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Chapter 1  

Brief Introduction to the Molecular Space 

and Strategies for its Exploration  

Abstract 

The progress of society is tied to the progress of science. Scientific progress has resulted in 

technological advancements, improvement in the quality of life, and an increase in the average 

life span. Discovery is an essential aspect of scientific progress. Scientific discoveries involve 

discovering new materials, new scientific phenomena, or insight into a known phenomenon. 

Quite often, scientific discoveries are associated with molecules and require exploration 

through the available space for a class of molecules (i.e., molecular space). This chapter 

provides a brief introduction to the molecular space and the conventional strategies for its 

exploration. A large amount of data has been generated due to advancements in experimental 

and computational tools. However, conventional strategies do not take advantage of these 

datasets. Furthermore, they also suffer from certain issues, making them inefficient for the 

exploration of large molecular space. On the other hand, machine learning algorithms can learn 

from the data and provide accurate predictions in a short amount of time. This chapter outlines 

the issues with the conventional strategies and motivates the reader to develop efficient 

strategies based on machine learning algorithms.  
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1.1 Importance of the Scientific Discoveries and Their Connection to Molecules  

Scientific progress is perhaps the most important facet of today’s society. Over the past two 

hundred years, humanity has experienced growth at a pace that few could have imagined. This 

has primarily been driven by the scientific discoveries that fuelled significant economic and 

technological developments. Science has, for example, cured diseases, brought us closer 

through travel and modern communications technology, and helped us better understand and 

respond to environmental challenges. New scientific discoveries are still required to tackle the 

challenges we face today. Scientific discoveries of new materials, new phenomena, or an 

improved understanding of the known phenomena allow us to develop new technologies, solve 

practical problems and make informed decisions — both individually and collectively. For 

example, the discovery of the structure of DNA (deoxyribonucleic acid) was a fundamental 

breakthrough in biology. It formed the underpinnings of all biomedical research, including 

DNA fingerprinting, genetically engineered crops, and the diagnosis of genetic diseases.1–3 The 

discovery of metals and alloys was critical to the technological progress of society. It is 

impossible to imagine the world today without metals. Global annual steel production reached 

1864 million tonnes (Mt) in 2020.4 However, scientific discovery is not an easy process. 

Historically, scientific discoveries and technological advancements resulted from serendipity 

from decades of experimentation. A most famous example of this is the discovery of penicillin, 

an antibiotic effective against bacterial infections.5 In 1928, Alexander Fleming, during his 

investigation on staphylococci bacteria, left one petri dish open and went on holiday. After 

returning, he observed blue-green mold in the petri dish that had killed all the surrounding 

bacteria. The mold contained an antibiotic capable of killing harmful bacteria. At the time, 

Fleming’s discovery did not garner much scientific attention, and it took another decade before 

penicillin was made available for use. The serendipitous discovery of the shape memory effect 

in nitinol is another example. Nitinol is a class of metal alloys with unique properties such as 

superplasticity and shape memory. William J. Buehler, who was a metallurgist at Naval 

Ordinance Laboratory (NOL)6, discovered the shape memory effect in nitinol while searching 

for a suitable material capable of sustaining the heat of re-entry in the earth’s atmosphere for 

the nose core of the Polaris missile. In 1959, He inspected about 60 alloys, including nitinol. 

During testing, he intentionally dropped the cold ingots of nitinol on the floor. He expected to 

hear a bell-like ring. Instead, he heard a thud-like sound after dropping. He thought the ingot 

had some internal flaws, so he dropped the hot ingot on the floor, which made the expected 

bell-link ring.7 However, the hot ingot, after cooling, made a similar dull thud-like sound. This 

observation made Beuhler realize the precence of double states in the nitinol. He continued 

experimenting with it. The shape memory effect of nitinol was not discovered until 1961, when 

one of his colleagues used a lighter to straighten the bent nitinol rod during a meeting. Now, 

nitinol is widely used in many applications such as biomedical, actuators, aerospace, 

automotive, and MEMS (micro-electromechanical system) devices.8 Thus, the discovery of 

new materials or phenomena is not only scientifically important but also essential to 

technological developments. New scientific discovery (material or phenomenon) is often 

connected with some material. For example, the discovery of superconductivity in mercury, 

the discovery of penicillin, the first antibiotic molecule; insight into the shape memory effect 

due to the discovery of nitinol, the discovery of BaTiO3, the first commercial ferroelectric and 

piezoelectric material etc.5,6,9,10 Molecules lie at the heart of materials such as battery materials, 
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catalytic materials, polymeric materials. Their properties primarily depend on the composition 

of elements and the structure of the constituent molecules.  

1.2 Molecular Space and Motivation for its Exploration 

Molecular space is a collection of known and unknown molecules that differ in their atoms, 

bonding patterns, and configurations. It is a subspace of a large chemical space that includes 

all known and unknown elemental compositions, molecules, conformations and configurations, 

and chemical reactions.11 In this thesis work, we have investigated materials composed of 

molecules. Therefore, we restrict ourselves to the molecular subspace. Molecular space is a 

high-dimensional space of molecules in which each axis represents different properties 

associated with the molecules. It is possible to discover new molecules for a particular 

application if one moves along the axis of desired property in the molecular space, as shown in 

Figure 1.1. Similarly, if we are interested in maximizing or minimizing more than one property, 

we can move along the multiple axes of the desired properties in molecular space. Besides 

materials discovery, molecular space can also reveal new patterns, such as the functional 

relationships between molecules.  For example, in cells, gene expression is regulated through 

the binding of unique proteins known as transcription factors (TF) to DNA sequences (motifs). 

Different TFs bind to different motifs. However, certain groups of TFs bind to similar motifs 

and regulate the same genes.12 These functionally similar TFs occupy nearby positions in 

molecular space. Visualizing the molecular space of these TFs can reveal different classes of 

functionally similar TFs. Thus, molecular space can help us discover new molecules and 

scientific phenomena or improve our understanding of the known scientific phenomenon. 

However, discovering new molecules or phenomena requires exploration through the 

molecular space. It is important to answer two fundamental questions before exploration: (i) 

How large is molecular space? (ii) How to explore the molecular space? These two aspects are 

not decided independently. Molecular space dictates the exploration strategy, and often 

exploration strategy may restrict the space that can be explored. Even though a universal 

molecular space exists, we generally restrict ourselves to a smaller subspace for efficient 

exploration. Therefore, we define a molecular space corresponding to a given application, 

which is a subspace of a large molecular space. Cayley, the inventor of graph theory, first 

attempted to estimate the size of a molecular space containing acyclic branched hydrocarbons 

in 1875.13 He calculated the number of possible acyclic branched hydrocarbons using graph-

theoretical algorithms. Later, similar attempts were made to estimate the number of possible 

molecules of certain types. The size of molecular space for organic “drug-like” molecules is 

estimated to lie between 1018 to 10200 molecules; however, the commonly reported number for 

the size of molecular space is 1060 for the molecules obeying Lipinski’s rule-of-five.14,15 

Although it is impossible to enumerate the entire molecular space, efforts have been made to 

compile known molecules into a collection. These collections are known as databases 

representing known parts of the molecular space. For example, PubChem is a publicly available 

database containing molecular structures and bioassay data. It is maintained by the U.S. 

National Center for Biotechnology Information (NCBI) and, as of August 2018, contains 111 

million unique chemical structures.16 Chemspider is a similar database owned by the Royal 

Society of Chemistry. It gives access to over 100 million chemical structures.17 ZINC is a 

database of commercially-available drug-like compounds. It contains over 750 million 

purchasable compounds.18 Additionally, small and more specialized databases are also 



5 

 

available. Similarly, datasets of hundreds of complete genome sequences are available today 

due to high throughput genome sequencing. For instance, the ENCODE project has a large 

collection of transcriptomic datasets.19 GenBank is a public database that contains an annotated 

collection of DNA sequences.20 KEGG is another database that contains information on 

biomolecular pathways and the molecular building blocks of genes, proteins, and drug 

molecules.21 The structural genomics efforts have also resulted in a corresponding increase in 

the number of macromolecular structures (e.g., proteins). The Protein Data Bank (PDB) is a 

database for the three-dimensional structural data of large biological molecules, such as 

proteins and nucleic acids.22 

 

Figure 1.1. Visualization of molecular space along the axis of the desired property. 

1.3 Conventional Strategies for the Exploration of Molecular Space 

1.3.1 Experimental Approaches 

Experimentation is the most reliable and robust methodology for scientific discoveries and 

verification of theories. Important scientific discoveries have been made through experiments. 

Even with the advent of computation tools, experiments are still a significant part of today’s 

science. However, experimentation is not an easy task. Science in the early 20th century was 

primarily experimental. Scientists had to carry out many experiments that required a significant 

investment of time and resources. They had to wait patiently for one of the experiments to show 

promising results. We hear the stories of only successes. There are hundreds or even thousands 

of failed experiments behind a successful discovery. The famous quote from Thomas Edison 

nicely summarises the difficulties in early scientific discoveries “I have not failed. I’ve just 

found 10,000 ways that won’t work”.23 In recent years, advances in technologies have 

accelerated the field of experimental research. High-throughput and combinatorial approaches 

have made it possible to carry out thousands of experiments in parallel.24 The early report on 

high throughput technologies (HTT) was published by Hanak in the 1970s.25 He demonstrated 

the benefits of HTT in the search for new materials. In 1995, Xiang, Schultz, and co-workers 

reinitiated the successful application of combinatorial methodologies in materials science.26 

With the innovation of automated HTT, experimental approaches have been applied to explore 
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the molecular space of a variety of materials such as drug molecules, ferroelectric materials, 

catalytic materials, superconducting materials etc.26–29 The field of biology is inherently 

combinatorial (DNA, proteins, genes), thus lending itself naturally to the combinatorial 

approach. In life sciences, the combinatorial approaches started in the mid-1980s when Geyson 

first published a spatially resolved library of 96 peptides synthesized on microtiter plates.30,31 

Recently, next-generation sequencing (NGS) has made genome sequencing more affordable 

and readily available.32 NGS include high throughput and massively parallel DNA-sequencing 

technologies such as ChIP-seq, DNase-seq, ATAC-seq, RNA-seq, etc.33–35 NGS technologies 

are currently being used for whole-genome sequencing, investigation of gene expression 

profile, epigenetics, cellular heterogeneity, the discovery of protein-binding sites and non-

coding RNAs (ribonucleic acid), diagnosis of disease etc. 32,34,36 Thus, high throughput 

approaches have been adopted in various fields of science for the exploration of molecular 

space. 

1.3.2 Computational Approaches 

The experimental approach is inherently limited due to the high costs of expensive instruments 

and time-consuming protocols. Historically, scientists could synthesize a small number (i.e., a 

few hundred) of materials in a year. With the advent of HTT, it is now possible to synthesize 

thousands of compounds in a very short amount of time.37  However, the size of molecular 

space could easily reach the order of 1010-20. Even with the advancement in combinatorial 

synthesis and HTT, it is impossible to explore such a large molecular space. Therefore, it is 

necessary to develop computational tools for the efficient exploration of molecular space. The 

scientific field observed a paradigm shift from empirical evidence to theories in the 20th 

century. The development of quantum mechanics led to the scientific revolution. Quantum 

mechanics changed the fundamental understanding of physics.38 Theories developed in the 

early 20th century built the foundation of science and provided answers to unexplained 

phenomena. The second shift took place towards the end of the 20th century due to the 

advancement and innovation in computing. In the mid-1950s, electronic computers became 

available for general use by physicists and chemists. Chemists started using computers to 

obtain quantitative information about the behavior of molecules via numerical approximations 

to the solution of the Schrödinger equation.39 Due to the enormous increase in speed, low cost, 

and development of efficient algorithms, computational tools started acquiring a central place 

in the research. Today, electronic structure codes have evolved from handling a few tens of 

atoms to more realistic simulations with thousands of atoms.40 Now, computational studies are 

being carried out in many areas of science, including physics, chemistry, materials science, and 

biology.41,42 With supercomputers, scientists can simulate systems from microscopic scale to 

macroscopic scale (from femtoseconds to milliseconds). Molecular dynamics (MD) 

simulations are now possible on billions of atoms, with force fields promising near-quantum 

mechanical accuracy.43 Computational tools allow scientists to investigate phenomena under 

conditions that are impossible to create in a laboratory. Now, it is possible to reliably automate 

first-principle calculations, especially those based on more cost-effective approximations such 

as Kohn-Sham density functional theory (DFT). High-throughput DFT calculations have been 

employed to explore molecular space for solar materials, carbon capture and gas storage 

materials, topological insulators, battery materials, catalytic materials, hydrogen storage 

materials etc.44–51   Furthermore, combined experimental and computational approaches have 
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also been investigated for the exploration of molecular space in order to discover molecules 

with desired properties. 52–55 

1.3.3 Algorithmic Approaches 

The experimental and computational strategies are generally employed to explore the known 

molecular space. Innovative algorithmic approaches have also been developed to navigate 

unknown molecular space. Algorithmic strategies involve the generation of new molecules 

guided by the desired property. For example, genetic algorithms combine molecule generation 

with a fitness function in iterative cycles to generate new molecules.56 The first example of the 

development of a genetic algorithm for molecule generation is the SPROUT algorithm 

developed by Johnson and co-workers.57 It is capable of growing molecules for a targeted 

protein binding site. SPROUT selects synthetically feasible molecules having maximum fitness 

as estimated by docking. Several other approaches have been developed based on genetic 

algorithms such as EVOLUATOR, Skelgen, TOPAS, and multi-objective optimization 

algorithms - GANDI and MEGA.58–62 Algorithms that do not restrict themselves in 

synthetically feasible space could generate structurally more innovative molecules. Such an 

attempt to generate molecules independent of synthetic feasibility was made by Gasteiger et 

al. They reported an innovative molecular breeding algorithm based on the recombination of 

different molecular fragments.63 This algorithm was used for generating molecules that 

maximize common features of two starting molecules by optimizing a fitness function that 

depends on Pareto rank and Tanimoto similarity. Genetic algorithms capable of breeding 

random fragments, generating any target molecule, and evolving molecular populations to 

maximum fitness by iterative cycles were also reported.64–66 As molecules can be efficiently 

represented through graph structures, Stadler et al. proposed exploration strategies based on 

graph-theoretical algorithms.67 They also demonstrated the applicability of their strategy using 

key examples of complex chemical networks from sugar chemistry and the realm of metabolic 

networks.  Among all the algorithms, genetic algorithms have been investigated more than 

others to explore molecular space.68  

Figure 1.2 shows the timeline of the development of molecular space exploration strategies 

discussed in this chapter. It also depicts the amount of statistical data required for each strategy, 

it can be seen that the amount of statistical data increases as we move from experimental 

approaches to machine learning approaches. Machine learning approaches are data-driven 

approaches. Therefore, they require a relatively large amount of data. In the following section, 

we discuss the motivation for developing exploration strategies based on the machine learning 

algorithm. 
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Figure 1.2. Timeline of the development of molecular space exploration strategies. The x-

axis represents the time, whereas the y-axis represents the amount of statistical data required 

for each strategy. 

1.4 Motivation for the Development of the Exploration Strategies Based on Machine 

Learning Algorithms 

Exploration of molecular space to discover new materials or phenomena is not only 

scientifically important but also critical to technological developments. Experimental 

approaches pose high requirements in terms of equipment, infrastructure, and researcher 

expertise. On the other hand, computational approaches require large computing clusters to run 

electronic structure calculations. The computational approach is inefficient because no explicit 

use can be made of previous calculations for the new system. Typically, calculations can take 

anywhere from a few hours to months, and the accuracy of the solution depends on the level 

of theory. Although high-throughput approaches have enabled the rapid exploration of 

molecular space, it was quickly realized that even with HTT, only a small fraction of the 

molecular space could be explored.  Even today, experimental and computational approaches 

depend to some extent on intuition and serendipity. Thus, large-scale experimental and 

computational studies are time-consuming and inefficient. Although algorithmic approaches 

(particularly genetic algorithms) are faster than experimental and computational approaches, 

they also have some disadvantages: (i) performance depends on the size and quality of the 

initial population, (ii) they may get stuck in local optima resulting in suboptimal solution, (iii) 

formulation of the fitness function is critical to the quality of results, (iv) results are susceptible 

to the choice parameters, any inappropriate choice would produce meaningless molecules.69,70 

Due to all these issues, it typically takes 10-20 years for the discovery of new materials from 

the initial research to its first use.71 The advances in computational tools and experimental 

techniques have resulted in the generation of a large amount of data. Significant efforts have 

been made to collect and organize extensive datasets (into a database) generated from 

experimental and computational studies. Several databases corresponding to different 

applications are available today. Efficient methods are required to interrogate, analyze, process, 
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and infer knowledge from the existing databases. This decade has seen a rapid rise in the 

popularity of machine learning algorithms in scientific and industrial domains. Machine 

learning (ML) algorithms can handle large datasets and extract hidden patterns in high-

dimensional data through accurate statistical models. Machine learning algorithms can make 

reliable predictions when in-depth knowledge is incomplete or inaccurate, when the amount of 

data is too large, or when there exist exceptions to the general rule. ML algorithms learn from 

empirical data by modeling the linear and non-linear relationships in the data. Machine learning 

approaches have thus been applied to numerous problems in science and engineering.72–76 

In Table 1.1, we compare various advantages and disadvantages of the molecular space 

exploration strategies discussed in this chapter. 

Table 1.1. Advantages and disadvantages of molecular space exploration strategies. 

Exploration 

Strategy 
Advantages Disadvantages 

Experimental 

Approaches 

 High accuracy 

 Most reliable 

 Used as a reference for the 

development of other 

strategies 

 Time-consuming 

 Resource intensive 

 Requires expensive 

instruments 

Computational 

Approaches 

 Faster than experimental 

approaches 

 Does not require expensive 

instruments 

 Able to investigate the 

behavior of the systems 

under extreme conditions 

 Accuracy depends on the 

level of theory 

 Calculations may take hours 

to months 

 Requires large  computing 

clusters 

Algorithmic 

Approaches 

 Faster than computational 

approaches 

 Large computing clusters are 

not necessary 

 Possible to navigate 

unknown molecular space 

 Performance depends on the 

size and quality of the initial 

population 

 May get stuck in local 

optima resulting in a 

suboptimal solution 

 Formulation of the fitness 

function is critical 

 Susceptible to the choice 

parameters, any 

inappropriate choice would 

produce meaningless 

molecules 

Machine Learning 

Approaches 

 Accuracy could be improved 

to the level of the 

experimental approach 

 Faster than experimental, 

computational, and 

algorithmic approaches 

depending on the application 

 Requires a large quantity of 

data 

 Requires computing 

resources 

 Accuracy depends on the 

quality of training data 
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In this thesis work, we have investigated machine learning approaches for the exploration of 

three molecular spaces corresponding to different applications: (i) battery materials based on 

phenazine derivatives, (ii) biomolecules (DNA, proteins), and (iii) molecular machines. We 

provide below a brief background necessary to understand these molecular spaces and their 

corresponding applications. 

1.5 Redox Flow Batteries (RFBs) 

Redox flow batteries (RFBs) have emerged as promising grid-scale energy storage systems due 

to adjustable storage capacity, long service life for repeated charge-discharge cycles, high 

round-trip efficiency, fast response, low cost, low environmental impact, etc.77–81 Inarguably, 

the major advantage of RFBs is their ability to decouple energy storage from power output, 

unlike other batteries where the two are correlated.82 This property provides substantial 

flexibility for designing flow battery systems according to the requirements of a particular 

application. The power output of RFB can be controlled by changing the size and number of 

electrochemical cells. The capacity of RFB could be modified by changing the size of storage 

tanks.83,84 These characteristics make RFBs an attractive candidate for grid-scale energy 

storage applications. In RFBs, liquid redox-active materials are circulated between electrolyte 

tanks and electrochemical cells. RFB consists of two storage tanks containing cathode and 

anode redox-active species dissolved in an electrolyte solution. The electrolyte solutions in the 

positive and negative compartments are termed catholyte and anolyte, respectively. These 

storage tanks are connected to an electrochemical cell (or current collector) via pumps. The 

electrochemical cell consists of porous electrodes separated by an ion-selective membrane. 

During operation, electrolytes containing redox-active species are pumped to the 

electrochemical cell, where redox-active species undergo oxidation or reduction depending on 

the charge/discharge cycle. Then, electrolytes are circulated back to their storage tanks.85,86 So 

far, transition metal-based redox flow batteries (such as vanadium, iron, and chromium) have 

found some commercial success.86,87 One of the early reports on RFBs comes from Japan as 

far back as 1971.88 NASA in 1973 founded the Lewis Research Center and developed contracts 

with industries to investigate RFBs. NASA studied a variety of redox couples, but their focus 

was on the iron-chromium RFBs. They developed the iron-chromium (Fe-Cr) RFB with a 1 

kW power output and 13 kWh capacity from 1973 to 1982.89 This battery validated many 

desirable properties, but NASA scientists encountered some issues such as poor 

electrochemical reversibility of chromium and cross-contamination of redox-active species. 

Hence, in 1981, NASA shifted its research efforts from system design to more fundamental 

studies of RFBs. In 1984, NASA decided to shut down the program. Around 1980 in Japan, 

interest grew for electrochemical storage to complement other grid-scale energy storage 

systems. This storage technology was further developed in Japan within the Moonlight Project 

of the New Energy and Industrial Technology Development Organization (NEDO).90 In this 

project, Fe-Cr redox systems in hydrochloric acid were investigated. Since 1985, Skyllas-

Kazacos et al. have carried out significant research and development on the vanadium redox 

flow battery (VRFB).86 They showed the first successful demonstration of redox flow batteries 

utilizing vanadium in each half cell. Large-scale VRFB plants have been installed globally by 

manufacturers for various applications.77,91 Among all the RFB technologies, VRFBs are 

commercially most successful today. 
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1.6 Transcription Regulation 

Genes play an important role in determining physical traits.92 They carry information that 

makes our hair curly or straight, legs long or short, and even dictates how we might smile or 

laugh. Inside the cells, genes regulate biological processes critical for survival, such as 

development, reproduction, aging, and differentiation. Genes perform their tasks through 

proteins encoded in their DNA strands. However, proteins are not directly synthesized from 

DNA. First, information from the DNA is converted into RNA molecules through a process 

known as transcription.93 Then, RNA molecules are used for making proteins through another 

process known as translation.94 Transcription and translation are crucial steps in gene 

expression. The successful execution of biological processes requires an accurate and carefully 

orchestrated set of steps that depend on the precise spatial and temporal expression of genes. 

Any deregulation of gene expression often results in disease. The gene expression in eukaryotes 

is regulated at multiple levels, including transcription, elongation, mRNA processing, 

transportation, translation, and stability.12 However, it is believed that most regulation occurs 

at the transcription level.95 The discussion in this thesis is concerned with the eukaryotic 

transcription process. In eukaryotes, RNA polymerase II is responsible for the transcription of 

protein-coding genes.96 Jacob and Monod in 1961 showed that the transcription of genes is 

controlled through the binding of special proteins known as Transcription Factors (TFs) to the 

specific sequences on the DNA (motifs).97 These motifs are called transcription regulatory 

elements. Transcription regulatory elements include (i) promoters, (ii) enhancers, (iii) 

silencers, (iv) insulators, and (v) locus control regions.98 Below, we give a brief introduction 

to these regulatory elements: 

(i) Promoters: Promoter is a sequence of DNA that acts as an on-off switch for a gene. 

Promoter consists of two elements: 

(a) Core Promoter: The DNA sequence located near the gene where transcriptional 

machinery assembles is known as a core promoter. It dictates the position of the 

Transcription Start Site (TSS) and the direction of transcription.99 Examples of core 

promoters include TATA, Inr, DPE, and BRE. 

(b) Proximal Promoter Elements: The proximal promoter elements serve as binding 

sites for activators. Activators are TFs that help in the assembly of transcriptional 

machinery.12 Proximal promoter is located in a region immediately upstream from the 

core promoter.  

(ii) Enhancers: Enhancers are regulatory elements that interact with promoters to control the 

transcription of the target gene. Enhancers regulate transcription in a spatial and temporally 

specific manner.100 They generally increase the transcription of the target gene and function 

independent of the distance and orientation relative to the promoter element.101 Typically, 

enhancers are situated quite distally from the core promoter; thus, they are the long-range 

transcriptional control elements.102 Enhancers often act in a modular fashion.100 A single 

promoter could be acted upon by many enhancer elements at different times or in different 

tissues. Enhancers usually consist of relatively closely grouped clusters of transcription factor 

binding sites.103 
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(iii) Silencers: Silencers are sequence-specific elements with a negative effect on 

transcription.104  They share most of the characteristics attributed to enhancers. Typically, they 

act independently of orientation and distance from the promoter, although some position-

dependent silencers have also been found. Silencers can be situated close to a promoter or far 

from their target gene. Certain transcription factors called repressors bind the silencers. 

Repressors may recruit other TFs called corepressors for their function.105 Number of studies 

have been conducted to understand the mechanism of repression. In some cases, it was 

observed that repressors might block the binding of nearby activators, directly competing for 

the same binding site.106,107 Repressors might function by preventing activators from accessing 

a promoter through recruitment of histone-modifying or chromatin-stabilizing factors that 

establish a repressive chromatin structure, as reported in another study.108 Alternately, a 

repressor may block the assembly of the transcription machinery, as suggested by another 

study.109 

(iv) Insulators: Insulators function as boundary elements blocking genes from being affected 

by the transcriptional activity in the nearby genes.110 They partition the genome into distinct 

regulatory domains. Insulators have two essential characteristics: (a) they block 

communication between the enhancers and promoters, and (b) they can stop the spread of 

repressive chromatin structure. However, the precise mechanism of insulator activity is not 

entirely known. Generally, insulators function in a position-dependent and orientation-

independent manner. 

(v) Locus Control Regions (LCRs): Locus control regions are groups of regulatory elements 

responsible for regulating a cluster of genes.111 They regulate tissue-specific, physiological 

expression of the linked transgene in a position-independent manner. LCRs typically consist 

of many regulatory elements such as enhancers, silencers, insulators, etc. The collective 

binding of TFs to different regulatory elements in LCR defines their functional activity on gene 

expression. The most significant property of LCRs is their strong enhancer activity. Similar to 

enhancers and silencers, LCRs can regulate gene expression from a distance in a position-

independent fashion.112   

1.7 Molecular Machines 

Molecular machines play a central role in the fundamental biological processes critical for the 

survival of living organisms. Kinesin is a molecular motor found in eukaryotic cells that 

transports molecules inside the cell.113 Proteins are the workhorses of the cells. They are 

essential for cellular growth, metabolism, maintenance, and reproduction. Protein synthesis 

would not be possible without the ribosome, a natural molecular machine.114 Flagella are rotary 

molecular machines found in bacteria capable of unidirectional angular motion.115 Biological 

molecular machines are incredibly efficient compared to the corresponding artificial 

systems.116 Researchers believe understanding the mechanism of the biological molecular 

machines is essential for designing efficient systems. When we build molecular machines 

whose motions can be controlled in the desired environment, it would potentially impact all 

aspects of fundamental and applied science. However, it requires an improved understanding 

of the dynamics at a molecular level. A molecular machine could be defined as an assembly of 

different molecular components exhibiting mechanical movements in response to external 

stimuli.117  
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Molecular machines can be classified into two broad classes:  

(i) Biological Molecular Machines: Biological molecular machines are some of the most 

efficient machines in nature. They are typically composed of protein molecules. Examples of 

biological molecular machines include F0F1-ATPase, kinesin, myosin, and dynein.  Biological 

molecular machines function as energy transducers converting energy from one form to 

another. They rely on adenosine triphosphate (ATP) for the energy input. These machines have 

been carrying out essential functions inside and outside the cell. A rotary molecular machine, 

F0F1-ATP synthase, generates ATP, an essential energy-supplying molecule. It consists of two 

motors — the F0-ATPase motor domain containing the proton channel and the soluble F1-

ATPase motor containing three catalytic sites.118 Other biological molecular machines such as 

myosin, kinesin, dynein, and the related proteins function as linear motors transporting 

molecular cargos along the polymeric structures.119 Myosin transports cargo along the actin 

filaments in muscles and other cells, whereas kinesin and dynein transport cargo along the 

microtubules. Myosin delivers power to all our voluntary and involuntary muscle activities. 

The transport motors convert the chemical energy of ATP into mechanical motion. These 

molecular machines also play an important role in cell division. 

(ii) Artificial Molecular Machines (AMMs): Although there have been reports dating back 

to the 1970s and 1980s on the synthesis of artificial molecular systems exhibiting particular 

conformational changes, the field of AMMs really began in 1991with the report by J. Fraser 

Stoddart on the molecular shuttle.120 In the report, the authors investigated dynamical motion 

in rotaxane. Rotaxane consists of a ring mechanical interlocked onto an axle by bulky stoppers. 

They showed that the ring moves between two preferred binding sites due to random thermal 

motion. It was realized that the threaded (i.e., mechanically interlocked) structure of a rotaxane 

could potentially allow for the large-amplitude motion of molecular components in a controlled 

manner. Although mechanically interlocked molecular structures are not necessary for building 

AMMs, they provided the first step toward the practical synthesis of molecular architectures 

through which well-defined molecular motions could be controlled, studied, and utilized. In 

the early 1980s, Jean-Pierre Sauvage revolutionized the strategy of synthesis through the use 

of template methods to assemble mechanically linked molecules such as catenanes and 

rotaxanes.121 The groups of Sauvage, Stoddart, and others contributed to the development of 

new mechanically interlocked molecules based on rotaxane and catenae from 1992 to 2007. 
117,120–123 They also invented novel strategies for switching the positions of components in 

rotaxane and catenane architectures under different stimuli such as light, temperature, charge 

etc.122,124,125   

AMMs could be further classified into three categories: 126 

(a) Mechanically Interlocked Molecules (MIMs): This class of artificial molecular machines 

includes molecules in which different molecular components are interlocked. E.g., rotaxanes 

and catenanes.120 

(b) Molecular Switches: Molecular switches include molecules capable of inducing reversible 

transitions between different states in response to external stimuli. E.g., light-responsive 

molecular switches such as azobenezene.127 
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(c) Molecular Motors: This class of molecule machines includes AMMs that undergo 

unidirectional motion under external stimuli. Molecular motors are fundamentally different 

from molecular switches. In contrast to molecular switches, molecular motors could drive the 

system away from equilibrium and continuously perform work in nonequilibrium 

environments for a complete cycle. In other words, no useful work is done in a molecular switch 

when components return to their original position. Whereas when components return to their 

original position in a molecular motor, any work that has been done is not undone. Researchers 

have built various artificial molecular motors inspired by biological motors.126 

The challenge in the artificial molecular machine is to design systems where the controlled 

motion of components results in useful tasks. Molecular machines should be designed 

according to the environment they are expected to operate. Molecular machines cannot simply 

mimic the mechanism of their macroscopic counterparts. Various factors such as random 

thermal motion, heat dissipation, solvation, momentum, and inertia affect the motion at a 

molecular level (i.e., nanometre scale). The forces influencing the dynamics at the nanoscale 

are not those we commonly encounter in the macroscopic world. Inertia, which depends on the 

mass of a particle, dominates the motion of large objects. As particle size decreases, momentum 

and gravity become less relevant, and viscous forces and Brownian motion become important. 

Molecular motors exploit random thermal fluctuations for directional motion by employing 

ratchet mechanisms.125 Thought experiments such as Feynman’s ratchet-and-pawl, Maxwell’s 

demon, and Smoluchowski’s trapdoor have investigated different strategies to cause the 

directional motion of Brownian particles.128,129 The second law of thermodynamics states that 

the Brownian motion resulting from thermal energy cannot be harnessed to produce useful 

work. Brownian motion has a disruptive effect on small objects. It was estimated that a 

molecule experiences thermal noise power that is at least eight orders of magnitude higher than 

the power obtained from a typical biochemical reaction fuelling the molecular motor.130  

Unfortunately, Brownian motion cannot be stopped except at 0 K; the only solution is to exploit 

random motion. This is what bimolecular machines do: they use external chemical energy to 

bias thermodynamics, making the movement more probable in one direction (i.e., directional). 

Thus, molecular machines required an external input of energy for the operations. The most 

obvious way to supply energy to a chemical system is through a reactant (“fuel”) that undergoes 

an exoergonic reaction. This is what happens in biomolecular machines, which are typically 

powered by ATP. In ATP synthase, chemical energy is supplied in the form of a transmembrane 

proton gradient.131 In 2016, an artificial molecular machine capable of autonomous motion 

powered by chemical fuel was prepared by David Leigh and co-workers.132 Such an 

advancement in controlling the motion at a molecular level has opened doors for innovations 

and scientific discoveries. 

1.8 Statement of problem (aims & objectives) 

Scientific discoveries (i.e., the discovery of new material or phenomena or insight into known 

phenomena) are often associated with novel molecules. They are essential for the progress of 

society. However, scientific discoveries require exploration through molecular space. 

Traditionally, exploration of molecular space has been carried out through experimental, 

computational, and, in some cases, algorithmic approaches. However, experimental and 

computational approaches are time-consuming and expensive due to inherent limitations. 
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Although algorithmic approaches are relatively fast, they are highly sensitive to the parameters 

and starting conditions and may end up producing a lot of useless molecules. Thus, traditional 

approaches are not suitable for exploring the large and ever-expanding molecular space to meet 

the technological demands of society. Recently, machine learning (ML) algorithms have shown 

superior performance in many applications. ML algorithms are capable of handling and 

extracting knowledge from large existing datasets. High throughput approaches have resulted 

in the generation of a huge amount of data. Thus, approaches based on ML algorithms are more 

suitable for the efficient exploration of molecular space. However, a single ML strategy may 

not work for all molecular spaces. The choice of the exploration strategy depends on the 

molecular space and the given application. One may need to develop a new strategy if existing 

strategies do not work. The aim of this work was to demonstrate the applicability of the 

machine algorithms to explore different molecular spaces for discovering promising molecules 

or new phenomena or get insight into know phenomena guided by the desired property (i.e., 

application). 

In this work, we have attempted to address the following questions that arise during the 

development of an exploration strategy: 

How does the molecular space depend on the given application? 

How do we develop new strategies for the exploration of molecular space using machine 

learning algorithms? 

Which approach is more suitable? Computational, algorithmic, machine learning, or a 

combined approach?  

Which machine learning algorithms are better suited for exploring a given molecular space? 

How does a machine learning algorithm helps in reducing the time required for the computation 

of a complex quantity? 

Is it possible to use a small dataset to develop an exploration strategy based on machine learning 

algorithms? 

Is it possible to use the developed strategies for new scientific discoveries? 

Objectives: 

Identify the scientific problems/applications that require exploration of the molecular space. 

Construct the molecular spaces corresponding to each application. 

Develop the exploration strategies for these molecular spaces using supervised and 

unsupervised machine learning algorithms and computational approaches if required. 

If required, develop a new algorithm to address certain aspects of the exploration strategy. 

Use the developed strategy to (i) discover potential molecules from the molecular space and/or 

(ii) discover new phenomena and/or (iii) gain insight into new or known scientific phenomena. 
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1.9 Organization of the Thesis 

This thesis is divided into seven chapters. A brief introduction to each chapter is provided 

below with the chapter titles. 

Chapter-1: Brief Introduction to the Molecular Space and Strategies for its Exploration  

This chapter briefly introduces the molecular space and conventional strategies for its 

exploration. We have outlined the issues associated with the conventional strategies and 

highlighted the need for efficient strategies that utilize previous data to explore the molecular 

space. We propose that machine learning approaches are more suited for exploring molecular 

spaces for which datasets are available. We have also briefly described the molecular spaces 

investigated in this thesis. 

Chapter-2: Fundaments of Machine Learning 

This chapter discusses the fundamentals of machine learning algorithms, such as supervised 

and unsupervised learning methods. Also, commonly used algorithms and different aspects and 

components of a typical machine learning workflow have been described briefly. 

Chapter-3: Machine Learning the Redox Potentials of Phenazine Derivatives: A 

Comparative Study on Molecular Features 

This chapter describes the development of machine-learning models to explore the molecular 

space containing battery materials. In particular, we have investigated molecular space 

containing phenazine derivatives, which are promising redox-active candidates for redox flow 

batteries (RFBs).  We employed twenty linear and non-linear machine-learning models for the 

prediction of the redox potential (desired property) of phenazine derivatives in 

dimethoxyethane (DME) solvent using a small dataset of 189 molecules. The models achieved 

excellent performance on the unseen data (i.e., R2 > 0.98, MSE < 0.008 V2 and MAE < 0.07 

V). Furthermore, the predictive performance of four types of molecular features (i.e., 2D, 3D, 

and molecular fingerprints) was analyzed. It was observed that the 2D molecular features were 

most informative and achieved the highest prediction accuracy. 

Chapter-4: Predicting the Redox Potentials of Phenazine Derivatives Using a Hybrid 

DFT-ML Approach 

This chapter demonstrates a hybrid DFT-ML approach to explore the molecular space 

containing green battery materials (i.e., phenazine derivatives). We developed four machine 

learning (ML) models to predict the redox potentials of phenazine derivatives in 

dimethoxyethane using density functional theory (DFT) and a small training data of 151 

phenazine derivatives having only one type of functional group per molecule (20 unique 

groups). Despite being trained on the molecules with a single type of functional group, the 

models were able to predict the redox potentials of derivatives containing multiple and different 

types of functional groups with good accuracy (R2 > 0.7). 

Chapter-5: Investigating Combinatorial Binding of Transcription Factors using 

Unsupervised Machine Learning Models 

This chapter describes the development of an unsupervised machine learning approach to 

explore the molecular space containing DNA regions and special proteins called transcription 



17 

 

factors (TFs) obtained from next-generation sequencing (NGS). We have investigated topic 

models (Latent Dirichlet Allocation and the Hierarchical Dirichlet Processes) and a recently 

developed No Promoter Left Behind (NPLB) approach to cluster the DNA regions obtained 

from the ChIP-seq and DNase-seq data of the K562 cell line. The results showed that the 

models could identify the commonly occurring regulatory modules in the K562 cell line. The 

identified regulatory modules contained the transcription factors that generally co-occur or are 

functionally similar.  NPLB was most successful in identifying regulatory modules from both 

the ChIP-seq datasets investigated in this study. We also obtained the regulatory modules from 

DNase-seq data using topic models. 

Chapter-6: An Algorithmic Development of the Strategy for Quantifying Rotational 

Motion in Molecular Machines 

This chapter demonstrates the development of an algorithm for quantifying the rotational 

motion (desired property) in molecular machines. In particular, mechanically interlocked 

molecules having a ring and a track were investigated (i.e., rotaxane and catenane). We also 

investigated linear regression, a machine learning algorithm, during the development. We 

performed several tests to verify the algorithm using an artificial test system and a rotaxane 

test system. It was observed that the developed algorithm could reasonably quantify the 

absolute rotation of the ring in rotaxane and catenane. We also investigated the effect of the 

track, solvent, and counterions on the rotation of the ring.  

