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Understanding the ML black box with simple
descriptors to predict cluster–adsorbate
interaction energy†

Sheena Agarwal,ab Shweta Mehtaab and Kavita Joshi *ab

Density functional theory (DFT) is currently one of the most accurate and yet practical theories used to

gain insight into the properties of materials. Although successful, the computational cost required is still

the main hurdle even today. In recent years, there has been a trend of combining DFT with Machine

Learning (ML) to reduce the computational cost without compromising accuracy. Finding the right set of

descriptors that are simple to understand in terms of giving insights about the problem at hand, lies at

the heart of any ML problem. In this work, we demonstrate the use of nearest neighbor (NN) distances

as descriptors to predict the interaction energy between the cluster and an adsorbate. The model is

trained over a size range of 5 to 75 atom clusters. When the training and testing is carried out on

mutually exclusive cluster sizes, the mean absolute error (MAE) in predicting the interaction energy is B

0.24 eV. MAE reduces to 0.1 eV when testing and training sets include information from the complete

range. Furthermore, when the same set of descriptors are tested over individual sizes, the MAE further

reduces to B0.05 eV. We bring out the correlation between dispersion in the nearest neighbor

distances and variation in MAE for individual sizes. Our detailed and extensive DFT calculations provide a

rationale as to why nearest neighbor distances work so well. Finally, we also demonstrate the

transferability of the ML model by applying the same recipe of descriptors to systems of different

elements like (Na10), bimetallic systems (Al6Ga6, Li4Sn6, and Au40Cu40) and also different adsorbates

(N2, O2, and CO).

Introduction

Artificial intelligence (AI) has unleashed a new era leading to a
paradigm shift in the fields of science and engineering. And
hence, it is rightly referred to as both the ‘‘fourth paradigm of
science’’1 and the ‘‘fourth industrial revolution’’.2 The increas-
ing application that it is finding in the field of science and
particularly the chemical domain was unimaginable just a few
decades ago. Machine Learning, a subset of AI is growing
rapidly and gaining popularity amongst the scientific community.
With the advent of ML assisted by open access materials property
databases3–5 new doors have opened up. ML is finding application
to a variety of problems like rapid materials discovery, energy
storage, catalysis, hydrogen storage, and many more.6–15

Chemistry, or specifically quantum chemistry, is yet another
field in which we see rapid progresses being made with the
nexus of ML and first principles quantum calculations.16–25

The key to unlock the power that ML holds, is in finding the
right set of descriptors for any model. Better the description of
the problem at hand, better the learning and predictive capacity
of any ML algorithm. And hence, the search of accurate
descriptors is still an active area of research.26–29 The developed
set of features then find varied applications like finding simi-
larity between two structures,30,31 finding the structure–activity
relation for various systems,32–34 screening the chemical space
to discover novel materials of desired properties7,8 or even
predict properties for a given material.9–12 In a study by Hansen
et al., they outlined a number of established machine learning
techniques and investigated the influence of the molecular repre-
sentation on the ML method’s performance. The best methods
achieve prediction errors of 3 kcal mol�1 (0.13 eV) for the atomiza-
tion energies of a wide variety of molecules.35 An issue that arises
during this is the interpretability of the chosen set of descriptors.
If the descriptors that work excellently for any ML algorithm do not
translate in terms of the scientific insights of the problem, then its
transferability becomes restricted.36 It limits the use of ML models
to a computational black-box.

In this work, we aim at dealing with this question on gaining
insights about the problem at hand by choosing the right set of
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descriptors to describe the system. We train our ML model on
various recipes for correct description of the system and under-
stand systematically as to why a particular set of descriptors
perform well. We study the interaction of an H atom as an
adsorbate with Aln clusters in the size range of 5–75 (n = 5 to
20 and 25, 36, 47, 55, 67, 74, 75). Owing to the high surface area
and hence enhanced catalytic activity, clusters have always been
of immense interest for catalysis.37–44 Also in this size regime
where every atom counts, addition or removal of just one atom
dramatically changes its properties.40,41,45–56 Thus, it becomes
very difficult to highlight general trends in this size range. And
hence, to model the interaction of clusters with an incoming
adsorbate, all possible adsorption sites for all the clusters must
be scanned, which in turn leads to a prohibitively large number
of DFT calculations. To overcome this problem, we have used
data driven algorithms of ML to predict the site specific inter-
action energies for Aln clusters. Resorting to ML for discovering
correlations between geometric structure and catalytic activities57,58

of metal surfaces as well as nanoparticles59 is becoming more
common. Recently, an ML scheme was proposed to understand the
catalytic activities based on local atomic configurations and applied
to study direct NO decomposition on RhAu alloy nanoparticles.60

