Studies on the Enantioselective Total Synthesis of Diarylheptanoid and Furylhydroquinone-Derived Natural Products, and Eugenol Derivatives as

Potential Antidiabetic Agents
by

Priyanka Kataria

10CC16J26018
A thesis submitted to the
Academy of Scientific \& Innovative Research
For the Award of the Degree of
DOCTOR OF PHILOSOPHY
in
SCIENCE
Under the supervision of
Dr. Ravindar Kontham

CSIR- National Chemical Laboratory, Pune

$$
A C S^{3 /} R
$$

Academy of Scientific and Innovative Research
AcSIR Headquarters, CSIR-HRDC campus
Sector 19, Kamla Nehru Nagar,
Ghaziabad, U.P. - 201 002, India
December-2022

Certificate

This is to certify that the work incorporated in this Ph.D. thesis entitled, "Studies on the Enantioselective Total Synthesis of Diarylheptanoid and Furylhydroquinone-Derived Natural Products, and Eugenol Derivatives as Potential Antidiabetic Agents", submitted by Ms. Priyanka Kataria to the Academy of Scientific and Innovative Research (AcSIR), in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Science, embodies original research work carried-out by the student. We, further certify that this work has not been submitted to any other University or Institution in part or full for the award of any degree or diploma. Research material(s) obtained from other source(s) and used in this research work has/have been duly acknowledged in the thesis. Image(s), illustration(s), figure(s), table(s) etc., used in the thesis from other source(s), have also been duly cited and acknowledged.

Ms. Priyanka Kataria
Research Student
Dr. Ravindar Kontham
Research Supervisor
Date: 07-12-2022
Date: 07-12-2022

STATEMENTS OF ACADEMIC INTEGRITY

I Ms. Priyanka Kataria, a Ph.D. student of the Academy of Scientific and Innovative Research (AcSIR) with Registration No. 10CC16J26018 hereby undertake that, the thesis entitled "Studies on the Enantioselective Total Synthesis of Diarylheptanoid and Furylhydroquinone-Derived Natural Products, and Eugenol Derivatives as Potential Antidiabetic Agents" has been prepared by me and that the document reports original work carried out by me and is free of any plagiarism in compliance with the UGC Regulations on "Promotion of Academic Integrity and Prevention of Plagiarism in Higher Educational Institutions (2018)" and the CSIR Guidelines for "Ethics in Research and in Governance (2020)".

Signature of the Student
Date: 07-12-2022
Place: Pune, India

It is hereby certified that the work done by the student, under my/our supervision, is plagiarism-free in accordance with the UGC Regulations on "Promotion of Academic Integrity and Prevention of Plagiarism in Higher Educational Institutions (2018)" and the CSIR Guidelines for "Ethics in Research and in Governance (2020)".

Signature of the Supervisor
Name : Dr. Ravindar Kontham
Date: 07-12-2022
Place: Pune, Inida

This dissertation is dedicated to

- My beloued family nembers-

Whose constant love, trust, and
support helped me to neach this stage of
may life

Contents

Acknowledgement: i
Abbreviations: iii
General remarks: vii
Synopsis: viii
Chapter-1
Enantioselective Total Synthesis of Diarylheptanoid ent-Rhoiptelol B (des-Hydroxy Hedycoropyran B)
Section A:
1.1 Introduction 2
1.1.3 Previous approaches 13
Section B:
1.2 Present work 23
1.4 Experimental Section. 33
1.5 References 65
1.6 Spectra 73
Chapter-2
Development of a Facile Synthetic Strategy for Substituted Furans from Keto-Oxetanes Using Bi(III) Catalysis: Application to Unified Total Synthesis of Furylhydroquinone-Derived Natural Products Shikonofuran J, D, E and C
Section A:
2.1 Introduction 134
2.1.1 Previous approaches 142
Section B
2.2 Present work 148
2.4 Experimental Section 165
2.5 References 206
2.6 Spectra 213
Chapter-3
Design, Synthesis, and Biological Evaluation of Eugenol Derivatives as Potential Antidiabetic Agents
Section A:
3.1 Introduction 330
3.1.1 Previous approaches 338
Section B:
3.2.1 Present work 342
3.2.9 Experimental Section 348
3.2.10 References 381
3.3 Spectra 386
Abstract for indexing 429
List of Publications and Patents 430
List of posters 431
Copy of SCI Publications 434
Erratum 455

Many people have been acquainted with, accompanied, and supported me during my research. My thesis allows me to express my deepest gratitude to everyone directly or indirectly involved in this beautiful journey of my Ph.D. at CSIR-NCL.

First and foremost, it is my great privilege to express my most profound gratitude to my teacher and research supervisor, Dr. Ravindar Kontham, for allowing me to do my Ph.D. and for his excellent guidance, constant encouragement, valuable suggestions and constructive criticism during my doctoral research. His timely advice, meticulous scrutiny of my research outcomes and scientific approach has helped me to a very great extent in solving every hurdle in my research. I am incredibly blessed to have an advisor who educated me in chemistry, taught me discipline, and showed me unique ways to achieve my goals. I sincerely acknowledge his freedom in the laboratory for the independent thinking, planning, and execution of the research. The better way of thanking him would be through my future contribution to the scientific community. Words are not enough to express my gratitude toward him.

I express my sincere thanks to my DAC members, Dr. K. Selvaraj, Dr. M. Muthukrishanan and Dr. Udaya Kiran Marelli, for their continued support, guidance and suggestions. I am grateful to Dr. Asish Lele, Director, NCL, and Prof. Dr. Ashwini Kumar Nangia. (Former Directors, NCL), Dr. C. V. Ramana, Head, Division of Organic Chemistry, Dr. N. P. Argade, Dr. S. P. Chavan and Dr. P. K. Tripathi, (Former HoDs, Division of Organic Chemistry) for providing me an opportunity to work at prestigious institute and for providing all the research amenities necessary to carry out this work.

I gratefully acknowledge CSIR-UGC, New Delhi for providing financial assistance to carry out doctoral research. My sincere thanks to Dr. D. S. Reddy, Dr. C. V. Ramana, Dr. A. Bhattacharya, Dr. S. B. Mhaske, Dr. B. Senthilkumar, Dr. P. Maity, all other scientists of CSIR-NCL for their constant motivation and support, Mr. P. K. Mane, Mr. D. Sadaphule, Dr. S. Borikar \& Mr. U. Katamkar from OCD for technical support.

I would like to extend my thanks to central NMR facility team members, Dr. Udaya, Pramod, Dinesh, Satish, Deepali, Minakshi, Abha for their timely help for recording NMR spectra, Dr. Moneesha Fernandes, Dr. Aatish and Dr. Manisha for helping me to provide ECD spectroscopy facility and Dr. B. Shantakumari, Bhushan, Ganesh, Nilam for HRMS facility. I express my heartiest gratitude towards my collaborators Dr. Sachin B. Agawane,

Dr. Ashok P. Giri and Dr. Mahesh Kulkarni, Ms. Mona, Mr. Kaustubh, Mr. Dhananjay and Ms. Ojasvi for biochemical studies.

I am pleased to thank all my lab mates Dr. Rajesh, Dr. Digamber, Dr. Sagar, Madhukar, Dr. Balasaheb, Ashwini, Vinod, Megha, Akshay, Pooja, Shubhranshu, Sagar, Paridhi, Sudhir. Manas and Yashvant. They have contributed by devoting their precious time, valuable suggestions and cheerful environment in the lab, which helped me during this research work.

No words are enough to thank my friends, who have helped and supported me at various stages. I feel myself to be lucky to have dearest seniors and friends Dr. Farsa, Dr. Ajay, Dr. Suman, Lakshmi, Geetanjali, Amrita, Tanuja, Sadhana, Dr. Abdul, Soniya, Dr. Rohit, Dr. Ambarish, Dr. Sayantan, Prashant, Shivshankar, Dr. Surbhi Jain, Dr. Arpana Pandey, Dr. Achal, Priya, Bhanu and many other from CSIR-NCL. I am immensely thankful to them for being with me during the ups and downs of my Ph.D. tenure. Words fail me to express my appreciation for my friend Dr. Govind Porwal for his continuous help and support throughout my Ph.D. journey and my excellent associate Mr. Shubhranshu Sahoo for his contribution to completing my Ph.D. work. I thank them for their company and support.

I want to thank the most important people in my life, my family. No words are sufficient to describe their love, affection, and support. I am highly indebted to my Father (Virendra Pal Singh) and Mother (Sumitra Devi) for their unconditional love and the sacrifices they have made for me in their lives. Also, I wish to thank my elder sister Lalita, my brother-inlaw Ramgopal,, my brother Krishnakant and sister-in-law Himangi for taking responsibility for my family, which helped me focus on my research work. My nephew Darsh, Laksh and Udit for the happy and joyful environment at home. Furthermore, I would like to thank my all family member's, cousins for their mental and emotional support. I consider myself blessed to have such a beautiful family around me and dedicate this thesis to my beloved parents, family.

Finally, I express my gratitude to the Almighty for the blessings and the great scientific community whose a chievements are a constant source of inspiration for me.

With many thanks,
Priyanka Kataria

Units	
${ }^{\circ} \mathrm{C}$	Degree centigrade
g	Gram
mg	Milligram
h	Hour (s)
Hz	Hertz
$\mu \mathrm{g}$	Microgram
$\mu \mathrm{M}$	Micromolar
mL	Millilitre
min	Minutes
MHz	Megahertz
mmol	Millimole
nM	Nanometre
ppm	Parts per million
d	Delta
m / z	Mass to charge ratio
cm	Centimetre
Chemical Notations	
Ac 20	Acetic anhydride
AuCl	Aurum chloride
AgOTf	Silver trifluoromethanesulfonate
BBr_{3}	Boron tribromide
$n-\mathrm{BuLi}$	n-Butyl lithium
BH_{3}	Borane
t-BuOH	tert-Butyl alcohol
BCl_{3}	Boron trichloride
BF3.OEt ${ }_{2}$	Boron trifluoride etherate
$\mathrm{Bi}(\mathrm{OTf})_{3}$	Bismuth(III) trifluoromethanesulfonate
$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$	Bismuth(III) nitrate pentahydrate
$\mathrm{CD}_{3} \mathrm{OD}$	Deuterated Methanol
CHCl_{3}	Chloroform

CBr_{4}	Tetra bromo methane
COSY	Correlation Spectroscopy
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Dichloromethane
CDCl_{3}	Deuterated Chloroform
CD	Circular dichroism
CBS	Corey-Bakshi-Shibata
$\mathrm{CeCl}_{3} 7 \mathrm{H}_{2} \mathrm{O}$	Cerium(III) chloride heptahydrate
CCl_{4}	Carbon tetrachloride
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}$ (DCE)	Dichloroethane
Conc.	Concentrated
DAH	Diarylheptanoid
2D	Two Dimensional
3D	Three Dimensional
DMAP	4-Dimethylaminopyridine
DCC	N, N^{\prime}-Dicyclohexylcarbodiimide
DMF	N, N'-Dimethylformamide
DIBAL-H	Diisobutylaluminium hydride
DMP	Dess-Martin periodinane
DET	Diethyl tartrate
EDC. HCl	1-(3-Dimethylaminopropyl)-3ethylcarbodiimide hydrochloride
EtOH	Ethanol
EtOAc	Ethyl Acetate
ESI	Electrospray ionization Mass spectrometry
eq.	Equation
$\mathrm{Fe}(\mathrm{OTf})_{3}$	Iron (III) trifluoromethanesulfonate
$\mathrm{FeSO}_{4 .} 7 \mathrm{H}_{2} \mathrm{O}$	Ferrous sulphate heptahydrate
$\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$	Iron (II) perchlorate
HSQC	Heteronuclear Single Quantum Coherence
HMBC	Heteronuclear Multiple Bond Coherence
HRMS	High Resolution Mass Spectrometry

HCl	Hydrochloric acid
$\mathrm{H}_{2} \mathrm{O}$	Water
$\mathrm{H}_{2} \mathrm{O}_{2}$	Hydrogen peroxide
HBPin	Pinacol borane
IC_{50}	Inhibitory Concentration required for 50\% inhibition
IR	Infra-Red
I_{2}	Iodine
J	Coupling constant (in NMR)
KMnO_{4}	Potassium permanganate
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium carbonate
LiHMDS	Lithium bis(trimethylsilyl)amide
LiCl	Lithium chloride
LDA	Lithium diisopropylamide
m-CPBA	meta-Chloroperbenzoic acid
Mg	Magnesium
MeONHMe.HCl	N,O-Dimethylhydroxylamine hydrochloride
MgBr_{2}. OEt_{2}	Magnisium bromide diethyl etherate
MeI	Methyl Iodide
MeCN	Acetonitrile
$\mathrm{Ni}(\mathrm{OTf})_{2}$	Nickel (II) trifluoromethanesulfonate
$\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$	Nickel (II) chloride hexahydrate
NMR	Nuclear magnetic Resonance
NaIO_{4}	Sodium metaperiodate
NOESY	Nuclear Overhausser Effect Spectroscopy
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium sulphate
$\mathrm{NH}_{4} \mathrm{Cl}$	Ammonium chloride
NaHCO_{3}	Sodium bicarbonate
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	Sodium thiosulphate
NaBH_{4}	Sodium borohydride
NMO	N-Methylmorpholine-N-Oxide

NaOH	Sodium hydroxide
OsO_{4}	Osmium tetroxide
PMB-TCAI	p-methoxybenzyl 2,2,2-Trichloroacetimidates
$\mathrm{PPh}_{3} \mathrm{AuCl}$	Chloro(triphenylphosphine)gold(I)
Pd/C	Palladium on charcoal
PPTS	Pyridinium p-toluenesulfonate
PTSA	p-toluenesulfonic acid
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	Tetrakis(triphenylphosphine)palladium (0)
$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	Palladium hydroxide on charcoal
$i-\mathrm{Pr}_{2} \mathrm{NEt}$	N,N-Diisopropylethylamine
rt	Room temperature
R_{f}	Retention factor
SiO_{2}	Silica
SAR	Structure-Activity Relationship
$\mathrm{Sc}(\mathrm{OTf})_{3}$	Scandium triflate
SOCl_{2}	Thionyl chloride
TEA (Et ${ }_{3}$)	Triethylamine
TBHP	tert-Butyl hydroperoxide
TPP	Triphenyl phosphine
THF	Tetrahydrofuran
THP	Tetrahydropyran
TLC	Thin Layer Chromatography
TsCl	Tosyl chloride
TBS	tert-butyldimethylsilyl
p-TSA	p-Toluenesulfonic acid
tert	Tertiary
TBSOTf	tert-butyldimethylsilyl trifluoromethanesulfonate
TFA	Trifluoro acetic acid
Tf0H	Triflic acid

> Independent compound and reference numbering have been used for each chapter as well as for sections of the chapters.
> All reagents and solvents were purchased from commercial suppliers and used as such without any further purification. Starting materials were obtained from commercial suppliers or prepared using known procedures.
> All the known compounds reported in literature were characterized by their NMR spectra.
> Solvents were distilled and dried following standard procedures. Petroleum ether used for column chromatography was of $60-80^{\circ} \mathrm{C}$ boiling range.
> Column chromatographic separations were carried out on silica gel (100-200 or 230-400 mesh size).
> All reactions were monitored by TLC with 0.25 mm pre-coated E-Merck silica gel plates (60 F254) and TLC spots were made visible by exposing to UV light, Iodine adsorbed on silica gel or by immersion into an ethanolic solution of phosphomolybdic acid (PMA), p-anisaldehyde, ninhydrin or KMnO_{4} followed by heating with a heat gun for $\sim 15 \mathrm{sec}$.
> NMR spectra were recorded on Bruker AV200 (200.13 MHz for ${ }^{1} \mathrm{H}$ NMR and 50.03 MHz for ${ }^{13} \mathrm{C}$ NMR), AV 400 (400 MHz for ${ }^{1} \mathrm{H}$ NMR and 101 MHz for ${ }^{13} \mathrm{C}$ NMR), Jeol400 (400 MHz for ${ }^{1} \mathrm{H}$ NMR and 101 MHz for ${ }^{13} \mathrm{C}$ NMR), DRX $500\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 126 MHz for ${ }^{13} \mathrm{C}$ NMR) and AV $700\left(700 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 176 MHz for ${ }^{13} \mathrm{C}$ NMR) spectrometers.
$>$ Chemical shifts (δ) have been expressed in ppm units relative to tetramethylsilane (TMS) as an internal standard and coupling constants (() were measured in Hertz.
> The following abbreviations were used for ${ }^{1} \mathrm{H}$ NMR: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{brs}=$ broad singlet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{td}=$ triplet of doublet and ddd = doublet of doublet of doublet.
> Optical rotations were recorded on a JASCO P-1020 polarimeter at 589 nm (sodium D-line). Specific rotations $[\alpha]_{\mathrm{D}}$ are reported in deg/dm, and the concentration (c) is given in $\mathrm{g} / 100 \mathrm{~mL}$ in the specific solvent.
> Structures and IUPAC nomenclature were generated using ChemBioDraw Ultra 14.0 software.
$>$ High-resolution mass spectra (HRMS) (ESI) were recorded on an Orbitrap (quadrupole plus ion trap) and TOF mass analyzer.

	Synopsis of the thesis to be submitted to the Academy of Scientific and Innovative Research for the award of the degree of Doctor of Philosophy in Chemical Science
Name of the Candidate	Ms. Priyanka Kataria
Enrollment No. and Date	Ph.D. in Chemical Sciences (10CC16J26018); January 2016
Title of the Thesis	Studies on the Enantioselective Total Synthesis of Diarylheptanoid and Furylhydroquinone-Derived Natural Products, and Eugenol Derivatives as Potential Antidiabetic Agents
Research Supervisor	Dr. Ravindar Kontham

1. Introduction: The current thesis describes the studies directed toward the enantioselective total synthesis of diarylheptanoid and furylhydroquinone-derived bioactive natural products and derivatives of eugenol as potential antidiabetic agents. This thesis is categorized into three chapters. The first chapter describes two distinct synthetic strategies to access hedycoropyrans A and B, which led us to establish a facile synthetic route for des-hydroxy (-)-hedycoropyran B (ent-rhoiptelol B) from simple and readily accessible building blocks of 4-allylanisole and vanillin, employing Sharpless asymmetric epoxidation, CBS reduction, and an intramolecular AgOTf-catalyzed oxa-Michael reaction of hydroxy-ynone as key transformations. The second chapter deals with the first enantioselective total synthesis and establishment of the absolute stereochemistry of furylhydroquinone-derived natural products shikonofuran J, D, E, C, and their enantiomers employing an unprecedented $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalyzed construction of 2,4disubstituted furans from α-hydroxy oxetane-tethered ketones, followed by chiral-phosphoric acid (TRIP)-catalyzed asymmetric prenylation, and the third chapter describes the design, synthesis, and in vitro biological activity profile of diverse eugenol derivatives as antidiabetic agents.
2. Statement of the problem: Natural products are a diverse group of chemical substances produced by nature. Living organisms, including bacteria, fungi, insects, animals, and plants produce these compounds, which have evolved over time to serve different purposes of human needs, such as life-saving drugs, vitamins, colors, tastes, scents, etc. However, these molecules are often produced in minimal quantities, which creates supply issues and hamper systematic chemical and biochemical investigations and utilization. Hence, the development of efficient, facile, and sustainable synthetic methodologies and their application in devising concise and

practical synthetic routes for biologically potent natural and unnatural molecules is one of the pivotal objectives for synthetic organic chemists worldwide. Despite remarkable advances made in the field of total synthesis of natural products, the exploration of concise and more efficient methods to synthesize these molecules is still in demand.
3. Objectives: Inspired by the interesting biological profile of natural products possessing oxygen heterocyclic motifs, we aimed to develop a practical, concise, and enantioselective synthetic routes for diarylheptanoid-derived natural product hedycoropyran B utilizing a Sharpless asymmetric epoxidation, CBS reduction, and an intramolecular AgOTf-catalyzed oxa-Michael reaction of hydroxy-ynone as key transformations and allyl anisole and vanillin as affordable building blocks. To develop a concise asymmetric synthetic route and establish the absolute configuration for anti-inflammatory and antibacterial natural products shikonofurans J, D, E, C and their enantiomers possessing furylhydroquinone scaffold as a key structural unit, using an unprecedented $\operatorname{Bi}(\mathrm{OTf})_{3}$-catalyzed furan construction from acylhydroxy oxetanes, followed by chiral-phosphoric acid (TRIP)-mediated asymmetric prenylation reactions as key steps. Further, aimed at the design, synthesis, and in vitro antidiabetic activity evaluation of natural product eugenol and its derivatives having improved bioavailability.

4. Methodology and Result:

Chapter 1: Enantioselective Total Synthesis of Diarylheptanoid ent-Rhoiptelol B (desHydroxy Hedycoropyran B):

Diarylheptanoids (DAHs) is an emerging structural class of natural products with interesting biological properties like anti-inflammatory, antioxidant, anticancer, NO inhibition, etc. ${ }^{1}$ Structurally, DAH's have two aryl units connected with a heptanoid linker at C1-C7 positions, and they can be cyclic or acyclic [containing a tetrahydropyran (THP) or tetrahydrofuran (THF) ring system]. Among several subclasses of DAH's, THP-derived natural products are ubiquitous and known to display a wide range of biological activities and triggered the interest among synthetic and medicinal chemistry research groups, particularly, centrolobines, calyxins, diospongins, hedycoropyrans, and rhoiptelols are notable examples of this category (Figure 1).

Figure 1. Chemical structures of representative diarylheptanoid-derived natural products.

Two new DAHs, hedycoropyran A (1) and B (2) were isolated by Lee and co-workers in 2015, from the $n-\mathrm{BuOH}$ soluble fraction of the rhizome of Hedychium coronarium, which possesses 2,6-trans and 2,6-cis configured THP-DAHs, respectively, along with hedycorofurans and several cytotoxic labdane-type diterpenoids (Figure 2). ${ }^{2}$

Figure 2. Chemical structures of hedycoropyran A and B.
In continuation of our interest in the stereoselective total synthesis of THP-containing biologically potent natural products, we planned an efficient and concise chemical synthetic route for hedycoropyrans $(\mathbf{1}, \mathbf{2})$ that led us to showcase very interesting synthetic transformations and establish a facile synthetic route for des-hydroxy-hedycoropyran B, which is ent-rhoiptelol B (3), from the readily accessible building blocks of 4-allylanisole (9) and vanillin (10) using Sharpless asymmetric epoxidation, Corey-Bakshi-Shibata reduction and an AgOTf-catalyzed oxa-Michael reaction of hydroxyl alkyl-tethered ynone as key steps.