Chapter-7: Summary and Future Outlook 

This chapter provides conclusions and the future outlook that can be developed from the work 

done and reported in this thesis. 
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Chapter 2  

Fundamentals of Machine Learning 

Abstract 

Machine Learning (ML) is a subfield of Artificial Intelligence (AI), which can be defined as 

an ability of a system to extract knowledge from the data rather than being explicitly 

programmed. With a rapid increase in storage capacity and processing power, machine learning 

has shown impressive results in many fields of science and technology that surpass traditional 

methods. Machine learning algorithms have been successfully applied to image recognition, 

natural language processing, robotics, protein folding, and the prediction of novel materials. 

Machine learning algorithms are particularly advantageous when expert knowledge is 

unavailable or incomplete. In this chapter, we have briefly discussed the fundamental concepts 

of machine learning. First, we give a brief introduction to machine learning and related fields. 

Then, we discuss a brief history of machine learning, three types of common machine learning 

problems, and machine learning algorithms. A typical workflow of a machine project has been 

discussed next, followed by a brief description of some popular machine learning algorithms. 

Finally, computational methods used in this thesis work have been discussed. 
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2.1 Introduction 

The past decade has seen an immense increase in the techniques and applications powered by 

machine learning (ML). It has impacted many industries, including autonomous driving, health 

care, finance, manufacturing, and energy harvesting.1–4 At the same time, researchers around 

the world are using machine learning to discover new phenomena or further the understanding 

of the known scientific phenomena. Machine learning is considered as a new paradigm in 

science, and one of the disruptive technologies of this age.5 Machine learning has been 

successfully applied to seemingly unsolvable problems such as protein folding.6 It aims to 

extract knowledge from the data and utilize it to make decisions on new, unseen data. Machine 

learning generally requires a large amount of data. Therefore, the success of ML in recent years 

could be attributed to the generation of huge datasets and improvements in the technologies for 

data management.7 The considerable number of applications shows that the industry has 

significantly benefited from machine learning. However, the spread of ML techniques in the 

scientific community took some time due to a fundamental difference in goals. Scientists want 

to understand the mechanism behind a phenomenon and are interested in building intuitive, 

interpretable models. On the other hand, machine learning does the opposite: most machine 

learning algorithms create very complex models, making it difficult to extract and interpret the 

learned knowledge. ML models are generally considered a black box. Nevertheless, one cannot 

deny the power of machine learning to produce surprisingly good results that surpass traditional 

methods.  

Learning is the process of acquiring new behaviors or modifying existing behaviors, values, 

and knowledge. The theory of personal learning states that humans learn from their past 

experiences. The field of artificial intelligence aims to develop a system capable of thinking 

and learning on its own.  Research into artificial intelligence led to the development of machine 

learning algorithms that can learn from data. In his famous book, Tom Mitchell defines 

machine learning as follows:8 

A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E. 

In simple words, it means learning from data. Data is analogous to past experience in human 

learning.  Machine learning is also known as statistical learning due to its foundation in 

statistics. Before moving forward, it is essential to distinguish between artificial intelligence, 

machine learning, deep learning, and data science. Figure 2.1 depicts how the artificial 

intelligence, machine learning, and deep learning fields relate to each other.9 
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Figure 2.1. Relationship between artificial intelligence, machine learning, deep learning, and 

data science. 

 Artificial Intelligence (AI): Artificial intelligence is the ability of machines to learn and 

understand data, make informative decisions by discovering hidden patterns in the data, 

and make inferences that could otherwise be challenging for humans to make manually. AI 

enables machines to adapt to a new situation that has not been encountered previously. In 

other words, AI is a collection of mathematical algorithms that tries to simulate human 

intelligence and impart computers an ability to comprehend relationships between various 

types of data and extract knowledge from them to make conclusions or decisions that are 

most likely to achieve the desired goal.   

 Machine Learning (ML): Machine learning is a subfield of AI. It consists of algorithms 

that can learn hidden patterns from massive amounts of data. Learning from past experience 

is an essential property of human intelligence. ML algorithms impart a similar ability to an 

intelligent system. In ML algorithms, the data used for learning is known as training data. 

The uniqueness of machine learning lies in the ability to understand the general pattern that 

is not only applicable to training data but also to other unseen data. Machine learning 

algorithms can be grouped into two categories: (i) Traditional or Shallow learning 

algorithms and (ii) Deep learning algorithms. Traditional or Shallow learning algorithms 

are the algorithms developed prior to the advent of deep learning. These algorithms rely 

more on expert knowledge than deep learning algorithms. 

 Deep Learning (DL): Deep learning is one of the most popular branches of machine 

learning. Today, many applications are powered by deep learning algorithms such as face 

recognition, language translation, and recommendation systems.10–12 Deep learning 

algorithms are based on artificial neural networks that resemble neurons in our brain. Deep 

learning algorithms can make highly accurate predictions, surpassing the performance of 

conventional methods in various fields. The success of DL algorithms comes from their 

ability to learn meaningful features directly from the raw data. In contrast, the performance 

of traditional machine learning algorithms depends on feature engineering, which requires 

domain knowledge. Feature engineering has been the bottleneck in many machine learning 

applications. Deep learning essentially removed the need for feature engineering. However, 
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it requires vast data and computing resources for the training. The availability of large 

datasets and Graphical Processing Units (GPUs) have fueled the growth of deep learning. 

 Data Science: On the other hand, data science is a multidisciplinary field that involves 

extracting insights from large datasets. It uses scientific methods, processes, and algorithms 

to extract knowledge and insight from noisy, structured, and unstructured data. It combines 

domain expertise, data analytics skills, programming skills, mathematics, and machine 

learning to understand data and draw inferences. Data science encompasses preparing data 

for analysis, formulating problems, analyzing data, and developing data-driven solutions.  

It can be seen that deep learning is a subfield of machine learning, which itself is a subfield of 

the larger field of artificial intelligence. While data science is an entirely different area, it uses 

some elements from machine learning as well as deep learning. The goal of the machine 

learning model is to identify patterns from the data to explain unseen data as accurately as 

possible. Machine learning has found its importance due to its power to identify complex 

patterns in data. Therefore, difficult tasks could be modeled easily with machine learning. For 

example, it is tough to program a computer to identify human faces. However, it can easily be 

done using machine learning algorithms. The machine learning approach is advantageous 

when: 

 It is challenging to construct systems that require specific detailed skills or expert 

knowledge tuned to a specific task. 

 Systems are required to adapt and customize themselves to individual users automatically. 

For example, personalized email filters. 

 New knowledge must be discovered from large databases. For example, medical text 

mining for disease diagnosis. 

 Human expertise does not exist. For example, navigating on mars. 

 Humans are unable to explain their expertise. For example, speech recognition. 

 Solution changes in time. For example, the stock market. 

Thus, machine learning is instrumental when expert knowledge is not available or incomplete, 

and the data is large or too complex for human analysis.  

2.2 Brief History of Machine Learning 

Although machine learning has recently gained popularity, the foundation was laid in the mid-

20th century when Alan Tuning invented the “Turning Test” to test a machine’s ability to 

exhibit intelligent behavior equivalent to, or indistinguishable from, that of humans.13 Later, in 

1958, Frank Rosenblatt proposed the perceptron model for face recognition, the basic unit of 

all deep learning models.14 In 1967, a simple yet very effective nearest neighbor algorithm was 

implemented for classification tasks.15 Around 1969, Seymor Papert and Minksy proved that 

perceptron was incapable of learning non-linear functions; this led to a decline in AI/machine 

learning research.16 In the 1960s, a multilayer perceptron capable of learning non-linear 

functions was proposed, but the AI community still lacked an efficient algorithm to train 

multiple layers.17 The period from 1969 to 1984 is known as the AI winter. Around 1990, the 

research focus shifted from solving AI to solving practical problems using data; this led to the 

development of many traditional/shallow learning algorithms (e.g., random forest, SVM, 



34 

 

boosting).18 The AI winter ended when, in 1986, a simple and efficient algorithm for the 

training of multilayer neural networks was designed.19 Backpropagation was a revolutionary 

idea, but the real success of deep learning was realized in the early 21st century when GPUs 

were used for training neural networks. Deep learning surpassed all the traditional approaches 

in image recognition, natural language processing, and even in toxicity prediction.10,20,21 These 

examples demonstrate the power of deep learning models. A brief history of machine learning 

is shown in Figure 2.2. 

 

Figure 2.2. A brief history of machine learning. 

2.3 Types of Machine Learning Problems 

Before applying machine learning algorithms, it is crucial to formulate a given problem into an 

appropriate type. Machine learning can solve three types of problems (Figure 2.3), which are 

discussed below.22 

2.3.1 Classification 

In this problem, the output variable to be predicted is categorical. The goal of classification is 

to assign data points to a fixed number of discrete classes such as Yes/No, and Male/Female. 

The problem could be a binary or multi-class classification problem depending on the number 

of output classes. For example, classifying incoming emails as spam or ham, face recognition 

in which output classes are more than two, etc. 

2.3.2 Regression 

In regression, the output variable to be predicted is continuous, e.g., scores of a student and the 

weight of a person. Regression involves modeling the target variable based on independent 

variables. It is used to understand the relationship between target and independent variables. 

2.3.3 Clustering 

Clustering involves grouping given data into different clusters or categories. The goal of 

clustering is to group similar data points into the same clusters and segregate dissimilar data 

points into the clusters that are farthest from each other. There is no pre-defined notion of label 

allocated to the groups/clusters formed. One needs to inspect the formed clusters to understand 

their meaning. An example of clustering includes customer segmentation for marketing. 
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Figure 2.3. Types of machine learning problems.  

2.4 Types of Machine Learning Algorithms 

Machine learning algorithms can be classified into three categories:23  

2.4.1 Supervised Learning Algorithms 

Supervised learning algorithms are the type of machine learning algorithms that use a labeled 

dataset to learn general patterns describing the given data. This dataset (referred to as the 

training dataset) includes both the target variable and the input data. From this, the supervised 

learning algorithm seeks to build a model that can predict the values of the target variable for 

a new dataset. Supervised models create a mapping between input and target variables. 

Supervised learning algorithms typically solve classification and regression problems. Some 

commonly used supervised machine learning algorithms include k-nearest neighbors, naïve 

Bayes, decision trees, linear regression, support vector machines, and neural networks.24–28 

2.4.2 Unsupervised Learning Algorithms 

Unsupervised learning algorithms train only on the input data without their labels. Clustering 

problems are typically solved using unsupervised machine learning algorithms. They separate 

input data into different groups based on similarity and dissimilarity between data points. 

Unsupervised machine learning algorithms have also been employed for dimensionality 

reduction. Unsupervised algorithms find hidden structures present within the data. Examples 

of unsupervised machine learning algorithms include k-means, principal component analysis, 

hierarchical clustering, and topic models.29–32 

2.4.3 Reinforcement Learning Algorithm 

Reinforcement learning algorithms learn by trial and error through interaction with the 

environment. It involves training an agent using the concept of rewards and penalties without 

specifying how to accomplish a given task. The reinforcement learning agent learns appropriate 
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behavior that maximizes the reward from its past experience. These types of algorithms are 

commonly used in robotics. Some of the reinforcement learning algorithms include Markov 

decision processes, Deep Q-Network, Proximal Policy Optimization.33 

2.5 Machine Learning Workflow 

 

Figure 2.4. Typical machine learning workflow. 

2.5.1 Data Collection 

This is the very first step in any machine learning project.34 The data for a machine learning 

project is collected based on the problem. Machine learning models learn from the data; 

therefore, data quality is by far the most critical aspect of a machine learning project. High-

quality data helps the model learn general patterns that apply to unseen data. On the other hand, 

low-quality data may contain noise that can mislead the algorithm into learning noise rather 

than a general pattern. Data is selected by considering its type, quality, source, and format. 

These days thousands of open and private databases are easily accessible. People from various 

fields have made efforts to compile datasets corresponding to their application domain. These 

databases provide a good starting point for many machine learning problems. Some famous 

open data repositories include the UC Irvine Machine Learning Repository35 and Kaggle 

datasets.36 In some cases, when data is not available, one might need to generate the data 

through surveys, experimentation, or computational tools. Lack of data is a common situation 

in fundamental scientific research. Researchers realized this issue and created many open 

databases such as the Open Quantum Materials Database, the Materials Project, the Harvard 

Clean Energy Project, the Inorganic Crystal Structure Database, PubChem, ZINC, ENCODE, 

GenBank, and KEGG.37–45 In addition to these, text mining has also been used for retrieving 

data from the literature.46 

2.5.2 Data Processing 

Quite often, the required data is collected from multiple sources. Different databases store data 

in different formats. Furthermore, the required data format depends on the machine learning 

algorithm utilized for a given application. For example, convolution neural networks require 

data in a 2D image format, whereas linear regression needs data represented in a 1D array. 

When the data has been collected from multiple sources, it becomes crucial to unify their format 

and select a suitable representation for the machine learning algorithm. Furthermore, data 

obtained from the web or databases may contain noise, errors, outliers, and invalid values. Such 

data will make ML algorithms harder to detect underlying patterns. Thus, data needs to be 
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cleaned before feeding to an ML algorithm. Data cleaning is one of the most time-consuming 

steps of the machine learning workflow.47 Data cleaning does not have a well-defined structure 

but generally involves the following steps: 

Fix rows and columns: Delete summary rows such as total and subtotal rows. Delete 

unnecessary rows such as header rows and footer rows. Delete extra rows such as column 

numbers, indicators, blank rows, and page numbers. Merge columns for creating unique 

identifiers if needed. Eg., merge state and city into a full address. Add column names if missing. 

Rename columns consistently, such as abbreviations and encoded columns. Delete unnecessary 

columns. Align misaligned columns when datasets may have shifted columns. 

Fix missing values: First, identify values that indicate missing data and are not yet recognized 

by the software. For example, blank strings, “NA”, “XX”, “999”. Then, one should try 

replacing missing values from reliable sources as much as possible. However, if one cannot, 

then it is better to keep missing values as such rather than exaggerating the existing 

rows/columns. Rows could be deleted if the number of missing values is insignificant, as this 

would not impact the analysis. Columns could be removed if the missing values are quite 

significant in number. 

Standardize values: We should also ensure that all observations under a variable have a 

common and consistent unit. Eg., convert lbs to kgs, miles/hr to km/hr, etc. Many machine 

algorithms (such as linear regression, SVM, k-nearest neighbors, and logistic regression) are 

sensitive to the scale of features. Therefore, appropriate feature scaling is required for robust 

prediction. Various methods such as standardization, normalization, and min-max scaling are 

available for feature scaling.  

Fix invalid values: A dataset can contain invalid values in various forms. Some of the values 

could be truly invalid. For example, a string “tr8ml” in a variable containing mobile numbers 

would make no sense and hence would be better removed. Similarly, a height of 11 ft would 

be an invalid value in a set containing the heights of children. On the other hand, some invalid 

values can be corrected. Eg., a numeric value with a data type of string could be converted to 

its original numeric type. Issues might arise due to misinterpretation of the encoding of a file, 

thus showing junk characters where there were valid characters. This could be corrected by 

specifying the proper encoding or converting the dataset to the accurate format before 

importing. 

Convert Datatypes: Sometime, a feature may have an incorrect datatype. For example, the 

height, which is a numerical variable, is represented as a string. Furthermore, most machine 

learning algorithms require all features in integer or float format.  Therefore, we should convert 

variables into their appropriate datatype. Label or one-hot encodings are commonly used for 

converting categorical variables into numbers. 

Filter data: In this step, identical rows and columns are removed. We can also pick rows and 

columns relevant to the analysis, for example, based on date. 
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2.5.3 Feature Engineering 

The performance of machine learning algorithms, particularly traditional machine learning 

algorithms, depends on features present in the data. Different features contain different 

information about the individual data points.  Feature engineering is the process of creating 

new and informative features from raw data. It also involves converting data into a more 

suitable representation for machine learning algorithms. The suitable representation of the 

input data dictates the accuracy of the algorithm. In this thesis work, we are dealing with 

molecules. There are multiple choices available for the representation of molecules, such as 

SMILES,48 InChI,49 molecular graphs,50, and arrays of molecular features. Arrays of molecular 

features include one-dimensional arrays of 2D molecular features, 3D molecular features, and 

molecular fingerprints.51–53 Biomolecules such as DNA and RNA are represented as a two-

dimensional array of probability weight matrices or one-dimensional arrays of either base pairs 

or protein binding sites.54–56 Thus, feature engineering involves the generation of different 

molecular features. Feature engineering requires insight into both the scientific problem and 

the mechanism of a machine learning algorithm. Traditional machine learning algorithms 

(shallow learning algorithms) require manual feature engineering and selection. Manual feature 

engineering needs domain expertise that is not always available and has high labor and 

computational cost. Therefore, manual feature engineering is not always an ideal solution. On 

the other hand, deep learning algorithms have eliminated the need for manual feature 

engineering. These algorithms can identify and generate important features directly from the 

raw data.57 

2.5.4 Model Training 

This step constitutes the selection of appropriate algorithms, model training, and 

hyperparameter tuning. Before the training, the data is split into three sets: (i) training-set, (ii) 

test-set, and (iii) validation-set. If the size of the data is small, then the validation-set is 

generally not created. The typical size of the validation and test set ranges somewhere from 

30% to 5%, depending on the size of the whole dataset. Algorithm selection depends on the 

problem, data, and the size of the training-set. For the prediction problem with labeled data, we 

would choose one of the supervised learning algorithms. If we want to identify groups within 

data, unsupervised machine learning algorithms are more suitable. Although there are no rules 

for model selection, general guidelines exist. One should investigate deep learning models 

along with others when the size of the training-set is sufficiently large.22 On the other hand, for 

small datasets, traditional or shallow learning algorithms are more suitable. Training a machine 

learning algorithm involves adjusting model parameters to achieve high performance on the 

training data defined by a loss or cost function. The cost function measures the amount of 

deviation between model predictions and the actual values. It guides the ML algorithm during 

the search for parameters. Parameter search in the ML algorithm is carried out using some 

optimization method. For example, gradient descent is the most commonly used optimization 

method in ML algorithms.58 Apart from parameters, ML models also contain other parameters 

known as hyperparameters that are not part of the model itself. However, they still have an 

impact on training and prediction. Hyperparameters are not updated during the training. Thus, 

they require manual tuning. Hyperparameter tuning is generally performed with a validation-

set when the size of the dataset is large; otherwise, a training-set is used.59 
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2.5.5 Model Evaluation / Deployment 

After training, we need a way to estimate the reliability of the models in test scenarios not 

covered by the training data. “Hold-Out Strategy” and “Cross-Validation” are the two 

commonly employed methods for assessing model performance.60 The basic idea is the same 

in both methods – to keep aside some data that will not in any way influence the model building. 

The part of the data that is kept aside is then used as a ‘proxy’ for the unknown (as far as the 

model we have built is concerned) test data on which we want to estimate the performance of 

the model. Finally, the performance of the trained ML model is evaluated on the test-set. It is 

crucial to evaluate a model on the test-set to understand its generalizability. If the performance 

on the test-set is satisfactory, then we can deploy the model to obtain predictions on the new 

datasets. Model deployment is particularly important in industries, whereas model evaluation 

is generally the last step in research domains. Some commonly used evaluation metrics for 

regression and classification are given in Table 2.1 below. In the formulas below, 𝑁 represents 

the total number of data points, 𝑦�̂� denotes the predicted value of 𝑖-th sample and the 𝑦𝑖 denotes 

the corresponding true value. 

Table 2.1.  Some commonly used evaluation metrics in regression and classification tasks. 

Regression 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑅2) = 1 − 
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =  
∑ (𝑦𝑖 − �̂�)2𝑁

𝑖=1

𝑁
 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =  
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑖=1

𝑁
 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝑃𝐸) = 100 ∗ 
∑

|𝑦𝑖 − 𝑦�̂�|
⌈𝑦𝑖⌉

𝑁
𝑖=1

𝑁
 

Classification 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

where, 

𝑇𝑃 is the number of true positives  

𝑇𝑁 is the number of true negatives 

𝐹𝑃 is the number of false positives and 𝐹𝑁 is the number of false negatives 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

AUC (Area Under The Curve)- ROC (Receiver Operating Characteristics) 

curve 
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2.5.6 Model Selection 

Model selection is not depicted as a separate step in Figure 2.4. However, it is often part of 

either model training or evaluation steps. Here, we briefly discuss an important aspect of model 

selection — the bias-variance trade-off. The central issue in all of the machine learning is “how 

do we extrapolate what has been learned from a finite amount of data to all possible inputs ‘of 

the same kind’?”. We build models from some training data. However, the training data is 

always finite. On the other hand, the model is expected to have learned ‘enough’ about the 

entire domain from where the data points can possibly come. Clearly, in almost all realistic 

scenarios, the domain is infinitely large. How do we ensure that our model is as good as we 

think based on its performance on the training data, even when we apply it to the infinitely 

many data points that the model has never ‘seen’ (been trained on)? A predictive model has to 

be as simple as possible, but no simpler. Often referred to as the Occam’s Razor, this is not just 

a convenience but a fundamental tenet of all machine learning. Overfitting is a phenomenon 

where a model becomes way too complex than what is warranted for the task at hand and, as a 

result, suffers from bad generalization properties. Overfitting is generally addressed through 

regularization techniques. By contrast, an underfitted model fails to capture the relationships 

between the variables in the data adequately. This could be due to an incorrect choice of model 

type, incomplete or incorrect assumptions about the data, too few parameters in the model, or 

an incomplete training process. The ‘variance’ of a model is the variance in its output on some 

test data with respect to changes in the training dataset. In other words, variance refers to the 

degree of changes in the model itself with respect to changes in the training data. Bias quantifies 

how accurate the model is likely to be on future (test) data. The left-hand side of Figure 2.5 

illustrates bias and variance using a target shooting analogy. A model whose shots are clustered 

together is one that has a small variance and one whose shots are close to the “bull’s eye” has 

a small bias. A ‘consistent’ shooter will have a small variance, and a ‘good’ shooter will have 

a small bias. So, in other words, variance is about consistency, and bias is about accuracy. The 

right-hand side of Figure 2.5 illustrates the typical trade-off between bias and variance — low 

complexity models have high bias, and low variance and high complexity models have low 

bias but high variance. The goal of model selection is to find a ‘best’ model that balances both 

bias and variance and achieves a reasonable degree of predictability (low variance) without 

compromising too much on the accuracy (bias).61 Model selection generally includes feature 

selection, hyperparameter tuning, and regularization. 

 

Figure 2.5. Bias-variance trade-off. 
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2.6 Brief Description of Commonly Used Machine Learning Algorithms 

2.6.1 Linear Regression 

Linear regression is a regression technique (model) that assumes a linear relationship between 

the predictor and the target variable.62 It is one of the simplest machine learning algorithms 

used when the target variable depends linearly on independent variables. The target variable is 

represented as a linear combination of independent variables in linear regression. Based on the 

number of independent variables, there are two types of linear regression (i) Simple Linear 

Regression and (ii) Multiple linear regression. 

 Simple Linear Regression: The linear regression model with only one independent 

variable is known as a simple linear regression. The relationship between the target and 

independent variable is given by the following equation of a straight line: 

𝑦 = 𝛽0 + 𝛽1𝑥 

 Multiple Linear Regression: When there are several independent variables in the linear 

regression model, it is called multiple linear regression.  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛 

In the equations above, 𝑦 is the dependent variable, 𝑥𝑖 are the independent variables and 𝛽𝑖 

are weights or coefficients of the regression model. 

Linear regression also assumes that the error terms are normally distributed, independent of 

each other, and have constant variance (homoscedasticity). The goal of linear regression is to 

find the best-fit line or hyperplane that captures the linear relationship between target and 

independent variables, as shown in Figure 2.6. 

 

Figure 2.6. Visualizing linear regression in two dimensions. 

The best-fit line or hyperplane corresponds to a set of coefficients having minimum prediction 

error. The coefficients are found by minimizing the expression of RSS (Residual Sum of 

Squares) which is equal to the sum of squares of the residual for each data point. The residual 
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for any data point is computed by subtracting the predicted value of the target variable from 

the actual value of the target variable, as given below: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑦𝑖,𝑡𝑟𝑢𝑒 − 𝑦𝑖,𝑝𝑟𝑒𝑑 

Training linear regression model involves minimizing a cost function. The cost function in 

linear regression is RSS (Residual Sum of Squares): 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑅𝑆𝑆) = ∑(𝑦𝑖,𝑡𝑟𝑢𝑒 − 𝑦𝑖,𝑝𝑟𝑒𝑑)
2

𝑁

𝑖=1

= ‖𝑌 − 𝑋�̂�‖
2
 

where,  

𝑁 is the number of training samples. 

𝑦𝑖,𝑡𝑟𝑢𝑒 is the true value of the target variable corresponding to training sample 𝑖. 

𝑦𝑖,𝑝𝑟𝑒𝑑 is the predicted value of the target variable corresponding to training sample 𝑖. 

�̂� is the matrix of coefficients. 

𝑋 is the matrix of independent variables corresponding to all training samples. 

𝑌 is the matrix of target values of all training samples. 

We generally employ a gradient descent algorithm to minimize the RSS in linear regression. 

The output of gradient descent is the set of coefficients (betas) giving the lowest RSS. Gradient 

descent is the process of optimizing the values of coefficients by iteratively minimizing the 

cost function on training data. It starts with the random values for each coefficient. The cost is 

calculated on the training data. The coefficients are updated in the direction of minima using 

the learning rate as a scaling factor. The process is repeated until RSS goes below some 

threshold. Gradient descent works very well on a large dataset. However, we can also obtain 

the coefficients using a closed-form solution for the small datasets. The closed-form solution 

exists for linear regression, which is given by: 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

2.6.2 Ridge Regression 

In linear regression, we get the best coefficients by minimizing the residual sum of squares 

(RSS). Similarly, with ridge regression, we estimate the model coefficients but by minimizing 

a different cost function. This cost function adds a penalty term to the RSS. The penalty term 

is the sum of squared model coefficients (i.e., L2-norm) multiplied by a regularisation 

parameter alpha.63 

𝑅𝑖𝑑𝑔𝑒 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑(𝑦𝑖,𝑡𝑟𝑢𝑒 − 𝑦𝑖,𝑝𝑟𝑒𝑑)
2

𝑁

𝑖=1

+ 𝛼 ∑𝛽𝑗
2

𝑚

𝑗=1

 

                                        = ‖𝑌 − 𝑋�̂�‖
2
+ 𝛼‖�̂�‖

2

2
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where,  

𝑁 is the number of training samples. 

𝑦𝑖,𝑡𝑟𝑢𝑒 is the true value of the target variable corresponding to training sample 𝑖. 

𝑦𝑖,𝑝𝑟𝑒𝑑 is the predicted value of the target variable corresponding to training sample 𝑖. 

𝛽𝑗 is the coefficients corresponding to feature 𝑗. 

𝑋 is the matrix of independent variables corresponding to all training samples. 

𝑌 is the matrix of target values of all training samples. 

𝛼 is the coefficient of regularisation. 

𝑚 is the number of features. 

In the cost function, the penalty term, also called the shrinkage penalty, would be small only if 

the coefficients are small, i.e., close to 0. Hence, while fitting the ridge regression model, since 

we need to find out the model coefficients that minimize the entire cost, i.e., RSS and a penalty, 

it would have the effect of shrinking the model coefficients, i.e., the betas, towards 0. If alpha 

is 0, then the cost function would not contain the penalty term, and there will be no shrinkage 

of the model coefficients. They would be the same as those from linear regression. However, 

since alpha moves towards higher values, the shrinkage penalty increases, pushing the 

coefficients further towards zero, which may lead to model underfitting. Choosing an 

appropriate alpha becomes crucial: if it is too small, then we would not be able to solve the 

problem of overfitting, and with too large an alpha, we may actually end up underfitting. Ridge 

regression is helpful in scenarios where independent variables are highly correlated. It pushes 

the coefficients of unimportant features to zero, thereby reducing the overfitting and improving 

generalizability. 

2.6.3 Lasso Regression 

Ridge regression retains all the variables that are present in the data. Now, when the number 

of variables is very large, and the data may have unrelated or noisy variables, we may not want 

to keep such variables in the model. Lasso regression helps us here by performing feature 

selection. The primary difference between lasso and ridge regression is their penalty term. 

Here, the penalty term is the sum of the absolute values of all the coefficients present in the 

model (L1-norm).64 

𝐿𝑎𝑠𝑠𝑜 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑(𝑦𝑖,𝑡𝑟𝑢𝑒 − 𝑦𝑖,𝑝𝑟𝑒𝑑)
2

𝑁

𝑖=1

+ 𝛼 ∑|𝛽𝑗|

𝑚

𝑗=1

 

                                                                           = ‖𝑌 − 𝑋�̂�‖
2
+ 𝛼‖�̂�‖

1
 

where,  

𝑁 is the number of training samples. 

𝑦𝑖,𝑡𝑟𝑢𝑒 is the true value of the target variable corresponding to training sample 𝑖. 
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𝑦𝑖,𝑝𝑟𝑒𝑑 is the predicted value of the target variable corresponding to training sample 𝑖. 

𝛽𝑗 is the coefficients corresponding to feature 𝑗. 

𝑋 is the matrix of independent variables corresponding to all training samples. 

𝑌 is the matrix of target values of all training samples. 

𝛼 is the coefficient of regularisation. 

𝑚 is the number of features. 

As with ridge regression, lasso regression shrinks the coefficient estimates towards 0. However, 

there is one difference. With lasso, the penalty pushes some of the coefficient estimates to be 

exactly 0, provided the tuning parameter, alpha, is large enough. Hence, lasso performs feature 

selection. Choosing an appropriate value of alpha is critical here as well. Because of this, it is 

easier to interpret models generated by lasso than those generated by ridge regression. 

2.6.4 Logistic Regression 

Logistic Regression is a supervised machine learning model for binary classification.65 In this 

model, the probability of a sample (𝑋 = 𝑥1, … , 𝑥𝑛) belonging to a positive class is modelled 

using the logistic function over the linear combination of features, as given below: 

𝑃(𝑋) = 𝑔(𝑊𝑇𝑋) =
1

1 + 𝑒−𝑊𝑇𝑋
 

where, 

𝑊 is a weight vector. 

𝑋 is the matrix of independent variables corresponding to all training samples. 

The logistic function is also known as the sigmoid function. The advantage of the logistic 

function is that its output always lies between 0 and 1 for any value of 𝑋, making it a suitable 

candidate for probability estimation. Another advantage is that logistic function has two types 

of regions: (i) the regions in which probability is either small or large with diminishing returns 

– a small change in probability requires a more significant change in 𝑋, and (ii) the middle 

region where a small change is 𝑋 results in a large change in probability. The middle region 

defines the boundary between classes. The plot of the logistic function is shown in Figure 2.7.   
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Figure 2.7. The logistic function. 

Binary Cross-Entropy is used as a cost function during the training of logistic regression. 

Binary Cross-Entropy is the negative of mean log-likelihood. Thus, minimizing the cost 

function is equivalent to maximizing the likelihood. 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  −
1

𝑁
∑𝑦𝑖 log(𝑦�̂�) + (1 −

𝑁

𝑖=1

 𝑦𝑖) log(1 − 𝑦�̂�) 

where, 

𝑁 is the total number of data points. 

𝑦𝑖 is the true class of the 𝑖-th data point. 

𝑦�̂� is the class predicted by the logistic regression for the 𝑖-th data point. 

Gradient descent is generally employed to minimize this cost function with respect to 

coefficients 𝑊. After training, the class of a new sample is predicted using a cut-off, generally 

taken as 0.5. The sample is estimated to belong to a positive class if the probability obtained 

from the logistic regression is ≥ 0.5; else, it is estimated to belong to a negative class. Other 

values of cut-off may also be chosen depending on the given application. 

2.6.5 Naïve Bayes 

Naïve Bayes is a simple yet effective supervised machine learning algorithm for classification. 

Naïve Bayes is a probabilistic classifier that uses Bayes’ theorem. It returns the probability of 

a test point belonging to a class rather than the label of the test point.25 The probability of a 

data point 𝑋 having features 𝑥1, … , 𝑥𝑛 belonging to a class 𝐶𝑖 is given by Bayes’ theorem as 

given below: 

𝑃(𝐶𝑖|𝑋) =
𝑃(𝑋|𝐶𝑖) 𝑃(𝐶𝑖)   

𝑃(𝑋)
 

where, 
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𝑃(𝐶𝑖) is known as the prior probability. It is the probability of an event occurring before the 

collection of new data. It represents our belief.  Prior probability plays an important role in the 

classification of new data points. 

𝑃(𝑋|𝐶𝑖) represents the likelihood function. It tells the likelihood of a data point occurring in a 

class 𝐶𝑖. The conditional independence assumption is leveraged while computing the likelihood 

probability. 

The effect of the denominator 𝑃(𝑋) is not incorporated while calculating probabilities, as it is 

the same for all the classes and hence, can be ignored without affecting the final outcome.   

𝑃(𝐶𝑖|𝑋) is called the posterior probability, which is finally compared for all classes, and the 

data point is assigned to the class with the highest posterior probability. 

For a dataset with all categorical features, these probabilities are simply computed by counting 

the number of instances/occurrences of the categorical data. Calculation of prior probability is 

easier than likelihood. Therefore, to simplify the computation, naïve Bayes makes the 

assumption that 𝑥1, … , 𝑥𝑛 are conditionally independent. Thus, it is called a naive model as this 

assumption is most likely not valid in real situations. The final representation of class 

probability is given as: 

𝑃(𝐶𝑖|𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑥1, … , 𝑥𝑛|𝐶𝑖) 𝑃(𝐶𝑖) 

                         ∝ 𝑃(𝐶𝑖)∏ 𝑃(𝑥𝑗|𝐶𝑖)
𝑛
𝑗=1  

The computation of individual 𝑃(𝑥𝑗|𝐶𝑖) depends on the distribution of features in a given class. 

For example, in the text classification, where features may be word counts, they may follow a 

multinomial distribution. In some cases, where features are continuous, they may follow a 

Gaussian distribution. There is very little explicit training involved in naïve Bayes compared 

to other classification models. The only work that needs to be done is calculating the 

conditional probability of individual features and the prior probability of classes, which can be 

done quickly. Therefore, naïve Bayes performs well with high-dimensional data and large 

datasets. To estimate the class of a new data point, naïve Bayes simply chooses a class that has 

the highest probability for a given data point, as shown below: 

𝑦 = argmax
𝐶𝑖

 𝑃(𝐶𝑖)∏𝑃(𝑥𝑗|𝐶𝑖)

𝑛

𝑗=1

  

Thus, the naïve Bayes estimate is also known as Maximum A Posteriori (MAP) estimate. 

2.6.6 Support Vector Machines 

Support Vector Machines, or SVMs, are a class of extremely popular classification models. 

Besides their ability to solve complex machine learning problems, they have numerous 

advantages over other classification algorithms, such as dealing with computationally heavy 

datasets and classifying non-linearly separable data. SVMs solve the problem of nonlinearity 

through kernel trick. Logically, multiple lines (hyperplanes) could perfectly separate the two 

classes. However, the best separator is the one that maintains the largest possible equal distance 

from the nearest points of both classes. Therefore, for a separator to be optimal, the margin or 
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the distance of the nearest point to the separator should be maximum. This is called the maximal 

margin classifier, as shown in Figure 2.8. The goal of SVM is to identify such maximum margin 

hyperplane in a high dimensional space defined by the kernel function that maps to a non-linear 

classifier in the original feature space.27  

 

Figure 2.8. Support Vector Machine. 

The points close to the hyperplane are only considered for constructing the hyperplane, and 

those points are called support vectors. The support vector classifier also allows certain points 

to be deliberately misclassified. By doing this, it is able to classify most of the points correctly 

in the unseen data making it more robust. The support vector classifier is also called the soft 

margin classifier because, instead of searching for the margin that exactly classifies each and 

every data point to the correct class, the soft margin classifier allows some observations to fall 

on the wrong side.  

Support vector machines solve a constraint optimization problem defined below: 

𝑚𝑖𝑛
𝑤, 𝑏, 𝜁

1

2
𝑤𝑇𝑤 + 𝐶 ∑𝜁𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,   𝑦𝑖(𝑤
𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜁𝑖 , 

𝜁𝑖 ≥ 0, 𝑖 = 1,… , 𝑛 

where, 

𝑤 is the coefficient vector. 

𝑏 is the intercept term. 

𝜁𝑖 is the distance of the 𝑖-th data point from its correct margin boundary. 

𝜙 is the function that transforms input features into a high dimensional space. 

𝐶 is the penalty term. 
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Minimizing 𝑤𝑇𝑤 is equivalent to maximizing the margin. The support vector classifier works 

well even when the data is partially intermingled (i.e., data is not linearly separable). The 

hyperplane in a high dimension may not be perfect; therefore, SVM allows some points to be 

misclassified (i.e., lie at a distance from their correct margin boundary). 𝐶 is the penalty term 

that controls the strength of the misclassification. The success of SVM is due to the fact that it 

does not need to transform features using 𝜙.  As feature transformation results in a large 

number of features, it makes the modeling (i.e., the learning process) computationally 

expensive. The key fact that makes the kernel trick possible is that — SVM only needs the 

inner products of the observations to find the best fit model, which can be easily computed 

using a kernel function without feature transformation. 

2.6.7 Support Vector Regression 

This model is the regression form of a support vector machine (SVM), a popular algorithm for 

classification tasks. Analogous to SVM, Support vector regression depends on the subset of 

training data and ignores the points whose predictions are close to their true values. SVM also 

utilizes the kernel trick and learns a hyperplane in high dimensional space to explain the 

relationship in the original dimensions.66  

2.6.8 Decision Trees 

With their high interpretability and intuitive nature, decision trees mimic the human decision-

making process and excel in dealing with categorical and continuous data. It is possible to 

easily explain all the factors or rules leading to a particular decision/prediction in the decision 

trees. Hence, decision trees are easily understood by people. Decision trees naturally represent 

the way we make decisions. A decision tree is similar to a flowchart that helps make 

decisions/predictions.26 It is a predictive model that resembles an upside-down tree, as shown 

in Figure 2.9.  

 

Figure 2.9. Decision Tree.  
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Decision tree is a supervised learning method, i.e., it has a fixed target variable, but unlike 

logistic regression, it is not a parametric model. It is free to learn any functional form from the 

training data and does not have a fixed set of parameters to define the model. Decision trees 

can be considered a set of if-then-else statements. One of the major advantages of using a 

decision tree is that it can handle both categorical and continuous features. Another advantage 

of decision trees is that they can be used for both classification and regression tasks. 

Constructing a decision tree involves the following steps: 

 Recursive binary splitting/partitioning the data into smaller subsets 

 Selecting the best rule from a feature for the split 

 Applying the split based on the rules obtained from the features 

 Repeating the process for the subsets obtained 

 Continuing the process until the stopping criterion is reached 

 Assigning the majority class/average value as the prediction 

In order to construct a decision tree, we must know how to select a node that will lead to the 

best possible solution. Homogeneity/Purity is one of the factors considered while constructing 

a decision tree. A dataset is considered completely homogeneous for classification tasks if it 

contains only a single class label, which is extremely difficult to achieve in real-world datasets. 