A local structural similarity kernel known as a smooth overlap of
atomic positions (SOAP) was used to find similarities between two
geometries based on structural descriptors. Gasper et al. used the
gradient-boosting algorithm, for the prediction of CO adsorption
energies on Pt clusters.61 They built predictive models of site-
specific adsorbate binding on realistic, low-symmetry nanostruc-
tures, with MAE B 0.1 eV (with respect to DFT). Descriptors used
during the training of the ML model in this study comprised of
d-band center energy, s and p band center energies, Bader charges,
generalized coordination number, etc. With the intention of cap-
turing the cluster adsorbate interaction, we developed a method of
simple descriptors that throws light on the cluster chemistry. The
use of descriptors like the Coulomb Matrix (CM),62 Smooth Overlap
of Atomic Positions (SOAP),63 Atom Centered Symmetry Function
(ACSF) and so on is seen in problems of finding structural
similarities. These functions, while they describe the structure to
a very reasonable extent, are limited to local environments.

In the present work, we propose nearest neighbor distances
as descriptors to predict the interaction energy between a
cluster and an adsorbate. Although the model is trained on Al
clusters in the present work, it is demonstrated to work for any
homogeneous (Na10) as well as heterogeneous clusters (Al6Ga6,
Li4Sn6, Au40Cu40). Furthermore, we also demonstrate a one to
one correlation between dispersion in the NN distances and
variation of MAE for individual clusters. Finally, the rationale as
to why NN distances work so well for predicting the interaction
energy is brought out by our DFT calculations.

Computational details

We have computed the interaction energy of various atoms like
H, N and molecules like N2, O2, and CO with Aln clusters in
the size range of 5–75 (n = 5 to 20 and 25, 36, 47, 55, 67, 75).

Also, the interaction of a H atom with a cluster of another
element like Na10 and bimetallic clusters like Al6Ga6, Li4Sn6,
and Au40Cu40 were computed. All these resulted into about
18 000 single point calculations. The adsorbates were placed at
the on-top position of all the surface sites (i.e., surface atoms)
for the selected clusters in this size range. The GS geometries
for all the clusters were taken from previously reported
work.64–67 As shown in Fig. 1, the adsorbate was kept along
the outward radial vector from the center of mass of the cluster
to the surface atom. The distance of the adsorbate was varied
between 1.30 Å to 3.00 Å from the surface site. All the calcula-
tions were carried out within the Kohn–Sham formulation
of DFT. Projector Augmented Wave potential68,69 was used,
with Perdew–Burke–Ehrzenhof (PBE)70 approximation for
the exchange–correlation and generalized gradient71 approxi-
mation, as implemented in planewave, pseudopotential based
code, VASP.72–74 Cubic simulation cell, with the image in each
direction separated by at least 15 Å of vacuum, was used.
An energy convergence criteria of 10�4 eV was used for SCF
calculations. Interaction energy between the cluster and adsor-
bate was calculated using the formula:

EI.E. = Esystem � (Ecluster + Eadsorbate)

where Esystem is the energy of the cluster + adsorbate system,
Ecluster is the energy of the bare cluster and Eadsorbate is the
energy of the bare adsorbate. The same value of vacuum was
used for all the clusters so all the parameters are consistent
throughout for all the sizes to avoid any shift in energies.