In the initial retrosynthetic analysis, we envisioned a unified approach for the synthesis of hedycoropyrans A (1) and B (2) from a suitably functionalized dihydroxy alkene intermediate 6 (containing allylic and homoallylic alcohol functionalities) via allylic carbocation-mediated ring-closure that would deliver advanced 2,6-trans/2,6-cis dihydropyran intermediate $\mathbf{5 a} / \mathbf{5 b}$ as shown in Scheme 1. A cross-metathesis reaction of homoallylic alcohol $\mathbf{7}$ and allylic alcohol $\mathbf{8}$ was planned to obtain intermediate $\mathbf{6}$. Alkenols $\mathbf{7}$ and $\mathbf{8}$ would be synthe-

Scheme 1: Initial retrosynthetic analysis of hedycoropyrans A (1) and B (2).
sized from commercially available and cost-effective building blocks 4-allylanisole (estragole, 9) and veratraldehyde (10) using an interesting sequence of reactions (Scheme 1).

To explore the feasibility of this retrosynthetic analysis, we initially focused on synthesizing the key DAH-derived dihydroxy alkene intermediate $\mathbf{6}$ starting from building blocks 9 and $\mathbf{1 0}$ via intermediates $\mathbf{7}$ and 8. Accordingly, the synthesis of allyl alcohol $\mathbf{7}$ was initiated from 9. Sharpless asymmetric dihydroxylation of 9 using AD-mix- $\beta / \mathrm{MeSO}_{2} \mathrm{NH}_{2}$ followed by subsequent protection of 1,2-diol using PMP-acetal gave p-methoxy benzylidene acetal 11. The regioselective reductive opening of acetal 11 using DIBAL-H followed by DessMartin periodinane oxidation delivered the aldehyde 12. Subsequent substrate-controlled addition of allyltributyltin onto the aldehyde $\mathbf{1 2}$ in the presence of $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ delivered the requisite homoallylic alcohol 7 with complete diastereoselection. Then, the cross-metathesis reaction of $\mathbf{7}$ and $\mathbf{8}$ (prepared from the vinylation of veratraldehyde (10) using the Grubbs $2^{\text {nd }}-$ generation catalyst furnished the desired DAH-derived dihydroxy alkene intermediate 6 (exclusively trans-olefin) in an excellent yield of 95%, which was the precursor for our anticipated allylic carbocation-mediated ring-closure reaction. To realize this hypothesis, wellestablished reaction conditions of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{3} \quad \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{3}$ and $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{3}$ at low to ambient ($-78{ }^{\circ} \mathrm{C}$ to rt) temperatures were attempted, which proved to be unsuccessful, in all cases starting material 6 was decomposed. If this proposed transformation to access $\mathbf{5 a} / \mathbf{5 b}$ from $\mathbf{6}$ had worked well, our following sequence of reactions

Scheme 2: Efforts directed toward the synthesis of hedycoropyrans A (1) and B (2) via allylic carbocation-mediated ring-closure.
(as reported by Li and Tong) as described describe in Scheme 2 (via diols 13a/13b) would have led to the total synthesis of hedycoropyrans A (1) and B (2) (Scheme 2).

After these unsuccessful efforts to access natural products $\mathbf{1}$ and/or $\mathbf{2}$ following our initial retrosynthetic analysis and synthetic sequence, we explored a new retrosynthetic analysis based on the intra-molecular oxa-Michael reaction, which enables access to the THP ring system with desired stereochemistry, as shown in Scheme 3. We hypothesized synthesizing hedycoropyran B(2) via intra-molecular oxa-Michael reaction induced ring-closure of suitably constructed enone $\mathbf{1 4}$ or ynone $\mathbf{1 4 a}$ /14b intermediates with varying O-substituents. In this scenario, we envisioned a convergent strategy involving the addition of Li-acetylide (derived from 15/15a) to the chiral-aldehydes 16/16a, followed by the oxidation to obtain the enone/ynone intermediates ($\mathbf{1 4} / \mathbf{1 4 a}, \mathbf{1 4 b}$). Intermediates $\mathbf{1 5} / \mathbf{1 5 a}$ and 16/16a could be synthesized from commercially accessible 4-allylanisole (9) and veratraldehyde (10) or their analogs (9a and vanillin) (Scheme 3).

Hence, the proposed alternate route began with the synthesis of alkyne intermediate $\mathbf{1 5}$ from 4-allylanisole (9) in two divergent pathways. In the first route, aldehyde $\mathbf{1 2}$ (prepared

Scheme 3: New retrosynthetic analysis of hedycoropyran B (2) based on the oxa-Michael reaction of hydroxy-enone or hydroxy-ynone.
from $\mathbf{9}$ in Scheme 2) was subjected to Corey-Fuchs olefination and subsequently treated with n-BuLi to afford the desired alkyne fragment 15 (path A, Scheme 4). Furthermore, an alternate route to synthesize the key intermediate $\mathbf{1 5}$ started from allyl anisole $\mathbf{9}$, which was converted into α, β-unsaturated ester $\mathbf{1 7}$ employing a cross-metathesis reaction, and was then reduced using DIBAL-H to afford allylic alcohol 36, which was subsequently converted into chiral epoxy alcohol 18 under Sharpless conditions, then the chiral epoxy alcohol 18 was converted to propargylic alcohol 37 via chlorination and base (n-BuLi)-mediated rearrangement reactions, which was protected as its PMB-ether to get the required key intermediate $\mathbf{1 5}$ (path B, Scheme 4).

After successfully establishing a reliable synthetic route for $\mathbf{1 5}$, then we moved towards the synthesis of aldehyde coupling partner 16 from veratraldehyde 10. Asymmetric Keck allylation of $\mathbf{1 0}$ [using (S) - $\mathrm{BINOL}, \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, and allyltributyltin] to give allyl alcohol $\mathbf{2 0}$, followed by TBS protection and dihydroxylative cleavage (OsO4, 2,6-lutidine, and NaIO_{4}) steps, cleanly delivered aldehyde 16 (Scheme 4).

After successful synthesis of required key fragments 15 and 16 on a gram scale, next our target was to verify our hypothesis of an intramolecular oxa-Michael reaction. For that purpose, both fragments of alkyne 15 and aldehyde 16 were coupled using n-BuLi to get propargylic alcohol 21 which was partially reduced with Red-Al followed by DMP-oxidation to get enone 14. Further TBS deprotection of $\mathbf{1 4}$ using $\mathrm{HF}-\mathrm{CH}_{3} \mathrm{CN}$ gave hydroxy-alkyl tethered

Scheme 4: Synthesis of alkyne fragment 15 and aldehyde fragment 16
enone 22. Unfortunately, the crucial oxa-Michael reaction of the hydroxy-enone 22 to give pyranone 23 was proved to be insurmountable, under base ($\mathrm{KO}^{t} \mathrm{Bu}, \mathrm{NaH}, \mathrm{DBU}$), acid (Amberlyst-15) and $\mathrm{Pd}(\mathrm{II})$-catalyzed reaction conditions, leading to either the corresponding dehydrated product $\mathbf{2 4}$ or retro-aldol products $\mathbf{1 0}$ and $\mathbf{2 5}$ (path A, Scheme 5; Table 1). Therefore, we slightly altered the strategy by replacing enone $\mathbf{2 2}$ with the corresponding ynone 22a as an oxa-Michael addition precursor to verify the reactivity patterns, as shown in path B of Scheme 5. Hence, ynone 22a was prepared from 21 through Dess-Martin periodinane oxidation, and $\mathrm{HF}-\mathrm{CH}_{3} \mathrm{CN}$-mediated TBS deprotection steps, and was evaluated for the intramolecular oxa-Michael reaction using reported procedures (Table 2). Initial conditions of using $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$-mediated cyclization ${ }^{4 \mathrm{a}}$ led to the decomposition of the starting material. Cyclization using $\mathrm{NaH}^{4 \mathrm{~b}}$ and/or mild Lewis acid (catalytic AgOTf$)^{4 \mathrm{c}}$ resulted in the undesired dehydrated product 24a, whereas, AuCl-catalyzed ${ }^{4 d}$ cyclization was found to be non-selective towards this oxa-Michael reaction by providing an inseparable mixture ($1: 1$ ratio) of desired pyranone 23a (through the 6-exo-dig mode of cyclization) and furanone 26 (through the 5-endo-dig mode of cyclization) (path-B, Scheme 5). These unfruitful results (except for the AuCl reaction of entry4, Table 2) reveal the sensitivity of the benzylic hydroxyl group (of $\mathbf{2 2}$ and 22a) toward basic or acidic conditions, which could be due to the stabilization of the benzylic carbocation through the mesomeric effect of the p-OMe group of the phenyl ring (path A and path B, Scheme 5).

Scheme 5: Efforts toward the synthesis of hedycoropyran B (2) via an oxa-Michael reaction of hydroxy-enone/hydroxy-ynone.

Table 1. Efforts toward the synthesis of pyranone 23.

Table 2. Efforts toward the synthesis of dihydropyranone 23a.

Entry	Conditions	Result
1	$\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.1$ equiv $), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1$ equiv $)$, $\mathrm{PPh}_{3}, \mathrm{DME}, 65^{\circ} \mathrm{C}, 24 \mathrm{~h}$	22a decomposed
2	$\mathrm{NaH}\left(1\right.$ equiv), THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$	$\mathbf{2 4 a}, 78 \%$
3	$\mathrm{AgOTf}(0.1$ equiv $), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 18 \mathrm{~h}$	$\mathbf{2 4 a}, 72 \%$
4	$\mathrm{AuCl}(0.02$ equiv $), \mathrm{NaHCO}_{3}, \mathrm{MS}-4 \mathrm{~A}, 5 \mathrm{~h}$	$\mathbf{2 3 a}$ and 26 (1:1), 90%, inseparable

Suspecting the role of the p-OMe group (of 22 and 22a, Scheme 5) in the failure of the above intramolecular oxa- Michael reactions and the literature precedence of a successful survival of similar benzylic hydroxyl groups in the presence of p-OAc and p-OTs substituents. We further modified our strategy by replacing the p-OMe group with p-OTs (replacing alkyne 15 and 16a with 15a (having p-OTBS) and 16a (having p-OTs) respectively). These revised intermediates alkyne 15a, and aldehyde $16 a$ were synthesized using sequences similar to that described in Scheme 4. In addition, an alternative route to synthesize intermediate 16a via allylic ketone 28 (prepared from aldehyde 10a through the initial addition of allyl magnesium chloride followed by oxidation). Subsequent Corey-Bakshi-Shibata reduction (using (R)-CBS catalyst) of $\mathbf{2 8}$ gave the common precursor 20a (Scheme 6).

Synthesis of Alkyne Fragment 15a

Synthesis of Aldehyde Fragment 16a

Scheme 6: Synthesis of alkyne fragment 15a and aldehyde fragment 16a.
Now, the stage was set to verify our envisioned ultimate strategy to access hedycoropyrans. Accordingly, we coupled both fragments 15a and 16a to get the coupled propargylic alcohol 21a, subsequent DMP oxidation gave ynone 14b. As expected, HF$\mathrm{CH}_{3} \mathrm{CN}$-mediated TBS deprecation 14b led to the fully and partially deprotected alcohols $\mathbf{2 9}$ and 30. Then we tested the subsequent intramolecular oxa-Michael reaction of $\mathbf{2 9 / 3 0}$ using 10 $\mathrm{mol} \%$ of AgOTf at $0^{\circ} \mathrm{C}$. To our delight, pyranones $\mathbf{3 1 / 3 2}$ were obtained in good yields without anticipated retro-aldol by-products. At this stage, the TBS-protected dihydro-pyranone 32 was subjected to α-hydroxylation using diverse conditions of NaHMDS, Davis oxaziridine, and PIDA, which failed to provide the desired product 33 and hampered the possibility to access hedycoropyran B (2) (Scheme 7).

As we had a sufficient quantity of intermediates $\mathbf{3 1}$ and $\mathbf{3 2}$ in hand, we embarked on accessing the structurally close diarylheptanoid ent-rhoiptelol B (des-hydroxy hedycoropyran B, 3). Rhoiptelol B (3a) was isolated from the fruits of Rhoiptelea chiliantha and also from the bark of Alnus hirsuta in 1996 and 2007 and is known to display inhibitory activities against LPS-induced NF-KB activation, NO, and TNF- α production, and HIF-1 in AGS cells. Thus, dihydropyranones $\mathbf{3 1}$ and $\mathbf{3 2}$ were subjected to hydrogenation $\left(\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right)$ of the olefin followed by L-selectride reduction of the carbonyl group, which cleanly delivered the respective pyrans 35 and $\mathbf{3 4}$ ($\mathbf{3 4}$ was subjected to TBS deprotection to get 35; NOE analyses confirmed 2,6-cis stereochemistry of THP 34). Finally, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH -mediated detosylation of 35 delivered des-hydroxy hedycoropyran B (ent-rhoiptelol B, 3) ${ }^{5}$ which was confirmed by comparing ${ }^{1} \mathrm{H}$,

Scheme 7: Completion of the total synthesis of des-hydroxy hedycoropyran B.
${ }^{13} \mathrm{C}$ NMR, and ESI-MS (HRMS) data with the reported data. The optical rotation value of $\mathbf{3}$ $\left([\alpha]_{\mathrm{D}}{ }^{26: 6}=-81.04(\mathrm{c}=0.1, \mathrm{MeOH})\right.$, this work) was found to be opposite to the reported value of natural product $(+)$-rhoiptelol $\mathrm{B}(\mathbf{3 a})\left([\alpha]_{\mathrm{D}}{ }^{12}=+97(\mathrm{c}=0.3, \mathrm{MeOH})\right.$, literature data). The assigned absolute configuration of $\mathbf{3}$ was further supported by electronic circular dichroism (ECD) analyses; the ECD spectrum of $\mathbf{3}$ showed a negative Cotton effect (CE) at 227.10 nm $\left(\mathrm{CD}, 0.4 \times 10^{-3} \mathrm{M}, \mathrm{EtOH}\right), \lambda \max (\Delta \varepsilon) 214.44(+0.91), 227.10(-3.09)(\mathrm{nm})$ which was similar to data reported for structurally close DAH, hedycoropyran B (Scheme 7).

Conclusion: In this Chapter, a couple of synthetic strategies for the total synthesis of the diarylheptanoid natural products hedycoropyrans were attempted, which were unfruitful, but led us to showcase some interesting synthetic organic chemistry and the development of a total synthetic route for des-hydroxy hedycoropyran B (ent-rhoiptelol B) in 19 steps using the commercially available and affordable building blocks 4-allylanisole (estragole), veratraldehyde and vanillin. The key steps involved in this work were cross-metathesis, Sharpless asymmetric epoxidation, CBS-reduction/Keck asymmetric allylation, and AgOTfmediated intramolecular oxa-Michael addition of hydroxy-ynone.

Chapter 2: Development of a Facile Synthetic Strategy for Substituted Furans from KetoOxetanes Using Bi(III) Catalysis: Application to Unified Total Synthesis of Furylhydroquinone-Derived Natural Products Shikonofuran J, D, E and C

Furylhydroquinones are a class of natural products having structural diversity and are known to show interesting biological activities. Recently, Kim and co-workers isolated a novel member of the furylhydroquinone family along with six known compounds from Lithospermum erythrorhizon Sieb. et Zucc (Boraginaceae) as shown in Figure 1. Among the isolates, five compounds have shown potential inhibition of Interleukin-6 (IL-6) production ${ }^{6 \mathrm{a}}$ and three compounds (2-4) have shown inhibitory activity towards GH33 sialidases ${ }^{66}$ (antibacterial) with lower IC_{50} values (Figure 1).

Figure 1. Chemical structures and biological activities of shikonofuran J, D, E, and C.

Structurally these natural products contain an ester chiral center adjacent to the furan ring (at C4), which is connected to hydroquinone (at C2 of furan) and mainly varies in the ester part of the molecule. Inspired by these interesting structural features, the biological profile of furyl-hydroquinones, and our interest in the chemistry of oxygen-containing heterocyclic compounds, we have initiated a research project to establish unified and enantioselective total synthesis routes for shikonofurans J, D, E, and C.

After an extensive literature survey, we found that very few synthetic methods are reported in the literature to access 2,4-disubstituted furans (particularly C 4 hydroxymethyl substituted), which are required for this work. Notable examples include phosphine-catalyzed rearrangement of cyclopropyl ketones, $\mathrm{Zn}(\mathrm{II})$-catalyzed cycloisomerization of homopropargylic ketones, $\mathrm{PPh}_{3}-\mathrm{Cs}_{2} \mathrm{CO}_{3}$ induced annulation of ketones and propiolates, $\mathrm{Pd}(0)$ catalyzed alkylative ring-closure of propargylic vinyl acetates (entries a-d, Scheme 1).

Scheme 1: Know-how methodologies for the synthesis of tri-substituted furans.
Recently, an interesting Lewis acid-mediated mediated cycloisomerization of α-hydroxy oxetane-tethered ketone was disclosed by Vanderwal and co-workers, which was also studied using ionic liquid (BAIL 4 in water) by Ni and co-workers (entry e and f, Scheme 1). ${ }^{7}$ However, these two later strategies have disadvantages of using a stoichiometric amount of strong acid as the promoter, expensive catalytic systems (like Scandium-based catalysts), incompatible solvent systems, harsh reaction conditions, and longer reaction times. Keeping in mind these disadvantages of know-how methodologies, we aimed at developing a facile and rapid methodology to construct 2,4-disubstituted furans using acyl-oxetane as a building block and its subsequent application in enantioselective total synthesis of shikonofurans (Scheme 1).

The feasibility of our projected hypothesis was initially tested using α-hydroxy oxetane-tethered ketone 5 as starting material, various Lewis acids ($\mathrm{Ni}(\mathrm{II}), \operatorname{Ag}(\mathrm{I}), \mathrm{Fe}(\mathrm{II})$, $\mathrm{Fe}(\mathrm{III}), \mathrm{Bi}(\mathrm{II}), \mathrm{Bi}(\mathrm{III}), \mathrm{BF}_{3} . \mathrm{OEt}_{2}$, etc.) and Brønsted acids (TfOH, TFA, PTSA, etc.) as catalysts in different solvents. To our delight, $10 \mathrm{~mol} \%$ of $\mathrm{Bi}(\mathrm{OTf})_{3}$ in DCM at room temperature delivered the desired product 6 (3-hydroxymethyl-derived furan). Employing these optimized conditions, we have accomplished the synthesis of 2,4-disubstituted and 2,3,4-trisubstituted furans possessing C2-alkyl, aryl, and heteroaryl; C3-H, aryl substituents, in good to excellent isolated (62-99\%), in short reaction time (1-5 min). Aryl or heteroaryl substituents (at C2 of
the furan) containing electron-withdrawing $\left(\mathrm{CF}_{3}, \mathrm{Cl}, \mathrm{NO}_{2}\right)$ and/or electron-donating (MeO , alkyl, BnO, Allyl-O-) groups, and diverse protecting groups (-OTIPS, -OTBS, -OTBDPS, -$\mathrm{OBn},-\mathrm{OPMB}$) were found to be compatible under these optimized conditions. The substrate scope of this transformation is high and demonstrated through the preparation of 28 diverse hydroxymethyl furans (Scheme 2).

Scheme 2: Present work: Synthesis of di- and tri-substituted furans.

After exploration of the substrate scope of this methodology, we hypothesized a common retrosynthetic analysis for the enantioselective total synthesis of shikonofurans. Shikonofurans J, D, E, and C (1-4, with varying ester groups) could be prepared from hydroxyalkyl furan 35 via esterification using suitable carboxylic acids followed by deprotection of protected arene. Intermediate $\mathbf{3 5}$ could be readily accessed from 2,4disubstituted furan 36 using TRIP-catalyzed asymmetric prenylation reaction, which can be constructed employing the above-disclosed $\mathrm{Bi}(\mathrm{III})$-catalyzed dehydrative-cycloisomerization of α-hydroxy oxetane-tethered ketone 37 . The intermediate 37 could in turn be prepared employing the aldol reaction of acetophenone $\mathbf{3 8}$ and oxetanone $\mathbf{3 9}$ (Scheme 3).

Scheme 3: Retrosynthetic analyses of shikonofurans J, D, E and C.

Our studies started with enantioselective total synthesis of the reported structure of shikonofuran J (1) starting from commercially available 2,5-dihydroxy acetophenone (38). Allyl protection of $\mathbf{3 8}$ using allyl bromide in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave $\mathbf{4 0}$, which was subjected to LDA-mediated aldol reaction with 3-oxetanone (39) to give the requisite aldol product $\mathbf{3 7}$. Next, aldol $\mathbf{3 7}$ was subjected to our in-house developed methodology of $\operatorname{Bi}(\mathrm{OTf})_{3}$-catalyzed dehydrative cycloisomerization reaction, which cleanly furnished the desired hydroxymethylated furan $\mathbf{3 6}$ in 95% yield in 1.0 min. Then, $\mathbf{3 6}$ was oxidized to aldehyde $\mathbf{4 1}$ using DessMartin periodinane (DMP), and subsequently subjected to asymmetric prenylation ${ }^{8}$ reaction using chiral phosphoric acid [(S)-TRIP] and prenyl-pinacol-boronate to get the anticipated chiral alcohol 35, which was used as a common intermediate for all shikonofurans. Then methylation of alcohol 35 using NaH and MeI to give 45, followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed allyl deprotection of both allyl groups delivered shikonofuran J (1) in 72\% yield (Scheme 4).

Scheme 4: Enantioselective total synthesis of shikonofuran J (1) and its enantiomer (1a).

Figure 2: ECD spectra of Shikonofuran J (1) and ent-Shikonofuran J (1a).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of synthesized $\mathbf{1}$ was in full agreement with that of the literature data (isolated natural product 1). To our surprise, the optical rotation value of $\mathbf{1}\left([\alpha]^{26: 6} \mathrm{D}=+7.07\right.$ (c $=0.5, \mathrm{MeOH})$, our work) was found to be opposite to the reported value of natural shikonofuran $\mathrm{J}(\mathbf{1})\left([\alpha]^{12} \mathrm{D}=-11.3(c=0.3, \mathrm{MeOH})\right.$, reported earlier $)$. Hence, we synthesized the enantiomer of 1 (1a) by using (R)-TRIP as a ligand in the asymmetric prenylation step via 35a, and compared the ECD data (Scheme 4). (S)-(+)-Shikonofuran J (1, this work) structure) showed a negative Cotton effect (CE; CD, $\left.4.3 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right)$ at $\lambda \max 283 \mathrm{~nm}(\Delta \varepsilon-0.180), 245 \mathrm{~nm}$ ($\Delta \varepsilon-0.134)$, and a positive cotton effect at $\lambda \max 213 \mathrm{~nm}(\Delta \varepsilon+0.187)$, which was in agreement with the data reported for (S-isomer) of shikonofuran J ($\mathbf{1}$, isolated). While the (R)-isomer 1a showed anticipated opposite ECD data compared to $1\left(\mathrm{CD}, 4.3 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}, \lambda \max (\Delta \varepsilon)\right.$ $283(-0.018), 245(+0.026)$ and $213(-0.312) \mathrm{nm})$ (Figure 2).