While creating a decision tree, we should follow a step-by-step approach by picking an attribute 

first and then splitting the data such that the homogeneity of the child nodes increase after every 

split. Then, splitting is stopped when the resulting leaves are sufficiently homogenous. For this, 

we need to define the degree of homogeneity. Various methods are used for quantifying 

homogeneity, such as the classification error, Gini index and entropy (for classification), and 

MSE (for regression). 

The classification error is calculated as follows: 

𝐸 = 1 − max (𝑝𝑖) 

The Gini index is calculated as follows: 

𝐺 = ∑𝑝𝑖(1 − 𝑝𝑖)

𝑘

𝑖=0

 

Entropy is calculated as follows: 

𝐷 = −∑𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

𝑘

𝑖=0

 

Where 𝑝𝑖 is the probability of finding a point with the label 𝑖, and 𝑘 is the number of classes. 

CART is a famous algorithm for building decision trees with the Gini index as a splitting 

criterion. It includes the following steps for building a decision tree: 

1. Calculate the Gini index before splitting the entire dataset. 

2. Consider any one of the available features. 

3. Calculate the Gini index after splitting on that particular feature for each of the levels of 

the features. 
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4. Combine the Gini index of all the levels to obtain the Gini index of the overall feature. 

5. Repeat steps 2 – 5 with another feature until we have exhausted all of them. 

6. Compare the Gini index across all the features and select the one that has the minimum 

Gini index. 

2.6.9 Random Forests 

A random forest algorithm combines multiple decision trees to generate the final results.67 This 

process of combining more than one model to make the final decision is called ensemble 

learning. An ensemble tries the overcome the shortcomings of single ML models. The random 

forest algorithm is an ensemble of decision trees that uses bagging to generate different base 

models. So far, the random forest algorithm has been the most successful among the bagging 

ensembles. They are essentially ensembles of several decision trees. The random forest 

involves generating a large number of decision trees, each one on a different bootstrap sample 

from the training-set. The results are combined from different models for the final prediction. 

Bootstrapping refers to sampling from a given dataset. A bootstrap sample is generated by 

uniformly sampling the given dataset with replacement. A bootstrap sample typically contains 

40% to 70% of the data from training-set.  A random forest algorithm selects a random sample 

of data points (bootstrap sample) to build each tree and a random sample of features while 

splitting a node. Randomly selecting features ensures that each tree is diverse, an essential 

requirement for ensemble models. Finally, random forest aggregates the result of each model 

for the prediction. In classification problems, a majority vote is taken as the final prediction, 

whereas, in regression, an average is taken.  

2.6.10 Artificial Neural Networks  

This is the most important machine learning model in this age, which has evolved into a field 

of its own known as deep learning. Artificial neural networks have played a significant role in 

the success of machine learning. Deep learning is an active area of research in machine 

learning. The basic unit in these models is an artificial neuron modeled after a biological 

neuron. A single artificial neuron transforms input values using some mathematical operations 

and returns an output. The operation performed by the neuron is typically represented as 

follows: 

𝑦 = 𝜎(∑(𝑤𝑖𝑥𝑖) + 𝑏

𝑛

𝑖=1

) 

Where, 

𝑥𝑖 represents 𝑖-th feature of the input. 

𝑤𝑖 represents a learnable weight for 𝑥𝑖. 

𝑏 is the bias term. 

𝜎 represents an activation function. 

Neural networks are inspired by the network of neurons in the brain. Millions of interconnected 

neurons in our brain perform various tasks; similarly, artificial networks are formed by 

connected layers of artificial neurons.28 As shown in Figure 2.10, a typical artificial neural 
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network has an input layer, several hidden layers, and an output layer. They are used for 

classification as well as regression tasks. The weights of neural networks are learned using the 

backpropagation algorithm. 

 

Figure 2.10. Artificial Neural Network. 

2.6.11 Automatic Relevance Determination Regression 

This is the probabilistic model related to the sparse Bayesian learning (SBL) framework. It 

assumes an axis-parallel, elliptical Gaussian distribution for each coefficient. The precision of 

each Gaussian distribution is drawn from the prior distribution (gamma distribution); therefore, 

it can lead to sparser coefficients. Thus, it is an effective tool for removing irrelevant 

features.68,69  

2.6.12 Gaussian Process Regression 

It is a nonparametric Bayesian model. The nonparametric Bayesian model provides the 

probability distribution of parameters over all possible functions that fit the data. The prior in 

a Gaussian process is specified on the function space. The Gaussian process prior is a 

multivariate normal distribution whose mean is obtained from the data and whose covariance 

is specified using the kernel function. The hyperparameters of the kernel need to be optimized 

during the training.70,71 Some examples of kernel functions include RBF, matern, dot-product, 

exp-sine-squared, and white.70 RBF kernel is a very popular kernel employed in many 

algorithms. 

2.6.13 Kernel Ridge Regression 

This is the extension of ridge regression with a kernel trick. In ridge regression, a linear model 

is learned with the L2-norm regularization. Using the kernel trick, KRR learns a linear function 

in the high dimensional non-linear space without actually transforming the data.72 

2.6.14 K-Means Algorithm 

The k-means an unsupervised machine learning algorithm for dividing the N data points into 

K groups or clusters. It does so by calculating the distance between the data points using some 
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distance measure. A distance measure tells how similar two data points are — the points that 

are closer or more similar to each other would have a low distance, and the points which are 

farther or less similar to each other would have a higher distance. K-means involves the 

following steps:29 

1. Start by choosing K random points as the initial cluster centers. 

2. Assign each data point to its nearest cluster center. The most common way of 

measuring the distance between the points is the Euclidean distance. 

3. For each cluster, compute the new cluster center, which will be the mean of all cluster 

members. 

4. Now, re-assign all the data points to the different clusters by considering the new 

cluster centers. 

5. Keep iterating through steps 3 and 4 until no further changes are possible. 

At this point, we arrive at the optimal clusters. Some of the points to be considered while 

implementing the k-means algorithm are (a) the choice of the initial cluster center has an impact 

on the final cluster composition, (b) we need to decide the number of clusters K in advance, (c) 

outliers have a serious impact on the performance of the algorithm and prevent optimal 

clustering, (d) the data needs to be standardized, and (e) the k-means algorithm cannot be 

employed when dealing with categorical data, as the concept of distance for categorical data 

does not make much sense. 

2.6.15 Principal Component Analysis 

Principal component analysis (PCA) is one of the most commonly used dimensionality 

reduction techniques. By converting large datasets into smaller ones containing fewer 

variables, it helps in improving model performance, visualizing complex datasets, and in many 

more areas. PCA performs dimensionality reduction by dropping the unnecessary variables, 

i.e., those that add no useful information. It converts the data by creating new features from old 

ones and then decides which features to consider based on information content using the 

variance. PCA calculates uncorrelated features (i.e., principal components) through a linear 

combination of original features. These principal components capture maximum information 

(i.e., variance) present in the data.30 Dimensionality reduction is performed by choosing only 

those components that capture variance above a pre-defined threshold, e.g., greater than 95%. 

The most common application of PCA is to improve the model’s performance. As principal 

components are uncorrelated, PCA helps us solve the problem of multicollinearity and thus 

model instability. 

2.7 Brief Description of Modern Machine Learning Methods 

2.7.1 Reinforcement Learning 

Reinforcement learning involves identifying the best set of actions under different conditions 

that maximize the long-term rewards based on repeated interactions with the environment.73 

Typically, RL consists of an agent and the corresponding environment, as shown in Figure 

2.11. The agent identifies the best actions by trial and error through repeated interaction with 

the environment. A few examples of reinforcement learning algorithms include Markov 

decision processes, Deep Q-Network, Proximal Policy Optimization, etc.33,73,74 



53 

 

 

Figure 2.11. In reinforcement learning, the agent interacts with the environment through 

action, which causes the environment to transition to a new state and generate a reward. 

During training, the agent takes an action 𝑎𝑡 at time 𝑡, which affects the environment, causing 

it to transition from state 𝑠𝑡 to 𝑠𝑡+1 state. This transition results in a reward of 𝑟𝑡+1. Then, the 

agent takes an 𝑎𝑡+1 based on the state 𝑠𝑡+1 and reward 𝑟𝑡+1, continuing the cycle. The goal of 

the agent is to learn a mapping from states to actions, i.e., policy π(𝑎𝑡+1|𝑠𝑡+1) that maximizes 

a long-term sum of future rewards known as a value function 𝑣𝜋 defined below. 

𝑣𝜋(𝑠) = 𝐸(𝑟𝑡+1 + 𝛾 𝑟𝑡+2 + 𝛾2𝑟𝑡+3 … |𝑠) 

2.7.2 Recurrent Neural Networks 

Artificial neural networks, particularly feedforward neural networks, assume that individual 

data points in training and test-sets are independent. This poses an issue for the datasets in 

which data points such as time series and sequence data are not independent. Thus, researchers 

introduced recurrent neural networks (i.e., RNNs), a type of neural network capable of 

modeling dependencies among data points. RNNs are commonly used in applications involving 

sequential data such as natural language processing, time series prediction, etc. RNNs have 

recurrent connections that pass relevant information from past data. These recurrent 

connections introduce the notion of time to the model. RNNs are composed of high-

dimensional hidden states that work as the memory of the network. The state of the hidden 

layer depends on the earlier states enabling RNN to store, remember, and process data for 

longer time periods.75 A simple RNN consists of an input layer, recurrent layers (i.e., hidden 

layers), and an output layer, as shown in Figure 2.12. RNNs are trained using a modified form 

of backpropagation algorithm known as backpropagation through time (BPTT).76 However, 

RNNs are challenging to train. Consequently, many variations of RNNs, such as LSTM, GRU, 

etc., have been developed.77 
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Figure 2.12. Simple recurrent neural network. 

2.7.3 Convolutional Neural Networks 

Convolutional Neural Networks, or CNNs, are specialized architectures that work particularly 

well with visual data, i.e., images and videos. They have been largely responsible for 

revolutionizing deep learning by setting new benchmarks for many image processing tasks that 

were recently considered extremely hard. Although fully connected neural networks can learn 

highly complex functions, their architecture does not exploit what we know about how the 

brain reads and processes images. For this reason, they haven't achieved any major 

breakthroughs in the image processing domain. CNNs had first demonstrated their 

extraordinary performance in the ImageNet challenge.78 Convolutional neural networks consist 

series of convolution layers. These convolutional layers are composed of filters that extract 

various image features using convolution operation. The weights and biases of these filters are 

learned during training. The output from the filters is passed through the non-linear activation 

function, generally, ReLU. Convolutional layers are generally followed by pooling layers that 

aggregate the features and reduce feature dimensions. Typically, the last few layers in the 

CNNs are consists of fully connected layers followed by the output layer. A softmax layer is 

generally used as output layer for classification.79  Figure 2.13 below depicts the structure of a 

typical CNN. 

 

Figure 2.13. Arrangement of layers in a typical CNN. 
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2.7.4 Variational Autoencoders 

Variational autoencoders (i.e., VAEs) are one of the widely used approaches for generative 

modeling and representation learning. VAEs are probabilistic generative models, they learn the 

true distribution of input features from the distribution of latent variables using Bayesian 

statistics.80 VAEs approximate a latent space defined by mean µ and a standard deviation σ 

using stochastic inference. VAEs are composed of an encoder and a decoder network.81 The 

encoder provides a low-dimensional latent representation of the input data 𝑋 at the bottleneck 

layer. At the same time, the decoder tries to reconstruct the input data �̂�. As VAEs learn the 

representation of input data in a continuous latent space, we are able to generate new data from 

VAEs.82 Figure 2.14 shows the structure of VAE. 

 

Figure 2.14. Structure of variational autoencoders. 

2.7.5 Generative Adversarial Networks 

Generative Adversarial Networks (i.e., GANs) are a novel class of generative models that were 

popularized due to their ability to generate realistic images.83 GANs consist of a generator and 

a discriminator, as shown in Figure 2.15. The generator is a generative model used for 

generating fake data and capturing the probability distribution of the real data. Whereas, the 

discriminator is a discriminative model used for distinguishing real data from fake data. During 

training, the generator and discriminator compete with each other to achieve the Nash 

equilibrium using gradient-based optimization.84 Generator generators fake data from noise 

vector, its objective is to deceive the discriminator. The discriminator is a binary classifier that 

receives fake data generated from the generator and real data. The objective of the discriminator 

is to identify real and fake data correctly. The optimal state is achieved when the discriminator 

fails to distinguish real data from fake data. The generator obtained at the optimal state has 

leaned real data distribution. This generator could be used for generating data that resemble 

real data.85 
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Figure 2.15. Generative Adversarial Networks consist of a generator and a discriminator. The 

generator generates fake data, whereas, the discriminator tries to identify real data from fake 

data.  

2.8 Computational Methods 

Supervised machine learning algorithms were employed for developing predictive models. The 

models investigated in this thesis work include linear regression, ridge regression, lasso, 

elastic-net, LARS lasso, orthogonal matching pursuit, Bayesian ridge regression, automatic, 

relevance determination regression, passive aggressive, Huber regression, kernel ridge 

regression, support vector machines, Gaussian processes regression, decision trees, bagging 

meta-estimator, random forest, AdaBoost, gradient boosting regression, artificial neural 

network, and nearest neighbors regression. Supervised machine learning models were 

implemented using the scikit-learn Python library.86 Hyperparameters of the models were 

optimized using the ‘GridSearchCV’ class of the scikit-learn library 86. The mean squared error 

(MSE) was used as an evaluation metric during hyperparameter optimization. When necessary, 

feature selection was carried out using the ‘SelectKBest’ class of the scikit-learn library.87 

Feature importance was computed using the ‘permutation_importance’ class of the Scikit-learn 

library.88 The following metrics were employed for evaluating the model performance. In the 

formulas below, 𝑁 denotes the number of data points, 𝑦�̂� denotes the predicted value of the 𝑖-

th sample and 𝑦𝑖 denotes the corresponding true value. 

Coefficient of Determination (R2):   

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

𝑤ℎ𝑒𝑟𝑒, �̅� =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 

Mean Squared Error (MSE): 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − �̂�)2𝑁

𝑖=1

𝑁
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Mean Absolute Error (MAE): 

𝑀𝐴𝐸 = 
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑖=1

𝑁
 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 = 100 ∗ 
∑

|𝑦𝑖 − 𝑦�̂�|
⌈𝑦𝑖⌉

𝑁
𝑖=1

𝑁
 

The unsupervised machines learning models investigated in this thesis work include Latent 

Dirichlet Allocation (LDA), Hierarchical Dirichlet Processes (HDP), and No Promoter Left 

Behind (NPLB). LDA and HDP are frequently used for topic models. However, NPLB is a 

relatively new and promising clustering algorithm capable of identifying new promoters 

directly from the promotor sequences without any prior information on binding. We modified 

the typical workflow of NPLB for working with motif data. An implementation of LDA from 

the Gensim Python library was used in this work.89 HDP was implemented using the hdp 

Python library developed by altosaar et al.90 The NPLB library developed by Mitra and 

Narlikar was used for the development of the NPLB approach.91 
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Chapter 3  

Machine Learning the Redox Potentials of 

Phenazine Derivatives: A Comparative 

Study on Molecular Features  

Abstract 

Redox Flow Batteries (RFBs) are promising candidates for green and efficient energy storage 

systems. However, their widespread adoption still needs further investigations into cheaper and 

greener alternative organic redox-active species. In this work, we have developed machine-

learning models to predict the redox potentials of phenazine derivatives in DME 

(dimethoxyethane) solvent using a small dataset of 189 molecules. 2D, 3D, and molecular 

fingerprint features were computed using readily available and easy-to-use Python libraries, 

making our approach easily adaptable to similar work. Twenty linear and non-linear machine 

learning models were investigated in this work. These models achieved excellent performance 

on the unseen data (i.e., R2 > 0.98, MSE < 0.008 V2 and MAE < 0.07 V). Model performance 

was assessed consistently using the training and evaluation pipeline developed in this work. 

We showed that 2D molecular features were the most informative and achieved the best 

prediction accuracy among four feature sets. We also showed that often less preferred but 

relatively faster linear models could perform better than non-linear models when the feature 

set contained different types of features (i.e., 2D, 3D, and molecular fingerprints) to predict the 

redox potential of phenazine derivatives. Further investigations revealed that it is possible to 

reduce the training and inference time without sacrificing prediction accuracy by using a small 

subset of features. Moreover, significantly low prediction errors were observed for most 

functional groups. Thus, we believe that the results obtained in this work would help in the 

adoption of green energy by accelerating the field of materials discovery for energy storage 

applications. 
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3.1 Introduction 

Today, ~85% of the world’s energy demand is being fulfilled by fossil fuels.1,2 The limited 

supply of fossil fuels and the ever-increasing population has raised concerns that we might run 

out of fossil fuels sooner than expected.1,3 Furthermore, electricity production from fossil fuels 

is one of the major factors responsible for greenhouse gas emissions.4 In this age, humanity 

faces two major challenges: of balancing increased energy demand while reducing the 

environmental impact associated with energy production. In the past decades, investments and 

research efforts in green technology have been increased to overcome these challenges.5 

Significant progress has already been made to access renewable energy sources.6,7 Renewable 

energy sources, being intermittent, require efficient energy storage.4 Improvements in the 

energy storage technology would not only help in the adoption of renewable energy but also 

help in making efficient use of non-renewable energy sources. Historically, it has been more 

expensive to store energy than to expand energy generation to handle increased demand.8 Thus, 

grid systems employed today are likely to fail when additional energy cannot be generated 

during peak demand. The massive Texas Blackout in February 2021 is an example of such a 

failure.9 It suggests that efficient energy storage technology is urgently required. Unfortunately, 

only 1.0% of the energy consumed worldwide can be stored with the energy storage technology 

accessible today.10 Furthermore, the contribution of electrochemical batteries to energy storage 

capacity is less than 2.0%, even though most of the devices we use every day include 

batteries.8,10 Li-ion batteries are widely used today due to their high energy density, high 

specific energy, long cycle life, and fast charge-discharge cycle.4,8,11 Unfortunately, Li-ion 

batteries suffer from high production costs, safety issues, and high environmental impact.2,12 

Redox flow batteries (RFBs) have the potential to overcome drawbacks of Li-ion batteries 

owing to their high storage capacity, independent control over storage capacity and power, fast 

responsiveness, ease of scaling, room temperature operation, cost-effectiveness, high round 

trip efficiency, safety, and lower environmental impact.13–26 RFBs are increasingly being used 

as energy storage devices in renewable energy systems, thereby helping in the adoption of 

green energy.15,22 A schematic diagram of the typical redox flow battery is shown in Figure 

3.1. RFB consists of two storage tanks containing cathode and anode redox-active species 

dissolved in an electrolyte solution. The electrolyte solution in the positive and negative 

compartments is termed catholyte and anolyte, respectively. These storage tanks are connected 

to an electrochemical cell (or current collector) via pumps. The electrochemical cell consists 

of porous electrodes separated by an ion-selective membrane. During operation, electrolytes 

containing redox-active species are pumped to the electrochemical cell, where redox-active 

species undergo oxidation or reduction depending on the charge/discharge cycle. Then, 

electrolytes are circulated back to their storage tanks.13,24 So far, transition metal-based redox 

flow batteries (such as vanadium, iron, and chromium) have found some commercial success. 

However, their widespread adoption has been limited mainly due to high production cost, 

toxicity, and cell component corrosion associated with the use of transition metal salts.27,28 

Therefore, redox flow batteries containing organic redox-active species are being heavily 

investigated due to their low production cost, access to a massive space of electroactive 

compounds, and low environmental impact.28,29 Many organic compounds such as quinones, 

viologens, flavins, thiazines, imides, and their derivatives have been investigated for redox-

active species in both aqueous and non-aqueous RFBs.27,30,31 However, non-aqueous RFBs 
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offer large operating voltage.30 Recently, phenazine derivatives have been shown to be 

promising redox-active candidates in non-aqueous RFBs.  

 

Figure 3.1. Schematic diagram of a typical redox flow battery. 

Recent reports have revealed the reasons behind using phenazine derivatives as promising 

redox-active candidates. Romadina et al. synthesized phenazine derivatives having 

significantly negative redox potential.32 Materials with highly negative redox potential are 

preferred candidates for anolytes in RFBs. They showed that the non-aqueous RFB based on 

the synthesized phenazine derivative is capable of achieving a potential of 2.3 V, high 

capacities, > 95% coulombic efficiency, and good charge-discharge cycling stability after the 

initial 20 cycles. Mavrandonakis and co-workers, in their computational investigation, reported 

the most negative redox-active candidate based on phenazine for non-aqueous RFBs.27 They 

showed that tetra-amino-phenazine (TAPZ) has 140 mV more negative potential than N-

methylphthalimide (MePht), which has one of the most negative redox potentials reported so 

far in RFBs.33 They also proposed all-phenazine RFB capable of reaching a high potential of 

2.83 V. Furthermore, the redox potential of phenazine derivatives could be tuned easily with 

the addition of appropriate electron-donating or electron-withdrawing functional groups. The 

synthesis of phenazine derivatives is very economical than mining transition metals. Therefore, 

phenazine derivatives are currently being investigated as potential candidates for novel redox-

active species.27,32  

These investigations remain primarily experimental. Unfortunately, the vast molecular space 

offered by organic compounds cannot be explored using experimental procedures. Quantum 
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mechanical DFT computations have been used heavily in chemistry research due to high 

accuracy but are very slow and cannot screen millions of molecules in a reasonable amount of 

time. Therefore, a fast and reliable method to screen millions of compounds without 

compromising accuracy is required. In this regard, machine-learning algorithms have shown 

excellent predictive accuracies along with short development and prediction times34–38. 

Therefore, machine learning algorithms have been used extensively to screen millions of 

molecules in materials science and drug discovery.39–43 Machine learning models generally 

require a large amount of data for accurate predictions. When the quantity of data is limited, 

feature engineering is employed to generate the most informative features. These features are 

expected to capture the appropriate molecular information necessary to predict the target 

quantity. Feature engineering requires domain knowledge, relying on having access to 

experts.44–46 In small datasets, DFT-based or experimentally determined features have been 

used due to their high accuracy. However, some reports also explore simple features based on 

molecular structure.47–52  

The goal of this study was to develop efficient machine learning models for predicting the 

redox potential of phenazine derivatives and understand the effect of different types of 

molecular features on prediction accuracy. We did not compute any features from DFT 

calculations or experimental studies to make our approach easily adaptable. The features used 

in this study were computed from molecular structures using readily available, easy-to-use 

Python libraries such as RDKit 53 and DeepChem.54 These libraries have been used in other 

studies as well.55–58 Previous studies to predict redox potential using machine learning 

investigate only a small number of non-linear models.59–63 Furthermore, none of the previous 

studies use easily computable features from RDKit or DeepChem libraries. This study 

investigated twenty different linear and non-linear machine-learning models to predict the 

redox potential of phenazine derivatives in DME (dimethoxyethane) solvent. Linear models 

are generally faster to train but may not capture complex relationships between features and 

target variables, whereas non-linear models are capable of capturing these complex 

relationships but may overfit the training data and may require a considerable amount of 

training time. A total of 3510 features containing 2D, 3D, and molecular fingerprints were 

generated using RDKit, and DeepChem Python libraries. Models were trained on four feature 

sets described in Table 3.2 to obtain high prediction accuracy. Moreover, to understand which 

feature set had the best prediction accuracy, a detailed analysis of model performance was 

carried out using the pipeline developed in this work (described in section 3.2). The pipeline 

was developed to make training and evaluation easy, consistent, and automatic for all models. 

It combines different model training and evaluation steps into a single, convenient sub-routine. 

Then, the feature importance analysis was performed to identify the most important features in 

each feature set. After that, model performance was analyzed on small subsets of the most 

important features to reduce training and inference time for large datasets. Next, the prediction 

accuracy across different functional groups was analyzed. Finally, the sources of errors were 

identified. We believe that the methods used in this work are easily adaptable, and the results 

obtained in this study would help accelerate the discovery of novel redox-active species for 

energy storage applications.      
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3.2 Materials and Methods 

3.2.1 Dataset 

Data used in this study was obtained from the report by Mavrandonakis and co-workers.27 The 

redox potentials of 189 phenazine derivatives in DME were provided in their report. These 

potentials were computed using DFT.  Phenazine derivatives were generated from twenty 

unique electron-withdrawing and donating functional groups (–N(CH3)2, –NH2, –OH, –OCH3, 

–P(CH3)2, –SCH3, –SH, –CH3, –C6H5, –CH=CH2, –F, –Cl, –CHO, –COCH3, –CONH2, –

COOCH3, –COOH, –CF3, –CN and –NO2). Optimized 3D structures of molecules in neutral 

and in anionic states were also provided. Only neutral structures were used for the feature 

generation. However, not all compounds were supplied with their neutral structure. Therefore, 

compounds with missing neutral structures were removed. Thus, we ended up with 185 

compounds in the final dataset. Next, 3510 different types of features were generated using 

RDKit and DeepChem, libraries as described below. Finally, the whole dataset was shuffled 

and split randomly into a training-set and a test-set, in a 7:3 ratio. This resulted in 129 samples 

in the training-set and 56 samples in the test-set. The term ‘Redox Potential’ in this chapter 

refers to the ‘Reduction Potential’ of phenazine derivatives. A few phenazine derivatives from 

the training-set/test-set are shown in Table 3.1. 

Table 3.1. Representative structures from training-set/test-set. Mol IDs were assigned to 

identify derivatives from the corresponding dataset. 

 

Mol ID: 1 

 

Mol ID: 3 

 

Mol ID: 5 

 

Mol ID: 48 

 

Mol ID: 52 

 

Mol ID: 172 

 

3.2.2 Feature Generation 

For each compound, three types of features were generated: (i) 2D, (ii) 3D, and (iii) molecular 

fingerprints. Ten 2D features were also generated from the raw data (features with the word 

‘basic’ in the suffix).  The rest of the 2D features were computed using RDKit.53 All 3D features 

were computed using RDKit. However, molecular fingerprints were computed using RDKit 

and DeepChem54 libraries. These features were grouped into four sets, as shown in Table 3.2.  

Molecular fingerprints and some of the 3D features were one-dimensional vectors. In this 

study, we considered each component of the vectorial feature as an independent feature. 
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Therefore, a small number of unique 3D and molecular fingerprint features resulted in a large 

number of final features. Features having a “NaN” (Not a Number) value for any compound 

were removed. Also, features having identical values for all compounds were removed, as they 

did not contain any useful information. All 2D and 3D features computed from the RDKit 

library were scaled using the ‘StandardScaler’ class of the Scikit-learn library64, which 

removes the mean and scales each feature to unit variance. A list of all features used in this 

study is given in Table 3.3. 

Table 3.2. Feature sets. 

Feature 

Set 
Description 

Number of 

Features 

2d+3d+fp 

Contains 2D and 3D features computed using raw 

data and RDKit library. Also contains molecular 

fingerprints computed from RDKit and DeepChem. 

3510 

2d 
Contains only 2D features computed using the raw 

data and RDKit. 
151 

3d Contains only 3D features computed using RDKit. 869 

fp 
Contains molecular fingerprints computed using 

DeepChem and RDKit. 
2490 
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Table 3.3. List of all features. 

Feature 

Type 
Feature Names 

2D 

'FG_no_basic', 'FG_position_1_basic', 'FG_position_2_basic', 

'FG_position_3_basic', 'FG_position_4_basic', 'FG_position_6_basic', 

'FG_position_7_basic', 'FG_position_8_basic', 'FG_position_9_basic', 

'MaxEStateIndex', 'MinEStateIndex', 'MaxAbsEStateIndex', 'MinAbsEStateIndex', 

'qed', 'MolWt', 'HeavyAtomMolWt', 'ExactMolWt', 'NumValenceElectrons', 

'MaxPartialCharge', 'MinPartialCharge', 'MaxAbsPartialCharge', 

'MinAbsPartialCharge', 'FpDensityMorgan1', 'FpDensityMorgan2', 

'FpDensityMorgan3', 'BCUT2D_MWHI', 'BCUT2D_MWLOW', 

'BCUT2D_CHGHI', 'BCUT2D_CHGLO', 'BCUT2D_LOGPHI', 

'BCUT2D_LOGPLOW', 'BCUT2D_MRHI', 'BCUT2D_MRLOW', 'BalabanJ', 

'BertzCT', 'Chi0', 'Chi0n', 'Chi0v', 'Chi1', 'Chi1n', 'Chi1v', 'Chi2n', 'Chi2v', 'Chi3n', 

'Chi3v', 'Chi4n', 'Chi4v', 'HallKierAlpha', 'Ipc', 'Kappa1', 'Kappa2', 'Kappa3', 

'LabuteASA', 'PEOE_VSA1', 'PEOE_VSA10', 'PEOE_VSA11', 'PEOE_VSA12', 

'PEOE_VSA13', 'PEOE_VSA14', 'PEOE_VSA2', 'PEOE_VSA3', 'PEOE_VSA4', 

'PEOE_VSA5', 'PEOE_VSA6', 'PEOE_VSA7', 'PEOE_VSA8', 'PEOE_VSA9', 

'SMR_VSA1', 'SMR_VSA10', 'SMR_VSA2', 'SMR_VSA4', 'SMR_VSA5', 

'SMR_VSA6', 'SMR_VSA7', 'SMR_VSA9', 'SlogP_VSA1', 'SlogP_VSA10', 

'SlogP_VSA11', 'SlogP_VSA12', 'SlogP_VSA2', 'SlogP_VSA3', 'SlogP_VSA4', 

'SlogP_VSA5', 'SlogP_VSA6', 'SlogP_VSA7', 'SlogP_VSA8', 'TPSA', 

'EState_VSA1', 'EState_VSA10', 'EState_VSA2', 'EState_VSA3', 'EState_VSA4', 

'EState_VSA5', 'EState_VSA6', 'EState_VSA7', 'EState_VSA8', 'EState_VSA9', 

'VSA_EState1', 'VSA_EState10', 'VSA_EState2', 'VSA_EState3', 'VSA_EState4', 

'VSA_EState5', 'VSA_EState6', 'VSA_EState7', 'VSA_EState8', 'VSA_EState9', 

'FractionCSP3', 'HeavyAtomCount', 'NHOHCount', 'NOCount', 

'NumAromaticCarbocycles', 'NumAromaticRings', 'NumHAcceptors', 

'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'RingCount', 

'MolLogP', 'MolMR', 'fr_ArN', 'fr_Ar_COO', 'fr_Ar_OH', 'fr_COO', 'fr_COO2', 

'fr_C_O', 'fr_C_O_noCOO', 'fr_NH0', 'fr_NH2', 'fr_SH', 'fr_aldehyde', 

'fr_alkyl_halide', 'fr_amide', 'fr_aniline', 'fr_aryl_methyl', 'fr_benzene', 'fr_ester', 

'fr_ether', 'fr_halogen', 'fr_ketone', 'fr_ketone_Topliss', 'fr_methoxy', 'fr_nitrile', 

'fr_nitro', 'fr_nitro_arom', 'fr_nitro_arom_nonortho', 'fr_para_hydroxylation', 

'fr_phenol', 'fr_phenol_noOrthoHbond', 'fr_priamide', 'fr_sulfide' 

3D 

'Asphericity', 'Eccentricity', 'InertialShapeFactor', 'NPR1', 'NPR2', 'PMI1', 'PMI2', 

'PMI3', 'RadiusOfGyration', 'SpherocityIndex', 'Autocorr3D', 'RDF', 'MORSE', 

'WHIM', 'GETAWAY' 

Molecular 

Fingerprints 

'Extended Connectivity Circular Fingerprints (ECFP4)', 'MACCS Keys 

Fingerprint', 'RDKit Topological Fingerprint' 

 

3.2.3 Machine Learning Models 

Twenty linear and non-linear machine-learning models were investigated in this study. 

Machine learning models were implemented with the scikit-learn Python library.64 A list of all 

models is given in Table 3.4. 
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Table 3.4. List of Models. 

Sr. 

No. 
Model Name Alias 

1 Linear Regression linear_reg 

2 Ridge Regression ridge 

3 Lasso lasso 

4 Elastic-Net elastic_net 

5 LARS Lasso lasso_lars 

6 Orthogonal Matching Pursuit omp 

7 Bayesian Ridge Regression bayesian_ridge 

8 
Automatic Relevance Determination 

Regression 
ARDR 

9 Passive Aggressive PA 

10 Huber Regression huber 

11 Kernel Ridge Regression kernel_ridge 

12 Support Vector Regression SVR 

13 Gaussian Processes Regression gaussian_process 

14 Decision Trees decision_tree 

15 Bagging meta-estimator bagging 

16 Random Forest random_forest 

17 AdaBoost ada_boost 

18 Gradient Boosting Regression gradient_boosting_reg 

19 Artificial Neural Network neural_network 

20 Nearest Neighbors Regression knn_reg 

 

3.2.4 Hyperparameter Tuning 

Hyperparameter tuning was performed for all models using the ‘GridSearchCV’ class of the 

scikit-learn library. ‘GridSearchCV’ performs a systematic search over a grid of parameters to 

identify the best set of parameters using cross-validation. 10-fold cross-validation with mean 

squared error (MSE) loss was used in this study. 

3.2.5 Evaluation Metrics  

The following metrics were used for evaluating the model performance. In the formulas below, 

𝑁 denotes the number of data points, 𝑦�̂� denotes the predicted value of 𝑖-th sample and the 𝑦𝑖 

denotes the corresponding true value. 
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Coefficient of Determination (R2):   

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

𝑤ℎ𝑒𝑟𝑒, �̅� =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 

Mean Squared Error (MSE): 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − �̂�)2𝑁

𝑖=1

𝑁
 

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 = 
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑖=1

𝑁
 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 = 100 ∗ 
∑

|𝑦𝑖 − 𝑦�̂�|
⌈𝑦𝑖⌉

𝑁
𝑖=1

𝑁
 

MSE was used as an internal evaluation metric in all cross-validation procedures. Other metrics 

were used to get more interpretable results. The use of terms ‘Accuracy’ and ‘Performance’ in 

this chapter is contextual and refers to one or more metrics defined above. 

3.2.6 MSE and MAE Threshold 

To understand whether a model was learning or not, we determined an approximate upper 

bound on MSE and MAE for the training and test set. It is expected that MSE and MAE would 

stay below this threshold if learning were successful. It was observed that when the training 

fails, the model predicts a constant value (i.e., the mean of the training data). Therefore, the 

threshold value for MSE and MAE was determined using the mean value of training data. The 

threshold values are shown in Table 3.5.  

Table 3.5. Threshold values. 

Metric Training-Set Threshold Test-Set Threshold 

MSE 0.47 0.44 

MAE 0.6 0.56 

 

3.2.7 K-Fold Cross-Validation  

In a typical k-fold cross-validation procedure, the training-set is split into k sets of 

approximately equal size. Then, the model is trained on k-1 sets, leaving one set as a test-set. 

Then, the performance of the trained model is evaluated on the left-out test-set. This procedure 

is repeated for every fold, and the average performance is reported. As every data point in the 
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training-set is evaluated as if it belongs to the test-set, the performance obtained from cross-

validation is considered a reasonable estimate of out-of-sample performance. K-fold cross-

validation gives robust out-of-sample performance for the model. It is a crucial evaluation 

technique, especially when the size of the dataset is small, and it becomes impractical to 

partition data into three sets (i.e., train, validation, test). 10-fold cross-validation with MSE loss 

was used in this study. 

3.2.8 Feature Importance Score 

Feature importance scores were computed using the hyperparameter optimized models of 

random forest, AdaBoost, and gradient boosting regression trained on all features from the 

corresponding feature set. 

3.2.9 Pipeline 

To assess the model performance, we developed a pipeline that combines all training and 

evaluation components into a single procedure. Given the train and test sets as inputs, the 

pipeline first performs hyperparameter-tuning for all models, then evaluates the performance 

of the optimized models on the train and test sets, and finally combines necessary results from 

each step in a single dataframe. The pipeline makes the training and evaluation easy, consistent 

and automatic for all models across different scenarios. A pictorial representation of the 

pipeline is shown in Figure 3.2. Different steps in the pipeline are described below: 

Input: First, training and test data are provided as inputs. 

Hyperparameter Tuning: In this step, optimized parameters of all twenty models are 

determined using the training-set, as described in section 3.2.4. 

10-Fold Cross-Validation: In this step, the cross-validation performance of optimized models 

is evaluated using 10-fold cross-validation on the training-set. Three metrics (i.e., R2, MSE, 

and MAE) are recorded during the cross-validation for all models. 

Training and Test-set Performance: In this step, the performance of all optimized models 

are evaluated on the training and test set. Three metrics (i.e., R2, MSE, and MAE) are recorded 

during the evaluation for all models. 

Output: In this step, results from the above steps are combined into one dataframe containing 

the best set of parameters, 10-fold cross-validation performance, train, and test set performance 

of all models. 
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Figure 3.2. Pictorial representation of the training and evaluation pipeline.  
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3.3 Results and Discussion 

3.3.1 Analysis of the Best-Performing Models 

 

Figure 3.3. Machine learning prediction of redox potential (y-axis) vs. true redox potential (x-

axis) of the three best-performing models in each feature set. The title of each plot indicates 

the model name, its rank, and the corresponding feature set used for training in brackets. 

For accurate prediction of the redox potential of phenazine derivatives, we employed twenty 

different linear and non-linear machine-learning models, which are listed in Table 3.4. The 

whole dataset was shuffled and split randomly into train and test sets in a 7:3 ratio. The size of 

the training and test set was 129 and 56, respectively. Even though models were trained on a 

relatively small dataset, they achieved excellent performance on the unseen data (i.e., test-set). 

Figure 3.3 shows the redox potentials predicted by models on the y-axis and the corresponding 

true value of redox potentials on the x-axis. It can be seen that the majority of the models 

achieved an R2 value of 0.99 on the test-set (R2 values in the plots were rounded to two decimal 

places for clarity). Table 3.6 shows the fifteen best-performing models obtained in this study 

along with their R2, MSE, and MAE values on cross-validation (CV), training-set, and test-set. 
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All top twenty models not only had an outstanding performance on the training-set but also on 

the test-set (i.e., R2 > 0.98, MSE < 0.008 V2 and MAE < 0.07 V).  

Table 3.6. Fifteen best-performing models. Models were trained on all features from the 

corresponding feature set. 