Data collected from the DFT calculations was then used to
train an ML model. We used the Gradient Boosting Regression

Fig. 1 Schematic showing the radial vector along which the adsorbate
was placed. Al6 cluster is shown with a center of mass marked at the
center. The adsorbate is placed along the radial vector pointing outwards
from the center of mass to the surface atom. Distance between the
adsorbate and surface atom is varied from 1.30 Å to 3.00 Å.
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(GBR) algorithm as implemented in the scikit-learn python
package.75 The GBR was selected after comparing it against
five other regression algorithms viz. Linear Regression, Ridge
Regression, LASSO, Artificial Neural Networks, and Stochastic
Gradient Descent (SGD). GBR is a regression technique that
uses decision tree based classifiers as weak learners. The tree-
based models finally develop into a sequence of trees with the
right choice of descriptors positioned correctly at different
nodes. The relative importance of the descriptors that we arrive
at finally is the model that the algorithm has developed to
further test the unseen data. This model basically predicts the
interaction energy for newer data points with the proposed
descriptor ranking at the end of training. Architecture of the
GBR is explained in detail in the ML section of the ESI.†
Furthermore, we used the mean squared error function as
our loss function (i.e., the objective function to be optimized).
Tree-based algorithms need to be tuned for the best values of
various hyper parameters. An exhaustive grid search was carried
out to find the best parameter values of an estimator. The tuned
hyper parameters were: n_estimators, max_depth, min_sam-
ples_split, loss, learning_rate. Different train-test splits viz.
60–40, 75–25, and 80–20 were tested. Finally, the train and test
datasets were split in 75–25 percentage. To avoid bias, random
shuffling of the complete data set before the train-test split
were performed. This exercise was repeated for 50 randomly
generated seeds for shuffling. 5-Fold cross validation was
performed to test the accuracy of the model. MAE was used
as the scoring parameter during cross validation. Multiple
checks like plotting the validation curve and learning curves
(see Fig. 2) were used to ensure that the model did not overfit
the data. We can see from the Learning curve that both training
score and cross validation score reach a point of stability and
hence do not represent over fitting. However, after 400 points,
there is a minimal decrease in the train score while the cross
validation score continues to saturate. And hence, in general,
400 data points would be sufficient to train this model. Finally,
feature ranking was plotted to understand the relative impor-
tance for a chosen set of descriptors, which as explained later

translates in terms of physical understanding of the problem.
MAE for the test set is reported throughout the work to under-
stand the ML results in comparison with DFT.

Results and discussion

Choosing the right set of descriptors lies at the heart of any
Machine Learning problem. Structural properties like size of
the cluster, structural arrangement of atoms within a cluster,
orientation of approaching adsorbate, etc. play a role in govern-
ing the interaction of the cluster with an incoming adsorbate.
The set of descriptors used were based on the atomic arrange-
ment of atoms within the cluster and properties of the cluster
as a whole. Descriptors like the number of surface atoms (SA),
number of unique adsorption sites on the surface (UAS), and
coordination number (CN) would vary with changing cluster
sizes. SA gives information about the overall shape of the
cluster. A cluster which is elongated would have a greater
fraction of atoms on the surface than one which is spherical.
The number of unique adsorption sites on the surface would
provide information about the symmetry of the cluster.
A symmetrical cluster like Al13 has only 2 inequivalent sites
on the surface whereas that of Al12 has 7 inequivalent sites on
the surface. Thus UAS brings out the symmetry within the
cluster. On the other hand, coordination number is a site
specific descriptor. Similarly, descriptors like the nearest neigh-
bor distances would provide information regarding the specific
adsorption site. We used the distances of the first 5 nearest
neighbors from the adsorption site as descriptors (nn1 to nn5)
while training ML model for all 23 cluster sizes. The size
specific descriptors like size, SA, and UAS provide information
about the cluster whereas the nearest neighbor distances
provide information about the specific site within the cluster.
These descriptors were the ones that did not require any
expensive calculations but were calculated from the geometry
of the clusters. The ML model was applied to Aln clusters for
combinations of these descriptors. In Fig. 3, the feature ranking
for all the geometric descriptors discussed above is shown.
To avoid any kind of bias, the model was tested for 50 random
test-train splits. Each time the feature ranking was noted.
Values of 50 trials were divided in 4 quartiles centered at the
median. The error bars represent the variation in the feature
ranking values of each feature over 50 trials in the 1st and 4th
quartile. We see that nn1 (the distance between the adsorbate
and nearest atom in the cluster) has the highest importance
followed by another adsorption site specific descriptor CN. The
remaining size specific descriptors like the UAS, size and SA
rank higher than the farther neighbor distances. Hence, we see
a mixture of both site as well as size specific descriptors
ranking highly. For the 23 clusters in this size range, it can
be seen that using the geometric set of descriptors, the model
performed well with MAE B 0.10 eV (Fig. 4(a)). To examine the
effect of changing atomic environment on the interaction
energy, we further used only interatomic distances that essentially
capture the site specific variations in atomic arrangements.