After successful synthesis and establishment of the absolute configuration of shikonofuran $\mathrm{J}(\mathbf{1})$ and its enantiomer (1a), we embarked on the total synthesis of shikonofurans D , E , and C , and their antipodes utilizing common intermediates $\mathbf{3 5}$ and $\mathbf{3 5 a}$. Thus, the hydroxyalkyl furan intermediate 35 (possessing the desired stereochemistry of natural products) was treated with isobutyryl chloride 46 in presence of $\mathrm{Et}_{3} \mathrm{~N}$, and DMAP to afford the corresponding ester $\mathbf{4 7}$ in 86% yield. The subsequent bis-allyl deprotection of $\mathbf{4 7}$ was found to be difficult under well-established conditions using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{Pd}(\mathrm{OH})_{2}$ and diverse bases, $\mathrm{BiCl}_{3}-\mathrm{NaBH}_{4}, \mathrm{LiCl}-\mathrm{NaBH}_{4}$, and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaI}$, which led to the ester hydrolysis and nonselectively deprotected products. After extensive experimentation, $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (3 eq), NaBH_{4} (5 eq), $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$ to rt conditions ${ }^{9}$ were found to be fruitful by providing the desired shikonofuran D (2, reported structure) in a moderate yield of 44%, along with a few unidentified and inseparable products (Scheme 5). A similar strategy was employed to

synthesize the enantiomer (2a, ent-shikonofuran D) of shikonofuran D (2) from 35a (Scheme 5).

Scheme 5: Enantioselective total synthesis of shikonofuran D (2) and its enantiomer (2a).
Next, the alcohol 35 was subjected to esterification using commercially available 3-methylbut-2-enoic acid (48) under DCC and DMAP conditions to get ester 49, which served as a common precursor for both the natural products shikonofuran E and C. Phenolic allyl de-

Scheme 6: Enantioselective total synthesis of shikonofuran E and C ($\mathbf{3}$ and 4), and their enantiomers ($\mathbf{3 a}$ and 4a).

protection using $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4} in MeOH at $-60^{\circ} \mathrm{C}$ delivered shikonofuran E (3) in 57% yield. While optimizing this allyl deprotection of 49 at various temperatures, we observed the reduction of the butenoic-ester segment at $-20^{\circ} \mathrm{C}$, which led to the formation of shikonofuran C (4). Utilizing a strategy similar to this, synthesized ent-shikonofuran E (Ba) and ent-shikonofuran C (4a) from 35a (Scheme 6).

Conclusion: We have developed a mild, efficient, and facile methodology for the synthesis of hydroxy methyl-derived polysubstituted furans employing an unprecedented $\mathrm{Bi}(\mathrm{III})$-catalyzed dehydrative cycloisomerization of α-hydroxy oxetane-tethered ketones. Moreover, we have successfully applied this protocol in the first enantioselective total synthesis of furyl-hydroquinone-derived antimicrobial natural products shikonofurans J, D, E, and C in 7 linear steps with $34.6 \%, 21.4 \%, 28.6 \%, 27.1 \%$ overall yield respectively, and also synthesized their enantiomers to establish the absolute stereochemistry. This work may find immediate applications in the synthesis of related furan-derived bioactive natural products and medicinal chemistry investigations.

Chapter 3: Design, Synthesis, and Biological Evaluation of Eugenol Derivatives as Potential Antidiabetic Agents

Diabetes mellitus is a severe \& chronic disorder that occurs when the human body is incapable of producing or ineffectively uses the hormone insulin, resulting in an elevation of blood glucose level (hyperglycaemia). According to the International Diabetic Federation, 537 million people in the world had diabetes in the last year, expected to rise to 643 million by 2030 and 783 million by 2045. Presently, oral anti-diabetic medications are used in the pharmacological treatment of diabetes to help control hyperglycaemia. These medications either increase insulin secretion and sensitivity, lower hepatic glucose production, or help with glucose absorption. However, due to limited effects and unwanted side effects, the efficacies of these medications are debatable. On the other hand, α-glucosidase inhibitors are found beneficial in treating diabetes. They regulate blood glucose levels by inhibiting the digestion of oligosaccharides/carbohydrates (like maltose, maltotriose, dextrins, sucrose, etc.) into glucose. In addition to these drugs, inhibition of advanced glycation end products (AGEs) is

also considered a proper therapeutic strategy in managing diabetes-associated complications.
Eugenol is a natural monoterpene molecule that is very cheap, readily available, and has various biological properties like antihypertensive, anticarcinogenic, antiparasitic, antifungal, antibacterial, antimicrobial, antiseptic, dental analgesic, and antiviral. It has attracted the attention of researchers in past decades because of its chemical versatility and its biological profile. Therefore, we have investigated the major Ocimum metabolite eugenol and its role in a multifactorial effect in diabetic conditions. Our studies have focused mainly on the inhibition of α-amylase, α-glucosidase, glycation inhibition, and antioxidant properties of the eugenol molecule. ${ }^{10}$ These activities are further optimized by derivatization of functional groups of eugenol because eugenol is an oily compound and it is not water-soluble, hence it should be administered into the body by the intra-peritoneal route, and we cannot use it orally (in in vivo and preclinical investigations). Hence, there is a desperate need for the design, synthesis, and biological evaluation of water-soluble derivatives of eugenol.

Figure 1: General classification of eugenol derivatives synthesized and evaluated in the present work.

Herein, we reported the synthesis and biological studies of various eugenol derivatives of lipophilic esters, amino acid conjugates, and carbamates, based on a prodrug concept, and

other miscellaneous known analogs (which were studied earlier for other therapeutic effects) (Figure 1). This approach may open the opportunity for a flexible and wide therapeutic window for the treatment of diabetes, and further show better solubility, bioavailability, permeability, adsorption, and anti-diabetic activity.

Category 1. Lipophilic ester derivatives of eugenol: Lipophilic esters were used as prodrugs due to their known capability of intracellular enzymatic hydrolysis and delivering corresponding acid or alcohol-containing drug molecule, and also facilitates cell-membrane permeability due to the lipophilic cellular membrane interactions. Based on this hypothesis, we have designed and synthesized diverse six lipophilic esters 3-8 using well-established DCC/EDC.HCl-coupling reaction conditions in good scale and yields (Scheme 1). ${ }^{11}$

Scheme 1: General synthetic route for lipophilic derivatives of eugenol.

Category 2. Amino acid ester derivatives of eugenol: To increase the solubility and bioavailability of eugenol (1), we connected polar amino acids (9, Boc protected, prepared from natural amino acids) to eugenol via ester linkage using $\mathrm{EDC} . \mathrm{HCl}$ as a coupling reagent. Synthesized 11 N-protected amino acid conjugates 10-20 of eugenol, which were used as a building blocks for their 10 free-amine derivatives 21-30 and 10 corresponding HCl salts $\mathbf{3 1 -}$ 40 (Scheme 2, and Scheme 3).

Scheme 2: General synthetic route for amino acid derivatives of eugenol.

Scheme 3: General synthetic route for HCl salt and free amine derivative of amino acid derivatives of Eugenol

Category 3. Carbamate derivative of eugenol: Carbamates are well-known to serve as prodrugs. Hence, we prepared one such carbamate derivative from natural amino acid proline and eugenol. L-proline (41) was converted into its methyl ester 42 using $\mathrm{SOCl}_{2}, \mathrm{MeOH}$, then subsequently treated with triphosgene to get corresponding carbamoyl chloride 43. The reaction between carbamoyl chloride 43 and eugenol (1) in the presence of pyridine under reflux conditions delivered the desired carbamate 44 (Scheme 4). ${ }^{12}$

Scheme 4: Synthesis of carbamate derivative of eugenol.
Category 4. Miscellaneous derivatives: In addition to these novel derivatives of eugenol (Schemes 1-4), we also synthesized some known miscellaneous analogs of eugenol via modification of its functional groups based on known literature protocols. Epoxidation ${ }^{13}$ of eugenol (1) using m-CPBA delivered the corresponding epoxide 45, whereas, dihydroxylation ${ }^{14}$ using OsO_{4}, NMO gave the dol derivative 46, which was used as a precursor for two more acetate 47 and benzoate 48 analogs. ${ }^{15}$ The reaction of vinyl magnesium chloride with vanillin (49) furnished the hydroxy vinyl derivative 50 of eugenol (Scheme 5).

Scheme 5: Synthesis of miscellaneous derivatives of eugenol.

All these synthesized 43 derivatives of eugenol were evaluated for their in vitro radical scavenging (DPPH assay), α-amylase inhibition, α-glucosidase inhibition, and BSA-AGE glycation inhibition activities. To our delight, seven derivatives (A, B, C, D, E, F, and G) were found to be better active compared to the parent molecule eugenol (Figure 2).

Figure 2: Potential eugenol derivatives identified in this present work.
Conclusion: We have synthesized forty-three derivatives of eugenol which are more soluble and bioavailable than eugenol (except lipophilic ester derivatives), and we found that seven derivatives (A, B, C, D, E, F, and G) were more active toward in vitro α-amylase inhibition, α glucosidase inhibition, and BSA-AGE glycation inhibition compared to the parent molecule eugenol. Moreover, these molecules showed significant in vitro radical scavenging activity as well (evaluated using DPPH assay). These results may find applications in the field of antidia-
betic drug discovery based on the natural product eugenol as a pharmacophore. However, to prove our pro-drug concept of eugenol derivatives, further in vitro and in vivo prodrug assays are needed, which are in progress.
5. Summary: Chapter 1 comprised investigations directed toward the total synthesis of diarylheptanoid natural products hedycoropyran, which led us to establish a novel synthetic route for ent-rhoiptelol B from the commercially available building block of 4-allylanisole, veratraldehyde and vanillin. The synthetic chemistry utilized in this endeavor and our critical observations of stereo-electronic effects may help synthetic organic chemists to devise practical synthetic routes for these classes of molecules. In Chapter 2, we have developed an unprecedented, rapid, and facile $\mathrm{Bi}(\mathrm{III})$-catalyzed cascade dehydrative cycloisomerization reaction to access hydroxy methyl-tethered polysubstituted furans, and we have successfully demonstrated the utility of this strategy through the enantioselective total synthesis of antibacterial natural products shikonofurans J, D, E and C and their enantiomers in 7 linear steps and in good overall yields. These investigations provide solutions to access related natural products in sufficient quantities, which in turn facilitate comprehensive biochemical investigations of natural product-based drug discovery. Chapter 3 showcased the design, synthesis, and biological evaluation of diverse eugenol analogs with improved bioavailability and in vitro α-amylase inhibition, α-glucosidase inhibition, and BSA-AGE glycation inhibition activities. These studies suggested that the solubility of the eugenol derivatives has a pivotal impact on their inhibitory properties, further in vitro and in vivo analyses of all these pro-drugbased derivatives may lead to the identification of efficient antidiabetic agents with multiple activity profiles.
6. Future directions: Natural product rhoiptelol B is known to possess significant in vitro inhibitory activities against LPS-induced NF-KB activation, NO and TNF- α production, and HIF-1 in AGS cells. Since we established a total synthesis route for its enantiomer (entrhoiptelol) in Chapter 1, the synthesis of natural rhoiptelol and its structurally close analogs in a multi-gram scale and systematic structure-activity-relationship (SAR) studies are the future considerations of this work. In Chapter 2, diverse hydroxymethyl-tethered polysubstituted furans were synthesized in very good quantities, and many of them were new chemical entities, hence, in vitro / in vivo antibacterial activity screening can be taken up as a future project.

In addition, Chapter 2 comprises the concise synthesis of furyl-hydroquinone-derived natural products shikonofuran J, D, E, and C and their enantiomers, the scale-up of these natural products and enantiomers and structure-activity relationship (SAR) studies may be considered in future research. Studies incorporated in Chapter 3 suggested that the solubility of the eugenol derivatives has a pivotal impact on their inhibitory properties, further in vitro and in vivo analyses of all these pro-drug-based derivatives may be considered for the antidiabetic lead optimization.

7. Publications:

1. Studies directed toward the synthesis of hedycoropyrans: total synthesis of deshydroxyl (-)-hedycoropyran B (ent-rhoiptelol B).

Kataria, P.; Nomula, R. and Kontham R., Org. Biomol. Chem., 2022, 20, 444-463.
2. Synthesis of Furo[2,3-b]pyran-2-ones through $\operatorname{Ag}(\mathrm{I})-$ or $\operatorname{Ag}(\mathrm{I})-\mathrm{Au}(\mathrm{I})$-Catalyzed Cascade Annulation of Alkynols and α-Ketoesters

Thorat, S. S.; Kataria. P.; Kontham, R. Org. Lett. 2018, 20, 872-875.
3. Development of a Facile Synthetic Strategy for Substituted Furans from Keto-Oxetanes Using Bi(III) Catalysis: Application to Unified Total Synthesis of FurylhydroquinoneDerived Natural Products Shikonofuran J, D, E, and C.

Kataria, P.; Sahoo S. S.; Kontham, R. (Manuscript under preparation)
4. Design, Synthesis and Biological Evaluation of Eugenol Derivatives as Potential Antidiabetic Agents

Kataria, P.; Kontham, R.; Kulkarni M. J.; Giri A. P.; Agawane S. B. (Manuscript under preparation)
5. Eugenol derivatives with improved anti-diabetic and related activitives, Kataria. P.; Kontham, R. Kulkarni M. J.; Giri A. P.; Agawane S. B.

NCLI-INV-2019-031 (Patent submitted)

8. References:

1. (a) Y. Jahng and J. G. Park, Molecules, 2018, 23, 3107; (b) Á. Alberti, E. Riethmüller and S. Béni, J. Pharm. Biomed. Anal., 2018, 147, 13-34.

2. Y.-S. Lin, J.-H. Lin, C.-H. Chang and S.-S. Lee, J. Nat. Prod., 2015, 78, 181-187.
3. S. Hanessian, T. Focken and R. Oza, Tetrahedron, 2011, 67, 9870-9884.
4. (a) W.-Y. Huang, T. Nishikawa and A. Nakazaki, ACS Omega, 2017, 2, 487-495. (b)
S. Dreeßen, S. Schabbert and E. Schaumann, Eur. J. Org. Chem., 2001, 245-251. (c)
K. C. Nicolaou, M. O. Frederick, A. C. B. Burtolo, R. M. Denton, F. Rivas, K. P. Cole, R. J. Aversa, R. Gibe, T. Umezawa and T. Suzuki, J. Am. Chem. Soc., 2008, 130, 74667476. (d) B. M. Trost, D. J. Michaelis and S. Malhotra, Org. Lett., 2013, 15, 52745277.
5. Kataria, P.; Nomula, R. and Kontham R., Org. Biomol. Chem., 2022, 20, 444-463.
6. (a) Ahn, J., Chae, H. S., Chin, Y. W., \& Kim, J., Nat. Prod. Res., 2019, 33, 1691-1698.
(b) Kim, J.Y., Jeong, H.J., Park, J.Y., Kim, Y.M., Park, S.J., Cho, J.K., Park, K.H., Ryu, Y.B. and Lee, W.S., Bioorg. Med. Chem. 2012, 20(5), 1740-1748.
7. (a) Ni, C., Zhao, Y., \& Yang, J. ACS Sustainable Chem. Eng. 2020, 8, 12741-12745 (b) White, A. R., Kozlowski, R. A., Tsai, S. C., \& Vanderwal, C. D. Angew. Chem. Int. Ed. 2017, 56, 10525 -10529.
8. Zhang, Y. L., Zhao, Z. N., Li, W. L., Li, J. J., Kalita, S. J., Schneider, U., \& Huang, Y. Y. Chem. Comm, 2020, 56(69), 10030-10033.
9. Chouhan, M., Kumar, K., Sharma, R., Grover, V., and Nair, V. A. Tetrahedron Lett., 2013, 54, 4540-4543.
10. Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R.; Kulkarni, M.J.; Thulasiram, H.V.; Giri, A.P., Sci. Rep. 2016, 6, 1-13.
11. Raja, M. R. C.; Velappan, A. B.; , Chellappan, D.; Debnath, J.; Mahapatra, S. K., Eur. J. Med. Chem., 2017, 139, 503-518.
12. Huang, M-Y.; Lin, J.; Huang, Z-J.; Xu, H-G.; Hong, J.; Sun, P-H.; Guo J-L. and Chen, W-M., Med. Chem. Commun., 2016, 7, 658-666.
13. a) Bilgiclia, H. G.; Ergona, D.; Taslimib, P.; Tüzünc, B.; Kurua, I. A.; Zengina, M. and Gülçind I.; Bioorg. Chem. 2020, 101, 103969. b) Elgendya, E. M. and Khayyatb, S. A. Russ. J. Org. Chem., 2008, 44, 823-829.

14. Yadav, Y.; Owens, E. A.; Sharma, V.; Aneja, R. and Henary, M.; Eur. J. Med. Chem. 2014, 75, 1-10.
15. Jung, J-C.; Lim, E.; Kim, S. H.; Kim, N. S.; Jung, M. and Oh, S.; Chem Biol Drug Des 2011, 78, 725-729.

CHAPTER-1

Enantioselective Total Synthesis of Diarylheptanoid ent-Rhoiptelol B (desHydroxy Hedycoropyran B)

Chapter-1, Section-A: Introduction and previous approaches

1.1 Introduction

Natural products are a diverse group of chemical substances produced by nature. Living organisms, including bacteria, fungi, insects, animals, and plants, produce these compounds, which have evolved to serve human needs, such as lifesaving drugs, vitamins, colors, tastes, scents, etc. Natural products (NPs) are the most successful source of drug leads. Despite spending decades in the shadow of drug discovery using synthetic molecules, the development of drugs from natural sources is currently experiencing a revival. It consumes a lot more chemical space than those produced by synthetic chemistry. In 2020, Newman and Cragg described all therapeutic agents approved by the FDA covering nearly four decades, January 1981 to September 2019, for all diseases worldwide in a survey. According to this, 346 biological molecules (B, 18\%), 71 unaltered natural products ($\mathrm{N}, 4 \%$), 14 botanical drugs (NB, 1\%), 356 natural product derivatives (ND, 19\%), 463 synthetic drugs (S, 25%), 217 natural product mimics (S/NM, 11\%), 65 synthetic drugs (S^{*}, with NP pharmacophore, 3\%), 207 natural product mimics ($\mathrm{S}^{*} / \mathrm{NM}, 11 \%$) and 142 vaccines (V, 8\%) were sharing respective percentages (Figure 1.1) ${ }^{1}$ which clearly shows that natural product-based drug discovery still plays a vital role for treating various diseases (Figure 1.1).

Figure 1.1. Natural product-based new drugs over four decades.

Among various sources of natural products, plant-based natural products are mainly used for treatment as traditional or folk medicine by our ancestors. Here some natural product-based drugs are listed, which are approved by FDA for curing many diseases. Morphine is the first active ingredient isolated from plants by Friedrich Sertürner in 1804 and commercialized by Merck in 1827, it is used to treat severe pain. Aspirin is the first synthetic drug that Bayer synthesized in 1899. It is used as a pain reliever. Quinine is initially isolated from the bark of chinchona in 1820 and is used to treat malaria caused by Plasmodium falciparum which is resist to chloroquine. Subsequently, many natural product-based drugs were developed in the $19^{\text {th }}$ century (Figure 1.2).

Figure 1.2. Representative plant-based natural products developed as drugs.

Galantamine is a natural alkaloid isolated from bulb and flowers of Galanthus nivalis used to treat Alzheimer's disease. Artemisnin, a semi-synthetic drug used to treat malaria, was first discovered by Tu Youyou in 1972 for this she got the Nobel prize in Physiology or Medicine in 2015. The other natural product-based drugs are telithromycin a semisynthetic erythromycin derivative (used for the treatment of pneumonia). Amrubicin hydrochloride is a synthetic anthracycline agent based on a doxorubicin natural product used for lung cancer treatment. Talaporfin sodium is an anticancer agent derived from chlorophyll and L-aspatic acid with photosensitizing activity. Exenatide an antidiabetic agent, based on incretin which is used to treat diabetes mellitus type-2. The next plant-based natural product is paclitaxel (taxol) which is widely used as an anticancer agent to treat various types of cancers (Figure 1.2). ${ }^{2}$

Even though natural goods are a reliable source of therapeutic leads, most large pharmaceutical companies have curtailed or even stopped their natural product research efforts. Consequently, what caused natural products to fall into obscurity in the 1990s? In the 1990s, the development of new technologies that could aid in the endeavor to discover medications derived from natural products has not kept pace with the demands of the market. Another problem for natural products was that many pharmaceutical businesses lacked focus; there are so many different natural product sources, and by focusing on too many things, they spread themselves too thin. Because of these issues, there was a belief within the industry that looking for a potential natural therapy for any ailment was an expensive and difficult process that wasn't worth the time, money, and effort. There are several drawbacks when comparing the drug discovery process for natural products to that of synthetic chemicals, such as the fact that natural products are frequently produced in very small quantities and found mixed together in extracts, necessitating labor-intensive and time-consuming purification procedures and It is uncommon for industry professionals to possess the skill set required to create and maintain a high-quality natural product library. Typically, the structures of natural products are extremely complicated. Organic chemistry modification of complex natural compounds is frequently difficult. The reason that medicinal and combinatorial chemists avoid working with complicated natural products is because of the compounds' enormous size and complexity, which contain too many functional groups to protect. It is tough
to prepare as many natural product analogues as synthetic molecules in the same period of time. ${ }^{3}$

To overcome these problems, the screening of natural products has been remolded by current technical advancements to develop new methodologies, and this presents a unique chance to reestablish natural products as a lead source of therapeutic leads. The advanced improvements involved efficient screening process, good organic synthetic routes, good natural sources etc. The most recent advancement in hyphenated methods combines separation technologies like solid phase extraction (SPE) with NMR, HPLC, and mass spectrometry. Spectrometry has significantly decreased the timeline for determining the structure and isolation of natural products in the crude extracts. The majority of the plant-based drug discovery research included bioassay-guided fractionation and isolation of natural compounds, which were then thoroughly investigated in vitro, in vivo, in preclinical studies, and in humans. ${ }^{4}$

Chirality is a feature of any molecule with asymmetrically substituted carbon that is non-superimposable on each other. The Chiral property of a compound plays an important role in biological activity by determining the specific binding and pharmacological action of a drug. Louis Pasteur, a French scientist, and biologist, first discovered chiral chemistry in 1848 when he first manually separated the two isomers of sodium ammonium tartrate (Figure 1.3). ${ }^{5}$

Figure 1.3. Separation of $(+)$ and $(-)$ - sodium ammonium tartrate.
The study of the interaction between a drug molecule and a living organism is called pharmacology. The Chiral property of a compound plays an important role in biological activity by determining a drug's specific binding and pharmacological action. The drug molecule and receptors interaction is based on the lock and key
model. In industries, only 56% of all drugs are chiral, and 88% are in racemic form. Generally, all-natural compounds are present in single enantiomeric form (chiral) compared to synthesized ones. For example, all amino acids are in Levorotatory (L form), and all sugars are dextrorotatory (D-form). Selected information on chirality versus pharmacological effect is described below:
i) Most racemic compounds have one active enantiomer called eutomer and another inactive or less toxic, called distomer. For example (S)-(-)propranolol is a β-blocker which is 100 times more effective as a than its opposite isomer, and (R)-methadone is around 50 times more active than its (S)-antipode as an analgesic.
ii) Racemic compound where both the enantiomers are equally active and have the same pharmacologic properties. Few drugs are reported in this category, such as flecainide as an antiarrhythmic, cyclophosphamide as an antineoplastic, and fluoxetine as an antidepressant.
iii) The last one is with only one active enantiomer (eutomer), and the inactive isomer (distomer) is changed to eutomer when it gets into the body by chiral inversion. For example $(S)-(+)$-ibuprofen is more active enantiomer than $(R)-$ $(-)$-ibuprofen. In our body inactive (R)-isomer is converted to its active (S) isomer by chiral inversion using hepatic enzyme not (S)-antipode to (R). (S) -$(+)$-oxazepam is $100-200$ fold more potent than $(R)-(-)$-oxazepam as a tranquilizer.
iv) Another examples are (S)-(+)-dexchlorpheniramine (antihistamine) is almost 200 times more potent than $(R)-(-)$-dexchlorpheniramine. $(S)-(+)$-Ketamine is more potent as an anesthetic agent, and it may have less side effects compared to $(R)-(-)$-ketamine (Figure 1.4).