Feature 

Set 
Model Name R2 (CV) 

MSE 

(CV) / 

V2 

MAE 

(CV) / 

V 

R2 

(Train-

set) 

MSE 

(Train-

set) / 

V2 

MAE 

(Train-

set) / V 

R2 

(Test-

set) 

MSE 

(Test-

set) / 

V2 

MAE 

(Test-

set) / 

V 

2d gaussian_process 0.9738 0.0078 0.0559 0.9991 0.0004 0.0136 0.9921 0.0035 0.0428 

2d ridge 0.9767 0.0069 0.0541 0.9960 0.0019 0.0298 0.9916 0.0037 0.0454 

2d bayesian_ridge 0.9751 0.0072 0.0537 0.9964 0.0017 0.0282 0.9915 0.0037 0.0452 

2d neural_network 0.9644 0.0108 0.0649 0.9988 0.0005 0.0133 0.9909 0.0040 0.0447 

2d kernel_ridge 0.9738 0.0077 0.0586 0.9947 0.0025 0.0372 0.9896 0.0046 0.0501 

2d omp 0.9160 0.0546 0.0798 0.9940 0.0028 0.0389 0.9876 0.0055 0.0567 

2d ARDR 0.9768 0.0074 0.0582 0.9956 0.0020 0.0333 0.9874 0.0055 0.0540 

2d+3d+fp ARDR 0.9519 0.0132 0.0600 0.9999 0.0000 0.0052 0.9873 0.0056 0.0473 

2d+3d+fp lasso 0.9826 0.0064 0.0593 0.9937 0.0029 0.0429 0.9868 0.0058 0.0519 

2d+3d+fp omp -0.5387 0.3913 0.2317 1.0000 0.0000 0.0000 0.9861 0.0061 0.0628 

2d lasso 0.9768 0.0078 0.0680 0.9901 0.0046 0.0550 0.9857 0.0063 0.0599 

2d+3d+fp gaussian_process 0.9849 0.0058 0.0509 1.0000 0.0000 0.0021 0.9855 0.0064 0.0478 

2d+3d+fp bayesian_ridge 0.9851 0.0055 0.0509 0.9993 0.0003 0.0114 0.9853 0.0064 0.0483 

2d+3d+fp ridge 0.9858 0.0053 0.0499 0.9989 0.0005 0.0144 0.9849 0.0066 0.0494 

2d+3d+fp gradient_boosting_reg 0.9713 0.0141 0.0673 1.0000 0.0000 0.0009 0.9849 0.0066 0.0546 

 

3.3.2 Assessment of Model Performance on Four Feature Sets 

The performance of machine learning models depends on the type and the quality of features. 

Therefore, it is important to identify the best set of features that achieve high prediction 

accuracy. Hence, we assessed model performance on four sets of features given in Table 3.2. 

The goal here was to understand how different types of molecular features affected model 

performance. The model performance on each feature set was assessed using the pipeline 

described in section 3.2. Fifteen best-performing models in Table 3.6 were obtained after 

assessing model performance independently on four feature sets. The ‘Feature Set’ column in 

Table 3.6 shows the corresponding feature set used for the training. Gaussian processes 

regression trained on 2D features achieved the highest prediction accuracy in this study. The 

negative value of R2 (CV) for the orthogonal matching pursuit (omp) model in Table 3.6 

suggests that it may not generalize well to the unseen data. A similar trend was observed for a 

few other linear models (Figure 3.4). Nine models, including the top seven models in Table 

3.6, were trained on the ‘2d’ feature set. The rest of the models in Table 3.6 were trained on 

the ‘2d+3d+fp’ feature set. We did not observe any model trained on either ‘3d’ or ‘fp’, even 

in the top twenty best-performing models. The best-performing model in each feature set, along 

with their test-set performance (i.e., R2, MSE, and MAE), is shown in Table 3.7. From the 

Table 3.7, we observed following order among the feature sets with respect to the prediction 

accuracy: 2d > 2d+3d+fp > 3d > fp. Therefore, we conclude that 2D features are more 
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informative than 3D and molecular fingerprint features in predicting the redox potential of 

phenazine derivatives in DME. We also observed that linear models (e.g., ARDR, lasso, omp, 

ridge, bayesian_ridge) perform better than non-linear models on ‘2d+3d+fp’ feature set, 

whereas non-linear models (e.g., gradient_boosting_reg, gaussian_process, random_forest, 

neural_network) perform better than linear models on ‘3d’ and ‘fp’ feature sets. This 

observation suggests that linear models should be preferred when the feature set consists of 

different features (i.e., 2D, 3D, and molecular fingerprints), and non-linear models should be 

preferred when the feature set contains either 3D or molecular fingerprint features. Any model 

could be used for 2D features. Linear models are generally faster than non-linear models due 

to their simple structure but are not preferred due to low accuracy. The results obtained here 

show that linear models could give accurate predictions compared to non-linear models in 

certain combinations of features (‘2d+3d+fp’ feature set in this study). Utilizing linear models 

in these scenarios could significantly reduce the training and inference time. 

Table 3.7. Test-set performance of the best-performing models in each feature set. Models 

were trained on all features from the corresponding feature set. 

Featue Set Model Name 
R2 (Test-

set) 

MSE (Test-

set) / V2 

MAE (Test-

set) / V 

2d+3d+fp ARDR 0.9873 0.0056 0.0473 

2d gaussian_process 0.9921 0.0035 0.0428 

3d gradient_boosting_reg 0.9788 0.0093 0.0573 

fp random_forest 0.9583 0.0183 0.1012 

 

3.3.3 Cross-Validation and Out-of-Sample Performance 

10-fold cross-validation (CV) performance (i.e., R2, MSE, and MAE) obtained from the 

pipeline is shown in Figure 3.4 for all twenty models. Cross-validation gives a reasonable 

estimate of out-of-sample performance (i.e., performance on unseen data). ‘2d+3d+fp’, ‘2d’, 

and ‘3d’ feature sets had the acceptable CV performance (i.e., MSE and MAE below their 

threshold value) on most models except for four linear models (i.e., linear_reg, omp, PA, 

huber). The computation of threshold values for MSE and MAE is described in section 3.2. 

These four linear models had negative R2 value, high MSE, and high MAE (i.e., close to 

threshold) for at least one feature set. ‘fp’ feature set had the worst CV performance on all 

models. Three linear models (i.e., omp, PA, huber) had poor CV performance on the ‘3d’ 

feature set. Performance on the test-set (i.e., R2, MSE, and MAE) obtained from the pipeline is 

shown in Figure 3.5 for all twenty models. As models never saw the test-set, this gives an even 

better estimate of out-of-sample performance than cross-validation. All feature sets had an 

acceptable test-set performance on all models except linear regression. Linear regression had a 

poor test-set performance on ‘2d’ and ‘fp’ feature sets.  Furthermore, the averaged training and 

test set performance (i.e., R2, MSE, and MAE values were averaged over all models) for each 

feature set are shown in Table 3.8. Values of linear regression were not considered in the 

average due to very high errors. In Table 3.8, ‘2d+3d+fp’ and ‘3d’ feature sets had better 

training-set performance and poorer test-set performance in comparison to the ‘2d’ feature set. 

This indicates that 2D features are better at generalizing to unseen data than 3D and molecular 
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fingerprint features. Trend analysis of Figure 3.4, Figure 3.5, and Table 3.8 revealed the 

previously observed order of feature set performance, 2d > 2d+3d+fp > 3d > fp.  

Table 3.8. Training and test set performance of four feature sets averaged over all models 

except linear regression. Models were trained on all features from the corresponding feature 

set. 

Feature 

Set 

R2 

(Train-

set) 

MSE 

(Train-

set) / V2 

MAE 

(Train-

set) / V 

R2 

(Test-

set) 

MSE 

(Test-

set) / V2 

MAE 

(Test-

set) / V 

2d+3d+f

p 
0.9926 0.0035 0.0301 0.9718 0.0124 0.0733 

2d 0.9876 0.0058 0.0426 0.9729 0.0119 0.0734 

3d 0.9917 0.0039 0.0335 0.9535 0.0204 0.0899 

fp 0.9718 0.0132 0.0506 0.9028 0.0427 0.1511 
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Figure 3.4. 10-Fold cross-validation performance of twenty models. Models were trained on 

all features from the corresponding feature set. 
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Figure 3.5. Test-set performance of twenty models. Models were trained on all features from 

the corresponding feature set. 

3.3.4 Feature Importance Analysis 

Here, we performed feature importance analysis for each feature set to identify the most 

important features. We used random forest, AdaBoost, and gradient boosting regression to 
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calculate the feature importance score. Figure 3.6 - Figure 3.9 show feature importance 

histograms for ‘2d’, ‘3d’, ‘fp’, and ‘2d+3d+fp’ feature sets, respectively. Only twenty features 

with the highest scores are shown in the histograms. The most important features in the‘2d’ 

feature set are SlogP_VSA4, fr_NH0, VSA_Estate3, and VSA_Estate4. SlogP_VSA4 includes 

the LogP65 and Van der Waals surface area contributions from all atoms in the molecule. 

fr_NH0 is the number of tertiary amines66. VSA_Estate3 and VSA_Estate4 are calculated using 

EState indices67 and Van der Waals surface area contributions of all the atoms in a molecule. 

Many graph-based features like Kappa2, BertzCT, Chi1, Chi2n, HallKierAlpha 68, and some 

chemically intuitive features like fr_ArN (i.e., number of N functional groups attached to 

aromatic ring66), MinPartialChargge, MaxAbsPartialCharge are also observed in the top 

twenty features. In the case of ‘3d’ feature set, RDF_120, RDF_90, RDF_125 WHIM_90, 

WHIM_86 are among the top 3D features (RDF, WHIM are 1D vectors).69 The number at the 

end of the feature names denotes its position in the corresponding feature vector. Some 

components of MORSE and GETAWAY feature vectors69 are also observed in the top twenty 

features. Only two components of Autocorr3D were observed in one of the histograms (i.e., 

AdaBoost histogram), suggesting that Autocorr3D69 is a relatively less important 3D feature. 

None of the scalar 3D features were observed in feature importance histograms, suggesting that 

scalar 3D features are less important than vectorial 3D features. We had only three types of 

fingerprints in the ‘fp’ feature set (i.e., RDKit, ECFP4, MACCS keys). RDKit Fingerprints are 

daylight-like fingerprints computed from hashing molecular subgraphs.66 ECFP470 or Extended 

Connectivity Circular Fingerprints are computed from the bag-of-word representation of the 

local molecular neighborhood. Four in ECFP4 denotes the radius of the local neighborhood. 

MACCS keys are computed using the SMARTS-based implementation of the 166 public 

MACCS keys.71 Components only from RDKit and ECFP4 were among the top features, 

whereas only one component from the MACCS keys was observed in one of the histograms 

(the gradient boosting regression histogram). This indicates that the MACCS key fingerprint 

does not contain enough molecular information to predict the redox potential. Figure 3.9 shows 

the feature importance histograms for the ‘2d+3d+fp’ feature set. This feature set contains all 

the features from the ‘2d’, ‘3d’, and ‘fp’ feature sets. The most important features in this feature 

set were also the most important features in their respective set. Top features are mainly from 

‘3d’ and ‘2d’ feature sets, and only one component from the ECFP4 feature vector was 

observed in the lower end of the gradient boosting regression histogram. This again shows that 

molecular fingerprints are the least informative among all features. The feature importance 

histogram of the ‘2d+3d+fp’ feature set contains a few ‘2d’ features and predominantly ‘3d’ 

features. This can be attributed to how fast the feature importance score diminishes from the 

most important features to the least important features. Feature importance scores in the ‘2d’ 

feature set (Figure 3.6) diminish faster than in the ‘3d’ feature set (Figure 3.7). This also 

indicates that very few 2D features are required to predict the redox potential compared to 3D 

features. 
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Figure 3.6. Feature importance histograms of ‘2d’ feature set.  

 

Figure 3.7. Feature importance histograms of ‘3d’ feature set. 
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Figure 3.8. Feature importance histograms of ‘fp’ feature set. 

 

Figure 3.9. Feature importance histograms of ‘2d+3d+fp’ feature set. 
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3.3.5 Effect of Feature Size on Model Performance 

 

Figure 3.10. Model performance vs. number of features 

Previous feature importance studies suggest that not all features may be necessary to achieve 

high predictive performance. To confirm this hypothesis, the two best-performing models in 

each feature set were selected and re-trained on the subset of features. Features were sorted in 

descending order based on the random forest scores. Models were re-trained starting with a 
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single feature to the complete set of features, and three metrics (i.e., R2, MSE, MAE) on the 

test-set were recorded. The results for each feature set are shown in Figure 3.10. Inset plots 

show the same data for the first 50 features. Plots corresponding to the ‘2d’ feature set quickly 

saturate (after ~5 features), suggesting that only a small number of 2D features are required to 

predict the redox potential accurately. Plots of the ‘3d’ feature set seem to saturate after twenty 

features, whereas plots corresponding to the ‘fp’ feature set saturate slowly and require more 

than twenty features to achieve similar performance. In the case of the ‘2d+3d+fp’ feature set, 

plots seem to saturate around 15-20 features and look approximately similar to a linear 

combination of the plots from the ‘2d’, ‘3d’, and ‘fp’ feature sets. These plots clearly show that 

not all features are required to attain a high level of prediction accuracy.  

3.3.6 Assessment of Model Performance on Limited Number of Features 

To gain insight into the quality of predictions when models are trained on a limited number of 

features, all models were re-trained on the subset of features using the pipeline (section 3.2). 

Features were chosen from the array of features sorted based on the random forest score. The 

number of features were varied from five to twenty in a step of five. Figure 3.11 shows the test-

set performance of models when trained on a small number of features from the ‘2d+3d+fp’ 

feature set. The performance on a full set of features is also shown for reference. We observed 

that the model performance generally increases with the number of features. A few exceptions 

were also observed. Some models (e.g., PA, huber, neural network, and knn_reg) had better 

performance on the top twenty features than a full set of features. Moreover, decision_tree 

performed slightly better on the top fifteen features than a full set of features. Similar trends 

were observed for other feature sets as well. However, in the case of the ‘fp’ feature set, SVR 

and knn_reg showed better performance on the top twenty features than a full set of features. 

We also analyzed which feature set was able to achieve the highest accuracy when models were 

trained on a small number of features. Figure 3.12 shows the test-set performance of all models 

when trained on only the top five features from each feature set. ‘2d’ feature set achieved an 

R2 value as high as 0.9869 with only five features with the ‘bagging’ model. The ‘2d+3d+fp’ 

and ‘3d’ feature set performance was similar but sub-par to the ‘2d’ feature set. The similarity 

in performance of ‘2d+3d+fp’ and ‘3d’ feature sets could be attributed to the similarity in their 

top five features (see Figure 3.7 and Figure 3.9). The ‘fp’ feature set performed poorly with 

only five features. These results were consistent across all models. Similar results were also 

obtained for the models trained on the top ten, fifteen, and twenty features. Furthermore, a 

significant decrease in the training and inference time was observed while using the limited 

number of features for the training. These results suggest that training and inference time could 

be reduced by using a small number of features while maintaining a good accuracy level.   

 



88 

 

 

Figure 3.11. Test-set performance of twenty models trained on top-5, 10, 15, and 20 features 

from ‘2d+3d+fp’ feature set. The top most important features were selected based on the 

random forest score. Full feature set performance is shown for reference. 
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Figure 3.12. Test-set performance of twenty models trained on the five most important features 

from the corresponding feature set. Features were selected based on the random forest score. 
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3.3.7 Analysis of the Predictive Performance with respect to Individual Functional 

Groups 

Here, we evaluate the prediction accuracy of the best-performing models in each feature set 

with respect to different functional groups attached to the phenazine ring. Twenty different 

functional groups were present in the phenazine derivatives investigated in this study. Training-

set and Test-set predictions were obtained from the best performing model in each feature set 

(see Table 3.7). Figure 3.13 shows the Mean Absolute Percentage Error (MAPE) for each 

functional group (FG) present in the test-set. MAPE in Figure 3.13 (a) is averaged over FGs 

and four feature sets.  

 

Figure 3.13. Functional group (FG) vs. Mean Absolute Percentage Error (MAPE) on the test-

set. (a) MAPE is averaged over FG and feature sets. (b) MAPE is averaged over only FG. The 

test-set predictions were obtained from the corresponding best-performing model. 

On the other hand, MAPE,  shown in Figure 3.13 (b), is averaged over only FGs. MAPE for 

the majority of the functional groups was well below 10.0%. Even though some functional 
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groups appeared only once in the training-set (see Figure 3.14), most of the models were able 

to predict the redox potential with minimal error. The functional group -COCH3 was present 

only in the test-set, which means that models never saw this functional group during the 

training. Still, the error in its prediction was less than 5.0%. This shows that models 

successfully learned the hidden patterns between features and redox potential from the training-

set, resulting in low generalization errors. 

 

 

Figure 3.14. Distribution of functional groups in training and test sets. 

3.3.8 Error Analysis 

Even though models had low generalization errors, some functional groups exhibited relatively 

high MAPE, e.g., -CN, -NO2, and -COOCH3. High errors of -CN and -NO2 could be attributed 

to a small number of compounds with a redox potential close to zero. Unfortunately, the data 

used in this study contains a very small number of compounds with redox potential close to 

zero. The whole dataset contains only 18 compounds (~9.7% of the total data) having redox 

potential greater than -0.5 V (Figure 3.15 (a)). Therefore, models had less information to learn 

from the region near zero redox potential. This is why test-set predictions near zero redox 

potential had relatively high errors (Figure 3.16). On the other hand, having access to a large 

enough dataset in the region below -0.5 V, models were able to learn the hidden patterns. This 

resulted in low prediction errors for the compounds with redox potential below -0.5 V, even 

for compounds with less than one sample in the training-set. Functional groups -CN and -NO2 

contain some compounds with redox potential greater than -0.5 V (see Figure 3.15 (b)), 

responsible for the high prediction errors observed in Figure 3.13. We also observed a slight 



92 

 

increase in the errors around -1.5 V in Figure 3.16, which could be attributed to the relatively 

low number of data points in the region near -1.5 V. This is why -COOCH3 (avg. redox 

potential -1.57 V) also showed a slightly high prediction error. The red curve in Figure 3.16 

shows the normalized distribution over redox potential (i.e., density) for the whole dataset.  

 

Figure 3.15. Distribution of redox potential (a) of the whole dataset. (b) of -CN, -NO2 

functional groups in training-set   

 

Figure 3.16. MAPE vs. redox potential. The final MAPE on the y-axis was calculated by 

averaging the MAPE obtained from the best-performing model in each feature set. The red 

curve depicts the normalized distribution of redox potential (i.e., density) for the whole dataset.   
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3.4 Conclusions 

In this study, we have investigated twenty linear and non-linear machine learning models to 

predict the redox potential of phenazine derivatives in DME. Both linear and non-linear models 

trained on a small dataset were able to achieve excellent prediction accuracy on the test-set 

(i.e., R2 > 0.98, MSE < 0.008 V2, and MAE < 0.07 V). Features used in this study were 

intentionally chosen to be easily computable from open-source libraries that do not require 

DFT calculations or experimental measurements, making our approach readily adaptable for 

similar studies. Model performance was assessed on four feature sets containing different 

features (i.e., 2D, 3D, and molecular fingerprints) using a convenient pipeline developed in this 

work. This pipeline combines different training and evaluation components in a single sub-

subroutine, making the whole process easy, consistent, and automatic for all models in different 

scenarios. Gaussian processes regression trained on 2D features achieved the highest prediction 

accuracy. The analysis of model performance on four feature sets revealed an interesting order 

with respect to prediction accuracy: 2d > 2d+3d+fp > 3d > fp. Average performance analysis 

also showed that 2D features are better at generalizing to unseen data than 3D and molecular 

fingerprint features. Therefore, we conclude that 2D features capture important molecular 

properties necessary for predicting the redox potential of phenazine derivatives in DME 

solvent. It was observed that linear models out-perform non-linear models on ‘2d+3d+fp’ 

feature set, whereas non-linear models perform better than linear models on ‘3d’ and ‘fp’ 

feature sets. Therefore, for predicting the redox potential of phenazine derivatives, linear 

models should be preferred when the feature set contains different types of features, and non-

linear models should be preferred when the feature set contains either 3D or molecular 

fingerprint features. Due to the simple structure, linear models have fast training and inference 

time but suffer from low accuracy. Results obtained here show that lower training and inference 

times are possible with the linear models that out-perform non-linear models when the dataset 

contains different types of features (i.e., 2D, 3D, and molecular fingerprints). Feature 

importance analysis showed that features related to Van der Waals surface areas, e.g., 

SlogP_VSA4, fr_NH0, VSA_Estate3, and VSA_Estate4 were the most important 2D features. 

RDF_120, RDF_90, RDF_125, WHIM_90, and WHIM_86 were the most important 3D 

features. RDKit, ECFP4 were the most important molecular fingerprint features. Some features 

based on molecular structure and charges, e.g., fr_ArN, MinPartialChargge, and 

MaxAbsPartialCharge, were also observed during feature importance analysis. Feature 

importance analysis also suggested that very few 2D features are required to predict the redox 

potential compared to 3D and molecular fingerprint features. This observation was confirmed 

by re-training models with the subset of features starting from a single feature to a full set of 

features. Model performance was generally observed to increase with the number of features, 

but some exceptions were also observed for which the small number of features performed 

better than a full set of features. A bagging meta-estimator trained on only the top five 2D most 

important features was able to achieve R2 value as high as 0.9869. A significant reduction in 

the training and inference time was observed while maintaining a good level of accuracy. Thus, 

the results obtained in this study would also help in reducing the training and inference time 

for similar future studies on large datasets. MAPE for most functional groups was well below 

10.0%, even for the functional groups with one or zero compounds in the training set. This 

shows that models were able to successfully learn hidden patterns and generalize quite well to 

the unseen data. High test errors for three functional groups (-CN, -NO2, and -COOCH3) were 
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observed due to the small number of data points in the region around their average redox 

potential. With the machine learning models developed in this study, it will be possible to 

explore the large molecular space and identify promising phenazine derivatives containing only 

one type of function group per molecule in a reasonable amount of time compared to 

experimental or DFT methods. Furthermore, these models will reduce the number of molecules 

that need to be analyzed using DFT calculations in a hybrid DFT-ML approaches. Thus, we 

have showed that machine learning based approaches could accelerate the discovery of novel 

materials for energy storage applications such as RFBs. 
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Chapter 4  

Predicting the Redox Potentials of 

Phenazine Derivatives Using a Hybrid 

DFT-ML Approach 

Abstract 

This study investigates four machine learning models to predict the redox potential of 

phenazine derivatives in dimethoxyethane (DME) using density functional theory (DFT). A 

small dataset of 151 phenazine derivatives having only one type of functional group per 

molecule (20 unique groups) was used for the training. Prediction accuracy was improved by 

a combined strategy of feature selection and hyperparameter optimization using an external 

validation-set. The models were evaluated on the external test-set containing new functional 

groups and diverse molecular structures. High prediction accuracies of R2 > 0.74 were obtained 

on the external test-set. Despite being trained on molecules with a single type of functional 

group, the models were able to predict the redox potentials of derivatives containing multiple 

and different types of functional groups with good accuracies (R2 > 0.7). This type of 

performance for predicting redox potential from such a small and simple dataset of phenazine 

derivatives has never been reported before. Redox flow batteries (RFBs) are emerging as 

promising candidates for energy storage systems. However, new green and efficient materials 

are required for their widespread usage. We believe that the hybrid DFT-ML approach 

demonstrated in this work will help in accelerating the virtual screening of phenazine 

derivatives, thereby saving computational and experimental costs. Using this approach, we 

have identified promising phenazine derivatives for green energy storage systems such as RFB. 

  



103 

 

4.1 Introduction 

This study continues our investigation into battery materials based on phenazine molecules. In 

the previous study, we developed several machine models to explore the molecular space of 

phenazine derivatives. Although the models achieved high prediction accuracy on the test-set 

(the internal test-set in this study), their performance was not assessed on diverse phenazine 

molecules obtained from different sources. Such a restricted analysis does not give insight into 

the generalizability of the machine learning algorithms. Therefore, in this study, we assessed 

model performance on the diverse phenazine derivatives obtained from different sources. The 

previous study showed that 2D molecular features are most accurate at predicting the redox 

potential of phenazine derivatives in DME (dimethoxyethane) solvent. Therefore, we used only 

2D molecular features in this study. We also restricted ourselves to the four machine learning 

models suitable for the small datasets. The training-set containing 151 phenazine derivatives 

was obtained from the same DFT study (used in the previous chapter) of 189 phenazine 

derivatives with only one type of functional group per molecule (20 unique functional groups).1 

2D molecular features were computed from the optimized neutral structures using the RDKit 

Python library.2 We observed that models trained on all 208 features overfit the training data 

and show excellent performance on the internal test-set, whereas performance drops 

significantly on the external test-set containing structurally diverse functional groups (Figure 

4.1).  

 

Figure 4.1. Plots showing machine learning predictions. ML predictions (y-axis) vs. DFT 

redox potentials (x-axis) on (a) internal test-set, (b) external test-set. The gray dashed line 

corresponds to the perfect predictions. 

As the internal test-set comes from nearly the same distribution as the training-set, ML models 

showed high accuracy. In this work, we addressed overfitting through feature selection and 

hyperparameter optimization using an external validation-set. Then, model performance was 

again assessed on the external test-set to confirm the reduction in overfitting. ML models were 

further validated by generating test-sets containing two and three different types of functional 

groups per molecule (called multiple functional group test-sets). The redox potentials of the 

 

(a) (b) 
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molecules present in the external and multiple functional group test-sets were computed using 

DFT. Next, we carried out a feature importance analysis to understand the most influential 2D 

molecular features. After that, we analyzed the structure–functional relationship between 

phenazine derivatives and their redox potential. Finally, a few promising candidates were 

identified for the anolyte of RFBs from the external test-set.   
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4.2 Materials and Methods 

4.2.1 Computational Details 

The Redox potential of phenazine derivatives was computed using the DFT workflow 

described in the paper by Mavrandonakis et al.1 All DFT calculations were performed with the 

Gaussian 09 software.3 Geometry optimization of neutral and reduced forms of phenazine and 

its derivatives were carried out in the gas phase by employing B3LYP/6-31+G(d,p) level of 

theory.4–7 Harmonic frequency analysis was performed for all the structures to confirm them 

as minima. Solvation effects of DME were incorporated during the single point calculations 

using the M06-2X functional8, by employing the SMD solvation model.9,10 The term ‘Redox 

Potential’ in this chapter corresponds to the ‘Reduction Potential’ with respect to unsubstituted 

phenazine molecule (i.e., the parent phenazine). The redox potentials of phenazine derivatives 

were computed using the following equations:  

[PZ]− + [XPZ]  →  [PZ]  +  [XPZ]− Equation 1 

𝐸1
0 = −

𝛥𝐺(𝑟𝑥𝑛,𝑠𝑜𝑙)

𝑛𝐹
+ 𝐸1(𝑟𝑒𝑓)

0  Equation 2 

𝛥𝐺(𝑟𝑥𝑛,𝑠𝑜𝑙) = 𝐺([XPZ]−,𝑠𝑜𝑙)
0 + 𝐺([PZ],𝑠𝑜𝑙)

0 − 𝐺([XPZ],𝑠𝑜𝑙)
0 − 𝐺([PZ]−,𝑠𝑜𝑙)

0  Equation 3 

𝐺(𝑠𝑜𝑙)
0  = 𝐺(𝑡ℎ𝑒𝑟𝑚,𝑔𝑎𝑠)

(𝐵3𝐿𝑌𝑃)
+ 𝐸(𝑠𝑜𝑙)

𝑀06−2𝑋 Equation 4 

where PZ symbolizes the parent phenazine, XPZ represents the substituted phenazine 

molecules, 𝐸1(𝑟𝑒𝑓)
0  is the reported redox potential of parent phenazine PZ1, 

𝛥𝐺(𝑟𝑥𝑛,𝑠𝑜𝑙) corresponds to the free energy change of the reaction, 𝐹 is the Faraday constant, 𝑛 

is number of electron involved in the reduction, and  𝐺(𝑠𝑜𝑙)
0  represents the final composite free 

energy of individual species, which was calculated by adding the free energy contribution 

computed at the B3LYP level of theory: 𝐺(𝑡ℎ𝑒𝑟𝑚,𝑔𝑎𝑠)
(𝐵3𝐿𝑌𝑃)

 , to the single point energies calculated at 

M06-2X level of theory: 𝐸(𝑠𝑜𝑙)
𝑀06−2𝑋. 

4.2.2 Data Generation 

Training-Set and Internal Test-Set: These datasets are similar to those investigated in the 

previous chapter (chapter no. 3) — obtained from work reported by Mavrandonakis and co-

workers.1 In their report, the redox potentials of 189 phenazine derivatives were computed 

using DFT in DME (dimethoxyethane) solvent. These DFT redox potentials were used as a 

target property in this work during training and testing. Twenty unique electron-withdrawing 

and electron-donating functional groups were present in the dataset (–N(CH3)2, –NH2, –OH, –

OCH3, –P(CH3)2, –SCH3, –SH, –CH3, –C6H5, –CH=CH2, –F, –Cl, –CHO, –COCH3, –CONH2, 

–COOCH3, –COOH, –CF3, –CN and –NO2). It should be noted that phenazine derivatives in 

this dataset contain only one type of functional group per molecule. Optimized 3D structures 

of derivatives in neutral and in anionic states were also provided. However, only neutral 
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structures were used in this study. Unfortunately, not all compounds were supplied with their 

neutral structure, those compounds were modeled, and their optimized structures were added 

to the dataset. Next, 208 different types of features were generated using RDKit Python 

library.2 The features were scaled using the ‘StandardScaler’ class of the scikit-learn library,11 

removing the mean and scaling each feature to unit variance. Finally, the whole dataset was 

shuffled and split randomly into training-set and internal test-set in an 8:2 ratio (151 samples 

in the training-set and 38 samples in the internal test-set). 

External Test-Set: This dataset was compiled from different reports studying various 

properties of phenazine derivatives.12–16 Their redox potentials were computed using DFT and 

used as a target property during testing. We gathered a total of 30 phenazine derivatives. 

Derivatives containing five or more substituted rings were removed. Also, derivatives having 

drastically different neutral and anion structures were removed. In the end, 22 diverse 

phenazine derivatives with multiple types of functional groups remained in the external test-

set. Table 4.1 shows some of the structures from this dataset. It can be seen that this dataset 

contains unique and different structures from the training-set. 

Table 4.1. Representative structures from external test-set. Mol IDs were assigned to identify 

derivatives from the corresponding dataset. 

 

 

 

 
 

Mol ID: 1 Mol ID: 3 Mol ID: 5 

 

 

 

 

 

Mol ID: 15 Mol ID: 17 Mol ID: 28 

Multiple Functional Group Test-Sets: This dataset contains two test-sets: (i) Two functional 

group test-set, (ii) Three functional group test-set. These test-sets were generated by randomly 

choosing the position and the type of functional group from this list: (–N(CH3)2, –NH2, –OH, 

–OCH3, –P(CH3)2, –SH, –CH3, –C6H5, –CH=CH2, –F, –Cl, –CHO, –COCH3, –CONH2, –

COOCH3, –COOH, –CF3, –CN and –NO2). Twenty derivatives having two different types of 

functional groups per molecule were generated for two functional group test-set. Similarly, 

twenty derivatives having three different types of functional groups per molecule were 

generated for three functional group test-set. Their redox potentials were computed using DFT 

and used as a target property during testing. Five derivatives from two and three functional 

group test-sets were removed to form an external validation-set. Thus, the final size of two and 

three functional group test-sets was reduced from twenty to fifteen. In this report, the term 
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‘multiple’ refers to the derivatives containing different types and more than one functional 

group. Similarly, the terms ‘two functional groups’ and ‘three functional groups’ refer to the 

derivatives containing two different types of functional groups and three different types of 

functional groups per molecule, respectively. A few representative structures from these test-

sets are shown in Table 4.2. 

Table 4.2. Representative structures from multiple functional group test-sets. Mol IDs were 

assigned to identify derivatives from the corresponding dataset. 

 
Mol ID: 19 

 
Mol ID: 9 

 
Mol ID: 7 

 
Mol ID: 12 

 
Mol ID: 14 

 
Mol ID: 5 

External Validation-Set: An external validation-set of ten phenazine derivatives was 

compiled from two and three functional group test-sets. Five derivatives from two functional 

group test-set and five from three functional group test-set were selected. Their redox potentials 

were computed using DFT and used as a target property. This validation-set does not come 

from the training-set. Therefore, it is termed as external validation-set. It was used for feature 

selection and hyperparameter optimization. The external validation-set improves 

generalization by transferring knowledge from the test-set to models through hyperparameters. 

4.2.3 Hyperparameter Optimization 

Hyperparameters of the models were optimized using the ‘GridSearchCV’ class of the scikit-

learn library 11. During hyperparameter optimization, models were trained on the training-set 

and evaluated on the external validation-set. Mean squared error (MSE) was used as an 

evaluation metric for hyperparameter optimization. The grid of hyperparameters for each 

model is given in Table 4.3. The parameter grid was adjusted manually.  
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Table 4.3. Parameter grids used during hyperparameter optimization. 

Model Name Parameter grid 

ARDR 

alpha_1: [1e-7,1e-8,1e-9] 

alpha_2: [1.5,1,1e-2] 

lambda_1: [1e-9,1e-10,1e-11] 

lambda_2: [1e-3,1e-4,1e-5] 

GP 

kernel_list=[200*RBF(length_scale=l,length_scale_bounds=(0, 10000)) 

+WhiteKernel(noise_level=n,noise_level_bounds=(1e-2, 1e+1)) for l in 

np.linspace(0,1000,10) for n in np.linspace(0.1,1.5,10)] 

kernel: [RBF() + WhiteKernel(), RBF(length_scale=200.0, 

length_scale_bounds=(1, 10000)) + WhiteKernel(noise_level=0.1, 

noise_level_bounds=(1e-2, 1e+1))] + kernel_list 

alpha: [1e-10,1e-11,1e-12,0] 

KRR 

alpha: [1e-7,1e-6,1e-5] 

kernel: ['chi2', 'linear', 'rbf', 'laplacian', 'sigmoid', 'cosine'] 

gamma: [None,1e-6,1e-7,1e-8] 

SVR 
kernel: ['linear', 'poly', 'rbf', 'sigmoid'] 

C: [0.025] 

 

4.2.4 Machine Learning Models 

Following four machine-learning models were investigated in this study. These models were 

chosen due to their ability to generalize from small datasets. Models were implemented with 

the scikit-learn Python library 11. First, models were trained on the training-set containing all 

208 features, followed by hyperparameter optimization. Then, the models were re-trained on 

different subsets of features to identify the number of features having the highest average 

performance on the external validation-set. Once the optimum number of features were 

identified, hyperparameter optimization was performed with the selected features to improve 

model performance further.     

Automatic Relevance Determination Regression (ARDR): This is the probabilistic model 

related to the sparse Bayesian learning (SBL) framework. It assumes axis-parallel, elliptical 

Gaussian distribution for each coefficient. The precision of each Gaussian distribution is drawn 

from the prior distribution (gamma distribution); therefore, it can lead to sparser coefficients. 

Thus, it is an effective tool for removing irrelevant features.17,18  

Gaussian Process Regression (GP): It is the nonparametric Bayesian model. The 

nonparametric Bayesian model provides the probability distribution of parameters over all 

possible functions that fit the data. The prior in a Gaussian process is specified on function 

space. Gaussian process prior is a multivariate normal distribution whose mean is obtained 

from the data, and covariance is specified using the kernel function. The hyperparameters of 

the kernel are optimized during the training.19,20 We used a combination of WhiteKernel and 
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RBF kernel. WhiteKernel is used for specifying noise level and RBF kernel is a very popular 

kernel used in many algorithms. 

Kernel ridge regression (KRR): It is the extension of ridge regression with kernel trick. In 

ridge regression, a linear model is leaned with the L2-norm regularization. Using the kernel 

trick, KRR learns a linear function in the high dimensional non-linear space without actually 

transforming the data.21 

Support Vector Regression (SVR): This model is the regression form of support vector 

machine (SVM), a popular algorithm for classification tasks. Analogous to SVM, SVR depends 

on the subset of training data and ignores the points whose prediction is close to their true 

value. SVM also utilizes kernel trick and learns a hyperplane in the high dimensional space.22  

4.2.5 Evaluation Metrics  

The following metrics were used in this study to evaluate the model performance. In the 

formulas below, 𝑁 denotes the number of data points, 𝑦�̂� denotes the predicted value of 𝑖-th 

sample and the 𝑦𝑖 denotes the corresponding true value. 

Coefficient of Determination (R2):   

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

𝑤ℎ𝑒𝑟𝑒, �̅� =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 

Mean Squared Error (MSE): 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − �̂�)2𝑁

𝑖=1

𝑁
 

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 = 
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑖=1

𝑁
 

The use of terms ‘Accuracy’ and ‘Performance’ in this chapter is contextual and refers to one 

or more metrics defined above. 

4.2.6 Feature Selection 

As the number of features obtained from the RDKit library was more than the size of the 

training-set, it was necessary to implement a feature selection strategy. It has been observed 

that the training-set containing more features than data points leads to overfitting.23 Feature 

selection was implemented using the ‘SelectKBest’ class of the scikit-learn library.24 The 

parameter ‘k’ of ‘SelectKBest’ class was obtained by evaluating the average performance of 

models on the external validation-set at different values of ‘k’. First, models were trained on 

the training-set containing all features, followed by hyperparameter optimization. Then, the 

models were re-trained on the subsets of features selected using ‘SelectKBest’ class 
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corresponding to different values of ‘k’. The following values for ‘k’ were tested: 50, 75, 100, 

125, 150, 208. The average model performance at different values of ‘k’ on the external 

validation-set is shown in Table 4.4. It can be seen that the models trained on 100 selected 

features show the highest average performance in terms of R2. Therefore, these 100 features 

were selected for the subsequent analysis. The models trained on 100 selected features were 

further improved through hyperparameter optimization.   

Table 4.4. Average model performance on external validation-set at different values of ‘k’. 

Performance Metric 
Values of ‘k’ 

50 75 100 125 150 208 

R2 0.45 0.42 0.57 0.55 0.54 0.54 

MSE 0.02 0.02 0.02 0.02 0.02 0.02 

MAE 0.12 0.12 0.10 0.10 0.10 0.10 

    

4.2.7 Feature Importance Analysis 

The feature importance analysis was performed using the technique known as Permutation 

Importance. In this technique, the values of the feature to be assessed are randomly shuffled 

(permuted). Then, prediction accuracy is computed on the shuffled dataset. Shuffling of feature 

values is equivalent to replacing the feature with noise, thereby removing its information from 

the dataset. Therefore, the model is expected to perform poorly on the shuffled dataset if the 

feature were important. The degree of importance depends on the amount of variation in the 

accuracy. This technique does not re-train the model; therefore, a trained model is required. 

The permutation importance was computed using ‘permutation_importance’ class of the scikit-

learn library and the training-set 25. This procedure was repeated 100 times to obtain reliable 

estimates. The feature importance scores were rescaled between 0 to 1. The mean and standard 

deviation of the feature scores were reported. The mean feature score was used for the ranking 

of individual features. The terms ‘Feature’ and ‘Descriptor’ are used interchangeably in this 

chapter.   
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4.3 Results and Discussion 

4.3.1 Test-set Performance 

We assessed the generalizability of the trained models (i.e., performance on the unseen data) 

using internal and external test-sets. Please refer to section 4.2 for the preparation of internal 

and external test-sets. As the internal test-set comes from the same source, it is very similar to 

the training-set and contains derivatives with only one type of functional group per molecule. 