Fig. 2 Learning curve plotted with training score and cross validation
score as model verification against over fitting.
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The ML model was trained on only the nearest neighbor (nn1 to
nn5) distances as descriptors along with size. We report that
though the accuracy of the model goes down to MAE B 0.12 eV,
the increase in errors is not substantial (Fig. 4(b)). And hence, our
model does work to predict the site specific interaction between
adsorbate and atoms for clusters over a size range with an MAE of
0.10 eV. Now, to test the model for size specific interaction, the
model was further trained on data points for cluster sizes from
5 to 20 except for a few on which it was then tested. Every time
model performed well giving out an MAE in the range of
B0.23–0.26 eV. The same exercise when repeated with only the
nearest neighbor distances as descriptors along with size, giving
an error in the range of 0.24–0.28 eV. This result is particularly
important as it demonstrates that computation of interaction
energies with DFT could be completely bypassed with reason-
able accuracy. All these experiments also point at the fasci-
nating possibility of unfolding questions related to size or even
site specific cluster chemistry by understanding the atomic

arrangement of atoms. And hence, to understand the role that
NN distances are playing we perform studies on individual cluster
sizes with varying distance information. Cases of both small and
large cluster sizes are shown in Tables 1 and 2, respectively. The
reported cases for larger clusters are a balanced mixture of
ordered and disordered clusters.

A trend of reducing prediction errors with increasing system
representation was seen for all smaller (N o 20) clusters that we
have studied. For any surface site of an N atom cluster, there
will be N � 1 distances as descriptors. The model was trained
each time by gradually including more descriptors i.e. distances.
In Table 1 we list the variation in MAE as a function of increasing
number of descriptors for smaller cluster sizes. The variation in
MAE is correlated with interatomic distances from the H atom.
We will discuss this further by closely analyzing the specific case
of Al13. In Fig. 5(a) we have plotted MAE as a function of the
number of descriptors (number of nn distances between the
adsorbate and atoms within the cluster) used to fit the model
for predicting interaction energies for Al13 on the y1 axis. We have
also simultaneously plotted the nearest neighbor distribution for
all surface sites of the Al13 cluster on the y2 axis. We observe that
all 12 surface atoms of the Al13 cluster follow only two distance
distributions, indicating that there are only two types of unique
atoms (in terms of neighbor distance environment) in this cluster.
The difference between these two types of atoms in their nearest
neighbor distribution is picked up in the ML model. And hence
we observed improvement in MAE at distances where these two
groups differ from each other, i.e., MAE reduced from 0.13 eV to
0.08 eV with descriptors up to nn4 versus nn5. A similar jump
(decrease) in MAE was observed when nn8 was also included, as
shown in Table 1; nn8 is the point at which the two classes further
separated. In Fig. 5(b) ML predicted energies for Al13 are plotted
against DFT calculated energies. The MAE in this specific case is
0.02 eV. The relation of MAE as a function of neighbor distances
was seen for other clusters too. A plot for a few representative
cases like Al5, Al7, and Al9 are shown in Fig. SI1 (ESI†). It must be
noted, that since we were dealing with fixed geometries, our

Fig. 4 ML predicted values are plotted against DFT calculated energies. In both the cases, the MAE is computed for the test set. The inset plot shows the
feature ranking. (a) When all geometric descriptors were used and an MAE of 0.10 eV is reported. (b) When only the nearest neighbor distances and size of
the cluster were used as descriptors. MAE of 0.12 eV is reported.

Fig. 3 Feature ranking plots for 23 clusters averaged over 50 trials. It is
interesting to note that the first two features (nn1 and CN) are site specific
features.
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descriptors did not violate any of the invariance (rotation,
reflection, translation and atom indexing) that any set of ML
descriptors are supposed to maintain. Overall, we report that the
chosen set of descriptors indeed work well to predict the site as
well as size specific interaction of the adsorbate with clusters.

