies focus on seeded crystallisation and 

validate the model over a very limited range of operation. Chapter 3 focuses on proposing 

and validating a rigorous procedure for estimating key crystallisation kinetic parameter values 

using unseeded batch cooling crystallisation. Crystallisation kinetic parameter values were 

estimated for a Paracetamol-Ethanol system. Novel experiments based on the observed 

hysteresis in particle counts were performed. A mathematical model based on the population 

balance framework was formulated and solved using appropriate numerical methods. First, a 

procedure to estimate key crystallisation kinetic parameters was proposed and implemented. 

Then, a rigorous validation was performed using estimated key crystallisation kinetic 

parameters to simulate the hysteresis experiments. 

Implementation of continuous crystallisation processes can be daunting due to the complex 

process dynamics involved. Recent work done focused primarily on the lab scale experimental 

investigation of continuous crystallisation processes. Chapter 4 focuses on developing a 

generalized tool for modeling both batch and continuous crystallisation processes. Unseeded 
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batch and continuous cooling crystallisation of Sodium Nitrite in Water were considered. A 

novel lab scale continuous cooling crystallisation assembly was investigated experimentally.  

A generalized mathematical tool was developed for the simulation of fixed volume continuous 

crystallisers which allowed for varying the mixing characteristics to match those specific to 

the crystalliser considered. Crystallisation kinetic parameter values were estimated using the 

batch process data by a procedure described in Chapter 3. Continuous crystallisation 

simulations were performed. Influence of key operating/design parameters (jacket 

temperature, residence time, mixing behaviour) on important design parameters of mean, 

time for steady state and yield were investigated using the model.  

Symbols & Notations 

 

Symbol Description Unit 

𝑆 Supersaturation kmol/m3 

𝐶 Concentration of solute in liquid phase kmol/m3 

𝐶∗ Saturation concentration of solute in liquid phase kmol/m3 

𝑛(𝐿, 𝑡) Number density distribution function  #/m3 

𝐿 Particle size co-ordinate m 

𝑡 Time s 

𝐺 Growth rate m/s 

𝐵0 Nucleation rate  #/(m3-s) 

𝛿 Kronecker delta function - 

𝐿𝑛𝑢𝑐 Size of nucleus m 

𝑀𝑆 Mass of solute kg 

𝑉𝑅 Volume of reactor m3 

𝑀𝑤 Molecular weight of solute kg/kmol 

𝜌𝑝 Density of particle kg/m3 

𝑘𝑟0 Growth rate pre-exponential constant m/s 

𝐸𝐴 Activation energy kJ/kmol 

𝑅 Universal gas constant kJ/(kmol-K) 

𝑇 Temperature of solution K 

𝑔 Growth rate exponent - 

𝑘1 Primary nucleation rate constant #/(m3-s) 

𝑛1 Primary nucleation rate exponent - 

𝐷 Dissolution rate  kg/s 

𝑘𝑑 Mass transfer coefficient for dissolution  m/s 

𝜏 Mean residence time  s 

𝑢𝑥 Superficial velocity along x-direction m/s 

𝑥 Co-ordinate along crystallizer length  m 
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Chapter 2. Measurement of Particle 
Size Distribution  

This chapter has been reproduced from the following manuscript:  

Pandit A., Ranade V., 2016. Chord length distribution to particle size distribution. AIChE 

Journal, 62, pp.4215–4228. doi:10.1002/aic.15338 

2.1. Introduction 

The Particle Size Distribution (PSD) is an important product quality parameter in the 

crystallization industry as it affects downstream processing (filterability, flowability etc.) as 

also product efficacy (stability, rate of dissolution etc.). Measurement of the PSD is thus an 

important problem for assessing product quality as well as for modelling the kinetics of the 

nucleation and crystal growth for improved crystalliser design. There are several techniques 

available to measure the PSD. The most popular ones are the Laser Diffraction and the 

Microscopy methods. These enable a complete characterization of the PSD curve however, 

are offline methods. Hence it is difficult to obtain PSD results using these methods for 

transient processes such as crystallization as we are limited to only investigating the 

‘equilibrated’ samples. A nephelometer (or turbidity probe) is often used to study 

crystallization systems. However, even though it allows for the in-situ and online 

measurements, the results provided by this method do not give any information regarding 

the PSD.  

The Mettler Toledo Particle Vision and Measurement (PVM) is another popular measurement 

device which extends the microscopy technique and enables the measurement of PSD in-situ 

and online. Two dimensional images of the particles as viewed from the probe window are 

recorded which are later processed to obtain the PSD. The Mettler Toledo Focused Beam 

Reflectance Measurement (FBRM) probe is also widely used to study crystallization. The 

FBRM probe works on the principle of laser back-scattering. A laser is emitted from a laser 

source inside the probe. The source is rotated around the probe axis such that the laser 

revolves remaining parallel to the probe axis. The laser traces a cylindrical surface around the 

probe axis inside the probe. A very high speed of rotation is used (in the present study the 
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tangential speed of the source was set to 2 m/s). At the probe tip is a sapphire window which 

is in contact with the solution wherein the particle measurements are to be made. Whenever 

the revolving laser encounters a particle along its circular path it gets reflected back into the 

probe. Each instance of this reflection is treated as one count of particle detection and the 

duration of time for which the beam is reflected multiplied by the tangential speed of the 

laser becomes the length of the chord which the laser ‘traces’ on the particle surface. Thus, 

in course of time and in dense solutions, multiple particles are recorded by the FBRM probe 

and hence we obtain the number of counts and the particle chord length distribution data 

(CLD).  

The CLD measured by the FBRM probe, although related to the PSD, bears no obvious 

resemblance to the PSD. The CLD data needs to be interpreted in some way to obtain 

information regarding the PSD. Much work has been done recently to address this problem. 

Li et. al. (2013, Part 1 & 2) developed an empirical method for the determination of the PSD 

from the CLD. Multiple fingerprint CLD’s for known particle sizes were first meticulously 

determined over the size range of interest. The actual PSD was estimated as the one which 

yielded the same CLD as the measured CLD by a linear combination of the fingerprint CLD’s. 

However, this method requires a lot of standardized data (fingerprint CLD’s) in order to 

calibrate the model for a specific system before it starts to make predictions. Gathering this 

standardized data is not always possible and is definitely time consuming and cumbersome. 

Besides, the aforementioned publication, other efforts directed towards solving the CLD to 

PSD problem all follow a definite methodology. First the CLD of a single isolated particle (or 

equivalently a monodisperse system) is derived theoretically. Then, the CLD is derived 

theoretically for a system with a known PSD. Finally, the inverse problem of determining the 

PSD for a known CLD is addressed. Having established the first part, the second part is 

relatively straightforward. Several efforts have been directed to specifically address the first 

part of the problem. Li et. al. (2005, Part 1 & 2) presented a model to determine the CLD for 

a spherical particle. The model was extended to allow for various particle shapes using a 2D 

super ellipsoidal function. However, the model only considered a fixed 2D particle projection 

to determine the CLD and did not account for the different particle orientations and the 

subsequent effect on the 2D projections. In the model presented by Ruf et. al. (2000) all 

possible 2D projections of the 3D shape (with different orientations) were considered for 
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determining the CLD. The approach to calculate the CLD from the 2D particle projection is 

fundamentally similar to the 2D model proposed previously.  

The inverse problem of determining the PSD from a known CLD is more troublesome. 

Typically, the PSD is estimated iteratively by starting from a guess PSD and comparing the 

predicted CLD and the measured CLD to evaluate the direction of the iteration. However, due 

to the non-linear nature of the CLD expressions obtained from the single particle models, the 

inverse problem becomes an ill posed mathematical problem. The most popular methods 

include the Least Squares (LS) and the Constrained Least Squares (CLS) algorithms (Li et. al., 

2005, Part 1 & 2). However, when CLD measurements are noisy, as are typically observed for 

the case of crystallization systems, oscillations or negative values are obtained for the PSD’s 

using these methods. To overcome this pitfall, Li et. al. (2005, Part 1 & 2) proposed an iterative 

Non-Negative Least Squares algorithm for the inversion problem. Worlitschek et. al. (2003) 

extended the model proposed by Ruf et. al. (2000) by considering the method of projection 

onto convex sets (POCS) to solve the inversion problem. Agimelen et. al. (2015) reported an 

algorithm to estimate the PSD from CLD measurements for needle shaped crystals. 

Appropriate single particle CLD models reported in literature were used and the algorithm 

required no additional information such as approximate particle size range or particle aspect 

ratio to constrain the iterative procedure as for previous efforts.  

The methodology used in the present study also follows the definite approach used by 

previous authors wherein, first a single particle CLD model is proposed and later the inversion 

problem (deriving PSD from CLD) is addressed. However, it differs from previous approaches 

on two important fronts. First, the model for the single particle CLD is fundamentally different 

from the models reported in literature. This leads to a mathematically very simple expression 

for the CLD of a single particle. Second, instead of solving for all the number of particles in 

each bin of the discretized PSD, the PSD is assumed to be modelled by a suitable distribution 

function (Normal, Lognormal). This reduces the number of parameters to be iterated to only 

two: the mean and the variance of the distribution. As a result of both of these distinctions, 

the inversion problem becomes straightforward and can be solved using simple spread 

sheeting tools. The model was then validated for two systems consisting of spherically shaped 

ceramic beads. The model was then evaluated for three systems of irregularly shaped particle 

systems consisting of: (a) sand particles; (b) plasma alumina particles and (c) zinc dust 
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particles. By irregularly shaped, it is implied that particle shape within the system is not 

uniform. The model was then successfully applied to two particle systems of practical 

relevance: (a) paracetamol crystals and (b) p-aminophenol crystals. The performance of the 

model was compared with the popular models reported by Li et. al. (2005, Part 1 & 2) and 

Worlitschek et. al. (2003). The model coupled with the FBRM measured CLD is a powerful tool 

to monitor the PSD even in transient processes such as crystallization. 

2.2. Mathematical Model 

2.2.1. Single Particle Model 

As mentioned previously, the first problem that needs to be addressed is: 

For a single particle of diamater D, what is the probability that a ‘randomly cut’ chord 

measures as having its length between X1 and X2 (where X1 and X2< D)? 

This problem statement is similar to the one proposed by Bertrand, in the Bertrand’s Paradox 

(a classic paradox in probability theory). It is important to note that the important variable in 

the problem is the length of the randomly cut chord rather than identifying a specific random 

chord itself. The key issue in this problem is the interpretation of the ‘randomly cut’ chord.  

The length of a random chord may be determined in three ways (as stated in the paradox): 

(a) Method 1: One point may be arbitrarily fixed on the circle and the other may be 

chosen at random along the circumference of the circle. The chord joining the two 

points is then the random chord and the length depends upon the position of the 

second point in relation to the first point.  

(b) Method 2: The distance of the chord from the centre of the circle is enough to specify 

its length. This distance may then vary from 0 to the (known) radius of the circle. The 

length may then be calculated once a random value is assigned for the distance of the 

chord from the center of the circle.  

(c) Method 3: For every point within the circle, there is a chord such that the considered 

point is the midpoint of the chord. So, the problem of randomly chosing a chord may 

then be equated to randomly chosing a point within the circle. The length may then 

be determined once the poistion of the point is known.  
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 In the paradox, it is demonstrated that the different interpretations of the randomness of 

the chord lead to different results. The classical solution of the paradox is that there is no 

‘right’ solution. An appropriate definition of randomness must be chosen depending upon the 

physcial scenario considered to obtain an appropriate answer. More information regarding 

the Bertrand Paradox is provided in Appendix A1. The FBRM views a 2D projection of the 

particle. Methods 1 and 2 provide a 1D solution (random variable along the radius or the 

circumference of the circle) to the problem and it may be inferred that information is lost 

regarding the orientation of the chord with respect to a fixed frame of reference (for instance 

the FBRM probe). Method 3 is the only method that addresses the 2D nature (area of the 

circle) inherent in the physcial system considered. Previous researchers have used a 

methodology parallel to Method 2. However, in the present text, it is argued that Method 3 

is a more accurate interpretation to determine the length of a randomly cut chord for the 

case of a FBRM than Methods 1 or 2. 

The laser views  a 2-D projection of the particle. Considering the case of a spherical particle 

(of diameter ‘D’), the 2D projection is a circle with the same diameter D. Now, it should be 

noted that for every point inside the circle, there is associated with it, a unique chord for 

which the considered point is the midpoint of the chord.Thus, chosing a random chord of a 

circle is equivalent to choosing a random point inside the circle.The locus of the midpoints of 

the chord of the same length is a circle with dimensions as shown in Figure 2.1(a). Any point 

on the circle (dotted line) corresponds to a chord with length x and every chord with length x 

will have its midpoint on the circle (dotted line). For a chord whose length is between x and 

y, it is necessary that its midpoint should lie in the shaded area given in Figure 2.1(b).  

 

Figure 2.1. (a) Circle defined by a chord of length x (b) Area considered to measure chord 
length between x and y 

 

(a) (b) 
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The probability of measuring a chord with size between x and y (x<y), or P(x,y,D)becomes the 

ratio of the area of the shaded region to the total area of the circle:  

𝑃(𝑥, 𝑦, 𝐷) =
𝑦2−𝑥2

𝐷2  (2.1) 

Since the probability, that a measured chord has a size less than or equal to the particle size, 

is unity and also it is clear from direct substitution into Equation (1) that: 

𝑃(0, 𝐷, 𝐷) = 1 (2.2) 

It is worth noting that for the probability function defined here, the following property holds 

(y<z): 

𝑃(𝑥, 𝑦, 𝐷) +  𝑃(𝑦, 𝑧, 𝐷) = 𝑃(𝑥, 𝑧, 𝐷) (2.3) 

Also, since no chord length greater than the diameter can be measured, the following 

definition must be made for all z>D: 

𝑃(𝐷, 𝑧, 𝐷) = 0 (2.4) 

2.2.2. Particle Size Distribution to Chord Length Distribution 

Particle size distributions and chord length distributions are typically represented in the form 

of histograms. The entire relevant span of the particle size co-ordinate is divided into discrete 

‘bins’. The bin sizes, typically, are either uniform or increase logarithmically starting from the 

first bin, depending upon how the measurements were made or what convention was 

adopted. The histogram plots the frequency, or number of particles, as is applicable in the 

present study, that are recorded in each of these bins. 

2.2.2.1. CLD for a monodisperse collection of particles 

The histogram for the PSD of a collection of monodisperse particles is represented by a single 

peak. The location of the peak corresponds to the bin representing the size of the 

monodisperse particles. In a normalized form, the value of the peak will be unity. A 

normalized PSD for a collection of monodisperse particles of size 95μm is shown in Figure 2.2. 

The bins are considered to be uniformly sized having width equal to 10μm and the domain 

considered extending from 0 to 150μm. It is useful to define a representative size, wherein, 
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each particle contained in the bin can be assumed to be of the corresponding representative 

size. The histogram shown in Figure 2.2 is plotted versus the representative bin size. 

 

Figure 2.2. Particle Size Distribution and Chord Length Distribution for a collection of 
monodisperse particles of 95μm size 

In the previous section the problem of determining the probability of measuring a chord 

within a particular size range, say for instance between x and y, for a single particle was 

addressed. Now, provided that the number of particles is large enough, the aforementioned 

probability can be equated to the fraction of the total number of particles (for a monodisperse 

system) which would be measured as having chords between sizes x and y. This important 

assumption allows the determination of the CLD from a single particle model and has been 

reported by other researchers as well (Li et. al., 2005; Ruf et. al., 2000). The assumption is a 

statistical assumption in the sense that it gains validity as the sample size of the number of 

particles recorded increases and can be assumed to be true when the number of particles is 

sufficiently high. It is expected that the number of particles recorded by the FBRM are 

sufficiently high enough that the aforementioned assumption is valid. 

Suppose the particle size co-ordinate is distributed into k bins. Let Li-1 and Li denote the lower 

and upper boundaries of the ith bin. L0 will typically be set to zero. Let the number of particles 
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in the ith bin be denoted as Ni and the representative size of the ith bin (defined as the midpoint 

of the boundary points of the ith bin), by Xi. For the present case, let us assume that all the 

monodisperse particles are contained in the mth bin. Let the total number of particles in the 

system be denoted by NT. Let the number of particles measured in the ith bin for a general 

PSD be Ni and for a CLD be Mi. Let the fraction of the total particles (contained in the mth bin) 

measured as having chords in the ith bin, be denoted by Ai,m. As defined in the previous 

section, the probability of measuring a chord in the ith bin for a particle belonging to the mth 

bin can be written as P(Li-1,Li, Lm). It should be noted, that the particle size here was taken as 

the upper boundary (Lm) rather than the representative bin boundary (Xm). This is done so as 

to make the calculations more lucid and as will be demonstrated later by extensive validation, 

does not affect the model applicability. 

From the assumption that the fraction of total particles (contained in the mth bin) measured 

as having chords in the ith bin is equal to the probability of measuring the chord in the ith bin 

for a single particle belonging to the mth bin, we may write the following equality: 

𝐴𝑖,𝑚 =
𝑀𝑖

𝑁𝑚
= 𝑃(𝐿𝑖−1, 𝐿𝑖, 𝐿𝑚) (2.5) 

Here, i ≤ m. As discussed in the previous section, if i>m, then Ai,m is equal to zero. It should be 

noted that for a monodisperse system of particles contained in the mth bin, the total number 

of particles is the number of particles contained in the mth bin and hence: 

𝑁𝑚 = 𝑁𝑇 (2.6) 

From Equation (5), the number of particles in the ith bin in the CLD may be written as: 

𝑀𝑖 = 𝑃(𝐿𝑖−1, 𝐿𝑖 , 𝐿𝑚)𝑁𝑚 

The number of particles represented by Mi is the required CLD. For a system of monodisperse 

particles (belonging to a single bin: mth bin), the normalized CLD can be obtained by dividing 

Mi with the total number of particles. For a sample case of a collection of particles contained 

between the 90 to 100μm size range, the normalized chord length distribution obtained using 

the above described methodology is shown in Figure 2.2. A uniform bin size of 10μm and a 

domain ranging from 0 to 150μm are considered. The total number of particles may also be 

obtained by summing the number of particles in each bin in the CLD. Thus we have: 
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∑ 𝐴𝑖,𝑚𝑖=1𝑡𝑜 𝑚 = 1 (2.7) 

Hence, all the particles considered are accounted for. In the next section, a procedure to 

obtain the CLD from a given PSD is discussed. 

2.2.2.2. CLD for a known PSD 

A PSD is a histogram which plots the number of particles measured versus the size ranges or 

the bins in which they are measured in. It is similar to the CLD with the difference that the 

size ranges correspond to the actual sizes (as defined appropriate) of the particles rather than 

chord sizes. The monodisperse system discussed in the previous section is a special case 

where the sizes of the particles are limited to just one bin. A more general PSD will contain 

particles in many of the bins considered in the domain similar to the CLD obtained in the 

previous section. Now, the only difference between the monodisperse case and the present 

case is that instead of the CLD being computed only from one bin (like the mth bin considered 

in the previous study), all the bins considered in the general PSD will contribute to the bins of 

the CLD. So, the problem of converting a PSD into a CLD is reduced to counting the 

contributions of each of the bin of the PSD towards each of the bin of the CLD and adding 

them up. With this in mind, we define a new variable Mi,j to be the number of particles whose 

actual size corresponds to the jth bin, being counted as having a chord size which corresponds 

to the ith bin. With this definition, in the previous section the value of Mi calculated actually 

corresponds to Mi,m in the new notation. The notation Mi retains its definition, of being the 

total number of particles in the ith bin in the CLD, although now it has a deeper meaning as 

being the sum of the contributions from all the different bins, rather than just from an 

arbitrary mth bin. 

Now, the contribution of, say the jth bin of the PSD, towards the ith bin of the CLD, in terms of 

the number of particles, may be calculated using the analysis presented in the previous 

section. Thus, keeping in mind the new variable definitions, we may write the following 

equality:  

𝑀𝑖,𝑗 = 𝑃(𝐿𝑖−1, 𝐿𝑖 , 𝐿𝑗)𝑁𝑗 (2.8) 

The total number of particles in each bin can be calculated by simply summing all the 

contributions of the different bins.  
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𝑀𝑖 = ∑ 𝑀𝑖,𝑗𝑗=𝑖 𝑡𝑜 𝑘  (2.9) 

Where, k is the total number of bins. The bins are summed starting from the present bin index.  

This is because the contribution of the bins from the PSD with a size smaller than the present 

bin towards chords being measured in the present bin will be zero. The values Mi are the 

required CLD.  

Also, since we are counting all of the particles, it is interesting to note and it may also be 

rigorously derived that the total number of particles is in fact conserved. Hence,  

𝑁𝑇 = ∑ 𝑀𝑖𝑖=1 𝑡𝑜 𝑘  (2.10) 

The normalized CLD may be obtained by dividing the CLD with the total number of particles. 

Let Ai denote the fraction of the total particles being measured as a chord in the ith bin. Then 

we may write the following relation:  

𝐴𝑖 = 𝑀𝑖/𝑁𝑇 (2.11) 

2.2.3. The Inverse Problem 

Several methods are proposed to solve the inverse problem of calculating the PSD from the 

CLD2,5,6. In the present study, a simple iterative method starting from a guess PSD is used. A 

guess PSD represented in the form of a 2 parameter normal or lognormal distribution function 

is considered and the corresponding CLD is determined using the PSD to CLD model described 

in the previous section.  

A two parameter normal distribution function is represented by the following function:  

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

𝜎2  (2.12) 

The two parameter lognormal distribution is represented by the following expression:  

𝑓(𝑥; 𝜇, 𝜎) =  
1

2𝑥𝜎√2𝜋
𝑒

−
(𝑙𝑛𝑥 − 𝜇)2

𝜎2  (2.13) 

In the above equation, the two parameters μ and σ2 stand for the mean and the variance of 

the distribution functions. It is known that this function arises in various types of naturally 

occurring distributions and hence, it should also be sufficient to describe the distribution 

considered in the present study. To obtain the corresponding PSD, first, the bin boundaries 
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and the representative sizes of each bin need to be finalized. The number of particles in each 

bin Ni is then the value of the respective distribution function evaluated at Xi. For any sort of 

distribution function to be valid the following equality must hold: 

∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

0
 (2.14) 

However, because of discretizing the domain, the area of the discrete PSD will not be unity. 

Hence, we need to correct for this to avoid any errors. This is done by reassigning the number 

in each bin as follows:  

𝑁𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑁𝑖

∑ 𝑁𝑖(𝐿𝑖−𝐿𝑖−1)𝑖
 (2.15) 

These new corrected values were now referred to as Ni. 

The values for the 2 parameters (mean and variance) required for the full specification of 

either the normal or the lognormal distribution can be determined by optimizing the R2 error 

(R2 should be closest to 1) between the measured and the model predicted CLD. A simple 

multi parameter optimization routine available with most spread sheeting tools is sufficient 

for these purposes. The algorithm for this process is given in Figure 2.3.  

To quantify the error between the derived CLD and the measured CLD, the coefficient of 

determination or R2 was used. The R2 value can be calculated as follows: 

�̅� =
1

𝑘
∑ (𝑀𝑖,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑀𝑖,𝑚𝑜𝑑𝑒𝑙)𝑖=1 𝑡𝑜 𝑘  (2.16) 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑀𝑖,𝑒𝑥𝑝 − �̅�𝑖=1 𝑡𝑜 𝑘 )2 (2.17) 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑀𝑖,𝑚𝑜𝑑𝑒𝑙 − 𝑀𝑖,𝑒𝑥𝑝𝑖=1 𝑡𝑜 𝑘 )2 (2.18) 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (2.19) 
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Figure 2.3. Algorithm to determine PSD from CLD 

2.2.4. PSD measurement through Image Analysis 

Before presenting model results, it is worthwhile to spend some time on how the PSD may be 

obtained through image analysis. The image analysis procedure for determining the particle 

sizes is outlined in Figure 2.4. A series of 2D images were taken for the given system of 

particles under a microscope. The images were then converted into binary images (having 

just 2 colours: black and white). The binary images further treated to fill the holes inside the 

particles, remove any overlapping particles, separate touching particles, remove particles on 

the image boundary which were incomplete and remove the background noise to obtain 

reliable data. These binary images were then used to identify particles. The image pixel size 

in terms of pixel/μm is known from image calibration. From the last stage of image analysis, 

and the known pixel/μm ratio from calibration, the visible area of the particles within one 

image can be calculated in μm2. In the present study, after this area is obtained, the 

spherically equivalent diameter was obtained for each particle which is defined as the 

diameter of a sphere having the same visible cross sectional area as the visible area obtained 

for a particle using image analysis. This spherically equivalent diameter was obtained for a 

series of particles. The PSD may be obtained by specifying the bin spacing to be used and 

counting the number of particles that fall within each size range from the data obtained in 

the previous step. 

The processing of images was done using the ImageJ software. 

Mi,j 
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Figure 2.4. Procedure used to determine the PSD through image analysis 

 

2.3. Results & Discussions 

2.3.1. Model Validation for Regularly shaped particles 

The above presented model was first validated for a system of regularly shaped particles. By 

regularly shaped, it is implied that the particles considered in the present section were nearly 

spherical. The PSD was available for a calibration sample used for the FBRM probe. The FBRM 

probe calibration sample consisted of nearly perfect spherical ceramic particles. Shown in 

Figure 2.5(a), is an image of the particles taken using a PVM. It can be assumed that the 

particles are spherical in shape. Based on the images captured by the PVM, a PSD was 

prepared for the lengths and widths measured for different particles obtained from image 

analysis. The PSD is shown in the Figure 2.5(b).  
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Figure 2.5. (a) Images obtained from calibration sample for theFBRM probe consisting of 
ceramic beads using a PVM probe (b) Comparison between the PSD measured using the 

particle widths and particle lengths obtained using PVM 

  

Figure 2.6. (a) Comparison between normalized CLD measured using FBRM for a system 
consisting of ceramic beads and the normalized fitted CLD used for the model (b) 

Comparison between the normalized experimental PSD obtained for a system of ceramic 
beads obtained using PVM and the normalized model predicted PSD 

A cumulative PSD, obtained by summing the individual length and width distributions, was 

considered as the PSD of the sample. The cumulative PSD was then normalized by division 

with the total number of particles to enable comparison with the calculated PSD. The 

normalized PSD obtained is shown in Figure 2.6(b). The PSD was obtained through the image 

analysis done on a random sample size of 600 particles. The corresponding CLD of the 

calibration sample was also known. The CLD was also normalized by dividing the CLD with the 

(a) (b) 

(b) (a) 

Chord Length (μm) 



49 
 

total number of chords measured.  The presented model was applied to extract the PSD from 

the measured CLD. A two parameter normal distribution function was used to represent the 

PSD. A uniform bin size of 10μm with a domain spanning a range of 0 to 300μm was used 

corresponding to the type of data available from PSD/CLDmeasurements. All the distributions 

considered were normalized by dividing with the respective total number of particles/chords, 

as was relevant, to enable comparison. The 2 parameter values (mean and variance) for 

representing the PSD were obtained by fitting the normalized CLD obtained from the present 

model with the normalized CLD measured using FBRM. A comparative plot between the two 

is shown in Figure 2.6(a). The R2 value of for the fit was 0.92. The R2 value obtained is quite 

low. As can be seen from the Figure, there is a significant mismatch between the model-

predicted CLD and the experimental CLD especially in a size range less than 10μm.The 

comparison between the normalized PSD measured experimentally and the normalized PSD 

predicted using the model is shown in Figure 2.6(b). 

As can be seen in figure, the model accurately predicts the PSD using just the CLD information. 

The model was then validated against another data set for regularly shaped particles. The 

data reported by Li et. al. (2005, Part 2) was used for the model validation. An image of the 

ceramic bead particles used by Li et. al. (2005, Part 2) is provided in the cited work. It was 

seen from the image, that the particles were nearly spherical and could be classified as 

regularly shaped particles. A two parameter normal distribution function was used to model 

the PSD. The PSD for the sample of ceramic particles was extracted from the CLD measured 

using the FBRM probe as reported by Li et. al. (2005, Part 2). The 2 parameter values for 

representing the PSD were determined by fitting the normalized model CLD to the normalized 

experimentally measured CLD using an optimization routine to tweak the mean and the 

variance parameters such that the R2 value is closest to unity: a condition for complete match. 

For the present data set, an optimized R2 value of 0.9794 was obtained corresponding to the 

fit between the normalized experimental and normalized model CLD’s shown in Figure 2.6(a). 

A comparison between the normalized PSD measured using Image Analysis as reported by Li 

et. al. (2005, Part 2), the normalized PSD obtained using the model presented by Li et. al. 

(2005, Part 2) and the normalized PSD obtained using the present model is shown in Figure 

2.7(b). As can be seen from Figure 2.7(b), the normalized PSD’s obtained using the present 
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model is in excellent agreement with the PSD obtained through image analysis. The PSD 

obtained using the Li et. al. (2005, Part 2) model also predicts the PSD accurately. 

The model proposed by Li et. al. (2005, Part 2) does provide a better fit in comparison to the 

present model, although marginally so. The present model assumes a shape for the particle 

size distribution as log-normal and normal distribution function. This assumption was shown 

to be sufficient to describe various systems as demonstrated in the chapter. The assumption 

reduces the number of unknowns to only 2 parameters – the mean and the variance of the 

considered distribution and hence makes the optimization problem very simple. In contrast, 

the model proposed by Li et. al. (2005, Part 2) optimizes for the number of particles in every 

bin, greatly increasing the number of unknowns and consequently the complexity of the 

optimization problem. Due to this difference, the present model is expected to lose out on 

some accuracy as opposed to the one proposed by Li et. al. (2005, Part 2) as a cost for 

simplifying the optimization problem. However, the present model is good enough for 

practical purposes to provide for accurate PSD information for regularly (spherical) shaped 

particles. In the next section we discuss the model validity for the case of irregularly shaped 

particles. 

 

Figure 2.7. (a) Comparison between the normalized CLD obtained using present model and 
the normalized experimentally measured CLD (using FBRM, Li et. al. (2005)3) for a system of 
ceramic bead particles (b) Comparison between the normalized PSD obtained using Image 
analysis (reported by Li et. al. (2005)3), and the model predicted PSD’s using the present 

model and the model presented by Li et. al. (2005)3 for a system of ceramic bead particles 

 

Chord Length (μm) 
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2.3.2. Evaluation of Model for Irregularly Shaped Particles 

In this section, the model validity for different systems of irregularly shaped particles is 

considered. By irregularly shaped, it is implied that no specific shape or similarity of shape can 

be established within the system of particles considered.  

2.3.2.1. Sand Particles 

Normal sand procured at a local dealer was first passed through a sieving tower. The sand 

trapped within the sieve ranges of 50μm to 103μm was considered for the experiment. 

Around 8g of sand was taken and it was washed with sulphuric acid to remove any organic 

impurities. After this, it was repeatedly washed using distilled water over a 50μm sieve to 

remove any particles or impurities smaller than 50μm. The sand was charged into a 250ml 

reactor along with 200ml of distilled water. The temperature of the mixture was maintained 

at 250C. The FBRM probe was inserted into the reactor to record the chord length distribution. 

The solution was stirred using a pitched blade down flow impeller with a stirring speed (800 

RPM) which was sufficiently high enough to ensure that the mixture was well-mixed and well 

suspended. The sufficiency of the stirring speed to ensure well-mixed conditions was verified 

by increasing the stirrer speed gradually until a point where the number of counts recorded 

by the FBRM probe did not increase with increasing impeller speed. The CLD of the sample 

was recorded for a period of 10min using the FBRM probe under these conditions.  

The sand particles were then separated from the solution and the PSD was determined by 

observing the particles under a microscope (Image Analysis). A sample image taken under a 

microscope for the present case is shown in Figure 2.8(a). A binary image was obtained 

through image processing of the sample image as shown in Figure 2.8(b). The PSD was 

determined by processing the sizes of 380 particles. The normalized PSD obtained from Image 

Analysis is shown in Figure 2.9(b).  
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Figure 2.8. (a) Images taken under a micro scope for a sample of sand particles (b) Binary 
image obtained after image processing of image shown in (a) 

From image analysis, it was observed, that although the particles were separated using a 

sieving tower, there were debris particles which had sizes less than 10μm. Now, even though 

they were visible under a microscope, characterizing their size was not possible. The minimum 

particle size from the measured sample recorded through image analysis was 16μm. The 

presence of debris particles is also indicated by the CLD measured by the FBRM as shown in 

Figure 2.9(a). In the normalized CLD shown in Figure 2.9(a), two peaks can be seen, one 

corresponding to a size less than 10μm and another around the 60 to 70μm mark. This 

suggests that the PSD of the present sample is actually a bimodal distribution. Now, in the 

present study, the PSD is modelled as a unimodal distribution. Hence, the resulting CLD is also 

unimodal. The approach may be extended easily for the case of bimodal distributions. For a 

bimodal distribution, the function would be modelled as a sum of two independent lognormal 

or gaussian distribution functions. The bimodal distribution will then be characterized using 4 

parameters: the mean and the variance parameters of both distributions. The CLD may be 

obtained from the PSD by the procedure discussed in the manuscript. For the inverse 

problem, starting from a guess PSD, the ‘true’ PSD may be obtained by an iterative procedure 

similar to the case of the inverse problem of a unimodal distribution. However, in case of two 

parameters (as in the unimodal case), there will be 4 parameters which need to be iterated. 

(b) (a) 
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Figure 2.9. (a) Comparison between the normalized square weighted CLD obtained using the 
present model, the normalized square weighted CLD measured using FBRM (averaged over 
1 min) and the normalized CLD measured using FBRM (averaged over 1 min) for a sample of 

irregularly shaped sand particles (b) Comparison between the PSD obtained using the 
present model and the PSD obtained using Image Analysis for a sample of irregularly shaped 

sand particles 

In the present case, the PSD for particles lower than 10μm could not be obtained reliably 

through image analysis. Hence, instead of considering a bimodal distribution, the model was 

selectively evaluated for bigger sized particles (more than 10μm) using a two parameter 

(mean and variance) unimodal log normal distribution. To do this, the square weighted CLD is 

considered instead of the normal CLD. The square weighted CLD is used to specifically analyze 

the distribution of bigger sized particles in collection particles which span different size 

ranges. The square weighted CLD may be obtained by multiplying the number of particles in 

each bin by the square of the respective representative bin size. The square weighted CLD can 

be normalized by dividing each of the resulting terms in the bins by the sum of resulting terms 

in each bin spanning the entire domain. A comparison between the normalized square 

weighted CLD and the normalized CLD for the system of sand particles considered is shown in 

Figure 2.9(a). As can be seen, the normalized square weighted CLD tracks the distribution 

among the bigger sized particles and the lower sized particles are essentially ignored. 