Figure 1.4. FDA-approved Chiral Drugs
In all the above cases, only one enantiomer from their racemic mixture is active, hence, avoiding unnecessary isomers is warranted, which could be addressed using various chiral separation techniques. The "racemate-versus-enantiomer" issue has also given rise to a new marketing technique in industries called the racemic switch. A racemic switch refers to the transformation of a drug into its pure single enantiomer, which was previously approved as its racemic form. There are two types of techniques used for chiral separation. The common method is the synthesis of diastereomeric salt of enantiomers using reactions with chiral acids or chiral bases, which would form a set of diastereomers having different physical and chemical properties. So they can easily be separated by simply crystallization or filtration if one isomer is soluble in a particular solvent and another is not. The other classical method is enzymatic or kinetic resolution, in which we can achieve one of the enantiomers in its pure form using some microorganism like yeast, bacteria etc. Modern techniques like chiral high-performance liquid chromatography (HPLC),
capillary electrophoresis, liquid-liquid extraction, etc are used for the purification of optically active compounds. ${ }^{6}$

Even though several technologies are available in the market to access chiral molecules, still pharmaceutical industries rely only on small molecule-based drugs due to their low production cost, easy determination, quick timelines, and also the problems with natural products like complex structure, difficult isolation process, low abundance, finally the issue in supply. Hence there is an urgent need to develop sustainable and practical synthetic routes or techniques to synthesize natural products in a stereoselective manner. So keeping these points in mind, we aimed to develop efficient stereoselective synthetic routes for biologically relevant diarylheptanoid-containing natural products.

Diarylheptanoids (DAHs) belong to one of the emerging structural classes of natural products known to display interesting biological profiles of antiinflammatory, antioxidation, anticancer, inhibition of NO production, DPPH-radical scavenging activity, and others. Structurally these natural products possess two aryl rings connected with seven carbons chain at the C1 and C7 positions. Curcumin was the first diarylheptanoid isolated from turmeric's rhizomes by Vogel and Pelletier in 1815, which is a yellow-colored matter. After that various diarylheptanoids were isolated from a number of plants family including Zingiberaceae, Myricaceae, Burseraceae, Actinidiaceae, Casuarinaceae, Juglandaceae, Leguminosae, Aceraceae, and Betulaceae, from leaves, fruits, roots, seeds, rhizomes, and barks. As of today, more than 400 diarylheptanoid natural products are identified in nature.

Diarylheptanoids are classified as linear and cyclic respectively. Linear diarylheptanoids are mostly rich in plant species of Curcuma, Zingiber, Zingiberaceae, and Betulaceae families. Natural product curcumin (22) falls under this category. Cyclic diarylheptanoids are generally found in Myricaceae, Aceraceae, Garuga Burseraceae, Betulaceae, and Juglandaceae species, these are further divided into two classes: biaryl type possessing tetrahydrofuran and tetrahydropyran rings (23-25) and diarylether type having macrocyclic ring-systems (26 and 27) (Figure 1.5) ${ }^{7}$

Figure 1.5 Diarylheptanoid natural products with the linear and cyclic skeleton.
A significant number of tetrahydropyran diarylheptanoids (THP-DAHs) with complex structures were isolated from many plant species having various biological activities. Particularly, centrolobines, calyxins, diospongins, rhoiptelol B, and others, have led to a substantial interest in medicinal and synthetic organic chemistry. As part of our investigations on the development of novel and practical synthetic approaches for diarylheptanoid with THP ring containing natural products (hedycoropyran A \& B), we performed an extensive literature survey on known synthetic methodologies to access these THP ring and the list of THP derived diarylheptanoids, and the details are presented below (Table 1.1).

Table1.1 Representative examples for THP-DAHs natural products.

S. No	Structure	Isolation and activity
$\mathbf{1 .}$		In 1964, De Albuquerque, I. L isolated (-)- centrolobine (28) from the heartwood of Ccentrolobine robustum, later from the stem of Brosinium potabile. It exhibits anti- inflammatory, antibacterial, and anti- leishmanial activity ${ }^{8}$
$(-)$-Centrolobine (28)		

2.	 (+)-Rhoiptelol B (29)	In 1996, Kouno and coworkers isolated Rhoiptelol B (29) from the fruits of Rhoiptelea chiliantha, and in 2007, Bae and coworkers also isolated it from the bark of Alnus hirsute and is known to display inhibitory activities against LPS induced NF-KB activation, NO and TNF- α production, and HIF-1 in AGS cells. ${ }^{9}$
3.	 Blepharocalyxin D (30)	In 2000, Kadota and coworkers isolated Blepharocalyxin D (30) from an EtOH extract of seeds of Alpinia blepharocalyx. It shows potent antiproliferative activity against murine colon 26-L5 carcinoma and human HT-1080 ®brosarcoma cells, with $E D_{50}$ values of $3.61 \mu \mathrm{M} .{ }^{10}$
4.		In 2001, Kadota and co-workers isolated Calyxin I (31) from an EtOH extract of the seeds of Alpinia blepharocalyx. It shows significant cytotoxicity against murine colon 26-L5 carcinoma and human HT1080 fibrosarcoma cells. ${ }^{11}$
5.		In 2001, Kadota and co-workers isolated epicalyxin F (32) from an EtOH extract of the seeds of Alpinia blepharocalyx. It also shows significant cytotoxicity against both the cell lines of murine colon 26-L5 carcinoma and human HT-1080 fibrosarcoma cells. ${ }^{11}$

6.	 Diospongin A (33), $\mathrm{Ph}=\alpha$ Diospongin $\mathrm{B}(34), \mathrm{Ph}=\beta$	In 2004, Kadota and coworkers isolated Diospongins A (33) and B (34) from rhizomes of Dioscorea spongiosa. Diospongin A shows significant activity against NO production (anti-inflammatory) and Diospongin B shows inhibitory activity against bone resorption. ${ }^{12}$
7.	 Hedycoropyran A (35) H = β Hedycoropyran B(36) $H=\alpha$	In 2015, Lee and co-workers isolated hedycoropyran A (35) and B (36) from an n-BuOH-soluble fraction of the rhizome of Hedychium coronarium. The biological activity of these compounds has not yet been evaluated due to less abundance. ${ }^{13}$

Inspired by the interesting biological profile and structural features of these diarylheptanoid natural products, and the lowest natural abundance of hedycoropyrans $(35,36)$, and our continues interest in the THP containing stereoselective total synthesis biologically potent natural products, we aimed to develop concise chemical synthetic routes for two THP-diarylheptanoid natural products (-)-hedycoropyran A and B. Introduction, earlier synthetic approaches documented in the literature toward the total synthesis of hedycoropyran A and B are discussed in subsequent sections of this chapter.

1.1.1 Isolation and biological activity of $(-)$-hedycoropyran A and B:

(-)-Hedycoropyran A and B are two novel compounds possessing a unusual diarylheptanoid with a trans- and a cis-2-aryl-6-alkyl-THP core respectively. In 2015, Lee and co-workers isolated two new DAHs, hedycoropyrans A (35) and B (36), along with other hedycorofurans and several cytotoxic labdane-type diterpenoids from the rhizome of Hedychium coronarium in n-BuOH soluble fraction. The biological activity of these compounds is not yet evaluated due to the very less abundance in
nature which is 1.0 mg of hedycoropyarn A and 0.4 mg of hedycoropyran B respectively from 14.5 kg powdered dry rhizomes (Figure 1.6). ${ }^{13}$

Figure1.6 | Structures of (-)-hedycoropyran A \& B.
Hedycoropyran A (35) and B (36) were obtained as a solid (amorphous) having specific optical rotation $[\alpha]_{\mathrm{D}^{22}}-86(c 0.04, \mathrm{MeOH})$ and $-100(c 0.02, \mathrm{MeOH})$ respectively. The (-)-hedycoropyran A (35) and B (36) have molecular formula $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{7}$, which displays seven degrees of unsaturation as determined from HRESIMS analysis, which displays the ion peak at $375.1445[\mathrm{M}-\mathrm{H}]^{-}$for compound 35 , for which calcd formula is $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{7}$ and molecular mass is 375.1449 and HRESIMS m / z $375.1442[\mathrm{M}-\mathrm{H}]$ - for compound 36, for which calcd formula for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{7}$ and mass is 375.1449 respectively. The proton NMR spectrum of $\mathbf{3 5}$ displayed seven protons, δ 7.06 , and $6.69 \mathrm{~J}=8.5 \mathrm{~Hz}\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right.$ pattern) and $\delta 7.02(\mathrm{~d}, J=1.8 \mathrm{~Hz})(\mathrm{ABX}$ pattern) δ $6.89(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz})$ and $6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz})$, which indicated the existence of a 1,4-di and 1,3,4-trisubstituted aromatic ring. One - OCH_{3} group at $\delta 3.86$, five (-OCH) protons at $\delta 4.48$, (d, $J=9.2 \mathrm{~Hz}$), 4.04, (ddd, $J=7.8,6.6,4.9 \mathrm{~Hz}$), 3.98, (ddd, $J=10.9$, $8.3,5.1 \mathrm{~Hz}$), 3.77, (ddd, $J=6.6,6.5,2.0 \mathrm{~Hz}$) and 3.38 , (dd, $J=9.2,8.3 \mathrm{~Hz}$) and two (CH_{2}) groups at $\delta 2.82$, (dd, $J=13.9,4.9 \mathrm{~Hz}$), 2.16, (ddd, $J=13.6,5.1,2.0 \mathrm{~Hz}$) and 1.85 , (ddd, $J=13.6,10.9,6.5 \mathrm{~Hz}$). The carbon NMR spectrum displayed seven aromatic carbon at $\delta 116.0$ and 131.5 ppm for 1,4-disubstituted phenyl group and $\delta 115.7$, 122.1, and 112.6 ppm for $1,3,4$-trisubstituted phenyl group and five quaternary aromatic carbon at $\delta 156.8,148.7,147.3,133.0$ and 130.9. One methoxy ($-\mathrm{OCH}_{3}$) carbon at $\delta 56.4$, five oxymethine carbon (-CH) at $\delta 78.6,73.9,70.7,76.5$, and 77.9. The two methylene carbon $\left(-\mathrm{CH}_{2}\right)$ at $\delta 35.2$ and 40.6 ppm . The corresponding stereochemistry of 35 was assigned using 2D-NMR analysis. The (S) absolute stereochemistry of $\mathbf{3 5}$ was assigned by electronic circular dichroism analysis (ECD).

It exhibited a positive Cotton effect at 230 nm , opposite to adrenaline and niacicoside, allowing the assignment of $35(2 \mathrm{~S})$ configurations.

Hedycoropyran B (36): The NMR spectral data is extremely similar to hedycoropyran A. The relative stereochemistry of hedycoropyran A and B (35 and 36) was tentatively established based on 2 D NMR analysis and the (R) absolute stereochemistry was assigned by electronic circular dichroism analysis (ECD) which exhibited a negative Cotton effect at 230 nm , this is the exact opposite of $\mathbf{3 5}$, thus allowing the assignment of $\mathbf{3 6}(2 \mathrm{R})$ configurations. ${ }^{13}$

Bioactivity: Due to very less natural abundance that is (1 mg for $\mathbf{3 5}$ and 0.4 mg for 36 from powdered dried rhizomes (14.2 Kg), the biological activity of these compounds has not been evaluated yet.

1.1.2 Previous approaches

1.1.2.1 First total synthesis by Tong and co-workers (2017) ${ }^{\mathbf{1 4}}$

The first asymmetric total synthesis is done by Tong et al. after immediate isolation of hedycoropyran A (35) and B (36) with 5.4% and 3.9% overall yield in a total of 18 and 19 steps respectively. They employed their in-house-developed Achmatowicz rearrangement as a key transformation for the construction of pyran intermediate $\mathbf{4 0}$ using KBr and oxone from furyl alcohol $\mathbf{3 9}$ which was prepared from commercially available tyrosol in 5 steps. Next Zn-catalysed reductive deoxygenation followed by coupling reactions (Heck-Matsuda) were used to construct an unusual and thermodynamically disfavored 2,6-trans THP (43) moiety using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and 2,6-tert-butyl-4-methyl-pyridine (DBMP). Then acylation followed by dihydroxylation using $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4}$ delivered the required cis-diol intermediate 44. Next compound 45 was obtained through a two step reaction process which involve acetonide protection followed ketone reduction by NaBH_{4}, and subsequent Barton-McCombie deoxygenation conditions gave diol 46 by removal of carbonyl group and acetonoid protection. IBX oxidation followed by Evans-Saksena reaction delivered the inverted chiral center at C4 position and gave 3,4-anti diol 48. Finally the deprotection of acetyl group of 48 using DIBAL-H reduction followed be TBS deprotection sing TAS-F furnished hedycoropyran A (35) in 84% yield as a single
isomer, and subsequenr C2 epimerization of $\mathbf{3 5}$ using HCl in methanol delivered another natural product hedycoropyran B (36) in 71\% yield (Scheme 1.1). ${ }^{14}$

Scheme 1.1 \mid Total synthesis of hedycoropyran A and B by Rongbiao Tong.

1.1.3 Isolation and biological activity of (+)-Rhoiptelol B:

The first isolation of (+)-Rhoiptelol B (29) along with two other diarylheptanoids was done by Kouno and coworkers in 1996 from the fruits and leaves of Rhoiptelea chiliantha and then from Alnus hirsuta's bark in 2007 (Formerly used in traditional medicine in Korea and China as an anti-inflammatory agent) by Bae and co-workers. It examined for the inhibitory actions against TNF- α production, NO, HIF-1 in AGS cells and LPS induced NF-KB activation. The structural features
involved 1,4-di and 1,3,4-trisubstituted aryl ring along with a chiral hydroxy group on THP ring and another hydroxyl group adjacent carbon to the THP ring (Figure 1.7).

Figure1.7 | Structures of (+)-rhoiptelol B (29)
$(+)$-Rhoiptelol B (29) was obtained as an amorphous powder having [$\alpha]_{D^{12}}$ $+97(c=0.3, \mathrm{MeOH})$. It has molecular formula $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$. It showed positive FAB-MS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 383$ and $[\mathrm{M}]^{+} 360$. The (+)-rhoiptelol B (29) structure was determined by 1D and 2D NMR spectroscopy. The whole protoncarbon connectivity of the molecule was established with the help of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HSQC techniques. The proton spectrum of 29 displyed seven protons at δ 6.69, (d, $J=8$) and 7.03, (d, $J=8 \mathrm{~Hz}$) (AA'XX' pattern) and $\delta 6.77(\mathrm{~d}, J=8 \mathrm{~Hz}), \delta 6.84$ (dd, $J=2,8 \mathrm{~Hz}$), 7.04 (br, s) (ABX pattern) which indicated the existence of a 1,4 -diand a 1,3,4-trisubstituted phenyl group. One methoxy group showed at $\delta 3.87$ and methoxy group position was estabilished through NOESY correlation to be at C-3' of the trisubstituted benzene ring. The two phenolic groups and two alcoholic hydroxy groups presence were determined through acetylation with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine and methylation with diazomethane of 29 which gave 29a and 29b, respectively. Four oxymethine protons at $\delta 4.69$, (dd, $J=3,11 \mathrm{~Hz}$), 4.27 , $(\mathrm{t}, J=3 \mathrm{~Hz}), 3.82$, ($\mathrm{dt}, J=13,3$ Hz) and $3.60,(\mathrm{dt}, J=3,7 \mathrm{~Hz})$ and three methylene group $\left(-\mathrm{CH}_{2}\right)$ at $\delta 1.75$, (ddd, $J=3$, $11,12 \mathrm{~Hz}, a x), 1.84,(\mathrm{dd}, J=3,12 \mathrm{~Hz}, e q), 1.57$, (dd, $J=2,13 \mathrm{~Hz}, e q), 1.89,(\mathrm{dt}, J=3,13$ $\mathrm{Hz}, a x$) and 2.70, (dd, $J=7,13 \mathrm{~Hz}$), 2.89, (dd, $J=7,13 \mathrm{~Hz}$). The carbon NMR spectrum showed seven carbon (-CH) at $\delta 116.0$ and 131.4 ppm for 1,4 -disubstituted phenyl group and $\delta 115.8,119.8$, and 111.1 ppm for 1,3,4-trisubstituted phenyl group and five quaternary aromatic carbon at $\delta 136.1,148.8,146.7,131.1$ and 156.6. One methoxy $\left(-\mathrm{OCH}_{3}\right)$ carbon at $\delta 56.4$, four oxymethine carbon $(-\mathrm{CH})$ at $\delta 75.2,65.6,74.3$, and 76.3. The three methylene carbon $\left(-\mathrm{CH}_{2}\right)$ at $\delta 41.3,34.9$ and 39.7 ppm . The
absolute configurations of 29 was determined using modified Mosher's method to 29b (Figure 1.4). According to this both C4 and C7 determined to be S, and hence C2 and C6 are R and S compatibly. So the combined data revealed the structure of rhoiptelol B (29) (Figure 1.8) ${ }^{9}$

	R_{1}	\mathbf{R}_{2}
29	H	H
29a	Ac	Ac
29b	Me	H
29c	Me	(R)-MTPA
29d	Me	(S)-MTPA

Figure1.8 | Structures of (+)-rhoiptelol B (29), acyl 29a, methyl 29b and its MTPA ester 29c and 29d.

1.1.4 Previous approaches

1.1.4.1 First asymmetric total synthesis by Raji Reddy's group $(2010)^{15}$

The first asymmetric total synthesis of rhoiptelol B(29) was reported by Raji Reddy et al. in 2010 in a total of 15 steps using simple building blocks vanillin (49) and benzyl chavicol (54) using various key transformation. Their synthetic strategy started with tosyl protection followed by asymmetric Keck allylation of vanillin (49) using allyltributyltin and (R)-BINOL to get the chiral allylic alcohol 51. Then TBS protection of alcohol 51 followed by oxidative cleavage of the olefinic bond using OsO_{4} and NaIO_{4} delivered the required key fragment aldehyde 53 in 83\% yield. Next, the synthesis of ketone fragment $\mathbf{5 8}$ began with epoxidation of benzyl chavicol 54 using m-CPBA followed by chiral resolution using the Jacobson method gave chiral epoxide 56a along with diol 56b which can again be converted into 56a using the known procedure. Then the reaction of chiral epoxide 56a with trimethyl sulfonium iodide in presence of n-BuLi delivered the allyl alcohol which was further protected as its benzyl ether using NaH and BnBr to get 57. Then allyl benzyl ether 57 was used for Wacker oxidation to get the required product 58 in 63\% yield (Scheme 1.2).

Scheme $1.2 \mid$ Synthesis of key aldehyde 53 and ketone 58 fragments.

After the successful synthesis of both key fragments, both fragments were coupled by aldol reaction using LiHMDS at $-78^{\circ} \mathrm{C}$ to get the corresponding aldol 59. Dess-Martin periodinane oxidation of 59 gave the 1,3-diketone intermediate $\mathbf{6 0}$ in 92\% yield. Next, p-TSA mediated cyclisation of hydroxy diketone gave dihydropyranone intermediate $\mathbf{6 1}$ via TBS-deprotection followed by cyclisation and dehydration cascade. Olefin reduction of pyranone $\mathbf{6 1}$ followed by debenzylation uisng hydrogenation delivered tetrahydropyranone 62 in 74% yield. Next, selective reduction of tetrahydropyranone 62 using $L S$-selectride followed by detosylation using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH delivered the desired natural product (+)-rhoiptelol $\mathrm{B}(\mathbf{2 9)}$ in 78% yield. They found that ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, HRMS and optical rotation of $29\left\{[\alpha]^{28}=+77.2\right.$ (c $=0.2, \mathrm{MeOH}$) $\}$ was comparable to the reported data (Scheme 1.3),

Scheme 1.3 ${ }^{\text {First total synthesis of (+)-rhoiptelol B by Raji Reddy's group. }}$

1.1.4.2 Second total synthesis by J. S. Yadav's group (2010) ${ }^{16}$

In 2010, J. S. Yadav and co-workers reported the second total synthesis of rhoiptelol B (29) in a total of 14 steps. ${ }^{16}$ The synthesis started with tosylation followed by witting olefination of vanillin (49) to get olefin 63, which was subjected to DIBAL-H reduction to reduced ester followed by Sharpless asymmetric epoxidation condition using (-)-DIPT, TBHP and $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4}$ to deliver the chiral epoxide 64 in 96% yield. Next, the reductive ring opening of $\mathbf{6 4}$ by Red-Al gave the desired 1,3-diol 65, which was protected as its benzylidene acetal using PMP-acetal and CSA, then subjected to the regioselective opening of the acetal using DIBAL-H at $78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ to obtain the alcohol 66 which was oxidised using Swern oxidation followed by MgBr_{2}.OEt2 mediated chelation-controlled addition of allyltributyltin delivered the trans-allylic alcohol 67 majorly with a 9:1 diastereomeric ratio. This product 67 was protected as its TBDPS ether and subjected to PMB-deprotection with DDQ to deliver the required alcohol 68 in 80% yield cross-metathesis

The cross-metathesis between alkenes 68 and 69 in presence of Grubb's second-generation catalyst gave the $E-Z$ mixture of 70 with a $6: 1$ ratio. Next, Sharpless asymmetric dihydroxylation with AD-mix α in a 1:1 ratio of tert-butanol
and $\mathrm{H}_{2} \mathrm{O}$ gave dihydroxylated product 71, which was further cyclized to form pyran ring with concomitant deprotection of TBS and TBDPS group to give $\mathbf{7 1}$ under FeCl_{3} catalysis. Finally deprotection of tosyl group of $\mathbf{7 1}$ using $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$ in reflux conditions gave the desired natural product rhoiptelol B (29) in 75\% yield. (Scheme 1.4)

Scheme 1.4 | Second total synthesis of (+)-rhoiptelol B by J. S. Yadav's group

1.1.4.3 Third total synthesis of rhoiptelol B via Prins cyclization by J.

S. Yadav's group (2014) ${ }^{17}$

In 2014, another stereoselective total synthesis of rhoiptelol B (29) was reported by J. S. Yadav and co-workers using Prins cyclization as key step. The synthesis began with TFA-mediated Prins cyclization between vanillin (49) and homoallylic alcohol 72 followed by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MOH}$ to deliver the
pyranonol 73. The secondary hydroxyl group's stereochemistry in the pyran ring was inverted using the Mitsunobu conditions to get pyranol 74 in 75\% yield. Next, then MOM protection of hydroxyl group of 74 using MOMCl and subsequent benzyl deprotection using Li/naphthalene gave alcohol 75. The primary alcohol was knocked out using iodination followed by treatment with tert-butoxide delivered alkene 76. Cross-metathesis between alkene $\mathbf{7 6}$ and $\mathbf{7 7}$ in presence of Grubb's II generation catalyst delivered alkene 78 in 72\% yield. Next, Asymmetric Sharpless dihydroxylation of $\mathbf{7 8}$ by using AD-mix- α gave the diol 79, followed by cyclic carbonate protection using triphosgene and then subjected to hydrogenolysis with Raney- Ni to get alcohol 80. Finally, MOM-deprotection by TMSBr delivered (+)rhoiptelol B (29).(Scheme 1.5). ${ }^{17}$

Scheme 1.5 | Stereoselective total synthesis of (+)-rhoiptelol B by J. S. Yadav's group.