While the correlation between nearest neighbor and varia-
tion in MAE is strikingly evident and easy to capture in smaller
clusters, as can be seen from the MAE as a function of
descriptors (shown in Table 2), it is not very easy to capture
for larger cluster sizes. It was observed that the variation in

MAE did not follow any regular trends when descriptors up to
nn10 versus all distances (nn 100%) were used. For example, in
the case of Al36 and Al75, reduction in MAE was more than 25%
for each of them when MAE with nn10 is compared to that of
nn 100% (shown in Table 2). It must be noted that Al36 and Al75

are highly symmetric clusters. Whereas for asymmetric clusters
like Al25, Al55, and Al67, the reduction in errors were less than
5% as evident from Table 2. However, for other asymmetric
clusters, Al42 and Al74, the reduction is much larger, i.e. about
20% and 15%, respectively, which is similar to that of

Table 1 Mean absolute errors (MAE) as a function of descriptors (interatomic distances (nn)) are shown in the table for various clusters. As seen from the
table, increasing representation of the system results in improved accuracy. The overall error is 0.05 eV

Cluster
MAE as a function of (nearest neighbors as) descriptors

size nn2 nn3 nn4 nn5 nn6 nn7 nn8 nn9 nn10 nn11 nn12 nn13

5 0.085 0.084 0.050 0.050
6 0.034 0.035 0.035 0.034 0.032
7 0.179 0.180 0.178 0.059 0.051 0.051
8 0.057 0.038 0.035 0.029 0.028 0.028 0.028
9 0.226 0.228 0.219 0.133 0.127 0.122 0.055 0.054
10 0.051 0.053 0.051 0.052 0.051 0.044 0.043 0.043 0.044
11 0.281 0.268 0.194 0.169 0.114 0.096 0.096 0.079 0.060 0.060
12 0.081 0.069 0.067 0.063 0.055 0.041 0.041 0.039 0.038 0.038 0.032
13 0.131 0.132 0.130 0.082 0.083 0.086 0.026 0.026 0.026 0.025 0.024 0.021

Table 2 Mean absolute errors (MAE) as a function of descriptors (interatomic distances (nn)) are shown in the table for larger clusters. The last three
columns present 25%, 50%, and 100% of the system representation respectively. The numbers in the brackets indicate the number of interatomic
distances used to predict the interaction energy

Cluster
MAE as a function of nearest neighbors as descriptors

size nn2 nn3 nn4 nn5 nn10 nn 25% nn 50% nn 100%

25 0.137 0.111 0.113 0.107 0.071 0.095(6) 0.067(13) 0.068(24)
36 0.063 0.050 0.054 0.056 0.044 0.045(9) 0.044(18) 0.030 (35)
42 0.083 0.084 0.077 0.074 0.076 0.076(11) 0.069(21) 0.059(41)
55 0.125 0.110 0.104 0.100 0.090 0.090(14) 0.088(28) 0.086(54)
67 0.083 0.077 0.072 0.066 0.048 0.048(17) 0.045(35) 0.049(66)
74 0.103 0.073 0.068 0.065 0.061 0.060 (18) 0.059(36) 0.052(73)
75 0.119 0.125 0.100 0.081 0.081 0.080 (18) 0.071(37) 0.060(74)

Fig. 5 (a) The decrease of errors (MAE) with increasing number of descriptors for the Al13 cluster plotted on the y1 axis. The distance between H atom
and surface atoms is used as descriptors which is plotted on the y2 axis. When the two groups in Al13 are distinguished in the NN distribution, the error
reduces. (b) Shows the ML predicted energies for Al13 plotted against the DFT calculated energies. MAE are computed over the test set.
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symmetric clusters. Thus, generalization of results becomes
difficult for larger clusters. Nonetheless, even for larger clusters,
the one to one correlation between reduction in MAE and
increasing system representation still holds. The overall MAE
reported in our work is E0.05 eV whereas just including the first
five nn distances reduces MAE to E0.1 for all the sizes.