To determine the PSD, the R2 value for the fit between the normalized square weighted CLD’s 

obtained using the FBRM probe and through model was optimized to be close to unity. For 

the present case, an R2value of 0.998 was obtained. The respective comparison between the 

normalized square weighted CLD’s obtained experimentally and the one used in the model is 

shown in Figure 2.9 (a). The comparison between the normalized PSD obtained through image 

(b) (a) 

Chord Length (μm) 
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analysis and from the model is shown in Figure 2.9(b). Logarithmic bin spacing was used to 

calculate the PSD such that there are 100 bins which span a domain starting from 1 to 1000μm 

and a bin size of 0.0715 for the first bin. As can be seen from Figure 2.9(b), the model is able 

to predict the mean of the PSD very well; however, the variance or the spread parameter of 

the PSD was not predicted well. The actual distribution is seen to be narrower than the one 

obtained using the model. However, we may conclude that the agreement is reasonable. A 

discussion on the possible reasons for the discrepancy is presented later is this section after 

considering other similar cases for systems of irregularly shaped particles.  

2.3.2.2. Plasma Alumina 

The validity of the presented model was tested for a system of plasma alumina particles. An 

image of the plasma alumina particles used by Li et. al. (2005, Part 2) is provided in the cited 

work. As was seen from the image, similar to the case of sand particles, there was no similarity 

in shape that can be inferred. A two parameter (mean and variance) lognormal distribution 

was considered to model the PSD. The PSD for the present case was derived by fitting the 

normalized model CLD with the normalized CLD measured using the FBRM probe as reported 

by Li et. al. (2005, Part 2) such that the R2 value of the deviation is closest to unity. The R2value 

for the present case was found to be 0.9947 and the corresponding comparison between the 

normalized model CLD and the normalized FBRM measured CLD as reported by Li et. al. (2005, 

Part 2) is shown in Figure 2.10(a). A comparison between the normalized PSD obtained from 

Image Analysis as reported by Li et. al. (2005, Part 2), and the normalized PSD’s obtained using 

the present model and the best prediction using the model presented by Li et. al. (2005, Part 

2) is shown in Figure 2.10(b). As can be seen from Figure 2.10(b), similar to the case of sand 

particles, the present model accurately predicted the mean of the PSD but could not capture 

the spread of the PSD. The PSD predicted using the model presented by Li et. al. (2005, Part 

2) shows a good agreement for larger size particles apart from reasonably predicting the 

mean. This is because the model presented by Li et. al. (2005, Part 2) allows for the description 

of an additional ‘particle shape factor’. The value of the ‘shape factor’ can be determined by 

either fitting model predictions to both the CLD and the PSD or through information known 

beforehand about the particular system.  
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Figure 2.10. (a) Comparison between the normalized CLD obtained using present model and 
the normalized experimentally measured CLD (using FBRM, Li et. al. (2005)3) for a system of 
plasma alumina particles (b) Comparison between the normalized PSD obtained using Image 

analysis (reported by Li et. al. (2005)3), and the model predicted PSD’s using the present 
model and the model presented by Li et. al. (2005)3 for a system of plasma alumina particles 

2.3.2.3. Zinc Dust 

The validity of the present model is tested against another system of irregularly shaped 

particles: zinc particles. An image of the zinc dust particles used by Li et. al. (2005, Part 2) is 

provided in the cited work. As was seen in the image, no pattern could be inferred regarding 

the shape of the particles. A two parameter (mean and variance) lognormal distribution was 

considered to model the PSD. The parameter values for mean and variance were obtained by 

fitting the normalized model derived CLD with the normalized CLD measured using the FBRM 

as reported by Li et. al. (2005, Part 2). A R2 value of 0.976 was obtained for the fit. A 

comparison between the measured normalized CLD’s obtained by, fitting and measurement 

using the FBRM, is shown in Figure 2.11(a). The PSD for the sample was reported by Li. et. al 

(2005, Part 2) which was measured using Image Analysis. A comparison between the 

normalized PSD reported by Li et. al. (2005, Part 2) and the normalized PSD’s obtained using 

the present model and the model presented by Li et. al. (2005, Part 2) is shown in Figure 2. 

11(b). As can be seen from Figure 2.11(b), the model predictions from the present analysis, 

predicts the mean of the PSD reasonably well, however, as in previous cases of irregularly 

shaped particles, the variance is not predicted accurately.  

(b) (a) 

Chord Length (μm) 
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Figure 2.11. (a) Comparison between the normalized CLD obtained using present model and 
the normalized experimentally measured CLD (using FBRM, Li et. al. (2005)3) for a system of 

zinc dust particles (b) Comparison between the normalized PSD obtained using Image 
analysis (reported by Li et. al. (2005)3), and the model predicted PSD’s using the present 

model and the model presented by Li et. al. (2005)3 for a system of zinc dust particles 

The PSD predicted by the model presented by Li et. al. (2005, Part 2) agreed well with 

experimental data apart from additional particles predicted in a size range below 50μm. As 

for the previous case, the better agreement can be attributed to the use of an additional 

‘shape factor’. For irregularly shaped particle systems, it was consistently observed that the 

mean of the PSD predicted by the model was in reasonable agreement with the 

experimentally measured mean, while the variance was not. This mismatch was also observed 

for the model presented by Li et. al. (2005, Part 2). For irregularly shaped particles, there arise 

2 ambiguities. Firstly, how to define the particle size for an irregularly shaped particle and 

thereafter find the particle size distribution experimentally. Secondly, from the point of view 

of the model, the question of determining the CLD for an irregularly shaped particle system 

becomes important. The particle size in the present study was defined as the equivalent 

diameter of a circle which represents the same area as the projected area of the particle 

visible through the microscope. Due to such a definition, the orientation of the particle with 

regards to the microscope has an important role in determining particle size and the particle 

size distribution. Although how this impacts the particle size distribution and what is the range 

of uncertainty introduced by it is not entirely clear. However, from the findings reported in 

the manuscript, what we can say about such systems is that the mean can be accounted for 

accurately using the model. 

 

(b) (a) 

Chord Length (μm) 
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2.3.3. Application of Model for Real Systems 

In the previous sections, we evaluated the model validity for a system of particles which are 

regularly and irregularly shaped. It was concluded that the model could accurately predict the 

PSD for the case of regularly shaped particles and could predict the PSD for irregularly shaped 

particles reasonably well. In the present section, the focus is on applying the model for two 

sets of particles which are practically relevant. 

2.3.3.1. Paracetamol Crystals 

In the present section, the model was applied for a system of Paracetamol crystals. This 

system is a popular subject for crystallization studies besides its practical relevance. For the 

purposes of model validation, the previous work done by Worlitschek et. al. (2005) was 

considered. In the work presented, the authors have used a method of Projection onto 

Convex Sets (POCS) for the problem of restoration of a PSD from a measured CLD. For the 

validation of the POCS method, they have considered a system of 1% vol. acetaminophen 

(Paracetamol) in a toluene solution. The CLD data was interpreted using the POCS method to 

obtain a restored PSD. The restored PSD was then compared with the other offline methods 

to obtain a sample PSD: laser diffraction and TSI Aerosizer. The method was seen to 

adequately predict the particle size distribution.  

In the present study, the validity of the present model for a system of paracetamol crystals is 

evaluated by deriving the PSD from the experimental CLD data and comparing the model 

predicted PSD against experimental PSD measurements. The experimental measurements of 

the CLD and the PSD for this section, used in the present study, were previously reported by 

Worlitschek et. al. (2005).  

An image of the Paracetamol crystals used by Worlitschek et. al. (2005) is given in the cited 

work. The CLD measurements were noisy. The CLD measurements are noisy when the sample 

being measured has a low particle concentration (< 2% holdup). In such cases, the CLD needs 

to be smoothened before applying the present model. For high particle concentrations (> 5% 

holdup), the CLD measurements have negligible noise and do not need smoothening. 

Typically, the presented model works well for high particle concentrations as the model 

predicted CLD may be compared directly against the measured CLD. For low particle 

concentrations, the noisy CLD can be smoothened by averaging out the CLDs measured over 
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a brief time interval. However, the CLD reported by Worlitschek et. at. (2005) was an 

instantaneous CLD. The noise in the CLD is representative of the finite sample measured by 

the FBRM. Smoothening in effect cancels out this dependency on ‘local’ samples and is 

representative of the entire particle system and does not affect the CLD to PSD conversion. 

In the present study, the restored CLD data provided by Worlitschek et. al. (2005), which is 

essentially a smoothened representation of the raw CLD data was considered. A comparison 

between the raw CLD data and the restored CLD reported by Worlitschek et. al. (2005) is given 

in the cited work. 

A two parameter lognormal distribution was considered to model the PSD of the present 

system. The parameter values for the PSD were obtained by fitting the CLD obtained using 

the present model to the CLD measurements reported by Worlitschek et. la. (2005). A 

comparison between the normalized CLD obtained using the present model and the 

measured CLD (restored) reported by Worlitschek et. al. (2005) is shown in the Figure 2.12(a). 

The data was obtained in terms of 360 logarithmically spaced bins ranging from sizes of 1 to 

1000 microns. The R2 value of the fit was0.996. The values for the mean and variance were 

obtained to be 3.65 and 0.65 respectively.  

To enable comparison of the presented derived PSD data with the measured PSD data 

reported by Worlitschek et. al. (2005), two types of distributions derived from the PSD need 

to be defined. Firstly the discretized length weighted logarithmic distribution n1,ln and 

secondly the discretized volume weighted logarithmic distribution n3,ln. For an arbitrary jth bin, 

the following can be shown to be true:  

𝑛1,𝑙𝑛(𝑋𝑗) =
𝑋𝑗𝑁𝑗

B1ws
 (2.20) 

𝑛3,𝑙𝑛(𝑋𝑗) =
𝑋𝑗

3𝑁𝑗

B3ws
 (2.21) 

Where ws is the logarithm of the ratio of expansion of the bins and for the present case has 

the value 0.0192. The other symbols B1and B3stand for the first and the third moments of the 

discretized PSD.  

The general ith moment of a discretized PSD may be determined by using the following 

relation: 
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𝐵𝑖 = ∑ 𝑋𝑗
𝑖𝑁𝑗𝑗  (2.22) 

 

 

Figure 2.12. (a) Comparison between the restored CLD (Dotted line)(Worlitschek, Hocker 
and Mazotti (2005)5) and the derived CLD using the present model (b) A comparison 

between the discretized length-weighted logarithmic distributions obtained using the POCS 
method (POCS-Length) (Worlitschek, Hocker and Mazotti (2005)5), the derived PSD in the 

present model (PSD-Length) and the TSI Aerosizer (Worlitschek, Hocker and Mazotti (2005)5) 
(c) A comparison between the discretized volume-weighted logarithmic distributions 

obtained using the POCS method (POCS-Volume) (Worlitschek, Hocker and Mazotti (2005)5), 
the derived PSD in the present model (PSD-Volume) and laser diffraction (Worlitschek, 

Hocker and Mazotti (2005)5) 

A comparison of the discretized length weighted logarithmic distribution between the PSD 

calculated from the present study, the data obtained using the POCS method and from the 

TSI Aerosizer is shown in Figure 2.12(b). A comparison of the discretized volume weighted 

logarithmic distribution between the PSD calculated from the present study, the data 

obtained using the POCS method and from the TSI Aerosizer is shown in Figure 2.12(c). As can 

be seen from both the figures, the present model yields reasonable comparison with methods 

(a) 

(c) (b) 

Chord Length (μm) 
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for offline determination of PSD. In the volume weighted distribution for the PSD, there is an 

abruptness at the end because no bin sizes larger than 150 micron were considered for 

calculation.  

Thus, we can conclude that even with the assumption of spherically shaped particles, the 

present model is seen to predict useful results. The present model is thus valid for predicting 

the PSD from the FBRM measured CLD for a system of paracetamol crystals.  

2.3.3.2. Para-Aminophenol Crystals 

Para-Aminophenol is a commercially important chemical (used in the manufacturing of 

paracetamol) which is obtained through crystallization. In the present study, the validity of 

the present model is tested for a system of p-Aminophenol crystals in water. Water was 

chosen as a solvent as p-Aminophenol is sparingly soluble in water. An industrial sample of p-

Aminophenol was considered for analysis. An image of the p-Aminophenol crystals in water 

is shown in Figure 2.13(a). As can be seen from the Figure, there is a lot of debris (smaller 

crystals) apart from the bigger crystals. This suggests that this considered sample PSD might 

actually be bimodal. This is confirmed by the CLD measurements shown in Figure 2.13(b). The 

average chord size in the lower size range of the bimodal distribution shown in Figure 2.13(b), 

appears to be below 10μm. The PSD of the Para-Aminophenol crystals was determined in the 

present study through Image Analysis of images obtained using a microscope. The minimum 

size recorded using Image Analysis for the present system was 29μm. Sizes below this size 

range could not be resolved using image analysis. This is similar to the problem of validation 

for sand particles covered in one of the previous sections. As done for the case of sand, since, 

out of the bimodal distribution, we have the PSD data only for the larger size class, the model 

validity was tested only within the larger size range. 

A unimodal template PSD represented using a two parameter log normal distribution, as done 

in the previous sections, was considered. In the model discussed in the present work, the 

values for the two parameters (mean and variance) of the PSD are obtained by fitting the 

model predicted CLD to the experimental CLD. A square weighted CLD, which may be derived 

from the CLD by a procedure mentioned in the section dealing with sand particles, gives 

preference to larger size particles. The smaller size particles are apparently artificially filtered 

from the data. The values of the two parameters of the PSD were instead obtained by fitting 
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the model predicted normalized squared CLD to the experimentally measured (using FBRM) 

normalized squared CLD. A comparison between the fitted model predicted normalized 

squared CLD and the experimentally measured normalized squared CLD is shown in Figure 

2.13(b). The R2 value for the fit was found to be 0.997. The PSD was measured using the Image 

Analysis procedure discussed earlier. A sample of 380 particles was measured. A comparison 

between the model-predicted normalized PSD and the normalized PSD obtained through 

Image Analysis is shown in Figure 2.13(c).  

 

 

Figure 2.13. (a) Raw micrograph of p-Aminophenol crystals (b) Comparison between the 
normalized squared CLD obtained using present model and the normalized experimentally 

measured (using FBRM) squared and non-squared CLD for a system of p-Aminophenol 
crystals (c) Comparison between the normalized PSD obtained using Image analysis and the 

model predicted PSD for a system of p-Aminophenol crystals 

The model is seen to slightly under-predict the mean particle size however, accurately 

accounts for the variance. It may be concluded that the presented model accurately predicted 

the PSD for the case of Para-Aminophenol crystals. 

(a) 

(b) (c) 
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2.3.4. A Word on Model Applicability 

A comparison between the expected values of the diameter (mean diameter) and the 

standard deviations for each of the distributions reported in the present study for different 

systems is given in Table 1. The model was seen to predict good results for the case of 

spherical or regularly shaped particles. This was encouraging but expected as the model was 

fundamentally based on the assumption that the particles are spherical in shape. The model, 

when applied to a system of irregularly shaped particles, was seen to predict the mean 

accurately but over predict the standard deviation. This observation was consistent across all 

the three systems considered in this category. The discrepancy in the predictions points to 

the fact that the information about the shape is important. However, the shape itself varies 

within such systems. So, any model, built using a uniform shape assumption will face such 

limitations while predicting the PSD for an irregularly shaped particle system. For instance, 

even the model presented by Li et. al. (2005, Part 1 & 2), which allows the particle shape to 

be ellipsoidal and provides an adjustable parameter to tune the particle shape specific to a 

system, failed to capture the standard deviation accurately for the system of plasma alumina 

particles. Then, two systems of particles which are the potential application areas for the 

presented model were considered. The present model was seen to reasonably predict the 

PSD for a system of paracetamol particles as also for the case of p-aminophenol particles. 

Thus, even though, the model assumes a spherical particle shape, it still accurately predicts 

the PSD. The reason for this could be that the particles within a system of crystals are 

uniformly shaped as opposed to the shape variation which is typically seen in irregularly 

shaped systems. 

A word of caution is necessary while using the present model. This does not have to do with 

the model itself but more with regards to the limitations in determining the CLD for particular 

systems using the FBRM. Sometimes, like in the case of glass particles, air bubbles, liquid-

liquid emulsions and such, the optical properties of the particle/bubble/drop become 

important. The CLD then depends upon, whether and to what extent, the laser gets reflected 

back from the particle surface. The present model does not account for the optical properties 

of the particles and is not fit for use for systems with transparent particles/bubbles/drops. 

For applications related to such systems kindly refer to Kail et. al. (2009). Another difficulty 

arises where in due to inadequate suspension, larger particles tend to stay at the bottom of 



63 
 

the vessel. In such cases, the CLD is measured for only the suspended, smaller sized particles. 

This results in an under prediction of the PSD. Adequate care should be taken that the 

particles are always uniformly suspended. In any case, it is good practise to validate the model 

once, against results from image analysis or other offline sizing techniques, while considering 

a particle system other than the one reported in the present study.   

2.4. Conclusions 

In the present study a simple model was presented to derive the Particle Size Distribution 

(PSD) from a Chord Length Distribution (CLD) measured by the FBRM probe. The model does 

not require the specification of any parameter and enables the direct calculation of the PSD 

from known CLD measurements using simple spread sheeting tools. The model was first 

validated for two systems of regularly shaped (spherical) particles both consisting of ceramic 

beads. The model was seen to accurately predict the PSD. The model was then evaluated for 

various systems for a system of irregularly shaped particles: sand, plasma alumina and zinc 

dust. By irregularly shaped, it was implied that the shape of the particles within the system is 

not constant. The model was seen to reasonably predict the PSD, wherein the mean of the 

PSD was accurately predicted and the variance was over predicted. The model validity was 

then tested for a couple of systems of particles which are expected to be potential application 

areas of the presented model: paracetamol crystals and p-aminophenol crystals. The model 

was seen to accurately predict the PSD for these cases. The performance of the present model 

for these system was seen to be at par with the popular models presented by Li et. al. (2005, 

Part 1) and Worlischek et. al. (2005). These models are quite complex to implement for 

reasons discussed earlier as also require the specification of an additional parameter(s) for 

particle shape. In comparison the present model is rather simple (can be implemented using 

only simple spread sheeting tools) and does not require the specification of additional 

parameters.  
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Symbols & Notation 

Symbol Description Unit 

𝑃(𝑥, 𝑦, 𝐷) 
Probability of measuring a chord between x and y for a circle of 
diameter ‘D’ 

- 

𝐷 Diameter of sphere/circle m 

𝐿𝑖, 𝐿𝑖−1  Upper and lower boundary locations respectively of the ith bin m 

𝑁𝑖 Number of particles in the ith bin in the PSD # 

𝑀𝑖  Number of particles in the ith bin in the CLD # 

𝐴𝑖,𝑚 
Fraction of the particles contained in the mth bin in the PSD 
measured as having chords of size belonging to the ith bin of the CLD 

- 

𝐴𝑖  
Fraction of the total particles measured as having chords of size 
belonging to the ith bin of the CLD 

- 

𝑁𝑇 Total number of particles # 

µ Model parameter referencing mean particle size m 

𝜎2 Model parameter referencing variance/spread of particle sizes m2 

𝐵𝑖 ith moment of the distribution considered #-mi 

𝑋𝑗 The representative pivot location of the jth bin m 

𝑛1,𝑙𝑛 Discretized length weighted logarithmic distribution - 

𝑛3,𝑙𝑛 Discretized volume weighted logarithmic distribution - 

𝑤𝑠 Logarithm of the ratio of the bin expansion; 𝑤𝑠 = ln (
𝐿𝑖

𝐿𝑖−1
) - 
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Chapter 3. Population Balance 
Modelling for Batch Crystallisation 
Processes 
This chapter has been reproduced from the following manuscript:  

Pandit, A.V. and Ranade, V.V., 2015. Modeling Hysteresis during Crystallisation and 

Dissolution: Application to a Paracetamol–Ethanol System. Industrial & Engineering 

Chemistry Research, 54(42), pp.10364-10382. 

3.1. Introduction 

Crystallization is a topic which has great commercial interest. This process is most often 

encountered when one wishes to produce high-value speciality chemicals. The quality of the 

chemicals produced, is assessed primarily with regards to the product purity, the crystal 

morphology (shape of crystal) and the particle size distribution. The particle size distribution 

as a quality assessment parameter becomes important because of certain size requirements 

imposed by the applicability or the further processing of the chemicals. It is desirable to be 

able to quantitatively capture the effect that the operating parameters have on these 

parameters in order to optimize the process to make it more economical. Also, a thorough 

understanding of the influence of these operating parameters helps in troubleshooting the 

process and formulating guidelines which make required product goals (particle size 

distribution, product purity, crystal shape) achievable.   

In this work, a modelling framework is presented which is capable of describing crystallization 

and dissolution processes in a batch crystallizer. The focus was on understanding cooling 

crystallization and dissolution of a well-known system of paracetamol - ethanol. The 

framework may be extended with few obvious modifications to describe evaporative 

crystallization, anti-solvent crystallization or for operation in a continuous crystallizer, 

although, this is beyond the scope of the present work. The quantitative description of 

crystallization processes often requires determining unknown parameter values required for 

the growth and nucleation rate expressions for a given system. Using the presented 

framework, a methodology to reliably estimate unknown nucleation parameter values from 
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known growth parameter values for a sample system of paracetamol – ethanol was 

demonstrated.  

In this work, experiments were performed to understand cooling crystallization. A Focused 

Beam Reflectance Measurement (FBRM) probe was used to monitor the changes in the 

particle size distribution occurring during crystallization and dissolution processes. The FBRM 

probe allows the online and in situ characterization of the particle size distribution (PSD) that 

emerges especially in dense solutions (Ruf et. al., 2000). Although instead of giving the 'true' 

particle size distribution, the FBRM measures the Chord Length Distribution (CLD), which is 

representative of the PSD (Ruf et. al., 2000). Such on-line measurements are essential since 

crystallization and dissolution processes are inherently transient, with number and size of 

particles dynamically changing with time, as the solution tries to attain equilibrium. It is not 

always feasible to obtain reliable information from offline measurements, as; first, the PSD 

will keep dynamically changing during the interval when the sample was removed and was 

studied; and second, the sample, being small in volume, will try to equilibrate with the 

surroundings (temperature) very fast which also influences the PSD significantly. The FBRM 

probe has been used previously to determine the solubility curve which is most fundamental 

for any crystallization study (Barrett et. al., 2002; Kim et. al., 2005; Kim et. al., 2007). Barrett 

et. al. (2002) used the FBRM probe to determine the Meta-stable zone width in cooling 

crystallization. Hermanto et. al. (2010) used the FBRM probe to monitor the crystal size in a 

study to ensure batch to batch size consistency in anti-solvent crystallization. Worlitschek et. 

al. (2004) used the FBRM in a study to determine the crystallization kinetics during cooling 

crystallization. Although not relevant to the present study, it is worthwhile to note that the 

FBRM has also been used to understand the dynamics of crystal shape change during 

crystallization, for example, O’Sullivan et. al. (2005) used the FBRM to study the polymorphic 

transformation of d-Mannitol.  

Previously, much work has been done in trying to modify the crystal size distribution and the 

crystal shape using cycles of crystallization and dissolution (Lovette et. al., 2002; Jiang et. al., 

2014). In these studies, a saturated solution containing initial seed crystals, was cooled at a 

specified cooling rate to a specified temperature to induce crystal growth and nucleation. The 

solution is then immediately reheated, at a specified heating rate, to its initial state. It was 

observed that the crystal population properties, such as the mean size as well as the crystal 
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shape, were seen to change towards the desired objective (for instance mean size increased) 

after undergoing such cycles. However, in the present study, instead of trying to modify the 

crystal size, the aim was to extract the crystallization kinetics model from the crystallization 

and dissolution cycles. Hence, instead of starting with a saturated solution with some initial 

seed crystals, as in the previous experiments, an undersaturated solution was considered as 

a starting point. The solution was cooled until a specified temperature was reached, where in 

crystallization had already occurred, and then reheated back to the initial undersaturated 

state causing dissolution of the crystals generated during crystallization. The heating rate and 

the cooling rate employed for one cycle were kept equal in magnitude. The number of particle 

counts and the particle chord length distribution were recorded online by a Focused Beam 

Reflectance Measurement (FBRM) probe. The solution temperature was also recorded online 

using a temperature sensor. Transient measurements using FBRM revealed a hysteresis in 

particle counts with respect to temperature when paracetamol - ethanol system was caused 

to undergo crystallization followed by complete dissolution. Further, it was observed that the 

shape of the hysteresis curve as influenced by the operating parameter of cooling/heating 

rate. The observed hysteresis in particle counts is expected due to the Meta Stable Zone 

Width (MSZW) and the consequent late onset on nucleation. However, the exact shape of the 

hysteresis curve, after the onset of nucleation, is governed by the crystallization kinetics; 

more specifically, the kinetics of nucleation (primary and secondary) and the kinetics of crystal 

growth. The parameter values required to implement the aforementioned kinetic models are 

not always known from previous text. The hysteresis curve and the influence that the 

heating/cooling rate has on it, provides an excellent way to characterize the crystallization 

kinetics of the system and serves as a rigorous validation case for crystallization – dissolution 

models.   

Some comments on previous work on modelling crystallization – dissolution are warranted 

here before the present contributions are described. Population Balance Equations (PBE) 

have been widely used to model crystallization and dissolution processes. A detailed review 

of a subset of the methods to solve population balance equations is given by Ramkrishna 

(2000). Ramkrishna (2000) reviews analytical solutions, moment-based methods: standard 

method of moments and quadrature method of moments, discretization based methods: 

fixed pivot and moving pivot as well as the method of weighted residuals. It is possible to 
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obtain analytical solutions to the PBE, however, this is limited to a few cases depending upon 

the type of mathematical expressions used to represent growth/nucleation kinetics as well as 

for other phenomena considered (aggregation/breakage). Analytical solutions for the 

population balance equation for simple cases such as size independent crystal growth rate 

and a power law type nucleation rate are provided in Ramakrishna (2000). Another class of 

methods for the solution of the PBE are those which track moments of the particle size 

distribution rather than tracking complete distribution also known as moment based 

methods. Simple systems (not involving breakage or aggregation), like in the present study, 

may be addressed suitably by using the standard method of moments (Randolph et. al., 1988). 

For more complex systems, involving aggregation and breakage, several new methods such 

as the quadrature method of moments (Marchisio et. al., 2003) and the direct quadrature 

method of moments (Marchisio et. al., 2005) have been proposed. The solutions obtained 

from such methods are computationally efficient, however, are less descriptive as it is difficult 

to extract the complete particle size distribution information from only the known moments. 

This inverse problem is not a mathematically well-posed problem, that is, there may exist 

multiple solutions to the problem. There are methods of extracting the particle size 

distribution from known moments however; those are not besides their own limitations. 

Discretization based methods for the solution of the PBE enable the complete description of 

the particle size distribution. In these methods, typically, the domain of the particle size is 

broken into discrete bins and the number of particles in these bins is tracked with time. 

However, one should be careful in implementing these methods as they are prone to 

numerically induced errors. Recently, the High Resolution Finite Volume (HRFV) methods 

have been gaining importance for the solution of Population Balance Equations (Gunawan et. 

al., 2004). These methods are derived from a general Finite Volume class of methods which 

are typically used to solve flow and wave propagation problems (LeVeque, 2002). The method 

has the advantages of tapping the sophisticated numerical methods which have been 

developed to solve the more popular flow and wave propagation problems and as such is very 

robust. Apart from this, the fixed and moving pivot methods are also two popular 

discretization based methods for the solution of the population balance equations 

(Ramakrishna, 2000; Kumar et. al., 1996). 
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In this work, a mathematical framework is presented to model crystallization and dissolution 

processes by solving the population balance equation for nucleation, growth and dissolution. 

The population balance equation tracks the changes in the particle size distribution with time. 

The framework includes the solution of the population balance equation (PBE) on two levels:  

(a) The solution of just the crystallization stage of the experiment using a computationally 

efficient, but, less informative method of moments 

(b) The solution using a High Resolution Finite Volume (HRFV) scheme coupled with the 

Moving Pivot method for the complete description of the particle size distribution 

during both the crystallization and dissolution stages of the experiment.  

For a system of paracetamol and ethanol, the kinetic model for crystal growth was available 

in literature however; a reliable model for nucleation was not available. In the next section, 

the experiments performed and the experimental results obtained, which form the basis for 

the present work is described.  

3.2. Experimental Section 

In the present study, paracetamol was used as the solute and ethanol as the solvent. 

Experiments were performed to understand the dissolution and re-crystallization of 

paracetamol. The crystallization was brought about in the present study by cooling the 

solution to below the solubility temperature. 45 gm of paracetamol was mixed with 200 ml 

of ACS grade Ethanol in a 250 ml glass reactor. The glass reactor was then inserted into a 

Mettler Toledo OptiMAX reactor assembly. A down flow pitched blade four-blade stirrer 

(diameter 38mm; blades at an angle of 450) was used to agitate the solution. A constant 

agitator speed of 400 RPM was maintained for all experiments. A Mettler Toledo focused 

beam reflectance measurement (FRBM) probe was inserted into the reactor for the in-situ 

and online monitoring of particle counts and particle chord length distribution. It should be 

noted that the tip speed of the impeller is approximately around 0.63 m/s which is lesser than, 

but not significantly so, the 2 m/s tangential speed of the FBRM laser. This suggests that 

particle motion might affect the FBRM probe measurements. However, the deviation in the 

number of particle counts measured as well as the particle chord lengths measurements due 

to particle motion is not significant. This was verified multiple times by comparing the 

respective chord length distributions and particle counts for different samples at different 
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impeller speeds (above the critical suspension speed). The OptiMAX reactor assembly allows 

for controlled heating and cooling of the solution as well as to control the stirring speed. The 

entire set up is connected to a computer for the continuous acquisition of data. A schematic 

of the experimental setup is shown in Figure 3.1.  

 
Figure 3.1. Schematic of Experimental Setup 

 
The OptiMAX reactor setup allows for precise control over the heating and cooling rates via 

Peltier elements. A temperature probe is inserted into the reactor vessel to continuously 

monitor the temperature. The heating/cooling rate is controlled precisely by a control system 

using the online temperature data and correspondingly manipulating the jacket temperature 

to obtain the desired heating/cooling rates. The FBRM probe works on the principle of laser 

back-scattering. A laser is emitted from a laser source inside the probe. The source is then 

moved in a circular fashion such that the laser emitted is parallel to the probe axis and the 

laser traces a cylindrical surface around the probe axis inside the probe. A very high speed of 

rotation is used (in the present study the tangential speed of the source was set to 2 m/s). At 

the probe tip is a sapphire window which is in contact with the solution in which the particle 

measurements are to be made. As the laser is moving, in the solution just near the probe tip, 

if it were to pass over a particle, the laser gets reflected back inside the probe. Each instance 

of this reflection is treated as one count of particle detection and the duration of time for 

which the beam is reflected is then used to work out the length of the chord which the laser 

‘cuts’ on the particle surface. Thus, in course of time and in dense solutions, multiple particles 

are recorded by the FBRM probe and hence we obtain the number of counts and the particle 

chord length distribution data. It is clear that when the solute is completely dissolved in the 
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solution, the probe will record a base line number of counts which correspond to the noise 

(stray reflections etc.). As the crystallization begins and new crystals start to appear, the 

number of particles measured by the FBRM steadily starts to increase. Further, the growth of 

the crystals is reflected in the evolution of the measured chord length distribution. More and 

more chords in a larger size range are measured with time as crystallization progresses.  

In the present study, 45 gm of Paracetamol is mixed with 200 ml of Ethanol and inserted into 

a 250 ml glass reactor. The reported solubility temperature reported by Granberg et. al. 

(1999) for this concentration of solute is around 318 K. The solution temperature was first 

taken to 323 K, and then held constant and provided with adequate time to ensure complete 

dissolution of the solute. The solution was then cooled at a particular constant cooling rate 

(0.3, 0.5 and 0.7 K/min) until the solution reaches 263 K. Between the point when the cooling 

is started and when the solution reaches 263 K, the solution crystallizes. As soon as the 

solution reaches 263 K, the solution is heated at a heating rate equal in magnitude to the 

cooling rate previously employed. As the temperature increases, the particles slowly start to 

dissolve. The solution temperature is allowed to increases until a set point of 323 K is reached. 

The heat of dissolution and crystallization are not accounted for as the OptiMAX temperature 

system is sufficient to maintain the required linear heating/cooling profiles for the rates 

considered in the present study as may be verified from Figure 3.2. It is seen that the particles 

have completely dissolved even before this point is reached. This cycle is repeated for 

different heating/cooling rates. The temperature profile employed corresponding to various 

heating/cooling rates (1, 0.7, 0.5 and 0.3 K/min respectively) and the corresponding particle 

counts measured by the FBRM probe is plotted in Figure 3.2 as a function of time. The cooling 

is initiated from 323 K. As the solution temperature crosses (drops below) the solubility 

temperature (318 K), the solution starts becoming supersaturated, more so as the 

temperature decreases further. However, it does not crystallize and a clear solution, which is 

as observed visually, is recorded by the FBRM (Figure 3.2). During cooling, suddenly, at a 

particular temperature, crystals start to appear in the solution and the solution is no longer 

clear. This is referred to the crystallization temperature. As we cool further, the crystallization 

progresses and more and more crystals are produced. This increase in the crystal population 

and hence the crystal number density, can be confirmed by visual inspection as also by the 

fact that the number of counts recorded by the FBRM increases sharply. This increase in 
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number of counts continues until a point when the solution is no longer in a supersaturated 

state and it has precipitated out all the excess dissolved solids. At this point, the solubility is 

equal to the dissolved solids concentration. In the present text, we will refer to this point as 

the equilibration point. For the case of 0.7 K/min cooling rate, it was observed that there was 

crystallization even while heating the solution. This was because the equilibration point was 

not reached during the cooling stage.  