1.1.4.4 Fourth total synthesis of rhoiptelol B by Kadota's group $(2018)^{18}$

The fourth total synthesis of (+)-rhoiptelol B (29) was reported by Kadota and co-workers in 2018 via intramolecular allylation of α-acetoxy ether as a key strategy.

Scheme 1.6 | Stereoselective total synthesis of (+)-rhoiptelol B by Kadota's group.
The synthesis began with the construction of allyl borane $\mathbf{8 2}$ by known allyl selenide 81 with n-BuLi followed by treatment with (+)-Ipc2BOMe providing the chiral allyl borane $\mathbf{8 2}$ which was used for the reaction with benzyl-protected vanillin 83 to deliver alcohol 84 in 88\% yield. Esterification of alcohol 84 with acid 85 in the presence of DCC, DMAP gave ester $\mathbf{8 6}$ in 91% yield. Then partial reduction of $\mathbf{8 6}$ with DIBAL-H followed by treatment with chloroacetic anhydride gave α-acetoxy ether 87 . BF_{3}.OEt2-mediated cyclization of α-acetoxy ether $\mathbf{8 7}$ delivers the exo-methylene THP intermediate 88 as a single stereoisomer. then, the oxidative cleavage of exo-olefin 88 gave the pyranone 89 in 88% yield by using OsO4, 2,6-lutidne and NaIO4. Stereoselective reduction of pyranone $\mathbf{8 9}$ with L-Selectride provided pyranol 90
(69\%) and its stereoisomer (19\%). Finally, the deprotection of the benzyl group of 90 using Pd/C catalyzed hydrogenation reaction delivered the desired natural product rhoiptelol B (29) in 70\% yield (Scheme 1.6). ${ }^{18}$

Chapter-1, Section-B: Present work

1.2. Result and Discussions

The First Approach:

1.2.1 Retrosynthetic analysis

In the initial retrosynthetic analysis, as described in Scheme 2, we envisioned a unified route for the synthesis of hedycoropyrans A (35) and B (36) by a suitably functionalized dihydroxy alkene intermediate 92 (containing allylic and homoallylic alcohol functionalities) via allylic carbocation-mediated ring-closure that would deliver advanced 2,6-trans/2,6-cis dihydropyran intermediate 91a/91b. This key intermediate 92 could be obtained through cross-metathesis reaction of homoallylic alcohol 93 and allylic alcohol 94. Alkenols 93 and 94 would be synthesized from commercially available and cost-effective building blocks 4-allylanisole (estragole, 95) and veratraldehyde (96) employing interesting synthetic manipulations (Scheme 1.7).

Scheme 1.7. Initial retrosynthetic analysis of hedycoropyrans A (35) and B (36).

1.2.2 Synthesis of of hedycoropyrans $A(35)$ and $B(36)$ via allylic carbocationmediated ring-closure.

Our efforts began to access the key DAH-derived dihydroxy alkene intermediate 92 starting from building blocks 95 and 96. 4-Allylanisole (estragole, 95) was subjected to Sharpless asymmetric dihydroxylation ${ }^{19}$ using AD mix$\beta / \mathrm{MeSO}_{2} \mathrm{NH}_{2}$ to obtain the corresponding 1,2-diol, which was subsequently protected as its p-methoxy benzylidene acetal $97 .{ }^{20}$ The regioselective reductive opening ${ }^{21}$ of the 1,2-acetal 97 using DIBAL-H followed by Dess-Martin periodinane oxidation ${ }^{22}$ delivered aldehyde 98. Substrate-controlled addition of allyltributyltin onto aldehyde 98 in the presence of MgBr_{2}. OEt_{2} delivered requisite homoallylic alcohol 93 as only a diastereomer. ${ }^{23}$ Then, cross-metathesis reaction ${ }^{24}$ of 93 and 94 (prepared from vinylation of veratraldehyde 10) ${ }^{25}$ using Grubbs 2nd generation catalyst furnished the desired DAH-derived dihydroxy alkene intermediate 92 (exclusively trans-olefin) in excellent yield of 95\%.

Scheme 1.8. Efforts toward the synthesis of hedycoropyrans A (35) and B (36) via allylic carbocation-mediated ring-closure.

Next, the crucial allylic carbocation induced ring-closure reaction of alkenediol 92 was attempted using well-established reaction conditions of BF_{3}. $\mathrm{OEt} 2 / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{24}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{24}$ and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{24}$ at low to ambient ($-78{ }^{\circ} \mathrm{C}$ to rt) temperatures, which proved to be unsuccessful, and starting material 92 was decomposed in all cases. If this proposed transformation to access 91a/91b from 92 worked well, our next sequence of reactions (as reported by Li and Tong) ${ }^{14}$ as described via diols $\mathbf{9 9 a} / \mathbf{9 9 b}$, would have led to the total synthesis of hedycoropyrans A (35) and B (36) (Scheme 1.8).

The Second Approach:

1.2.3 Retrosynthetic analysis

Since this initially designed strategy was unsuccessful, we were required to seek a distinct approach to access natural products 35 and/or 36, and we considered a new retrosynthetic analysis based on the intramolecular oxa-Michael reaction that provides access to the THP ring system with desired stereochemistry as depicted in Scheme 1.9. Thus, we envisioned the construction of hedycoropyrans B (36) via intramolecular oxa-Michael induced ring closure of suitably constructed enone $\mathbf{1 0 0}$ or ynone 100a/100b intermediates with varying 0 -substituents. In this context, we

Scheme 1.9. New retrosynthetic analysis of hedycoropyran B (36) based on the oxaMichael reaction of hydroxy-enone or hydroxy-ynone.
anticipated a convergent approach comprising Li-acetylide (generated from 101/101a) addition onto the chiral-aldehydes 102/102a followed by oxidation to access the enone/ynones intermediates (100/100a, 100b). Intermediates 101/101a and 102/102a could be obtained from commercially available 4-allylanisole (95) and veratraldehyde (96) or their congeners (95a and vanillin 49) respectively (Scheme 1.9).

1.2.4 Synthesis of alkyne fragment 101 and aldehyde fragment 102

Hence, this alternate route began with the synthesis of alkyne intermediate 101 from 4-allylanisole (95) in two distinct pathways. In the first route, aldehyde 98 (prepared from 95 in Scheme 3) was subjected to Corey-Fuchs olefination ${ }^{26}$ and subsequently treated with n-BuLi ${ }^{26}$ to afford the desired alkyne fragment 101 (Path A, Scheme 1.10). Further, an alternate route for 101 was also evaluated via epoxy alcohol 104. Thus, allylanisole 95 was converted into α, β-unsaturated ester 103 employing cross-metathesis reaction, ${ }^{24}$ which was then reduced using DIBAL-H to aff-

Scheme 1.10. Synthesis of alkyne fragment 101 and aldehyde fragment 102.
ord allylic alcohol and subsequently converted into chiral epoxy alcohol 104 under Sharpless conditions. ${ }^{27}$ Next, epoxy alcohol 104 was transformed into chloride 105 using TPP, $\mathrm{CCl}_{4} .^{28}$ It was subjected to base-mediated (n - BuLi) rearrangement reaction to obtain propargylic alcohol, which was subsequently protected as its PMB ether to get the desired alkyne fragment 101 (Path B, Scheme 1.10). ${ }^{29}$

After establishing a reliable synthetic route for 101, we synthesized aldehyde coupling partner 102 from veratraldehyde 96. Asymmetric Keck allylation of $\mathbf{9 6}$ to give allyl alcohol 106 by using $\operatorname{Ti}\left(0^{i} \mathrm{Pr}\right)_{4,}(S)$-BINOL, allyltributyltin, ${ }^{30}$ followed by TBS protection ${ }^{31}$ and dihydroxylative cleavage (OsO_{4}, NMO then $\left.\mathrm{NaIO}_{4}\right)^{32}$ steps cleanly delivered aldehyde 102 (Scheme 1.10).

Having synthesized alkyne 101 and aldehyde 102 fragments on a gram-scale, the stage was set for the coupling and to verify our hypothesis of intra-molecular oxaMichael reaction. Initially, we wanted to evaluate the oxa-Michael reaction using enone $\mathbf{1 0 0}$ as a substrate (Path-A, Scheme 1.11). Thus, alkyne $\mathbf{1 0 1}$ and aldehyde 102 were coupled using n-BuLi in THF to obtain propargylic alcohol 107. ${ }^{33}$ Next, partial reduction of alkyne 107 using Red-Al ${ }^{34}$ followed by Dess-Martin periodinane oxidation, ${ }^{22}$ cleanly delivered enone $\mathbf{1 0 0}$ in a good yield. TBS deprotection ${ }^{35}$ of $\mathbf{1 0 0}$ using HF in $\mathrm{CH}_{3} \mathrm{CN}$ gave hydroxy-alkyl tethered enone 108 in 74% yield. Next, the crucial oxa-Michael reaction of the hydroxy-enone $\mathbf{1 0 8}$ to give pyranone $\mathbf{1 0 9}$ proved to be insurmountable, under base ($\mathrm{KO}^{\mathrm{t} B u},^{36 a} \mathrm{NaH},{ }^{36 \mathrm{~b}, \mathrm{c}} \mathrm{DBU}^{36 \mathrm{~d}}$), acid (Amberlyst15) ${ }^{36 e, f}$ and $\operatorname{Pd}(I I)$ catalyzed ${ }^{36 g, h}$ reaction conditions, leading to either the corresponding dehydrated product $\mathbf{1 1 0}$ or retro-aldol products $\mathbf{9 6}$ and $\mathbf{1 1 1}$ (Path A, Scheme 1.11; Table 1).

Hence, we slightly altered the strategy by replacing enone $\mathbf{1 0 0}$ with the corresponding ynone 100a as oxa-Michael addition precursor to verify reactivity patterns as shown in Path B of Scheme 1.11. Therefore, ynone 100a was prepared from 107 through Dess-Martin periodinane oxidation, ${ }^{22} \mathrm{HF}-\mathrm{CH}_{3} \mathrm{CN}$-mediated TBS deprotection ${ }^{35}$ steps, and evaluated for the intramolecular oxa-Michael reaction using well-reported procedures (Table 2). Initial conditions of using $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ mediated cyclization ${ }^{37 a}$ led to the decomposition of starting material. Cyclization using $\mathrm{NaH}^{37 \mathrm{~b}}$ and/or mild Lewis acid (AgOTf, catalytic) ${ }^{37 \mathrm{c}}$ resulted in undesired dehydrated product 110a. Whereas, AuCl-catalyzed cyclization ${ }^{38}$ was found to be
non-selective towards this oxa-Michael by providing an inseparable mixture (1:1 ratio) of desired pyranone 23a (through the 6-exo-dig mode of cyclization) and furanone 26 (Path-B, Scheme 1.11) through the 5-endo-dig mode of cyclization. These unfruitful results (except AuCl reaction of entry 4, Table 2) reveal the sensitivity of the benzylic hydroxyl group (of 108 and 108a) toward basic or acidic conditions, which could be due to the stabilization of benzylic carbocation through the mesomeric effect of the p-OMe group of phenyl ring (Path A and Path B, Scheme 1.11).

Scheme 1.11. Efforts toward the synthesis of hedycoropyrans B (36) via oxa-Michael reaction of hydroxy-enone/hydroxy-ynone

Suspecting the role of p-OMe group (of $\mathbf{1 0 8}$ and 108a, Scheme 1.11) in failure of above intramolecular oxa-Michael reactions and the literature precedence of successful survival of similar benzylic hydroxyl groups in presence of p-OAc and p -

Table 1. Efforts toward the synthesis of pyranone 109.

Entry	Conditions	Result
1	$\mathrm{KO}^{t} \mathrm{Bu}$ (0.1 equiv) $\mathrm{EtOH}, 0^{\circ} \mathrm{C}$ to rt	110, 13%;111, 60% and 96, 26%
2	$\begin{gathered} \mathrm{NaH}(2.2 \text { equiv }) \\ -78^{\circ} \mathrm{C}, \mathrm{THF} \end{gathered}$	110, 8%; 111, 49% and 96, 32%
3	$\begin{aligned} & \text { DBU (4 equiv) } \\ & \text { DCM, } 0^{\circ} \mathrm{C} \end{aligned}$	110, 68\%
4	Amberlyst-15 (2 equiv) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,	110, 74\%
5	$\begin{gathered} \mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}(0.1 \text { equiv) } \\ \mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { rt } \end{gathered}$	108, recovered

Table 2. Efforts toward the synthesis of dihydropyranone 109a.
$\left.\begin{array}{ccc}\hline \text { Entry } & \text { Conditions } & \text { Result } \\ 1 & \mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.1 \text { equiv }), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} & \begin{array}{c}\text { 108a } \\ (0.1 \text { equiv }), ~ \\ \text { PPh }\end{array}, \mathrm{DME}, 65^{\circ} \mathrm{C}, 24 \mathrm{~h}\end{array}\right)$

OTs substituents, ${ }^{15,16}$ we intended to verify the fate of our endeavor by replacing the p-OMe group with p-OTs (replacing alkyne 101 and aldehyde 102 fragments with 101a (having p-OTBS) and 102a (having p-OTs) respectively as described in Scheme 1.12. Demethylation ${ }^{39}$ of 4 -allylanisole (95) using BBr_{3} followed by TBS protection gave allylbenzene 95a. Next, the cross-metathesis reaction ${ }^{24}$ of 95 a with ethyl acrylate delivered α, β-unsaturated ester 103a. The DIBAL-H reduction of 103a followed by Sharpless epoxidation using (-)-DET, TBHP, $\mathrm{Ti}\left(0^{i} \mathrm{Pr}\right)_{4}$ resulted in epoxy alcohol 104a. We then used a similar reaction sequence employed for the preparation 101 (of Scheme 1.12) to obtain alkyne fragment 101a from 104a. Next, the aldehyde coupling partner 102a containing p-OTs group was obtained from vanillin (49). A
four-step sequence comprising tosylation, Keck asymmetric allylation, TBS protection followed dihydroxylative cleavage of olefin ($\mathrm{OsO}_{4}, \mathrm{NMO}$ then NaIO_{4}) delivered the desired fragment $102 \mathrm{a}(\mathbf{4 9} \rightarrow \mathbf{9 6} \mathbf{a} \rightarrow \mathbf{1 0 6 a} \rightarrow \mathbf{1 0 2 a}$). In an alternative route, allylic alcohol 106a was obtained from a common tosylate intermediate 96a, in which 96a was subjected to vinylation, Dess-Martin periodinane oxidation steps to obtain ketone 113. Subsequent Corey-Bakshi-Shibata reduction ${ }^{40}$ (using (R)-CBS catalyst) of 113 gave the common precursor 106a $(\mathbf{4 9} \boldsymbol{\rightarrow 9 6 a} \rightarrow \mathbf{1 1 3} \rightarrow \mathbf{1 0 2 a}$; Scheme 1.12).

Scheme 1.12 | Synthesis of alkyne fragment 101a and aldehyde fragment 102a.
1.2.5 Completion of total synthesis of des-hydroxy hedycoropyran B (entrhoiptelol B): Now, the stage was set to verify our envisioned ultimate strategy to access hedycoropyrans using p-OTs substituted intermediates. Accordingly, lithiated alkyne 101a was coupled with aldehyde 102a to obtain propargylic alcohol 107a as a mixture of diastereomers in a good yield of 65%, Then DMP oxidation of 107a furnished the desired ynone 100b. As expected, $\mathrm{HF}-\mathrm{CH}_{3} \mathrm{CN}$ mediated TBS deprecation led to the fully and partially deprotected alcohols 114 and 115. Then we tested the subsequent intramolecular oxa-Michael reaction of $\mathbf{1 1 4} / \mathbf{1 1 5}$ using $10 \mathrm{~mol} \%$ of AgOTf at $0{ }^{\circ} \mathrm{C}$. To our delight, pyranones $\mathbf{1 1 6} / \mathbf{1 1 7}$ were obtained in good yields without anticipated retro-aldol by-products. At this stage, the TBS-protected dihydropyranone 117 was subjected to α-hydroxylation using diverse conditions of NaHMDS, Davis- oxaziridine, ${ }^{41}$ and PIDA, ${ }^{42}$ which failed to provide the desired product 118 and hampered the possibility to access hedycoropyran B (36) (Scheme 1.13).

Scheme 1.13 | Completion of total synthesis of des-hydroxy hedycoropyran B (entrhoiptelol B).

As we had a sufficient quantity of intermediates 116 and 117 in hand, we embarked on to access structurally close diarylheptanoid ent-rhoiptelol B (deshydroxy hedycoropyran B, 29a). (+)-Rhoiptelol B (29) was isolated along with two other diarylheptanoids was done by Kouno and coworkers in 1996 from the fruits and leaves of Rhoiptelea chiliantha and then from Alnus hirsuta's bark in 2007 (Formerly used in traditional medicine in Korea and China as an anti-inflammatory agent) by Bae and co-workers. It examined for the inhibitory actions against TNF- α production, NO, HIF-1 in AGS cells and LPS induced NF-KB activation. ${ }^{9}$ Thus, dihydropyranones 116 and 117 were subjected to hydrogenation (Pd/C, H_{2}) of the olefin followed L-Selectride reduction of the carbonyl group, which cleanly delivered respective pyrans 119 and 120 (119 was deprotected to get 120; NOE analyses confirmed 2.6-cis stereochemistry of THP 119). Finally, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH-mediated detosylation of $\mathbf{1 2 0}$ delivered des-hydroxy hedycoropyran B (ent-rhoiptelol B, 29a) (Scheme 1.13).

Figure 1.9 \| ECD spectrum of ent-rhoiptelol (29a)
ent-Rhoiptelol B (29a) was confirmed by comparing ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and ESI-MS (HRMS) data with the reported data. As expected, optical rotation value of 29a $\left([\alpha]_{D^{26.6}}=-81.04(c=0.1, \mathrm{MeOH})\right.$, this work) was found opposite to the reported value of natural product (+)-rhoiptelol B (29) ([$\alpha]_{\mathrm{D}}{ }^{12}=+97(\mathrm{c}=0.3, \mathrm{MeOH})$, literature data). The assigned absolute configuration of 29a was further supported by electronic circular dichroism (ECD) analyses, the ECD spectrum of 29a displyed a negative Cotton effect (CE) at $227.10 \mathrm{~nm}\left(\mathrm{CD}, 0.4 \times 10^{-3} \mathrm{M}\right.$, EtOH) $\lambda \max (\Delta \varepsilon) 214.44(+0.91)$, $227.10(-3.09) \mathrm{nm})$, which was similar to the data reported for structurally and
stereochemically closer hedycoropyran B (36) (showed a negative CE at 230 nm) (Figure 1.9). ${ }^{9}$

1.3. Conclusion

In conclusion, we have attempted a couple of synthetic routes for the diarylheptanoid natural products hedycoropyrans synthesis, which were unfruitful, but led us to showcase some efficient synthetic organic chemistry and the development of synthetic route for des-hydroxy hedycoropyran B (ent-rhoiptelol B) in 19 steps using commercially available and affordable starting materials of 4allylanisole (estragole), veratraldehyde and vanillin. Cross-metathesis, Sharpless asymmetric epoxidation, Keck asymmetric allylation/CBS-reduction, AgOTf-mediated intramolecular oxa-Michael addition of hydroxy-ynone were used as key steps in this work. Based on the investigations described in this work various novel synthetic routes for THP-DAH-derived natural products can be designed. Further study of the structure-activity relationships of rhoiptelol B and its congeners is in progress and will be published in due course.