Whereas the external test-set is compiled from multiple sources, it has very diverse phenazine 

derivatives with different types of functional groups. It also contains functional groups and 

structures not present in the training-set (e.g., -NHPh, -Br, extended conjugation). Figure 4.2 

shows the performance on the internal test-set, and Figure 4.3 shows the performance on the 

external test-set. It can be seen that all models have excellent accuracy on the internal test-set 

(R2 > 0.98) and high accuracy on the external test-set set (R2 > 0.74). GP model achieved the 

highest R2 of 0.89 on the external test set. After deep analysis in section 4.3.3, it was revealed 

that GP is not a stable model while relatively low performing models KRR (R2 = 0.83) and 

SVR (R2 = 0.85) are more stable. Therefore, one should be careful while using the high-

performing model, and the stability of the model should also be considered. The values of 

performance metrics on internal and external tests are shown in Table 4.5. Such a performance 

on the external test-set is surprising as models were trained on the phenazine derivatives having 

only one type of functional group. These results show that machine learning models are capable 

of generalizing from a very small and simple dataset. 

 

Figure 4.2. Plots showing machine learning predictions on internal test-set (y-axis) vs. DFT 

redox potentials (x-axis). Gray dash line corresponds to the perfect predictions. 
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Figure 4.3. Plots showing machine learning predictions on external test-set (y-axis) vs. DFT 

redox potentials (x-axis). Gray dash line corresponds to the perfect predictions. 

Table 4.5. Values of performance metrics on internal and external test-sets. Numbers were 

rounded upto two decimals 

Model name 
Internal test-set External test-set 

R2 MSE MAE R2 MSE MAE 

ARDR 0.98 0.01 0.06 0.74 0.06 0.18 

GP 0.99 0.01 0.05 0.89 0.03 0.11 

KRR 0.98 0.01 0.05 0.83 0.04 0.14 

SVR 0.98 0.01 0.07 0.85 0.03 0.13 

 

4.3.2 Prediction on Multiple Functional Group Test-sets 

Next, we assessed the model performance on the phenazine derivatives substituted with 

different types of functional groups per molecule. These test-sets were generated randomly; 

please refer to section 4.2 for the generation of this dataset. Figure 4.4 and Figure 4.5 show the 

performance on the derivatives containing two and three different functional groups, 

respectively. It can be seen that the models performed reasonably well (R2 > 0.7) even though 

molecules used for the training had only one type of functional group per molecule. In 

particular, GP models achieved the highest performance of R2 = 0.82 on two functional groups 

test-set. Whereas ARDR achieved the highest performance of R2 = 0.82 on three functional 

groups test-set. A deeper analysis of GP and ARDR in section 4.3.3 suggests that GP and 

ARDR are not very reliable models. Although KRR and SVR have relatively low performance, 

they are more reliable. Therefore, one should be careful while using high-performing models, 

and the model’s reliability and stability should also be considered. Nevertheless, these results 

again show the surprising generalization power of machine learning models. 
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Figure 4.4. Plots showing machine learning predictions on two functional group test-set (y-

axis) vs. DFT redox potentials (x-axis). Gray dash line corresponds to the perfect predictions. 

 

Figure 4.5. Plots showing machine learning predictions on three functional group test-set (y-

axis) vs. DFT redox potentials (x-axis). Gray dash line corresponds to the perfect predictions. 

Furthermore, we added these randomly generated fifteen derivatives from two functional group 

test-set to the training-set and re-trained the models on this new dataset of 166 derivatives. The 

predictive performance of this combined dataset was assessed on the same dataset of fifteen 

derivatives containing three functional group test-set. The results of this analysis are shown in 

Figure 4.6. It can be seen that the model performance has improved with the addition of more 

data in the training-set.  
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Figure 4.6. Plots showing machine learning predictions on three functional group test-set (y-

axis) vs. DFT redox potentials (x-axis). The combined dataset (training-set + two functional 

group test-set) was used for the training. Gray dash line corresponds to the perfect predictions. 

4.3.3 Feature Importance Analysis 

We carried out feature importance analysis using Permutation Importance. Please refer to 

section 4.2 for the details on the technique. In order to understand how model performance 

changes with the number of descriptors, we re-trained the models on the subset of features and 

assessed their performance on the internal test-set. Top 50 features based on their permutation 

importance score were used. R2 was used as a performance metric. The result of this analysis 

is shown in Figure 4.7. It can be seen that most of the models show a jump in the R2 and have 

R2 > 0.9 around the top ten features. The unusual behavior of GP model is attributed to the 

instability of the model for a small number of features. The plots in Figure 4.8 show the 

histograms of the top ten important features from each model. Although models show variation 

in feature importance, they all agree in terms of the most important feature, i.e., ‘PEOE_VSA1’. 

Interestingly, most of the features in ARDR have small weights as ARDR tries to prune the 

large number of irrelevant features leading to a sparse model.18,26 Five out of ten features - 

'MaxAbsPartialCharge', 'PEOE_VSA1', 'fr_ArN', 'fr_NH0', 'fr_NH2' are common to all 

models. Other variations in the feature importance scores could be attributed to the difference 

in the internal structure of the models. Here, we discuss some of the common features from 

Figure 4.8. 

PEOE_VSA1: This is the sum of the approximate accessible van der Waals surface area (i.e., 

VSA in Å2) of the atoms having partial charge less than -0.30.27–29 The partial charges are 

computed using the PEOE method developed by Gasteiger and Marsili in 1980. Please refer to 

the discussion of MaxAbsPartialCharge for the PEOE method. Thus, this descriptor captures 

the information related to molecular size and the number of electron-donating functional 

groups 
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MaxAbsPartialCharge:  This is the maximum value of the absolute Gasteiger partial charges 

present in the molecule. In 1980, Gasteiger and Marsili gave the procedure to calculate the 

partial charges in a molecule. That procedure is known as Partial Equalization of Orbital 

Electronegativities (PEOE). In this method, the charge is transferred between bonded atoms 

until equilibrium. The Gasteiger partial charges depend on the connectivity and the orbital 

electronegativity, thus capturing the electron-donating and withdrawing power of the atoms.30 

Electronegativity is essential information as electron-donating groups decrease the redox 

potential and electron-withdrawing groups increase the redox potential.1 

MinPartialCharge: This is the minimum value of the Gasteiger partial charges present in the 

molecule. Please refer to the discussion of MaxAbsPartialCharge for the properties of 

Gasteiger partial charges. 

fr_NH0: It is the number of tertiary amines present in the molecule. 

fr_ ArN: It is the number of N functional groups attached to aromatic rings. 

fr_NH2: It is the number of primary amines. 

NHOHCount: It is the number of N-H and O-H bonds present in the molecule. 

 

Figure 4.7. R2 vs. number of descriptors. R2 was computed using the internal test-set. In this 

study, we identified a few issues with ARDR and GP. Despite the high predictive performance, 

ARDR is not a reliable model as it places very high weight on one feature (i.e., ‘PEOE_VSA1’). 

Similarly, GP is not a reliable model as it becomes unstable when a small number of features 

are used. We encountered divided by zero errors in the kernel function during the analysis with 

GP model. 
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Figure 4.8. Top ten features (y-axis) vs. mean feature importance score (x-axis). Feature 

importance scores were rescaled between 0 to 1. Error bars represent the standard deviation 

obtained from 100 repetitions. 

From the analysis in this section, we realized that there are some issues with the ARDR and 

GP models, which are outlined below. One should be very careful while using ARDR and GP 

models. 

Issues with the ARDR model: As ARDR is related to the sparse Bayesian learning (SBL) 

framework, it reduces the number of irrelevant features. Unfortunately, in this case, ARDR has 

put a lot of weight on only one feature, i.e., ‘PEOE_VSA1’ (Figure 4.8). Surprisingly, ARDR 

also archives an accuracy of more than 0.95 R2 only with the two important features (Figure 

4.7). Although it has shown good performance on the dataset investigated in this work, it may 

not work for the broad molecular space. This type of behavior reduces the reliability of the 

model.  

Issues with the GP model: From Figure 4.7, it can be seen that the model’s accuracy decreases 

with more features, and at around ten features, there is a significant drop in the performance. 
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We also encountered divided by zero errors in the kernel function during this analysis. This 

shows that GP may not be a very stable model in this case. 

4.3.4 Structure–Functional Relationship 

‘PEOE_VSA1’ is the most important descriptor common to all models. It is computed by 

summing over the approximate accessible van der Waals surface area (i.e., VSA in Å2) of the 

atoms having partial charge less than -0.30.27–29 Thus, the ‘PEOE_VSA1’ descriptor captures 

the information related to molecular size and the number of electron-donating functional 

groups present in the molecule. From Figure 4.9, we can see that the redox potential of 

phenazine derivatives decreases with the increasing value of ‘PEOE_VSA1’. The Pearson 

correlation coefficient between ‘PEOE_VSA1’ and redox potential is -0.69, supporting the 

previous observation. We observed that the value of ‘PEOE_VSA1’ is higher for the systems 

having delocalization of negative partial charge. The delocalized system contains more atoms 

with the negative partial charge than the corresponding localized system. Thus, the number of 

atoms contributing to ‘PEOE_VSA1’ in delocalized systems is higher than in localized ones. 

The effect of delocalization of partial charge on ‘PEOE_VSA1’ is shown in Figure 4.10 with a 

few examples from the training-set. Thus, for designing better anolytes, it is suggested to 

increase the delocalization of negative partial charge in the phenazine derivatives. 

 

Figure 4.9. Redox Potential vs.‘PEOE_VSA1’ 
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Mol ID: 0 

PEOE_VAS1: 0 

Potential: -1.74 

Mol ID: 3 

PEOE_VAS1: 5.73 

Potential: -1.85 

Mol ID: 105 

PEOE_VAS1: 17.20 

Potential: -2.09 

Mol ID: 134 

PEOE_VAS1: 22.93 

Potential: -2.32 

Mol ID: 136 

PEOE_VAS1: 34.40 

Potential: -2.36 

PEOE_VSA1 increases  

Delocalization increases  

Redox Potential decreases  

Figure 4.10. Examples from the training-set showing the effect of charge delocalization on 

‘PEOE_VSA1’. Values of ‘PEOE_VSA1’ and DFT redox potential in volts are also shown. Mol 

IDs were assigned to identify derivatives from the corresponding dataset. 

The redox potential of phenazine derivative depends on the type of functional group, the 

position of the attachment, and the number of functional groups. Two types of functional 

groups have been investigated in this study: (i) electron-donating and (ii) electron-withdrawing. 

The redox potential of parent phenazine without any functional group is -1.74 V. When the 

redox potential of the derivative decreases (i.e., less than -1.74 V) after the attachment of 

functional groups, then it is called a negative shift. Similarly, if it increases, it is called a 

positive shift. The shift is quantified as the difference between the redox potential of a 

phenazine derivative and the parent phenazine. After sorting phenazine derivatives based on 

the redox potential, it was observed that electron-donating groups show a negative shift, 

whereas electron-withdrawing groups show a positive shift. Thus, the shift corresponding to 

electron-donating groups is negative, and electron-withdrawing groups is positive. The redox 

potentials of phenazine derivatives were computed using the approach discussed in section 4.2. 

Equation 2 shows that the functional groups that stabilize the anionic form of phenazine 

derivatives have high redox potential. In contrast, those that destabilize anionic form have low 

redox potential. Therefore, electron-withdrawing groups show a positive shift as they stabilize 

the anionic form and electron-donating groups show a negative shift as they destabilize the 

anionic form. A few examples showing positive and negative shifts with respect to parent 

phenazine are shown in Figure 4.11. 

   
Mol ID: 0 

Potential: -1.74 

Shift: 0 

  
Mol ID: 1 

Potential: -1.85 

Shift: -0.11 

Mol ID: 3 

Potential: -1.85 

Shift: -0.11 

Mol ID: 21 

Potential: -1.63 

Shift: 0.11 

Mol ID: 26 

Potential: -1.50 

Shift: 0.24 

Electron-donating groups Electron-withdrawing groups 

Figure 4.11. Examples showing positive and negative shifts with respect to parent phenazine. 

DFT redox potentials and shifts in volts are also shown. Mol IDs were assigned to identify 

derivatives from the corresponding dataset. 
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In the case of derivatives with multiple functional groups, if all groups are similar, then shift 

also corresponds to their type. For example, when the derivative contains all electron-donating 

groups, it shows a negative shift. Similarly, the shift is positive when the derivative contains 

all electron-withdrawing groups. A few examples having similar types of functional groups are 

shown in Figure 4.12. 

 

 

 

  
 

Mol ID: 9 

Potential : -1.92 

Shift: -0.18 

Mol ID: 8 

Potential : -1.85 

Shift: -0.11 

Mol ID: 7 

Potential : -1.40 

Shift: 0.34 

Mol ID: 15 

Potential : -1.09 

Shift: 0.65 

Electron-donating groups Electron-withdrawing groups 

Figure 4.12. Examples showing the effect of similar types of functional groups on the redox 

potential. DFT redox potentials and shifts in volts are also shown. Mol IDs were assigned to 

identify derivatives from the corresponding dataset. 

When derivatives contain more than one functional group that differ in their type, the shift is 

determined by the group having the highest absolute shift in the corresponding single functional 

group derivative. For example, derivative A in Table 4.6 contains –NH2, an electron-donating 

group that has a shift of -0.11 V, and –Cl an electron-withdrawing group that has the shift of 

0.13 V. The absolute of the shift for –Cl is more than –NH2; therefore, derivative A shows a 

positive shift of 0.03 V which supports our claim.  A similar analysis is applicable to the 

derivative B, which also shows a positive shift. Derivative C contains –N(CH3)2 and –CH3, two 

electron-donating groups, and –CO(NH2), an electron-withdrawing group. The absolute shift 

of –N(CH3)2 is -0.24 V which is the highest among all three groups. Therefore, derivative C 

shows a negative shift of -0.09 V. Derivative D contains –OCH3 and –C6H5, two electron-

donating groups, and –CHO, one electron-withdrawing group. However, derivative D shows a 

positive shift as the absolute shift of –CHO is more than both electron-donating groups. Thus, 

the redox potential of phenazine derivatives containing multiple functional groups is 

determined by the relative strength of electron-donating or electron-withdrawing power of the 

individual functional groups. 
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Table 4.6. Examples showing the effect of the absolute value of a single functional group shift 

on the redox potential of derivatives containing different types of functional groups.  DFT 

redox potentials and shifts in volts are also shown. Mol IDs were assigned to identify 

derivatives from the corresponding dataset. 

 Phenazine Derivative 

Details of the 

phenazine 

derivative 

Redox potential of 

the corresponding 

single functional 

group derivative 

Shift of the 

corresponding 

single functional 

group derivative 

A. 

 

Mol ID: 1 

Potential: -1.71 

Shift: 0.03 

-NH2: -1.85 

-Cl: -1.61 

-NH2: -0.11 

-Cl: 0.13 

B. 

 

Mol ID: 7 

Potential: -1.58 

Shift: 0.16 

-NH2: -1.92 

-CN: -1.42 

-NH2: -0.18 

-CN: 0.32 

 

C. 

 

Mol ID: 12 

Potential: -1.83 

Shift: -0.09 

-N(CH3)2: -1.98 

-CH3: -1.79 

-CONH2: -1.52 

-N(CH3)2: -0.24 

-CH3: -0.05 

-CONH2: 0.22 

D. 

 

Mol ID: 4 

Potential: -1.54 

Shift: 0.20 

-OCH3: -1.86 

-C6H5: -1.76 

-CHO: -1.51 

-OCH3: -0.12 

-C6H5: -0.02 

-CHO: 0.23 

The effect of position on the redox potential of single functional group derivatives has been 

studied by Mavrandonakis and co-workers.1 They showed that position does not have a 

significant effect for electron-withdrawing groups. However, electron-donating groups which 

are capable of intra-molecular hydrogen boding show more negative shift when attached at 

position 2 compared to position 1. The position numbers in phenazine derivatives are shown in 

Figure 4.13. They also investigated the effect of the number of functional groups attached to 

the phenazine molecule. It was shown that the addition of more electron-withdrawing groups 

shifts the redox potential continuously towards positive values. However, this effect is less 

significant for electron-donating groups. The difference between the phenazine derivative with 

four amino groups and eight amino groups is very small, ~0.05 V. Whereas, the difference 

between the phenazine derivative with four cyano groups and eight cyano groups is ~1.23 V. 

 

Figure 4.13. Numbering of the positions in phenazine derivatives 
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4.3.5 Identification of the Promising Phenazine Derivatives for Anolyte 

In this section, we identified the top five promising candidates for anolyte in RFBs using the 

trained machine learning models. Models developed in this study are based on features that do 

not require electronic structure calculations. Therefore, these models could screen millions of 

molecules in a significantly small amount of time. Then, experimentation or DFT calculations 

could be performed on the reduced number of molecules to identify the best redox-active 

molecules, saving computational and experimental costs. Using this hybrid DFT-ML approach, 

we have identified promising phenazine derivatives for anolyte in RFBs. These promising 

candidates would provide a good starting point for the experimentalists.  Electron-donating 

molecules with negative redox potential are preferred candidates for the anolyte. As KRR and 

SVR are stable models, the predictions here are based on them. The values of redox potentials 

are averaged over 100 independent iterations of data splitting and model training. Table 4.7 

lists the top five phenazine derivatives from the external test-set with the most negative redox 

potentials obtained from DFT and two machine learning models. 4 out of 5 predictions from 

KRR and SVR match with DFT predictions. 

Because of the finite size of training-set, machine learning models cannot give reliable results 

on all the datasets. Although machine learning models promise reasonably accurate predictions 

on the unseen datasets, their performance is still restricted to a subset of datasets, known as the 

applicability domain. Model predictions outside this domain cannot be trusted and often yield 

poor results. Models developed in this study also have their own applicability domain. If one 

wishes to use these models, it is important to understand their applicability domain. Here, we 

provide some crucial points on the applicability domain of the machine learning models 

developed in this study. 

 These machine learning models are only applicable to the derivatives generated from 

phenazine molecules. 

 The predictions are more reliable for the derivatives containing functional groups from 

the training-set (i.e., –N(CH3)2, –NH2, –OH, –OCH3, –P(CH3)2, –SCH3, –SH, –CH3, –

C6H5, –CH=CH2, –F, –Cl, –CHO, –COCH3, –CONH2, –COOCH3, –COOH, –CF3, –CN 

and –NO2). 

 The predictions are also reliable for the derivatives containing two and three different 

types of functional groups from the above list. 

 Machine learning models may also be applicable for the phenazine derivatives containing 

upto four six-membered rings that are attached either through a bond or through 

conjugation to the central phenazine molecule. 

 Models may also be applicable to the derivatives having functional groups that are similar 

to the functional groups investigated in this study. 
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Table 4.7. Top five anolyte candidates predicted using DFT, KRR, and SVR from the external 

test-set. SVR and KRR were trained on the phenazine derivatives containing a single type of 

functional group per derivative. Mol IDs, and redox potentials predicted from DFT and ML 

models are shown below the respective candidates. Mol IDs were assigned to identify 

derivatives from the corresponding test-set. Derivatives are arranged in increasing order of 

their redox potential. Redox potentials are given in the unit of volt. 

 

DFT 

   
  

Mol ID: 13 

DFT: -2.09 

Mol ID: 29 

DFT: -2.02 

Mol ID: 12 

DFT: -1.95 

Mol ID: 1 

DFT: -1.88 

Mol ID: 5 

DFT: -1.87 

 

KRR 

 

 

 

  
 

Mol ID: 13 

ML: -2.09 

DFT: -2.09 

Mol ID: 5 

ML: -2.09 

DFT: -1.87 

Mol ID: 12 

ML: -1.98 

DFT: -1.95 

Mol ID: 29 

ML: -1.95 

DFT: -2.02 

Mol ID: 4 

ML: -1.78 

DFT: -1.83 

 

SVR 

   
 

 

Mol ID: 13 

ML: -2.06 

DFT: -2.09 

Mol ID: 12 

ML: -1.96 

DFT: -1.95 

Mol ID: 29 

ML: -1.91 

DFT: -2.02 

Mol ID: 5 

ML: -1.89 

DFT: -1.87 

Mol ID: 3 

ML: -1.81 

DFT: -1.52 
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4.4 Conclusions 

In this study, four machine learning models were employed to predict the redox potential of 

phenazine derivatives in dimethoxyethane (DME) using density functional theory (DFT). 

Models were trained on a small dataset of 151 phenazine derivatives having only one type of 

functional group per molecule (20 unique functional groups). The trained models achieved high 

accuracies (R2 > 0.74) on internal as well as external test-sets containing diverse phenazine 

derivatives. We also showed that despite being trained on derivatives with a single type of 

functional group, models were able to predict the redox potentials of the derivatives containing 

multiple and different types of functional groups with good accuracies (R2 > 0.7). Feature 

selection and hyperparameter optimization using the validation-set were critical strategies for 

performance improvement. Feature selection removed the unnecessary and noisy features. 

Hyperparameter optimization using an external validation-set helped in improving the 

generalizability of the models. The addition of fifteen derivatives from two functional group 

test-set in the training set improved the accuracy on the three functional group test-set. It was 

observed that the ‘PEOE_VSA1’ descriptor was the most important molecular feature as it 

contains information related to molecular size and the partial charges. A deeper analysis 

showed that one should not rely only on the model performance but also investigate the stability 

and reliability of the models. From structure-functional relationship, we observed that the redox 

potential of derivatives containing multiple functional groups is influenced by the functional 

group having either strong electron-donating or strong electron-withdrawing power. Models 

developed in this study are based on features that do not require electronic structure 

calculations or experimentation. Therefore, these models could potentially screen millions of 

molecules in a significantly small amount of time. Then, experimentation or DFT calculations 

could be performed on the reduced number of molecules to identify the best molecules, saving 

computational and experimental costs. Using this hybrid DFT-ML approach, we have 

identified promising phenazine derivatives for anolyte in RFBs. These promising candidates 

would provide a good starting point for the experimentalists. This study shows that it is possible 

to develop reasonably accurate machine learning models for complex quantities such as redox 

potential using small and simple datasets.  
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Chapter 5  

Investigating Combinatorial Binding of 

Transcription Factors using Unsupervised 

Machine Learning Models 

Abstract 

The appearance of an organism is determined by the genes expressed within it. Any disruption 

to the process of gene expression could result in severe diseases. The healthy expression of a 

gene requires appropriate regulation at the transcriptional level. Transcription is regulated 

through the binding of transcription factors (TFs) to various regulatory elements such as 

promoters, enhancers, silencers, and insulators present in the DNA. Next-generation 

sequencing technologies such as ChIP-seq can identify DNA regions containing these 

regulatory elements. However, ChIP-seq requires access to the antibodies of a given protein. 

Therefore, a large-scale assay may not always be feasible using ChIP-seq. On the other hand, 

DNase-seq, another sequencing technology, can identify open chromatin regions without 

antibodies. Therefore, DNase-seq could be cost-effective and relatively faster than ChIP-seq. 

Furthermore, regulatory elements could also be identified using DNase-seq, because many 

transcriptional regulatory elements are believed to be present in the open chromatin regions. 

The binding of transcription factors to regulatory regions is combinatorial— a transcription 

factor may bind to multiple regulatory regions, and many interacting transcription factors may 

simultaneously bind to a regulatory region or multiple regulatory regions. Typically, thousands 

of regions are obtained from a single sequencing experiment. Therefore, it is essential to group 

regions into biologically relevant modules for the analysis. Soft clustering methods such as 

topic models are better suited for discovering regulatory modules. However, to the best of our 

knowledge, only a handful of studies report the application of topic models to ChIP-seq and 

DNase-seq datasets. In this study, we have employed three unsupervised machine learning 

algorithms — Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Processes (HDP), 

and a recently developed No Promoter Left Behind (NPLB) method to discover regulatory 

modules directly from the ChIP-seq and DNase-seq data of the K562 cell line. The results 

indicate that modules containing functionally similar TFs and regulatory elements could be 

discovered using topic models and NPLB from ChIP-seq and DNase-seq data without prior 

information on TF binding sites. Furthermore, it was observed that NPLB gives a more robust 

performance than topic models on the datasets analyzed in this study.  
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5.1 Introduction 

An extensive understanding of health and diseases requires the interpretation of cellular 

variations at multiple levels such as genome, transcriptome, proteome, and epigenome. Cells 

depend on thousands of proteins to perform their tasks, such as growth and cell division. 

Proteins are encoded in the genes, and the process by which genetic instructions are converted 

into proteins is known as gene expression. The first step in this process is transcription, where 

information on the DNA is transferred to an RNA molecule. Then, RNA molecules are utilized 

to make proteins that carry out various functions inside the cell.1 Transcription is a complex 

process that requires precise coordination between the special class of proteins called 

transcription factors (TFs) and regulatory elements present on the DNA. Regulatory elements 

are the regions on the genome where TFs bind and regulate the transcription, thereby affecting 

gene expression. Several regulatory elements control gene expression, including promoters, 

enhancers, silencers, insulators, and locus control regions. These regulatory elements are 

schematically shown in Figure 5.1. Promoters are located close to the gene where transcription 

machinery assembles.2 They act as an on-off switch for the transcription. Enhancers control the 

activity of promoters, instructing when, where, and at what levels to carry out transcription. 

Enhancers are generally located in open chromatin regions of the genome. They play a major 

role in controlling gene expression.3 Insulators act as boundary elements defining a region 

containing regulatory elements for a gene.4 Silencers are negative regulatory elements that 

suppress gene expression. Silencers are thought to carry out their repressive action by looping 

to their target promoter or competing for a TF binding site with the promoter.5 

 

Figure 5.1. Schematic diagram of a regulatory region containing different regulatory elements. 

Sometimes, a change in a gene’s instruction (also known as a mutation) can cause a protein to 

malfunction or not be produced at all. When mutations alter a protein that plays a critical role 

in our body, it can disrupt normal development or cause a health condition. A health condition 

resulting from mutations in one or more genes is known as a genetic disorder.6 Some genetic 

mutations are so severe that they prevent an embryo from surviving until birth. These mutations 

occur in genes essential for the development, disrupting embryo development in its early 

stages.7–9 Mutations in the protein-coding regions have primarily been studied, as they are 
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directly linked with human disease. However, sequencing the coding regions of a person 

suspected of having a genetic disorder generally identifies only 20-25% of disease-associated 

mutations.10 While technological or other limitations of genome sequencing may cause failure 

to identify mutations in the coding region, some of the causative agents presumably lie outside 

the coding region, i.e., within the regulatory and other non-coding regions of the genome. 

Although the non-coding region does not provide instructions for making proteins, it is integral to 

the functioning of cells, particularly for the control of gene activity. It contains gene regulatory 

elements such as promoters, enhancers, silencers, and insulators.11 The growing body of 

literature indicates that mutations in regulatory elements, like enhancers and insulators, in non-

coding regions of the genome are associated with congenital genetic conditions.11 Mutations in 

transcriptional regulatory elements and transcriptional machinery have been associated with 

diseases.2 Somatic mutations of regulatory elements have also been investigated in cancer, 

describing their importance.12 DNA variants resulting from mutations within enhancer 

elements genetically predispose to various common and complicated traits, such as heart 

disease, diabetes, cancer, obesity, hair color, etc.13 On the other hand, disease-causing 

mutations in genes oftentimes disrupt amino acids or splicing and alter the function or levels 

of protein production. The dominant thought is that mutations in regulatory elements cause 

changes in phenotypes through abnormal expression.14 In order to understand the mechanisms 

governing gene expression in a pathological condition, it is essential to identify regulatory 

elements associated with the target genes. Limitations in technology and lack of knowledge 

about the specific positions of regulatory elements have made researchers focus on coding 

regions where 85% of known disease-causing variants have been located.15  

However, recent advances in genome sequencing have led to the invention of next-generation 

sequencing (NGS) technologies.16 NGS is a collection of technologies that use massively 

parallel sequencing approaches to produce millions of short-read sequences at a much cheaper 

cost and in a short amount of time. NGS-based approaches have been adopted to sequence 

mutations in the entire genome, exome, or any section of the DNA, obtain DNA copy number 

information, sequence the whole transcriptome, and quantify gene expression levels.17 NGS 

has accelerated the discovery of gene regulatory elements on a genome-wide scale. Examples 

of NGS-based technologies include ChIP-seq and DNase-seq. 

ChIP-seq: ChIP-seq is a technique that combines chromatin immunoprecipitation (ChIP) with 

massively parallel DNA sequencing to identify the binding sites of proteins.18 It is used for 

mapping genome-wide binding sites for any protein of interest. ChIP-seq is one of the critical 

tools in genomics and epigenomics and has helped discover disease-associated with 

transcriptional regulation.19 The ChIP-seq protocol involves sample preparation and 

computational analysis. In the first step, cross-linked DNA is sonicated and purified with and 

without immunoprecipitation. Immunoprecipitation is carried out using a specific antibody. 

Then, DNA fragments are sequenced, which are then mapped onto a reference genome. Next, 

peaks are detected by comparing genomic regions with the input reads to identify significantly 

enriched regions.20 Other genomic regions are considered as non-specific background. These 

peaks represent candidate positions for the targeted protein. The peaks are classified into three 

categories depending on their shapes: (a) “sharp mode”: these peaks are located at a specific 

position in the genome; (b) “broad mode”: these peaks are associated with large genomic 

domains; (c) “mix mode”: this includes both peak modes. Advances in sequencing technology 
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and analyses have enabled us to handle hundreds of ChIP samples simultaneously, revealing 

the high-dimensional interrelationship for regulatory elements. 21  

DNase-seq: One of the factors contributing to the cell-specific binding of TFs is chromatin 

structure. Chromatin is the DNA wrapped around nucleosomes linked together by DNA strands 

and organized structurally into accessible and inaccessible domains.22 The interaction between 

chromatin and transcription factor binding is not straightforward. However, accessible 

chromatin is generally associated with the binding of transcription factors to DNA.23 Some 

transcription factors influence the chromatin structure around their binding site, which may 

facilitate the binding of new transcription factors.24 Changes resulting from such events are the 

foundation for cellular processes. DNase-seq is a technique that detects Deoxyribonuclease I 

hypersensitive (i.e., DNase I HS) sites (open chromatin regions) across the genome by 

capturing DNase-digested fragments and sequencing them by high-throughput next-generation 

sequencing.25 DNase I is an enzyme that preferentially cuts DNA at open sites. Eukaryotic 

DNA is packed into a repeating chain of nucleosomes.22 These nucleosomes block DNase I 

from nicking DNA strands, resulting in preferential sensitivity of the accessible nucleosome-

free regions to the cleavage by DNase I. DNase-seq has been widely used to determine 

chromatin accessibility. The region near the active site is likely to have an altered nucleosome 

state, making DNase-seq an excellent tool for mapping genomic regulatory elements. 25,26  

Regulatory elements could be identified using ChIP-seq experiments. However, ChIP-seq is 

limited to known TFs with previously derived antibodies and requires separate experimentation 

for each TF. Transcription regulation requires access to the chromatin regions containing 

regulatory elements such as promoters, enhancers, etc. Therefore, open chromatin regions are 

likely to have regulatory elements. DNase-seq detects these open chromatin regions. Thus, 

regulatory elements could also be identified using DNase-seq. The advantage of DNase-seq 

over ChIP-seq is that DNase-seq, being TF-agnostic, does not require access to the antibodies 

of individual TFs. 

A fundamental question in biology is how TF-DNA interaction affects gene expression. We 

know that TFs bind to promoter regions proximal to the gene transcription start sites (TSSs) or 

distant enhancer regions that regulate expression through long-range interactions.27 TF binding 

shows heterogeneity within cell types.28 Only about two percent of the DNA in the human 

genome contains protein-coding genes (i.e., ~20,000 – 25,000 genes), out of which only ~1850 

encode for TFs.2,29 The small number of transcription factors compared to genes suggests their 

combinatorial activity in gene regulation. It has been shown that gene expression is regulated 

by the combination of TFs.30 The combinatorial binding of TFs dictates the spatial and temporal 

activity of gene regulation.31,32 In this study, a regulatory region is defined as a DNA segment 

containing one or more regulatory elements, and a regulatory module is defined as a set of TFs 

that bind together to similar regulatory regions. Insight into the interplay between regulatory 

modules is essential for understanding the complexity of gene regulation. Previous reports have 

shown that TFs often bind in clusters, resulting in a large number of binding sites in a regulatory 

region.33–35 These co-binding TFs may belong to distinct functional modules but come together 

in the regulatory regions to execute a specific task. For example, transcription is initiated 

through the interaction of enhancer-bound TFs, promoter-bound TFs, and other TFs that bring 

promoters and enhancers together, such as CTCF and cohesin. Thus, CTCF and cohesin 

modules are likely to co-occur with enhancer and promoter related modules.36 This type of 
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module co-occurrence points to a modular hierarchy in the combinatorial binding of TFs in 

which regulatory regions may use multiple regulatory modules, and each regulatory module 

itself is a combination of multiple TFs. 

Previous investigations into combinatorial binding could not identify modular hierarchy in TF 

binding because — (i) they were looking at either the regions bound by a particular TF or pairs 

of co-binding TFs,33,37 or (ii) they did not account for the modularity in TF binding during the 

analysis.38–40 Large-scale efforts such as the Encyclopedia of DNA Elements (ENCODE) have 

profiled in vivo binding of hundreds of TFs in multiple cells.37 Therefore, it has become 

possible to discover previously unknown regulatory modules. Furthermore, advancements in 

machine learning have resulted in novel algorithms capable of uncovering different clusters 

present within the data. In this case, these clusters represent different regulatory modules. 

Unsupervised machine learning algorithms such as self-organizing maps (SOMs) and k-mean 

clustering have been employed to reveal the combinatorial binding of TFs.41,42 The issue with 

these hard clustering methods is that they model binding at a given region with a single 

regulatory module. Therefore, they require a large number of modules to represent binding 

events. Soft clustering methods such as topic models are better suited to model combinatorial 

binding of TFs in which each motif is assumed to be part of multiple modules. Topic models 

are the class of unsupervised machine learning algorithms commonly used for discovering 

topics from the corpus of documents. They could also be viewed as clustering algorithms for 

documents.  

In this study, we consider a set of DNA regions to be analogous to a document corpus where 

each DNA segment represents a document containing different regulatory modules (i.e., 

topics). Topic models have been employed to investigate transcriptomic data, particularly 

RNA-seq.43–45 However, to the best of our knowledge, only a handful of studies report the 

application of topics models to ChIP-seq and DNase-seq datasets. Li Chen et al. developed a 

computational method based on topic models to decipher the combinatorial binding events of 

TFs from multiple ChIP-seq datasets.46 Stein Aerts et al. developed cisTopic, a probabilistic 

framework to simultaneously discover co-accessible enhancers and stable cell states from 

sparse single-cell epigenomics data.47 Guo and Gifford employed hierarchical Dirichlet 

processes to investigate the combinatorial binding of TFs.48 We also found a lack of literature 

on the application of topic models to the DNase-seq data. However, being TF-agnostic, DNase-

seq data might contain more information about the combinatorial binding of TFs.49 In this 

study, we conducted a comparative study on three unsupervised methods, including two 

commonly used topic models (Latent Dirichlet Allocation and Hierarchical Dirichlet 

Processes) and a recently developed No Promoter Left Behind (NPLB) method to investigate 

the combinatorial and modular binding of TFs from ChIP-seq and DNase-seq datasets. 
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5.2 Materials and Methods 

5.2.1 Data Generation 

Simulated dataset: This dataset was obtained from the earlier work by Biswas and Narlikar.50 

The dataset includes 1000 DNA sequences of 200 bp each, sampled randomly from the non-

repetitive section of the human genome. DNA sequences were implanted with five motifs 

randomly selected from the JASPAR2018 CORE vertebrate motif set. This dataset contains 

three modules, each with unique distribution over five motifs, as shown in Table 5.1. 

Table 5.1. Distribution of motifs across three modules in the simulated dataset. Cells represent 

motif counts. 

 Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 

Module 1 480 480 100 0 0 

Module 2 0 0 478 345 0 

Module 3 38 0 0 0 42 

 

ChIP-seq (CTCF): The ChIP-seq data of the human K562 cell line for CTCF protein was 

obtained from the ENCODE project (ENCFF738TKN). The K562 cell line contains the bone 

marrow cells of a 53-year-old myelogenous leukemia patient. It has been extensively used in 

hematopoietic research. A bed narrowPeak file aligned to the hg19 genome was downloaded, 

containing the coordinates of 56,891 DNA regions enriched in CTCF. The HOMER51 motif 

analysis tool was used to identify the number and the positions of known motifs in each region. 

A region-motif matrix was constructed using the motif information obtained from the HOMER. 

ChIP-seq (115 TFs): This dataset was obtained from the report by Guo and Gifford.48 It 

contains ~142,960 non-overlapping co-binding regions pooled from the ChIP-seq datasets of 

115 TFs in the human K562 cell line. In contrast to other datasets investigated in this report, 

the region-TF matrix of this dataset was constructed using binding calls or peaks instead of 

motif information. GPS binding calls of all TFs were pooled together to construct a region-TF 

for this dataset. The regions were aligned to the hg19 genome prior to identifying bind events.  

DNase-seq: The DNase-seq data of the human K562 cell line was obtained from the ENCODE 

project (ENCFF621ZJY). The bed narrowPeak file aligned to the hg19 genome was 

downloaded, containing the coordinates of 378,491 DNA regions preferentially cleaved by 

DNase I. The HOMER motif analysis tool was used to identify the number and the positions 

of known motifs in each region. A region-motif matrix was constructed using the motif 

information obtained from the HOMER. 

In this report, ‘region-TF’ and ‘module-TF’ refer to the matrices constructed using TF binding 

events (peaks), whereas ‘region-motif’ and ‘module-motif’ refer to the matrices constructed 

using annotated positions obtained from HOMER. 

5.2.2 Models 

The following three unsupervised machine learning algorithms were investigated in this study. 

They include two topic models and a recently developed No Promoter Left Behind (NPLB) 

model. A topic model is a type of statistical framework for discovering topics from the 
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collection of documents. Topic modeling is frequently used to discover hidden semantic 

structures within the documents. If a document belongs to a particular topic, then words related 

to that topic will occur more frequently than others. A document may contain more than one 

topic in different proportions. The topics produced by a topic model define a cluster of similar 

words. Here, we assume that a set of DNA regions is analogous to a document corpus in which 

each DNA region is a document containing different regulatory elements (i.e., words) and 

regulatory modules (i.e., topics). The mathematical framework of the topic models allows us 

to capture the underlying topics based on the statistics of the words in the documents. The latent 

Dirichlet allocation (LDA) and the hierarchical Dirichlet processes (HDP) are the two most 

commonly used topic models. An implementation of LDA from the Gensim python library was 

used in this work.52 HDP was implemented using the hdp Python library developed by altosaar 

et al.53 The NPLB library developed by Mitra and Narlikar was used for the development of 

the NPLB approach.54 Below, we give a brief introduction to the models used in this study: 

Latent Dirichlet Allocation (LDA): LDA is one of the most widely used topic models in 

natural language processing. It is a generative statistical model that allows inferring hidden 

groups within the collection of documents.55 In LDA, we assume that the corpus is composed 

of latent topics that are not directly observable, and each document has a distribution over these 

topics. Also, each topic is represented as a distribution over unique words. Similar words 

describing the same topic have a high probability in the topic distribution. At the same time, 

unrelated words have a low probability. LDA assumes the following generative process:  

 For each topic, we randomly sample word distribution from the Dirichlet distribution, 

𝜙𝑘 ~ 𝐷𝑖𝑟(𝛽). 