On further heating the solution after the equilibration point, the counts start to decrease 

gradually due to sustained dissolution until all the particles disappear and we again have a 

clear solution. Due to the late onset of nucleation brought about by the solution being in an 

unstable supersaturated state, if we were to plot the particle count versus the reactor 

temperature for each of the cooling/heating rates, we will observe a hysteresis in particle 

counts where the curve forms a closed loop. Further, we observe that the shape of the 

hysteresis loop is influenced by the heating/cooling rate employed. Such hysteresis loop 

(particle counts versus temperature plot) is plotted for different heating/cooling rates of 0.3, 

0.5 and 0.7 K/min and shown in Figure 3.3. In Figure 3, the arrows indicate the direction of 

the experiment, starting from 323 K in accordance with the procedure mentioned earlier. It 

was observed that as we decrease the heating/cooling rates; there is a peculiar ‘twisting’ of 

the hysteresis loop. The twisting effect is most pronounced in the 0.3 K/min experiment 

hysteresis loop. As can be seen in Figure 3.3, the solution reaches equilibration at around 285 

K, which is much before 263 K. From the equilibration point till 263 K, the number of counts 

recorded is relatively constant. The dissolution begins as soon as we start heating the solution 

from 263 K causing a decrease in the number of counts. Thus, this leads to 2 different 

hysteresis loops instead of 1 hysteresis loop as observed for the 0.7 K/min experiment. This 

is referred to as ‘twisting’ of the hysteresis loop in the present work. 
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Figure 3.2. Experimental Temperature profile employed, and the corresponding particle 

counts recorded by the FBRM probe as a function of time 
 

 
Figure 3.3: Hysteresis loop plots for various heating/cooling rates 
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In the present study we have attempted to explain this trend by developing a model which is 

capable of quantitatively capturing this trend. It is clear that the ‘twisting’ of the loop arises 

as a result of a combination of the interaction of the phenomenon of nucleation, crystal 

growth, and dissolution. In the present study, mathematical model is proposed which 

captures the contributions of each of these phenomena and their influence on the overall 

particle size distribution. The hysteresis experiments serve as a rigorous validation case of this 

mathematical model.  

3.3. Model Equations 

3.3.1. Population Balance Equation 

Population Balance Models are usually employed for monitoring changes in the size 

distribution of large populations for example in cell growth, bubbles in reactors or as in the 

case considered in the present study, a population of crystals.  

Typically, the number density function f(X) is used to represent the size distribution of a 

population of particles. The size distribution is relative to a particular size co-ordinate (length, 

volume) of the crystal which is relevant for the particular system in question. In the present 

study, the length will be considered as the size co-ordinate. Suppose the number density is 

represented as a function of the particle length co-ordinate X as f(X). Then, f(X)dX is defined 

as the number of particles having a length between X and X+dX. 

Suppose that G represents the growth rate or the shrink rate (in the case of dissolution) of 

the particle as a function of the particle length co-ordinate. This growth/shrinkage rate may 

be dependent or independent of the particle size apart from several other variables such as 

the solution temperature, the concentration etc. In general, G(X) thus stands for the rate of 

change in particle length per unit time. A detailed description of the growth rate used in this 

work will be presented later. The population balance equation which tracks the 

change/evolution of the particle number density function can be written as:  

𝜕𝑓

𝜕𝑡
+

𝜕𝐺𝑓

𝜕𝑋
= 𝐵0 𝛿(𝑋 − 𝑋𝑛𝑢𝑐) 3.1 

Where B0 is nucleation rate (number/unit time) and Xnuc is initial size of nucleated particles. 
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In the present study, it should be noted that the only mechanism for the change in the number 

distribution functions are the growth/shrinkage of particles and the introduction of new 

particles through nucleation. Other mechanisms of change typically encountered are the 

breakage or the aggregation of particles which will be ignored in the present study for the 

purpose of retaining simplicity of the model. The model may be easily extended to include 

these if need arises. The introduction of new particles during crystallization occurs due to 

nucleation. Nucleation is assumed to introduce new particles at the particular nucleating size 

Xnuc. δ(X – Xnuc) represents the Dirac delta function where: 

𝛿(𝑋 − 𝑋𝑛𝑢𝑐) =  0;   𝑋 ≠ 𝑋𝑛𝑢𝑐 3.2 

𝛿(𝑋 − 𝑋𝑛𝑢𝑐) = +∞;   𝑋 = 𝑋𝑛𝑢𝑐 3.3 

Thus particles are introduced at a rate given by B0 and at a location specified by Xnuc. The 

nucleation rate B0 depends on several variables such as the system considered, the degree of 

supersaturation etc. A detailed description of the nucleation rate function employed in the 

present study will be given later. Another assumption made in the present study is that the 

size of the nucleating particle is the same which is assumed to be the minimum size 

considered in the present study. This may not necessarily be true considering the various 

mechanisms for the secondary nucleation. 

Typically due to complicated mathematical expressions employed for representing growth 

and nucleation rates, it is not always possible to solve the equation analytically. Several 

numerical approaches are available to obtain the solution of the equation. A brief description 

of these methods, their strengths and their weaknesses are listed in Table 1.1. As can be seen 

from Table 1.1, each of the methods has their own pros and cons.  

The aim of the present model was to extract the crystallization kinetics model (for crystal 

growth, nucleation and dissolution) from the hysteresis experiments. The hysteresis 

experiments consist of three stages: 

1. Crystallization Stage 1 (crystallization while cooling the solution from an initial 

temperature of 323 K to 263 K) 

2. Crystallization Stage 2: Only for the case of 0.7 K/min experiment (crystallization while 

heating the solution from 263 K to the equilibration point, around 275 K) 
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3. Dissolution Stage 

Sometimes, like in the experiment with the 0.7 K/min cooling rate, the solution is still 

supersaturated (that is the dissolved solids’ concentration is more than the solubility) even at 

263 K. So, while heating the solution again, crystallization is still taking place as the solution 

is still supersaturated. As, we are heating the solution, the solubility increases with 

temperature. Moreover, the dissolved solids concentration decreases with increasing 

nucleation and growth. There comes a point, or temperature, where the dissolved solids 

concentration equals the solubility and the solution is no longer supersaturated. This is 

referred to here as the equilibration point. The crystallization is arrested at this point and 

further heating of the solution causes the dissolution process to initiate. 

In the present study, the crystallization kinetics (growth and nucleation parameters) were 

determined by fitting the simulation results obtained by using the method of moments 

approach to the experimental results of Crystallization Stage 1 for different cooling/heating 

rates. The hysteresis results serve as the validation of the kinetics, as the dissolution of 

particles depends entirely on the particle size distribution that has arisen after the 

crystallization stages. Thus, having sufficient agreement with the hysteresis loop and 

successfully capturing the effect of the cooling/heating rate on the hysteresis loop serves as 

a thorough validation for the kinetics of crystallization. However, hysteresis results cannot be 

simulated using the method of moments approach due to obvious difficulty in describing the 

death rate of particles due to dissolution. It becomes important to resolve the complete 

particle size distribution. For the hysteresis results, the first and second crystallization stages 

were simulated using the HRFV method and the parameter values obtained by using the 

Method of Moments. The dissolution stage was then simulated using the moving pivot 

method. The hysteresis results were compared with experiments to obtain a validated 

crystallization kinetics model. This methodology can be extended in general to determine the 

crystallization kinetics for different systems. Given below is a detailed description of the 

various methods used for the solution of the population balance equation in the present 

study.  
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3.3.2. Method of Moments 

3.3.2.1. Moment Equations 

Instead of resolving the complete particle size distribution with time, the method of moments 

tracks the moments of the particle size distribution with time. The equation for a general kth 

moment of a particle size distribution is presented as Equation 3.4.  

𝑀𝑘 = ∫ 𝑋𝑘𝑓(𝑋)𝑑𝑋
∞

0
 3.4 

It is possible to condense the population balance equation as a set of ordinary differential 

equations of the moments of the particle size distribution. The general form of the ordinary 

differential equations which track the change in an arbitrary kth moment with time can be 

written as shown in Equation 3.5. For a detailed derivation of the moment equations kindly 

refer to Randolph et. al. (1988).   

𝑑𝑀𝑘

𝑑𝑡
= (0)𝑘𝐵0(𝑡) +  ∫ 𝑘𝑋𝑘−12𝐺(𝑋)𝑓(𝑋)𝑑𝑋

∞

0
 3.5 

An additional factor of 2 appears in the present equation as the growth rate considered in the 

present study is the growth rate of a surface. The growth rate of the particle dimension, like 

diameter, for spherical particles, will be twice the growth rate of the surface to account for 

growth at both sides. To model the present system we will consider only size independent 

growth. The rationale for this is presented in the later section which addresses the crystal 

growth constitutive law. It can be seen that the equation includes twice the growth rate. This 

is done as the growth rate here is considered as the rate of growth of a surface. The rate of 

growth in the particle diameter will thus be twice (on both sides) of this growth rate. Keeping 

these points in mind the equation for the rate of change of moments is presented as: 

𝑑𝑀𝑘

𝑑𝑡
= (0)𝑘𝐵0(𝑡) +  2𝑘𝐺(𝑡)𝑀𝑘−1 3.6 

Thus, theoretically, for the moment equations derived for the present case (growth and 

nucleation), it is possible to derive any number of moment equations. In the present study, 

we have restricted the model to calculation of the first 5 moments (k = 0 to 4) as these are 

the moments that will be required later. The rest may also be solved, but are not needed as 

the solution of higher order moment equations does not affect the lower order moment 
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equations. The governing equations for the first five moments are presented as Equations 3.7 

to 3.11: 

𝑑𝑀0

𝑑𝑡
= 𝐵0(𝑡) 3.7 

𝑑𝑀1

𝑑𝑡
= 2𝐺(𝑡)𝑀0 3.8 

𝑑𝑀2

𝑑𝑡
= 4𝐺(𝑡)𝑀1 3.9 

𝑑𝑀3

𝑑𝑡
= 6𝐺(𝑡)𝑀2 3.10 

𝑑𝑀4

𝑑𝑡
= 8𝐺(𝑡)𝑀3 3.11 

For the case of crystallization from a clear solution, the initial conditions of all moments will 

be zero. In general, if one wishes to simulate crystallization starting from a solution already 

containing a particle population, such as in the case of seeding, the initial conditions for the 

moments can be found by calculating the moments from the known particle size distribution 

of the population.  

3.3.2.2. Equation for Concentration 

The total mass of the solute in the system can be written as: 

𝑀𝑇 = 𝑉𝑅𝐶𝑀𝑤 + 𝑉𝑅𝜌𝑝
𝜋

6
∫ 𝑋3𝑓(𝑋)𝑑𝑋

∞

0
 3.12 

The equation can be written in terms of the third moment of the population balance equation 

as: 

𝑀𝑇 = 𝑉𝑅𝐶𝑀𝑤 + 𝑉𝑅𝜌𝑝
𝜋

6
𝑀3 3.13 

Now the total mass of the solute in the system will not change with time as we are not adding 

any mass into the system. Hence the rate of change of the total mass of the solute will be 

equal to zero. Hence differentiating the above equation with time, we obtain the equation 

for the rate of change of dissolved solute concentration with time as: 

𝑑𝐶

𝑑𝑡
= − (

𝜌𝑝

𝑀𝑤
) (

𝜋

6
)

𝑑𝑀3

𝑑𝑡
 3.14 
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The concentration equation along with the moment equations derived earlier need to be 

solved simultaneously.  

3.3.2.3. Equation for Temperature 

While cooling the solution from 323 K to 263 K at a time, a fixed cooling rate (0.3, 0.5 and 0.7 

K/min) is employed. The rate of temperature change of the solution is thus controlled. The 

equation for the rate of change of temperature with respect to time is thus trivial and can be 

written as: 

𝑑𝑇

𝑑𝑡
=

𝑅

60
 3.15 

Where R is heating rate in K/min. It is important to track the temperature accurately as 

temperature of the solution is the most important factor which influences the crystallization 

phenomenon. In the present case, the equation is trivial as the solution temperature is 

reliably controlled using the OptiMAX reactor setup and effects due to the heat of dissolution 

and crystallization may be ignored. However, in cases where this is not necessarily true, the 

heat balance must be appropriately handled to obtain the equation for the rate of change in 

temperature.  

The solubility data reported by Granberg et. al. (1999) for the system of paracetamol and 

ethanol and within the range of temperatures considered in the present study, can be 

represented in the form of an exponential type expression as: 

𝐶∗(𝑇) =  0.524 𝑒(0.0193𝑇) 3.16 

The moment equations (Equations 3.7 to 3.11) are solved simultaneously along with the 

equation for concentration (Equation 14) and the equation for temperature (Equation 3.15) 

to find the solution of the population balance equation. A detailed account of the solution 

implementation is presented in the solution methodology section.  

3.3.3. High Resolution Finite Volume 

3.3.3.1. Equations for Discrete Particle Size Distribution 

In some cases, it is desirable to obtain the information of the complete particle size 

distribution as a function of time. In such cases, it is not sufficient to solve the moment 
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equations. For instance, in few cases, such as for dissolution relevant for the present study, 

the shrinkage rate is dependent on the particle size, as discussed later. For obvious reasons, 

such a problem cannot be tackled by the method of moments. This particle size dependency 

significantly impacts the model predictions. Thus, to simulate for the entire hysteresis loop, 

we need to use a more descriptive model which resolves the entire particle size distribution. 

In the present case, we will solve the population balance equation for the case of 

crystallization using a high resolution finite volume (HRFV) scheme first proposed by Leveque 

(2002) and then implemented for the case of crystallization processes by Gunawan et. al. 

(2005). The HRFV scheme enables us to obtain the complete resolution of the particle size 

distribution.  

In the High Resolution Finite Volume (HRFV) method, the particle size co-ordinate domain is 

broken into several discrete bins. Now the growth of the crystals causes the particles from a 

bin to grow into another bin. The nucleation of particles causes the addition of particles into 

the bin size corresponding to the nucleation size. Thus, in summary with this method, the 

changes in the number of particles which are present in each of these bins with time due to 

growth and nucleation during crystallization were tracked. This method leads to a discrete 

particle size distribution as opposed to a continuous particle size distribution, which is 

obtained when a solution to a population balance equation can be worked out analytically. 

The discrete particle size distribution can be written as a function of the continuous particle 

size distribution. The number of particles in each bin is defined in the HRFV scheme can be 

written as:  

𝑓𝑖 = ∫ 𝑓𝑑𝑋
𝑋𝑖+ℎ/2

𝑋𝑖−ℎ/2
 3.17 

In the present study, we have considered that growth is size independent. The details of the 

mechanism of crystal growth and the constitutive law applied to quantify the growth rate are 

presented in the subsequent section. Using an explicit time stepping method and a high 

resolution finite volume algorithm that is second order almost everywhere, the equation for 

the number of particles in the ith bin in the next time instant can be written as: 

𝑓𝑛
𝑚+1 = 𝑓𝑛

𝑚 −
2𝑘𝐺

ℎ
(𝑓𝑛

𝑚 − 𝑓𝑛−1
𝑚 ) −

𝑘𝐺

ℎ
(1 −

2𝑘𝐺

ℎ
) [(𝑓𝑛+1

𝑚 − 𝑓𝑛
𝑚)𝜑𝑛 − (𝑓𝑛

𝑚 − 𝑓𝑛−1
𝑚 )𝜑𝑛−1]

 3.18 
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Here, it should be noted that the growth rate is actually twice the growth rate of the surface 

and hence the factor of 2 is multiplied to every growth rate to obtain equations in the form 

of the crystal surface growth rate. The flux limiter function, φn, depends upon the local degree 

of smoothness of the distribution. This is quantified as a ratio of two consecutive gradients 

as: 

𝜃𝑛 =
𝑓𝑛

𝑚−𝑓𝑛−1
𝑚

𝑓𝑛+1
𝑚 −𝑓𝑛

𝑚 3.19  

It can be seen that θn will have a value close to one when the distribution is locally smooth. 

There have been several forms proposed for the choice of the flux limiter. The role of the flux 

limiter is to limit the error induced in the simulation results due to numerical dispersion. For 

a detailed discussion of the flux limiters please refer to the review on finite volume methods 

presented by Leveque (2002). In the present method, we use the Van Leer flux limiter which 

is known to provide a full second order accuracy and is total variation diminishing, which 

implies that the algorithm will not introduce numerical dispersion. The Van Leer flux limiter is 

written as: 

𝜑𝑛 =
𝜃𝑛+|𝜃𝑛|

1+|𝜃𝑛|
 3.20 

While implementing this method, we should be careful in dealing with the boundary 

conditions. As stated earlier, the domain along the size co-ordinate is discretized into a finite 

number of bins. It can be inferred from the above equation, that there arises a problem when 

we try to formulate the equations for the number of particles in the next time instant in the 

boundary bins (first and last) as they require the specification of information outside the 

domain considered. Equations for these bins need to be separately specified. For the first bin, 

wherever information for a bin outside the domain is required, it is set to zero. Also, it is 

assumed that the nucleation of particles adds particles into the first bin. Thus, the equation 

for number of particles in the first bin for the next time instance may be written as: 

𝑓1
𝑚+1 = 𝑓1

𝑚 −
2𝑘𝐺

ℎ
𝑓1

𝑚 −
𝑘𝐺

ℎ
(1 −

2𝑘𝐺

ℎ
) (𝑓2

𝑚 − 𝑓1
𝑚)𝜑1 +  𝑘𝐵0 3.21 

𝜃1 =
𝑓1

𝑚

𝑓2
𝑚−𝑓1

𝑚 3.22 
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For the first bin, the flux limiter is defined just as everywhere else. For the last bin, a boundary 

condition known as the absorbing boundary condition is used where in the number of 

particles in the last bin will not change with time. In the present text, the upper bin boundary 

is taken to be much higher than the size range of interest. In such a case, the boundary 

condition at the upper boundary does not affect the solution. However, if the bin boundary 

is to be chosen near the size range of interest, more attention needs to be paid in formulating 

the required boundary condition. Typically for such cases, boundary conditions from a general 

class of boundary conditions, known as absorbing boundary conditions need to be 

implemented. These boundary conditions are typically used to study the reflection, 

transmission and dissipation nature of waves in various medium. Absorbing boundary 

conditions are in general mathematically extremely complex and as such beyond the scope 

of the present text. The equation for the last bin can be written as: 

𝑓𝑁
𝑚+1 = 𝑓𝑁

𝑚 3.23 

This completes the formulation of the equations for the number of particles in each bin. Now, 

for simulations of cases where the solution is initially completely clear, we run into a 

numerical difficulty in evaluating the ratio of the consecutive gradients as both have a value 

of zero. Hence, for this case, the ratio is set as one. This is keeping in line the physical meaning 

of θn which is relevant. This changes the scheme to a first order upwind scheme at these 

points. However, this does not affect the solution as much as this is only for cases where there 

are no particles in the bins and is only done to ensure numerical stability of the model. Thus, 

we may still claim the second order accuracy that is provided by the Van Leer flux limiter. 

3.3.3.2. Equation for Concentration 

The total mass of the solute in the system can be written as in Equation 3.12. The contribution 

of the population of crystals (total volume of crystals) was calculated by using the third 

moment of the number distribution function. Now, as we are considering discrete bins, the 

third moment can also be written as: 

𝑀3 = ∫ 𝑥3𝑓(𝑥)𝑑𝑥
∞

0
= ∑ 𝑋𝑖

3𝑁
𝑖=1 𝑓𝑖  3.24 

This transforms the more general integral moment into the discrete form of the equation. 

Here, particles which are lesser than the minimum size of the domain (say 1 micron) will not 
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be considered. This is the size range where we are adding the nucleating particles. From 

simulations, it was observed, and even through some simple calculations, it may be verified, 

that the contribution of the nucleating particles towards the mass is smaller than the 

permissible error in the mass balance. Thus, the contribution of the nucleating particles 

towards mass will not be considered. As we are not adding any solute into the system, the 

total mass of the solute phase must be constant. Hence the rate of change of the solute mass 

must be zero. By substituting the third moment expression in the total solute mass equation, 

differentiating the total solute mass with time and rearranging the equation we obtain a rate 

change equation for the dissolved solute concentration as: 

𝑑𝐶

𝑑𝑡
= − (

𝜌𝑝

𝑀𝑤
) (

𝜋

6
) ∑ 𝑋𝑖

3𝑁
𝑖=1

𝑑𝑓𝑖

𝑑𝑡
 3.25 

It should be noted that since we are using a fixed grid method, the size of each grid will not 

change with time. This equation can be solved numerically by using an explicit scheme which 

we have also used to solve the population balance equation. More details of the discrete form 

of HRFV method are provided in Annexure A2.  

The equation for the rate of change of the solution temperature is the same as the one 

employed for the method of moments (Equation 3.15). We however, will need a discrete form 

of Equation 3.15 in order to be able to solve this equation simultaneously with the other 

equations. The equation itself is fairly straightforward and the temperature can be 

represented by the analytical solution but, the present work focuses on laying a framework 

to model crystallization processes. The equation for change in temperature may in general be 

linked to the rate of crystallization process for which a simultaneous solution will become 

important. For these reasons, the equation for temperature will be solved within the 

framework presented simultaneously with the other equations required for the 

implementation of the HRFV scheme.  

3.3.4. Moving Pivot Method 

3.3.4.1. Equations for Moving Pivot Method 

The dissolution stage is very important as it is directly influenced by the crystallization stage 

or rather the particle size distribution and the concentration that has emerged after the 



85 
 

crystallization stage has been completed. Hence, for the purposes of validation of the 

crystallization kinetics, it is best to also analyse and validate the dissolution curve. Now, we 

are faced with an obstacle when we try to simulate the dissolution of a particle population 

using the methods described above. During dissolution, the total number of particles in the 

system is reducing owing to some particles completely disappearing. To enable the use of the 

method of moments to simulate this case, an explicit definition of a death rate of particles or 

the rate of disappearance of particles is required. An explicit specification of this rate of 

disappearance is not possible. The dissolution rate depends upon the particle size, dissolved 

solids’ concentration and the heating rate. As the dissolution rate is size dependent, this 

presents a limitation in using the method of moments. Also, if we were to use the high 

resolution finite volume scheme, again, we would need to explicitly specify the rate of 

disappearance and hence this method suffers the same limitations as the method of 

moments. For the high resolution scheme there have been various types of boundary 

condition which one may impose on the lower boundary of the domain which might simulate 

dissolution. This class of boundary conditions is referred to as the absorbing type of boundary 

conditions and are widely used to analyze wave mechanics. The implementation of these is 

not feasible owing to the mathematical complexity that is inherent in the formulation of the 

boundary condition equations and also lack of literature specific to dissolution.  

Hence, in the present work, to simulate dissolution, we have used the moving pivot method. 

The moving pivot method is a class of discretization-based methods for the solution of the 

population balance equation presented by Kumar et. al. (1996). In this method, like in all 

discretization based methods, the domain of interest along the size co-ordinate is divided into 

various discrete bins. The difference between this method and the previous method is that, 

in this method, we will track the bin boundary and representative size locations along the size 

co-ordinate axis with time rather than tracking the change in the number of particles in each 

bin. Now, this approach is fundamentally different than the HRFV approach and by design 

removes any errors on account of numerical diffusion. For a detailed derivation of the model 

equations please refer to Kumar et. al. (1996). The equations for the bin boundaries may be 

written as: 

𝑑𝑉𝑖

𝑑𝑡
= −2𝑆 for 𝑖 = 1: 𝑁 + 1 3.26 
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In the above equation, the rate of shrinkage of the bin boundary is twice the rate of shrinkage 

of the surface as the contribution from both sides due to the shrinkage of a sphere needs to 

be considered, similar to growth. Here Vi refers to the lower boundary of the ith bin. As there 

are N bins, there will be N+1 bin boundary locations. It is also important to track the 

representative bin size locations for the N bins. The equations for the representative size of 

the ith bin may be written as: 

𝑑𝑋𝑖

𝑑𝑡
= −2𝑆 for 𝑖 = 1: 𝑁 3.27 

As, the particles which are present in a bin will stay within that bin as the bin boundary 

locations will change with time, the rate of change of the number of particles in each bin can 

be equated to zero. The above equations were recast into an explicit form consistent with the 

form presented in the HRFV section. The discrete forms of Equations 3.26 and 3.27 are 

presented in the Annexure A2 as Equations A2.3 and A2.4. This completes the formulation of 

the moving pivot equations. 

3.3.4.2. Equation for Concentration 

The total mass of the solute in the system can be written as given in Equation 3.12. The 

discrete form for the third moment may be written as shown in Equation 3.24. This transforms 

the more general integral moment into the discrete form of the equation. Here, particles 

which are lesser than the minimum size of the domain (say 1 micron) will not be considered. 

The rate of change of dissolved solids concentration equation may be obtained from the mass 

balance equation for solute mass and by making similar assumptions as for the case of 

Equation 3.25. By substituting the expression for the third moment in the equation for total 

mass, differentiating the equation with respect to time and rearranging the equation, the 

equation for the rate of change of dissolved concentration was obtained as: 

𝑑𝐶

𝑑𝑡
= − (

𝜌𝑝

𝑀𝑤
) (

𝜋

6
) ∑ 3𝑋𝑖

2𝑓𝑖
𝑁
𝑖=1

𝑑𝑋𝑖

𝑑𝑡
 3.28 

It should be noted that since for dissolution, the moving pivot method was used. The number 

of particles in each bin will not change and only the change in the representative size of 

respective bins was tracked. Hence, differentiating a moment will only differentiate the size 

part of the expression. The equation is solved numerically using an explicit fixed time step 
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method. A discrete equation for the dissolved solute concentration was formulated 

consistent with the HRFV scheme framework and is presented in the Annexure A2 as Equation 

A2.5. The concentration is evaluated at each time step evaluating the above equation 

simultaneously along with the discretized equations for representative size. 

The equation for the rate of change of the solution temperature is the same as the one 

employed for the method of moments and can be written as Equation 3.15.  

3.3.5. Constitutive Laws 

3.3.5.1. Equation for Crystal Growth 

Crystal growth is typically modelled as a two-step process. In the first step, the solute 

molecules are moved to near the crystal surface by convection and diffusion. In the second 

step, the molecules near the crystal surface attach to the crystal lattice and cause the ‘growth’ 

of the crystal. The first step is thus the mass transfer step and the second step is the surface 

integration step (Karpinski, 1985). In the present study, it was assumed that the crystal growth 

is limited by the surface integration step and the mass transfer step is sufficiently faster in 

comparison. This assumption has also been made previously by Worlitschek et. al. (2004). The 

surface integration step can be related to the degree of supersaturation in the form of a 

reaction rate type of expression to obtain the growth of the crystal surface as: 

𝐺 = 𝑘𝑟0exp (−
𝐸𝐴

𝑅𝑇
) (𝐶 − 𝐶∗(𝑇))𝑔 3.29 

The value of the activation energy for the growth rate expression is known to lie in range of 4 

x 107 to 8 x 107 J/kmol-K. The value obtained by Worlitschek et. al. (2004) was found to be 

4.16 x 107 J/kmol-K which lies within the reported range of values. The value of the growth 

rate exponent, g, is reported to be approximately equal to 2 (Karpinski, 1985). The value 

obtained by Worlitschek et. al. (2004) was found to be 1.9 which is in close agreement to the 

previously reported value for the growth rate exponent. Nothing was previously reported 

with regards to the pre-exponential constant, kr0. The value of the constant obtained by 

Worlitschek et. al. (2004) for this parameter was 21. In the present study, the growth kinetic 

parameters were not determined, but rather the values determined by Worlitschek et. al. 

(2004) were used and the focus was on finding the nucleation kinetics parameters, the values 

for which are largely unknown in published literature.  
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3.3.5.2. Equation for Nucleation 

For an unseeded crystallization, as is considered in the present study, the onset of 

crystallization is caused by homogeneous primary nucleation. Primary nucleation is the 

nucleation where the solute molecules in a supersaturated solution within themselves 

aggregate to form nuclei. By unseeded it is implied that no external seeds or crystals were 

added to induce nucleation. Now as the crystals in the solution grow in number and size, 

secondary nucleation starts to gain importance. Secondary nucleation is the generation of 

nuclei which may be attributed to the breakage by some mechanism of already existing 

crystals (Davey, 2001; Myerson, 2002; Mersmann, 1995). Typically, after this regime sets in, 

that is the number of crystals in the solution becomes sizeable, secondary nucleation is the 

dominant mechanism for nucleation. The primary nucleation rate can be represented by a 

simple power law relation as (Davey, 2001; Myerson, 2002):  

𝐵0,𝑝𝑟𝑖 = 𝑘1(∆𝐶)𝑛1 3.30 

There are several relations to model secondary nucleation. The different rate laws used to 

model the secondary nucleation rate are listed in Table 1.2. The first law listed in this table 

was found to be extremely sensitive and not reliable. The second relation is too simplistic as 

it is known that the rate of secondary nucleation is dependent loosely speaking on the number 

of crystals present in the solution owing to the mechanism proposed for the secondary 

nucleation. In the present study, it is hypothized that the nucleation occurs due to some small 

particles chipping off from the surface of bigger crystals. The smaller particles which get 

chipped off then become the new crystals. The rate of nucleation thus seems to be directly 

proportional to the total surface area of the crystals in the solution as opposed to the total 

number of crystals. The influence of the impeller speed and the agitation rate on the 

nucleation rate is beyond the scope of the present text and hence will not be considered in 

the nucleation rate expression. Based on these considerations, a nucleation rate expression 

similar to the 4th nucleation rate expression were adopted in the present study, (as listed in 

Table 1.2) with the change that the nucleation rate is proportional to the total surface area 

(proportional to the second moment of the number size distribution) rather than the 

suspension density. Thus, the secondary nucleation rate used in the present study is written 

as: 
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𝐵0,𝑠𝑒𝑐 = 𝑘2𝑀2(∆𝐶)𝑛2 3.31 

As in the present text, it was hypothized that the secondary nucleation rate is proportional to 

the total particle surface area, an increase in the total area will cause a proportional increase 

in the secondary nucleation rate. Hence the exponent for this term is kept as 1.  

The total nucleation rate is thus a sum of the contribuions due to primary and secondary 

nucleation and can be represented as: 

𝐵0 = 𝐵0,𝑝𝑟𝑖 + 𝐵0,𝑠𝑒𝑐 3.32 

The nucleation rate is evaluated at each time instant and the number generated is added into 

the bin with the minimum size.  

3.3.5.3. Equation for Dissolution 

The dissolution rate of the particles is a strictly mass transfer problem. The solution is 

undersaturated and the rate of shrinkage of the particles can be determined according to the 

rate of mass transfer from the solid phase into the solution phase. Paramount in accurately 

calculating the rate of dissolution is to have reliable estimates for the coefficient of mass 

transfer. The procedure to calculate the mass transfer coefficient used in the present study, 

is the one presented by Worlitschek et. al (2004) and also presented by Mersmann (2000) and 

is presented in the Annexure A2.  

Once the mass transfer is known the rate of shrinkage of the particles can be written as: 

𝑆 = 𝑘𝑑
𝑀𝑤

𝜌𝑝
(𝐶∗(𝑇) − 𝐶) 3.33 

It is worthwhile to note that the dissolution rate comes into play only when the solution is 

undersaturated. In cases when the solution is supersaturated, crystal growth and nucleation 

will occur and the shrinkage rate should be assigned a value zero.  

3.3.6. Solution Methodology 

3.3.6.1. Method of Moments 

The method of moment’s equations presents an initial value ordinary differential equation 

problem. The moment equations were solved for the crystallization stage 1 that is when the 
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solution was cooled from the initial temperature of 323 K to 263 K. at 323 K the solution was 

undersaturated. Experimental observations indicate that the nucleation/crystallization does 

not begin immediately but after a particular time which is related to the metastable zone 

width for that cooling rate. In the present study, the onset of nucleation was not modelled. 

The model presented is for the case where crystallization has initiated. Thus, the initial 

temperatures used in the present model for the different cooling rates are the corresponding 

temperatures when the nucleation was first detected by the FBRM probe. When the solution 

is completely clear, a small number of particle counts are measured by the FBRM probe which 

keeps fluctuating in a narrow band (say 10 to 20). This is referred to as the baseline zero 

counts. The temperature at which the onset of nucleation occurs is defined in the present 

study as the temperature when the counts measured by the FBRM probe deviates out of this 

narrow band which corresponds to zero counts. The limits for this narrow band are calibrated 

over a substantial period of samples when the temperature is decreasing from 323 K to the 

crystallization point. The initial conditions for the moments can be evaluated if the particle 

size distribution in the solution is known beforehand. The moments then simply become the 

moments of this particle size distribution. Corresponding to the initial conditions of the 

experiments of a clear undersaturated solution, the initial value for all the moments was 

taken to be zero. The initial conditions used for the present study are shown in Table 3.1. The 

equation for the dependence of solubility on the temperature used in the present study is 

given as Equation 3.16. 

Table 3.1: Initial Conditions used for simulations using the method of moment’s solver 
(*Based on experimental observation of nucleation at different cooling rates) 

Parameter Description Value Unit 

M0, M1, M2, M3, 
M4 

First 5 moments 
0 (For a clear 

solution) 
- 

C 
Dissolved Solids 
Concentration 

1.5 
mol/L or 
kmol/m3 

Tnuc (0.3 K/min) 
Crystallization temperature 

for 0.3 K/min rate 
295* K 

Tnuc (0.5 K/min) 
Crystallization temperature 

for 0.5 K/min rate 
289* K 

Tnuc (0.7 K/min) 
Crystallization temperature 

for 0.7 K/min rate 
286* K 
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The system of ordinary differential equations was solved using ODE15s which is a standard 

MATLAB solver for a system of stiff equations. It is a variable order solver based on numerical 

differentiation formulas. 

3.3.6.2. High Resolution Finite Volume Method 

From experiments it was observed that while cooling the solution from 323 K to 263 K at the 

specified cooling rate, crystallization takes place. Now, after reaching 263 K, the solution was 

immediately heated up at a heating rate equal in magnitude to the cooling rate. It was 

observed, especially for the experiment employing a 0.7 K/min rate that crystallization takes 

place for some time in the heating stage too. This is because the crystallization is not fast 

enough for the solution to equilibrate within the time it takes it to reach 263 K. This 

crystallization occurring in the heating stage shall be referred as Crystallization Stage 2 in the 

present work and the one occurring during the cooling stage as Crystallization Stage 1. As one 

increases the temperature of the solution, the solubility starts increasing. In Crystallization 

Stage 2,  as we heat the solution, the dissolved solids concentration starts decreasing (due to 

continual crystallization) and the solubility starts increasing as opposed to both of them 

decreasing in Crystallization Stage 1. The crystallization is arrested when both the 

aforementioned quantities become equal. The HRFV scheme was used to simulate the 

crystallization occurring in both crystallization stages.  

For the simulation of the first stage of crystallization, the initial conditions used for the 

method of moment’s simulations were used as the state is the same. The equation for the 

dependence of solubility on the temperature used in the present study is given as Equation 

3.16. Experimentally it was observed that the maximum particle size was definitely less than 

300 micron with an average particle diameter ranging between 30 to 40 microns. For these 

reasons, the maximum size for the considered domain was chosen to be 1000 micron. The 

minimum size which can be recorded by the FBRM is 1 micron. Thus it is useless to use a size 

less than this observable size. Thus the minimum size of the domain is 1 micron. A uniform 

grid spacing of 1 micron was used to discretize the size domain and a time step of 0.1s was 

used. It was shown previously that at these values the solution is independent of the grid size 

and the time step. The number of particles in each of the 1000 bins obtained was selected to 
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be uniformly zero as initially there is a clear solution. In case a particle population already 

exists, this initial condition should be modified suitably.  