To understand the ML results better, let’s have a careful look
at the DFT calculations. We observe that the interaction energy
for any adsorption site in a cluster is directly related to its
NN distance distribution. All atoms having identical nearest
neighbor distribution within a cluster, interact identically with
the incoming adsorbate. To elaborate this point further, in
Fig. 6 we show the interaction energies for all the atoms within
a cluster for Al13 and Al12 along with their nearest neighbor
distribution (or interatomic distances) in the inset. Similar
quantities are plotted for a few representative clusters in
Fig. SI2 (ESI†). In the case of Al13 (see inset of Fig. 6a) all the
surface atoms could be grouped into two classes based on their
respective interatomic distances, indicating that an incoming
adsorbate would experience only two different environments.
Furthermore, when the interaction energy of these surface
atoms with an H atom (as adsorbate) was computed, it was
observed that atoms belonging to one class interact identically
with the adsorbate, resulting in an identical interaction energy
as shown in Fig. 6(a). As expected this is true for all the clusters
that we have studied and for some of the larger clusters,
as shown in Fig. SI2 (ESI†). And hence, when we provide
information of NN distances wherein the two environments
are separated (i.e., at nn4 and then further at nn7) we corre-
spondingly see a better performance of the ML model. While
modeling the interaction of clusters with the adsorbate the
(dis)similarity between the two adsorption sites had to be
captured. And hence, the nearest neighbor distribution as seen
by the adsorbate is a logical choice of descriptors.

Since the line of search for all the results discussed above
was restricted along the radial vector, to model a real situation
wherein an adsorbate can approach the cluster from any

direction, all possible directions had to be scanned. The one
to one correlation between identical sites and identical inter-
action would be difficult to quantify for this situation, as now
the adsorbate was not placed only at on-top sites. Nonetheless,
the same recipe of descriptors was still legitimate as the
distances taken were from the adsorbate to the atoms. And
so, the same set of descriptors would capture the change in
chemical environment as seen by an incoming adsorbate.
To validate this, we computed the interaction energy of the
H atom for these randomly selected 800 points on a sphere that
enclosed the Al13 cluster at its center (see Fig. 7(c)). Fig. 7(a and b)
show PES as experienced by an incoming adsorbate computed
using DFT and our trained ML model. The distance of H atom
from the closest surface site of the cluster varies between 1.60 Å to
2.69 Å. This result is particularly important because through this
we could predict the interaction energy of the cluster–adsorbate
system at any point with MAE as low as 0.04 eV. We further plot
the difference between the ML predicted vs DFT computed PES in
Fig. 7(d). As can be seen, most of the area on the contour plot
show errors between �0.05 to 0.05. The maximum difference in
error prediction is 0.13 eV whereas the minimum difference is
0.0001 eV. The success of the ML model, in this case, is a proof of
concept that the nearest neighbor distances are the correct choice
of descriptors. It is important to note that the potential energy
surface that we have predicted is the PES of an adsorbate when it
is in the vicinity of the cluster. In other words, if the adsorbate is
moved on the cluster surface, what kind of interaction it will
experience as a function of its position with respect to the cluster,
could be understood from the shown PES.

To further validate our model, we tested it on other clusters
like Na10, Al6Ga6, Li4Sn6, and Au40Cu40. To demonstrate the
universality of our work, calculations performed with different
adsorbing species on Al clusters are also noted below. When a
single N atom was placed at the on-top positions on the Al13

cluster, the MAE for the interaction energy from the ML model
was 0.06 eV, i.e., in the same range as our previous results. The
model showed transferability when trained on Al13 with two