1.4 Experimental Procedures and Analytical Data:

1.4.1. Experimental Procedure \& Spectroscopic Data of Synthesised Products:

(R)-3-(4-Methoxyphenyl)propane-1,2-diol (S1): To a stirred solution of ${ }^{t} \mathrm{BuOH}$
 $: \mathrm{H}_{2} \mathrm{O}$ (1:1, 20 mL), were added AD mix- β ($6.74 \mathrm{~g}, 13.4 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}(1.28 \mathrm{~g}, 13.4 \mathrm{mmol})$ at room temperature. The mixture were vigorously stirred at room temperature until both the phases were clear and then cooled to $0^{\circ} \mathrm{C}$. A solution of p-allylanisole 95 (2 $\mathrm{g}, 13.4 \mathrm{mmol}$) in t - BuOH was added at $0^{\circ} \mathrm{C}$. The reaction was stirred at the same temperature for about 48 h . The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ by addition of solid sodium sulphite, warmed to rt and further stirred for 1 h at rt . The reaction mixture was extracted with EtOAc and the combined layers were washed with 2 N KOH solution, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography (using 40 \% EtOAc in hexanes) to afford $\mathbf{S 1}(1.84 \mathrm{~g}, 75 \%)$ as white solid. $R_{f}=0.6\left(\mathrm{SiO}_{2}, 100 \% \mathrm{EtOAc}\right.$ in
hexanes); Reported $[\alpha]_{D^{25}}=+12.90\left(c=2, \mathrm{CHCl}_{3}\right)$, Observed $[\alpha]^{26.30}=+5.495(c=1.8$, CHCl_{3}); FTIR (cm^{-1}): 3682, 3614, 3444, 2402, 1612, 1515, 1427, 1036, 927; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.19$ (br. $\mathrm{s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 158.5,130.4,129.7,114.2,73.3,66.2,55.4,39.0$; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+205.0835$, found 205.0835.
(4R)-4-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-1,3-dioxolane (97): To a
 solution of $\mathbf{S 1}(1.96 \mathrm{~g}, 10.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added the 1-(dimethoxymethyl)-4-methoxybenzene ($2.93 \mathrm{~g}, 16.13 \mathrm{mmol}$) and PPTS ($270 \mathrm{mg}, 1.07 \mathrm{mmol}$) at rt. The resulting mixture was stirred at rt for 5 h , then the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and subjected to silica gel column chromatography (using 12\% EtOAc in hexanes) to afford 97 ($2.6 \mathrm{~g}, 76 \%$) as white solid. TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes); FTIR (cm^{-1}): 3425, 2973, 2402, 1622, 1516, 1430, 1299, 1078, 1037, 927; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.49-$ 7.34(m, 2H), 7.20-7.13 (m, 2H), 6.95-6.82 (m, 4H), $5.84(\mathrm{~d}, 1 \mathrm{H}), 4.48-4.36(\mathrm{~m}, 1 \mathrm{H})$, 4.20-3.96 (m, 1H), 3.85-3.79 (m, 6H), 3.79-3.64 (m, 1H), 3.11-3.01 (m, 1H), 2.89$2.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 160.4,158.5,130.6,130.3,129.3,128.2$, 127.9, 114.1, 113.9, 104.3, 103.5, 70.3, 69.6, 55.4, 39.2, 38.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+323.1254$, found 323.1251 .
(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxy-phenyl)propan-1-ol (S2): To a
 solution of (4R)-4-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1,3dioxolane (97) ($2.6 \mathrm{~g}, 8.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at $-78{ }^{\circ} \mathrm{C}$, added DIBAL-H ($13.72 \mathrm{~mL}, 13.70 \mathrm{mmol}$) to it drop wise and stirred about 2 h . Monitored the reaction by TLC. After completion of the reaction, it was quenched with saturated solution of sodium potassium tartarate $\left(\mathrm{Na}^{+}-\mathrm{K}^{+}\right.$tartarate) and extracted the reaction mass with EtOAc ($3 \times 20 \mathrm{~mL}$) and filtered through celite. The filtrate containing organic compound is filtered through $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and crude was subjected to silica gel column chromatography (using 30\% EtOAc in hexanes) to afford $\mathbf{S} 2$ ($2.28 \mathrm{~g}, 91 \%$) as a yellow
liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes); $[\alpha] \mathrm{D}^{26.30}=+2.93\left(c=1.3, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3417, 1638, 1381, 1249, 1072, 805, 743; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.21$ (d, $J=8.46 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.80(\mathrm{~m}, 4 \mathrm{H}), 4.55-4.38(\mathrm{~m}, 2 \mathrm{H}), 3.85-$ 3.77 (m, 6H), 3.71-3.58 (m, 2H), 3.54-3.41(m, 1H), 2.94-2.80 (m, 1H), 2.80-2.66 (m, 1H),, 2.10 (br.s, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 159.3,158.2,130.4,130.3,129.5$, 113.9, 80.7, 71.6, 63.7, 55.3, 36.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+$ 325.1410 , found 325.140 .
(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxy-phenyl)propanal (98): To a
 solution of $\quad(R)$-2-((4-methoxybenzyl)oxy)-3-(4-methoxyphenyl)propan-1-ol (S2) ($846 \mathrm{mg}, 2.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added Dess-Martin Periodinane (DMP) ($1.79 \mathrm{~g}, 4.22 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under inert atmosphere. The reaction progress was monitored by TLC. After the completion conversion, added aqueous NaHCO_{3} and sodium thiosulphate (1:1). Turbidity was removed and is extracted with DCM using a separating funnel. The combined organic layer is dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and the crude was subjected to silica gel column chromatography (using 15\% EtOAc in hexanes) to afford 98 (712 mg , 84\%) as colorless oil. TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]{ }_{\mathrm{D}}^{26.23}=+4.36(c=$ 1.2, CHCl_{3}); FTIR (cm^{-1}): 3686, 3618, 3455, 2975, 2402, 1721, 1603, 1518, 1426, 1039, 927; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~d}, J=1.98 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.72 \mathrm{~Hz}$, $4 \mathrm{H}), ~ 6.92-6.72(\mathrm{~m}, 4 \mathrm{H}), 4.58-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.07-2.70(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.6,191.1,142.1,133.6,132.2,130.6,129.8$, 128.2, 114.5, 114.0, 84.2, 72.7, 55.7, 55.4, 36.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]+323.1254$, found 323.1249 .
(2R,3R)-2-((4-Methoxybenzyl)oxy)-1-(4-methoxyphenyl)hex-5-ene-3-ol

To a solution of aldehyde 98 ($500 \mathrm{mg}, 1.66 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ in 100 mL round bottom flask at $0^{\circ} \mathrm{C}, \mathrm{MgBr} 2.0 \mathrm{Et} 2$ ($687 \mathrm{mg}, 2.66 \mathrm{mmol}$) was added in one portion. After 10 min , allyltributyltin (0.87 mL , 2.82 mmol) was added dropwise over 10 min . After completion of addition reaction was stirred for 3 h at $0{ }^{\circ} \mathrm{C}$ and reaction was monitored by TLC. After completion of reaction it was quenched by aq. sat. NaHCO_{3}
and the layers were separated and the aqueous layer was extracted with EtOAc (3x10 mL) and the combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The residue was purified by silica gel column chromatography (using 15\% EtOAc in hexanes) to afford 93 (456 $\mathrm{mg}, 80 \%)$ as a colorless liquid. TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{25.23}=$ $+4.49\left(c=1.9, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3680,3620,2975,2399,1611,1512,1476,1423$, $1300,1035,928,877,849 ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.94-$ 6.76(m, 5H), 5.95-5.67(m, 1H), 5.18-4.98(m, 2H), 4.52-4.23(m, 2H), 3.82-3.78(m, 6 H), 3.57-3.40 (m, 2H), 2.97-2.74 (m, 2H), 2.36-2.15 (m, 3H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (126 MHz , CDCl_{3}) $\delta 159.4,158.2,135.0,130.6,130.3,129.7,129.7,117.3,113.9,113.9,82.0$, 72.6, 71.5, 55.3, 38.5, 36.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+365.1723$, found 365.1728 .

1-(3,4-Dimethoxyphenyl)prop-2-en-1-ol (94): To a solution of aldehyde 96 (2 g,

94 12.0 mmol) in dry THF, vinyl magnesium bromide (1 M in THF, $14.44 \mathrm{~mL}, 14.4 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture stirred for 1 h at the same temperature. After completion of reaction, reaction was quenched with sat. aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$) and the combined organic layer were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo and the crude product was purified by silica gel column chromatography (using 30\% EtOAc in hexanes) to afford 94 ($1.05 \mathrm{~g}, 47 \%$) as colorless liquid, TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes); FTIR (cm^{-1}) : 3673, 3490, 2841, 2598, 2410, 2054, 1847, 1729, 1648, 1598, 1512, 1457, 1423, 1374, 1146, 1036, 928, 858; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.97-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.15-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.05 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.03$ (m, 2H), 3.95-3.75 (m, 6H), 2.28 (br. s., 1 H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3$, 148.8, 140.4, 135.4, 118.8, 115.1, 111.2, 109.6, 75.2, 56.1, 56.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+217.0835$, found 217.0835.
(5R,6R,E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxy-phenyl)hept-2-ene-1,5-diol (92): To a solution of $\mathbf{9 3}$ ($450 \mathrm{mg}, 2.33 \mathrm{mmol}$) and $\mathbf{9 4}$ ($100 \mathrm{mg}, 0.292 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added G-II generation catalyst (20 mg ,
0.05 mmol) and was stirred at rt for 1 h . The solvent was evaporated in vacuum and the residue was purified by silica gel column chromatography (using 40\% EtOAc in
 hexanes) to afford 92 ($637 \mathrm{mg}, 95 \%$) as yellow liquid. TLC: $R f=0.8$ ($\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /$ hexanes); FTIR (cm^{-1}): 3685, 3618, 2974, 2403, 1674, 1596, 1516, 1426, 1149, 1034, 927; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.20-7.12$ (m, $3 \mathrm{H}), 7.09(\mathrm{~d}, J=3.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.78(\mathrm{~m}$, $6 \mathrm{H}), 5.77-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=4.04 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H})$, 3.89 (br. s., 1H), 3.87 (s, 6H), 3.79 (s, 6H), 3.57-3.37 (m, 2H), 2.84 (dd, $J=2.78,5.81$ $\mathrm{Hz}, 2 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 2 \mathrm{H})$); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.5,158.4,149.3$, 148.6, 135.4, 130.6, 130.3, 129.9, 118.5, 114.0, 111.2, 109.5, 82.1, 74.9, 72.6, 56.0, 55.4, 36.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+531.2353$, found 531.2367.
(R)-1-(((4,4-Dibromo-1-(4-methoxyphenyl)but-3-en-2-yl)oxy)methyl)-4-meth-
 oxybenzene (S3): To a solution of $\mathrm{CBr}_{4}(4.86 \mathrm{~g}, 14.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$, TPP ($(7.70 \mathrm{~g}, 29.3 \mathrm{mmol})$ dissolved in minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) under inert atmosphere was added. After stirred for 20 min , added a cold solution of $98(1.47 \mathrm{~g}, 4.89 \mathrm{mmol})$ contained $\mathrm{Et}_{3} \mathrm{~N}(0.68 \mathrm{~mL}, 4.89 \mathrm{mmol})$ dropwise to the reaction mixture. Reaction was monitored by TLC. After completion of reaction, added $\mathrm{Et}_{3} \mathrm{~N}$ and MeOH successively at the same temperature then solvent was evaporated and diethyl ether was added then filtered the reaction mass through a sintered funnel containing celite. Collected the filtrate, concentrated and subjected to column chromatography (using 7\% EtOAc in hexanes) to afford S3 (1.45 g, 65\% yield) as white solid. TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;$ FTIR (cm^{-1}): 3685, 3619, 3453, 2975, 2402, 1608, 1518, 1427, 1049, 927; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 7.23-7.05(\mathrm{~m}$, $4 \mathrm{H}), 6.91-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.43(\mathrm{~d}, J=8.34 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=$ $11.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 6 \mathrm{H}), 2.99-2.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 159.3,158.4,139.6,130.8,130.2,129.4,129.3,113.8,113.8,91.4$, 80.1, 70.9, 55.4, 40.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Br}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+478.9651$, found 478.9646 .
(R)-1-Methoxy-4-(2-(($4-$ methoxybenzyl)oxy)but-3-yn-1-yl)benzene (101): To a
 solution of (R)-1-(c(4,4-dibromo-1-(4-methoxyphenyl)but-3-en-2-yl)oxy)methyl)-4-methoxybenzene ($\mathbf{S 3}$) ($1.45 \mathrm{~g}, 3.17 \mathrm{mmol}$) in anhydrous tetrahydrofuran at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi $(1.6 \mathrm{M}, 4.3$ $\mathrm{mL}, 6.99 \mathrm{mmol}$) dropwise at the same temperature. The reaction is kept monitoring with TLC for about an hour. After the completion of reaction, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction mass and was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and subjected to a silica gel column chromatography (using 10\% EtOAc in hexanes) to afford 101 ($800 \mathrm{mg}, 98 \%$ yield) as colorless oil. TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes $) ;[\alpha]^{26.20}=+20.0(c=1.4$, CHCl_{3}); FTIR (cm^{-1}): 3685, 3415, 2927, 2402, 1610, 1516, 1428, 1036, 927; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.25-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.79(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{~d}, J=11.49 \mathrm{~Hz}, 1 \mathrm{H})$, 4.45 (d, $J=11.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (dt, $J=2.02,6.82 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 6 \mathrm{H}), 3.11-2.87$ (m, 2H), $2.49(\mathrm{~d}, \mathrm{~J}=2.02 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 159.3,158.5,130.8$, 129.9, 129.6, 129.3, 113.9, 113.7, 82.7, 74.7, 70.4, 69.5, 55.4, 55.3, 41.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 319.1305$, found 319.1302.

Ethyl (E)-4-(4-methoxyphenyl)but-2-enoate (103): To a solution of Grubb's 2nd generation catalyst ($21 \mathrm{mg}, 0.03 \mathrm{mmol}$), p-allylanisole 95 ($500 \mathrm{mg}, 3.37 \mathrm{mmol}$) and
 ethyl acrylate ($0.71 \mathrm{~mL}, 6.74 \mathrm{mmol}$) were added simultaneously via syringe. The resulting mixture was heated at $40{ }^{\circ} \mathrm{C}$ until consumption of starting material occurred as determined by TLC analysis. The reaction cooled to rt , concentrated and residue was purified by column chromatography using 10\% EtOAc in hexanes) to afford 103 ($540 \mathrm{mg}, 73 \%$) as colorless liquid. TLC: $R_{f}=0.6$ ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/hexanes); FTIR (cm ${ }^{-1}$) : 3681, 3427, 2842, 2403, 1711, 1651, 1611, 1513, 1432, 1376, 1037, 984, 926; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.77$ $(\mathrm{m}, 2 \mathrm{H}), 5.78(\mathrm{td}, J=1.64,15.54 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.46$ (dd, $J=1.39,6.69 \mathrm{~Hz}, 2 \mathrm{H}$), $1.27(\mathrm{t}, J=7.07 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz} \mathrm{CDCl} 3): ~ \delta$ 166.2, 158.2, 147.6, 132.1, 132.0, 131.4, 131.3, 129.6, 129.4, 128.4, 128.3, 127.2, 121.8, 113.9, 113.7, 60.0, 54.9, 37.3, 14.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 243.0992$, found 243.0990 .
(\boldsymbol{E})-4-(4-Methoxyphenyl)but-2-en-1-ol (S4): To a solution of corresponding ester
 103 ($1.08 \mathrm{~g}, 4.9 \mathrm{mmol})$ in DCM (10 mL) at $-78^{\circ} \mathrm{C}$ was added DIBALH (1M in toluene, $10.30 \mathrm{~mL}, 10.3 \mathrm{mmol}$) dropwise. The solution was stirred at this temperature until consumption of starting material was observed by TLC at which point the reaction was quenched by careful addition of methanol. The reaction was allowed to warm at rt whereupon sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$tartarate and EtOAc were added and the mixture was stirred vigorously for 1 h . The phases were then separated and the aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic phases were combined washed with sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$tartarate, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and crude product was purified by silica gel column chromatography (using 20\% EtOAc in hexanes) to afford S4 (703 mg, 80\%) as colorless liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $)$ FTIR (cm^{-1}): 3686, 3619, 3444, 2973, 2402, 1766, 1600, 1521, 1426, 1041, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.10(\mathrm{~d}, J=8.54 \mathrm{~Hz}, 2 \mathrm{H}$), $6.84(\mathrm{~d}, J=8.54 \mathrm{~Hz}, 2 \mathrm{H}), 5.88-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.62(\mathrm{~m}$, $1 \mathrm{H}), 4.10(\mathrm{~d}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=6.10 \mathrm{~Hz}, 2 \mathrm{H}), 1.79$ (br. s., 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1,132.2,132.0,130.1,129.6,114.0,63.5,55.4$, 37.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+$ 201.0886, found 201.0886.
((2R,3R)-3-(4-Methoxybenzyl)oxiran-2-yl)methanol (104): M.S. (4 Å) were dried
 in a flask and allowed to rt, dry DCM and (-)-DET ($0.09 \mathrm{~mL}, 0.561$ $\mathrm{mmol})$ were added and the suspension was cooled to $-25{ }^{\circ} \mathrm{C}$. To this $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4}(0.24 \mathrm{~mL}, 0.084 \mathrm{mmol})$ and TBHP ($2.46 \mathrm{~mL}, 1.23$ $\mathrm{mmol})$ were added and the mixture was stirred at $-25{ }^{\circ} \mathrm{C}$ for 30 min. A solution of allylic alcohol $\mathbf{S 4}(1 \mathrm{~g}, 5.61 \mathrm{mmol})$ in dry DCM was added to the above mixture and it was kept in freezer at about $-25^{\circ} \mathrm{C}$ for 18 h . To the reaction mixture water was added and stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of 10% aq. NaOH was then added and the mixture was warmed to rt for 1 h . The product was extracted with DCM ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and purified by silica gel column chromatography (using 25\% EtOAc in hexanes) to afford 104 (980 mg , 82\%). as colorless liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 40 \%$ EtOAc/hexanes); [$\alpha]^{25.27}=+15.71$ ($c=2.9$, CHCl $_{3}$); FTIR (cm^{-1}): 3415, 2404, 1615, $1515,1432,1035,927 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.15 (d, $J=8.39 \mathrm{~Hz}, 2 \mathrm{H}$), 6.85 (d, J
$=8.77 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=2.29$, $5.34 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{t}, J=6.10 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.6,130.1,129.0,114.1,61.6,58.3,56.2,55.4,37.0$; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 217.0835$, found 217.083.
(2S,3R)-2-(Chloromethyl)-3-(4-methoxybenzyl)oxirane (105): To a solution of
 epoxy alcohol 104 ($1.68 \mathrm{~g}, 8.64 \mathrm{mmol}$) in $\mathrm{DCM}^{2} \mathrm{CCl}_{4}(1.67 \mathrm{~mL}, 17.2$ mmol) and triphenylphosphine ($3.01 \mathrm{~g}, 14.9 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ and the refluxed for 6 h . after completion of reaction, it was diluted with hexane and filtered through celite. The filtrate was concentrated to give a residue which was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford 105 (1.48 g, 80\%) as yellowish liquid. TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25.30}=+9.46(c=1.9$, CHCl3); FTIR (cm^{-1}): 3415, 2402, 1611, 1516, 1432, 1038, 928; ${ }^{1} \mathrm{H}$ NMR (400 MHz $\left.\mathrm{CDCl}_{3}\right): \delta 7.20-7.13(\mathrm{~m}, J=8.70 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.81(\mathrm{~m}, J=8.70 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.60-3.49 (m, 2H), 3.12-3.01 (m, 2H), 2.95-2.79 (m, 2H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz , CDCl_{3}): δ 158.6, 130.1, 128.6, 114.1, 59.2, 57.0, 55.4, 44.6, 36.9; HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]+213.0677$, found 213.0679.
(R)-1-(4-Methoxyphenyl)but-3-yn-2-ol (S5): To a solution of chloride 105 (1.48 g, 6.97 mmol) in dry THF (20 mL), n-BuLi ($15.25 \mathrm{~mL}, 24.3 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 30 min . after completion of reaction; reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The organic phase was separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combine organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and crude product was purified by silica gel column chromatography(using 12\% EtOAc in hexanes) to afford $\mathbf{S 5}$ (1.05 g, 86\%) as yellow liquid . TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}} 25.32=+3.50(c=2.9, \mathrm{CHCl} 3)$; FTIR (cm^{-1}): 3683, 3303, 2926, 2850, 2403, 1728, 1609, 1511, 1455, 1298, 1036, 925 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}_{3}$): 7.24-7.17 (m, 2H), 6.91-6.81 (m, 2H), 4.53 (br. s., 1H), 3.79 (s, 3H), 3.03-2.88 (m, 2H), 2.49 (d, $J=1.83 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (br. s., 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 158.7, 130.9, 128.3, 114.0, 84.4, 73.9, 63.2, 55.3, 43.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+199.0730$, found 199.0727.
(R)-1-Methoxy-4-(2-(($4-$ methoxybenzyl)oxy)but-3-yn-1-yl)benzene (101): To a
 suspension of $\mathrm{NaH}(0.1 \mathrm{~g}, 4.19 \mathrm{mmol})$ in DMF (2 mL) at $0^{\circ} \mathrm{C}$ was added a solution of alcohol $\mathbf{S 5}(369 \mathrm{mg}, 2.09 \mathrm{mmol})$ in DMF (3 mL). After that the reaction mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ then PMBCl ($0.313 \mathrm{~mL}, 2.29 \mathrm{mmol}$) and TBAI ($43 \mathrm{mg}, 0.209 \mathrm{mmol}$) were added at 0 oC. The reaction mixture was stirred for 40 min . at rt. After completion of reaction saturated aqueous NaHCO_{3} was added at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was evaporated then crude product was purified by silica gel column chromatography (using 10\% EtOAc in hexanes) to afford 101 (510 $\mathrm{mg}, 82 \%)$ as yellow oil. TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{26.19}=+22.10(c$ $=1.4, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3684, 3619, 3454, 3304, 2964, 2403, 1612, 1514, 1456, 1298, 1039, 928; ${ }^{1} \mathrm{H}$ NMR (500 MHz CDCl 3): $\delta 7.18$ (d, $J=8.39 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, $J=$ $8.39 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=8.39 \mathrm{~Hz}, 4 \mathrm{H}), 4.75(\mathrm{~d}, J=11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.44 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{dt}, J=1.91,6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 6 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=$ $1.91 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.3,158.5,130.8,129.9,129.6,129.3$, 113.9, 113.7, 82.7, 74.7, 70.4, 69.5, 55.4, 55.3, 41.3.
(S)-1-(3,4-Dimethoxyphenyl)but-3-en-1-ol (106): To a 50 mL round bottom flask,
 a mixture of (S)-BINOL ($861 \mathrm{mg}, 3.00 \mathrm{mmol}$), $1.0 \mathrm{M} \mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right) 4(3 \mathrm{~mL}$, 3.00 mmol) in DCM and freshly activated $4 \AA$ MS powder in DCM was refluxed for 1 h . The red brown mixture was cooled to rt and then aldehyde 96 ($5 \mathrm{~g}, 30.08 \mathrm{mmol}$) was added. After being stirred for 10 min . the contents were cooled to $-78^{\circ} \mathrm{C}$ and allyltributyltin ($10.95 \mathrm{~mL}, 33.08 \mathrm{mmol}$) was added. The reaction mixture was stirred for 10 min . and then replaced in $-20^{\circ} \mathrm{C}$ freezer. After 70 h saturated $\mathrm{NaHCO}_{3}, 1.5 \mathrm{~mL}$ was then added and contents were stirred for 1 h , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (using 20\% EtOAc in hexanes) to afford 106 ($4.52 \mathrm{~g}, 72 \%$) as white solid. TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}{ }^{26.07}=-4.13\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right.$); FTIR (cm^{-1}): 3686, 3616, 2974,

2402, 1599, 1517, 1426, 1146, 1036, 926, 860; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 6.93$ (s, 1H), 6.91-6.82 (m, 2H), 5.96-5.67 (m, 1H), 5.19 (d, J = 7.96 Hz, 1H), $5.12(\mathrm{~s}, 1 \mathrm{H}), 4.69$ $(\mathrm{dt}, J=2.78,6.69 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{t}, J=6.95 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~d}, J=$ $2.91 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.2,148.6,136.7,134.7,118.5,118.2$, 111.1, 109.1, 73.3, 56.1, 56.0, 44.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 231.0992, found 231.0991.