Experimentally, the crystallization stage 2 immediately follows crystallization stage 1. Hence, 

the discrete particle size distribution obtained after the completion of the first stage was given 

as input for the initial condition of the second stage. The other simulation parameters 

(minimum size, maximum size, grid spacing, time step etc.) are the same as for crystallization 

stage one except that the rate of temperature change is now positive to simulate heating. The 

crystallization occurring during stage 2 is arrested when the dissolved solution concentration 

becomes equal to the solubility at that particular temperature. The solver was terminated 

when such a criteria was met.  

3.3.6.3. Moving Pivot Method 

The moving pivot method is used for the dissolution stage of the experiment that is from the 

equilibration point till the solution is heated to 323 K. Complete dissolution can be inferred 

from the FBRM counts data when there is no further change in the counts with increasing 

temperature. Also, the counts, at this point, can be seen to lie within a range where a baseline 

zero count is typically recorded (10 to 20 counts). The counts then after this point, keep 

fluctuating in the narrow baseline zero count range meaning a completely clear solution.  

The minimum size recorded by the FBRM is 1 micron. Below this size, the particles are 

practically invisible. In the present study, the contribution of particles crossing this size 

(having size less than 1 micron) was neglected. This assumption is reasonable as the mass 

contribution and the contribution towards the total particle surface area by particles below 

the 1 micron size is negligible. It was verified through simulations that neglecting the 

contribution of the particle below 1 micron does not affect simulation results. Physically, 

when particles go to extremely small sizes, the rate of disappearance is extremely high. At 

extremely small sizes, it is known that the size dependency of the solubility becomes 

important. Solubility increases, exponentially so, with decreasing size. So, even in a diffusion 

limited mass transfer regime (which is observed for small sizes), smaller particles will have 

faster dissolution rates owing to the increased under saturation driving force and a larger 

surface area to volume ratio. Moreover, the contribution of the particles in this size range 

towards the total mass of the system is negligible and as such can be ignored.  
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While simulating using the moving pivot method, a collection of particles (in a particular 

bin/size range), is assumed to have a size denoted by a so-called representative size. So, when 

the representative size of a bin goes below the 1 micron threshold size, in the present study, 

the entire collection of particles in that bin is assumed to have dissolved. In reality, this will 

be a continuous process with smaller particles disappearing first and then the larger particles. 

However, in the present case, all the particles represented by a particular size will disappear 

as soon as the size falls below the threshold size of 1 micron. As a consequence of this, if one 

plots the total number of particles in a system (the 0th moment) with time (or temperature), 

one would observe that the curve is made of a series of decreasing steps. The steps 

correspond to locations where the bin size goes below the 1 micron size. Although this effect 

is not desirable, it is still a valid solution of the population balance equation for the dissolution 

case. This is because the contribution at that size towards the total mass, regardless of the 

number of particles in the bin, is negligible, that is the total mass of the system before and 

after the step does not exceed the permitted error margin.  This was ensured by verifying that 

no mass balance error is introduced during the dissolution stage. Also, simulations were 

performed by changing various parameters: the threshold size of 1 micron to a size below 1 

micron, the number of grid points as well as by allowing for contribution of particles below 

the threshold size. It was found that there was no impact on the simulation results by making 

the aforementioned changes. This implies that the contribution of the particles below the 1 

micron size was negligible and the procedure adopted in the present study is reasonable.  For 

a finer grid, these steps become less and less separated and a nearly continuous total number 

of particles versus time curve may be obtained.  

As this stage is implemented after the second stage of crystallization, the initial conditions of 

this stage are equal to the final conditions obtained after the simulation of the second stage. 

The equation for the dependence of solubility on the temperature used in the present study 

is given as Equation 3.16. The only solver parameter required for this method is the time step. 

The time step of 0.1s is used which is the same as used in the previous methods. Simulations 

were carried out until the solution temperature reached 323 K. No other solver parameters 

need to be specified.  

The results are discussed in the following section. 
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3.4. Results & Discussion 

The aim of the present study was to determine the kinetics of crystal growth and nucleation 

for a system of paracetamol and ethanol. To do this, experiments were conducted by cooling 

a solution at different cooling rates starting from an undersaturated point (at 323 K) to until 

the solution temperature reaches 263 K. The concentration of paracetamol in ethanol is such 

that the solution becomes saturated at 450C. During this stage, crystallization occurs. The 

nucleation is initiated at a temperature below 318 K depending upon the cooling rate and the 

corresponding metastable zone width. The prediction of the onset of nucleation is beyond 

the scope of the present text. The experimentally observed values of nucleation temperature 

were used instead. Simulations were thus started from corresponding values of nucleation 

temperature depending upon the cooling/heating rate employed for experimentation. The 

list of unknown parameters and their expected range of values (available from literature) is 

given in Table 3.2. 

Table 3.2: List of parameters required for model along with range for the values reported in 
literature 

Parameter Physical Significance Expected Value 

𝑘𝑔0 Pre-exponential constant for growth Not known 

𝐸𝐴 Activation energy for growth law [4e7 – 8e7]20 

𝑔 Growth law exponent [1.6 – 2.5] 19 

𝑘1 Pre-exponential constant for primary nucleation Not known 

𝑛1 Primary nucleation rate exponent [1 – 3]20 

𝑘2/𝑘1 
Ratio between the secondary and primary 
nucleation rates’ pre-exponential constant 

Not known 

𝑛2 Secondary nucleation rate exponent Not known 

 
A similar study to estimate the growth and nucleation kinetics was done by Worlitschek et. 

al. (2004). The authors had presented a methodology to determine the crystallization and 

nucleation kinetics for a system of paracetamol and ethanol. The rate expression for the 

crystal growth presented in that study is the same that is used in the present study. However, 

in that study, they had not considered unseeded crystallization and hence had not included 

the primary nucleation rate expression. Also, as mentioned before, the rate expression for 

the secondary nucleation rate uses parameter values which seem very unphysical. For 

instance, the value for the nucleation parameter, probability of nucleation, in the first 

expression given in Table 1.2, was found to be 7 x 10-20. Further, it was found that the 
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simulation results were extremely sensitive to this parameter value. Hence, in the present 

study, the parameters for growth determined by Worlitschek et. al. (2004) were used and the 

primary and secondary nucleation rate parameters were estimated by fitting model results to 

experimental results. The parameter values for growth presented by them which will be used 

in the present study are given in Table 3.3. 

Table 3.3: List of parameter values for growth kinetics presented by Worlitschek et. al. 
(2004)6 

Parameter Physical Significance Expected Value 

𝑘𝑔0 Pre-exponential constant for growth 21 

𝐸𝐴 Activation energy for growth law 4.16e7 

𝑔 Growth law exponent 1.9 

 
The values for the parameters (primary and secondary nucleation rate), were obtained by 

fitting the model predictions, obtained using the method of moments, to the experimentally 

obtained values for one cooling rate (0.7 K/min), for crystallization stage 1 (cooling from 323 

K to 263 K). Then simulations for the crystallization stage 1 were performed for the other 

cooling rates (0.3 K/min and 0.5 K/min) using the parameter values obtained and compared 

to the respective experimentally obtained results. After sufficient agreement with 

experimental results is established, simulations for crystallization stage 1 were performed 

using the High Resolution Finite Volume (HRFV) scheme. The simulation results from the HRFV 

scheme were validated against the simulation results obtained from the method of moments. 

As both the methods are solving the same population balance equation, there should be an 

exact match between the results obtained from both of these methods. After confirming this 

agreement, simulations for the entire hysteresis experiment were performed for 0.3, 0.5 and 

0.7 K/min heating/cooling rates. The simulation results were compared with the 

experimentally obtained hysteresis experiment results.  

3.4.1. Estimating unknown parameter values 

The first step towards fitting the model results to the experimental results is always to 

determine which parameters are the most sensitive in the system. The parameters for which 

the values are not known can be listed as:  

1. Primary Nucleation Rate constant (kPri) 

2. Primary Nucleation Rate exponent (nPri) 
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3. Secondary Nucleation Rate constant (kSec) 

4. Secondary Nucleation Rate exponent (nSec) 

First, particular range of base case parameter values were identified by comparing the model 

predictions with the experimentally obtained results for crystallization stage 1 for a cooling 

rate of 0.7 K/min. The base case parameters were obtained through trial and error and are 

only representative parameters to help carry out assessment of sensitivity of parameters. 

They provide a rough agreement with experimental results and also identify the approximate 

orders of the more realistic values. The base case parameters obtained in the present case 

are listed in Table 3.4. 

Table 3.4: List of base case parameters used for simulations 

Parameter Values 

𝑘𝑔0 21 

𝐸𝐴 4.16e7 

𝑔 1.9 

𝑘1 1.5e5 

𝑛1 2 

𝑘2/𝑘1 50 

𝑛2 4.5 

 
The sensitivity analysis was done by varying each of the unknown parameter values by around 

100% and decreasing by around 50% and comparing the model predictions of the three (base 

case, 100 % increase, and 50% decrease). The normalized 0th moments obtained from the 

simulation results using different parameter values were compared. This normalized 0th 

moment was chosen for comparison as described later, the normalized simulation results 

were compared to the normalized FBRM particle counts data. The normalization was done by 

dividing the 0th moment everywhere with the corresponding 0th moment’s obtained at 263 K. 

The results for the sensitivity analysis are shown in Figure 3.4. 
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Figure 3.4: Sensitivity analysis results for (a) Pre-exponential constant of primary nucleation 
rate expression (b) Ratio of pre-exponential constants for secondary and primary nucleation 

rate expressions (c) Primary nucleation rate exponent (d) Secondary nucleation rate 
exponent 

 
As can be seen from the results shown in Figure 3.4, the model predictions are most sensitive 

to the pre-exponential constants for primary and the ratio between the constants for 

secondary and primary nucleation (Figures 4a and 4b). The model predictions are not as 

sensitive to the exponents (Figures 4c and 4d). Hence, a representative value of 2 was chosen 

for the primary nucleation rate exponent corresponding to the range specified in the 

literature. Values for the exponent of supersaturation in the secondary nucleation rate have 

been reported previously, however, the nucleation rate expression adopted and the flow 

configuration were substantially different. For instance, the value for the exponent,  for the 

case of a fluidized bed was reported to be 3.3 (Mersmann, 1995). Apart from this, not much 

(a) (b) 

(c) (d) 
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has been reported with regards to the expected range of values for this parameter. In the 

present study, a representative value of 4.5 was chosen for the secondary nucleation rate 

exponent. Although this assumption has no basis, it was shown that the model is not as 

sensitive to this value within the range that the sensitivity was investigated (Figure 3.4d). Also, 

the range of values chosen for measuring sensitivity is inclusive of the single reported value 

for this parameter. Now, it can be seen that as both the parameter values (the ratio and the 

primary nucleation rate constant) were increased, the normalized counts curve versus the 

temperature became steeper with the nucleation happening faster and the curve reaching a 

‘plateau’ earlier. Correspondingly, as these parameter values were decreased, the curve 

became less steep with the nucleation proceeding slower as compared to the base case. Thus, 

it may be inferred that both the parameters have the same influence on the model 

predictions.  

 One set of parameter values (nucleation and growth parameters) is required for the complete 

simulation of the hysteresis loop. From the previous analysis, it can be argued that it may be 

possible that multiple such sets may exist, where simulations using any of the multiple 

parameter sets would show sufficient agreement with experimental results.  Starting from 

the base case parameter values, these values may be obtained by increasing one parameter 

and decreasing the other parameter sufficiently such that there is agreement between the 

model predictions and experimental results. Indeed such a case is observed as shown in 

Figures 5. In, Figure 3.5, three pairs of parameter values, for the parameters of primary rate 

constant, ratio, were compared against the experimentally obtained results for the 

cooling/heating rate of 0.7 K/min. The comparison was made between the normalized FBRM 

particle counts data and the normalized 0th moment data obtained through simulations. As 

described previously, the simulated normalized 0th moment at a particular temperature was 

obtained by dividing the 0th moment from simulations at that particular temperature by the 

0th moment from simulations at 263 K. Analogous to this definition, the normalized count data 

at a particular temperature was obtained by dividing the particle counts measured by the 

FBRM at that particular temperature by the particle counts recorded by the FBRM at 263K, 

which is also the minimum temperature considered in the experiment. The simulation results 

were compared with the experimental results by comparing the simulated normalized 0th 

moment against the experimentally obtained, normalized FBRM particle counts data. 
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Figure 3.5: Comparison between the normalized 0th moment versus temperature curve 
obtained from simulation results using three sets of parameter values and experimental 
results for the 0.7 K/min cooling/heating rate experiment for the crystallization stage 1 

 
Figure 3.6: Comparison between the normalized 0th moment versus temperature curve 
obtained from simulation results using three sets of parameter values and experimental 

results for the for the crystallization stage 1using a cooling/heating rate of (a) 0.3 K/min (b) 
0.5 K/min 

(a) (b) 
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Figure 3.7: Comparison between simulation results and experimental results of the 
normalized 0th moment for crystallization stage 1 using finalized parameter values 

 

 
Figure 3.8: Comparison between simulation results for crystallization stage 1 dissolved solids 

concentration for the cooling rates of 0.3, 0.5 and 0.7 K/min done by using the method of 
moments (MOM) and the high resolution finite volume (HRFV) scheme 

 

The contribution of the primary nucleation may be assessed by considering on the first part 

of the curve (between a temperature range of say 286 K and the crystallization temperature, 

275 K) where primary nucleation is expected to be the dominant mode of nucleation. It may 
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be inferred from the parameter values and also the simulation results that as we increase the 

primary nucleation rate constant (k1 from 1.5 x 105 to 1 x 106) and decrease the ratio (k2/k1 

from 50 to 2.5) to compensate for that, the contribution of the primary nucleation increases 

and the shape of the normalized 0th moment curve changes. The parameter values need to 

be adjusted such that the shape of the experimentally obtained normalized 0th moment curve 

is accurately captured. The presented three sets of parameters can be seen as the limiting 

sets of parameter values as increasing the primary nucleation to a value more than 1 x 106 or 

decreasing it further than 1.5 x 105 will cause the shape of the normalized 0th moment curve 

to go out the bounds set by the simulation results using these parameters.  

The simulation results using these three sets of parameter values were compared against the 

corresponding experimental results for the other cooling rates of 0.3 and 0.5 K/min as shown 

in Figure 3.6. From Figures 5 & 6, it can be seen that all the simulation results from the three 

sets of parameter values show reasonably good agreement with experimental results for the 

heating/cooling rates of 0.3 and 0.7 K/min. However, model predictions show relatively larger 

difference with the experimental data for the 0.5 K/min cooling rate. Plausible reasons for 

this peculiar observation are not clear at this point of time and will require further 

investigation. Based on the results obtained for the 0.3 and 0.7 K/min experiments, it can be 

said that the simulation results using the three sets of parameters form the bounds for 

adequate agreement with experimental results as discussed earlier. For the present study, 

the second parameter set (k1 = 5 x 105; k2/k1 = 7) will be used for further simulation. A 

comparison between the normalized 0th moment versus temperature curves obtained from 

experiments and from simulations using the aforementioned parameter values for all three 

cooling rates were are shown in Figure 3.7. The plot showing the comparison between the 

dissolved solids concentration versus temperature curve obtained from simulations for 

different heating rates and the solubility curve is given in Figure 3.8. It was found that the 

error in the total mass accumulated with time and was below 1% at the end of the simulation 

for all cooling rates.  
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3.4.2. Hysteresis Simulations 

For simulating the hysteresis results, the crystallization stages of the population balance 

equation need to be solved using the HRFV scheme. First, the HRFV scheme needs to be 

verified for numerical accuracy by comparing the simulation results against the results 

obtained from the method of moments. Simulations were done using the finalized parameter 

values using both the method of moments and the HRFV scheme for crystallization stage 1. A 

comparison between the dissolved solids concentration and the normalized 0th moment 

versus temperature curves for different cooling rates using both the methods are shown in 

Figures 8 and 9. The initial conditions used in the solution of the population balance equation 

are the same as those used for the method of moments and are presented in Table 3.1. 

 
Figure 3.9: Comparison between simulation results for crystallization stage 1 of the 

normalized 0th moment for the cooling rates of 0.3, 0.5 and 0.7 K/min done by using the 
method of moments (MOM) and the high resolution finite volume (HRFV) scheme 

It can be seen from Figures 8 and 9 that there is an exact agreement between the simulation 

results obtained using the method of moments and the high resolution finite volume 

schemes. This is expected as both these methods are means to solve the same population 

balance equation using the same parameter values. This confirms that the implementation of 

the high resolution finite volume scheme is accurate.  
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As mentioned previously, the hysteresis experiment can be considered to consist of three 

parts: 

1. Crystallization stage one (where the solution is cooled from 323 K  to 263 K using a 

specified cooling rate) 

2. Crystallization stage two (where the solution is heated from 263 K to the equilibration 

point where crystallization is arrested using a heating rate equal in magnitude to the 

cooling rate) 

3. Dissolution stage (the solution is heated from the equilibration point back to 323 K) 

As explained in the model development section, the first two parts, crystallization stage 1 and 

2 were simulated using the HRFV scheme and the dissolution stage was simulated using the 

moving pivot methods. Experimentally, these stages are performed successively without any 

gaps. This was recreated virtually by setting the initial condition for the simulations of the 

next stage equal to the final condition of the simulations of the latest completed stage. The 

normalized 0th moments obtained from such simulations of the hysteresis for different 

cooling/heating rates were compared with the corresponding experimentally obtained 

normalized 0th moment (or total number) versus the temperature. The comparison between 

experimental and simulation results for the cooling/heating rates of 0.7, 0.5 and 0.3 K/min 

are given in Figures 10, 11 and 12 respectively. The care was taken to ensure that numerical 

errors (HRFV implementation) are insignificant and solutions are valid.  

The hysteresis curve is a stringent validation case for the crystallization and growth kinetics 

as well as overall mathematical model. The shape of the dissolution curve is dependent on 

the particle size distribution that arises at the initiation of the dissolution stage. This particle 

size distribution is in turn dependent on the growth and nucleation kinetics. Thus, if there is 

sufficient comparison between the simulated and experimental results for the hysteresis 

curve, it is reasonable to say that the model is accurate in describing the growth and 

nucleation kinetics and the related kinetic parameters obtained are realistic. 

For comparison, the simulated hysteresis curve was normalized by the procedure used in the 

method of moments’ case, and the normalized curve was compared with the normalized 

FBRM particle counts data for the entire course of the hysteresis. The FBRM counts data was 

also normalized by the procedure described in the previous sections. For the case of 0.5 K/min 
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cooling/heating rate, it was already known that there is insufficient comparison between 

experimental and simulated results during the crystallization stage 1 for the choice of 

parameters finalized (Figure 3.7). However, it can be seen that the comparison of the 

hysteresis curve, as shown in Figure 3.11 is still reasonable. This suggests that even though 

the crystallization stage 1 was not accurately predicted, the simulation results are still very 

close to the realistic values. As can be seen from the above figures, there is an excellent 

comparison for heating/cooling rates of 0.3 and 0.7 K/min shown in Figures 12 and 10 

respectively. This implies that for these two cases, the model accurately represents the 

realistic scenario.  

 
Figure 3.10: Comparison between hysteresis simulation and experimental results for a 

heating/cooling rate of 0.7 K/min 
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Figure 3.11: Comparison between hysteresis simulation and experimental results for a 

heating/cooling rate of 0.5 K/min 

  
Figure 3.12: Comparison between hysteresis simulation and experimental results for a 

heating/cooling rate of 0.3 K/min 
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3.4.3. Average Particle Size during Hysteresis 

The normalized average particle diameter obtained from simulations were compared with 

the normalized mean chord lengths for different temperatures over the entire range of the 

hysteresis experiment for a mean cooling/heating rate of 0.5 K/min. The average particle size 

may be obtained from the simulated results by taking the ratio of the 1st and the 0th moments. 

The mean chord length can be obtained by taking the ratio of the 1st and 0th moments of the 

chord length distribution measured by the FBRM.  

The value for the average particle size at 263 K obtained from simulations for a 

cooling/heating rate of 0.5 K/min was found to be 73.72 micron. The particle size distribution 

at 263 K for the 0.5 K/min experiment was derived from the FBRM chord length distribution 

measurements by using the model presented by Pandit et. al. (2015) and the corresponding 

average particle size was found to be 32.48 microns (corresponding to a mean chord length 

of 23.56 microns). It was found that the simulations results over predicted the average 

particle sizes derived from experimental measurements at 263 K for the heating rates of 0.3 

and 0.7 K/min. One possible reason why the simulations over predict the value for the average 

particle size, may be because breakage might be occurring in the system which actually leads 

to a kind of normalization of the particle size. As the impeller speed was not changed 

throughout the experiments, the average power input to the system was not changed. Thus, 

if breakage was in fact significant, it would lead to similar particle sizes across all cooling rates 

due to the constant power input. Hence, it seems that, as the present model does not account 

for the breakage of particles, the simulation results over predict the mean particle sizes. A 

detailed analysis of this hypothesis is however beyond the scope of this work. In order to 

evaluate the ability of the developed model to capture observed trends of variation of the 

average particle size with time, comparison of normalized average particle size was carried 

out.  
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Figure 3.13: Comparison between the normalized simulated average particle diameter and 

the normalized mean chord length of the entire temperature range of the hysteresis 
experiment for a heating/cooling rate of 0.5 K/min (simulated average particle size and 

mean chord length at 263 K used for normalization are 73.72 microns and 23.56 microns 
respectively) 

The simulated average particle sizes, obtained over the entire temperature range of the 

hysteresis experiment, were normalized by dividing them with the simulated average particle 

size obtained at 263 K. The mean chord lengths obtained from the FBRM results over the 

course of the hysteresis experiments were normalized by dividing them with the measured 

mean chord length at 263 K. A comparison between the normalized simulated average 

particle size and the normalized mean chord lengths for a sample cooling/heating rate of 0.5 

K/min over the entire temperature range of the hysteresis experiment is shown in Figure 3.13. 

It was assumed here that the trends observed in the normalized mean chord lengths are fairly 

representative of trends which would be observed for the true average particle size. It can be 

seen from Figure 3.13, that the model could qualitatively predict the counter intuitive trend 

that the average particle size actually increases as dissolution progresses. Further, the model 

could also predict reasonably that the average particle size does not change significantly in 

the crystallization stage 1. Similar agreement was also observed for other two cooling/ 

heating rates and results are not shown here for the sake of brevity. The sudden increase in 
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mean particle size is expected immediately after the onset of nucleation as new particles are 

forming and they are growing. The average particle size would grow on account of crystal 

growth and would reduce on account of the increasing nucleation of crystals brought about 

when secondary nucleation becomes important. It would appear that this ‘equilibrium’ 

between nucleation of smaller sized particles and growth of particles to maintain a constant 

average particle size continues over the rest of the duration of the crystallization after onset. 

The counter-intuitive trend is observed during dissolution, where the average particle size is 

seen to actually increase. Due to shrinkage one might think that the average particle size 

would also decrease. However, it would seem that as the smaller sized particles disappear 

faster than the shrinkage of the bigger size particles, the average particle size increases before 

eventually decreasing.   

The approach and framework developed here were thus shown to be a reliable and robust to 

model crystallization and dissolution processes. The developed approach, models and results 

will be useful for simulating industrially relevant crystallization – dissolution processes. 

3.5. Conclusions  

A framework was presented to model crystallization and dissolution processes by solving the 

population balance equation for nucleation, growth and dissolution. Experiments were 

performed where a paracetamol-ethanol system was cooled from an undersaturated state to 

a point until after the crystallization has occurred and then, from this point, immediately 

reheated to the initial undersaturated state. The rates employed for heating and cooling were 

equal in magnitude and were varied (0.3, 0.5 and 0.7 K/min). A hysteresis was observed in 

particle counts recorded online and in-situ by the FBRM probe with respect to temperature. 

The hysteresis curve was seen to be significantly influenced by the rate employed for 

heating/cooling. This curve and the effect of the different heating/cooling rates characterizes 

the coupled kinetics of crystallization and dissolution and serves as a thorough validation case 

for models for crystallization and dissolution processes.  

A mathematical model was proposed based on the population balance equation for 

nucleation, growth and dissolution. The population balance equation was first solved for the 

Crystallization Stage 1 using the method of moments. The unknown parameters required for 

the nucleation kinetic model were obtained by fitting simulation results against experimental 
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results for a heating/cooling rate of 0.7 K/min. Previous values reported by Worlitschek et. al. 

(2004) were used for the growth kinetics model used for simulation. It was found that there 

may be multiple sets of values for the unknown parameters which may yield ‘acceptable’ 

solutions. The differences between these sets were discussed and one set of parameter 

values was finalized. Simulations using the finalized parameter values were compared with 

experimental results for the heating/cooling rates of 0.3 and 0.5 K/min for Crystallization 

Stage 1. 

Using the finalized parameters, simulations were done for the complete range of 

experimental conditions to obtain the hysteresis curve for the three heating/cooling rates of 

0.3, 0.5 and 0.7 K/min. Simulations were performed by obtaining the solution to the 

population balance equation using the High Resolution Finite Volume Scheme for when 

crystallization is occurring and the Moving Pivot Method for when dissolution occurs. The 

results from the HRFV scheme for the crystallization stage 1 were compared against those 

obtained by the method of moments’ results for verification. Simulations were then 

performed to obtain the hysteresis curve and the normalized hysteresis curves obtained from 

experiments and simulations were compared. The model was seen to provide a good 

agreement against experimental results for the three heating/cooling rates of 0.3, 0.5 and 0.7 

K/min considered in the present study.  The model can thus be considered to be validated. 

The model was seen to over predict the average particle size obtained, however, could 

qualitatively capture the counter intuitive trend observed as the average diameter was 

plotted versus the temperature over the course of the hysteresis experiments.  

The model was successful in capturing the hysteresis curve obtained in experiments. This 

suggests that accurate nucleation kinetics were determined for a system of paracetamol-

ethanol. The presented methodology may be used to simulate the crystallization and 

dissolution processes or determine kinetics parameters for other systems. Further work will 

be directed along extending the model to include phenomena like breakage and aggregation 

to increase the applicability of the model for industrially relevant processes.  
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Symbols & Notation 

Symbol Description Unit 

𝐸𝐴 Activation energy for crystal growth J/kmol-K 

𝑁𝐴 Avogadro number (equal to 6.023E26) no. particles/kmol 

𝑘 Boltzmann constant (equal to 1.38E-23) m2-kg/(s2-K) 

𝑘1 
Constant for the rate expression used for primary 
nucleation 

- 

𝑘2 
Constant for the rate expression used for secondary 
nucleation 

- 

𝑅 Cooling/Heating Rate employed for experimentation K/min 

∆𝐶 Degree of supersaturation (equal to 𝐶 −  𝐶∗(𝑇)) 
kmol/m3 or 

mol/lit 

𝜌𝑝 Density of solute crystals kg/m3 

𝜌𝑙  Density of solvent kg/m3 

𝑑𝑠 Diameter of the impeller m 

𝐷 Diffusion coefficient m2/s 

𝛿 Dirac delta function - 

𝐶 Dissolved solute concentration 
kmol/m3 or 

mol/lit 

𝐶𝑚 Dissolved solute concentration at the mth time instance  
kmol/m3 or 

mol/lit 

𝑛1 
Exponent for the rate expression used for primary 
nucleation 

- 

𝑛2 
Exponent for the rate expression used for secondary 
nucleation 

- 

ℎ 
Grid size or span of each bin, employed for solution of 
discrete equations 

m 

𝑔 Growth rate exponent - 

𝐺 Growth rate of the crystal surface m/s 

𝑋𝑛𝑢𝑐 Initial size of the nucleated particles m 

𝜂𝑙  Kinematic viscosity of solvent N-s/m2 

𝑀𝑘 kth Moment of the particle size distribution function mk 

𝑉𝑖, 𝑉𝑖+1 Lower and upper boundary pivot locations of the ith bin m 

𝑘𝑑 Mass transfer coefficient for dissolution m/s 

𝜖 Mean specific power input m2/s3 

𝑑𝑚 Molecular diameter M 

𝑀𝑤 Molecular weight of solute kg/kmol or g/mol 

𝐵0 Nucleation rate 
(no. particles/m3-

s) 

𝑁 Number of discrete size elements or bins - 

𝑓𝑛
𝑚 Number of particles in the nth bin at the mth time instance (no. particles/m3) 

𝑓𝑛 Number of particles in the nth bin (no. particles/m3) 

𝑋 
Particle size co-ordinate; in this case, the diameter of 
particle 

m 
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𝑓(𝑋) 
Particle size distribution function as a function of particle 
size co-ordinate ‘X’ 

(no. particles/m3-
m) 

𝑘𝑟0 Pre-exponential constant for the growth rate m/s 

𝐵0,𝑝𝑟𝑖 Rate of primary nucleation 
(no. particles/m3-

s) 

𝐵0,𝑠𝑒𝑐 Rate of secondary nucleation 
(no. particles/m3-

s) 

𝑋𝑖 Representative pivot location of the ith bin m 

𝑆𝑐 Schmidt number - 

𝑆 Shrinkage rate of the crystal surface during dissolution m/s 

𝐶∗(𝑇) 
Solubility of the solution in the solvent as a function of 
temperature ‘T’ 

kmol/m3 or 
mol/lit 

𝑣𝑠 Stirrer speed 1/s 

𝑇 Temperature K 

𝑇𝑚 Temperature at the mth time instance K 

𝑡 Time s 

𝑘 Time step employed for solution of discrete equations  s 

𝑀𝑇  Total mass of the solute in the system kg 

𝑅 Universal gas constant (equal to 8314) J/kmol 

𝑉𝑅 Volume of the reactor m3 
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Chapter 4. Continuous Crystallization 
Processes 
 

4.1. Introduction 

Continuous crystallization processes have been gaining importance in the recent years as 

alternatives to batch processes for the production of pharmaceutical, specialty and bulk 

chemicals involving crystallisation (Nagy et. al., 2013). Even though, industrial crystallisation 

processes rely heavily on batch processing, these processes have known issues of increased 

operating costs and variations in batch-to-batch product quality (Su et. al., 2015). Continuous 

processes are also known to offer more robust control on the process dynamics (Su et. a., 

2015) and allow the utilization of operating parameter spaces previously inaccessible through 

batch processes (Pena et. al., 2015). Utilization of a larger operating parameter space provides 

access over a wider range of particle sizes (both bigger and smaller sized), particle shapes and 

crystal properties which cannot be produced using batch processes. Finally, a continuous 

mode of operation effectively reduces the labour and operational costs typically required in 

batch processes and have better utilization of physical space.  

Even with all these advantages, the industrial application of continuous processes for 

crystallisation is limited. The dynamics of operation of continuous crystallisers are complex. 

Owing to that and a general lack of process understanding, figuring out operating protocols 

is in itself a task. Optimizing the protocols to suit the desired product specifications or 

implementing process control on continuous crystallisers are even more challenging. 

Modelling studies can go a long way towards alleviating these inconveniences. Modelling 

studies can help identify better operating protocols (Vetter et. al., 2014) as well as aid in 

improved process control (Jolliffe et. al, 2016). Scaling up of chemical engineering processes 

is known to be a difficult task in itself. Through modelling, known scale up protocols (mixing, 

heat transfer behaviour) may be suitably tailored to obtain useful estimates for scaled up 

crystalliser behaviour. Good modelling studies can hence substantially reduce uncertainties 

associated with the design, operation, control and scale up of continuous crystallisation 

processes. 
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As summarised in Chapter 1, most investigations into continuous crystallisation deal with 

experimentation on laboratory scales. Thus, the state of the art for modelling of continuous 

crystallisation processes is still lacking. Population balance models have widely been used to 

model crystallisation processes (Ramakrishna, 2000; Su et. al., 2015). Steady state modelling 

studies have been performed for both MSMPR and plug flow types of continuous crystallisers. 

Brown et. al. (2015) developed a steady state plug flow PBE based model for the anti-solvent 

crystallisation in a continuously oscillating baffled crystalliser (COBC). Su et. al. (2015) 

developed a generalized transient framework to model both batch and continuous 

crystallisation processes using MSMPR stages. The model accounted for the volume changes 

which occur during crystallisation especially in highly soluble systems. The model was also 

used to assess the robustness of the C-control strategy which is popular in batch systems.  

There are a couple of shortcomings in the model presented by Su et. al. (2015) in terms of 

being a ‘generalised’ modeling framework. First, due to changes in volume after crystallisation 

in highly soluble systems, considering ‘fixed volume crystallisers’, the outlet flowrate will 

change which was not accounted for. Second, the model did not consider the thermal 

behaviour of crystallisers. For highly exothermic systems (especially relevant for cooling 

crystallisation), the cooling of the process fluid is complicated by the extreme heat release 

due to crystallisation. This heat release has a direct impact on the subsequent temperature 

profile which in turn affects the crystalliser behaviour. Further, scaling up substantially 

changes the thermal behaviour of any process equipment. Hence, operating protocols need 

to be suitably modified to account for the scale up. Inclusion of the thermal behaviour of 

crystallisers in the model would allow for using the standard scale up protocols of general 

process equipment to reliably predict scaled up crystallisation processes.  

In the present Chapter, a generalized framework to model batch and continuous 

crystallisation processes was proposed and implemented. The framework included the 

changes in outlet flow rate that occur in ‘fixed volume crystallisers’ for highly soluble systems. 

Additionally the thermal behaviour of crystallisers was modelled by considering a heat 

balance equation. A typical system of sodium nitrite in water was considered for the study. 

First the experimental methods for both the batch and continuous crystallisers were 

discussed. Then, a mathematical model based on a popular tanks-in-series framework was 

formulated for both batch and continuous processes. Values for key crystallisation kinetic 
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parameters for systems are typically not known (Pandit et. al., 2015). A suitable methodology 

to estimate the values discussed in Chapter 3 was used to estimate the values for key 

crystallisation kinetic parameters. The parameter values were estimated through batch 

modelling studies. Suitable protocols were also developed to estimate heat transfer 

parameters.  