 For each document, 

o  we randomly sample topic distribution from another Dirichlet distribution, 

𝜃𝑚 ~ 𝐷𝑖𝑟(𝛼). 

o Then, for each word position in a document, we randomly sample a topic from the 

multinomial distribution corresponding to that document, 𝑍𝑚,𝑛 ~ 𝑀𝑢𝑙𝑡(𝜃𝑚). 

o Then, we randomly sample a word from the multinomial distribution corresponding 

to that topic and repeat the process for each word position for all the documents, 

𝑤𝑚,𝑛 ~ 𝑀𝑢𝑙𝑡(𝜙𝑘) where 𝑘 = 𝑍𝑚,𝑛. 

Hierarchical Dirichlet Processes (HDP): HDP is a nonparametric Bayesian model used for 

clustering grouped data.56 It uses a Dirichlet process for each group of data sharing a base 

distribution. The base distribution is itself drawn from a Dirichlet process. A Dirichlet process 

is a probability distribution over probability distributions. Draws from a Dirichlet process are 

discrete and infinite probability measures appropriate for representing the proportions of 

mixture components. A common base distribution allows sharing of clusters across groups. 

HDP was developed by Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David Blei to 

address an important issue of LDA.56 LDA requires the specification of the number of topics, 

which is not always known. In contrast, HDP does not assume the number of topics, and it 

allows a corpus to contain any number of topics while sharing the topics among different 

documents. HDP is an extension of LDA with the following generative process:  
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 First, a common base distribution is drawn from a Dirichlet process. The base distribution 

provides the set of all topics that can be used in a given corpus, 𝐺0|𝛾, 𝐻 ~ 𝐷𝑃(𝛾, 𝐻) 

 For each document in the corpus, we sample the topic distribution from another Dirichlet 

process using the common base distribution, 𝐺𝑗|𝛼0, 𝐺0 ~ 𝐷𝑃(𝛼0, 𝐺0) 

 From the topic distribution, we sample the multinomial distribution over words and sample 

words from it for each word position and repeat the process for all the documents, 

𝜃𝑗𝑖|𝐺𝑗  ~ 𝐺𝑗  

𝑥𝑗𝑖|𝜃𝑗𝑖  ~ 𝑀𝑢𝑙𝑡(𝜃𝑗𝑖) 

No Promoter Left Behind (NPLB): NPLB is a novel approach for identifying heterogeneous 

promoter architectures from high-throughput TSS data. It uses only the genomic sequence 

around the TSS location as input and does not require any prior information on the promoter 

elements. NPLB could be viewed as an unsupervised machine learning algorithm that clusters 

promoter sequences (i.e., DNA regions) into groups having similar architectures while 

simultaneously identifying important positions in the promoters for each architecture. Here, we 

briefly describe the NPLB model: 

NPLB is concerned with partitioning 𝑛 DNA regions 𝑋1, … , 𝑋𝑛 each with length 𝑙 into 𝑘 

different architectures 𝑎1, … , 𝑎𝑘 . The 𝑗-th nucleotide in the 𝑖-th region is represented by 

𝑋𝑖
𝑗
, where 1 ≤ 𝑗 ≤  𝑙. We assume that each architecture 𝑎𝑢, where 1 ≤ 𝑢 ≤ 𝑘, has some 

important positions denoted by the set 𝐼𝑎𝑢
⊂ {1,… , 𝑙}. The model is characterized by the  

number of architectures 𝑘 and the number of important positions present in each architecture 

𝑎𝑢, i. e. | 𝐼𝑎𝑢
|. For a given architecture, the parameters of the model are defined as follows: 

 The architecture to which 𝑋𝑖 belongs is represented as  𝑦𝑖 and is modeled using a categorical 

distribution γ over {1, … , 𝑘}. 

 Each important position 𝑗 in the architecture 𝑎𝑢 is modeled using a categorical distribution 

𝜙
𝑎𝑢

𝑗  over the four base pairs. All other unimportant positions are modeled using a common 

background categorical distribution 𝜙0. The background distribution applies to all 

architectures. 

For a fixed model structure (i.e., hyperparameters), the parameters are learned using Gibbs 

sampling that maximizes the posterior distribution. The hyperparameters are determined using 

k-fold cross-validation by varying the total number of architectures and the number of 

important positions for each architecture. The model with the highest cross-validation 

likelihood is selected as the final model. Although NPLB was designed to cluster DNA 

sequences based on base pairs, we modified its typical workflow to cluster DNA regions 

obtained from ChIP-seq and DNase-seq data based on the presence or absence of the know TFs 

(motifs).  
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Table 5.2. List of hyperparameters used during training. An array in front of some 

hyperparameters represents different values tested during training. 

Model Name Dataset Hyperparameters 

LDA 

Simulated dataset 

apha = “symmetric” 

eta = 0.1 

num_topics = 3 

iterations = 1000 

passes = 10 

ChIP-seq (CTCF) 

apha = “symmetric” 

eta = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 

1] 

num_topics = 19 

iterations = 2000 

passes = 200 

ChIP-seq (115 TFs) 

apha = “symmetric” 

eta = 0.1 

num_topics = 49 

iterations = 2000 

passes = 2000 

DNase-seq 

alpha = “symmetric” 

eta = 0.1 

num_topics = 49 

iterations = 2000 

passes = 10 

HDP 

Simulated dataset 

eta = [0.01, 0.05, 0.1, 0.5, 1] 

gamma_a = [0.1,1,5] 

gamma_b = [0.1,1,5] 

alpha_a = [0.1,1,5] 

alpha_b = Fifty equally spaced points between 1 and 5. 

init_topics = 3 

max_iter = 20000 

ChIP-seq (CTCF) 

eta = [0.01, 0.05, 0.1, 0.5, 1] 

gamma_a = 1.00 

gamma_b = 1.00 

alpha_a = 1.00 

alpha_b = 1.00 

init_topics = 10 

max_iter = 2000  

ChIP-seq (115 TFs) 

eta = 0.1 

gamma_a = 1.00 

gamma_b = 1.00 

alpha_a = 1.00 

alpha_b = 1.00 

init_topics = 50 

max_iter = 2000  
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DNase-seq 

eta = 0.1 

gamma_a = 1.00 

gamma_b = 1.00 

alpha_a = 1.00 

alpha_b = 1.00 

init_topics = 50 

max_iter = 2000  

NPLB 

Simulated dataset 

default hyperparameters: 

minarch = 1 

maxarch = 20 

kfold = 5 

ChIP-seq (CTCF) 

default hyperparameters: 

minarch = 1 

maxarch = 20 

kfold = 5 

ChIP-seq (115 TFs) 

minarch = 15 

maxarch = 49 

kfold = 3 

DNase-seq 

minarch = 15 

maxarch = 30 

kfold = 3 
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Table 5.3. The list of some important transcription factors found in the K562 cell line.  This 

list serves as a reference to understand the functional roles of the modules discovered in this 

study. 

TFs Function 

GATA1/2, TAL1 

Master regulators of K562 cell. GATA-1 

controls hematopoietic development by 

activating and repressing gene transcription. 

CTCF, cohesin subunits RAD21 and SMC3, 

and ZNF143 

CTCF and the cohesin complex function 

together to establish chromatin loops and 

regulate gene expression in mammalian 

cells. CTCF and the cohesin complex, 

consisting of the core subunits SMC3, 

SMC1, RAD21, and STAG1/SA1 or 

STAG2/SA2.57 ZNF143 is a critical factor 

for CTCF-bound promoter–enhancer 

loops.58 

p300, RCOR1, TEAD4 Co-activators and co-repressors. 

Pol2, TBP, and TAF1 

Transcriptional machinery. Pol2 

transcription machinery is responsible for 

the transcription of most of the genes in 

eukaryotes.59 

Pol3 

Transcriptional machinery. Pol3 is 

responsible for transcribing short non-

coding RNAs such as tRNAs, 5S rRNA, U6 

snRNA, and a limited number of others.59 

AP-1 factors such as JUN, JUNB, JUND, 

FOS, FOSL 

AP-1 transcription factor is composed of 

proteins belonging to the Jun (c-Jun, JunB, 

and JunD), Fos (c-Fos, FosB, Fra1, and 

Fra2), ATF/cyclic AMP-responsive 

element-binding (CREB) (ATF1–4, ATF-6, 

b-ATF, ATFx), and Maf family (c-Maf, 

MafA, MafB, MafG/F/K, and Nrl).60 

MAF, BACH1, NFE2 

The MAFs are members of the basic leucine 

zipper (bZIP) family of transcription factors. 

Small MAF proteins combine with NFE2, 

NFE2L1, BACH1, BACH2.61 
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MYC, MAX, USF, E2F6 

c-Myc plays a pivotal role in important 

cellular processes such as proliferation, 

suppression of differentiation, and 

apoptosis. C-Myc interacts with Max and 

binds to the E-box. USF also binds to the E-

box to regulate the expression of different 

target genes.62 

SCL 

SCL is an essential regulator at several 

levels in the hematopoietic hierarchy, whose 

inappropriate regulation contributes to the 

development of pediatric T-cell acute 

lymphoblastic leukaemia.63 

SPI1 (also known as PU.1), SP3 and ELF1 Regulates the expression of the SCL gene.64 

FOX 

FOX (forkhead box) proteins are a family of 

transcription factors that play important 

roles in regulating the expression of genes 

involved in cell growth, proliferation, 

differentiation, and longevity. Many FOX 

proteins are important for embryonic 

development.65  FOX transcription factors 

are evolutionarily conserved in organisms 

ranging from yeast to humans. 

STAT 

The STAT protein family are intracellular 

transcription factors that mediate many 

aspects of cellular immunity, proliferation, 

apoptosis, and differentiation.66 

RUNX 

The Runx family of transcription factors 

(Runx1, Runx2, and Runx3) are highly 

conserved and involved in various 

developmental and cellular processes, such 

as cell proliferation, differentiation, and 

blood and blood-related cell lineages, during 

the developmental and adult stages of life.67 

KLF/SP 

(KLF/SP) transcription factors play key 

roles in critical biological processes, 

including stem cell maintenance, cell 

proliferation, embryonic development, 

tissue differentiation, and metabolism. 
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KLFs are transcriptional activators or 

repressors.68  

IRF 

Interferon regulatory factors (IRFs) are a 

family of transcription factors that regulate 

many aspects of innate and adaptive 

immune responses.69 

HOX 

HOX are capable of binding to enhancers 

through which they either activate or repress 

hundreds of other genes. Hox transcription 

factors (TFs) are determinants in the 

specification of cell fates during 

development.70 

ZNF 

ZNF proteins show diverse regulation 

mechanisms on various downstream genes 

by recruiting different chromatin modifiers. 

Some ZNF proteins work as transcriptional 

repressors by recruiting co-repressors. ZNF 

proteins are the largest and most diverse 

transcription factor family in the human 

genome.71 

DLX 

The DLX family encodes homeodomain 

transcription factors related to the 

Drosophila distal-less (DII) gene. The 

family is involved in a number of 

developmental features such as jaws and 

limbs, and craniofacial morphogenesis.72,73 

Sox 

SOX TFs govern diverse cellular processes 

during development, such as maintaining 

the pluripotency of stem cells, cell 

proliferation, cell fate decisions/germ layer 

formation, as well as terminal cell 

differentiation into tissues and organs.74 

Elk, ELF, ETS 

The ETS transcription factor family is one 

of the largest families of TFs. It includes 

subfamilies such as ELF, ETS, SPI1, etc. 

Elk1 is a subclass of the ETS subfamily.75,76 
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5.3 Results and Discussion 

In this study, we have investigated three unsupervised clustering approaches to group DNA 

regions from ChIP-seq and DNase-seq data based on the number of motifs or binding sites of 

transcription factors. We have carried out a comparative study on LDA, HDP, and NPLB, 

which are unsupervised machine learning models. LDA and HDP are frequently used for topic 

modeling. However, NPLB is a relatively new and promising clustering algorithm capable of 

identifying new promoters directly from the promotor sequences. First, we identified the 

appropriate normalization method for the respective dataset. Then, we employed these models 

to determine regulatory modules from the simulated and ChIP-seq datasets and assessed their 

performance. Finally, we applied these models to the DNase-seq data and compared their 

results. 

5.3.1 Selecting the Appropriate Normalization Method 

The unsupervised machine learning algorithms investigated in this work cluster DNA regions 

into different groups (modules). To understand their meaning, we visualized the module-motif 

or module-TF matrix. Each cell in a module-motif and module-TF matrix represents the 

number of motifs and the number of binding sites of a TF, respectively. An analysis based on 

the counts is inherently biased, as it highlights only the motifs that are present in abundant 

quantity. Therefore, it is important to address the variability arising from the difference in the 

number of regions and motifs. Normalization methods are generally used to remove such 

artifacts and compare different modules and motifs. However, a proper normalization method 

is crucial for the interpretation of the results. The choice of the normalization method generally 

depends on the data and the type of analysis.77 We have used z-score normalization in this 

work. However, there is a slight difference in the way we normalize each module-

motif/module-TF matrix. Based on the dataset, we normalize either rows (modules) or columns 

(motifs/TFs). For ChIP-seq (CTCF), we normalise each row (modules) whereas for ChIP-seq 

(115 TFs) and DNase-seq, we normalise columns (motifs/TFs). The reason for normalizing 

rows instead of columns in ChIP-seq (CTCF) was an increase in noise over the expected signal 

when columns were normalized, as shown in Figure 5.2. In contrast, we observed a loss of 

expected signals when the rows were normalized in ChIP-seq (115 TFs), as shown in Figure 

5.3. For DNase-seq, we chose to normalize columns, as we expect them to contain motifs from 

multiple regulatory modules similar to ChIP-seq (115 TFs) data.  

 

Figure 5.2. The Z-score normalized module-motif matrix of ChIP-seq (CTCF) data obtained 

from LDA (a) normalized along rows (module) and (b) normalized along columns (motif). 

 

 

(a) 

(b) 
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Figure 5.3. The Z-score normalized module-motif matrix of ChIP-seq (115 TFs) data obtained 

from HDP (a) normalized along columns (TFs) and (b) normalized along rows (modules).  

5.3.2 Employing LDA to Cluster Regions from Simulated and ChIP-seq Datasets 

Simulated Dataset: The simulated dataset contains 1000 random non-repetitive regions from 

the human genome, each of length 200 bp. Five motifs from the JASPAR database were planted 

in these regions. Then, the regions were grouped into three modules such that each module had 

a different distribution over motifs. The simulated dataset was converted into a bag-of-words 

representation before training. Then, the LDA was trained using a symmetric prior over 

document-topic distribution for ten passes. The values of important hyperparameters used 

during the training are shown in Table 5.2. The true distribution of five motifs in each module 

 

 

 

(b) 

(a) 
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is given in Table 5.1. On the other hand, Table 5.4 shows the distribution of motifs as predicted 

from LDA. It can be seen that the predicted modules perfectly match the true modules. Thus, 

LDA correctly identified the modules present in the simulated dataset. 

Table 5.4. The module-motif matrix predicted by LDA corresponding to the simulated dataset. 

 Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 

Module 1 480 480 100 0 0 

Module 2 0 0 478 345 0 

Module 3 38 0 0 0 42 

ChIP-seq (CTCF): The ChIP-seq dataset of the CTCF protein on the human K562 cell line 

was obtained from the ENCODE project (ENCFF738TKN). The number and the position of 

known motifs were computed using the HOMER motif analysis tool. The annotated regions 

were used for constructing a region-motif matrix. The region-motif matrix contains the number 

of motifs of each TF in each region. Then, the data was converted into a bag-of-words 

representation before training. Next, the LDA was trained using a symmetric prior over 

document-topic distribution for 200 passes. The values of important hyperparameters used 

during the training are given in Table 5.2. After training, the module-motif matrix was obtained 

by assigning the most probable topic to each region. The module-motif matrix represents the 

number of motifs of each TF in each module. The heatmap of the module-motif matrix is shown 

in Figure 5.4. The rows and columns were clustered using hierarchical clustering to group 

together similar modules and TFs. Below, we list some regulatory modules identified by LDA. 

The modules are represented using a few important constituent motifs from the module-motif 

matrix. Please refer to Table 5.3 for the functional importance of the regulatory modules: 

 GATA1, GATA2, and related members from the GATA family  

 AP-1 factors such as Jun-AP1, JunB, Fos, Fosl2 

 n-Myc, Max, MNT, c-Myc, USF1 

 SCL transcription factor 

 FOX family of transcription factors such as FOXK2, FoxL2, Foxa2, FOXA1, FOXM1 

 STAT family of transcription factors such as STAT1, STAT5, Stat3, STAT4 

 Hox family of transcription such as Hoxa11, Hoxd11, Hoxa13, Hoxd10. 

 DLX family of transcription such as DLX2, DLX1, DLX3 

It can be seen that LDA was able to identify some regulatory modules present in the K562 cell 

line from the ChIP-seq (CTCF) data. We expected a strong signal for the CTCF motif as it was 

present in almost ~43% (24,605) of the regions. However, the signal for the CTCF motif was 

relatively low compared to other motifs.  In contrast, we observed a strong signal for other 

motifs even though they were present in a relatively small number of regions. For example, 

motifs such as AP-1, JunB, Fos, c-Myc, n-Myc, and all motifs from GATA, STAT, and Fox 

families were present in less than ~20% of the regions; still, we observed a strong signal for 

these motifs compared to the CTCF motif. Thus, LDA failed to identify commonly occurring 
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CTCF modules from the ChIP-seq (CTCF) data with strong signal intensity. We also tested 

different values of eta (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, and 1), and the results 

were similar. The module-motif matrix in Figure 5.4 corresponds to eta = 0.01. 

 

Figure 5.4. The module-motif matrix obtained from LDA (eta = 0.01) corresponding to the 

ChIP-seq (CTCF) data. Each cell in the heatmap represents the z-score of the motif count 

(normalized along the rows) of a module (row). 

ChIP-seq (115 TFs): This dataset was obtained from the report by Guo and Gifford containing 

the pooled and merged regions from the ChIP-seq data on 115 TFs in the human K562 cell 

line.48 The file containing the binding site counts of 115 TFs in each region was used for 

generating the bag-of-words representation. Then, LDA was trained using the symmetric prior 

over the document-topic distribution for 2000 passes. The values of important hyperparameters 

used during the training are shown in Table 5.2. After training, a module-TF matrix learned 

during the inference was obtained. The module-TF matrix represents the number of binding 

sites of each TF in each module. The heatmap of the module-TF matrix is shown in Figure 5.5. 

The rows and columns were clustered using hierarchical clustering to group together similar 

modules and TFs. Below, we list some regulatory modules identified by LDA. The modules 

are represented using a few important constituent TFs from the module-TF matrix. Please refer 

to Table 5.3 for the functional importance of the regulatory modules: 

 GATA1, GATA2, and TAL1; and the enhancer-binding co-activator p300 

 Transcriptional machinery Pol2, TBP, and TAF1 

 USF2, USF-1-M2, c-Myc, E2f6 

 CTCF, cohesin subunits RAD21 and SMC3, and ZNF143 

 Pol3 transcriptional machinery 

 AP-1 factors such as JunD, c-Jun, FOSL1, JunB 

 MafF, MafK, Bach1, NF-E2 

LDA was able to identify some commonly occurring regulatory modules in the K562 cell line, 

such as master regulators, CTCF/cohesin subunits, Pol2 machinery etc. Most of the regulatory 

modules discovered by LDA match with the modules reported by Guo and Gifford.48 Thus, 

LDA successfully identified some commonly occurring regulatory modules from ChIP-seq 

(115 TFs) data. 
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Figure 5.5. The module-TF matrix obtained from LDA corresponding to the ChIP-seq (115 

TFs) data. Each cell in the heatmap represents the z-score of the TF binding site count 

(normalized along the columns) of a TF (column) in a module (row). 

5.3.3 Employing HDP to Cluster Regions from Simulated and ChIP-seq Datasets 

Simulated Dataset: We applied the hierarchical Dirichlet process (HDP) to cluster regions 

from the simulated dataset. HDP is a nonparametric Bayesian model used for topic modeling. 

It uses a Dirichlet process to represent each group of data that shares a base distribution. The 

base distribution is itself drawn from a Dirichlet process. The simulated dataset was converted 

into a bag-of-words representation before training. Then, HDP was trained for a maximum of 

20,000 iterations. The values of important hyperparameters used during the training are shown 

in Table 5.2. The advantage of HDP over LDA is that HDP automatically discovers the number 

of topics present in the corpus. However, LDA requires the specification of the number of 

topics during training. After the training, we obtained a module-motif matrix, with cells 

representing motif counts in the modules. Table 5.5 shows the module-motif matrix obtained 

from the HDP. We can see that the predicted modules match reasonably well with the true 

modules. However, the two regions from module 1 had been misplaced in module 3. We also 

tested different values of hyperparameters listed in Table 5.2 but failed to obtain a hundred 

percent accurate result.  Nevertheless, we believe a hundred percent accurate result could be 

obtained from extensive testing of different values hyperparameters. The module-motif matrix 

shown in Table 5.5 is most the accurate result obtained from HDP in this study which 

corresponds to eta = 0.1, gammma_a = 5, gamma_b = 0.1, alpha_a = 0.1, and alpha_b= 1.653. 

Thus, HDP was able to identify the modules present in the simulated dataset with high 

accuracy. 

Table 5.5. The module-motif matrix predicted by HDP (eta = 0.1, gammma_a = 5, gamma_b 

= 0.1, alpha_a = 0.1, and alpha_b= 1.653) corresponding to the simulated dataset. 

Hdp_Pred Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 

Module 1 478 480 100 0  

Module 2 0 0 478 345 0 

Module 3 40 0 0 0 42 
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3.3.2 ChIP-seq (CTCF): We applied HDP to cluster the regions obtained from ChIP-seq 

(CTCF) data. A region-motif matrix representing motif counts was computed using the 

HOMER motif analysis tool. The region-motif matrix was converted into a bag-of-words 

representation before training. Then, HDP was trained for a maximum of 2000 iterations. The 

values of important hyperparameters used during the training are given in Table 5.2. The 

module-motif matrix containing the number of each motif in each module was generated after 

training. Hierarchical clustering was further applied to cluster rows and columns of the module-

motif matrix. The final module-motif matrix is shown in Figure 5.6. We list below a few 

regulatory modules identified by HDP. The modules are represented using some important 

constituent motifs from the module-motif matrix; please refer to Table 5.3 for the functional 

importance of the regulatory modules: 

 Elk, ELF, ETS 

 Foxa3, FOX, FOXA1, and related TFs 

 Hox family 

 TRPS1, GATA 

 SCL 

 AP-1 factors such as Jun-AP1, Fos, Fosl2, JunB, Fos 

 c-Myc, MNT, Max, n-Myc, USF1 

 STAT 

 RUNX 

 Sox 

We can see that HDP was able to identify some regulatory modules present in the K562 cell 

line. Modules discovered by HDP were very similar to those discovered by LDA. However, 

the intensity of the signal for many motifs was less than the LDA. We also noticed that some 

modules clustered together in LDA had been split into multiple modules by the HDP, such as 

Elk, ETS, ETV; STAT; Fox; Hox; Tgif; and Myc, USF, which could be attributed to a large 

number of modules discovered by HDP (number of modules = 66) compared to LDA (number 

of modules = 19). Similar to LDA, HDP also failed to identify the modules containing CTCF 

motifs with strong signal intensity from the ChIP-seq data targeted for the CTCF protein. We 

also tested different values of eta (0.01, 0.05, 0.1, 0.5, and 1), and the results were similar. The 

module-motif matrix in Figure 5.6 corresponds to eta = 0.1. 
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Figure 5.6. The module-motif matrix obtained from HDP (eta = 0.1) corresponding to the 

ChIP-seq (CTCF) data. Each cell in the heatmap represents the z-score of the motif count 

(normalized along the rows) of a module (row). 

ChIP-seq (115 TFs): The ChIP-seq data of 115 different TFs in the human K562 cell line was 

obtained from the report by Guo and Gifford.48 The binding site counts of the TFs in each 

region were converted into a bag-of-words representation before training. Then, HDP was 

trained for a maximum of 2000 iterations. The values of important hyperparameters used 

during the training are given in Table 5.2. After training, the module-TF matrix containing 

binding site counts of each TF in each module was obtained from HDP. Rows and columns of 

the module-TF matrix were clustered using hierarchical clustering. The final module-TF matrix 

is shown in Figure 5.7. We list below a few regulatory modules identified by HDP. The 

modules are represented using some important constituent TFs from the module-TFs matrix; 

please refer to Table 5.3 for the functional importance of the regulatory modules: 

 Master regulators GATA1, GATA2, and TAL1; and the enhancer-binding co-activator 

p300 

 Transcriptional machinery Pol2, TBP, and TAF1 

 USF2, USF-1-M2, c-Myc, E2f 

 CTCF, cohesin subunits RAD21 and SMC3, and ZNF143 

 Pol3 transcriptional machinery 

 AP-1 factors such as JunD, c-Jun, FOSL1, JunB 

 MafF, MafK, Bach1, NF-E2 

The modules discovered by HDP were easy to interpret and reveal functionally similar groups 

of co-binding TFs. The identified modules from K562 cells capture the known set of TFs that 

generally appear to interact with each other. The regulatory modules discovered by HDP match 

very well with the modules reported by Guo and Gifford.48 Thus, we have validated our HDP 

approach by reproducing the reported results. 
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Figure 5.7. Module-TF matrix obtained from HDP corresponding to the ChIP-seq (115 TFs) 

data. Each cell in the heatmap represents the z-score of the TF binding site count (normalized 

along the columns) of a TF (column) in a module (row).  

5.3.4 Employing NPLB to Cluster Regions from Simulated and ChIP-seq Datasets 

Simulated Dataset: No Promoter Left Behind (NPLB) is an efficient, organism-independent 

unsupervised learning method for de novo promoter and module discovery. NPLB discovers 

known and unknown promoter elements from DNA sequences and clusters them into 

functionally similar groups. Although NPLB was designed to work with the DNA sequences, 

we have shown that it could also be used for clustering regions based on the presence or absence 

of the motifs. As NPLB requires a fasta file, we generated one from the region-motif matrix 

before training. “A” and “T” bases in the fasta file represent the presence and the absence of 

motifs in a sequence, respectively. Then, NPLB was trained on the fasta file with the default 

hyperparameters. A file containing assignments of the regions to modules was generated after 

training. We computed the module-motif matrix containing the motif counts from the region-

module assignment file. Table 5.6 shows the module-motif matrix obtained from NPLB. We 

observed that the predicted modules perfectly match the true modules (Table 5.1). Thus, NPLB 

successfully identified the modules present in the simulated dataset. 

Table 5.6. Module-motif matrix predicted by NPLB corresponding to the simulated dataset. 

True Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 

Module 1 480 480 100 0 0 

Module 2 0 0 478 345 0 

Module 3 38 0 0 0 42 

ChIP-seq (CTCF): NPLB was employed to cluster regions obtained from ChIP-seq data on 

the K562 cell line enriched in CTCF protein. The number and the position of known motifs 

were computed using the HOMER motif analysis tool. The region-motif matrix containing the 
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motif count of TFs was obtained from the output files generated by HOMER. Next, we 

generated a fasta file from the region-motif matrix for training. “A” and “T” bases in the fasta 

file represent the presence and the absence of motifs in a sequence, respectively. Then, NPLB 

was trained on the region-motif matrix with the default hyperparameters. After training, the 

module-motif matrix containing the number of each motif in each module was obtained from 

the region-module assignment file. Modules and motifs were further grouped using hierarchical 

clustering. The final module-motif matrix is shown in Figure 5.8. We list below a few 

regulatory modules identified by NPLB. The modules are represented using some important 

constituent motifs from the module-motif matrix; please refer to Table 5.3 for the functional 

importance of the regulatory modules: 

 ELF, ETV, ETS 

 c-Myc, MNT, USF, Max, c-Myc, nMyc 

 CTCF, BORIS, THRb, Zac1 

 SCL 

 RUNX, RUNX1, RUNX2, RUNX-AML 

 Stat3, STAT4, STAT1, STAT5 

 FOXA1, FOXM1, Foxo1, Foxa2, Foxa3, FOXP1, FOXK1, FoxL2, Foxf1 

 Gata1, Gata2, Gata6, Gata4, TRPS1, GATA3 

 AP-1, Fra2, Fosl2, Jun-AP1, JunB, Fra1, BATF, Fos, Atf3 

NPLB identified some regulatory modules commonly found in the K562 cell line. The 

regulatory modules constitute the motifs of interacting co-binding TFs. Particularly, NPLB was 

able to discover modules containing CTCF, the target protein in the ChIP-seq data. Thus, NPLB 

successfully revealed the expected regulatory modules of the known co-binding and interacting 

TFs from ChIP-seq (CTCF) data in the K562 cell line.  

 

Figure 5.8. The module-motif matrix obtained from NPLB corresponding to the ChIP-seq 

(CTCF) data. Each cell in the heatmap represents the z-score of the motif count (normalized 

along the rows) of a module (row). 

ChIP-seq (115 TFs): We employed NPLB to cluster the regions obtained from the ChIP-seq 

data of 115 TFs. A fasta file was generated from the region-TF matrix for training. “A” and 

“T” bases in the fasta file represent the presence and the absence of TF in a sequence, 

respectively. Then, NPLB was trained for a maximum of 49 modules using 3-fold cross-

validation. After training, the module-TF matrix containing the binding site count of each TF 

in each module was obtained from the region-module assignment file. Modules and TFs were 

further grouped using hierarchical clustering. The final module-TF matrix is shown in Figure 
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5.9. We list below a few regulatory modules identified by NPLB. The modules are represented 

using some important constituent TFs from the module-TF matrix; please refer to Table 5.3 for 

the functional importance of the regulatory modules: 

 Master regulators GATA1, GATA2, and TAL1; and the enhancer-binding co-activator 

p300 

 Transcriptional machinery Pol2, TBP, and TAF1 

 USF2, USF-1-M2, c-Myc, E2f6 

 CTCF, cohesin subunits RAD21 and SMC3, and ZNF143 

 Pol3 transcriptional machinery 

 AP-1 factors such as JunD, c-Jun, FOSL1, JunB 

 MafF, MafK, Bach1, NF-E2 

The modules discovered by NPLB were very similar to those discovered by HDP. Modules 

were easy to interpret and revealed functionally similar groups of co-binding TFs. The modules 

discovered by NPLB capture known sets of interacting and co-binding TFs in the K562 cell 

line. Furthermore, NPLB discovered many of the regulatory modules reported by Guo and 

Gifford.48 

 

Figure 5.9. The module-TF matrix obtained from NPLB corresponding to the ChIP-seq (115 

TFs) data. Each cell in the heatmap represents the z-score of the TF binding site count 

(normalized along the columns) of a TF (column) in a module (row). 

5.3.5 Applying LDA, HDP, and NPLB to Cluster Regions from the DNase-seq Dataset 

Next, we applied LDA, HDP, and NPLB to identify regulatory modules present in the DNase-

seq data. The DNase-seq data of the human K562 cell line was obtained from the ENCODE 

project (ENCFF621ZJY). It contained the coordinates of 378,491 DNA regions preferentially 

cleaved by DNase I. First, the number and the position of known motifs were computed using 

the HOMER motif analysis tool. The region-motif matrix containing the motif counts of TFs 

was obtained from the output files generated by HOMER. The region-motif matrix was 
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converted into the bag-of-words representation for LDA and HDP. On the other hand, a fasta 

file was generated from the region-motif matrix for NPLB. “A” and “T” bases in the fasta file 

represent the presence and the absence of motifs in a sequence, respectively.  Then, LDA, HDP, 

and NPLB were trained to identify the regulatory modules from the DNase-seq data. The values 

of important hyperparameters for each model used during the training are shown in Table 5.2.  

Rows and columns of the module-motif matrix obtained after training were further grouped 

using hierarchical clustering. Figure 5.10 - Figure 5.12 show the module-motif matrix obtained 

from LDA, HDP, and NPLB, respectively. 

 

Figure 5.10. The module-motif matrix obtained from LDA corresponding to the DNase-seq 

data. Each cell in the heatmap represents the z-score of the motif count (normalized along the 

columns) of a motif (column) in a module (row). 

 

Figure 5.11. The module-motif matrix obtained from HDP corresponding to the DNase-seq 

data. Each cell in the heatmap represents the z-score of the motif count (normalized along the 

columns) of a motif (column) in a module (row). 

 

Figure 5.12. The module-motif matrix obtained from NPLB corresponding to the DNase-seq 

data. Each cell in the heatmap represents the z-score of the motif count (normalized along the 

columns) of a motif (column) in a module (row). 
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Some regulatory modules identified by LDA and HDP from the DNase-seq data are listed 

below. The modules are represented using some important constituent motifs from the module-

motif matrix; please refer to Table 5.3 for the functional importance of the regulatory modules: 

 AP-1, JunB, Fos 

 SP, KLF 

 c-Myc, n-Myc USF, MAX 

 ETS, ELF, Elk, PU.1 

 JunD, Atf2, c-Jun 

 FOX  

 Hox  

 GATA 

 STAT 

 IRF 

 Sox 

 Oct 

 DLX 

We observed that modules discovered by HDP were very similar to those identified by LDA. 

However, modules containing CTCF and various ZNF motifs were only identified by HDP. 

We also observed that a module containing Oct and DLX motifs in LDA had been separated 

into two distinct sub-modules in HDP, suggesting the possibility of different functional roles. 

Furthermore, it was observed that some modules in LDA have been resolved into multiple 

modules in HDP. Another difference was observed between the modules containing NeuroG/D 

motifs. In LDA, NeuroG/D modules were accompanied by only the TCF4 motifs, whereas in 

HDP, NeuroG/D was accompanied by TCF12/21/4 motifs. The number of modules discovered 

by HDP was almost twice that of LDA, making analysis cumbersome. HDP produced 110 

modules compared to 49 in LDA. However, more modules also helped us identify functionally 

distinct modules. Thus, LDA and HDP were able to identify some commonly found regulatory 

modules in the K562 cell line from Dnase-seq data. Unfortunately, due to a large number of 

sequences, the NPLB algorithm could not converge in a given time. Therefore, there was no 

structure to the modules identified by NPLB. Nevertheless, given its performance on the ChIP-

seq datasets, we believe NPLB could discover regulatory modules from DNase-seq data. 

However, further improvement in the speed of NPLB is required, which is under investigation. 

The results are summarized in Table 5.7. 

. 
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Table 5.7. Summary of results. The tick (✔) represents the successful identification of 

expected regulatory modules by the model, whereas the cross (✖) represents a failure of the 

same. 

Model 
Dataset 

Simulated ChIP-seq (CTCF) ChIP-seq (115 TFs) DNase-seq 

LDA ✔ ✖ ✔ ✔ 

HDP ✔ ✖ ✔ ✔ 

NPLB ✔ ✔ ✔ ✖ 
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5.4 Conclusions 

We employed three unsupervised learning models (LDA, HDP, and NPLB) to cluster the 

regions obtained from ChIP-seq and DNase-seq. In most cases, the discovered clusters 

(modules) represent a group of commonly interacting co-binding TFs. The co-occurrence of 

regulatory modules in the datasets suggests modular hierarchy in the combinatorial binding of 

TFs in regulatory regions. The results corresponding to each model could be summarised as 

follows: 

 LDA accurately identified the distribution of motifs in the simulated dataset. LDA 

discovered some regulatory modules commonly found in the K562 cell line from the ChIP-

seq (CTCF) data. However, it failed to identify the modules containing the CTCF motif 

with strong signal intensity from the ChIP-seq (CTCF) data. LDA was able to discover 

many regulatory modules from the ChIP-seq (115 TF) dataset.  

 HDP was able to identify the distribution of motifs in the simulated dataset with high 

accuracy. It discovered some regulatory modules commonly found in the K562 cell line but 

failed to identify the modules containing CTCF motif with strong signal intensity from the 

ChIP-seq targeted for CTCF protein. In contrast to LDA, some modules discovered by HDP 

were split into multiple modules, possibly due to a large number of modules. Its 

applicability to discover regulatory modules from ChIP-seq (115 TF) is shown by Guo and 

Gifford and verified by us.  

 NPLB correctly identified the distribution of motifs in the simulated data. NPLB 

successfully discovered the modules containing CTCF along with other commonly 

occurring regulatory modules from the ChIP-seq (CTCF) data. It also discovered many 

regulatory modules from the ChIP-seq (115 TFs) dataset.  

 Finally, we employed LDA, HDP, and NPLB to identify regulatory modules from DNase-

seq data. LDA and HDP identified very similar modules, including commonly found 

regulatory modules in the K562 cell line. However, modules containing CTCF and ZNF 

motifs were only observed in HDP. Furthermore, HDP offered more resolution in modules 

than LDA. Unfortunately, due to a large number of sequences, NPLB could not converge 

in a given time, and therefore, it failed to identify the regulatory modules in DNase-seq. 

Nevertheless, given its performance on the ChIP-seq datasets, we believe NPLB can 

discover regulatory modules in DNase-seq data. Further improvement in the speed of 

NPLB is required, which is under investigation.  

Thus, we have shown that regulatory and functionally similar modules could be discovered 

using the topics models from ChIP-seq and DNase-seq data. NPLB identified expected 

modules in the simulated and ChIP-seq datasets when LDA and HPD failed on at least one of 

the datasets. NPLB was designed to extract promoter elements directly from promoter 

sequences without prior information. For this work, we modified the typical workflow of NPLB 

to handle sequences represented in the form of motifs. This robust performance of NPLB could 

be attributed to the ability of NPLB to ignore the noise present in the data. 
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Chapter 6  

An Algorithmic Development of the 

Strategy for Quantifying Rotational Motion 

in Molecular Machines 

Abstract 

Molecular machines are ubiquitous in living organisms. They carry out essential cellular tasks 

such as growth, metabolism, and cell division. Biological molecular machines are the most 

efficient machines that exist in nature. Apart from efficiency, directionality is one of the crucial 

properties of molecular machines. Researchers are investigating ways to create artificial 

molecular machines which are efficient and directional to perform desired tasks. There has 

been some success in creating directional molecular machines in the past few decades. 