Fig. 6 Distance dependent interaction energy of all surface atoms for (a) Al13 and (b) Al12 clusters. Atoms with identical nearest neighbor distributions
also exhibited an identical interaction energy pattern towards an H atom. The inset figure shows variation in the interatomic distances as a function of
nearest neighbors for all surface atoms of these clusters.
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adsorbates viz. H and N together. The resulting error in
interaction energy turned out to be MAE E 0.04 eV. We also
tested the validity of our ML model on bimetallic clusters
Al6Ga6, Li4Sn6, and Au40Cu40. MAE in the Interaction Energy
for an H atom when placed on top of the Al6Ga6 cluster turned
out to be 0.09 eV. This error was obtained based on only
structural representation of the cluster. With the inclusion of
nuclear charge/ionic radii/van der Waals radii of both the
elements of the cluster, viz. Al and Ga, in the descriptor set,
the MAE got down to 0.058 eV. Furthermore, the same set of
nearest neighbor distances along with atomic charge of the
nearest neighbor when used as descriptors for Li4Sn6 and
Au40Cu40, the MAE in Interaction Energy were noted to be
0.09 eV and 0.08 eV, respectively. The reason for choosing these
clusters in particular was to test the model on heterogeneous
clusters of two kinds; one with elements from different groups
of the periodic table (Li4Sn6) and the other for a larger size
(Au40Cu40). As can be seen in both the cases, the developed
set of descriptors worked well. For an interaction energy
between the H atom (sphere calculations) and a highly asym-
metric Na10 cluster, our ML model with the same recipe of
descriptors predicted the IE with MAE E 0.038 eV. The errors
for the prediction of IE using the same ML model when

molecules like N2, O2, and CO were adsorbed around the
Al12 on a sphere, turned out to be, 0.045 eV, 0.049 eV, and
0.042 eV, respectively. Finally, our descriptors were transfer-
able when trained over different adsorbing molecules as well.
To prove this, we tested the model for adsorption energy
prediction of N2, O2 and CO molecules together yielding an
error of 0.05 eV.

In a nutshell, we understand the role of the nearest neighbor
distances as effective descriptors to capture the interaction
energy trends for not only clusters of different sizes but also
for different elements. The developed set of descriptors were
successful in bringing out the correlation between the IE and
the nearest neighbor distances. The same was realized when
the DFT results were closely analyzed. The current work
demonstrates the usefulness of an ML model to develop a
deeper understanding of the physical phenomena under inves-
tigation by means of simple descriptors. Transferability of our
descriptors is another indicator of its effectiveness. Transfer-
ability with respect to size of the cluster, clusters of different
elements, homogeneous as well as heterogeneous, and differ-
ent adsorbing species was demonstrated to an extent through
our detailed investigations. This transferability is particularly
important as it explains the importance of developed descriptors

Fig. 7 (a) PES computed through DFT calculations. (b) ML generated PES. (c) Cartoon of Al13 cluster and points selected on a sphere to compute the
interaction of the adsorbate with the cluster. (d) Difference between PES computed with DFT and ML predicted PES. It is evident that our model has
picked up the variation in PES quite successfully.
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to understand various interactions between any cluster–adsorbate
system in general. However, our model is limited by the
cluster geometry under investigation. Also, for the molecular
adsorbate, many complexities are not considered like various
orientations of the adsorbate with respect to the site of
adsorption. Similarly, for a bimetallic cluster, the current
model can be improved further by introducing more descriptors
depicting relative atomic arrangements with better accuracy.
Nonetheless, the present work illustrates the simplicity of the
developed descriptors which can be further improved to compre-
hend much more complex cluster–adsorbate interactions.

Conclusion

In this work we demonstrate the use of interatomic distances as
descriptors to capture the cluster adsorbate interaction in Aln

clusters. Our recipe of descriptors works well when applied to
23 clusters across the size range to predict the site specific
interaction with MAE E 0.10 eV. It also performs well to predict
the size specific interaction when testing and training sets were
mutually exclusive, demonstrating that DFT could be comple-
tely bypassed. When the model is trained on the clusters in the
size range of 5 to 20 and tested on one of the sizes in between
the range (totally absent in the train set), the resulting MAE was
E0.024 eV. This demonstrates the transferability of our ML
model to different cluster sizes within the range on which it is
trained. The chosen set of descriptors further brings down the
error to MAE E 0.05 eV when used on individual sizes.
We further demonstrate the transferability of the model by
applying it to clusters of different elements like Na10 and
bimetallic clusters like Al6Ga6, Li4Sn6, and Au40Cu40 with
MAE of 0.04 eV, 0.06 eV, 0.08 eV, and 0.09 eV, respectively.
The model also worked for interaction energy studies between
the Al12 cluster and various molecules as an adsorbate with an
MAE of 0.04 eV. The transferability of our model, both with
respect to size and different elements, leads to a direction
wherein the computational cost involved due to DFT calculations
can be reduced greatly. Finally, a careful examination of the
interatomic distances reveals a one to one correlation between
the nearest neighbor distribution and corresponding interaction
energy curves. This one to one correlation indeed provides the
rationale as to why our descriptors perform so well.
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33 M. O. Jäger, E. V. Morooka, F. F. Canova, L. Himanen and
A. S. Foster, npj Comput. Mater., 2018, 4, 37.