(S)-Tert-butyl((1-(3,4-dimethoxyphenyl)but-3-en-1-yl)oxy)dimethylsilane(S6):

 2,6-lutidine ($2.97 \mathrm{~mL}, 25.58 \mathrm{mmol}$) was added to a solution of alcohol 106 ($3.6 \mathrm{~g}, 17.28 \mathrm{mmol}$) in dry DCM (30 mL) at $-78^{\circ} \mathrm{C}$. After 10 min . TBSOTf ($3.97 \mathrm{~mL}, 17.28 \mathrm{mmol}$) was added and the reaction mixture was stirred for 20 min . at this temperature. The reaction mixture was diluted with DCM and the organic layers were washed with water and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The crude product was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford S6 (4.5 g, 80\%) as yellow liquid. TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes); $[\alpha] \mathrm{D}^{26.11}=-$ 34.53 ($\mathrm{c}=2.8$, CHCl3); FTIR (cm^{-1}): 3775, 3685, 3619, 3456, 2966, 2402, 2358, 1600, 1516, 1466, 1425, 1148, 1079, 1037, 925; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.90(\mathrm{~s}, 1 \mathrm{H})$, 6.83-6.72 (m, 2H), 5.91-5.63 (m, 1H), $5.04(\mathrm{~d}, J=3.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.62$ (dd, J $=5.43,7.07 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 6 \mathrm{H}), 2.54-2.25(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-$ $0.09--0.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.8,148.0,138.1,135.5,118.1$, 116.9, 110.6, 109.2, 74.9, 56.0, 55.9, 45.8, 26.0, 18.4, -4.5, -4.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 345.1856$, found 345.1855.
(S)-3-((Tert-butyldimethylsilyl)oxy)-3-(3,4-dimethoxyphenyl)-propanal (102):

To a solution of olefin $\mathbf{S 6}(1.29 \mathrm{~g}, 4.00 \mathrm{mmol})$ in THF: $\mathrm{H}_{2} \mathrm{O}$ (3:1, 7.5 $\mathrm{mL}: 2.5 \mathrm{~mL}$) were added 2,6-lutidine ($1.86 \mathrm{~mL}, 16.02 \mathrm{mmol}$), OsO_{4} $(0.02 \mathrm{~g}, 0.08 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(1.70 \mathrm{~g}, 8.00 \mathrm{mmol})$. The reaction mixture was stirred for 2 h at rt . After completion of reaction, reaction was quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and then filtered through celite using EtOAc. The filtrate was concentrated in vacuum and the crude product was purified by silica gel column chromatography (using 10\% EtOAc in hexanes) to
afford the desired product 102 ($938 \mathrm{mg}, 73 \%$) as yellowish liquid. TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}{ }^{26.13}=-32.98$ ($\mathrm{c}=0.2, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3683, 3615, 3433, 2976, 2402, 2357, 1637, 1520, 1426, 1041, 927 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 9.76 (dd, $J=2.13,2.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.15$ (dd, J $=4.13,8.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{ddd}, J=2.88,8.25,15.76 \mathrm{~Hz}, 1 \mathrm{H})$, 2.60 (ddd, $J=2.00,4.13,15.76 \mathrm{~Hz}, 1 \mathrm{H}$), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.5,149.1,148.4,136.6,117.8,110.9,108.8,70.6,56.0$, 55.9, 54.2, 25.8, 18.2, -4.5, -5.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 347.1649, found 347.1645.
(1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-meth-
 oxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-yn-3ol (107): To the alkyne $\mathbf{1 0 1}$ ($482 \mathrm{mg}, 1.62 \mathrm{mmol}$) in dry THF (5 mL), n-BuLi ($1.1 \mathrm{~g}, 1.78 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature. After that aldehyde 102 ($263 \mathrm{mg}, 0.81 \mathrm{mmol}$) was added in one shot and reaction was stirred for 2 h . After completion of reaction, reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (3 x 10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and subjected to silica gel column chromatography to afford the desired product 107 ($650 \mathrm{mg}, 65 \%$)as yellowish liquid. TLC: $R_{f}=0.5$ $\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes; $[\alpha]_{\mathrm{D}}^{26.11}=+4.85\left(\mathrm{c}=3.7, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3685,3618$, 2972, 2402, 1604, 1517, 1426, 1216, 1040, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 7.24-$ $7.12(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.72(\mathrm{~m}, 7 \mathrm{H}), 5.02(\mathrm{ddd}, J=3.05,7.93,15.87 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.66(\mathrm{~m}$, 1 H), 4.59 (br. s., 1H), 4.41 (d, $J=11.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.10 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H})$, $3.84-3.74(\mathrm{~m}, 6 \mathrm{H}), 3.08-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.87$ (m, 9H), 0.10-0.01 (m, 3H), -0.15- $-0.23(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.3, 158.5, 149.0, 148.4, 136.8, 130.8, 130.0, 129.5, 118.3, 118.1, 113.8, 113.6, $110.8,109.1,87.5,83.5,72.9,70.4,69.7,60.2,56.0,55.9,55.4,55.3,48.6,47.1,46.9$, 41.5, 25.9, 18.2, -4.3, -4.4, -4.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 643.3062, found 643.3053.
(1S,6R,E)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-ol (S7): To a stirred
solution of alcohol 107 ($50 \mathrm{mg}, 0.048 \mathrm{mmol}$) in dry THF, Red-Al ($0.031 \mathrm{~mL}, 0.161$
 mmol) was added at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at the same temperature for 40 minutes. After completion of reaction, quenched with sat. aq. Rochelle salt and the whole reaction was stirred at rt for 30 min . and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), the combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column chromatography using (10\% EtOAc in hexanes) to afford $\mathbf{S 7}$ ($30 \mathrm{mg}, 60 \%$) as yellow liquid.; TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) .[\alpha]_{\mathrm{D}} 29.77=-10.48$ ($c=0.1, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3685, 3619, 3461, 2971, 2402, 1728, 1604, 1515, 1426, 1040, 925; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.87(\mathrm{~m}$, 1H), 6.82-6.75 (m, 6H), 5.69-5.52 (m, 2H), 4.90-4.77 (m, 1H), 4.61 (s, 1H), 4.52-4.43 (m, 1H), 4.37-4.29 (m, 1H), 4.25-4.19 (m, 1H), 3.89-3.87 (m, 6H), 3.81-3.76 (m, 6H), 2.89-2.81(m, 1H), 2.74-2.66 (m, 1H), 2.01-1.74 (m, 2H), 1.69-1.63 (m, 1H), 0.93-0.89 $(\mathrm{m}, 9 \mathrm{H}), 0.09-0.05(\mathrm{~m}, 3 \mathrm{H}),-0.10-0.14(\mathrm{~m}, 1 \mathrm{H}),-0.22(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz , CDCl_{3}): $\delta 159.0,158.1,149.1,148.4,137.4,135.5,130.8,130.7,130.3,129.2,129.2$, 128.8, 118.2, 114.0, 113.7, 113.5, 110.8, 110.7, 109.0, 80.4, 80.4, 76.1, 71.6, 70.0, 65.1, 56.0, 55.9, 55.4, 55.3, 55.3, 47.7, 41.7, 31.1, 25.9, 18.1, -4.2, -4.5, -4.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 645.3218$ found 645.3210 .

(1S,6R,E)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-

 mehoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-one (100): To a stirred solution of alcohol S7 (104 mg, 0.167 mmol) in dry DCM, DMP ($212 \mathrm{mg}, 0.501 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at the same temperature. After completion of reaction, reaction mixture was quenched with hypo solution (sat. aq. Solution of NaHCO_{3} and sat. aq. solution of $\left.\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)\right)$ and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$) and the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column chromatography (using 10\% EtOAc in hexanes) to afford 100 ($92 \mathrm{mg}, 89 \%$) as a yellow liquid. TLC: $R_{f}=0.6$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes);
$[\alpha]_{\mathrm{D}} 28.93=-12.33\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right) ;$ FTIR (cm^{-1}): 3425, 2967, 2403, 1614, 1513, 1464, 1426, 1079, 1036, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.90(\mathrm{~m}$, $1 \mathrm{H}), ~ 6.89-6.78(\mathrm{~m}, 6 \mathrm{H}), 6.75-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.28-6.16(\mathrm{~m}, 1 \mathrm{H}), 5.17$ (ddd, $J=1.75,3.88$, $8.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.91(\mathrm{~m}$, 6 H), 3.82-3.76 (m, 6H), 3.06 (dd, $J=8.76,14.88 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92-2.81 (m, 1H), 2.79-2.70 (m, 1H), $2.62(\mathrm{dd}, J=4.13,14.76 \mathrm{~Hz}, 1 \mathrm{H}), 0.91-0.76(\mathrm{~m}, 9 \mathrm{H}), 0.0-0.02(\mathrm{~m}, 3 \mathrm{H}),-0.11-$ $-0.18(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz CDCl 3): $\delta 198.6,159.3,158.4,149.0,148.3$, $146.6,137.5,131.2,130.6,130.1,129.6,129.4,118.0,113.9,113.8,110.8,109.0,79.3$, 72.0, 71.1, 71.1, 56.0, 55.4, 55.4, 51.5, 41.0, 25.9, 18.3, -4.5, -5.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 643.3062$, found 643.3051 .
(1S,6R,E)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-
 methoxyphenyl)-hept-4-en-3-one (108): To the TBSalcohol $\mathbf{1 0 0}$ ($77 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{HF}: \operatorname{MeCN}$ (5:95, 4 mL) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 24 h . after completion of reaction; reaction mixture was quenched with sat. aq. NaHCO_{3}. Both aqueous and organic layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel chromatography (using 25\% EtOAc in hexanes) to afford 108 ($46 \mathrm{mg}, 74 \%$) as a yellow viscous liquid. TLC $R_{f}=0.2\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) .[\alpha]_{\mathrm{D}}^{28.56}=+4.35(c$ $=1.5$, CHCl $_{3}$).; FTIR (cm^{-1}): 3687, 3402, 1600, 1518, 1426, 1026, $922 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.79(\mathrm{~m}, 6 \mathrm{H}), 6.72$ (ddd, $J=1.75,6.00,16.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{ddd}, J=1.13,3.13,16.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=$ $2.75,8.50 \mathrm{~Hz}, 1 \mathrm{H}$), 4.45 (dd, $J=1.88,11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 6 \mathrm{H}), 3.84-3.75(\mathrm{~m}, 6 \mathrm{H}), 3.41$ (br. s., 1H), 3.01-2.85 (m, 3H), 2.76 (dd, $J=6.00,13.88 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.2,159.4,158.5$, 149.3, 148.7, 147.5, 135.7, 130.6, 130.2, 130.0, 129.4, 129.3, 118.0, 113.9, 113.9, 111.2, 109.1, 79.3, 79.2, 71.3, 70.0, 56.1, 56.0, 55.4, 55.4, 48.9, 48.8, 40.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 529.2197$, found 529.2197.
($R, 1 E, 4 E$)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxy-phenyl)hepta-1,4-dien-3-one (110): To the alcohol 108 ($46 \mathrm{mg}, 0.090 \mathrm{mmol}$) in
 EtOH at $0^{\circ} \mathrm{C}, \mathrm{KO}{ }^{\mathrm{t} B u}(1.0 \mathrm{mg}, 0.013 \mathrm{mmol})$ in EtOH (2 mL) was added and reaction was monitored by TLC. After completion of reaction, solvent was evaporated in vacuum then sat. aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column chromatography to afford 110 as a yellow liquid ($6 \mathrm{mg}, 13 \%$); TLC $R_{f}=0.5$ ($\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, \mathrm{~J}=16.01 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20-7.06 (m, 5H), 6.93-6.76 (m, 7H), $6.54(\mathrm{~d}, J=15.76 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.38 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.80$ ($\mathrm{s}, 3 \mathrm{H}$), 2.94 (dd, $J=7.25,13.88 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dd, $J=5.88,13.76 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 189.1, 159.4, 158.4, 151.6, 149.4, 145.9, 144.0, 130.8, 130.2, 129.7, 129.4, 129.1, 127.8, 123.4, 123.3, 113.9, 113.8, 111.2, 109.9, 79.7, 71.2, 56.2, 56.1, 55.4, 55.4, 41.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]+489.2272$, found 489.2273.
(R, E)-5-((4-Methoxybenzyl)oxy)-6-(4-methoxyphenyl)hex-3-en-2-one (111):
 colorless oil ($18 \mathrm{mg}, 60 \%$). TLC $R_{f}=0.7$ ($\mathrm{SiO}_{2}, 50 \%$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}{ }^{29.80}=+8.76\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.15-7.04 (m, 4H), 6.88-6.79 (m, 4H), 6.65 (dd, $J=$ $6.38,16.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=1.13,16.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H})$, 3.80 (s, 6H), 2.92 (dd, $J=7.25,13.88 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dd, $J=5.88,13.88 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (s, 3H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.5,159.4,158.5,146.7,131.3,130.7,130.1$, 129.4, 129.4, 113.9, 113.9, 79.3, 71.2, 55.4, 55.4, 41.0, 27.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+363.1567$, found 363.1573.

3,4-Dimethoxybenzaldehyde (10): Off white solid; ($4 \mathrm{mg}, 26 \%$); TLC $R_{f}=0.6\left(\mathrm{SiO}_{2}\right.$,

 50% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.85-9.82$ (m, 1H), 7.47-7.42 (m, 1H), 7.41-7.37 (m, 1H), 7.00-6.93 (m, 1H), 3.97$3.94(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.90(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 191.0, 154.6, 149.7, 130.2, 127.0, 110.5, 109.0, 56.3, 56.1; HRMS
(ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} \quad$ 167.0703, found 167.0703.
(1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-me-
 thoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-yn-3-one (100a): To the alcohol 107 ($395 \mathrm{mg}, 0.63 \mathrm{mmol}$) in dry DCM (5 mL), Dess-Martin-Periodinane (DMP) ($405 \mathrm{mg}, 0.95 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred for 1 h . After completion of reaction, reaction was quenched with hypo solution 1:1 (aq. NaHCO_{3} : aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$), extracted with DCM (3 x 5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and crude product was purified by silica gel column chromatography (using 12\% EtOAc in hexanes) to afford 100a (395 mg , 97\%) as yellow liquid; TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes; $[\alpha]_{\mathrm{D}}{ }^{26.12}=+16.41(c=$ 0.7, CHCl_{3}); FTIR (cm^{-1}): 3424, 2974, 2402, 1622, 1517, 1428, 1039, 927; ${ }^{1} \mathrm{H}$ NMR (500 MHz CDCl 3): $\delta 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.78(\mathrm{~m}, 6 \mathrm{H}), 5.17$ (ddd, $J=$ $3.81,9.16,17.93 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.63,11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=5.34,11.44 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{dt}, J=1.53,6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, 3 H), 3.09-2.94 (m, 3H), 2.69 (ddd, $J=3.81,7.25,14.88 \mathrm{~Hz}, 1 \mathrm{H}$), $0.85-0.83$ (m, 9H), $0.02(\mathrm{~d}, J=10.68 \mathrm{~Hz}, 3 \mathrm{H}),-0.16(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 3 \mathrm{H})$); ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 185.2, 159.5, 158.7, 149.1, 148.5, 136.7, 130.8, 129.7, 129.3, 128.6, 118.1, 114.0, $113.9,110.9,109.0,91.0,86.0,71.4,71.0,69.7,69.5,56.8,56.0,56.0,55.4,55.4,40.7$, 31.7, 25.9, -4.5, -5.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 641.2905$, found 641.2895.
(1S,6R)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-
 methoxyphenyl)hept-4-yn-3-one (108a): To the TBSalcohol 100a ($50 \mathrm{mg}, 0.08 \mathrm{mmol}$), HF:MeCN (5:95, 2 mL) was added and stirred at $0{ }^{\circ} \mathrm{C}$ until starting material was completely consumed (24 h). After completion of reaction, reaction was quenched with sat. aq. NaHCO_{3}, extracted with EtOAc (3 x 5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography (using 30 \% EtOAc in hexanes) to afford 108a (31 mg , 77\%) as yellow liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} / \mathrm{hexanes} ;[\alpha]_{\mathrm{D}}{ }^{26.13}$ $=+16.97$ ($\mathrm{c}=1.6, \mathrm{CHCl}_{3}$). FTIR (cm^{-1}): 3686, 3618, 3444, 2974, 2403, 1605, 1518,

1427, 1039, 927; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}$, 2H), 6.93-6.89 (m, 1H), 6.87-6.79 (m, 6H), $5.13(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.83$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.49 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.09-2.94(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.76$ (br. s., 1 H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.2,159.5,158.8,149.3,148.8,135.1,130.8,129.7$, $129.2,128.4,118.0,114.0,113.8,111.2,109.0,92.1,85.3,71.2,69.7,69.5,56.1,56.0$, $55.4,55.3,54.3,40.6$; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+527.2040$, found 527.2045.
(S)-2-(3,4-Dimethoxyphenyl)-6-((R)-1-((4-methoxybenzyl)oxy)-2-(4-methoxy-phenyl)ethyl)-2,3-dihydro-4H-pyran-4-one (109a), and (S,E)-5-(3,4-Dimethoxy-phenyl)-2-((R)-2-((4-methoxybenzyl)oxy)-3-(4-methoxyphenyl)propylidene)-dihydrofuran- $\mathbf{3} \mathbf{(2 H}$)-one (112): $\mathrm{AuCl}(1.0 \mathrm{mg})$ was taken in DCM in 10 mL round
 bottom flask then activated molecular sieves was added to this and the mixture was stirred for 15 min., then hydroxy-ynone 108a ($11 \mathrm{mg}, 0.021 \mathrm{mmol}$) in DCM was added to AuCl mixture dropwise then NaHCO_{3} was added to the reaction mixture and mixture was stirred for 1 h at rt . After completion of reaction the mixture was filtered through celite and the filtrate was concentrated and crude product was purified by silica gel column chromatography (using 30% EtOAc in hexanes) to afford the inseparable mixture 109a and 112 (10 mg, 90\%); as yellow oil. TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, 40% EtOAc/hexanes; $[\alpha]_{D^{26.12}}=-2.31\left(c=0.6\right.$, CHCl $_{3}$); FTIR (cm^{-1}) : 3686, 3620, 3455, 2975, 2403, 1600, 1521, 1427, 1041, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15-7.07(\mathrm{~m}$, 4H), 6.89 (s, 2H), 6.86-6.78 (m, 5H), 5.66 (d, $J=15.57 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (dd, $J=3.66,13.28$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.11 (dd, $J=2.75,14.20 \mathrm{~Hz}, 1 \mathrm{H}$), 4.51 (dd, $J=11.45,16.49 \mathrm{~Hz}, 1 \mathrm{H}$), 4.39-4.23 $(\mathrm{m}, 1 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 7 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 6 \mathrm{H}), 3.02-2.88(\mathrm{~m}, 2 \mathrm{H})$, 2.87-2.74 (m, 1H), 2.65-2.54 (m, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.9,192.7$, $176.4,175.4,159.4,158.5,149.6,149.3,130.6,130.5,130.2,129.5,129.1,119.1$, 119.1, 113.9, 113.8, 111.2, 109.8, 109.6, 104.1, 104.0, 81.1, 79.8, 79.7, 71.9, 71.8, 56.1, 55.4, 55.3, 42.8, 42.6, 39.9, 39.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 505.2221 , found 505.2217.
(R, E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxyben-zyl)oxy)-7-(4-methoxyphe-nyl)hept-1-en-4-yn-3-one (110a): To the solution of alcohol $\mathbf{1 0 8 a}$ ($40 \mathrm{mg}, 0.079$
 mmol), NaH ($1 \mathrm{mg}, 0.079 \mathrm{mmol}, 55-60 \%$ in mineral oil) was added in one portion at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred for 15 min . after completion of reaction, it was quenched with water and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography(using 15% EtOAc in hexanes) to afford 110a (30.4 mg , 78\%) as yellow viscous liquid; TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}$ in hexanes); FTIR (cm1): $3433,2974,2402,2361,2104,1630,1518,1427,1340,1040,927 ;{ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3): $\delta 7.48(\mathrm{~d}, J=16.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{dd}, J=1.88,8.25 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~d}, J=16.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=$ $11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.93(\mathrm{~m}, 3 \mathrm{H})$, 3.92 (s, 3H), 3.80 (s, 3H), 3.73 (s, 3H), 3.12(dd, $J=6.63,13.76 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (dd, $J=$ $7.00,13.63 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 177.9,159.5,158.7,152.2,149.5$, $149.2,130.9,129.8,129.4,128.6,127.1,126.6,123.9,114.0,113.9,111.2,110.1,90.9$, 84.2, 71.1, 69.8, 56.2, 56.1, 55.4, 55.3, 40.8; HRMS (ESI): m/z calcd for C30H32O6 $[\mathrm{M}+\mathrm{H}]+487.2115$, found 487.2132 .

4-Allylphenol (S8): Allyl anisole ($5 \mathrm{~g}, 33.7 \mathrm{mmol}$) was dissolved in DCM (50 mL) and
 $\mathrm{BBr}_{3}(3.52 \mathrm{~mL}, 37.1 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. Then reaction mixture was stirred for 1 h at the same temperature. After completion of reaction, it was quenched with water and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (using 8\% EtOAc in hexanes) to afford 4-allylphenol (S8) (4.3 g, 95\%) as colorless liquid. TLC: $R_{f}=0.2$ ($\mathrm{SiO}_{2}, 10 \%$ EtOAc/hexanes); FTIR (cm-1): 3944, 3687, 3583, 2986, 2685, 2521, 2410, 2304, 1605, 1546, 1512, 1428, 1171, 995, 898; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.11-7.03(\mathrm{~m}, 2 \mathrm{H})$, 6.86-6.72 (m, 2H), 6.07-5.89 (m, 1H), 5.42 (br. s., 1 H), 5.16-5.03 (m, 2H), $3.34(\mathrm{~d}, J=$ $6.63 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 153.8,138.0,132.4,129.8,115.6,115.4$, 39.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$135.0804, found 135.0809.
(4-Allylphenoxy)(tert-butyl)dimethylsilane (95a): To the allyphenol S8 (4.3 g,
 32.0 mmol) in dry DCM, (tert-butyl)dimethylsilylchloride (5.79 g , 38 mmol) and imidazole ($4.35 \mathrm{~g}, 64 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and reaction mixture was stirred for overnight. After completion of reaction, reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer were extracted with DCM ($3 x 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (using 3\% EtOAc in hexanes) to afford 95 a ($6.5 \mathrm{~g}, 82 \%$) as colorless liquid. TLC: $R_{f}=0.8$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes); FTIR (cm¹${ }^{-1}$: 3685, 3620, 2940, 2894, 2861, 2403, 1887, 1609, 1511, 1446, 1426, 1258, 1101, 1043, 915, 834; ${ }^{1} \mathrm{H}$ NMR , $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.83-$ $6.73(\mathrm{~m}, 2 \mathrm{H}), 6.03-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{~s}$, $9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 154.0,138.1,132.8,129.6,120.1$, 115.5, 39.6, 25.9, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]+$ 249.1669, found 249.1670 .