However, achieving directionality at a molecular scale is still challenging and requires insight 

into dynamics. Previous experimental and computational studies have primarily investigated 

translational directionality in molecular machines. Due to the large size of these systems, 

computational studies have been mainly carried out using either molecular dynamics (MD) or 

the QM/MM approach. In this work, we have investigated rotational directionality in rotaxane 

and catenane systems using ab initio molecular dynamics. We have developed an algorithm for 

quantifying rotational directionality in mechanically interlocked molecular machines. We have 

also investigated linear regression, a machine learning algorithm, during the development. The 

developed algorithm captures the rotation of the ring and ring atoms. The algorithm was 

employed to investigate the rotation of the ring in a rotaxane system. The results indicate that 

in a rotaxane system, the ring distorts in the absence of the track, that the solvent mainly affects 

the direction of the rotation, and that the counterions influence the magnitude of the rotation.  
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6.1 Introduction 

“There’s plenty of room at the bottom”1, a famous quote by Feynman, still holds half a century 

later. Even today, we do not have a complete understanding of many molecular systems, such 

as molecular machines. The naturally occurring molecular machines perform various tasks in 

our body, e.g., transportation of cargo (kinesin), synthesis of ATP (ATP synthase), or the 

replication of DNA (DNA polymerase).2 They are vital to the survival of all living organisms. 

The efficiency with which these molecules perform their tasks is astonishing.3 If we could 

make molecular machines that perfume the desired tasks, we could revolutionize the whole 

health care industry. Many diseases, such as cancer, could be cured. Owing to such potential, 

researchers worldwide are working in the growing area of artificial molecular machines 

(AMMs). Biological molecular machines have inspired researchers to create similar systems. 

Their goal is to develop molecular machines whose motions can be controlled to perform the 

desired tasks. The creation of AMMs is a challenging task. It requires expertise in various fields 

of science, from experimental to theoretical. Nonetheless, remarkable progress has already 

been made in the synthesis of AMMs, with significant contributions from Jean-Pierre Sauvage, 

Stoddart, and Feringa.4–6 More than three decades back, Sauvage and Stoddart introduced 

mechanically interlocked molecules (MIMs), which became the building blocks of many 

AMMs. This led to the development of rotaxanes, catenanes, and other MIMs. In the last two 

decades, various molecular architectures, such as nanocars,7 windmills,8 and shuttles5 have 

been prepared, taking inspiration from their macroscopic counterpart. Although the molecular 

machines mimic macroscopic structures, this does not mean that they can necessarily perform 

a similar function at the molecular scale. Matter behaves differently at different length scales. 

Molecular machines need to be designed according to the operating environment. A molecular 

machine can produce useful work only when it is directional. For instance, if a nanocar moves 

an equal distance, once forward and then backward, it will end up in the same position, 

canceling any work performed. Useful work is only obtained when a machine is directional. In 

1991 and 1994, with the aid of ingenious synthetic design, Stoddart synthesized molecular 

shuttles and showed for the first time that motion could be controlled at a molecular level.5,9 

Another significant contribution to the area of AMMs came from Feringa. His group, in 1999, 

synthesized a new class of AMMs based on overcrowded alkenes.6 These molecules showed 

unidirectional rotational motion upon exposure to light, so they were named light-driven 

motors. It was one of the first examples of unidirectional rotational motion in AMMs. In 2016, 

due to their significant scientific contributions to the field of AMMs, the Royal Swedish 

Academy of Sciences jointly awarded the Nobel Prize in Chemistry to Jean-Pierre Sauvage, 

Ben Feringa, and J. Fraser Stoddart. Later, in 2016, translational directionality driven by fuel 

in AMMs was achieved by the group of David Leigh.10 With the help of novel synthetic 

designs, they successfully created a mechanically interlocked system consisting of a ring and 

a track. They called it ‘Autonomous Chemically Fuelled Small-Molecule Motor’ because 

translational directionality could only be seen as long as a fuel is present in the system. In this 

system, the ring unidirectionally translates over the track (Note: Leigh et al. referred to this 

motion as rotational motion, but it is essentially a translational motion on the track, and we will 

be referring to it as translation in this study). 

Even though significant progress has been made to achieve controlled molecular motion, 

introducing directionality at a molecular scale is still challenging. A good insight into the 
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dynamics of AMMs is required. Understanding the factors responsible for the directionality is 

crucial in solving this challenge. Experimentalists have successfully achieved the directionality 

in few AMMs, but further development would need contributions from theoretical and 

computational experts. There has been considerable theoretical and computational work on 

molecular machines.11 However, computational investigations into molecular machines have 

been challenging due to the large size of such systems. Therefore, all-atom quantum-

mechanical (QM) calculations are not feasible. Thus, computational studies have been 

primarily carried out using molecular dynamics (MD) or the QM/MM approach.12–14 The all-

atom QM calculations have been only possible in small molecular motors.15,16 These previous 

studies provide mechanistic insights into the dynamical properties of AMMs at an atomic scale.  

In this study, we use ab initio molecular dynamics (AIMD) simulations to gain insight into the 

dynamics of a class of molecular machines known as mechanically interlocked molecules 

(MIMs). We have investigated directionality in the rotaxane system synthesized by Stoddart17 

and the catenane system synthesized by David Leigh.10 In contrast to our approach, earlier 

reports on the computational studies of rotaxane and catenane employed a semiempirical 

QM/MM approach.18–25 These studies investigated the energetics, the translational motion, and 

various other properties of rotaxane and catenae systems. The main focus in the previous 

studies has been on the translational directionality in the MIMs. However, there has been 

experimental evidence for the rotational directionality in such molecules.17,26,27.  We observed 

a lack of computational investigations into the rotational dynamics of these systems. 

Traditionally, relative motion in catenane systems is called rotation. However, we view such a 

motion in catenane as a translation motion. In this study, the motion that does not require 

movement of the center of mass is called rotation. Thus, rotational motion in rotaxane and 

catenane are essentially similar, except the ring in rotaxane rotates relative to the linear track 

and in catenane relative to the circular track. So far, rotational directionality in MIMs has been 

given very little attention. The molecules with rotational directionality would prove essential 

in many applications such as catalysis, drug design, etc.  

The goal of this study was to develop an algorithm for investigating rotational motion in 

molecular machines (i.e., MIMs containing a ring and a track). In this chapter, first, we discuss 

the development of an algorithm for quantifying rotational motion in molecular machines. Then 

we discuss the several tests performed for verifying the algorithm using an artificial test system. 

After verification, we have analyzed the rotational motion in the rotaxane system using the 

developed algorithm. During the analysis, we identified a few issues with the algorithm, 

particularly with the atomic rotation. We then investigated various strategies to resolve these 

issues, including a machine learning algorithm (i.e., linear regression). We managed to resolve 

the issue with the rotation of ring atoms. Unfortunately, we were unable to resolve the issue 

with the rotation of the track, so we decided to investigate the rotation of only the ring in the 

rotaxane system. We conclude this study by investigating the effect of the track, solvent, and 

counterions on the rotation of the ring in a rotaxane system.   
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6.2 Materials and Methods 

6.2.1 Systems 

The following systems were investigated in this study: 

Rotaxane: This system was synthesized by Stoddart.17 It contains a ring and a linear track. We 

also added four PF6
− counterions to neutralize the total charge in the system. This system was 

simulated under different conditions using ab initio molecular dynamics, as shown in Table 

6.1. Water was used as a solvent during simulations. This system is also known as [2]Rotaxane. 

Table 6.1. List of different conditions under which rotaxane system was simulated. 

 
Internal system name 

Temperature 

(K) 

Solvent Number of 

counterions 

Simulation 

Time (ps) 

Rotaxane 

system 

containing 

a ring and 

a track 

molecular_rotor_b3lyp.md 1300 No 4 25 

molecular_rotor_b3lyp_withoutcounter_ion.md 1300 No 0 25 

molecular_rotor_b3lyp_with_solvent.md/ 

merged_scr_1_2_3_4_low_temp 

1300 Yes 4 22.348 

molecular_rotor_b3lyp_with_solvent.md/ 

scr_hf_1600 

1600 Yes 4 46.566 

ro_ci_1_removed 1300 No 3 25 

ro_ci_2_removed 1300 No 2 25 

Rotaxane 

system 

containing 

only ring 

ring 1300 Yes 0 25 

ring_without_dielectric 1300 No 0 25 

ring_with_solvent_with_ci_4 1300 No 4 25 

Catenane: This system was synthesized by David Leigh in 2016.10 It contains a ring and a 

circular track. It was simulated at 1500 K for 25 ps with dichloromethane as solvent. We did 

not add any counterions to the system as it was neural. This system is also known as 

[2]Catenane. 

6.2.2 Computational Details 

All Simulations were carried out using the B3LYP method and a 3-21g basis set except 

“molecular_rotor_b3lyp_with_solvent.md/scr_hf_1600”, which was simulated using the 

Hartree–Fock (HF) method due to time constraints. The implicit solvent was included when 

necessary. All simulations use a time interval of 0.5 fs. The TeraChem software package28–30 

was used for the simulations. Scripts for the verification and analyses were written in Python. 

Note that ‘Frame’ or ‘Frame Number’ in this chapter refers to the time step of the simulation. 

6.2.3 Terminologies 

In this study, we developed a few terminologies related to the rotational motion in molecular 

machines. We briefly describe these terminologies below for the ring; however, they are 

equally applicable to the track:  

 Rotation of the Ring: It is the average rotation of all ring atoms. 
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 Ring Atoms Rotation: The rotation of individual atoms of the ring is defined as the 

ring atoms rotation. 

The “ring atoms rotation” and “rotation of the ring” are further classified into “absolute 

rotation” and “relative rotation”. We describe these terminologies below for the “rotation 

of ring”. However, these are equally applicable to “ring atoms rotation”, “rotation of the 

track”, and “track atoms rotation”. In the descriptions below, the value of instantaneous 

rotation between the two consecutive time steps 𝑡1 and 𝑡2 is always assigned to the second 

time step, i.e., 𝑡2.  

 Ring Absolute Rotation: It is the rotation of the ring without consideration of the track. 

o Ring Instantaneous Absolute Rotation: It is defined as the absolute rotation 

of the ring between two consecutive time steps.  

o Ring Net Absolute Rotation: The sum of instantaneous absolute rotation of 

the ring at each time step is defined as ring net absolute rotation.  

 Ring Relative Rotation: It is defined as the rotation of the ring relative to the track. 

The relative rotation of the ring is computed by subtracting the absolute rotation of the 

track from the absolute rotation of the ring. 

o Ring Instantaneous Relative Rotation: It is the relative rotation of the ring 

between two consecutive time steps. 

𝑅𝑖𝑛𝑔 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

= 𝑅𝑖𝑛𝑔 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

− 𝑇𝑟𝑎𝑐𝑘 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑜𝑡𝑎𝑖𝑜𝑛 

o Ring Net Relative Rotation: It is the sum of instantaneous relative rotation of 

the ring at each time step. 

𝑅𝑖𝑛𝑔 𝑁𝑒𝑡 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

= ∑𝑅𝑖𝑛𝑔 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

It is possible to extend these terminologies for translational motion as well.  
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6.3 Results and Discussion 

6.3.1 Development of an Algorithm for Quantifying the Net Relative Rotation in 

Molecular Machines 

Here, we attempt to develop an algorithm to quantify the rotational motion in molecular 

machines using ab initio molecular dynamics (AIMD). The algorithm has been developed for 

mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes. The input to the 

algorithm is a molecular dynamics trajectory containing configurations of the molecular 

machine at different time steps (i.e., 𝑡1, … , 𝑡𝑁 , where N is the total number of steps). In 

particular, the molecular dynamics (MD) trajectory of the rotaxane system has been analyzed 

for algorithmic development. In this study, we are concerned with the systems containing a 

ring and a track. Motion in such systems is composed of simultaneous rotation and translation 

of the ring and track. Although both the ring and track are free to move, the motion that is of 

primary interest is the one in which the relative rotation or translation of the ring with respect 

to the track is non-zero. The identical motion of the ring and track results in zero relative 

motion, which may result in zero useful work. Furthermore, the system may produce zero 

useful work even if it shows non-zero relative motion at each step. For example, if a ring 

translates by amount 𝑙 relative to the track and then translates by −𝑙 , the net work would be 

zero even though the ring showed a non-zero relative motion at every step. Thus, net non-zero 

relative motion is of importance. However, relative motion cannot occur without the absolute 

motion of individual components in the system. Therefore, in this study, we focus on 

quantifying the net absolute and relative rotation of the ring with respect to the track. The net 

relative rotation of the ring over an entire period of dynamics is computed by summing over 

the instantaneous relative rotation between two consecutive time steps. As ring and track are 

non-rigid systems, their motion is computed by averaging over all the atoms. From the MD 

trajectory of a rotaxane, we observed that the track stays close to the center of the ring. 

Therefore, we assumed that most of the rotation is concentrated along an axis that is 

approximately parallel to the track and perpendicular to the approximate plane of the ring. 

Rotation along other axes would be less probable due to steric hindrance. Hence, we have 

ignored the rotation along other axes in this development. The majority of the development is 

concerned with calculating absolute rotation between two time steps, referred to as the first 

time step (i.e., 𝑡1) and the second time step (i.e., 𝑡2) in this discussion. The algorithm for 

quantifying the net relative rotation of the ring with respect to track consists of the following 

steps: 

Step-1. Identification of the Ring and the Track: To compute the relative rotation of the ring 

with respect to the track, it is necessary first to identify the set atoms belonging to the ring and 

the track. It is possible to identify these atoms using visualization softwares manually. 

However, due to a large number of atoms, the process is cumbersome, which may lead to 

human error. Thus, we have developed an automated approach for identifying the atoms 

belonging to the ring and the track. This approach requires only two inputs: (i) the Cartesian 

coordinates of the system at any time step and (ii) the indices of two atoms, one from the ring 

and one from the track. The indices of these two atoms belonging to the ring and the track could 

be easily identified using any visualization software. First, we convert the Cartesian 

coordinates of the system into the “MOL” format, as it contains the information on atomic 
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bonding lacking in Cartesian coordinates. Then, we convert all the molecules into graph 

representations in which nodes represent atoms and edges represent a bond. Next, we identify 

connected subgraphs and loop over them to identify subgraphs containing ring atoms and track 

atoms using the indices of the two atoms given as input. This step is performed only once 

during the calculation. The indices of the ring and track atoms obtained from this step are stored 

in separate lists. We use these lists in subsequent calculations.  

Step-2. Identification of the Axis of Rotation and the Center of Rotation: Rotational motion 

requires the specification of the axis of rotation and the center of rotation (i.e., point through 

which the rotation axis passes). We are interested in computing rotation along the axis that is 

approximately perpendicular to the ring. Therefore, we define the axis of rotation as a vector 

from the center of geometry of the ring at 𝑡1 to the center of geometry of the ring at 𝑡2. The 

center of rotation is defined as the center of geometry of the ring at 𝑡1. There is an issue with 

the current approach: when the ring does not translate, the axis of rotation becomes a zero 

vector. We address this issue with the following strategy: 

Let 𝐶𝑂𝐺1
𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 and  𝐶𝑂𝐺2
𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 be the center of geometry of the ring at 𝑡1and 𝑡2, respectively.  

Similarly, let 𝐶𝑂𝐺1
𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 and  𝐶𝑂𝐺2
𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 be the center of geometry of the track at 𝑡1and 𝑡2, respectively. 

Let �⃗�  be the rotation axis. 

 Define �⃗� = 𝐶𝑂𝐺2
𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐶𝑂𝐺1

𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

 If  �⃗� = 0⃗  then define �⃗� = 𝐶𝑂𝐺2
𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐶𝑂𝐺1

𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

 If  �⃗� = 0⃗  then define �⃗� = 𝐶𝑂𝐺2
𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐶𝑂𝐺1

𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Step-3. Alignment of the Ring and the Track: It is easier to compute rotation when the axis 

of rotation is parallel to one of the x, y, or z axis and the center of rotation lies at the origin. In 

this step, we transform the system at 𝑡1 such that the axis of the rotation is along the x-axis and 

the center of rotation lies at the origin. Then, we apply identical transformations to the system 

at 𝑡2. 

Step-4. Calculation of the Absolute Rotation of the Ring: This step is relatively 

straightforward. We calculate the instantaneous absolute rotation of all atoms of the ring 

between 𝑡1 and 𝑡2 by taking a projection in the y-z plane. Then, the absolute rotation of the ring 

is computed by averaging the instantaneous absolute rotation of all ring atoms. In this 

development, we consider rotation only along the x-axis and discard other components of the 

rotation. 

Step-5. Calculation of the Absolute Rotation of the Track: In this step, the rotation of the 

track is calculated by following the same procedure used for the ring. The only difference is 

that the track is trimmed before the calculation. During trimming, only those atoms of the track 

are considered that are within 2 Å distance from the center of rotation. 

Step-6. Calculation of the Net Relative Rotation of the ring: Then, the instantaneous 

absolute rotation of the track is subtracted from the instantaneous absolute rotation of the ring 

to obtain the instantaneous relative rotation of the ring. The rotation between any two time 

steps is defined as instantaneous rotation. Steps 2-5 are repeated for all consecutive time steps, 

and the net rotation is computed by summing over the instantaneous rotation between all 
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consecutive time steps. The consecutive time steps in this study have a difference of ten. In 

other words, we skip ten steps during the computation of instantaneous absolute and relative 

rotation. 

6.3.2 Development of an Algorithm for Quantifying the Net Relative Translation in 

Molecular Machines 

We have also developed an algorithm for quantifying translation in molecular machines. The 

purpose of this development was to investigate translational motion along with the rotational 

motion when required. As translation motion in molecular machines is a well-studied 

phenomenon, the main focus of this study is on rotational motion, and we have not carried out 

a detailed investigation into translation. The development of the algorithm for translation was 

relatively straightforward. Translational motion is computed using the displacement of the 

center of mass of the ring and the track between consecutive time steps. The net translation is 

calculated by summing up the instantaneous translation at each time step. Also, in this case, 

the translation of the ring is computed relative to the track. 

6.3.3 Verification of the Algorithm Developed for Quantifying Rotation 

In order to verify the algorithm developed for quantifying rotational motion, we created an 

artificial test system containing a planar circular ring and a planar track, as shown in Figure 

6.1. The ring consists of ten carbon atoms and ten nitrogen atoms, whereas the track consists 

of nine carbon atoms and nine sulfur atoms.  

 

Figure 6.1. Artificial test system. 

Then, we assessed the algorithm using the six tests described below. These tests were 

performed first on the ring and then on the track. Each test involves manual rotation of the ring 

and the track along one of the three axes. A few tests also involve translation along with 

rotation. We try to predict the rotation using the developed algorithm in these tests. The 

accuracy of instantaneous absolute rotation between two consecutive steps (i.e., instantaneous 

absolute rotation) guarantees the accuracy of relative rotation. Therefore, it is sufficient to 

assess the accuracy of absolute rotation. The following tests assess the accuracy of only 

instantaneous absolute rotation. When the system (i.e., ring or track) is rotated along the x-axis, 

the expected rotation is equal to the manual rotation (i.e., we expect to obtain the line: y = x). 
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However, the ring can also rotate along the y and z axis. As we are considering rotation only 

along the x-axis, the rotation along the y and z axis should not give rise to any rotational 

components along the x-axis (at least in the test system). Otherwise, it will introduce errors in 

the calculation. Thus, we expect rotation along the y and z axis to have zero or negligible 

rotation along the x-axis. If the algorithm is working correctly, we expect the predicted rotation 

to match the expected rotation in the tests below. 

Test-1: In this test, we manually rotated the ring and the track along the x-axis from -90 degrees 

to +90 degrees without translation. The results of this test are shown in Figure 6.2. We observed 

that the predicted rotation matches perfectly with the expected rotation for the ring. On the 

other hand, for the track, the predicted rotation does not match the expected rotation. The reason 

for this is the absence of translation in the system. Neither ring translates nor track, so there is 

no possible way for the algorithm to determine the axis of rotation. However, it is a rare 

situation in the molecular dynamics of a system of this size where internal and external forces 

are constantly acting on the atoms.  

 

Figure 6.2. Plots showing expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the ring and the track corresponding to test-1. The red line represents predicted 

rotation from the algorithm, and the blue line denotes expected rotation. 

Test-2: In this test, we manually rotated the ring and the track along the x-axis from -90 degrees 

to +90 degrees. We also translated the ring and the track by -10 Å and +10 Å, respectively. The 

results of this test are shown in Figure 6.3. We can see that the predicted rotation matches 

perfectly with the expected rotation for both ring and track. 

 

Figure 6.3. Plots showing the expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the ring and the track corresponding to test-2. The red line represents the 

predicted rotation from the algorithm, and the blue line denotes the expected rotation. 

Ring                                                                     Track 

  

   Ring                                                                  Track 
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Test-3: In this test, we manually rotated the ring and the track along the y-axis from -90 degrees 

to +90 degrees without translation. The results of the test are shown in Figure 6.4. We expect 

zero predicted rotation along the x-axis from the algorithm. We can see that the predicted 

rotation matches perfectly with the expected rotation for both ring and track. 

 

Figure 6.4. Plots showing expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the ring and the track corresponding to test-3. The red line represents predicted 

rotation from the algorithm, and the blue line denotes expected rotation. 

Test-4: In this test, we manually rotated the ring and the track along the y-axis from -90 degrees 

to +90 degrees. We also translated the ring and the track by -10 Å and +10 Å, respectively. The 

results of this test are shown in Figure 6.5. We expect zero predicted rotation along the x-axis 

from the algorithm. We observed that the predicted rotation matches perfectly with the 

expected rotation for the ring. Whereas for the track, the predicted rotation does not match the 

expected rotation. This type of error cannot be eliminated because the plane of the track is not 

perpendicular to the axis of rotation, and that is why any rotation along the y-axis gives rise to 

rotational components along the x-axis. Again, we need not worry about this error as its value 

would be small if the actual rotation is small (i.e., error → 0 as rotation → 0). In the dynamics, 

most of the time, rotation between two timesteps is of the order of 0.1 degrees or even less. 

 

Figure 6.5. Plots showing expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the ring and the track corresponding to test-4. The red line represents predicted 

rotation from the algorithm, and the blue line denotes expected rotation. 

Test-5: In this test, we manually rotated the ring and the track along the z-axis from -90 degrees 

to +90 degrees without translation. The results of this test are shown in Figure 6.6. We expect 

zero predicted rotation along the x-axis from the algorithm. We can see that the predicted 

rotation matches perfectly with the expected rotation for both ring and track. 

Ring                                                                     Track 

  

   Ring                                                                  Track 
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Figure 6.6. Plots showing expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the ring and the track corresponding to test-5. The red line represents the 

predicted rotation from the algorithm, and the blue line denotes the expected rotation. 

Test-6: In this test, we manually rotated the ring and the track along the z-axis from -90 degrees 

to +90 degrees. We also translated the ring and the track by -10 Å and +10 Å, respectively. The 

results of this test are shown in Figure 6.7. We expect zero predicted rotation along the x-axis 

from the algorithm. We can see that the predicted rotation matches perfectly with the expected 

rotation for both ring and track. 

 

Figure 6.7. Plots showing expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the ring and the track corresponding to test-6. The red line represents the 

predicted rotation from the algorithm, and the blue line denotes the expected rotation. 

6.3.4 Verification of the Algorithm Developed for Quantifying Translation 

We used the same artificial test system composed of a planar circular ring and a planar track 

for the verification. As the translation motion is not the quantity of interest in this study, we 

performed only a limited number of tests for the translation only along the x-axis, as described 

below. 

Test-7: We manually translated the ring and the track along the x-axis from -10 Å to +10 Å 

without any rotation. The results of this test are shown in Figure 6.8. If the algorithm is working 

properly, we expect the predicted translation to match the expected translation (i.e., y = x line). 

We can see that the predicted translation matches perfectly with the expected translation for 

both the ring and the track. 

Ring                                                                Track 

  

Ring                                                                Track 
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Figure 6.8. Plots showing expected and predicted translation on the y-axis and manual 

translation on the x-axis for the ring and the track corresponding to test-7. The red line 

represents the predicted translation from the algorithm, and the blue line denotes the expected 

translation. 

Test-8: We manually translated the ring and the track along the x-axis from -10 Å to +10 Å. 

We also rotated the systems by +10 degrees. The results of this test are shown in Figure 6.9. If 

the algorithm is working properly, we expect the predicted translation to match the manual 

translation (i.e., y = x line). We observed that the predicted translation matches perfectly with 

the expected translation for both the ring and the track. 

 

Figure 6.9. Plots showing the expected and the predicted translation on the y-axis and the 

manual translation on the x-axis for the ring and track corresponding to test-8. The red line 

represents the predicted translation from the algorithm, and the blue line denotes the expected 

translation. 

6.3.5 Investigating Rotational and Translational Motion in Rotaxane  

After verifying the algorithm on an artificial test system, we decided to investigate rotational 

motion in the rotaxane system synthesized by Stoddart et al.17 Using NMR studies, they 

showed that the ring in a rotaxane system rotates by 180 degrees relative to the track. We 

simulated the rotaxane system at 1300 K and 1600 K with the solvent for 44,697 steps to find 

computation evidence for this observation. Then, the simulated systems were analyzed using 

the developed algorithms. The results of the analysis are shown in Figure 6.10 and Figure 6.11. 

Simulation at high temperature (i.e., at 1600 K) was carried out to accelerate the dynamics in 

the system. 

     Ring                                                              Track 

  

      Ring                                                                 Track 
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Figure 6.10. Net relative rotation of the ring in rotaxane simulated for 44,697 steps. 

 

Figure 6.11. Net relative translation of the ring in rotaxane system simulated for 44,697 steps. 

Figure 6.10 contains plots of the net relative rotation of the ring at two different temperatures 

(i.e., 1300 K and 1600 K). At low temperature, the ring shows the maximum net relative 

rotation of 49.20 degrees at step number 37,550 and a net relative rotation of 31.67 degrees in 

the last step (i.e., 44,690). At high a temperature, the maximum net relative rotation shown by 

the ring is 132.35 degrees at step number 42,480 and 125.82 degrees in the last step (i.e., 

44,690). Similarly, the plots of the net relative translation of the ring at 1300 K and 1600 K are 

shown in Figure 6.11. It can be seen that the magnitude of rotation and translation is higher at 

1600 K as compared to 1300 K. The increase in rotational and translational values could be 
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attributed to the accelerated dynamics at high temperature. However, temperature itself is not 

responsible for the rotational and translational directionality because the system is always at a 

thermal equilibrium during the whole simulation.31 Increased temperature has merely 

accelerated the dynamics in the system. In other words, given enough time, the system would 

show similar behavior even at low temperatures. Thus, plots in Figure 6.10 and Figure 6.11 

showed the evidence for rotational and translational directionality in the rotaxane system at 

low and high temperatures. These results do not show enough evidence for the 180-degree 

rotation, as the simulations were performed only for 44,697 steps. Owing to the increasing 

nature of the plot at 1600 K, we expect that the system might show 180-degree rotation beyond 

44,697 steps. We, therefore, carried out an extended simulation of rotaxane at 1600 K for up 

to 93,132 steps. This extended simulation was re-analyzed using the developed algorithms. The 

results of the analysis are shown in Figure 6.12 and Figure 6.13. 

 

Figure 6.12. The net relative rotation of the ring in the rotaxane system simulated for 93,132 

steps at 1600 K. 

 

Figure 6.13. Net relative translation of the ring in rotaxane system simulated for 93,132 steps 

at 1600 K. 

From Figure 6.12, we observed that the rotaxane system crosses 180 degrees at step no. 76,270. 

This could be considered as a potential evidence for the 180-degree rotation reported by 
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Stoddart et al.17 The plot of the translational directionality in an extended simulation is also 

shown for reference in Figure 6.13. During further investigations, we identified a few issues 

with the current algorithm. These issues have been discussed in the next section. Therefore, we 

note that the results obtained and the conclusions drawn in this section may not be correct. 

Further improvements in the algorithm are required to validate these results. 

6.3.6 Investigating Issues with the Algorithm Developed for Quantifying Rotational 

Motion 

The accuracy of relative rotation depends on the accuracy of the absolute rotation. Therefore, 

we investigated the net absolute rotation of both ring and track. The analyses in this and the 

following sections have been conducted primarily on the rotaxane system simulated at 1600 K 

with solvent and four counterions for the 93,132 steps. Therefore, “rotaxane system” in the 

current and subsequent sections refers to this system unless mentioned otherwise. Figure 6.14 

shows the plots of the net absolute rotation of the ring and the track. 

 

Figure 6.14. Net absolute rotation of the ring and track in the rotaxane system. 

We observed that the magnitude of the net absolute rotation of the ring is smaller than the track 

at all the time steps. It looks like the track contributes more to the relative rotation of the ring 

than the ring itself in a rotaxane system. We also observed that the ring and track rotate in 

opposite directions, with the rotation of the ring being positive and the rotation of the track 

being negative. Till now, we have focused our attention on the average rotation of the system 

and ignored the rotation of individual atoms. Therefore, we decided to investigate the rotation 

of individual atoms in the ring and the track. The absolute and relative rotation of individual 

ring and track atoms is shown in Figure 6.15. The net relative rotation of the track atoms is 

exactly opposite to the net relative rotation of the ring. Therefore, it is not shown in the figures 

below. 
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Figure 6.15. Rotation of ring and track atoms in rotaxane. (a) Net absolute rotation of ring 

atoms. (b) Net relative rotation of ring atoms. (c) Net absolute rotation of track atoms. 

 

 

 

(a) 

(b) 

(c) 
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We identified a few issues with the algorithm during the analysis of atomic rotation. We 

observed that the rotation of the individual ring and track atoms is highly dispersed, ranging 

from -1000 to +1000 degrees. Thus, the algorithm fails to capture rotation at atomic scale. To 

gain further insight into the issue, we performed a detailed analysis of the rotation of individual 

ring atoms. First, we visualized the rotation axis at different time steps. A randomly selected 

time step from the dynamics is shown in Figure 6.16. In the figure, orange circles represent the 

ring atoms. The green arrow coming out of the figure (towards the viewer) is the rotation axis 

identified by the algorithm. The plane perpendicular to the rotation axis is shown in blue. 

According to the assumption, the rotation axis should approximately be perpendicular to the 

plane of the ring. However, for the time step shown in Figure 6.16, the rotation axis appears to 

be approximately parallel to the plane of the ring. Unfortunately, many other steps suffer from 

the same issue: the rotation axis is parallel instead of perpendicular to the ring. 

 

Figure 6.16. Visualization of the rotation axis in a randomly selected time step. Orange circles 

represent the ring atoms. The green arrow coming out of the figure (towards the viewer) is the 

rotation axis identified by the algorithm. The plane perpendicular to the rotation axis is shown 

in blue. 

Next, we visualized the instantaneous rotation (i.e., rotation between two consecutive time 

steps) of ring atoms using the box plot (Figure 6.17). We can see that the instantaneous 

rotational values of individual atoms are spread across a broad range from -80 degrees to +80 

degrees. Such large rotational values for the instantaneous absolute rotation are highly unlikely. 

We also visualized the maximum rotation of individual ring atoms. Figure 6.18 shows the time 

step at which a randomly selected ring atom has the maximum rotation. Red circles represent 

the rotation of ring atoms. The size of the red circle corresponds to the amount of rotation (i.e., 

a large circle represents high rotation and vice versa). We again observed that the rotation axis 

is approximately parallel to the plane of the ring. We also observed that the rotation of the 

atoms situated along the axis of rotation is higher than the atoms away from the axis. 
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Figure 6.17. Distribution of instantaneous absolute rotation of ring atoms in the rotaxane 

system. 

 

Figure 6.18. Visualization of a time step having a maximum value of instantaneous absolute 

rotation for a randomly selected ring atom. The rotation of ring atoms is represented by red 

circles. The size of the red circle corresponds to the amount of rotation. 

Thus, the main cause of this issue was the axis of rotation which often comes close to the ring 

atoms and orients such that it is approximately parallel to the plane of the ring, giving rise to 

high rotational values. Therefore, we concluded that the high rotational values of the ring atoms 

are due to the wrong orientation of the rotation axis (i.e., parallel instead of perpendicular to 

the ring). In order to develop a reliable algorithm, we decided to pay attention to the rotation 

of individual atoms. 
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6.3.7 Resolving Issues Related to the Rotation of Ring Atoms 

In order to address the issue with the absolute and relative rotation of ring atoms, we decided 

to correct the orientation of the rotation axis. We investigated two strategies that modify the 

method for calculating the rotation axis in step-2 (i.e., identification of the axis of rotation and 

the center of rotation) of the algorithm. We also added an extra step to skip invalid steps as 

described below. 

Identification of the Rotation Axis using Linear Regression: Linear regression is a machine 

learning algorithm that accurately captures the linear relationship between the target and 

predictor variables, as shown in Figure 6.19 (a). It is one of the most efficient machine learning 

algorithms. In this development, we assumed that the axis of rotation is perpendicular (i.e., 

normal) to the plane of the ring. Thus, the rotation axis could be determined from the equation 

of the plane of the ring. In three dimensions, linear regression identifies a plane that captures 

the linear relationship in data, as shown in Figure 6.19 (b). Therefore, we employed a linear 

regression model to calculate the equation of the plane. 

 

Figure 6.19. Visualizing linear regression in (i) one dimension and (ii) in three dimensions. 

Another advantage of linear regression is that the parameters of the model are interpretable and 

could be used for calculating the normal of the hyperplane. In this strategy, we train a linear 

regression model on the coordinates of the ring atoms at every time step. During the training, 

x and y coordinates of the ring atoms represent the predictor or independent variables, whereas 

the z coordinate represents the target variable. We know that the plane with equation 𝐴𝑥 +

𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 has a normal vector �⃗� = 𝐴𝑖̂ + 𝐵𝑗̂ + 𝐶�̂�. Similarly, a trained linear 

regression model represents the equation of the plane of the ring, 𝑧 = 𝛽1𝑥 + 𝛽1𝑦 + 𝛽0  ⇒

 𝛽1𝑥 + 𝛽1𝑦 − 𝑧 + 𝛽0 = 0  having a normal vector �⃗� = 𝛽1𝑖̂ + 𝛽1𝑗̂ − 1�̂�. We use this normal 

vector obtained from the trained linear regression model as an axis of rotation. We analyzed 

the net absolute rotation of the ring in the rotaxane system using this strategy. The results are 

shown in Figure 6.20 and Figure 6.21.  

 

(a) (b) 
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Figure 6.20. Net absolute rotation of the ring atoms obtained from linear regression strategy. 

 

Figure 6.21. Net absolute rotation of the ring obtained from linear regression strategy. 

We observed a considerable reduction in the dispersion of the net absolute rotation of the 

individual ring atoms. However, a few ring atoms still show relatively large positive and 

negative rotation. We also observed a sudden increase and decrease in the net absolute rotation 

of a few ring atoms, which is unexpected for the non-reacting system. Although this approach 

managed to resolve the issue associated with the rotation of ring and ring atoms to some extent, 

we still need a better strategy capable of accurately predicting the rotation of all atoms in the 

ring. We note that the plane obtained from linear regression depends on the orientation of the 

ring. Thus, for certain configurations, we may not get the correct plane. 

Axis Optimisation Strategy: This strategy is inspired by linear regression. During training, 

linear regression minimizes a loss function with respect to the parameters of the model. 

Similarly, in this strategy, the axis of rotation is computed using an optimization problem as 

described below. A vector passing through the center of rotation located at a maximum distance 

from all the ring atoms is obtained by minimizing the objective function given below: 
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𝐽 = −∑𝑑
𝑖,�⃗⃗� 
2

𝑁

𝑖

 

Where,  

�⃗�  is the axis of rotation 

𝐽 is the negative sum of the squared distance between the axis of rotation �⃗�  and ring atoms 

𝑑𝑖,�⃗⃗�  is the perpendicular distance between 𝑖-th ring atom and the axis of rotation �⃗�  

𝑁 is the total number of ring atoms 

We minimize 𝐽 with respect to �⃗�  to obtain the rotation axis. Figure 6.22 shows the front and 

side view of the rotation axis obtained from the axis optimization strategy. 

 

Figure 6.22. Visualization of the rotation axis obtained from the axis optimization strategy. 

We can see that the rotation axis obtained from the axis optimization strategy is now 

approximately perpendicular to the plane of the ring (i.e., the y-z plane in figure). After 

analyzing many time steps, we conclude that the rotation axis obtained from this strategy is 

approximately perpendicular to the plane of the ring. Thus, the axis optimization strategy has 

resolved the issue related to the orientation of the rotation axis for most of the steps.  

Addition of an Extra Step (Cylinder Test): Even after using the axis optimization strategy, 

we tend to get a rotation axis oriented approximately parallel to the ring in some steps. It is 

almost impossible to fix this issue. So we decided to ignore the time steps having an invalid 

rotation axis. In this step, the algorithm first decides whether a given time step is valid or not 

and skips the invalid time step. The time step in which the rotation axis is approximately 

parallel to the plane of the ring is classified as an invalid time step. We construct an infinitely 

long cylinder of radius 2 Å around the rotation axis to identify whether a time step is valid or 

invalid. Then, we find how many of the ring atoms are inside this cylinder. When the rotation 

axis is oriented approximately parallel to the ring, some of the ring atoms will fall inside the 

cylinder, as depicted in Figure 6.23. If at least one of the ring atoms is found inside this cylinder, 

then it is classified as an invalid time step. We carry out this procedure at every step and skip 

  

Front view                                                     Side View 
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the invalid steps. We call this procedure a “cylinder test”. Figure 6.23 depicts the valid and 

invalid time steps identified through this procedure. Thus, we can say that the cylinder test is a 

simple but powerful tool that can be used along with any base algorithm to improve its 

accuracy. The only problem with the cylinder test is that it can lead to severe data loss if an 

algorithm is not efficient at calculating the correct rotation axis. 

 

 
 

 

Valid Time Step Invalid Time Step 

Figure 6.23. Examples showing valid and invalid time steps according to the cylinder test. 

After incorporating the axis optimization strategy and the cylinder test in the algorithm, we re-

analyzed the rotation of the ring in the rotaxane system. Figure 6.24 and Figure 6.25 show the 

net absolute rotation of the ring and individual ring atoms in a rotaxane system, respectively. 

Figure 6.26 and Figure 6.27, on the other hand, show the net relative rotation of the ring and 

ring atoms in a rotaxane system, respectively. 

 

Figure 6.24. The net absolute rotation of the ring in a rotaxane system. 
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Figure 6.25. The net absolute rotation of ring atoms in the rotaxane system obtained after the 

incorporation of the axis optimization strategy and the cylinder test. 

 

Figure 6.26. The net relative rotation of the ring in the rotaxane system obtained after the 

incorporation of the axis optimization strategy and the cylinder test. 

 

Figure 6.27. The net relative rotation of the ring atoms in the rotaxane system obtained after 

the incorporation of the axis optimization strategy and the cylinder test. 
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From the plots shown above, we can see that the absolute rotation of the ring and the individual 

ring atoms follow a similar trend. Similarly, the relative rotation of the ring and individual ring 

atoms agree in their trend. Next, we analyzed the effect of algorithmic improvements on the 

maximum and minimum rotation of the ring atoms. In Figure 6.28, we plot the maximum and 

minimum instantaneous absolute rotation of all ring atoms across the first 50,000 time steps 

obtained from the algorithm with and without improvements. Red and green colors correspond 

to the values obtained from the algorithm without improvements and with improvements, 

respectively. 

 

Figure 6.28. Visualizing the maximum and minimum rotation of all ring atoms obtained 

without algorithmic improvements and with algorithmic improvements. Algorithmic 

improvements include axis optimization strategy and cylinder test. 