34 F. Musil, S. De, J. Yang, J. E. Campbell, G. M. Day and
M. Ceriotti, Chem. Sci., 2018, 9, 1289–1300.

35 K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp,
M. Scheffler, O. A. von Lilienfeld, A. Tkatchenko and
K.-R. Müller, J. Chem. Theory Comput., 2013, 9, 3404–3419.

36 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and
A. Walsh, Nature, 2018, 559, 547.

37 U. Heiz, F. Vanolli, A. Sanchez and W.-D. Schneider, J. Am.
Chem. Soc., 1998, 120, 9668–9671.

38 W. T. Wallace and R. L. Whetten, J. Phys. Chem. B, 2000, 104,
10964–10968.

39 B. Cao, A. K. Starace, O. H. Judd and M. F. Jarrold, J. Am.
Chem. Soc., 2009, 131, 2446–2447.

40 P. J. Roach, W. H. Woodward, A. Castleman, A. C. Reber and
S. N. Khanna, Science, 2009, 323, 492–495.

41 A. C. Reber, S. N. Khanna, P. J. Roach, W. H. Woodward and
A. Castleman Jr, J. Phys. Chem. A, 2010, 114, 6071–6081.

42 B. S. Kulkarni, S. Krishnamurty and S. Pal, J. Phys. Chem. C,
2011, 115, 14615–14623.

43 S. Yin and E. R. Bernstein, Int. J. Mass Spectrom., 2012, 321,
49–65.

44 Z. Luo, A. Castleman Jr and S. N. Khanna, Chem. Rev., 2016,
116, 14456–14492.

45 M. Schmidt, R. Kusche, B. von Issendorff and H. Haberland,
Nature, 1998, 393, 238.

46 G. A. Breaux, D. A. Hillman, C. M. Neal, R. C. Benirschke
and M. F. Jarrold, J. Am. Chem. Soc., 2004, 126, 8628.

47 K. Joshi, S. Krishnamurty and D. Kanhere, Phys. Rev. Lett.,
2006, 96, 135703.

48 R. S. Berry and B. M. Smirnov, Phys. Rep., 2013, 527,
205–250.

49 A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. A: At., Mol.,
Opt. Phys., 1999, 60, 1235.

50 A. Argo, J. Odzak, F. Lai and B. Gates, Nature, 2002, 415, 623–626.
51 Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, Science,

2003, 301, 935–938.
52 C. T. Campbell, Science, 2004, 306, 234–235.
53 M. Chen and D. Goodman, Science, 2004, 306, 252–255.
54 C. Lemire, R. Meyer, S. Shaikhutdinov and H.-J. Freund,

Angew. Chem., Int. Ed., 2004, 43, 118–121.
55 J. Wei and E. Iglesia, J. Phys. Chem. B, 2004, 108, 4094–4103.
56 S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A.

Curtiss, G. A. Ballentine, J. W. Elam, S. Catillon-Mucherie,
P. C. Redfern, F. Mehmood and P. Zapol, Nat. Mater., 2009,
8, 213–216.

57 H. Li, Z. Zhang and Z. Liu, Catalysts, 2017, 7, 306.
58 J. R. Kitchin, Nat. Catal., 2018, 1, 230.
59 A. N. Andriotis, G. Mpourmpakis, S. Broderick, K. Rajan,

S. Datta, M. Sunkara and M. Menon, J. Chem. Phys., 2014,
140, 094705.

60 R. Jinnouchi and R. Asahi, J. Phys. Chem. Lett., 2017, 8,
4279–4283.

61 R. Gasper, H. Shi and A. Ramasubramaniam, J. Phys. Chem. C,
2017, 121, 5612–5619.

62 M. Rupp, A. Tkatchenko, K.-R. Müller and O. A. Von Lilien-
feld, Phys. Rev. Lett., 2012, 108, 058301.
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