It is proposed that the crystallisation kinetic parameter values obtained through batch 

studies can be used for continuous crystallisation studies. For continuous crystallisation, 

first, the mixing behaviour of the novel crystalliser assembly was characterised through 

modelling and experimental studies. Then, heat transfer studies were performed to estimate 

the key heat transfer parameter values. Finally, the continuous crystallisation of sodium 

nitrite in water was investigated both experimentally and using the model. The model was 

then used to understand the effect of operating parameters/design parameters on key 

processes performance parameters such as the yield, time to reach steady state, mean and 

variance of the outlet PSD.  

4.2. Experimental Section  

4.2.1. Materials 

The crystallisation of sodium nitrite (NaNO2) in water was investigated. Sodium nitrite (97% 

Extra pure) from LOBA Chemie was used. DI water of MILI-Q standard taken from a Siemens 

filteration assembly was used. For the mixing experiments, table salt was used to prepare 

saturated salt solution.  

4.2.2. Batch process 

Batch experiments were carried out in a setup similar to the one described in Chapter 3 as 

shown in Figure 1. A 250ml OptiMAX reactor setup was used. The jacket temperature in 

OptiMAX setup is controlled electronically using Peltier elements. That coupled with a 

sophisticated control system allows for precise control over the crystalliser temperatures. The 

particle counts and chord length distributions were measured using an FBRM probe. The 

working principle of the probe was discussed in Chapter 2. A constant stirrer speed of 800 

RPM was used for all the experiments. Hysteresis style experiments (as described in Chapter 

3) were carried out. Temperature cycling was done between 550C and 250C i.e. the solution 
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was cooled from 550C to 250C and then immediately heated back to 550C. Equal magnitudes 

were employed for both the heating and cooling rates for each cycle. The effect of the 

heating/cooling rate on the crystallisation of sodium nitrite for values of 0.3, 0.5 and 0.7 K/min 

was investigated.    

 

Figure 4.1. Schematic of Experimental Setup 
 

4.2.3. Continuous process 

A novel continuous crystalliser - provided by Technoforce - used for continuous crystallisation 

processes. The crystalliser was a jacketed plug flow crystalliser with a novel impeller design. 

The crystalliser assembly and the novel impeller design are shown in Figure 4.2. The overall 

schematic of the experimental setup is shown in Figure 4.3. The impeller shaft was connected 

to a motor via a reduction box. The reduction box reduced the impeller speed from 1300 RPM 

of the motor to a maximum of 62 RPM in crystalliser. The impeller speed was controlled using 

a variable frequency drive (VFD) which was connected to a three phase power supply. The 

impeller speed was kept at 62 RPM under all conditions. The total crystalliser liquid volume 

was 1.3L. The jacket connected to a Julabo chiller assembly (FP50 - HL) which pumps cooling 

fluid through the jacket at a high flowrate of 24 LPM. The solution was pumped into the 

crystalliser using a peristaltic pump in the flow rate range of (20 to 80 ml/min).  

Classical residence time distribution (RTD) experiments were done to characterise the mixing 

behaviour of the novel crystallisers. A saturated salt solution was used as the tracer. The 

tracer was injected into the inlet stream using a syringe to resemble a pulse input. The outlet 

concentration of the salt solution was monitored using a conductivity probe. RTD experiments 

were carried out at different flowrates and different crystalliser configurations. Heat transfer 
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experiments were carried out by varying the jacket set-point temperatures (10C and 80C). The 

transient temperature response at the crystalliser outlet was measured. For crystallisation 

experiments, a solution of Sodium Nitrite and DI Water saturated at room temperature 

(~240C) was used as the feed solution. Temperature measurements were performed as in the 

case of heat transfer experiments.  

  
 

 
Figure 4.2. (a) The continuous crystalliser assembly provided by TechnoForce; (b) A 

representation of the novel impeller design used in the continuous crystalliser 
 

(a) 

(b) 
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Continuous crystallisation experiments were carried out under a fixed flow rate of 20 ml/min.  

Different methods of conductivity measurements, absorbance measurements and 

refractance measurements were evaluated for their effectiveness to measure the liquid phase 

concentration. It was determined that the refractance based measurements yielded the most 

accurate and repeatable results. Due to time constraints, liquid phase concentration 

measurements at the crystalliser outlet were done for only one set of experiments using a 

refractometer. The liquid sample for concentration measurements was collected after 

vacuum filtration of the outlet slurry.  

 

 

Figure 4.3. Schematic of the experimental setup 

 

4.3. Mathematical Model  

The tanks-in-series modelling framework is popular in chemical reaction engineering as a 

generic framework to model chemical reactors (Levenspiel, 1972). They provide fairly 

accurate results by mimicking the mixing behaviour of real reactors while still retaining an 

‘idealized’ framework which is straightforward to implement. In the model, a reactor is 

assumed to be equivalent to a sequence of CSTR’s connected in a series. By varying the 

number of CSTR’s (n) one can essentially capture the mixing behaviour ranging from an ideal 

CSTR (n = 1) to an ideal PFR (n > 10). The number of tanks corresponding to a particular reactor 
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is an empirical parameter and can be determined by matching model predicted residence 

time distribution (RTD) with experimental RTD. The equations for the rate of change of 

concentrations etc. can then be solved for each of the CSTR’s simultaneously to get accurate 

predictions of the reactor behaviour. 

In the present study, we have proposed a generic modelling framework for continuous 

crystallization processes. The model proposed here builds upon the tanks-in-series modelling 

framework. In addition to solving the mass, species and energy balance equations, the 

population balance equation (PBE) is also solved for each tank. A general schematic which 

identifies the variables of interest for both continuous and batch crystallization processes is 

shown in Figure 4.4. The main distinction between the batch and continuous modes of 

operation is that for the continuous mode, the considered slurry volume is constant. For the 

batch mode, the considered slurry volume keeps on changing as the crystallization progresses 

and hence the equation for the total considered slurry volume must also be solved.  

 
 

Figure 4.4. (a) Model schematic of continuous crystallization (b) Model schematic for batch 
crystallization 

 

4.3.1. Model for Continuous Mode 

In order to formulate the model, we will formulate the model equations for a single tank and 

then later generalize the model for multiple tanks. The general form of the population balance 

equation for continuous processes is:  

𝜕𝑛(𝐿)

𝜕𝑡
+

𝜕𝑛(𝐿)𝐺(𝐿)

𝜕𝐿
=  

𝑣0𝑛0(𝐿) − 𝑣𝑛(𝐿)

𝑉𝑅
 (4.1) 
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It should be noted that the outlet volumetric flow is not equal to the inlet flow rate. As 

discussed in the previous Chapter, there are multiple methods to solve a PBE. In the present 

study, it was sufficient to implement the solution of the PBE using the standard method of 

moments. Following the method by Randolph et. al. (1988) the PBE can be written in terms 

of moment equations as: 

𝑑𝑀𝑖

𝑑𝑡
= 0𝑖𝐵0 + 𝑖𝐺𝑀𝑖−1 +

𝑣0𝑀𝑖,0 − 𝑣𝑀𝑖

𝑉𝑅
 (4.2) 

 

A detailed derivation is provided in the Appendix A3. If the crystallizer volume is not constant 

(as in the cases of batch reactors), then the equation can be rewritten as:  

𝑑𝑉𝑅𝑀𝑖

𝑑𝑡
= 0𝑖𝐵0𝑉𝑅 + 𝑖𝐺𝑀𝑖−1𝑉𝑅 + 𝑣0𝑀𝑖,0 − 𝑣𝑀𝑖  (4.3) 

 

The mass balances can be written separately for the solid and the liquid phase as:  

𝑑𝑀𝐿

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0) − 𝑣𝜌𝐿(1 − 𝜖) − �̇�𝐶  (4.4) 

 
𝑑𝑀𝑆

𝑑𝑡
= 𝑣0𝜌𝑆𝜖0 − 𝑣𝜌𝑆𝜖 + �̇�𝐶  (4.5) 

 

To find out the value of MC, we multiply the equation for the third moment on both sides by 

σVρSVR and some rearrangement (regardless of crystallizer volume being constant or not), we 

get the following equation:  

𝑑𝑀𝑠

𝑑𝑡
= 3𝐺𝑀2𝜎𝑉𝜌𝑆𝑉𝑅 + 𝜌𝑆𝑣0𝜖0 − 𝜌𝑆𝑣𝜖 (4.6) 

 

It is useful to recognize that, σVM3 = ε. The first term in the RHS is the mass transfer to the 

crystals and the second term is the inflow and outflow due to convection. Hence, when we 

compare the above equation to the equation for mass balance of solid phase, we can get the 

relation for the mass transfer to crystals as:  

�̇�𝐶 = 3𝐺𝑀2𝜎𝑉𝜌𝑆𝑉𝑅 (4.7) 
 

The mass balance equation for the dissolved solids can be written as:  

𝑑𝑀𝐿𝑦𝐷

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝑦𝐷,0 − 𝑣𝜌𝐿(1 − 𝜖)𝑦𝐷 − �̇�𝐶  (4.8) 
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The heat balance for the crystallizer should account for the convective heat in and out of the 

system. The heat balance can be written as: 

𝑑(𝑀𝐿(1 − 𝑦𝐷)𝐶𝑃,𝐿 + 𝑀𝐿𝑦𝐷𝐶𝑃,𝑆 + 𝑀𝑆𝐶𝑃,𝑆)(𝑇 − 𝑇𝑟𝑒𝑓)

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝑦𝐷,0𝐶𝑃,𝑆(𝑇0 − 𝑇𝑟𝑒𝑓)

+ 𝑣0𝜌𝐿(1 − 𝜖0)(1 − 𝑦𝐷,0)𝐶𝑃,𝐿(𝑇0 − 𝑇𝑟𝑒𝑓)

+ 𝑣0𝜌𝑆𝜖0𝐶𝑃,𝑆(𝑇0 − 𝑇𝑟𝑒𝑓) − 𝑣𝜌𝐿(1 − 𝜖)𝑦𝐷𝐶𝑃,𝑆(𝑇 − 𝑇𝑟𝑒𝑓)

− 𝑣𝜌𝐿(1 − 𝜖)(1 − 𝑦𝐷)𝐶𝑃,𝐿(𝑇 − 𝑇𝑟𝑒𝑓) − 𝑣𝜌𝑆𝜖𝐶𝑃,𝑆(𝑇 − 𝑇𝑟𝑒𝑓)

+ �̇�𝐶(−∆𝐻𝐶) + 〈𝑈𝐴〉𝐽(𝑇𝐽 − 𝑇) − 〈𝑈𝐴〉𝐸(𝑇 − 𝑇𝐸) 

(4.9) 

 

The variable Tref can be eliminated from the above equation. For a detailed derivation kindly 

refer to the Appendix A3. After the elimination of Tref the heat balance equation can be 

written as:  

𝑑(𝑀𝐿(1 − 𝑦𝐷)𝐶𝑃,𝐿 + 𝑀𝐿𝑦𝐷𝐶𝑃,𝑆 + 𝑀𝑆𝐶𝑃,𝑆)𝑇

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝑦𝐷,0𝐶𝑃,𝑆𝑇0 + 𝑣0𝜌𝐿,0(1 − 𝜖0)(1 − 𝑦𝐷,0)𝐶𝑃,𝐿𝑇0

+ 𝑣0𝜌𝑆𝜖0𝐶𝑃,𝑆𝑇0 − 𝑣𝜌𝐿(1 − 𝜖)𝑦𝐷𝐶𝑃,𝑆𝑇

− 𝑣𝜌𝐿(1 − 𝜖)(1 − 𝑦𝐷)𝐶𝑃,𝐿𝑇 − 𝑣𝜌𝑆𝜖𝐶𝑃,𝑆𝑇 + �̇�𝐶(−∆𝐻𝐶)

+ 〈𝑈𝐴〉𝐽(𝑇𝐽 − 𝑇) − 〈𝑈𝐴〉𝐸(𝑇 − 𝑇𝐸) 

(4.10) 

 

This can also be written as:  

𝑑(𝑀𝐿𝐶𝑃,𝑀𝐼𝑋 + 𝑀𝑆𝐶𝑃,𝑆)𝑇

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝐶𝑃,𝑀𝐼𝑋,0𝑇0 − 𝑣𝜌𝐿(1 − 𝜖)𝐶𝑃,𝑀𝐼𝑋𝑇

+ 𝑣0𝜌𝑆𝜖0𝐶𝑃,𝑆𝑇0 − 𝑣𝜌𝑆𝜖𝐶𝑃,𝑆𝑇 + �̇�𝐶(−∆𝐻𝐶) + 〈𝑈𝐴〉𝐽(𝑇𝐽 − 𝑇)

− 〈𝑈𝐴〉𝐸(𝑇 − 𝑇𝐸) 

(4.11) 

 

Where 𝐶𝑃,𝑚𝑖𝑥 = 𝑦𝐷𝐶𝑃,𝑆 + (1 − 𝑦𝐷)𝐶𝑃,𝐿 

The only thing that is unknown in the above equations is how to account for the unknown 

outlet velocity. An explicit formulation for the outlet velocity may be obtained by making 

either of two assumptions: (a) Constant liquid phase density (b) Linearly varying liquid phase 

density. Depending of the assumption, we obtain two formulation for the outlet velocity. A 

detailed derivation of the outlet velocity relations is given in the Appendix A3. 

Constant density 

𝑣 = 𝑣0 − �̇�𝐶 {
𝜌𝑆 − 𝜌𝐿

𝜌𝑆𝜌𝐿
} (4.12) 
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Linearly varying density 

𝜌𝐿 = 𝐴 + 𝐵𝑦𝐷  
 

𝑣 = {𝑣0

𝜌𝐿,0

𝜌𝐿

(1 − 𝜖0) + 𝑣0𝜖0} −
𝐵𝑀𝐿

𝜌𝐿
2

𝑑𝑦𝐷

𝑑𝑡
− {

�̇�𝐶

𝜌𝐿
−

�̇�𝐶

𝜌𝑆
} (4.13) 

 
𝑑𝑦𝐷

𝑑𝑡
=

1

𝑀𝐿
{𝑣0𝜌𝐿,0(1 − 𝜖0)(𝑦𝐷,0 − 𝑦𝐷) − �̇�𝐶(1 − 𝑦𝐷)}]  

 

It should be noted that for the constant density and linearly varying density assumptions, the 

outlet volumetric flow rate may be obtained explicitly and does not need to be solved 

simultaneously.  

4.3.2. Model extension for Batch Mode 

For the case of a batch reactor, instead of solving for the outlet velocity, the equation for the 

crystallizer volume needs to be solved. The equations for the rate of change in crystallizer 

volume depending upon the density assumptions are given below. A detailed description of 

the same is provided in the Appendix A3.  

Constant density 

𝑑𝑉𝑅

𝑑𝑡
= −

�̇�𝐶

𝜌𝐿
+

�̇�𝐶

𝜌𝑆
 (4.14) 

 

Linearly varying density 

𝑑𝑉𝑅

𝑑𝑡
= −

�̇�𝐶

𝜌𝐿
−

𝐵𝑀𝐿

𝜌𝐿
2

𝑑𝑦𝐷

𝑑𝑡
+

�̇�𝐶

𝜌𝑆
 (4.15) 

 

𝑑𝑦𝐷

𝑑𝑡
=

−�̇�𝐶(1 − 𝑦𝐷)

𝑀𝐿
  

 

4.3.3. Equations for tanks-in-series 

For multiple tanks in series the above equations can be written as:  

𝑑𝑀𝑖,𝑘

𝑑𝑡
= 0𝑖𝐵0,𝑘 + 𝑖𝐺𝑘𝑀𝑖−1,𝑘 +

𝑣𝑘−1𝑀𝑖,𝑘−1 − 𝑣𝑘𝑀𝑖,𝑘

𝑉𝑅,𝑘
 (4.16) 

 

And for non-constant volume as:  
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𝑑𝑉𝑅,𝑘𝑀𝑖,𝑘

𝑑𝑡
= 0𝑖𝐵0,𝑘𝑉𝑅,𝑘 + 𝑖𝐺𝑘𝑀𝑖−1,𝑘𝑉𝑅,𝑘 + 𝑣𝑘−1𝑀𝑖,𝑘−1 − 𝑣𝑘𝑀𝑖,𝑘 (4.17) 

 
𝑑𝑀𝐿,𝑘

𝑑𝑡
= 𝑣𝑘−1𝜌𝐿,𝑘−1(1 − 𝜖𝑘−1) − 𝑣𝑘𝜌𝐿,𝑘(1 − 𝜖𝑘) − �̇�𝐶,𝑘 (4.18) 

 
𝑑𝑀𝑆,𝑘

𝑑𝑡
= 𝑣𝑘−1𝜌𝑆𝜖𝑘−1 − 𝑣𝑘𝜌𝑆𝜖𝑘 + �̇�𝐶,𝑘 (4.19) 

 

�̇�𝐶,𝑘 = 3𝐺𝑘𝑀2,𝑘𝜎𝑉𝜌𝑆𝑉𝑅,𝑘 (4.20) 

 
𝑑𝑀𝐿,𝑘𝑦𝐷,𝑘

𝑑𝑡
= 𝑣𝑘−1𝜌𝐿,𝑘−1(1 − 𝜖𝑘−1)𝑦𝐷,𝑘−1 − 𝑣𝑘𝜌𝐿,𝑘(1 − 𝜖𝑘)𝑦𝐷,𝑘

− �̇�𝐶,𝑘

𝑑𝑉𝑅,𝑘𝑀𝑖,𝑘

𝑑𝑡
= 0𝑖𝐵0,𝑘𝑉𝑅,𝑘 + 𝑖𝐺𝑘𝑀𝑖−1,𝑘𝑉𝑅,𝑘 + 𝑣𝑘−1𝑀𝑖,𝑘−1 − 𝑣𝑘𝑀𝑖,𝑘 

(4.21) 

 

𝑑(𝑀𝐿,𝑘𝐶𝑃,𝑀𝐼𝑋,𝑘 + 𝑀𝑆,𝑘𝐶𝑃,𝑆)𝑇𝑘

𝑑𝑡
= 𝑣𝑘−1𝜌𝐿,𝑘−1(1 − 𝜖𝑘−1)𝐶𝑃,𝑀𝐼𝑋,𝑘−1𝑇𝑘−1

− 𝑣𝑘𝜌𝐿,𝑘(1 − 𝜖𝑘)𝐶𝑃,𝑀𝐼𝑋,𝑘𝑇𝑘 + 𝑣𝑘−1𝜌𝑆𝜖𝑘−1𝐶𝑃,𝑆𝑇𝑘−1

− 𝑣𝑘𝜌𝑆𝜖𝑘𝐶𝑃,𝑆𝑇𝑘 + �̇�𝐶,𝑘(−∆𝐻𝐶) + 〈𝑈𝐴〉𝐽,𝑘(𝑇𝐽 − 𝑇𝑘)

− 〈𝑈𝐴〉𝐸,𝑘(𝑇𝑘 − 𝑇𝐸) 

(4.22) 

 

The relations for the tank outlet velocities can be written as:  

Constant density 

𝑣𝑘 = 𝑣𝑘−1 − �̇�𝐶,𝑘 {
𝜌𝑆 − 𝜌𝐿

𝜌𝑆𝜌𝐿
} (4.23) 

 

Linearly varying density 

𝑣𝑘 = {𝑣𝑘−1

𝜌𝐿,𝑘−1

𝜌𝐿,𝑘

(1 − 𝜖𝑘−1) + 𝑣𝑘−1𝜖𝑘−1} −
𝐵𝑀𝐿,𝑘

𝜌𝐿,𝑘
2

𝑑𝑦𝐷,𝑘

𝑑𝑡
− {

�̇�𝐶,𝑘

𝜌𝐿,𝑘
−

�̇�𝐶,𝑘

𝜌𝑆
} (4.24) 

 
𝑑𝑦𝐷,𝑘

𝑑𝑡
=

1

𝑀𝐿,𝑘
{𝑣𝑘−1𝜌𝐿,𝑘−1(1 − 𝜖𝑘−1)(𝑦𝐷,𝑘−1 − 𝑦𝐷,𝑘) − �̇�𝐶,𝑘(1 − 𝑦𝐷,𝑘)}  

4.3.4. Non-Dimensional form of Equations 

It is useful to identify the dimensionless numbers which characterize the system. Identifying 

these numbers provide a generalized platform to quickly assess the behaviour of systems by 

simply calculating the values to these numbers. In order to obtain the non-dimensional 

numbers that characterize the system, the model equations presented in the previous section 

must be non-dimensionalized. The final form of the non-dimensional equations for the tanks-
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in-series model are given below. For a detailed derivation of the non-dimensional equations, 

kindly refer to the Appendix A3.  

Moment equations for a constant crystallizer unit volume: 

𝑑𝑀𝑖,𝑘
′

𝑑𝑡′
= 0𝑖𝐵0,𝑘

′ + 𝑖𝐺𝑘
′ 𝑀𝑖−1,𝑘

′ +
𝑣𝑘−1

′ 𝑀𝑖,𝑘−1
′ − 𝑣𝑘

′ 𝑀𝑖,𝑘
′

𝑉𝑅,𝑘
′  (4.25) 

 

Moment equations for non-constant crystallizer unit volume:  

𝑑𝑉𝑅,𝑘
′ 𝑀𝑖,𝑘

′

𝑑𝑡′
= 0𝑖𝐵0,𝑘

′ 𝑉𝑅,𝑘
′ + 𝑖𝐺𝑘

′ 𝑀𝑖−1,𝑘
′ 𝑉𝑅,𝑘

′ + 𝑣𝑘−1
′ 𝑀𝑖,𝑘−1

′ − 𝑣𝑘
′ 𝑀𝑖,𝑘

′  (4.26) 

 

Equation for mass of liquid phase in crystallizer unit: 

𝑑𝑀𝐿,𝑘
′

𝑑𝑡′
= 𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1) − 𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1 − 𝜖𝑘) − �̇�𝐶,𝑘

′  (4.27) 

 

Equation for mass of solid phase in crystallizer unit: 

𝑑𝑀𝑆,𝑘
′

𝑑𝑡′
= 𝑣𝑘−1

′ 𝜌𝑆
′ 𝜖𝑘−1 − 𝑣𝑘

′ 𝜌𝑆
′ 𝜖𝑘 − �̇�𝐶,𝑘

′  (4.28) 

 

�̇�𝐶,𝑘
′ = 3𝛽1𝐺𝑘

′ 𝑀2,𝑘
′ 𝜌𝑆

′ 𝑉𝑅,𝑘
′  (4.29) 

 

𝛽1 =
𝜎𝑉𝐿𝑟𝑒𝑓

3 𝑀0,𝑟𝑒𝑓

𝑉𝑅
 (4.30) 

Equation for mass of dissolved solid: 

𝑑𝑀𝐿,𝑘
′ 𝑦𝐷,𝑘

𝑑𝑡′
= 𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1)𝑦𝐷,𝑘−1 − 𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1 − 𝜖𝑘)𝑦𝐷,𝑘 − �̇�𝐶,𝑘

′  (4.31) 

 

 Equation for heat balance of crystallizer unit:  

𝑑(𝑀𝐿,𝑘
′ 𝐶𝑃,𝑀𝐼𝑋,𝑘

′ + 𝑀𝑆,𝑘
′ 𝐶𝑃,𝑆

′ )𝑇𝑘
′

𝑑𝑡′

= 𝑣𝑘−1
′ 𝜌𝐿,𝑘−1

′ (1 − 𝜖𝑘−1)𝐶𝑃,𝑀𝐼𝑋,𝑘−1
′ 𝑇𝑘−1

′

− 𝑣𝑘
′ 𝜌𝐿,𝑘

′ (1 − 𝜖𝑘)𝐶𝑃,𝑀𝐼𝑋,𝑘
′ 𝑇𝑘

′ + 𝑣𝑘−1
′ 𝜌𝑆

′ 𝜖𝑘−1𝐶𝑃,𝑆
′ 𝑇𝑘−1

′

− 𝑣𝑘
′ 𝜌𝑆

′ 𝜖𝑘𝐶𝑃,𝑆
′ 𝑇𝑘

′ + 𝛽2�̇�𝐶,𝑘
′ + 𝛽3,𝑘(𝑇𝐽

′ − 𝑇𝑘
′) − 𝛽4,𝑘(𝑇𝑘

′ − 𝑇𝐸
′ ) 

(4.32) 

 

𝛽2 =
(−∆𝐻𝐶)

𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓
 (4.33) 

 

𝛽3,𝑘 =
〈𝑈𝐴〉𝐽,𝑘𝑡𝑟𝑒𝑓

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓
 (4.34) 
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𝛽4,𝑘 =
〈𝑈𝐴〉𝐸,𝑘𝑡𝑟𝑒𝑓

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓
 (4.35) 

 

The relations for the tank outlet velocities can be written as:  

Constant density 

𝑣𝑘
′ = 𝑣𝑘−1

′ − �̇�𝐶,𝑘
′ {

𝜌𝑆
′ − 𝜌𝐿

′

𝜌𝑆
′ 𝜌𝐿

′ } (4.36) 

 

Linearly varying density 

𝑣𝑘
′ = {𝑣𝑘−1

′
𝜌𝐿,𝑘−1

′

𝜌𝐿,𝑘
′ (1 − 𝜖𝑘−1) + 𝑣𝑘−1

′ 𝜖𝑘−1} −
𝛽𝐷,2𝑀𝐿,𝑘

′

𝜌𝐿,𝑘
′2

𝑑𝑦𝐷,𝑘

𝑑𝑡′
− {

�̇�𝐶,𝑘
′

𝜌𝐿,𝑘
′ −

�̇�𝐶,𝑘
′

𝜌𝑆
′ } (4.37) 

 
𝑑𝑦𝐷,𝑘

𝑑𝑡′
=

1

𝑀𝐿,𝑘
′ {𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1)(𝑦𝐷,𝑘−1 − 𝑦𝐷,𝑘) − �̇�𝐶,𝑘

′ (1 − 𝑦𝐷,𝑘)}  

 

For the batch mode, the equation for volume can be written as:  

Constant density 

𝑑𝑉𝑅
′

𝑑𝑡′
= −

�̇�𝐶
′

𝜌𝐿
′ +

�̇�𝐶
′

𝜌𝑆
′  (4.38) 

 

Linearly varying density 

𝑑𝑉𝑅
′

𝑑𝑡′
= −

�̇�𝐶
′

𝜌𝐿
′ −

𝛽𝐷,2𝑀𝐿
′

𝜌𝐿
′2

𝑑𝑦𝐷

𝑑𝑡
+

�̇�𝐶
′

𝜌𝑆
′  (4.39) 

 

𝑑𝑦𝐷

𝑑𝑡′
=

−�̇�𝐶
′ (1 − 𝑦𝐷)

𝑀𝐿
′   

 

4.3.5. Reference Variables 

The values for the reference variables need to be defined in order to obtain the non-

dimensional variables. It helps to make intelligent choices for the reference values as that 

would be helpful in making more generalized insights for the system. The first reference 

variable we encounter is Lref. For Lref, in the present study we will define as the target particle 

size for the crystallization. This would be a user defined value. The second variable we 

encounter is Vref. It is convenient to define Vref as directly the volume of the crystallizer unit 

for a continuous mode or the initial volume for the batch mode. The third variable is M0,ref. 
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We will define M0,ref as the number of particles of target size which will be formed, if all solute 

mass inside the crystallizer (taking the inlet/initial conditions as the basis) is crystallized. The 

total solute mass taking inlet/initial conditions as the basis can be found out as: 

𝑀𝑆,𝑟𝑒𝑓 = 𝑚𝑊𝐶0𝑉𝑟𝑒𝑓 (4.40) 
 

So, M0,ref can be written as:  

𝑀0,𝑟𝑒𝑓 =
𝑀𝑆,𝑟𝑒𝑓

𝜎𝑉𝐿𝑟𝑒𝑓
3 𝜌𝑆

=
𝑚𝑊𝐶0𝑉𝑟𝑒𝑓

𝜎𝑉𝐿𝑟𝑒𝑓
3 𝜌𝑆

 (4.41) 

 

The reference time for the continuous mode can be defined as the residence time and can 

directly be written as:  

𝑡𝑟𝑒𝑓 =  
𝑉𝑅

𝑣0
 (4.42) 

 

For a batch mode of operation, the total batch time can be considered as the reference time.  

𝜌𝑟𝑒𝑓, 𝐶𝑃,𝑟𝑒𝑓 are taken to be same as the pure solvent phase properties. 𝑇𝑟𝑒𝑓 is defined as the 

inlet temperature. The reference value for concentration can be specified as the total solute 

mass inside the crystallizer taking the inlet/initial condition as the basis.  

𝐶𝑟𝑒𝑓 = 𝐶0 (4.43) 
 

The non-dimensional numbers that emerge from these equations are:  

𝛽1 =
𝜎𝑉𝐿𝑟𝑒𝑓

3 𝑀0,𝑟𝑒𝑓

𝑉𝑅
  

 

𝛽2 =
(−∆𝐻𝐶)

𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓
  

 

𝛽3,𝑘 =
〈𝑈𝐴〉𝐽,𝑘𝑡𝑟𝑒𝑓

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓
  

 

𝛽4,𝑘 =
〈𝑈𝐴〉𝐸,𝑘𝑡𝑟𝑒𝑓

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓
  

 

4.3.6. Constitutive Laws 

4.3.6.1. Crystal growth 
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Surface integration controlled crystal growth is assumed similar to that in Chapter 2. The 

growth rate can then be written for each crystallizer unit by an Arrhenius type rate expression 

as follows:  

𝐺𝑘 = 𝑘𝑔,0𝑒𝑥𝑝 (−
𝐸𝐴

𝑅𝑇𝑘
) (𝐶𝑘 − 𝐶𝑘

∗(𝑇𝑘))𝑔 (4.44) 

 

This can also be written in a non-dimensional form as:  

𝐺𝑘
′ = 𝛽𝑔,1𝑒𝑥𝑝 (−

𝛽𝑔,2

𝑇𝑘
′ ) (𝐶𝑘

′ − 𝐶′∗(𝑇𝑘
′))𝑔 (4.45) 

 

𝛽𝑔,1 =
𝑘𝑔,0𝑡𝑟𝑒𝑓𝐶𝑟𝑒𝑓

𝑔

𝐿𝑟𝑒𝑓
 (4.46) 

 

𝛽𝑔,2 =
𝐸𝐴

𝑅𝑇𝑟𝑒𝑓
 (4.47) 

 

4.3.6.2. Primary Nucleation 

Similar to the primary nucleation rate assumed in the Chapter 3, the primary nucleation rate 

can be written by a simple power law relation such as:  

𝐵0,𝑘,𝑝𝑟𝑖 = 𝑘1(𝐶𝑘 − 𝐶𝑘
∗(𝑇𝑘))𝑛1 (4.48) 

 

In a non-dimensional form, the same relation can be written as:  

𝐵0,𝑘,𝑝𝑟𝑖
′ = 𝛽𝑁,1(𝐶𝑘

′ − 𝐶𝑘
′∗(𝑇′))𝑛1 (4.49) 

 

𝛽𝑁,1 =
𝑉𝑟𝑒𝑓𝑡𝑟𝑒𝑓𝑘1𝐶𝑟𝑒𝑓

𝑛1

𝑀0,𝑟𝑒𝑓
 (4.50) 

4.3.6.3. Secondary Nucleation  

𝐵0,𝑘,𝑠𝑒𝑐 = 𝑘2𝑀2,𝑘(𝐶𝑘 − 𝐶𝑘
∗(𝑇𝑘))𝑛2 (4.51) 

 

In a non-dimensional form, the secondary nucleation rate can be written as:  

𝐵0,𝑘,𝑠𝑒𝑐
′ = 𝛽𝑁,2𝑀2,𝑘

′ (𝐶𝑘
′ − 𝐶𝑘

′∗(𝑇𝑘
′))𝑛2 (4.52) 

 

𝛽𝑁,2 = 𝑘2𝐿𝑟𝑒𝑓
2 𝐶𝑟𝑒𝑓

𝑛2 𝑡𝑟𝑒𝑓 (4.53) 
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The total nucleation rate can be written as the sum of the primary and the secondary 

nucleation rates. For a detailed derivation of the non-dimensional forms of the constitutive 

law equations, kindly refer to the Appendix A3. 

4.3.7. Auxiliary Laws 

4.3.7.1. Concentration 

𝐶(𝑦𝐷) =
𝑦𝐷𝜌𝐿(𝑦𝐷)

𝑚𝑊
 (4.54) 

 

𝐶′(𝑦𝐷) =
𝜌𝑟𝑒𝑓

𝐶𝑟𝑒𝑓𝑚𝑊
𝑦𝐷𝜌𝐿

′ (𝑦𝐷) = 𝛽𝐶𝑦𝐷𝜌𝐿
′ (𝑦𝐷) (4.55) 

 

4.3.7.2. Solubility 

Solubility as a function of temperature is typically represented in the form of kg-solute/kg-

solvent. The solubility in the present text needs to be calculated in the form of kmol/m3 to be 

used in the constitutive law relations.  

𝑥𝐷,𝑠𝑜𝑙(𝑇) =
𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒

𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡
= 𝐶1𝑒𝐶2𝑇 (4.56) 

 

𝑦𝐷,𝑠𝑜𝑙 =
𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒

𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒 + 𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡
=

𝑥𝐷,𝑠𝑜𝑙

1 + 𝑥𝐷,𝑠𝑜𝑙
  



𝐶∗(𝑇) =  𝐶(𝑦𝐷,𝑠𝑜𝑙) =
𝑦𝐷,𝑠𝑜𝑙𝜌𝐿(𝑦𝐷,𝑠𝑜𝑙)

𝑚𝑊
  

 

𝑥𝐷,𝑠𝑜𝑙(𝑇′) = 𝐶1𝑒𝐶2𝑇𝑟𝑒𝑓𝑇′
  

 

𝑥𝐷,𝑠𝑜𝑙(𝑇′) = 𝛽𝑆,1𝑒𝛽𝑆,2𝑇′
 (4.57) 

 
𝛽𝑆,1 = 𝐶1 (4.58) 

 
𝛽𝑆,2 = 𝐶2𝑇𝑟𝑒𝑓 (4.59) 

 

𝑦𝐷,𝑠𝑜𝑙(𝑇′) =
𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒

𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒 + 𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡
=

𝑥𝐷,𝑠𝑜𝑙(𝑇′)

1 + 𝑥𝐷,𝑠𝑜𝑙(𝑇′)
  

 

𝐶′∗(𝑇′) = 𝐶′(𝑦𝐷,𝑠𝑜𝑙) = 𝛽𝐶𝑦𝐷,𝑠𝑜𝑙(𝑇′)𝜌𝐿
′ (𝑦𝐷,𝑠𝑜𝑙(𝑇′)) (4.60) 
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4.3.7.3. Density 

In the present study, we assume the density to be represented by the mass weighted average.  