We observed a significant decrease in the maximum and minimum instantaneous rotational 

values of the ring atoms after improvements. Thus, we conclude that the improved algorithm 

decreases the atomic rotation of the ring in a rotaxane system by identifying the appropriate 

rotation axis that is approximately perpendicular to the ring. 

6.3.8 Attempting to Resolve Issues Related to the Rotation of Track Atoms 

In order to obtain correct values for the relative rotation of the ring, it is essential to obtain the 

correct values for the absolute rotation of the track. Therefore, we analyzed the absolute 

rotation of the track and individual track atoms after algorithmic improvement, which includes 

axis optimization strategy and cylinder test. Figure 6.29 and Figure 6.30 show the net absolute 

rotation of the track and individual track atoms obtained from the analysis. 
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Figure 6.29. Net absolute rotation of the track in the rotaxane system obtained after algorithmic 

improvements. Algorithmic improvements include axis optimization strategy and cylinder test. 

 

Figure 6.30. Net absolute rotation of the track atoms in the rotaxane system obtained after 

algorithmic improvements. Algorithmic improvements include axis optimization strategy and 

cylinder test. 

We observed that the rotation of the track does not match the rotation of individual track atoms 

ever after incorporating the axis optimization strategy and cylinder test. The rotation of track 

atoms is highly dispersed, ranging from -1000 degrees to +1500 degrees. This shows that the 

strategy developed for the ring does not work for the track. Hence we need to develop new 

strategies for addressing the rotation of the track. We modified our strategy for quantifying the 

rotation of the track. In step-5, we intended to use atoms of the track that are near the center of 

rotation. We identified such atoms by trimming the track around the center of rotation. The 

issue with this strategy is that it uses infinite planes to find the local track atoms. The use of 

infinite planes leads to the inclusion of distant track atoms due to curvatures in the track, as 

shown in Figure 6.31 (a). In order to overcome this, we replaced the infinite planes with a 

sphere around the center of geometry of the ring, as shown in Figure 6.31 (b).  
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Figure 6.31. The strategy used for identifying track atoms. (a) The previous strategy employed 

two infinite planes, leading to the inclusion of distant track atoms. The yellow sheet represents 

the area between two planes (b) The new strategy uses a sphere around the center of rotation 

to identify the track atoms. The red circle represents the ring, and the green curve represents 

the track. 

We re-analyzed the rotation of the track in rotaxane after incorporating the new procedure for 

identifying local track atoms. The results of the analysis are shown in the figures below. Figure 

6.32 and Figure 6.33 show the net absolute rotation of the track and the individual track atoms, 

respectively. Unfortunately, the rotation of the track and track atoms obtained from the 

improved algorithm is still very high and unrealistic. Some track atoms appear to move in a 

positive direction while others in a negative direction, which is impossible. 

 

(a) 

(b) 
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Figure 6.32. The net absolute rotation of the track in the rotaxane system obtained after 

incorporating the new procedure for identifying local track atoms. 

 

Figure 6.33. The net absolute rotation of track atoms in the rotaxane system obtained after 

incorporating the new procedure for identifying local track atoms. 

It is possible that the issue related to the rotation of track atoms might be associated only with 

the system we are studying (i.e., rotaxane). Therefore, we also investigated the rotation of the 

track atoms in the catenane system. The rotation in the catenane system is shown in Figure 

6.34. We observed that the issue persists across different systems. The rotation of track atoms 

in the catenane system is also highly dispersed and unrealistic, whereas the rotation of ring 

atoms is reasonable and matches the rotation of the ring. Thus, variation in different systems is 

not responsible for the unrealistic rotation of the track atoms. 
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Figure 6.34. Investigating rotational motion in the catenane system simulated at 1500 K with 

solvent for 50,000 steps. (a) The net absolute rotation of track atoms. (b) The net relative 

rotation of the ring. (c) The net relative rotation of all ring atoms. 

Next, we tried a few other strategies to improve our algorithm and fix the issue related to the 

rotation of the track atoms. Due to the lack of significant improvements, we only briefly 

mention these strategies below without their details. 

Strategy-1: The results presented so far are based on the sphere of radius 5 Å. It effectively 

searches the track of length 10 Å, which is quite large for the ring having a thickness of ~4.3 

Å. Therefore, we analyzed the rotation at smaller radii. We investigated spheres of radius 2 Å 

and 3 Å. 

Strategy-2: In this strategy, we changed the center of rotation from the center of geometry of 

the ring to the center of geometry of the ring + track. 

Strategy-3: Here, we modified the procedure for identifying the rotation axis. We decided to 

compute the rotation axis using two oxygen atoms (i.e., O_89 and O_106) present on the track. 

The new axis of rotation is defined as a unit vector from atom O_89 to O_106. 

Unfortunately, all these strategies failed to address the issue related to the rotation of track 

atoms. Thus, this algorithm fails to correctly capture the rotation of individual track atoms. 

 

 

(a) 

(b) (c) 
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Therefore, we cannot accurately calculate the rotation of the track and the relative rotation of 

the ring. Due to time constraints, we accepted this as a drawback of our algorithm. 

6.3.9 Re-verification of the Improved Algorithm Developed for Quantifying Rotational 

Motion in Molecular Machines 

As all the strategies tried so far failed to resolve the issue related to the rotation of the track 

atoms, we suspected that the code might have some bugs. So, we performed a detailed 

verification of the code using the following three different verification schemes: 

Scheme-1: We performed several tests on the two test systems in this scheme. The tests include 

simultaneous and independent rotation and translation of the ring and the track. We performed 

these tests on the two test systems: (i) the artificial test system used previously and (ii) the 

rotaxane test system. The rotaxane test system consists of a ring and a track from the real 

rotaxane system.  Below we show results only for an important test involving simultaneous 

rotation and translation of the ring and the track. The two plots corresponding to the ring and 

the track for each test system are shown in Figure 6.35. In this test, we manually rotated the 

ring and the track along the x-axis from -90 degrees to +90 degrees. We also translated the ring 

and the track by -10 Å and +10 Å, respectively.  The plots below show that the predicted 

rotation matches perfectly with the actual rotation (i.e., the y = x line). We also observed that 

the predicted rotation matches the expected rotation in other tests not shown here. Thus, we 

conclude that the code passes all the standard tests and does not indicate bugs in the code. 

 

Figure 6.35. Plots showing expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the ring and the track corresponding to Scheme-1. The red line represents the 

predicted rotation from the algorithm, and the blue line denotes the expected rotation. (a) and 

(b) verification results on the ring and the rack from the artificial test system, respectively. (c) 

and (d) verification results on the ring and the track from the rotaxane test system, respectively. 

 

   

  

(a) (b) 

(c) (d) 
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Scheme-2: In this verification scheme, we simulated the rotational motion in artificial test 

systems in a pre-defined manner. Then, we compared the predicted rotation with the actual 

rotation of the system. The simulation profile of rotational motion is given in Table 6.2 below. 

The predicted rotation of all track atoms in this system is shown in Figure 6.36. 

Table 6.2. Simulation profile of the artificial test system. 

Frames Ring Net Relative Rotation 

0 to 100 0 to -200 

100 to 200 -200 to 0 

200 to 300 0 to -200 

 

 

Figure 6.36. Net absolute rotation of track atoms in a simulated artificial test system. 

From the plots in Figure 6.36, we can see that the predicted rotation matches very well with 

the actual simulated rotation of the artificial test system. Thus, we conclude that the code passes 

this verification test and that there are no indications of bugs in the code. 

Scheme-3: In this scheme, we measured the angular deviation of the rotation axis from its 

initial position for the first 50,000 steps. If the algorithm is consistent in computing the 

direction of the rotation axis, we expect angular deviation to remain below 90 degrees. The 

sudden increase in the deviation above 90 degrees would indicate the reversal of the rotation 

axis. The result of this verification is shown in Figure 6.37. We observed that the angular 

deviation of the rotation axis is well below 90 degrees. Thus, we conclude that the direction 

obtained from the new algorithm is consistent. 
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Figure 6.37. Scatter plot of the angular deviation of the rotation axis with respect to the initial 

rotation axis. 

6.3.10 Investigating Rotational Motion of Only the Ring in the Molecular Machine 

As the rotational dynamics of the ring obtained from the algorithm is very reasonable, we 

decided to focus our attention on the rotation of only the ring in the rotaxane system. One of 

the systems we are studying contains only a ring. Therefore, we verified the algorithm on the 

test system containing only a ring. 

Verification on the System Containing only a Ring: We removed the track from the artificial 

test system to obtain the test system containing only a ring, as shown in Figure 6.38. Then we 

rotated the ring along the x-axis from -90 degrees to +90 degrees with and without translation. 

If the algorithm is working properly, we expect the predicted rotation to match the manual 

rotation (i.e., y = x line).  

 

Figure 6.38. Artificial test system containing only the ring. 
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Figure 6.39. Plots showing expected and predicted rotation on the y-axis and manual rotation 

on the x-axis for the artificial test system containing only a ring. Verification was performed 

with and without translation of the ring. The red line represents predicted rotation from the 

algorithm, and the blue line denotes the expected rotation. 

Figure 6.39 contains the verification results on the only ring test system. It can be seen that the 

predicted rotation matches perfectly with the expected rotation. Furthermore, we simulated the 

rotaxane test system containing only a ring. The rotational motion was simulated in a pre-

defined manner. The simulation profile of the rotational motion is depicted in Table 6.3. The 

predicted rotation of all the ring atoms of this system is shown in Figure 6.40.  

Table 6.3. Simulation profile of rotaxane test system containing only the ring. 

Frames Ring Net Absolute Rotation 

0 to 100 0 to 100 

100 to 300 100 to -100 

300 to 500 -100 to 100 

 

 

Figure 6.40. Net absolute rotation of the ring atoms in the simulated rotaxane test system 

containing only the ring. 

     With Translation                                    Without Translation 
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From the plots in Figure 6.40, we observed that the predicted rotation matches very well with 

the simulated rotation of the ring. Thus, we conclude that the code is ready to investigate the 

absolute rotation of the ring in molecular machines. Next, we investigated the effect of the 

track, solvent, and counterions on the net absolute rotation of the ring in the rotaxane system.  

Effect of the Track: We simulated the rotaxane system with and without the track under 

identical conditions (i.e., at 1300 K with solvent). Figure 6.41 (a) and Figure 6.41 (b) below 

show the net absolute rotation of the ring with and without the track, respectively. We observed 

long and straight lines in Figure 6.41 (b) corresponding to the time steps skipped during the 

computation of the net absolute rotation. We attribute the loss of time steps to the failure of the 

rotation axis to pass the cylinder test. To confirm this, we reduced the cylinder radius from 2 

Å to 1 Å and recomputed the net absolute rotation of the ring without the track, which is shown 

in Figure 6.41 (c). We do not see the long and straight lines anymore in the plot. Thus, the 

rotation axis comes near the ring atoms in the absence of the track, resulting in failure to pass 

the cylinder test. In order to understand the factors responsible for the failure of the cylinder 

test, we analyzed the orientation of the rotation axis. The plot in Figure 6.41 (d) shows the 

angular deviation in the direction of the rotation axis with respect to the initial rotation axis in 

the rotaxane system without a track. If the orientation of the rotation axis was responsible, we 

expect to see the sudden appearance of large angular deviations. However, we observed a 

gradual change throughout the simulation. Thus, the orientation of the rotation axis cannot be 

the factor responsible for the failure of the cylinder test. Another factor could be the distortion 

of the ring. We investigated the distortion of the ring manually using visualization software.32 

The undistorted ring at time step 0 and distorted ring at time step 20,000 are shown in Figure 

6.42. We observed that the ring distorts significantly during the simulation. The six-membered 

rings present in the rotaxane ring distort and come inside the cylindrical region leading to the 

failure of the cylinder test. It was also observed that atomic rotation computed by the algorithm 

is highly dispersed for the ring without the track. One possible reason could be that the 

algorithm is struggling to find the correct rotation axis due to distortion in the ring. 
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Figure 6.41. Effect of the track on the rotation of the ring in the rotaxane system simulated at 

1300 K with solvent and counterions. (a) Net absolute rotation of ring atoms in the presence of 

the track. (b) Net absolute rotation of ring atoms without the track. (c) Net absolute rotation of 

the ring computed after decreasing the radius of the cylinder. (d) Angular deviation of the 

rotation axis with respect to the initial rotation axis. 

 

 

Figure 6.42. Visualizing the distortion of the ring in a rotaxane system without track (a) Ring 

at time step 0 (b) Ring at time step 20,000. 

Effect of the Solvent: The rotaxane system containing both the ring and the track was 

simulated under identical conditions at 1300 K. The net absolute rotation of the ring with and 

without solvent is shown in Figure 6.43. We observed that the direction of rotational motion of 

the ring simulated with solvent is opposite to the ring simulated without the solvent. This trend 

is clearly visible between 30,000 to 50,000 time steps. For most of the steps, the net absolute 

 

 

            

(a) (b) 

(a) (b) 

(c) (d) 
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rotation of the ring with solvent is negative, whereas it is positive for the ring without the 

solvent. We did not observe a large difference in the magnitude of the net absolute rotation. 

However, it was observed that the maximum magnitude of the net absolute rotation of the ring 

with solvent is higher than the ring without solvent. Thus, we conclude that the solvent 

primarily affects the direction of rotation of the ring in the rotaxane system. 

 

Figure 6.43. Plots showing net absolute rotation of the ring with and without solvent in the 

rotaxane system simulated at 1300 K in the presence of counterions. 

Effect of Counterions: The rotaxane system is positively charged. Therefore, we added four 

PF6
− counterions to balance the charge during the simulation. As electrostatic interaction is 

capable of producing torque, we assessed the effect of counterions on the rotational motion of 

the ring. Figure 6.44 shows the net absolute rotation of the ring in the rotaxane system with and 

without counterions. We observed that the net absolute rotation of the ring with and without 

counterions has a very similar trend except for the first ~8000 steps. We also observed that the 

value of net absolute rotation of the ring in the presence of counterions is higher than the ring 

without counterions at each step. To further understand the effect of counterions, we simulated 

the rotaxane system by removing one and two counterions. The box plots in Figure 6.45 show 

the distribution of net absolute rotation computed by varying the number of counterions in the 

system. It can be seen that the maximum value, 75th quartile, 50th quartile (i.e., median), 25th 

quartile, and minimum value of the net absolute rotation decrease systematically as we remove 

counterions from the system. We also analyzed the rotation of individual ring atoms. Figure 

6.46 shows the rotation of ring atoms with and without counterions. We observed high 

dispersion in atomic rotation in the absence of counterions, possibly due to the distortion of the 

ring. Thus, counterions increase the value of the net absolute rotation and decrease the 

dispersion in atomic rotation computed by the algorithm in the rotaxane system. 
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Figure 6.44. Net absolute rotation of the ring with and without counterions in the rotaxane 

system simulated at 1300 K without solvent. 

 

Figure 6.45. Box plots showing the distribution of net absolute rotation of the ring in rotaxane 

system simulated by varying the number of counterions at 1300 K without solvent.   

 

Figure 6.46. Net absolute rotation of the ring atoms in the rotaxane system simulated at 1300 

K without solvent (a) with counterions. (b) without counterions. 

 

 

(a) (b) 
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Simultaneous Effect of the Solvent and Counterions: We also assessed the simultaneous 

effect of solvent and counterions on the rotation of the ring in the rotaxane system. We 

simulated the rotaxane system with and without solvent and counterions under identical 

conditions at 1300 K. Figure 6.47 depicts the net absolute rotation of the ring in the rotaxane 

system with and without solvent and counterions.  We observed that the rotation of the ring 

simulated with solvent and counterions is opposite to that of the ring simulated without solvent 

and counterions. It can be seen that the ring with solvent and counterions has positive peaks 

between 0 and 20,000 time steps, whereas the ring without solvent and counterions has negative 

peaks in the same region. A similar but opposite trend was observed around 10,000 time step 

and between 30,000 and 50,000 time steps. We also observed that the magnitude of the net 

absolute rotation of the ring with solvent and counterions is higher than the ring without solvent 

and counterions for most of the time steps. From the earlier analyses, we know that the solvent 

reverses the direction of rotation, whereas counterions increase the magnitude of the rotation. 

The absence of counterions also increases the dispersion in atomic rotation computed by the 

algorithm (Figure 6.48). In this analysis, we saw both the effects in action. Thus, solvent and 

counterions appear to be exerting their effects somewhat independently on the ring in a 

rotaxane system. 

 

Figure 6.47. Net absolute rotation of the ring in the rotaxane system simulated with and without 

solvent and counterions at 1300 K. 

 

Figure 6.48. Net absolute rotation of the ring atoms in the rotaxane system simulated at 1300 

K (a) with solvent and counterions. (b) without solvent and counterions. 

 

 

(a) (b) 
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6.4 Pseudocode of the algorithm developed for quantifying the net absolute rotation of 

the ring 

The initial algorithm proposed in section 6.3.1 has been modified and improved several times 

in this study. Therefore, in this section, we outline the pseudocode of the final algorithm that 

has been developed through this study. 

Let 𝑁 be the total number of time steps (i.e., frames). 

Let 𝐹 be the file containing the trajectory of the molecular machine in terms of cartesian 

coordinates. 

Let 𝑅 be the net absolute rotation of the ring in degrees. 

𝑹 ← 𝟎 

𝑖 ← 0 

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 ← 10 

𝑟𝑖𝑛𝑔_𝑎𝑡𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟_𝑙𝑖𝑠𝑡 ←Identify the ring atom numbers from the initial time step 

𝑡𝑟𝑎𝑐𝑘_𝑎𝑡𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟_𝑙𝑖𝑠𝑡 ←Identify the track atom numbers from the initial time step 

while 𝑖 < 𝑁 − 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 do 

𝑐𝑜𝑟𝑑_1 ← obtain the cartesian coordinates of ring atoms at time step 𝑖 

𝑐𝑜𝑟𝑑_2 ← obtain the cartesian coordinates of ring atoms at time step 𝑖 + 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 

calculate the center of rotation, the axis of rotation, and the reference axis. 

align 𝑐𝑜𝑟𝑑_1 and 𝑐𝑜𝑟𝑑_2 such that the center of rotation lies at the origin, axis of rotation 

is oriented along the positive x-axis, and the reference axis is oriented along [0,1,1] 

direction. 

if current time step is invalid then 

skip the current time step 

else 

calculate the instantaneous rotation of the individual ring atoms. 

𝑟 ← calculate the instantaneous rotation of the ring by averaging the instantaneous 

rotation of individual ring atoms. 

𝑅 ← 𝑅 + 𝑟 

end if 

𝑖 ← 𝑖 + 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 

end while  



203 

 

6.5 Conclusions 

 In this study, we have developed an algorithm to quantify instantaneous and net absolute 

rotation of the ring in the molecular machines containing a ring and a track (i.e., 

mechanically interlocked systems). However, the algorithm can also quantify the rotation 

in the system containing only a ring. 

 The trend observed in the absolute rotation of the ring atoms matches reasonably well with 

the trend observed in the absolute rotation of the ring. Thus, the algorithm also captures the 

rotation of atoms in the ring. 

 We performed several tests to verify the algorithm using an artificial test system and a 

rotaxane test system. 

 Unfortunately, the algorithm fails to correctly quantify the rotation of track and track atoms. 

Therefore, the results corresponding to the relative rotation of the ring in the rotaxane and 

catenane systems need further validation. 

 We investigated linear regression, which is a machine learning algorithm for computing the 

rotation axis. Although linear regression was successful to some extent, it did not accurately 

predict the rotation of all ring atoms. Finally, the issue was resolved to a reasonable degree 

using the axis optimization strategy. We also employed a cylinder test to remove the steps 

containing an incorrectly orientated rotation axis when the axis optimization strategy fails. 

We also tried several strategies to resolve the issue related to the rotation of track atoms. 

 As the algorithm can reasonably quantify the absolute rotation of the ring, we investigated 

the effect of various factors on the rotation of the ring in the rotaxane system.  

 In the rotaxane system without a track, we often observed that some steps fail to clear the 

cylinder test due to distortion of the ring. Decreasing the radius of the cylinder solved this 

issue. It was also observed that the atomic rotation computed by the algorithm is highly 

dispersed in the rotaxane system without the track.  

 For most of the time, we observed that the net absolute rotation of the ring with solvent was 

negative, whereas it was positive for the ring without solvent. We did not observe a large 

difference in the magnitude of the rotation. However, it was observed that the maximum 

magnitude of the net absolute rotation of the ring with solvent was higher than the ring 

without solvent. Thus, we conclude that the solvent primarily affects the direction of 

rotation of the ring in a rotaxane system. 

 Counterions increase the value of the net absolute rotation and decrease the dispersion in 

atomic rotation computed by the algorithm. 

 We also studied the simultaneous effect of the solvent and the counterions. It was observed 

that the solvent and the counterions appear to exert their effect somewhat independently on 

the rotation of the ring in the rotaxane system.  

 We believe that the insights obtained from this study would help experimentalists develop 

novel molecular machines having desired rotational directionality.  
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Chapter 7  

Summary and Future Outlook 

7.1 Focus of this Thesis 

The evolution of human civilization has been tied to the progress of science, so much so that 

the pre-historical periods are not named after social or economic advances but by the materials 

discovered during that age. This bias highlights the importance of scientific discovery for the 

progress of human society. Today, the discovery of antibiotics, painkillers, and anesthetics has 

increased our life span and revolutionized the field of medical care.1 The discovery of alloys, 

semiconductors, ceramics, and polymers has transformed our society.2–5 The discovery of 

novel catalytic materials have advanced experimental research.6 The discovery of new 

materials has also led to scientific progress (i.e., the discovery of a new scientific phenomenon 

or insight into a known phenomenon). For example, the discovery of piezoelectric, 

ferroelectric, and superconducting effects was only possible due to the discovery of related 

materials.7,8 Molecules are building blocks of many materials. Therefore, new scientific 

discoveries are often associated with molecules. New discoveries require a guided exploration 

through the space of molecules (i.e., molecular space). The exploration is often guided by the 

property (i.e., desired property) that we wish to maximize or minimize. Unfortunately, 

molecular space is large and sparse.9 Thus, we need efficient strategies for its exploration. The 

conventional experimental and computational approaches are time-consuming and resource-

intensive. Therefore, they are not suitable for the efficient exploration of large molecular space. 

Although approaches based on genetic and graph-theoretical algorithms have been developed, 

they are highly sensitive to initial conditions, parameters, and fitness functions. The 

inappropriate choice of any of these often leads to suboptimal solutions and meaningless 

molecules.10,11 Due to advancements in high throughput technologies, a large amount of 

experimental and computation data is available today. However, none of the conventional 

approaches use knowledge from these datasets. Furthermore, experimental, computational, and 

algorithmic approaches, to some extent, depend on the intuition and expertise of the researcher. 

Therefore, an efficient strategy capable of utilizing previous data to explore molecular space is 

required. Machine learning (ML) algorithms have gained a lot of attention in recent years. They 

have shown promising results in many fields of science and technology, surpassing the 

traditional approaches.12–16  ML algorithms can handle a large amount of data and find patterns 

in them. In this thesis work, we have demonstrated the development of strategies to explore 

different molecular spaces using machine learning algorithms and computational tools. 

However, the exploration strategy depends on the molecular space and the corresponding 

application. A single strategy may not work for every molecular space. Therefore, this work 

also demonstrates how one can develop strategies constrained to the requirements of the 

molecular space and the corresponding application. We have investigated three molecular 

spaces in this work: (i) battery materials based on phenazine molecules, (ii) biomolecules 

(DNA and proteins), and (ii) molecular machines. These molecular spaces were chosen due to 
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the need for an efficient exploration strategy in their corresponding applications. The results 

can be summarized as follows: 

(i) Twenty linear and non-linear ML models have been investigated to predict the redox 

potential of phenazine derivatives in DME solvent. It was observed that models achieved 

excellent prediction accuracy on the test-set (i.e., R2 > 0.98, MSE < 0.008 V2, and MAE < 0.07 

V). The molecular features used in this work do not require DFT calculations or experimental 

measurements, making our approach readily adaptable for similar studies. Model performance 

was assessed on four feature sets containing different types of molecular features (i.e., 2D, 3D, 

and molecular fingerprints). The analysis revealed an interesting order with respect to 

prediction accuracy: 2d > 2d+3d+fp > 3d > fp. Average performance analysis also showed 

that 2D molecular features are better at predicting the redox potential of phenazine derivatives 

than 3D and molecular fingerprint features. Feature importance analysis also showed that 2D 

molecular features are more informative than 3D and molecular fingerprints. Due to the short 

prediction time compared to DFT and high accuracy, the ML models developed in this work 

could be employed for exploring a large molecular space of phenazine derivatives, containing 

a single functional group per molecule for better designed battery materials.  

(ii) Next, four ML models were investigated to develop a hybrid DFT-ML strategy for the 

exploration of molecular space containing phenazine-based battery materials. High prediction 

accuracy on the unseen data was achieved using a small training set of 151 molecules. This 

work extends the range of molecular space that can be explored beyond the type of molecules 

used for training. We showed that despite being trained on the derivatives with a single type of 

functional group and only 2D molecular features, the ML models were able to predict the redox 

potentials of the derivatives containing multiple and different types of functional groups with 

good accuracies (R2 > 0.7). We also investigated the effect of different structural features on 

the redox potential through feature importance analysis. Furthermore, we have identified 

promising phenazine derivatives for the anolyte in RFBs from the unseen dataset. This work 

has implications for the discovery of new green battery materials. The hybrid DFT-ML 

approach demonstrated in this work would help in accelerating the exploration of green battery 

materials such as phenazine derivatives. 

(iii) In this work, we have investigated three unsupervised machine learning models (LDA, 

HDP, and NPLB) to explore the molecular space containing DNA regions obtained from the 

ChIP-seq and the DNase-seq data of the K562 cell line. This study aimed to identify the 

functional relationships between different DNA regions and proteins (i.e., transcription factors) 

rather than discover new molecules. The functional relationship between different DNA 

molecules and transcription factors (TFs) cannot be represented in a mathematical form. 

Therefore, strategies based on unsupervised methods are more suitable for this task. We 

clustered DNA regions into different groups using LDA, HDP, and NPLB. In most cases, it 

was observed that the discovered clusters (modules) represent a group of commonly interacting 

co-binding TFs and some regulatory modules found in the K562 cell line. LDA and HDP also 

identified some regulatory modules from the DNase-seq data without prior information on the 

binding patterns. NPLB showed more robust performance than topic models (LDA and HDP) 

due to its ability to ignore the noise in the data. The unsupervised machine learning approach 
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developed in this study has the potential to identify new regulatory modules and genetic 

determinants of the diseases. 

(iv) Next, we developed an algorithmic strategy to investigate rotational motion in molecular 

machines containing a ring and a track. The molecular space in this work includes different 

configurations of the rotaxane and catenane. The main issue we faced in this work was a lack 

of methodology for quantifying rotational motion (desired property) in molecular machines 

directly from the MD trajectory. For the development, we analyzed the ab initio MD trajectory 

of rotaxane and catenane. We also investigated linear regression, a machine learning algorithm 

for identifying the rotational axis. The algorithm developed here can quantify instantaneous 

and net absolute rotation of the ring in rotaxane, catenane, and systems containing only a ring. 

Extensive verification of the algorithm was carried out using an artificial test system and a 

rotaxane test system. Furthermore, we analyzed the effect of the track, solvent, and counterions 

on the absolute rotation of the ring. It was observed that the ring distorts in the absence of the 

track; the solvent affects the direction of the rotation, and the counterions affect the magnitude 

of the rotation of the ring in a rotaxane system.  

 

Figure 7.1. A representation of the research work presented in the thesis. 

7.2 Future Outlook 

Insights obtained from work presented in this thesis shed light on the critical areas of research 

and are likely to help experimentalists design and discover novel molecules. The developments 

demonstrated in this thesis work would help researchers from various fields, including 

experimentalists, develop machine learning based exploration strategies for their respective 

molecular spaces and applications for scientific discoveries. Machine learning models often 

need a large amount of data that may not be readily available in many scientific domains, 

particularly for new applications. This work demonstrates that it is possible to develop 

reasonably accurate ML models even with small datasets that generalize to unseen datasets. By 

investigating different molecular spaces, we have shown the applicability of both supervised 

and unsupervised learning models in the development of exploration strategies. The desired 
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property guides the exploration through molecular space. However, a methodology to compute 

the desired property is not always readily available. We encountered such a situation during 

the exploration of molecular machines and tried to develop an algorithm for quantifying the 

desired quantity. Although the development was not general, it demonstrates that some 

elements from machine learning models may be useful in algorithmic development. This thesis 

work also demonstrates an attempt to develop combined strategies such as computational-ML 

and algorithmic-ML. 

Given the negative impact of energy generation from fossil fuels on the climate, green and 

efficient battery materials are urgently required for sustainable development. The ML models 

developed for predicting the redox potentials of phenazine derivatives could screen thousands 

of new phenazine derivatives in a short amount of time, which otherwise would require months 

using experimental and computational approaches. The ML models developed here showed 

good generalizability and do not require the computation of expensive molecular features. 

Therefore, one can screen thousands of phenazine derivatives to identify potential candidates 

that can be evaluated further using experimental or computational approaches. Using machine 

learning models as a first step in the screening would avoid the wastage of valuable resources 

on useless molecules.  Thus, the hybrid DFT-ML approach has the potential to accelerate the 

discovery of novel green battery materials for RFBs. It is also possible to extend the range of 

applicable molecular spaces and prediction accuracy by adding molecules containing diverse 

and more functional groups in various solvents. Further reduction in error is possible by adding 

phenazine derivatives with positive redox potential. The hybrid DFT-ML approach 

demonstrated in this work could easily be adopted in other areas for the discovery of novel 

molecules. 

Identifying genetic factors responsible for diseases requires insight into DNA-DNA, DNA-TF, 

and TF-TF interactions. Due to inherent stochasticity in these interactions, insight into them 

needs multiple sources of data or prior information.  The unsupervised models (topic models 

and NPLB) developed in this thesis work would prove valuable in identifying regulatory 

modules directly from the DNase-seq data without prior information. The models also 

identified regulatory modules from ChIP-seq datasets, showing their applicability to other 

datasets.  In particular, NPLB showed more robust performance on ChIP-seq datasets than 

topic models. However, the wider applicability of NPLB requires improvement in its speed. 

These models could also be applied to other cell types and species for identifying regulatory 

modules directly from the DNA regions. A comparative study using these models on diseased 

and normal cells would help identify regulatory elements correlated with disease. 

The algorithm developed for quantifying the rotational motion of the ring would help 

researchers understand rotational dynamics in molecular machines. The insight obtained from 

analyzing the effect of different factors on the rotation of the ring in a rotaxane system would 

help experimentalists design and develop novel molecular machines with desired rotational 

directionality. It was observed that the solvent reverses the direction of rotation of the ring in a 

rotaxane system. So it might be possible to design a molecular machine in which the direction 

of rotation of the ring could be changed by adding or removing the solvent. Similarly, it would 

be possible to control the magnitude of the rotation of the ring by changing the number of 

counterions in the rotaxane system. The developed algorithm does not work for the track, so 
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future work might try to address this issue. It would help quantify the relative rotation of the 

ring with respect to the track, which might be more important in some applications.   
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For thousands of years, scientific discoveries have played a vital role in the progress of human 

civilization. The discovery of new materials or new scientific phenomena, or an improved 

understanding of the known phenomena requires exploration through the space available for a 

given class of molecules (the molecular space).  The typical size of molecular space is estimated 

to be ~1060, which is larger than the number of stars in the observable universe (~1024). 

Conventional experimental, computational, and algorithmic approaches are inefficient in 

exploring this vast molecular space. Furthermore, conventional exploration strategies do not 

take advantage of the large databases available today. On the other hand, machine learning 

(ML) algorithms can extract hidden knowledge from large datasets. They have shown excellent 

predictive accuracies in many fields, surpassing the traditional methods. Thus, ML algorithms 

are promising candidates for developing efficient exploration strategies for the vast molecular 

space.  In this thesis work, we have demonstrated the development of exploration strategies 

using machine learning algorithms for three different molecular spaces. The first molecular 

space investigated in this thesis includes battery materials based on phenazine molecules. We 

have developed an accurate hybrid DFT-ML approach to explore this molecular space. We 

showed that 2D molecular features are most informative in predicting the redox potential of 

phenazine derivatives in DME. We also showed that it is possible to develop reasonably 

accurate machine learning models for complex quantities such as redox potential using small 

and simple datasets. Next, we investigated different unsupervised machine learning algorithms 

to explore the molecular space of DNA and proteins to uncover the interactions between them. 

We have shown that unsupervised machine learning models can discover commonly occurring 

regulatory modules containing interacting and co-binding transcription factors without prior 

information on binding activities. Sometimes, in fundamental research, one may encounter the 

desired property, which cannot be easily computed using existing methodologies. We faced 

this issue during the investigation of molecular machines. Therefore, we developed an 

algorithm for quantifying the desired property (i.e., rotational motion) of the ring in the 

molecular machines. We also investigated linear regression, a machine learning algorithm, 

during the development. The developed algorithm helped us get an insight into different factors 

responsible for the rotational directionality of the ring in the rotaxane system. Thus, this thesis 

work demonstrates the applicability of machine learning and computational tools to the 

development of efficient exploration strategies for molecular space. This work also shows how 

to address different issues one may encounter during the development. Furthermore, the 

specific strategies developed for three molecular spaces are valuable for discovering new 

molecules and new scientific phenomena. For example, the hybrid DFT-ML approach can help 

discover promising phenazine derivatives for green energy storage systems such as RFB. The 

unsupervised machine learning approach developed in this study has the potential to identify 

genetic determinants of diseases. The algorithm developed for quantifying rotation would help 

experimentalists develop novel molecular machines having rotational directionality.  
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Abstract: 

Molecular Machines are ubiquitous in living organisms. They carry out tasks essential 

for survival. Some examples of complex molecular machines found in the living 

organisms are DNA polymerases which is responsible for the DNA replication task, 

ATP synthase, which generates energy, Kinesin which transports molecules inside the 

cell1. There are many other molecular machines which are working tirelessly round the 

clock to keep our body alive. One of their essential characteristics is that these machines 

are generally more efficient than their macroscale counterparts2. Molecular machines 

are capable of performing the complex task at a molecular level, and if we could make 

molecular machines to carry out the task that we desire, we could revolutionise the 

whole health care industry. Many diseases such as cancer could be cured. Owing to 

such a potential, many researchers around the world have been engaged in the synthesis 

of these molecular machines. However, there are many challenges before they could 

successfully synthesise world-changing artificial molecular machines. Nevertheless, 

researchers have found some success in the synthesis of a few simple molecular 

machines. In 2016 Nobel Prize in Chemistry was awarded to Jean-Pierre Sauvage, Sir 

J. Fraser Stoddart and Bernard L. Feringa for the design and synthesis of molecular 

machines1. In the same year, David Leigh group also synthesised autonomous 

chemically fueled molecular motors3. Molecular machines could successfully perform 

these complex functions because their motion is directional. Kinesin could transport 

molecules inside the cell because its motion has a specific direction. Random motion 

cannot carry out this task efficiently. So, any molecular machine be it biological or 

artificial should be directional. In this work, we investigate this important 

property(directionality) of a few artificial molecular machines. We categories 

directionality either as translational or rotational. Translational directionality has been 

shown to exist in these molecules1,3. There have been no reports on rotational 

directionality. Here we discuss, a method which we have developed to calculate the 

rotational directionality in molecular machines. Furthermore, we use rotational 

directionality to calculate the percentage of total kinetic energy present in the system 

as rotational kinetic energy. We call this number Efficiency. 

 



217 

 

References: 

1. https://en.wikipedia.org/wiki/Molecular_machine 

2. (PDF) Molecular Machines. Available from: 

https://www.researchgate.net/publication/8453380_Molecular_Machines [accessed 

Dec 01 2018]. 

3. Leigh D.A. et al., Nature, 2016, 534 , 235 

(ii) Oral Presentation: 

Title: Predicting the Redox Potentials of Phenazine Derivatives using DFT Assisted 

Machine Learning 

Date: 18-11-2021 to 19-11-2021 

Location: 13th European Conference on Computational and Theoretical Chemistry 

organized by European Chemical Society 

Abstract: 

Here, four machine-learning models were employed to predict the redox potentials of 

phenazine derivatives in DME using DFT. A small dataset of 189 phenazine derivatives 

having only one type of functional group per molecule (20 unique groups) was used for 

the training. Models were validated on the external test-set containing new functional 

groups and diverse molecular structures and achieved reasonable accuracies (up to R 

2=0.77). Despite being trained on the molecules with a single type of functional group, 

models were able to predict the redox potentials of derivatives containing multiple and 

different types of functional groups with reasonable accuracy (R2 > 0.6). This type of 

performance for predicting redox potential from such a small and simple dataset of 

phenazine derivatives has never been reported before. Redox Flow Batteries (RFBs) 

are emerging as promising candidates for energy storage systems. However, new green 

and efficient materials are required for their widespread usage. We believe that the 

hybrid DFT-ML approach demonstrated in this report would help in accelerating the 

virtual screening of phenazine derivatives saving computational and experimental 

resources. This approach could potentially identify novel molecules for green energy 

storage systems such as RBF. 
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Abstract: 

Redox Flow Batteries (RFBs) are promising candidates for green and efficient energy 

storage systems. However, Their widespread adoption still needs further investigations 

into cheaper and greener alternative organic redox-active species1,2. In this work, we 

have developed machine-learning models to predict the redox potential of phenazine 

derivatives in DME (dimethoxyethane) solvent using a small dataset of 185 molecules3. 

2D, 3D, and molecular fingerprint features were computed using readily available and 
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Twenty linear and non-linear machine-learning models were investigated in this work. 

These models achieved excellent performance on the unseen data (i.e., R2 > 0.98, MSE 

< 0.008 V2 and MAE < 0.07 V). Model performance was assessed consistently using 

the training and evaluation “pipeline” method developed in this work. We showed that 

2D molecular features were most informative and achieved the best prediction accuracy 

among four feature sets. We also showed that often less preferred but relatively faster 

linear models could perform better than non-linear models when the feature set contains 

different types of features (i.e., 2D, 3D, and molecular fingerprints). Further 

investigations revealed that it is possible to reduce the training and inference time 

without sacrificing prediction accuracy by using a small subset of features. Moreover, 

models were able to predict the previously reported promising redox-active compounds 

with high accuracy. Also, significantly low prediction errors were observed for most 

functional groups. Thus, we believe the results obtained in this report would help in the 

adoption of green energy by accelerating the field of materials discovery for energy 

storage applications. 
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investigations revealed that it is possible to reduce the training and inference time 

without sacrificing prediction accuracy by using a small subset of features. Moreover, 

models were able to predict the previously reported promising redox-active compounds 

with high accuracy. Also, significantly low prediction errors were observed for most 

functional groups. Thus, we believe the results obtained in this report would help in the 

adoption of green energy by accelerating the field of materials discovery for energy 

storage applications. 
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