𝜌𝐿(𝑦𝐷) = 𝐴 + 𝐵𝑦𝐷 (4.61)  
 

𝐴 = 𝜌𝐿; 𝐵 = (𝜌𝑆 − 𝜌𝐿)  
 

𝜌𝐿
′ (𝑦𝐷) =

𝐴

𝜌𝑟𝑒𝑓
+

𝐵

𝜌𝑟𝑒𝑓
𝑦𝐷  

 
𝜌𝐿

′ (𝑦𝐷) = 𝛽𝐷,1 + 𝛽𝐷,2𝑦𝐷 (4.62) 
 

4.3.7.4. Specific Heat 

In the present study, we assume the specific heat to be represented by the mass weighted 

average.  

𝐶𝑃,𝑀𝐼𝑋(𝑦𝐷) = 𝐶𝑃,𝐿 + (𝐶𝑃,𝑆 − 𝐶𝑃,𝐿)𝑦𝐷 (4.63) 
 

𝐶𝑃,𝑀𝐼𝑋
′ (𝑦𝐷) =

𝐶𝑃,𝐿

𝐶𝑃,𝑟𝑒𝑓
+

(𝐶𝑃,𝑆 − 𝐶𝑃,𝐿)

𝐶𝑃,𝑟𝑒𝑓
𝑦𝐷  

 
𝐶𝑃,𝑀𝐼𝑋

′ (𝑦𝐷) = 𝛽𝐶𝑃,1 + 𝛽𝐶𝑃,2𝑦𝐷 (4.64) 
 

4.3.8. Onset of Crystallisation 

4.3.8.1. Batch Processes  

For the implementation of the model, it is important to address the question of onset of 

crystallization. The concept of MSZW and induction time have been extensively researched 

previously and deal with the specific issue of onset of crystallization. In a batch mode 

operating with a linear cooling profile, the MSZW is a good estimate of the point at which 

crystallization will start. However, this is an experimental parameter. For a batch kept in a 

constant super saturated state, the induction time gives a good estimate about when the 

crystallization will start. Kubota developed a model which connected the two seemingly 

disconnected system characteristics.  For a detailed description about the Kubota model 

kindly refer to the Appendix A3. In the present case, instead of going to simulate for the 

induction time, we will only consider the case of cooling crystallization where the MSZW is 

relevant. The MSZW will be provided as an input parameter and it will be assumed that 

crystallization will start only after the MSZW period.  
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4.3.8.2. Continuous Processes 

In batch crystallisation, according to the model proposed by Kubota (2008), nucleation 

initiates as soon as the solution reaches super-saturation. However, at this point the 

nucleation events are not observable and hence cannot be detected. For a particular level of 

super-saturation, a suitable amount of time (referred to as the induction time) needs to pass 

after the nucleation events become detectable that we say that nucleation has occurred. It is 

worth noting that the time is thus dependent on the type of detection equipment used. 

However, for a given level super saturation, the time measured using a particular type of 

detection equipment is repeatable. Now, consider a continuous crystalliser operating under 

a certain level of super saturation. The exact level of super saturation is irrelevant for the 

purposes of this argument. According to the model proposed by Kubota (2008), there will be 

a particular value for induction time which is associated with that level of super saturation. 

So, any parcel of liquid which spends time/resides in the crystalliser for more than the said 

induction time will have detectable nucleation events occurring within it. Also, according to 

the mixing behaviour for tanks-in-series, theoretically, it is always possible to find such a 

percentage of liquid which has resided for a period more than the induction time. As this 

statement does not depend upon the level of super-saturation, it may be inferred that the 

crystallisation initiates as soon as the crystalliser reaches super-saturation. 

4.3.9. Model Implementation 

The non-dimensional form of the tanks-in-series model which comprise of equations 4.25 to 

4.35 were solved simultaneously using an ordinary differential equation (ODE) solver. For the 

batch mode, the equation for the changing process fluid volume was solve by considering a 

general case of density varying linearly with solute mass fraction (Equation 4.39). For the case 

of continuous mode, the equation for the outlet volumetric flowrate was calculated 

dynamically again by considering a case of linearly varying density (Equation 4.37). The special 

case of a constant density may be obtained by just setting the value of the linear component 

to zero. The code was written in MATLAB. A simple spreadsheet interface to provide inputs 

for the code was designed using Excel. The stiff-ODE solver ‘ode23s’ from the MATLAB suite 

of ODE solvers was used.  Absolute and relative tolerances of 1x10-12 were used to solve the 

code. First, the verification of the code was performed independently for the different 

modules of heat transfer, tanks-in-series and crystallisation. For a detailed discussion with 
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regards to the verification of the solver kindly refer to the Appendix A3. The model was then 

used to model batch and continuous crystallisation processes.  

4.4. Results and Discussion 

4.4.1. Crystallisation of Batch Processes 

As per the methodology described in the present Chapter, to model continuous crystallisation 

processes, it is necessary to first model batch crystallisation processes. Values for key 

crystallisation kinetic parameters may first be estimated accurately through batch 

crystallisation studies. These same parameters may then be used for simulations of 

continuous crystallisation. Accordingly, temperature cycling experiments were performed in 

a batch mode for different values for heating/cooling rates. The model described earlier in 

the present Chapter was implemented for the batch mode of operation. First, values for heat 

transfer parameters were estimated to allow for simulation by giving jacket temperature as 

the input. Then, key crystallisation kinetic parameter values were estimated by comparing 

model predictions against experiments simultaneously for the particle counts profiles and the 

Sauter mean diameter profiles. The model was then validated against the other sets of 

experiments. The model was then used to estimate the value for the heat of crystallisation.   

4.4.1.1. Heat transfer parameters 

Simulations were performed for the system of Sodium Nitrite-DI Water. The quantity of 

sodium nitrite and water corresponding to the first fill conditions used in the batch reactor 

experiment was considered for heat transfer simulations (195gm NaNO2 and 200g of DI 

Water). For estimating the heat transfer parameters, the crystallization conditions were 

presently switched off. After crystallization, there will be some changes in the density and the 

specific heat capacity of the liquid phase. However, for the time being, we shall neglect these 

changes and estimate the heat transfer parameters regardless. Indeed a better way of doing 

the experiments to estimate heat transfer parameters would be to carry out the heat transfer 

simulation in non-crystallizing conditions. However, we do not expect the system to change 

the concentration drastically due to crystallisation as in case of some other systems 

(Ibuprofen). Hence, in the present case, the heat transfer parameters estimated through the 

present process will be fairly accurate.  
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The parameters used for the simulation of the NaNO2-DI Water system are provided in the 

Appendix A3. To simulate for batch processes, the inlet velocity was considered to be 0 and 

the number of tanks were set to 1. The jacket temperature profile used for the experiment 

was provided as the input for the solver. The solver was expected to calculate the reactor 

temperature profile using the heat transfer model. The experimental run using a 

heating/cooling rate of 0.3K/min was considered. The parameter values for the universal heat 

transfer coefficient times area for both the heat transfer between the jacket and the solution 

(UAJ) and the environment and the solution (UAE) were not known. The unknown parameter 

values were tweaked until an excellent agreement was obtained between the simulated 

temperature profile and the experimental temperature profile. A comparison between these 

profiles and the jacket temperature profile is shown in Figure 4.5(a). As can be seen from the 

Figure, the heat transfer model could capture the crystalliser behaviour well. The value for 

UAJ was found to be 1.4 J/K and the value for UAE was found to be 3E-2 J/K.  

The parameters estimated using the 0.3K/min cooling/heating rate experiment was used to 

simulate for the experiments using 0.5 K/min and 0.7 K/min cooling/heating rates. 

Comparisons between the model predictions and the experimental predictions for these 

experiments are shown in Figures 4.5(b) and 4.5(c). As can be seen that there is excellent 

agreement between the model predictions and the experiments. Thus, can assume that the 

heat transfer model has been validated successfully. It should be noted however that there is 

a slight bump in the jacket temperature profile (around 2000s to 3000s period in the 0.3 K/min 

experiment). This bump is present for all the experimental profiles. On comparing the jacket 

temperature profile with the counts profile, it was observed that the bump coincided with 

the onset of crystallization. This is evidence that the crystallization of NaNO2 is a exothermic 

process as the jacket dips below the current trajectory to maintain the crystalliser 

temperature trajectory to compensate for this heat release. We may however, comment that 

the exothermicity is not very high as other systems such as Ibuprofen. Quantitative estimation 

of key crystallisation kinetic parameters including the heat of crystallization will be covered in 

the following section. 
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Figure 4.5. Comparison of experimental temperature profile with simulated temperature 
profile for (a) 0.3 K/min (b) 0.7K/min (c) 0.5K/min heating/cooling rate profile 

 

4.4.1.2. Estimation of mean particle size  

For the purposes of estimating reliable values for crystallisation kinetics, it is important to 

obtain estimates for the average particle size distribution during the crystallisation process. 

The model described in Chapter 2 was used to estimate the mean particle size for the present 

case. A validation for the Chord Length Distribution (CLD) to Particle Size Distribution (PSD) 

model for the case of Sodium Nitrite was not performed. In Chapter 2, the model was 

validated for a variety of shapes and particle systems. Hence, the authors believe that, the 

values obtained using the model would serve as a good starting point for estimating 

crystallisation kinetics. Kinetic parameter values may be re-estimated when more reliable 

values for the mean particle size become available.  

The PSD can be estimated by comparing the experimental normalized CLD against the model 

predicted one. For this purpose, as described in Chapter 2, both the unweighted and the 

square-weighted forms of the CLD were used depending upon the system considered. In most 

cases (regular uni-modal systems), the PSD obtained using both forms of the CLD are nearly 

identical. However, in certain cases, such as where the shape of the original CLD is not entirely 

(c) 
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uni-modal (due to a disproportionate recording of smaller particles), different PSD's are 

predicted using the two CLD forms. The CLD to PSD procedure was implemented for both the 

forms of the CLD and comparisons between the normalized experimental and model 

predicted CLD's are shown in Figure 4.6. The CLD for a particular instance after crystallisation 

had occurred in the 0.5 K/min cooling rate experiment was considered.  

 

 

Figure 4.6: (a) Comparison of the measured squared normalized CLD to the model predicted 
squared normalized CLD; (b) Comparison of normalised experimental CLD to the normalised 

model predicted CLD 

(a) 

(b) 
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A limitation of the CLD to PSD model is that it can model only normal or lognormal shaped 

distributions. It can be seen from Figure 4.6(b), the experimental unweighted CLD was not 

properly captured using the model predicted one (R2 = 0.93). This lead to a significant 

difference between even the mean chord lengths predicted by the model and the experiment.  

On the other hand, the model predicted normalized square-weighted CLD resembled the 

experimental one to a very high degree (R2 = 0.97) as can be seen in Figure 4.6(a). Thus, the 

average particle sizes were obtained using the square-weighted form of the CLD which was 

seen give predictions consistent with experimental data.  

4.4.1.3. Estimating crystallisation kinetic parameters 

Simulations were carried out for the crystallisation leg of the batch experiments for the 

system of sodium nitrite-water. The present procedure differs from the procedure presented 

in Chapter 3 in the manner that additional parameters for growth rate kinetics and heat of 

crystallisation also were estimated along with the crystallisation kinetic parameters. 

Additionally, the meta-stable zone width (MSZW) needs to be supplied for simulations.  The 

MSZW was determined experimentally for each of the experiments. First, the kinetic 

parameter values were estimated by simultaneously matching the simulated and 

experimental normalized 0th moment curves and the simulated and experimental Sauter 

mean diameter (d32) curves for one set of experiments (0.7 K/min). The comparison were then 

done for the other sets of experiments (0.3 K/min and 0.5 K/min) using the parameter values 

estimated in the first step.  

The methodology for estimating the parameter values used in the present chapter was similar 

to the one described in Chapter 3. The methodology involves iteratively changing the most 

sensitive unknown parameter values while keeping the least sensitive parameters constant. 

The parameter values were changed with subsequent iterations by comparing suitable model 

predicted and experimental objective functions. A list of parameter values obtained by the 

matching simulated data to experiments is shown in Table.  A comparison between the 

experimental and simulated normalized 0th moment for the 0.7 K/min heating/cooling rate is 

shown in Figure 4.7(a). A comparison for the experimental and simulated Sauter mean 

diameter values is shown in Figure 4.7(b). Parameter values estimated using 0.7K/min 

cooling/heating rate were then used to simulate for the 0.5K/min and 0.3K/min 
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cooling/heating rates. Comparison between the respective experimental and simulated 

profiles are given in Figures 4.8 and 4.9. It can be seen from the Figures that the model 

predictions agree with the experimental data obtained for the batch mode of operation. 

Table 4.1. Crystallisation kinetics parameter values for the batch crystallisation of Sodium 
Nitrite-Water system 

Symbol Description Value Unit 

𝒌𝒈,𝟎 Pre-exponential constant for growth rate 9.0E+01 (m/s)(kmol/m3)-g 

𝑬𝑨 Activation energy 4.0E+07 J/(kmol-K) 

𝑹 Universal gas constant 8.314E+03 J/kmol 

𝒈 Growth rate exponent 2 - 

𝒌𝟏 
Constant for primary nucleation rate 
expression 

1.5E+08 #/(m3-s)(kmol/ m3)-n1 

𝒏𝟏 
Exponent for primary nucleation rate 
expression 

2 - 

𝒌𝟐 
Constant for secondary nucleation rate 
expression 

1.5E+10 
1/(( m2-s)(kmol/ m3)-

n2) 

𝒏𝟐 
Exponent for secondary nucleation rate 
expression 

4.5 - 

−∆𝑯𝑪 Heat of crystallization 1.5E+05 J/kg 

MSZW Meta Stable Zone Width 3.5 0C 
 

As was discussed in the previous Chapter, it is possible to have multiple solutions for the 

crystallisation parameter values if just the normalised 0th moment curves are considered for 

comparison. This may be achieved, starting from a set of already 'validated' parameters by 

increasing the constant for the growth kinetics while simultaneously reducing the constants 

for the nucleation kinetics and vice versa. However, the story changes if both the normalized 

0th moment curve and the Sauter mean diameter curves are considered for comparison. For 

instance, if the value of the growth rate constant is increased and the values of the nucleation 

constants are reduced to match the normalized moment curves, this effectively serves in 

increasing the average Sauter mean diameter curve from the base case. And decreasing 

growth rate constant and increasing the nucleation rate constants effectively serves in 

decreasing the average Sauter mean diameter curve from the base case.  Thus, we can say 

that for the present case, the solution is unique.  
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Figure 4.7. (a) Comparison of experimental and simulated 0th Moment for the 0.7 K/min 
batch experiment; (b) Comparison of experimental and simulated Sauter mean diameter 

(d32) for the 0.7 K/min batch experiment 

Onset of 
crystallisation 

(a) 

(b) 
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Figure 4.8. (a) Comparison of experimental and simulated 0th Moment for the 0.3 K/min 
batch experiment; (b) Comparison of experimental and simulated Sauter mean diameter 

(d32) for the 0.7 K/min batch experiment 
 

 

(a) 

(b) 
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Figure 4.9. (a) Comparison of experimental and simulated 0th Moment for the 0.5 K/min 
batch experiment; (b) Comparison of experimental and simulated Sauter mean diameter 

(d32) for the 0.7 K/min batch experiment 
 

Multiple solutions may in fact be possible for the growth rate constant and the activation 

energy for the estimated nucleation kinetic parameters. The parameter for activation energy 

is chiefly responsible in characterising how the growth rate depends on the temperature. 

However, in the present case, the crystallisation occurs very fast and does not span a very 

(a) 

(b) 
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wide temperature range. Hence, the effect of temperature (significance of the activation 

energy parameter) on the growth rate parameters cannot be studied. Hence, for the present 

case from the preceding discussion we may say that the obtained total contribution of the 

growth rate term won't vary drastically even though the individual parameter values may 

vary.  

4.4.1.4. Effect of Heat of Crystallisation 

The crystallisation of sodium nitrite from water is exothermic. That is, on crystallisation, heat 

is liberated into the solution thereby increasing the solution temperature. As precise 

temperature control was maintained in the batch process by the virtue of the OptiMAX Peltier 

elements, the jacket temperature dipped to compensate for the heat gained. This dip (shown 

in Figure 4.10(a)) was observe to coincide with the onset of crystallisation. In contrast to the 

model described in Chapter 3, the heat balance equation was included in the present model. 

Hence, it was possible using the present model to capture the heat transfer exchanges 

occurring in the system. For simulation purposes, the jacket temperature profile was provided 

as an input to the crystalliser temperature profile was calculated by solving the model 

equations. The heat of crystallisation was estimated by making the simulated crystalliser 

temperature match the experimental crystalliser temperature.  

A comparison between the simulated crystalliser temperature profiles obtained for different 

values of heat of crystallisation and the experimental temperature profile is given in Figure 

4.10(a). The effect of the heat of crystallisation of the Sauter mean diameter is given in Figure 

4.10(b).  As can be seem from the figure, a lower heat of crystallisation results in a higher 

SMD. This is because, as crystallisation progresses and heat is released, lesser is the heat 

released, lesser is the super saturation decreased due to heat effects. A higher heat of 

crystallisation suppresses both growth and nucleation due to the reduction in the degree of 

super saturation. A comparison between the experimental and simulated (for different values 

of heat of crystallisation) normalized 0th moment during crystallisation is shown in Figure 

4.10(c) 
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(a) 

(b) 
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Figure 4.10. Comparison between experimental and simulated values for different values of 

heats of crystallisation for the 0.7K/min experiment of (a) Crystalliser temperature (b) 
Sauter Mean Diameter (d32) (c) Normalised 0th moment 

 

4.4.2. Crystallisation of Continuous Processes 

In the previous section, the model was validated for a batch system of sodium nitrite and 

water. The batch experiments were instrumental in estimating key crystallisation kinetic 

parameter values. In the present section, the case of a continuous crystalliser will be 

investigated. Sodium Nitrite-Water system - used in batch - was also considered for 

continuous crystallisation. Experiments were performed to understand the mixing and heat 

transfer characteristics of the continuous crystalliser assembly. Then continuous 

crystallisation experiments were performed under different ambient conditions. Side by side, 

the model described earlier in the Chapter, was implemented for the specific case of 

continuous crystallisation considered in the experiments. The mixing and heat transfer 

behaviour was characterised by comparing model predictions to experiments. The model was 

then used to simulate continuous crystallisation. The model was then used to understand the 

effect of different operating conditions on the crystallisation behaviour.   

 

(c) 
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4.4.2.1. Characterising Mixing Behaviour 

It is important from the point of view of crystalliser design and modelling to characterise the 

mixing behaviour of the crystalliser. The residence time distribution is one of the most popular 

methods to characterise the mixing behaviour of reactors. To determine the exit age 

distribution or more commonly known as the residence time distribution (RTD) of a 

crystalliser at a particular flow rate, a pulse of tracer is injected into the inlet in steady flowing 

conditions. The outlet concentration of the tracer is monitored with time. The profile of the 

tracer concentration with respect to time is known as the RTD. As discussed earlier in the 

present Chapter, the tanks in series is an efficient way for a generalised modelling framework. 

Amongst other things, the RTD curve helps to identify the number of perfectly mixing tanks 

that should be connected in series to obtain a mixing behaviour similar to the device 

considered.  

RTD experiments were performed using the present continuous crystalliser assemble at 

different flow rates. Salt water solution was used as a tracer and DI water was used as the 

solvent phase. A pulse input of about 20 ml was pumped in using a syringe at the inlet. The 

outlet tracer concentration was measured using a conductivity probe. The RTD was obtained 

for different configurations for the inlet port (upper/lower) and the stirrer mode (forward 

/reverse). A comparison of the normalised RTD plotted versus the time (normalised by the 

average residence time) for different operating modes and residence times is shown in Figure 

4.11(a). It can be concluded from the figure that there is not much change in the mixing 

characteristics of the crystalliser due to the different operating modes or residence times. 

Going by standard practises, the bottom inlet was chosen as the inlet port for the 

crystallisation experiments. The stirrer mode was chosen to be as a forward mode.  

As discussed earlier, the RTD experiments enable us to characterise the mixing behaviour of 

crystallisers. Simulations were performed using the tanks in series model developed here for 

modelling continuous crystallisation processes. A pulse was simulated as setting the initial 

concentration of the first tank to a specific value. The initial concentration of the other tanks 

and the inlet was fixed to zero. The simulations were then performed for one, two and three 

tanks in series. The outlet concentration of the last tank was normalised to determine the 

RTD. A comparison between the experimentally obtained RTD for the chosen configuration 

and the RTD's obtained through simulations are shown in Figure 4.11(b). As can be seen from 



146 
 

the Figure, two tanks in series seem to capture the mixing characteristics of the continuous 

crystalliser well. Hence, in further simulations, the number of tanks in series for the 

continuous crystalliser was set to two.  

 
 

 
Figure 4.11. (a) Comparison of normalized exit age distribution curves plotted against time 
normalized by the residence time (RT) for different operating modes (BI - Bottom Inlet, UI - 
Upper Inlet)(FS - Forward Stirrer, RS - Reverse Stirrer) (b) Comparison of normalized exit age 

distribution curves plotted against time normalized by the residence time (RT) obtained 
experimentally and through simulations using multiple tanks 

 

(a) 

(b) 
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4.4.2.2. Characterising Heat Transfer 

For completing simulations, heat transfer parameters need to be estimated as done for batch 

processes. However, there was a problem for the case of the continuous process considered. 

Heat transfer experiments were done under different ambient conditions. Experimentally, for 

a given jacket temperature, the steady state temperature at the crystalliser outlet attained 

the same value regardless of the ambient temperatures. Thus, we may conclude that the 

contribution towards the environmental losses was not significant. However, when the 

source term for the environmental losses was switched off in the model, it was not possible 

to simulate the crystalliser outlet temperature profile. This meant that the heat transfer 

model described in the present Chapter was not adequate.  

The reason for this mismatch was that in the experiments, the heat was first transferred from 

the jacket to the crystalliser body. From the crystalliser body the temperature was transferred 

to the process fluid and the environment. However, while modelling, the thermal inertia of 

the crystalliser body was not considered and the heat transfer was said to occur directly 

between the process fluid and the jacket/environment. The thermal inertia of the crystalliser 

body was significant in comparison with that of the process fluid and arguably controlled most 

of the thermal behaviour. A more detailed discussion about characterising heat transfer in 

the continuous process is provided in the Appendix A3.  

4.4.2.3. Simulations for continuous crystallisation 

As discussed earlier, it was not possible to estimate the heat transfer characteristics using the 

present model. A consequence of this was that the heat of crystallisation could not be 

estimated and was set to zero. Simulations were carried out by manipulating the heat transfer 

parameters so as to impose the expeirmental crystalliser outlet temperature profile on the 

simulations. As done in previous cases, the experimental jacket temperature was taken as the 

input. A comparison between the same may be seen in Figure 4.12(a). Simulations were 

carried out by using the crystallisation parameter values obtained during the batch 

crystallisation. The experimental conditions of the CC8 experiment were simulated. The outlet 

flowrate was 20ml/min. The inlet concentration of the solvent-solute mixture was taken to 

be equal to the initial experimental outlet concentraiton. Simulation profiles for the outlet 

normailzed 0th moment, the outlet temperature and experimental profiles for the jacket 
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temperature and the outlet crystalliser temperature are shown in Figure 4.12(a). Simulation 

profiles for the mean and variances of the outlet PSD and the outlet super saturation ratio are 

shown in Figure 4.12(b). 

There was a significant difference between the absolute steady state outlet concentration 

values between the experimental and simulated conditions. The reason for this mismatch was 

attributed to the fact that solubility measurements for the case of sodium nitrite-water 

system were done using visual methods whereas the concentration measurements were 

done by more accurate and precise refractometer based measurements. Solubility data for 

sodium nitrite-water system was not reported in litereature and hence could not be used for 

simulations. Ideally, the crystallisation kinetic parameters need to be re-estimated with more 

accurate solubility data. However, even with the mismatch, we may say  that the overall 

methodolgy to model continuous crystallisation processes would remain the same.  

A useful inference may still be made by considering the model predicted and experimental 

normalized outlet concentraiton profiles. To enable the comparison between the simulated 

and experimental profiles, they were normalised according to the following formula: 

𝑌𝑛𝑜𝑟𝑚,𝑖 = (𝑌𝑖 − 𝑌𝑙𝑎𝑠𝑡)/(𝑌𝑓𝑖𝑟𝑠𝑡 − 𝑌𝑙𝑎𝑠𝑡) (4.69) 

 

A comparison between the normalized simulated and experimental outlet concentration 

profiles is shown in Figure 4.13.  As can be seen from the Figure there is an excellent 

comparison between the normalised simulated and experimental outlet concentration 

profiles. Hence, it may be inferred that the assumption that the MSZW for the case of 

continuous crystallisation is zero is validated. Also, the model was successful in capturing the 

overall concentration profile.  
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Figure 4.12. Simulation profiles for the CC8 experiment of (a) normalised 0th moment, the 
experimental and simulated outlet temperature and the experimental jacket temperature 

(b) mean and variance of the outlet particle size distribution and the outlet supersaturation 
ratio 

 

(a) 

(b) 
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Figure 4.13. Comparison between the normalised experimental and simulated outlet 

concentration profiles for the CC8 experiment 
 

4.4.2.4. Influence of operating parameters  

The developed model was used to understand the influence of key operating parameters on 

the product quality parameters. The product quality parameters of the mean and the variance 

of the PSD were considered. The mean of the PSD was defined using the moments as follows:  

𝜇 =
∫ 𝐿𝑛(𝐿)𝑑𝐿

∞

0

∫ 𝑛(𝐿)𝑑𝐿
∞

0

=
𝑀1

𝑀0
 (4.70) 

 

The variance of the PSD was defined using the moments as follows:  

𝜎2 =
∫ (𝐿 − 𝜇)2𝑛(𝐿)𝑑𝐿

∞

0

∫ 𝑛(𝐿)𝑑𝐿
∞

0

=
𝑀2

𝑀0
− 𝜇2 (4.71) 

 

Besides these, the yield of the crystallisation process and the time required to reach steady 

state were also investigated as key process performance parameters. The yield of the process 

can be defined as:  
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𝑦𝑖𝑒𝑙𝑑(%) = 100 (
𝐶𝑖𝑛 − 𝐶𝑜𝑢𝑡

𝐶𝑖𝑛 − 𝐶∗(𝑇)
) (4.72) 

 

The time required to reach steady state is important from a process control point of view. A 

system which has a faster response to step changes can essentially be controlled more easily.  

The influence of the crystalliser mixing behaviour (number of tanks) and key operating 

parameters of residence time and jacket temperature on the product quality and process 

performance parameters was investigated. Simulations were carried out considering a 

constant jacket temperature of 2800K and a very high heat transfer coefficient such that the 

reactor operating temperature is maintained equal to the jacket temperature. The term for 

the environmental losses was not considered in the present hypothetical study. The inlet 

temperature of the liquid was considered to be equal to the jacket temperature. The inlet 

concentration of the sodium nitrite solution was 0.81 g-solute/g-solvent. For carrying out the 

base case simulations, a flow rate of 20 ml/min (residence time of 65 min) and a mixing 

behaviour equivalent of 2 tanks in series was considered.  

As can be seen from the Figure 4.14(a), increasing the number of tanks-in-series leads to a 

substantial decrease in the time required to reach steady state. This can be observed for all 

the flow rates considered. Hence, we may conclude that crystallisers with more of a plug-flow 

like mixing behaviour respond faster to step changes and can be controlled easily. The time 

was normalised using residence time. From the Figure 4.14(b), it can be seen that the mean 

size of the outlet particle size distribution keeps on decreasing with decreasing residence time 

(increasing flow rates). The difference between the mean and the variance of the outlet 

particle size distribution, however, seems to remain unaffected by the residence time. A shift 

towards smaller particle sizes is also seen on increasing the number of tanks-in-series across 

all residence times. Hence, it may be concluded that to achieve smaller particle sizes, either 

the flow rates must be increased or the crystalliser should be designed to have a more ‘plug-

flow like’ mixing behaviour.  

On increasing the number of tanks-in-series, the difference between the mean and the 

variance of the outlet particle size distribution also increased. Thus, narrower particle size 

distributions are expected for crystallisers with a mixing behaviour approaching plug flow. 

With regards to yield (Figure 4.14(c)), it was observed that the yield decreases with decreasing 

residence time (increasing flow rates) regardless of the mixing behaviour. Also, crystallisers 
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with a mixing behaviour approaching plug flow were seen to give significantly higher yields 

for the same residence time than their CSTR counterparts.  

From the results discussed above, it may be concluded that crystallisers with mixing 

behaviours approaching plug flow offer higher yield, narrower outlet particle size 

distributions and better process control than their CSTR counterparts. Plug-flow crystallisers 

were also seen to offer smaller particle sizes for the same residence time than their CSTR 

counterparts. The residence time distribution was also identified as a key variable to control 

the mean size of the outlet particle size distribution. Decreasing the residence time 

(increasing flow rate) was seen to provide smaller particle sizes, however, at the expense of 

a lower yield.  

 

 

(a) 
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Figure 4.14. Comparison between the (a) normalised time to reach the steady state for 

different flow rates (b) mean and variance of the particle size distribution using 2 tanks and 
8 tanks-in-series (c) yield versus residence time plots obtained using 2 and 8 tanks-in-series 

 

(b) 

(c) 
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4.5. Summary & Conclusions 

In the present Chapter, a methodology to model continuous crystallisation processes was 

developed and implemented. According to the methodology, key crystallisation kinetic 

parameter values are first required to be estimated from experimental and modelling studies 

of batch processes. These parameter values can then be used while simulating continuous 

crystallisation processes. In line with this methodology, first, the experimental methods for 

the batch and continuous processes were discussed. The system considered was sodium 

nitrite in water. A comprehensive mathematical model based on a tanks-in-series framework 

was formulated. The model was formulated such that both continuous and batch processes 

could be simulated within the same framework. Appropriate reference variables were 

identified and used for formulating suitable dimensionless parameters to characterize 

crystallizer performance. The key issues relating to the onset of crystallisation for batch and 

continuous processes were addressed. For continuous crystallisation processes, it was argued 

that the onset of crystallisation occurs immediately after the solution reaches 

supersaturation.  

As per the methodology described in this Chapter, first, key crystallisation kinetic parameter 

values and heat transfer parameter values need to be estimated from batch studies. Then, 

the methods based on the CLD to PSD model described in Chapter 2 were used to estimate 

the average Sauter mean diameter during crystallisation for sodium nitrite crystals. It was 

observed that the square weighted chord length distribution (CLD) provide more robust 

estimate of the PSD than the unweighted CLD. Hysteresis style experiments (described in 

Chapter 3) were performed. The kinetic parameter values were estimated by comparing 

model predictions to the experimental results for the normalised 0th moment of particle 

counts and the average Sauter mean diameter simultaneously. The model was validated by 

comparing model predictions with experimental results for different sets of experiments. The 

validated model was then used to estimate the heat of crystallisation (-1.5x105 J/kg).  

For continuous crystallisation, first the mixing behaviour was characterised. Classical pulse-

tracer experiments were performed to find out the residence time distribution (RTD). By 

comparing the model predicted RTD to the experimental RTD, it was found that the 

continuous crystalliser used in this work resembled the mixing behaviour of two tanks-in-
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series. While characterizing heat transfer behaviour, it was observed that the developed heat 

transfer model was inadequate considering the large thermal inertial of the particular setup 

used in this work. It was argued that for continuous crystallisations, the onset of crystallisation 

occurs as soon as the crystalliser reaches supersaturation (in other words there is effectively 

no meta stable zone width). Simulations revealed that the onset of crystallisation was 

captured accurately for continuous crystallisation. Though there were some gaps in the 

validation of mathematical model, the results presented here indicate satisfactory support 

for the developed model. Further work such as measuring the outlet particle size distributions 

and gathering reliable solubility data will provide further validation of the continuous 

crystalliser model which was outside the scope of this work. 

The continuous crystalliser model was used to investigate the effect of key operating/design 

parameters (number of tanks, mean residence time) on key performance parameters (yield, 

mean and variance of the outlet PSD). It was concluded that crystallisers with a more ‘plug-

flow’ like behaviour were better from a process control point of view, providing for faster 

response to step changes. Smaller particle sizes and narrower PSD were also obtained as the 

mixing behaviour became more ‘plug-flow’ like. Crystallisers with more ‘plug-flow’ mixing 

behaviour were seen to offer substantially high yield as compared to the CSTR configuration. 

It was observed that as the mean residence time decreased, both the yield and the mean 

particle size decreased. There was no effect of the mean residence time on the ‘narrowness’ 

(difference between the mean and variance) of the PSD. In summary, crystallisers with 

increasing ‘plug-flow’ like mixing behaviour offer better control, higher yields and narrower 

PSD’s. The presented approach and modelling framework will be useful to design and 

optimize continuous crystallizers. 
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Symbols & Notation 

Symbol Description Unit 

𝐿 
Particle size co-ordinate to describe the number 
distribution function 

m 

𝑡 Time s 

𝑛(𝐿, 𝑡) Number density distribution function #/(m3-m) 

𝐺(𝐿, 𝑡) Crystal growth rate m/s 

B0 Nucleation rate #/(m3-s) 
δ Kronecker delta function - 
𝑣 Volumetric flow rate m3/s 

𝑉𝑅 Volume of crystallizer m3 

𝑀𝑖 
ith moment of the number density distribution 
function 

mi/m3 

𝑀𝐿 Total liquid phase mass kg 

𝜌𝐿 Liquid phase density kg/m3 

𝜖 Solid phase hold-up - 

�̇�𝐶 Rate of mass transfer between solid and liquid phases kg/s 
𝑀𝑆 Total solid phase mass kg 
𝜌𝑆 Solid phase density kg/m3 

𝜎𝑉 Particle volume shape factor - 

𝑦𝐷 Mass fraction of dissolved solute in liquid phase - 
𝐴, 𝐵 Constants for the linear liquid phase density function kg/m3 
𝐶𝑃,𝑆 Specific heat capacity of the solid phase J/(kg-K) 
𝐶𝑃,𝐿 Specific heat capacity of the liquid phase J/(kg-K) 

𝑇 Temperature K 
(−∆𝐻𝐶) Heat of crystallization J/kg 

〈𝑈𝐴〉 Lumped heat transfer coefficient J/(K-s) 
𝑘𝑔,0 Pre-exponential constant for growth rate (m/s)(kmol/m3)-g 

𝐸𝐴 Activation energy J/(kmol-K) 
𝑔 Growth rate exponent - 
𝑅 Universal gas constant J/kmol 

𝐶 Liquid phase solute concentration kmol/m3 

𝐶∗(𝑇) Solubility concentration as a function of temperature kmol/m3 

𝑘1 Constant for primary nucleation rate  #/(m3-s)(kmol/ m3)-n1 
𝑛1 Exponent for primary nucleation rate  - 

𝑘2 Constant for secondary nucleation rate  #/(( m2-s)(kmol/ m3)-n2) 

𝑛2 Exponent for secondary nucleation rate  - 

𝜇 Mean of particle size distribution m 

𝜎2 Variance in particle size distribution m2 
 

Subscripts    
𝑖 Moment index 𝑆 Solid phase 
𝑘 Tank index 𝐽 Jacket  
𝑜 Crystallizer inlet 𝐸 Environment 
𝐿 Liquid phase 𝑟𝑒𝑓 Reference variable 
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5. Summary and Conclusions 

The particle size distribution (PSD) is an important product quality attribute. The focused 

beam reflectance measurement (FBRM) probe allows for the online and in-situ detection of 

the chord length distribution (CLD). It is possible to derive the PSD from the FBRM probe 

measured CLD by applying suitable transformations. Majority of the existing models for the 

CLD to PSD problem follow a three-step approach: First a simple model is proposed to 

determine the CLD for a monodisperse particle population. Then, the CLD for a population of 

particles with a known PSD is determined by summing the individual contributions for each 

of the size classes. The individual contributions are calculated using the monodisperse particle 

population model. Finally, the inverse problem of deriving the PSD from a FBRM measured 

CLD becomes similar to a root finding problem wherein the guess PSD is changed iteratively 

until the model predicted CLD matches the measured CLD.  

Previous work which addressed the CLD to PSD problem contributed towards developing 

more ‘accurate’ models for the PSD to CLD problem by considering effects of particle shape 

or orientation and/or developing better mathematical methods for solving the 

mathematically ill-posed CLD to PSD inversion problem. These models were often 

cumbersome to implement and for many cases, numerically stable solutions could not be 

guaranteed. Some of these models also required an additional parameter (to describe the 

particle shape) which could not be specified a-priori. In the present study, a simple model was 

proposed for the PSD to CLD problem by making suitable simplifying assumptions for the 

monodisperse particle population model. Further, the particle population was represented 

by standard two parameter (mean, variance) forms for size distribution (normal, lognormal). 

Due to both these simplifying assumptions, the multi-parameter CLD to PSD inversion 

problem as encountered in previous studies was reduced to a two parameter inversion 

problem. Thereby, it was possible to implement the model using simple spread sheeting tools. 

The model was then validated for systems of spherical particles, irregularly shaped particles 

and for other systems of practical relevance.  

Modelling of crystallisation processes is important from a process design and control point of 

view. For the reliable prediction of crystalliser behaviour, it is important to have accurate 
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estimates for the values of key crystallisation kinetic parameters which describe phenomena 

like growth, nucleation and dissolution. However, the values for these parameters for even 

industrially important systems such as paracetamol-ethanol or ibuprofen-ethanol are not 

readily available in literature. Further, there is a lack of general consensus with regards to 

which rate laws (and consequently the choice of parameters) best describe crystallisation 

processes (nucleation, growth, dissolution) and how to go about estimating the parameter 

values for the same. Typically, these parameter values are highly system specific and need to 

be estimated through experimentation. Further, previous studies which estimate the kinetic 

parameter values, validate those values over a limited range of operating conditions and focus 

primarily of seeded crystallisation.  

Motivated by the general lack of reliable crystallisation kinetic parameter values, Chapter 3 

presents a protocol for their estimation. The specific case of unseeded cooling crystallisation 

of paracetamol in ethanol was considered. Experiments were performed wherein an 

undersaturated solution was cooled at specific cooling rates until after crystallisation and 

immediately reheated (using the same rate as applied for cooling) to the initial temperature. 

The particle counts were monitored during these crystallisation and subsequent dissolution 

cycles using the FBRM probe. Population balance equation (PBE) based models are widely 

used to model crystallisation processes. A standard method of moment’s solution to the PBE 

coupled with the equation for mass of dissolved solids was implemented. Parametric 

sensitivity studies were performed to identify the most critical parameters. Parameter values 

for the case of paracetamol-ethanol were estimated by comparing model predictions to 

experiments for one cooling rate. The kinetic model was then validated by comparing model 

predictions to experiments for other cooling rates using the parameters estimated previously.  

When the FBRM measured particle counts were plotted against the temperature, a hysteresis 

in particle counts was observed. Further it was observed that reducing the magnitude of the 

heating/cooling rate resulted in a twisting of the hysteresis loop. Capturing this effect of the 

twisting of the hysteresis loop through modelling was proposed for the rigorous validation of 

the crystallisation kinetic model. To enable to modelling of the dissolution stage, a full 

resolution of the PSD was needed. Hence, for the crystallisation stage, the PBE was solved 

using the high resolution finite volume method. For the dissolution stage, the PBE was solved 

using the moving pivot method. The kinetic parameter values for crystallisation estimated in 
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the previous step were used. The effect of the cooling/heat rates on the average diameter 

profiles was studied.   

Crystallisation processes are typically carried out in a batch mode of operation. Recent studies 

have shown that operating crystallisers in a continuous mode potentially offer several 

benefits over the batch mode of operation. Some of these are better product consistency, 

more control over product quality and reduced operating cost and space. However, the 

implementation of continuous crystallisation can be cumbersome due to the complex process 

dynamics involved. Recent studies which investigated the potential benefits of continuous 

crystallisation were performed on a lab-scale. Issues related to scale up and design were not 

addressed (except for the continuously oscillating baffled crystalliser). Mathematical 

modelling can go a long way towards aiding in process design and control especially when 

complex process dynamics are involved. Validated mathematical models may also cleverly be 

used to reduce the uncertainties associated with scaling up.  

In chapter 4, a generalised framework for modelling batch and continuous (fixed volume) 

crystallisation processes was presented. Key in capturing the performance of continuous 

crystallisers was capturing the mixing behaviour of the crystallisers. For capturing mixing 

behaviour, the tanks-in-series framework – a popular approach in chemical reaction 

engineering, was adopted in the presented model. The Population Balance Equation (PBE) 

was coupled with equations for solvent mass, dissolved solutes’ mass and the energy balance 

equation corresponding to each tank and equations for all tanks were solved simultaneously. 

The outlet flowrate through each tank was calculated by considering the volume changes 

occurring due to crystallisation in a fixed volume crystalliser. A separate equation for the 

volume of the crystalliser was solved for the batch mode of operation. The PBE solution was 

implemented using the standard method of moments.  

For model validation, the unseeded cooling crystallisation for a system of sodium nitrite in 

water was considered. A novel fixed volume continuous crystalliser assembly was considered 

in the present study. Hysteresis style batch experiments as described in chapter 3 were first 

performed to enable the estimation of kinetic parameters. Then, classical pulse tracer 

experiments were carried out to determine the mixing behaviour of the continuous 

crystalliser assembly. An assessment was made with regards to the best means to measure 

the outlet concentration in crystallisation operations. Heat transfer experiments were 
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performed to characterise the thermal behaviour of the crystalliser. Finally, continuous 

crystallisation experiments were performed under a fixed set of operating conditions. From a 

modelling point of view, the kinetic parameter values were estimated by the protocol 

described in Chapter 3 using batch experimental data. Simulations were performed for 

continuous crystallisation using the experimental operating conditions and using the batch 

kinetic model. The model was used to understand the effect of residence time and mixing 

behaviour (number of tanks) on the key performance parameters of mean, variance and yield. 

The following section summarises the major conclusions for each of the chapters.  

The simple model developed for deriving the Particle Size Distribution (PSD) from the Chord 

Length Distribution (CLD) measured by the FBRM probe did not require the specification of 

an additional parameter and enabled the direct calculation of the PSD from known CLD 

measurements using simple spread sheeting tools. The model was shown to accurately 

predict PSDs of two systems of regularly shaped (spherical) particles both consisting of 

ceramic beads. The model was then extended for various systems of irregularly shaped 

particles: sand, plasma alumina and zinc dust. The model was seen to reasonably predict the 

PSD, wherein the mean of the PSD was accurately predicted and the variance was over 

predicted. The applicability of the model was then demonstrated for couple of industrially 

relevant systems: paracetamol crystals and p-aminophenol crystals. The model was seen to 

accurately predict the PSD for both these cases. The performance of the present model for all 

the presented systems was seen to be at par with the popular models which were more 

cumbersome to implement.  

Chapter 3 described a general protocol to estimate key crystallisation kinetic parameters. 

Temperature cycling experiments were performed by varying the cooling/heating rates (0.3, 

0.5 and 0.7 K/min) for the unseeded cooling crystallisation of a system of paracetamol-

ethanol. A hysteresis was observed when the FBRM measured particle counts were plotted 

against the solution temperature (due to crystallisation and subsequent dissolution). Further 

it was observed that the cooling/heating rate had an effect of ‘twisting’ the hysteresis loop. 

It was argued that the ‘twisting’ effect of the hysteresis experiments could be used to develop 

a robust crystallisation kinetic model.  A model was formulated by solving the PBE using the 

standard method of moments. Growth rate parameters were taken from literature. A detailed 

parametric sensitivity study was performed with regards to the nucleation rate parameters. 
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It was concluded that it is sufficient to estimate only the constants for the nucleation rate 

expressions for the purposes of a fairly accurate crystallisation kinetic model. The parameters 

of the exponents for the primary and secondary nucleation rate laws may be assigned fixed 

‘representative’ values. Parameters estimated by comparing model predictions to 

experimental data for the 0.7 K/min experiment could be used to predict experimental data 

for the 0.3 K/min experiment. There was some mismatch with regards to the 0.5 K/min 

experiment.  

To enable simulation of the hysteresis loop, the full resolution of the PSD needed to be solved. 

For this purpose, a combined solver using the high resolution finite volume (HRFV) method 

for the crystallisation step and the moving pivot method for the dissolution step was 

implemented. The solver was seen to reasonably capture the ‘twisting’ effect of the hysteresis 

loop. The model was also seen to be able to predict qualitatively, the counter-intuitive trend 

of increasing average particle size during dissolution. Further, the dissolution could be 

captured a-priori as no additional parameters were needed for specifying the dissolution rate. 

The shape of the dissolution curve depends on the PSD after crystallisation for obvious 

reasons. Hence, it can be argued that the hysteresis loop overall provided a ‘stronger’ 

validation for the crystallisation kinetic model. 

Chapter 4 described a generalised framework for modelling batch and continuous 

crystallisation processes. For the purposes of model validation, the accuracy of the CLD to PSD 

model described in Chapter 2 to estimate the average Sauter mean diameter during 

crystallisation for sodium nitrite crystals was investigated. It was observed that the square 

weighted chord length distribution (CLD) gave ‘lesser error prone’ estimates of the PSD than 

the unweighted CLD.  The crystallisation kinetic parameter values were estimated by 

comparing model predictions to the experimental results for the normalised 0th moment of 

particle counts and the average Sauter mean diameter simultaneously. The model was 

validated by comparing model predictions with experimental results for different sets of 

experiments. The validated model was then used to estimate the heat of crystallisation (-

1.5e5 J/kg).  

For the novel continuous crystalliser considered, classical pulse-tracer experiments were 

performed to find out the residence time distribution (RTD). By comparing the model 

predicted RTD to the experimental RTD, it was found that the continuous crystalliser 
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resembled the mixing behaviour of two tanks-in-series. While characterizing heat transfer 

behaviour, it was observed that the developed heat transfer model was inadequate 

considering the particular setup. It was concluded that the thermal inertia of the continuous 

crystalliser needed to be considered for any meaningful heat transfer study. It was 

hypothesized for continuous crystallisation simulations that the onset of crystallisation occurs 

as soon as the crystalliser reaches supersaturation. Simulations revealed that the onset of 

crystallisation was captured accurately for continuous crystallisation.  

The continuous crystalliser model was used to investigate the effect of key operating/design 

parameters (number of tanks, mean residence time) on key performance parameters (yield, 

mean and variance of the outlet PSD). It was concluded that crystallisers with a more ‘plug-

flow’ like behaviour were better from a process control point of view, providing for faster 

response to step changes. Smaller particle sizes and narrower PSD were also obtained as the 

mixing behaviour became more ‘plug-flow’ like. Crystallisers with more ‘plug-flow’ mixing 

behaviour were seen to offer substantially high yield as compared to the CSTR configuration. 

It was observed that as the mean residence time decreased, both the yield and the mean 

particle size decreased. There was no effect of the mean residence time on the ‘narrowness’ 

(difference between the mean and variance) of the PSD. In summary, crystallisers with 

increasing ‘plug-flow’ like mixing behaviour offered better control, higher yields and narrower 

PSD’s.  

The following section outlines the further work that may be carried out to build upon the 

work presented in this thesis. In Chapter 2 a simple model was presented to estimate the PSD 

from the FBRM probe measured CLD. Further work would be to test the validity of the model 

for more systems of practical relevance. Separate single particle models may be developed 

for specific shapes such as needle shape, plate shape etc. while keeping the same framework 

as described in Chapter 2 for the CLD to PSD problem.  

Further work for chapter 3 would be to investigate in more detail the different rate laws that 

govern the crystallisation kinetic processes. The effect of particle size on the growth rate, the 

effect of temperature and other factors on the secondary nucleation rate etc. need to be 

investigated in more detail. On an experimental side, the crystallisation processes must be 

characterised using more process analytical technologies (like the measurement of 

concentration, particle size, shape etc.). These experimental measurements when coupled 



165 
 

with modelling studies will provide more insights into the dynamics of crystallisation 

processes (evolving better rate laws, accurate estimation of kinetic parameters etc.). Further 

work may also be directed along estimating the crystallisation kinetic model parameters for 

different systems of practical relevance by following the protocol mentioned in the present 

study. Such a database would be helpful for rapid designing of crystallisation processes for 

those systems.    

Chapter 4 presented a generalised framework to model batch and continuous crystallisation 

processes. A novel continuous crystalliser assembly was investigated experimentally. From an 

experimental point of view, further work would be to better characterise the continuous 

crystallisation experiments using process analytical technologies (particle size, concentration, 

yield etc.). The effects of scaling up of a continuous crystalliser assembly also need to be 

investigated. Crystallisation is highly system dependent and hence studying the same 

crystalliser assembly for various types of systems will also yield valuable insights into 

continuous crystalliser design. From a modelling perspective, inclusion of the thermal inertia 

of the crystalliser body in the heat transfer model and experimentally measuring the 

crystalliser body temperature are required to accurately characterize heat transfer behaviour. 

Further work along the fundamental crystallisation kinetic aspects may be coupled by similar 

studies as for Chapter 3.  
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Annexure A1 

A1.1. Bertrand’s Paradox 

Consider an equilateral triangle inscribed in a circle. Suppose that a chord is chosen at 

random. What is the probability that the chosen chord is longer than the side of the triangle?  

Bertrand proposed three different methods to determine this probability. All of these 

methods apparently seemed valid yet yielded significantly different results.  

A1.1.1. Method 1  

Suppose two points are chosen at random on the circumference of the circle. Now, the 

triangle is rotated along the circumference of the circle such that a vertex of the triangle 

coincides with one of the points chosen at random as shown in Figure A1. The triangle 

naturally divides the circle into three different arcs. If the other endpoint lies within the arcs 

of the circle corresponding to the red chords, then, the chord length will be less than the side 

of the triangle. The only way for the chord length to be longer than the side of the triangle is 

for the second end point to lie within the arc of the circle represented by the blue chord. Thus 

the probability that the chosen chord is longer than the side of the triangle is 1/3. 

 

Figure A1.1. Method to determine the probability problem posed by Bertrand by Method 1 
 

A1.1.2. Method 2  

After a chord is chosen randomly, consider the radius of the circle which is perpendicular to 

these chords. This radius will pass through the midpoint of the chord in question. Now, 
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assume that the triangle is rotated such that a side of the triangle is perpendicular to the 

radius as shown in Figure A1.2. Now, a side of the triangle necessarily divides the radius into 

2 equal divisions. Now, if the chord lies in the region of the radius indicated by the blue chord, 

then the size of the chord will be greater than the length of the triangle. If it falls in the region 

of the radius as indicated by the red chord, then the size of the chord will be smaller than the 

length of the triangle. Thus the probability that a chosen chord is longer than the length of 

the triangle is 1/2. 

 
Figure A1.2. Method to determine the probability problem posed by Bertrand by Method 2 

 

A1.1.3. Method 3 

Consider a circle inscribed with the equilateral triangle as shown in Figure A1.3. The circle has 

half the radius of the original circle. Now, consider a randomly chosen chord. If the midpoint 

of the chord lies inside the circle, as indicated by the blue chord, then the length of the chord 

will be longer than the side of the triangle. If however, the midpoint lies outside the circle, 

the length will be lesser than the side of the triangle. The area of the smaller circle is one 

fourth the area of the larger circle. Hence, the probability that a chosen chord is longer than 

the length of the triangle is 1/4. 

The classical solution of the paradox depends upon the method by which a chord is chosen at 

random. The three scenarios mentioned by Bertrand correspond to three different methods 

by which the random chord is chosen. In the absence of additional information with regards 

to how the random chord is chosen, there is no reason to prefer one over another. 
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Figure A1.3. Method to determine the probability problem posed by Bertrand by Method 3 
A1.1.4. Classical Solution  
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Annexure A2  

A2.1. Discrete Equations for High Resolution Finite Volume Scheme (HRFV) 

The equation for concentration, Equation 3.26, is discretized in first order with respect to time 

and the discretized version can be written as follows: 

𝐶𝑚+1 =  𝐶𝑚 − (
𝜌𝑝

𝑀𝑤
) (

𝜋

6
) ∑ 𝑋𝑖

3𝑁
𝑖=1 (𝑓𝑖

𝑚+1 −  𝑓𝑖
𝑚) A2.1 

The equation for temperature of the solution is written as Equation 3.15 and the discretized 

form of the temperature equation may be written as:  

𝑇𝑚+1 = 𝑇𝑚 +
𝑘𝑅

60
 A2.2 

The temperature is also discretized as first order with respect to time in line with the HRFV 

solution scheme. The Equations A2.1 and A2.2, along with the other discretized equations for 

the HRFV scheme, were solved simultaneously forward in time to obtain the solution of the 

population balance equation for the case of nucleation and growth.  

A2.2. Discrete Equations for Moving Pivot Method 

The moving pivot method presents an initial value problem. The equations for the boundary 

pivot location and the representative pivot location required for the solution of the 

population balance equation for dissolution are presented as Equations 3.26 and 3.27. The 

equations were discretized with first order with respect to time and the discrete forms of the 

equation may be written as:  

𝑉𝑖
𝑚+1 = 𝑉𝑖

𝑚 − 2𝑘𝑆 A2.3 

𝑋𝑖
𝑚+1 = 𝑋𝑖

𝑚 − 2𝑘𝑆 A2.4 

The discrete equation for the concentration of the dissolved solids presented in Equation 3.30 

may be written as: 

𝐶𝑚+1 =  𝐶𝑚 − (
𝜌𝑝

𝑀𝑤
) (

𝜋

6
) ∑ 3𝑋𝑖

2𝑓𝑖
𝑁
𝑖=1 (𝑋𝑖

𝑚+1 −  𝑋𝑖
𝑚) A2.5 
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The discrete equation for the temperature is the same as that for the HRFV scheme and is 

given as in Equation A2.2. These equations are solved simultaneously forward in time starting 

from the initial conditions to obtain the solution of the population balance equations.  

A2.3. Mass Transfer Coefficient for Dissolution 

The coefficient of mass transfer may be calculated as follows. The first parameter that we 

require is the diffusion coefficient which may be estimated from the Stokes-Einstein equation 

as: 

𝐷 =
𝑘𝑇

2𝜋𝜂𝑙𝑑𝑚
 A2.6 

The molecular diameter used in the Stokes-Einstein equation is estimated from the following 

relation: 

𝑑𝑚 = √
𝑀𝑤

𝜌𝑝𝑁𝐴

3
 A2.7 

The mass transfer coefficient can then be predicted as a function of the particle size ‘X’ from 

the following relationship: 

𝑘𝑑 =
𝐷

𝑋
(2 + 0.8 (

𝜖𝑋4𝜌𝑙
3

𝜂𝑙
3 )

0.2

𝑆𝑐1/3) A2.8 

The Schmidt number is defined as: 

𝑆𝑐 =
𝜂𝑙

𝐷𝜌𝑙
 A2.9 

For stirred vessels, the mean specific power input can be estimated from: 

𝜖 = 𝑁𝑒
𝑣𝑠

3𝑑𝑠
5

𝑉𝑟
 A2.10 

Typical values of Newton numbers for the stirred vessels with axial flow impellers (Re<104) 

are in the range of 0.3 to 0.7. Thus, an intermediate value of 0.5 is used as is also done by 

Worlitschek et. al. (2004) 

 

For a detailed Symbols & Notations, kindly refer to the Symbols & Notations of Chapter 3 

given on page 110. 
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Annexure A3 

A3.1. Derivation of the moment equations  

The population balance equation is: 

𝜕𝑛(𝐿)

𝜕𝑡
+

𝜕𝑛(𝐿)𝐺(𝐿)

𝜕𝐿
=  

𝑣0𝑛0(𝐿) − 𝑣𝑛(𝐿)

𝑉𝑅
 A3.1 

 

Multiplying Li and integrating both sides with respect to dL, the RHS becomes:  

∫ 𝐿𝑖  
𝑣0𝑛0(𝐿) − 𝑣𝑛(𝐿)

𝑉𝑅
𝑑𝐿

∞

0

=
𝑣0𝑀𝑖,0 − 𝑣𝑀𝑖

𝑉𝑅
  

 

Multiplying Li to the first term in the LHS we get the following:  

 

The second terms in the LHS can be integrated by parts (assuming size independent growth 

rate) to give the following:  

∫ 𝐿𝑖  
∞

0

𝜕𝑛(𝐿)𝐺(𝐿)

𝜕𝐿
𝑑𝐿 =  −0𝑖𝐵0 − 𝑖𝐺𝑀𝑖−1  

 

B0 is the flux of particles entering at L = 0 or also the nucleation rate.   

Combining all the above equations, the moment transformation of the PBE becomes:  

𝑑𝑀𝑖

𝑑𝑡
= 0𝑖𝐵0 + 𝑖𝐺𝑀𝑖−1 +

𝑣0𝑀𝑖,0 − 𝑣𝑀𝑖

𝑉𝑅
 A3.2 

 

If the crystallizer volume is not constant (as in the cases of batch reactors), then the equation 

can be rewritten as:  

𝑑𝑉𝑅𝑀𝑖

𝑑𝑡
= 0𝑖𝐵0𝑉𝑅 + 𝑖𝐺𝑀𝑖−1𝑉𝑅 + 𝑣0𝑀𝑖,0 − 𝑣𝑀𝑖  A3.3 
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A3.2. Elimination of Tref from the Heat Balance Equation 

The heat balance can be written as: 

𝑑(𝑀𝐿(1 − 𝑦𝐷)𝐶𝑃,𝐿 + 𝑀𝐿𝑦𝐷𝐶𝑃,𝑆 + 𝑀𝑆𝐶𝑃,𝑆)(𝑇 − 𝑇𝑟𝑒𝑓)

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝑦𝐷,0𝐶𝑃,𝑆(𝑇0 − 𝑇𝑟𝑒𝑓)

+ 𝑣0𝜌𝐿(1 − 𝜖0)(1 − 𝑦𝐷,0)𝐶𝑃,𝐿(𝑇0 − 𝑇𝑟𝑒𝑓)

+ 𝑣0𝜌𝑆𝜖0𝐶𝑃,𝑆(𝑇0 − 𝑇𝑟𝑒𝑓) − 𝑣𝜌𝐿(1 − 𝜖)𝑦𝐷𝐶𝑃,𝑆(𝑇 − 𝑇𝑟𝑒𝑓)

− 𝑣𝜌𝐿(1 − 𝜖)(1 − 𝑦𝐷)𝐶𝑃,𝐿(𝑇 − 𝑇𝑟𝑒𝑓) − 𝑣𝜌𝑆𝜖𝐶𝑃,𝑆(𝑇 − 𝑇𝑟𝑒𝑓)

+ �̇�𝐶  (−∆𝐻𝐶) + 〈𝑈𝐴〉𝐽(𝑇𝐽 − 𝑇) − 〈𝑈𝐴〉𝐸(𝑇 − 𝑇𝐸) 

A3.4 

Multiplying mass balance of the dissolved solid’s phase by CpTref: 

𝑑𝑀𝐿𝑦𝐷𝐶𝑃,𝑆𝑇𝑟𝑒𝑓

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝑦𝐷,0𝐶𝑃,𝑆𝑇𝑟𝑒𝑓 − 𝑣𝜌𝐿(1 − 𝜖)𝑦𝐷𝐶𝑃,𝑆𝑇𝑟𝑒𝑓

− �̇�𝐶𝐶𝑃,𝑆𝑇𝑟𝑒𝑓 

 

 

Multiplying mass balance of solvent phase by CP,LTref and adding the resulting equation into 

the above equation, we get the following relation independent of Tref: 

𝑑𝑀𝐿(1 − 𝑦𝐷)𝐶𝑃,𝐿𝑇𝑟𝑒𝑓

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)(1 − 𝑦𝐷,0)𝐶𝑃,𝐿𝑇𝑟𝑒𝑓

− 𝑣𝜌𝐿(1 − 𝜖)(1 − 𝑦𝐷)𝐶𝑃,𝐿𝑇𝑟𝑒𝑓 

 

 

Similarly for the solid phase we have:  

𝑑𝑀𝑆𝐶𝑃,𝑆𝑇𝑟𝑒𝑓

𝑑𝑡
= 𝑣0𝜌𝑆𝜖0𝐶𝑃,𝑆𝑇𝑟𝑒𝑓 − 𝑣𝜌𝑆𝜖𝐶𝑃,𝑆𝑇𝑟𝑒𝑓 + �̇�𝐶𝐶𝑃,𝑆𝑇𝑟𝑒𝑓  

 

Adding the above equations to the original energy balance equation, we are left with the 

following relation independent of Tref:  

𝑑(𝑀𝐿(1 − 𝑦𝐷)𝐶𝑃,𝐿 + 𝑀𝐿𝑦𝐷𝐶𝑃,𝑆 + 𝑀𝑆𝐶𝑃,𝑆)𝑇

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝑦𝐷,0𝐶𝑃,𝑆𝑇0 + 𝑣0𝜌𝐿,0(1 − 𝜖0)(1 − 𝑦𝐷,0)𝐶𝑃,𝐿𝑇0

+ 𝑣0𝜌𝑆𝜖0𝐶𝑃,𝑆𝑇0 − 𝑣𝜌𝐿(1 − 𝜖)𝑦𝐷𝐶𝑃,𝑆𝑇

− 𝑣𝜌𝐿(1 − 𝜖)(1 − 𝑦𝐷)𝐶𝑃,𝐿𝑇 − 𝑣𝜌𝑆𝜖𝐶𝑃,𝑆𝑇 + �̇�𝐶  (−∆𝐻𝐶)

+ 〈𝑈𝐴〉𝐽(𝑇𝐽 − 𝑇) − 〈𝑈𝐴〉𝐸(𝑇 − 𝑇𝐸) 

A3.5 
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A3.3. Outlet velocity relations 

It should be noted that for a constant volume process the following relation holds true:  

𝑀𝐿

𝜌𝐿
+

𝑀𝑆

𝜌𝑆
= 𝑉𝑅 A3.6 

 

Differentiating w.r.t t we get:  

1

𝜌𝐿

𝑑𝑀𝐿

𝑑𝑡
−

𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
+

1

𝜌𝑆

𝑑𝑀𝑆

𝑑𝑡
= 0  

 
𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
=

1

𝜌𝐿

𝑑𝑀𝐿

𝑑𝑡
+

1

𝜌𝑆

𝑑𝑀𝑆

𝑑𝑡
  

 
𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
=

1

𝜌𝐿
{𝑣0𝜌𝐿,0(1 − 𝜖0) − 𝑣𝜌𝐿(1 − 𝜖) − �̇�𝐶}

+
1

𝜌𝑆
{𝑣0𝜌𝑆𝜖0 − 𝑣𝜌𝑆𝜖 + �̇�𝐶} 

 

 

𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
= {𝑣0

𝜌𝐿,0

𝜌𝐿

(1 − 𝜖0) − 𝑣(1 − 𝜖) −
�̇�𝐶

𝜌𝐿
} + {𝑣0𝜖0 − 𝑣𝜖 +

�̇�𝐶

𝜌𝑆
}  

 

𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
= {𝑣0

𝜌𝐿,0

𝜌𝐿

(1 − 𝜖0) + 𝑣0𝜖0} − 𝑣 − {
�̇�𝐶

𝜌𝐿
−

�̇�𝐶

𝜌𝑆
}  

 

𝑣 = {𝑣0

𝜌𝐿,0

𝜌𝐿

(1 − 𝜖0) + 𝑣0𝜖0} −
𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
− {

�̇�𝐶

𝜌𝐿
−

�̇�𝐶

𝜌𝑆
} (3.7 

 

Now there are two simplifying assumptions we can make to proceed from here.  

Constant density 

Assuming a constant density, the above equation for velocity directly reduces to:  

𝑣 = 𝑣0 − �̇�𝐶 {
𝜌𝑆 − 𝜌𝐿

𝜌𝑆𝜌𝐿
} A3.8 

 

Linearly varying density 

𝜌𝐿 = 𝐴 + 𝐵𝑦𝐷 A3.9 
 

𝑣 = {𝑣0

𝜌𝐿,0

𝜌𝐿

(1 − 𝜖0) + 𝑣0𝜖0} −
𝐵𝑀𝐿

𝜌𝐿
2

𝑑𝑦𝐷

𝑑𝑡
− {

�̇�𝐶

𝜌𝐿
−

�̇�𝐶

𝜌𝑆
} A3.10 

 

Differentiating the dissolved solute mass:  
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𝑑𝑀𝐿𝑦𝐷

𝑑𝑡
= 𝑦𝐷

𝑑𝑀𝐿

𝑑𝑡
+ 𝑀𝐿

𝑑𝑦𝐷

𝑑𝑡
  

 

𝑀𝐿

𝑑𝑦𝐷

𝑑𝑡
= 𝑣0𝜌𝐿,0(1 − 𝜖0)𝑦𝐷,0 − 𝑣𝜌𝐿(1 − 𝜖)𝑦𝐷 − �̇�𝐶

− 𝑦𝐷{𝑣0𝜌𝐿,0(1 − 𝜖0) − 𝑣𝜌𝐿(1 − 𝜖) − �̇�𝐶} 
 

 
𝑑𝑦𝐷

𝑑𝑡
=

1

𝑀𝐿
{𝑣0𝜌𝐿,0(1 − 𝜖0)(𝑦𝐷,0 − 𝑦𝐷) − �̇�𝐶(1 − 𝑦𝐷)}  

 

It should be noted that for the linearly varying density and constant density, the outlet 

volumetric flow rate may still be obtained explicitly and does not need to be solved 

simultaneously.  

A3.4. Equation for Crystallizer Volume in Batch Mode 

For the case of a batch reactor, instead of solving for the outlet velocity, we will have to solve 

for the crystallizer volume instead.  

𝑀𝐿

𝜌𝐿
+

𝑀𝑆

𝜌𝑆
= 𝑉𝑅 A3.11 

 

Differentiating w.r.t t we get:  

𝑑𝑉𝑅

𝑑𝑡
=

1

𝜌𝐿

𝑑𝑀𝐿

𝑑𝑡
−

𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
+

1

𝜌𝑆

𝑑𝑀𝑆

𝑑𝑡
  

 

Setting 𝑣0 = 𝑣 = 0, we get: 

𝑑𝑉𝑅

𝑑𝑡
= −

�̇�𝐶

𝜌𝐿
−

𝑀𝐿

𝜌𝐿
2

𝑑𝜌𝐿

𝑑𝑡
+

�̇�𝐶

𝜌𝑆
 A3.12 

 

Again as before, there are two simplifying assumptions we can make to proceed from here. 

Constant density 

𝑑𝑉𝑅

𝑑𝑡
= −

�̇�𝐶

𝜌𝐿
+

�̇�𝐶

𝜌𝑆
 A3.13 

 

Linearly varying density 

𝑑𝑉𝑅

𝑑𝑡
= −

�̇�𝐶

𝜌𝐿
−

𝐵𝑀𝐿

𝜌𝐿
2

𝑑𝑦𝐷

𝑑𝑡
+

�̇�𝐶

𝜌𝑆
 A3.14 

 

Differentiating the dissolved solute mass:  
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𝑑𝑀𝐿𝑦𝐷

𝑑𝑡
= 𝑦𝐷

𝑑𝑀𝐿

𝑑𝑡
+ 𝑀𝐿

𝑑𝑦𝐷

𝑑𝑡
  

𝑑𝑦𝐷

𝑑𝑡
=

1

𝑀𝐿
{𝑣0𝜌𝐿,0(1 − 𝜖0)(𝑦𝐷,0 − 𝑦𝐷) − �̇�𝐶(1 − 𝑦𝐷)}  

 

Setting 𝑣0 = 𝑣 = 0, we get: 

𝑑𝑦𝐷

𝑑𝑡
=

−�̇�𝐶(1 − 𝑦𝐷)

𝑀𝐿
  

 

A3.5. Derivation of Non-Dimensional Equations 

Moment equations for constant crystallizer unit volume: 

𝐿𝑟𝑒𝑓
𝑖 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓𝑡𝑟𝑒𝑓

𝑑𝑀𝑖,𝑘
′

𝑑𝑡′

= 0𝑖
𝐿𝑟𝑒𝑓

𝑖 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓𝑡𝑟𝑒𝑓
𝐵0,𝑘

′ + 𝑖
𝐿𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝐺𝑘

′
𝐿𝑟𝑒𝑓

𝑖−1 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓
𝑀𝑖−1,𝑘

′

+
𝐿𝑟𝑒𝑓

𝑖 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓𝑡𝑟𝑒𝑓

𝑣𝑘−1
′ 𝑀𝑖,𝑘−1

′ − 𝑣𝑘
′ 𝑀𝑖,𝑘

′

𝑉𝑅,𝑘
′  

 

 

𝑑𝑀𝑖,𝑘
′

𝑑𝑡′
= 0𝑖𝐵0,𝑘

′ + 𝑖𝐺𝑘
′ 𝑀𝑖−1,𝑘

′ +
𝑣𝑘−1

′ 𝑀𝑖,𝑘−1
′ − 𝑣𝑘

′ 𝑀𝑖,𝑘
′

𝑉𝑅,𝑘
′  A3.15 

 

Moment equations for non-constant crystallizer unit volume: 

𝐿𝑟𝑒𝑓
𝑖 𝑀0,𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑𝑉𝑅,𝑘
′ 𝑀𝑖,𝑘

′

𝑑𝑡′

= 0𝑖
𝐿𝑟𝑒𝑓

𝑖 𝑀0,𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝐵0,𝑘

′ 𝑉𝑅,𝑘
′ + 𝑖

𝐿𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝐺𝑘

′
𝐿𝑟𝑒𝑓

𝑖−1 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓
𝑀𝑖−1,𝑘

′ 𝑉𝑟𝑒𝑓𝑉𝑅,𝑘
′

+
𝐿𝑟𝑒𝑓

𝑖 𝑀0,𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
(𝑣𝑘−1

′ 𝑀𝑖,𝑘−1
′ − 𝑣𝑘

′ 𝑀𝑖,𝑘
′ ) 

 

 

𝑑𝑉𝑅,𝑘
′ 𝑀𝑖,𝑘

′

𝑑𝑡′
= 0𝑖𝐵0,𝑘

′ 𝑉𝑅,𝑘
′ + 𝑖𝐺𝑘

′ 𝑀𝑖−1,𝑘
′ 𝑉𝑅,𝑘

′ + 𝑣𝑘−1
′ 𝑀𝑖,𝑘−1

′ − 𝑣𝑘
′ 𝑀𝑖,𝑘

′  A3.16 

 

Equation for mass of liquid phase in crystallizer unit: 

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑𝑀𝐿,𝑘
′

𝑑𝑡′

=
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1) −

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1 − 𝜖𝑘)

−
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
�̇�𝐶,𝑘

′  
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𝑑𝑀𝐿,𝑘
′

𝑑𝑡′
= 𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1) − 𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1 − 𝜖𝑘) − �̇�𝐶,𝑘

′
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑𝑀𝐿,𝑘
′

𝑑𝑡′

=
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1) −

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1 − 𝜖𝑘)

−
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
�̇�𝐶,𝑘

′  

A3.17 

 

Equation for mass of solid phase in crystallizer unit: 

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑𝑀𝑆,𝑘
′

𝑑𝑡′
=

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ 𝜌𝑆
′ 𝜖𝑘−1 −

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ 𝜌𝑆
′ 𝜖𝑘 +

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
�̇�𝐶,𝑘

′   

 
𝑑𝑀𝑆,𝑘

′

𝑑𝑡′
= 𝑣𝑘−1

′ 𝜌𝑆
′ 𝜖𝑘−1 − 𝑣𝑘

′ 𝜌𝑆
′ 𝜖𝑘 − �̇�𝐶,𝑘

′  A3.18 

 

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
�̇�𝐶,𝑘

′ = 3𝜎𝑉

𝐿𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝐺𝑘

′
𝐿𝑟𝑒𝑓

2 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓
𝑀2,𝑘

′ 𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝜌𝑆
′ 𝑉𝑅,𝑘

′   

 

�̇�𝐶,𝑘
′ = 3𝜎𝑉

𝐿𝑟𝑒𝑓
3 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓
𝐺𝑘

′ 𝑀2,𝑘
′ 𝜌𝑆

′ 𝑉𝑅,𝑘
′ = 3𝛽1𝐺𝑘

′ 𝑀2,𝑘
′ 𝜌𝑆

′ 𝑉𝑅,𝑘
′  A3.19 

 

Equation for mass of dissolved solid:  

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑𝑀𝐿,𝑘
′ 𝑦𝐷,𝑘

𝑑𝑡′

=
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1)𝑦𝐷,𝑘−1 −

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1

− 𝜖𝑘)𝑦𝐷,𝑘 −
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
�̇�𝐶,𝑘

′  

 

 
𝑑𝑀𝐿,𝑘

′ 𝑦𝐷,𝑘

𝑑𝑡′
= 𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1)𝑦𝐷,𝑘−1 − 𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1 − 𝜖𝑘)𝑦𝐷,𝑘 − �̇�𝐶,𝑘

′  A3.20 
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Equation for heat balance of crystallizer unit:  

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑(𝑀𝐿,𝑘
′ 𝐶𝑃,𝑀𝐼𝑋,𝑘

′ + 𝑀𝑆,𝑘
′ 𝐶𝑃,𝑆

′ )𝑇𝑘
′

𝑑𝑡′

=
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1)𝐶𝑃,𝑀𝐼𝑋,𝑘−1

′ 𝑇𝑘−1
′

−
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ 𝜌𝐿,𝑘
′ (1 − 𝜖𝑘)𝐶𝑃,𝑀𝐼𝑋,𝑘

′ 𝑇𝑘
′

+
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ 𝜌𝑆
′ 𝜖𝑘−1𝐶𝑃,𝑆

′ 𝑇𝑘−1
′

−
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ 𝜌𝑆
′ 𝜖𝑘𝐶𝑃,𝑆

′ 𝑇𝑘
′

+
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
�̇�𝐶,𝑘

′
(−∆𝐻𝐶)

𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

+
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

〈𝑈𝐴〉𝐽,𝑘𝑡𝑟𝑒𝑓

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓
(𝑇𝐽

′ − 𝑇𝑘
′)

−
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓𝑇𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

〈𝑈𝐴〉𝐸,𝑘𝑡𝑟𝑒𝑓

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓𝐶𝑃,𝑟𝑒𝑓

(𝑇𝑘
′ − 𝑇𝐸

′ ) 

 

 

𝑑(𝑀𝐿,𝑘
′ 𝐶𝑃,𝑀𝐼𝑋,𝑘

′ + 𝑀𝑆,𝑘
′ 𝐶𝑃,𝑆

′ )𝑇𝑘
′

𝑑𝑡′

= 𝑣𝑘−1
′ 𝜌𝐿,𝑘−1

′ (1 − 𝜖𝑘−1)𝐶𝑃,𝑀𝐼𝑋,𝑘−1
′ 𝑇𝑘−1

′

− 𝑣𝑘
′ 𝜌𝐿,𝑘

′ (1 − 𝜖𝑘)𝐶𝑃,𝑀𝐼𝑋,𝑘
′ 𝑇𝑘

′ + 𝑣𝑘−1
′ 𝜌𝑆

′ 𝜖𝑘−1𝐶𝑃,𝑆
′ 𝑇𝑘−1

′

− 𝑣𝑘
′ 𝜌𝑆

′ 𝜖𝑘𝐶𝑃,𝑆
′ 𝑇𝑘

′ + 𝛽2�̇�𝐶,𝑘
′ + 𝛽3,𝑘(𝑇𝐽

′ − 𝑇𝑘
′) − 𝛽4,𝑘(𝑇𝑘

′ − 𝑇𝐸
′ ) 

A3.21 

 

The equations for the outlet velocity can be written as:  

Constant density 

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ =
𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ −
𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
�̇�𝐶,𝑘

′
1

𝜌𝑟𝑒𝑓
{

𝜌𝑆
′ − 𝜌𝐿

′

𝜌𝑆
′ 𝜌𝐿

′ }  

 

𝑣𝑘
′ = 𝑣𝑘−1

′ − �̇�𝐶,𝑘
′ {

𝜌𝑆
′ − 𝜌𝐿

′

𝜌𝑆
′ 𝜌𝐿

′ } A3.22 

 

Linearly varying density 

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘

′ = {
𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′
𝜌𝐿,𝑘−1

′

𝜌𝐿,𝑘
′ (1 − 𝜖𝑘−1) +

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝑣𝑘−1

′ 𝜖𝑘−1}

−
𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝛽𝐷,2𝑀𝐿,𝑘
′

𝜌𝐿,𝑘
′2

𝑑𝑦𝐷,𝑘

𝑑𝑡′
−

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
{

�̇�𝐶,𝑘
′

𝜌𝐿,𝑘
′ −

�̇�𝐶,𝑘
′

𝜌𝑆
′ } 
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1

𝑡𝑟𝑒𝑓

𝑑𝑦𝐷,𝑘

𝑑𝑡′
=

1

𝑡𝑟𝑒𝑓

1

𝑀𝐿,𝑘
′ {𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1)(𝑦𝐷,𝑘−1 − 𝑦𝐷,𝑘)

− �̇�𝐶,𝑘
′ (1 − 𝑦𝐷,𝑘)} 

 

 

𝑣𝑘
′ = {𝑣𝑘−1

′
𝜌𝐿,𝑘−1

′

𝜌𝐿,𝑘
′ (1 − 𝜖𝑘−1) + 𝑣𝑘−1

′ 𝜖𝑘−1} −
𝛽𝐷,2𝑀𝐿,𝑘

′

𝜌𝐿,𝑘
′2

𝑑𝑦𝐷,𝑘

𝑑𝑡′
− {

�̇�𝐶,𝑘
′

𝜌𝐿,𝑘
′ −

�̇�𝐶,𝑘
′

𝜌𝑆
′ } A3.23 

 
𝑑𝑦𝐷,𝑘

𝑑𝑡′
=

1

𝑀𝐿,𝑘
′ {𝑣𝑘−1

′ 𝜌𝐿,𝑘−1
′ (1 − 𝜖𝑘−1)(𝑦𝐷,𝑘−1 − 𝑦𝐷,𝑘) − �̇�𝐶,𝑘

′ (1 − 𝑦𝐷,𝑘)} A3.24 

 

Equation for solution volume for batch mode:  

Constant density 

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑𝑉𝑅
′

𝑑𝑡′
= −

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

�̇�𝐶
′

𝜌𝐿
′ +

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

�̇�𝐶
′

𝜌𝑆
′   

 

𝑑𝑉𝑅
′

𝑑𝑡′
= −

�̇�𝐶
′

𝜌𝐿
′ +

�̇�𝐶
′

𝜌𝑆
′  A3.25 

 

Linearly varying density 

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝑑𝑉𝑅
′

𝑑𝑡′
= −

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

�̇�𝐶
′

𝜌𝐿
′ −

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

𝐵′𝑀𝐿
′

𝜌𝐿
′2

𝑑𝑦𝐷

𝑑𝑡
+

𝑉𝑟𝑒𝑓

𝑡𝑟𝑒𝑓

�̇�𝐶
′

𝜌𝑆
′   

 

1

𝑡𝑟𝑒𝑓

𝑑𝑦𝐷

𝑑𝑡′
=

1

𝑡𝑟𝑒𝑓

−�̇�𝐶
′ (1 − 𝑦𝐷)

𝑀𝐿
′   

 

𝑑𝑉𝑅
′

𝑑𝑡′
= −

�̇�𝐶
′

𝜌𝐿
′ −

𝛽𝐷,2𝑀𝐿
′

𝜌𝐿
′2

𝑑𝑦𝐷

𝑑𝑡
+

�̇�𝐶
′

𝜌𝑆
′  A3.26 

 

𝑑𝑦𝐷

𝑑𝑡′
=

−�̇�𝐶
′ (1 − 𝑦𝐷)

𝑀𝐿
′  A3.27 

 

A3.6. Derivation of Non-Dimensional Constitutive Laws 

Crystal Growth 

𝐺𝑘 = 𝑘𝑔,0𝑒𝑥𝑝 (−
𝐸𝐴

𝑅𝑇𝑘
) (𝐶𝑘 − 𝐶𝑘

∗(𝑇𝑘))𝑔 A3.28 

 

𝐶𝑘 =
𝑀𝐿,𝑘𝑦𝐷,𝑘

(1 − 𝜖𝑘)𝑉𝑅,𝑘𝑚𝑊
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𝐿𝑟𝑒𝑓

𝑡𝑟𝑒𝑓
𝐺𝑘

′ = 𝑘𝑔,0𝑒𝑥𝑝 (−
𝐸𝐴

𝑅𝑇𝑟𝑒𝑓𝑇𝑘
′) 𝐶𝑟𝑒𝑓

𝑔
(𝐶𝑘

′ − 𝐶′∗(𝑇𝑘
′))𝑔  

 

𝐺𝑘
′ = 𝑒𝑥𝑝 (−

𝐸𝐴

𝑅𝑇𝑟𝑒𝑓𝑇𝑘
′) (𝐶𝑘

′ − 𝐶′∗(𝑇𝑘
′))𝑔  

 

𝐺𝑘
′ = 𝛽𝑔,1𝑒𝑥𝑝 (−

𝛽𝑔,2

𝑇𝑘
′ ) (𝐶𝑘

′ − 𝐶′∗(𝑇𝑘
′))𝑔 A3.29 

 

𝛽𝑔,1 =
𝑘𝑔,0𝑡𝑟𝑒𝑓𝐶𝑟𝑒𝑓

𝑔

𝐿𝑟𝑒𝑓
  

 

𝛽𝑔,2 =
𝐸𝐴

𝑅𝑇𝑟𝑒𝑓
  

 

Primary Nucleation 

𝐵0,𝑘,𝑝𝑟𝑖 = 𝑘1(𝐶𝑘 − 𝐶𝑘
∗(𝑇𝑘))𝑛1 A3.30 

 
𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓𝑡𝑟𝑒𝑓
𝐵0,𝑘,𝑝𝑟𝑖

′ = 𝑘1𝐶𝑟𝑒𝑓
𝑛1 (𝐶𝑘

′ − 𝐶𝑘
′∗(𝑇′))𝑛1  

 
𝐵0,𝑘,𝑝𝑟𝑖

′ = 𝛽𝑁,1(𝐶𝑘
′ − 𝐶𝑘

′∗(𝑇′))𝑛1 A3.31 

 

𝛽𝑁,1 =
𝑉𝑟𝑒𝑓𝑡𝑟𝑒𝑓𝑘1𝐶𝑟𝑒𝑓

𝑛1

𝑀0,𝑟𝑒𝑓
  

 

Secondary Nucleation 

𝐵0,𝑘,𝑠𝑒𝑐 = 𝑘2𝑀2,𝑘(𝐶𝑘 − 𝐶𝑘
∗(𝑇𝑘))𝑛2 A3.32 

 

𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓𝑡𝑟𝑒𝑓
𝐵0,𝑘,𝑠𝑒𝑐

′ = 𝑘2

𝐿𝑟𝑒𝑓
2 𝑀0,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓
𝑀2,𝑘

′ 𝐶𝑟𝑒𝑓
𝑛2 (𝐶𝑘

′ − 𝐶𝑘
′∗(𝑇𝑘

′))𝑛2  

 
𝐵0,𝑘,𝑠𝑒𝑐

′ = 𝛽𝑁,2𝑀2,𝑘
′ (𝐶𝑘

′ − 𝐶𝑘
′∗(𝑇𝑘

′))𝑛2 A3.33 
 

𝛽𝑁,2 = 𝑘2𝐿𝑟𝑒𝑓
2 𝐶𝑟𝑒𝑓

𝑛2 𝑡𝑟𝑒𝑓  
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A3.7. Derivation of Non-Dimensional Auxiliary Laws 

Solubility 

𝑥𝐷,𝑠𝑜𝑙(𝑇) =
𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒

𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡
= 𝐶1𝑒𝐶2𝑇 A3.34 

 

𝑦𝐷,𝑠𝑜𝑙 =
𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒

𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒 + 𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡
=

𝑥𝐷,𝑠𝑜𝑙

1 + 𝑥𝐷,𝑠𝑜𝑙
  

 

𝐶∗(𝑇) =  𝐶(𝑦𝐷,𝑠𝑜𝑙) =
𝑦𝐷,𝑠𝑜𝑙𝜌𝐿(𝑦𝐷,𝑠𝑜𝑙)

𝑚𝑊
  

𝑥𝐷,𝑠𝑜𝑙(𝑇′) = 𝐶1𝑒𝐶2𝑇𝑟𝑒𝑓𝑇′
  

 
𝛽𝑆,1 = 𝐶1  

 
𝛽𝑆,2 = 𝐶2𝑇𝑟𝑒𝑓  

 

𝑥𝐷,𝑠𝑜𝑙(𝑇′) = 𝛽𝑆,1𝑒𝛽𝑆,2𝑇′
  

 

𝑦𝐷,𝑠𝑜𝑙(𝑇′) =
𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒

𝑘𝑔𝑠𝑜𝑙𝑢𝑡𝑒 + 𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡
=

𝑥𝐷,𝑠𝑜𝑙(𝑇′)

1 + 𝑥𝐷,𝑠𝑜𝑙(𝑇′)
  

 

𝐶′∗(𝑇′) = 𝐶′(𝑦𝐷,𝑠𝑜𝑙) = 𝛽𝐶𝑦𝐷,𝑠𝑜𝑙(𝑇′)𝜌𝐿
′ (𝑦𝐷,𝑠𝑜𝑙(𝑇′)) A3.35 

 

Concentration 

𝐶(𝑦𝐷) =
𝑦𝐷𝜌𝐿(𝑦𝐷)

𝑚𝑊
 A3.36 

 

𝐶𝑟𝑒𝑓𝐶′(𝑦𝐷) =
𝑦𝐷𝜌𝑟𝑒𝑓𝜌𝐿

′ (𝑦𝐷)

𝑚𝑊
  

 

𝐶′(𝑦𝐷) =
𝜌𝑟𝑒𝑓

𝐶𝑟𝑒𝑓𝑚𝑊
𝑦𝐷𝜌𝐿

′ (𝑦𝐷) = 𝛽𝐶𝑦𝐷𝜌𝐿
′ (𝑦𝐷) A3.37 

 

Density 

𝜌𝐿(𝑦𝐷) = 𝐴 + 𝐵𝑦𝐷 A3.38 
 

Considering mass weighted average,  

𝐴 = 𝜌𝐿; 𝐵 = (𝜌𝑆 − 𝜌𝐿)   
 

𝜌𝐿
′ (𝑦𝐷) =

𝐴

𝜌𝑟𝑒𝑓
+

𝐵

𝜌𝑟𝑒𝑓
𝑦𝐷  
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𝜌𝐿
′ (𝑦𝐷) = 𝛽𝐷,1 + 𝛽𝐷,2𝑦𝐷 A3.39 

 

Specific Heat 

𝐶𝑃,𝑀𝐼𝑋(𝑦𝐷) = 𝑋 + 𝑌𝑦𝐷 A3.40 
 

Considering mass weighted average,  

𝑋 = 𝐶𝑃,𝐿; 𝑌 = (𝐶𝑃,𝑆 − 𝐶𝑃,𝐿)  
 

𝐶𝑃,𝑀𝐼𝑋
′ (𝑦𝐷) =

𝑋

𝐶𝑃,𝑟𝑒𝑓
+

𝑌

𝐶𝑃,𝑟𝑒𝑓
𝑦𝐷  

 
𝐶𝑃,𝑀𝐼𝑋

′ (𝑦𝐷) = 𝛽𝐶𝑃,1 + 𝛽𝐶𝑃,2𝑦𝐷 A3.41 
 

A3.8. Model Verification for Batch Processes 

A3.8.1. Heat Transfer Model 

Both the jacket-side heat transfer and the environmental side heat transfer are identical in 

their implementation. Hence, model verification was only done considering the jacket-side 

heat transfer. Analytical solution was derived for the heat transfer problem for a batch reactor 

by solving the Equation A3.21 using suitable assumptions. The analytical solution for the 

cooling of a batch reactor using a constant jacket temperature in a non-dimensional form can 

be written as follows:  

𝑇2
′ = 𝑇𝐽

′ + (𝑇1
′ − 𝑇𝐽

′)𝑒𝑥𝑝 (−
𝛽3𝑡′

𝑀𝐿
′ 𝐶𝑃,𝐿

′ ) A3.42 

 

A comparison of the analytical solution and the simulated results for different values of β3 is 

given in the Figure A3.1. The model predicted results can be seen to match the analytical 

results. Thus, the model can be said to be verified for the capturing heat transfer.  
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Figure A3.1. Comparison between simulated and analytical solutions for a jacket maintained 

at 288K and the crystalliser with initial temperature 303K 
 

A3.8.2. Verification of Tanks-in-series Model 

For the verification of the tanks-in-series model, a comparison was made between the model 

predicted solution and the solution obtained by directly solving the tanks-in-series ODE’s. In 

a non-dimensional form, the ODE’s for tanks-in-series model can be written as:  

𝑑𝐶1
′

𝑑𝑡′
= 𝑛(1 − 𝐶1

′) A3.43 

 
𝑑𝐶𝑖

′

𝑑𝑡′
= 𝑛(𝐶𝑖−1

′ − 𝐶𝑖
′) 𝑓𝑜𝑟 𝑖 > 1 A3.44 
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Figure A3.2. Comparison between simulated and ODE results for tanks-in-series model for a 

step response tracer experiment (solved for 8 tanks) 
 

It should be noted that n is the number of tanks and it appears in the equations because the 

reference time used for non-dimensionalization was taken as the total residence time rather 

than the residence time for a tank. The inlet concentration was used for the non-

dimensionalization of concentration. Both the model equations and the above equations 

were solved for 8 tanks in series for a standard step response type of tracer experiment. A 

comparison between the model predicted and the tanks-in series ODE predicted 

concentration profiles for the 1st and the 5th tanks is shown in the Figure A3.2. As can be seen, 

there is excellent agreement between the two. Hence, the model was verified for the tanks 

in series model.  

 

A3.8.3. Crystallization model 

For the verification of the crystallization part of the solver, the simulation results were 

compared to the simulation results obtained using a previous solver. Simulations were 

performed for a model system of Paracetamol-Ethanol having a concentration of 1.37 

kmol/m3 corresponding to a solubility temperature of ~326K. The solution was assumed to be 
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completely clear. The solution temperature was assumed to be held constant at 285 K to 

simulate induction time. The period after the nucleation events had started was simulated. 

For the new solver, simulations were performed using both constant and variable liquid 

density assumptions. The crystallization kinetic parameter values estimated in Chapter 3 were 

used for the simulations.  

 

A comparison between the simulated concentration profiles using the previous solver and the 

new solver (using constant and varying liquid density assumptions) is shown in Figure A3.3. A 

comparison between the simulated 0th moment profiles using the previous solver and the 

new solver (using constant and varying liquid density assumptions) is shown in Figure A3.4. A 

comparison between the simulated Sauter mean diameter profiles using the previous solver 

and the new solver (using constant and varying liquid density assumptions) is shown in Figure 

A3.5. Let us first consider the case of comparison between the previous solver and the new 

solver implemented using a constant density assumption. As can be seen from Figure A3.3, 

there is an excellent agreement between the concentration profiles, although the agreement 

is not exact. As seen from Figures A3.4 and A3.5, there is good agreement between the 0th 

moment and Sauter mean diameter profiles although there is some discrepancy towards the 

end. The discrepancy arises due to the fact that in the previous solver does not consider the 

volume change in the liquid phase due to the precipitation of solids. As the volume of the 

liquid phase will decrease when this happens, the 0th moment (which is the number density 

of particles), will increase correspondingly.  
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Figure A3.3. Comparison between the concentration profiles predicted using the previous 

solver and the new solver (using constant and variable liquid density assumptions) 
 

 
Figure A3.4. Comparison between the 0th moment profiles predicted using the previous 

solver and the new solver (using constant and variable liquid density assumptions) 
 

As can be seen from the Figures A3.3-A3.5, there is a difference between the concentration, 

0th moment and Sauter mean diameter profiles predicted using the varying density 

assumptions as opposed to using the constant density assumption. However, the difference 



186 
 

is not drastic as is indicated by the relatively close values for the Sauter mean diameters (~ 

200 micron) for both cases. Hence values estimated for the crystallisation kinetic parameters 

estimated using the previous solver and the new solver will not differ by order(s) of 

magnitude. 

 
Figure A3.5. Comparison between the Sauter Mean Diameter profiles predicted using the 

previous solver and the new solver (using constant and variable liquid density assumptions) 
 

Hence, from the above section, we can conclude that the model has been verified for different 

modules of heat transfer, crystallization and tanks-in-series. The next section deals with the 

validation studies of the model.  

A3.9. Characterising Heat Transfer for Continuous Crystallisation 

As done for the batch process, it is necessary to estimate the parameter values required for 

the heat transfer model. Two model parameters are required to characterise the heat transfer 

model as described earlier. The first to describe the heat transfer between the jacket and the 

fluid and the second the heat transfer between the fluid and the environment. As discussed 

in the batch process, both these parameters are important to accurately capture the heat 

transfer behaviour of a crystalliser. Going along the same lines as the batch reactor, heat 

transfer experiments were performed in the continuous crystalliser. Experiments were 

performed wherein the steady state outlet temperature was measured as a function of the 
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jacket set-point temperature for different mean residence time values. The experiments were 

performed for 2 values of jacket set-point temperatures (10C and 80C). A plot showing the 

LMTD values calculated for different values of mean residence time at the two jacket set-

point temperatures is shown in Figure A3.6.  

 
Figure A3.6. Comparison of LMTD values for different mean residence times for jacket set-

point temperatures of 10C and 80C 
 

To estimate the parameter values for the heat transfer parameters, the simulation results for 

the LMTD versus the mean residence time curves for the two set-point jacket temperatures 

were performed. It was observed that there were multiple pairs of parameter values which 

could capture the heat transfer behaviour as shown in Figure A3.6. As the parameter values 

increase, the LMTD values do not depend on the mean residence time. This implies that the 

time scales for heat transfer are significantly faster than the residence time. It can be seen 

from the Figure A3.6 that all three sets of parameter values seem to capture the heat transfer 

behaviour reasonably. Furthermore, the same set of parameter values can be used to 
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simulate for both the jacket set-point temperatures. As can be seen from the parameter 

values, a higher rate of jacket-side heat transfer is compensated by a higher rate of heat loss 

to the environment to obtain the same behaviour. Further, it should be noted that the pair 

(5.5, 5) is the minimum value for which the desired heat transfer behaviour was observed.  

 
Figure A3.7. Comparison of the experimental and simulated initial temperature response to 

changing jacket temperature for 3 pair of parameter values 
 

Even though the heat transfer behaviour is captured correctly, while considering the 

exothermic/endothermic processes, the order of magnitude of the heat transfer rates (from 

the jacket/to the environment) with respect to the heat of crystallisation becomes important. 

Thus, it becomes important to eliminate the unrealistic pairs of parameter values in hopes of 

accurately capturing the crystalliser behaviour. Rigorous temperature cycling experiments 

performed under different conditions are ideal for narrowing down the 'realistic' set of 

parameter values. However, in the present text, as such experiments were not performed, 

we will instead study the initial temperature response of the outlet of the crystalliser to the 

change in jacket temperature. For performing the simulations, as done for the batch process, 
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the jacket temperature profile was supplied as input. A comparison between the simulated 

and experimental initial temperature response for a changing jacket temperature is shown in 

Figure A3.7. As can be seen from the Figure A3.7, the parameter values of (5.5, 5) is closest in 

predicting the crystalliser temperature response. Hence, in the present study, the parameter 

values (5.5, 5) shall be used for the heat transfer model. A comparison between the 

experimental and simulated crystalliser temperature and the experimental jacket 

temperatures using the values (5.5, 5) is shown in Figure A3.8.  

 
Figure A3.8. Comparison between the simulated and experimental crystalliser temperature 

and the experimental jacket temperature 
 

The aforementioned values estimated for the heat transfer parameters were estimated for 

water. Before directly using these values for understanding the heat transfer behaviour of a 

solution of water saturated with sodium nitrite, the effect of sodium nitrite concentration on 

the heat transfer behaviour must be investigated. For this, the simulated temperature 

response of pure water was compared to the simulated temperature response of a solution 

of sodium nitrite in water. The same jacket temperature profile was used to simulate for both 
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cases and such a comparison is shown in Figure A3.9. It was observed through simulations 

that there is no observable effect of the sodium nitrite concentration on the heat transfer 

behaviour of the solution. Thus, we may directly use the parameter values estimated earlier 

to simulate for the continuous crystallisation experiments.  

 
Figure A3.9. Effect of solute concentration on the heat transfer characteristics 

 

Before moving on to simulating the heat transfer behaviour for a continuous crystallisation 

operation, it would be helpful to analyse the experimental data for the same. Nine continuous 

crystallisation experiments were performed using similar conditions. The only difference in 

those experiments was that they were performed under different ambient conditions. Figure 

A3.10 shows the comparison between the crystalliser outlet and jacket outlet temperatures 

under ambient temperatures of 300C and 340C. It can be seen from Figure A3.10 that 

experimentally, there is no observable difference between the two in the steady state 

temperature even though the initial temperatures were different. However, as seen in Figure 

A3.10 simulations using the parameter values estimated in the previous section reveal a 

difference between the predicted temperature profiles under different ambient conditions. 

Hence the parameter values estimated previously seemed to be inaccurate. The parameter 
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values were estimated under a constant ambient condition and hence could not capture the 

effect (or the lack thereof) of the ambient temperature on the heat transfer behaviour.  

 
Figure A3.10. Comparison between the crystalliser outlet and jacket outlet temperature 

profiles for ambient temperature conditions of 300C and 340C 
 
Although the discrepancy observed in Figure A3.10 does not seem significant, it was seen to 

affect the crystallisation behaviour significantly. Hence, the parameter values need to be re-

estimated to account for the lack of impact of environmental conditions on the thermal 

behaviour of the crystalliser. The interpretation of the experimental results suggest that the 

thermal behaviour of the continuous crystalliser may be obtained even considering insulated 

conditions. In order to simulate for such a case, the lumped parameter for environmental side 

heat transfer was set to zero. The value for the lumped parameter for the jacket to solution 

heat transfer (UAJ) was adjusted by matching the experimental and simulated steady state 

crystalliser outlet temperatures. However, as can be seen from the Figure A3.11, there is a 

significant mismatch between the simulated and experimental crystalliser outlet temperature 
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profiles considering 'insulated' conditions. Thus, it may be concluded that the present model 

cannot reasonably capture the thermal behaviour of the present continuous crystalliser. The 

reason for the mismatch can be attributed to the fact that the thermal inertia of the 

continuous crystalliser itself was not considered in the model. The actual mode of heat 

transfer was from the jacket fluid to the crystalliser walls and then from the crystalliser walls 

to the solution. Since the continuous crystalliser was made entirely of metal, the thermal 

inertia of the continuous crystalliser would be significant (many times that of the process 

fluid).  

 
Figure A3.11: Comparison between the simulated crystalliser outlet temperature (under 

insulated conditions), experimental crystalliser outlet temperature and jacket outlet 
temperature  

 

Further work to improve the heat transfer model would be to write a separate heat balance 

equation for the crystalliser body and couple it with the process fluid heat balance equation. 

Experimental measurements of the crystalliser body temperature profiles would also be 

required to calibrate the improved heat transfer model. Such a study was not carried out in 

the present text. To get around this issue, for the present case, the heat transfer parameter 

values from the experimental data were re-estimated for different ambient conditions. These 
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parameter values were then used for the corresponding continuous crystallisation 

simulations. Although this hindered the predictive capability of the heat transfer behaviour 

of the continuous crystalliser, it provided a workable solution to study crystallisation in the 

continuous crystalliser behaviour.  

Before carrying out an exercise in re-estimating heat transfer parameter values for different 

experimental data, it was important to interpret the experimental data at different ambient 

conditions. Certain unusual thermal behaviour was observed from the experimental data. 

Comparisons between the experimental crystalliser outlet temperature profiles and the 

jacket outlet temperature profiles for ambient temperatures of 250C and 300C are shown in 

Figure A3.12. After 10000s, a steady state thermal behaviour similar to that obtained for 

ambient temperatures of 300C and 340C was observed for the case of 250C ambient 

temperature (CC5). However, before 10000s, the crystalliser outlet temperature had 

stabilised to a much lower value (~285K) before the sudden jump to 'normal operation' was 

observed. This suggests that it might be possible that before 10000s, a highly endothermic 

polymorphic form of sodium nitrite might have been produced which reverted back to the 

'standard' form after 10000s of operation. The alternate hypothesis that the 'standard' form 

is exothermic might also be true. The exothermicity of sodium nitrite crystallisation has 

already been established in batch crystallisation experiments. However, it was also seen 

through preliminary simulations that the exothermicity for the present case was insignificant 

so as to cause any temperature fluctuations. The polymorph hypothesis is both supported 

and contradicted when another experiment (CC8) under 250C ambient conditions was 

considered. The CC8 experiment does not contain the abrupt temperature change as 

observed in the previous experiment. However, it is stabilised at a much lower value of 

temperature than the CC5 experiment. This may be explained by the hypothesis that in both 

experiments, a mixture of the 'standard' and the highly endothermic polymorphs are 

obtained. A lower value of temperature in the CC8 experiment can then be attributed to a 

higher percentage of endothermic polymorph as compared to the CC5 experiment. 
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Figure A3.12. Comparison between the crystalliser outlet temperatures and the jacket 

outlet temperatures at ambient temperatures of 300C and 250C 
 

In the next section, an attempt is made to quantify the endothermicity of the hypothesized 

sodium nitrite polymorph. However, in order to carry out the continuous crystallisation 

simulations, as discussed earlier, the heat transfer parameter values must be re-estimated for 

the ambient temperatures of 250C, 300C and 340C. The parameter values are listed in Table. 

As can be seen from the table, for the same value of UAJ, the value for UAENV keeps increasing 

with decreasing ambient temperature. As discussed earlier, it is not possible to derive any 

meaningful logic in the trend of parameters as the thermal inertia of the crystalliser body was 

not accounted for. The present values are only for the sake of estimating the order of 

magnitude of the heat losses/transfers and to simulate the temperature profile of the 

continuous crystalliser given the jacket temperature profile and the ambient temperature.  

More meaningful parameter values and logical inferences may be obtained if the moment of 

inertia of the crystalliser body is accounted for in the model. A comparison between the 

simulated and experimental crystalliser outlet temperatures for different ambient 

temperatures is given in Figure A3.13.  
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Table A3.1: Re-estimated parameter values for different ambient temperatures 

Ambient 
Temperature 

UAJ UAENV 

0C Joule/K Joule/K 

25 5.5 8.5 

30 5.5 6.5 

34 5.5 5 

 

 
Figure A3.13: Comparison between the simulated and experimental crystalliser outlet 

temperature profiles for different ambient temperatures 
 

The cooling mechanism employed in the continuous crystalliser was first the transfer of heat 

from the jacket cooling fluid to the metal crystalliser body which in turn transferred heat to 

the solution. The thermal inertia of the continuous crystalliser was significantly more than the 

thermal inertia of the process fluid itself (many times higher). Thus, in order to model the 

heat transfer behaviour of processes adequately, the heat balance equation for the 

crystalliser body must be coupled with the existing set of model equations. Additional 

experimental measurements of the temperature profile of the crystalliser metal body along-

with those of solution and jacket fluid temperature profiles would be required to completely 



196 
 

capture the heat transfer effects. Additional data such as the total thermal inertia of the 

continuous crystalliser would also be required.  

For a detailed Symbols & Notations, kindly refer to the Symbols & Notations of Chapter 4 

given on page 156. 