Ethyl-(E)-4-(4-((tert-butyldimethylsilyl)oxy)phenyl)but-2-enoate (103a): To a
 solution of Grubb's 2nd generation catalyst ($123 \mathrm{mg}, 0.1 \mathrm{mmol}$) (4-allylphenoxy)(tert-butyl)dimethylsilane (95a) ($4.89 \mathrm{~g}, 19.7 \mathrm{mmol}$) and ethyl acrylate ($4.33 \mathrm{~mL}, 39.4 \mathrm{mmol})$ were added simultaneously via syringe. The resulting mixture was heated at 40 ${ }^{\circ} \mathrm{C}$ until consumption of starting material occurred as determined by TLC analysis. The reaction cooled to rt, concentrated and residue was purified by column chromatography using 10% EtOAc in hexanes) to afford 103a ($4.88 \mathrm{~g}, 77 \%$) as yellowish liquid. TLC: $R f=0.6\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;$ FTIR (cm^{-1}): 3531, 2985, 2481, 2254, 2090, 2015, 1887, 1742, 1561, 1449, 1374, 1232, 1165, 1099, 1046, 914, 847; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.07$ (d, $J=15.51 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04-6.99 (m, 2H), 6.836.73 (m, 2H), 5.78 (td, $J=1.75,15.63 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=$ $1.50,6.88 \mathrm{~Hz}, 2 \mathrm{H}$), 1.27 (t, J = $7.13 \mathrm{~Hz}, 4 \mathrm{H}$), $0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 166.8,154.5,147.9,130.4,129.9,122.2,120.4,60.4,37.9,25.8$, 18.3, 14.4, -4.3 ; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 343.1700$, found 343.1709.
(E)-4-(4-((Tert-butyldimethylsilyl)oxy)phenyl)but-2-en-1-ol (S4a): To a solution
 of corresponding ester $103 \mathrm{a}(4.88 \mathrm{~g}, 15.2 \mathrm{mmol})$ in DCM at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1 M in toluene, $12.99 \mathrm{~mL}, 22.8 \mathrm{mmol}$) dropwise. The solution was stirred at this temperature until consumption of starting material was observed by TLC at which point the reaction was quenched by careful addition of methanol. The reaction was allowed to warm at rt where upon sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$tartarate and EtOAc were added and the mixture was stirred vigorously for 1 h . The phases were then separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic phases were combined washed with sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$tartarate, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and crude product was purified by silica gel column chromatography (using 20\% EtOAc in hexanes) to afford S4a (3.2 g, 75\%) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); FTIR (cm^{-1}): 3944, 3424, 3056, 2987, 2685, 2522, 2410, 2304, 1764, 1640, 1552, 1427, 1263, 1159, 1055, 901; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.08-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.61$ (m, 1H), 4.17-4.09 (m, 2H), $3.31(\mathrm{~d}, J=6.50 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta 154.1,132.7,132.2,130.1,129.6,120.1,63.7,38.0,25.8$, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$279.1775, found 279.1773.
($(2 R, 3 R)$-3-(4-((Tert-butyldimethylsilyl)oxy)benzyl)oxiran-2-yl)methanol

(104a): MS-4 Å were dried in a flask and allowed to rt, dry DCM $(10 \mathrm{~mL})$ and (-)-DET ($0.27 \mathrm{~mL}, 1.59 \mathrm{mmol}$) were added and the suspension was cooled to $-25{ }^{\circ} \mathrm{C}$. To this $\mathrm{Ti}\left(0^{\mathrm{i}} \mathrm{Pr}\right)_{4}(0.70 \mathrm{~mL}, 2.39$ mmol) and TBHP (5 M in DCM, $7.02 \mathrm{~mL}, 35.1 \mathrm{mmol}$) were added and the mixture was stirred at $-25{ }^{\circ} \mathrm{C}$ for 30 min . A solution of allylic alcohol S4a ($4.45 \mathrm{~g}, 15.97 \mathrm{mmol}$) in dry DCM was added to the above mixture and it was kept in freezer at about $-25^{\circ} \mathrm{C}$ for 18 h . To the reaction mixture water was added and stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of 10% aq. NaOH was then added and the mixture was warmed to rt for 1 h . The product was extracted with DCM (3x20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and purified by silica gel column chromatography using (20% EtOAc in hexanes) to afford 104a ($4.53 \mathrm{~g}, 96 \%$) as yellow liquid. TLC: $R_{f}=0.5\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{26.49}=+15.31$ ($c=2.1$, CHCl_{3}); FTIR (cm^{-1}): 3434, 2964, 2865, 2403, 2361, 2086, 1763, 1614, 1513, 1471,

1425, 1257, 1216, 1043, 917, 838; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.12-7.03(\mathrm{~m}, 2 \mathrm{H})$, $6.84-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=2.25,5.50 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{t}, J=6.25 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19$ (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta 154.6,130.0,129.7,120.3,61.6,58.3,56.2$, 37.2, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+295.1724$, found 295.1716.

Tert-butyl(4-(((2R,3S)-3-(chloromethyl)oxiran-2-yl)methyl)phenoxy)dimethyl-
 silane (105a): To a solution of epoxy alcohol 104a (5 g, 17.9 mmol) in DCM (50 mL), CCl 4 ($3.47 \mathrm{~mL}, 35.9 \mathrm{mmol}$) and triphenylphosphine ($6.57 \mathrm{~g}, 25.06 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$ and the refluxed for 6 h . After completion of reaction, it was diluted with hexane and filtered through celite. The filtrate was concentrated to give a residue which was purified by silica gel column chromatography (using 3% EtOAc in hexanes) to afford 105 a ($4.01 \mathrm{~g}, 71 \%$) as yellow liquid. TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \text { hexanes; }[\alpha]\right]^{26.51}=+22.24$ (c $=1.4$, CHCl_{3}); FTIR (cm^{-1}): 3679, 3426, 2971, 2402, 2361, 2096, 1764, 1640, 1516, 1478, 1426, 1043, 921; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H})$, 3.62-3.49 (m, 2H), 3.13-3.02 (m, 2H), 2.96-2.74 (m, 2H), 0.98 (s, 9H), 0.19 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 154.7,130.3,130.1,129.3,120.5,120.3,59.3,57.1$, 44.7, 37.1, 25.8, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{ClSi}$ $[\mathrm{M}+\mathrm{H}]+313.1385$, found 313.1385 .
(R)-1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)but-3-yn-2-ol (S5a): To a solution
 of chloride 105a ($4 \mathrm{~g}, 12.7 \mathrm{mmol}$) in dry THF, n-BuLi (2.5 M in hexane, $17.78 \mathrm{~mL}, 44.7 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 30 min . after completion of reaction; reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The organic phase was separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and crude product was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford $\mathbf{S 5 a}$ (3.2 g , $91 \%)$ as yellow liquid. TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes; $[\alpha]_{\mathrm{D}}{ }^{26.20}=+1.87(c=$
1.2, CHCl_{3}); FTIR (cm^{-1}): 3685, 3615, 3305, 2965, 2893, 2402, 1606, 1513, 1473, 1426, 1257, 1216, 1041, 919; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.06-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.81-$ $6.77(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{dq}, J=1.91,6.10 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=1.91 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92(\mathrm{~d}, J=5.72 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right):$ $\delta 154.9,130.9,128.9,120.2,84.4,73.8,63.2,43.2,25.8,18.3,-4.3 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+277.1618$, found 277.1618.

(R)-Tert-butyl(4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl)phenoxy)dimethyl-

 silane (101a): PMB-TCAI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added via cannula to a solution of $\quad(R)-1-(4-(($ tert-butyldimethyl-silyl)oxy)phenyl)but-3-yn-2-ol S5a (3.421 g, 10.87 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ under N_{2} at room temperature. PPTS ($856 \mathrm{mg}, 3.372 \mathrm{mmol}$) were then added and the resultant mixture was stirred for 17 h . After addition of a saturated solution of NaHCO_{3} (50 mL), the phases were separated and the organic layer was washed with brine (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford 101a ($3.0 \mathrm{~g}, 84 \%$) as yellow liquid. TLC: $R_{f}=0.7\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{26.51}$ $=+17.0\left(\mathrm{c}=2.6, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3425, 2976, 2402, 1640, 1519, 1427, 1041, 927; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.18(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}$, $J=9.16 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.44$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.19 (dt, $J=1.53,6.87 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=$ $2.29 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 159.3,154.5$, $130.7,130.0,129.9,129.6,119.8,113.8,82.7,74.6,70.4,69.4,55.4,41.5,25.8,18.3,-$ 4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+397.2193$, found 397.2193.

4-Formyl-2-methoxyphenyl-4-methylbenzenesulfonate (96a): To a stirred

96a diluted with 1 N HCl and the layers were separated. The organic layer was further washed with 1 N HCl followed by sat. aq. NaHCO_{3} and brine. The combined organic solution of vanillin ($5 \mathrm{~g}, 32.86 \mathrm{mmol}$) in DCM at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N} \quad(4.5 \mathrm{~mL}, \quad 32.86 \mathrm{mmol})$ followed by p-toluene sulphonylchloride $(6.26 \mathrm{~g}, 32.86 \mathrm{mmol})$ then the reaction temperature raised to $25{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was
layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (using 8% EtOAc in hexanes) to afford 96a ($9.2 \mathrm{~g}, 91 \%$) as white solid; TLC: $R_{f}=0.7 \mathrm{SiO}_{2}, 20 \%$ EtOAc/hexanes; FTIR (cm^{-1}): 3859, 3425, 2926, 2856, 1694, 1502, 1379, 1276, 1214, 1103, 1035, 855; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.9,152.7,145.6,143.1,135.9,133.0,129.6,128.7,124.6$, 124.4, 111.2, 55.9, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 307.0635$, found 307.0634 .

4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4-methylbenzenesulphonate

 (S9): To a solution of aldehyde 96a ($9.2 \mathrm{~g}, 30.2 \mathrm{mmol}$) in dry THF (100 mL), allyl magnesium chloride (2 M in THF, 22.71 mL , 45.4 mmol) was added at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture stirred for 1 h at the same temperature. After completion of reaction, reaction was quenched with sat. aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the combined organic layer were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and the crude product was purified by silica gel column chromatography (using 15\% EtOAc in hexanes) to afford $\mathbf{S 9}$ (10 g, 95\%) as colorless oil. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes, FTIR (cm^{-1}): 3434, 2971, 2927, 2860, 2403, 2068, 1640, 1606, 1507, 1460, 1372, 1273, 1104, 1039, 927, 854; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.26 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 2 \mathrm{H})$, $4.69(\mathrm{dd}, J=4.75,8.00 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.35$ (m, 1H), 2.12-2.06 (br. s, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.9, 145.1, 144.2, 137.6, 134.2, 133.4, 129.5, 128.7, 123.9, 119.0, 117.9, 110.1, 72.8, 55.7, 44.1, 21.8.

4-(But-3-enoyl)-2-methoxyphenyl-4-methylbenzenesulfonate (113): To the allyl
 alcohol S9 ($10 \mathrm{~g}, 28.7 \mathrm{mmol})$ in dry DCM (100 mL) at $0{ }^{\circ} \mathrm{C}$, DMP ($18.26 \mathrm{~g}, 43.0 \mathrm{mmol}$) was added and the reaction mixture was stirred up to starting material completely consumed (1 h). After completion of reaction, reaction was quenched with hypo
solution (1: 1 ratio of Sat. NaHCO_{3} and Sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$) and the aqueous layer was extracted with DCM ($3 \times 50 \mathrm{~mL}$) and the combined organic layers were washed with brine and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and crude product was purified by silica gel column (using 15 \% EtOAc in hexanes) chromatography to afford 113 ($8.1 \mathrm{~g}, 81 \%$) as yellow liquid. TLC: $R_{f}=0.5$ ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes), FTIR (cm^{-1}): 3680, 3517, 2970, 2928, 2858, 2625, 2405, 1917, 1674, 1596, 1502, $1455,1409,1374,1281,1167,1119,1032,962,914,847 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=1.75,8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=8.13 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.26 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.16(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}$, $J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9$, 152.2, 145.5, 142.2, 136.2, 133.1, 130.8, 129.6, 128.7, 124.1, 121.5, 119.1, 112.0, 55.8, 43.5, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+347.0948$, found 347.0948.

(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4-methylbenzenesulphonate

(106a): (R)-CBS ($23.40 \mathrm{~mL}, 23.4 \mathrm{mmol}$) reagent was added to a solution of $\mathrm{BH}_{3}-\mathrm{Me}_{2} \mathrm{~S}(2.21 \mathrm{~mL}, 23.4 \mathrm{mmol})$ in dry THF (10 mL) and stirred for 15 min . at rt , then cooled to $-20^{\circ} \mathrm{C}$. After that a solution of 4-(but-3-enoyl)-2-methoxyphenyl-4methylbenzenesulfonate 113 ($8.1 \mathrm{~g}, 23.4 \mathrm{mmol}$) in dry THF (60 mL) was added to this dropwise. Then the reaction mixture was stirred for 2 h at the same temperature then quenched with MeOH and warmed to rt for 1 h then the solvent was removed in vacuum and the crude product was purified by silica gel column chromatography (using 15\% EtOAc in hexanes) to afford 106a ($8 \mathrm{~g}, 98 \%$) as colorless oil; TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes); Reported $[\alpha]_{\mathrm{D}}{ }^{25}=+17.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$ for $(R)-20 \mathrm{a}$, observed $[\alpha]^{26.27}=-11.038\left(\mathrm{c}=2.3, \mathrm{CHCl}_{3}\right) ;$ FTIR (cm^{-1}): 3433, 2976, 2402, 2361, 2100, 1640, 1515, 1423, 1376, 1084, 1041, 926, 850; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.76-7.69 (m, 2H), 7.29-7.26 (m, 2H), 7.07 (d, $J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.88 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{dd}, J=4.75,7.88$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.54(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (br. s., $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,145.1,144.2,137.6,134.2,133.4,129.5$, 128.7, 123.9, 119.0, 117.9, 110.1, 72.8, 55.7, 44.1, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+349.1104$, found 349.1320.
(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4-methylbenzenesulphonate (106a): To the stirred solution of oven dried MS $4 \AA$ in DCM under N_{2} atmosphere
 was added S-BINOL ($953 \mathrm{mg}, 3.32 \mathrm{mmol}$) a 1.0 M solution of $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{iPr}}\right)_{4}(1.66 \mathrm{~mL}, 1.66 \mathrm{mmol})$ in DCM and a freshly prepared 1 M solution of TFA ($0.09 \mathrm{~mL}, 0.099 \mathrm{mmol}$) in DCM. The reaction mixture was heated at reflux for a period of 3 h and then cooled to rt, a solution of tosyl aldehyde 96a ($5.1 \mathrm{~g}, 16.64 \mathrm{mmol}$) in DCM was added to the reaction mixture stirred for 0.5 h at rt then cooled to $-78^{\circ} \mathrm{C}$, allyltributyltin $(7.16 \mathrm{~mL}$, 21.64 mmol) was slowly added and the reaction mixture was stirred for addition 10 min. at $-78{ }^{\circ} \mathrm{C}$ and then kept in a $-20^{\circ} \mathrm{C}$ freezer. After 4 d , the reaction was filtered through a pad of celite into a 500 mL flask that contained a stirring sat. aq. NaHCO_{3} solution and the resulting mixture were stirred for 1 h then the layers were separated. The aq. layer was extracted with DCM. The combined layers were washed with brine dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by silica gel column chromatography to afford 106a ($3.97 \mathrm{~g}, 68 \%$) as colorless oil. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}{ }^{25.89}=-13.50\left(\mathrm{c}=2.2, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3607,3434,3019$, 2403, 2360, 2067, 1638, 1608, 1508, 1461, 1419, 1376, 1123, 1085, 1041, 938, 853; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}$, $J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.11(\mathrm{~m}, 2 \mathrm{H})$, $4.68(\mathrm{dd}, J=4.96,7.63 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.37$ ($\mathrm{m}, 1 \mathrm{H}$), 2.18 (br. s., 1 H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,145.1,144.2,137.6$, 134.2, 133.4, 129.4, 128.7, 123.9, 118.9, 117.9, 110.2, 72.8, 55.7, 44.0, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]+371.0924$, found 371.0923.

(S)-4-(1-((Tert-butyldimethylsilyl)oxy)but-3-en-1-yl)-2-methoxyphenyl-4-

 methylbenzenesulphonate (S6a): To a solution of (S)-4-(1-hydroxybut-3-en-1-yl)- 2-methoxyphenyl-4-methyl-benzenesulphonate 20a (8 g, 22.96 mmol) in dry DCM (50 mL), imidazole ($2.34 \mathrm{~g}, 34.44 \mathrm{mmol}$) and DMAP ($280 \mathrm{mg}, 2.29 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 min . After that $\mathrm{TBSCl}(3.97 \mathrm{~g}, 26.4$ mmol) was added to this reaction mixture and it was stirred for 24 h . After completion of reaction it was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and aqueous layer was
extracted with DCM ($3 \times 50 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and the crude product was purified with silica gel column chromatography to afford S6a ($10 \mathrm{~g}, 94 \%$) as colorless oil. TLC: $R_{f}=$ $0.8\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc $/$ hexanes; $[\alpha]_{\mathrm{D}}^{26.26}=-25.92\left(\mathrm{c}=2.6, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3426$, 2937, 2860, 2403, 1640, 1604, 1504, 1462, 1418, 1370, 1088, 1039, 925, 845; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=1.53,8.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.67(\mathrm{~m}$, 1 H), 5.02-4.95 (m, 2H), $4.62(\mathrm{dd}, J=5.34,7.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.40-$ $2.29(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.5,145.6,145.0,137.2,134.8,133.1,129.2,128.8,123.5,117.9,117.3,110.1,74.5$, 55.5, 45.4, 25.9, 21.7, 18.3, -4.6, -4.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{NaSSi}$ $[\mathrm{M}+\mathrm{Na}]+485.1788$, found 485.2017.

(S)-4-(1-((Tert-butyldimethylsilyl)oxy)-3-oxopropyl)-2-methoxyphenyl-4-me-

 thylbenzenesulfonate (102a): To a solution of (S)-4-(1-((tert- butyldimethylsilyl)oxy)but-3-en-1-yl)-2-methoxyphenyl-4methylbenzene sulphonate S6a ($10 \mathrm{~g}, 21.6 \mathrm{mmol}$) in 30 mL of acetone : water (3:1, $45 \mathrm{~mL}: 5 \mathrm{~mL}$) was added $\mathrm{OsO}_{4}(54 \mathrm{mg}$, $2.16 \mathrm{mmol})$ and NMO (5.52 g (50% solution), 25.9 mmol) at rt and stirred for 5 h . After that solvent was evaporated and the residue was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). Organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in a vacuum. To a solution of the above crude diol in 20 mL of THF: water (4: 1) was added $\mathrm{NaIO}_{4}(9.21 \mathrm{~g}, 43.2 \mathrm{mmol})$ and the reaction mixture was stirred 1 h at rt then solid was removed by filtration, and the filtrate was extracted with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. And the crude aldehyde was purified by silica gel column chromatography to afford 102 a ($6.4 \mathrm{~g}, 64 \%$) yield as colorless oil. TLC: R_{f} $=0.6\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{26.27}=-39.398\left(c=3.7, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right)$: 3425, 2942, 2859, 2403, 1719, 1672, 1605, 1505, 1462, 1417, 1372, 1263, 1096, 1037, 933, 847; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.74$ (dd, $J=1.88,2.50 \mathrm{~Hz}, 1 \mathrm{H}$), $7.70(\mathrm{~d}, J$ $=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83-6.80 (m, 1H), 5.15 (dd, $J=4.13,8.25 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (s, 3H), 2.80 (ddd, $J=2.63$, $8.13,15.88 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (ddd, $J=1.75,4.00,16.01 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$,
$0.03(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.8,151.9,145.1,144.3$, 137.6, 133.1, 129.4, 128.8, 124.1, 117.7, 110.0, 70.2, 55.6, 54.0, 25.8, 21.8, 18.1, -4.6, 5.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]+465.1762$, found 465.3765 .

4-((1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)-

 oxy)phenyl)-3-hydroxy-6-((4-methoxybenzyl)oxy)hept-4-yn-1-yl)-2-methoxy-phenyl-4-methylbenzene-sulfonate (107a): To the alkyne 101a (2.76 g, 6.95 mmol) in dry THF (20 mL), LiHMDS (1.0 M in THF, 9.75 $\mathrm{mL}, 9.7 \mathrm{mmol})$ was added at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature. After that aldehyde $\mathbf{1 0 2 a}(3.23 \mathrm{~g}$, 6.97 mmol) was added in one shot and reaction was stirred for 2 h . After completion of reaction, reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (3 x 30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and subjected to silica gel column chromatography (using 15% EtOAc in hexanes) to afford $107 \mathrm{a}\left(3.9 \mathrm{~g}, 65 \%\right.$) as yellow liquid. TLC: $R_{f}=$ 0.5 ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes); $\left.\alpha\right]_{\mathrm{D}} 26.26=-4.74\left(\mathrm{c}=2.6, \mathrm{CHCl}_{3}\right.$); FTIR (cm^{-1}): 3684, 3615, 2968, 2403, 1730, 1599, 1413, 1468, 1424, 1374, 1085, 1040, 922; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.74-7.69 (m, 2H), 7.32-7.27 (m, 2H), 7.17-7.10 (m, 3H), 7.09-7.05 $(\mathrm{m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{dd}, \mathrm{J}=3.15$, $8.83 \mathrm{~Hz}, 0.5 \mathrm{H}$), $4.78(\mathrm{dd}, J=4.10,9.46,0.5 \mathrm{H}), 4.69(\mathrm{dd}, J=5.67,11.66 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}$, $1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=2.21,11.66 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.79(\mathrm{~m}$, $3 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 4 \mathrm{H}), 0.05(\mathrm{~d}, J=16.71 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.19-0.25(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,159.3,154.5,151.9,145.1,144.9,144.8,137.7$, 137.6, 133.3, 130.7, 130.2, 130.1, 130.0, 129.5, 129.4, 128.9, 124.0, 119.9, 118.1, $118.0,114.1,113.9,110.2,91.9,87.2,87.0,84.4,83.9,73.4,72.3,70.5,69.7,65.3,61.1$, 59.8, 55.6, 55.4, 48.5, 47.2, 41.7, 25.9, 25.9, 21.8, 18.4, 18.2, -4.3, -4.4, -4.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{65} \mathrm{O}_{9} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{H}]+861.3882$, found 861.3925 .

4-((1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)-

 oxy)phenyl)-6-((4-methoxybenzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxy-phenyl-4-methylbenzenesulfonate (100b): To the alcohol $\mathbf{1 0 7 a}$ ($1.6 \mathrm{~g}, 1.8 \mathrm{mmol}$) in dry DCM (15 mL), DMP ($1.18 \mathrm{~g}, 2.7 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h .After completion of reaction, reaction was quenched with hypo solution 1:1 (saturated aq. NaHCO_{3} : saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$), extracted with DCM ($3 \times 15 \mathrm{~mL}$), dried
 over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and crude product was purified by silica gel column chromatography (using 10% EtOAc in hexanes) to afford the desired product 100b ($1.2 \mathrm{~g}, 75 \%$) as yellow viscous liquid. TLC: $R_{f}=0.6$ $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{26.26}=+1.69$ (c = 2.5,
CHCl_{3}); FTIR (cm^{-1}): 3681, 3613, 3409, 2973, 2402, 2360, 1729, 1612, 1516, 1425, 1042, 926; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.05(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.71(\mathrm{~m}, 6 \mathrm{H}), 5.18(\mathrm{dd}, J=3.88,9.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.65(\mathrm{~m}, 1 \mathrm{H})$, 4.43-4.37 (m, 1H), 4.35-4.30 (m, 1H), 3.81-3.77 (m, 3H), 3.54-3.50 (m, 3H), 3.07-2.91 $(\mathrm{m}, 3 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.05-$ $0.01(\mathrm{~m}, 3 \mathrm{H}),-0.15--0.20(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.6,159.5$, 154.8, 151.9, 145.1, 144.3, 137.7, 133.2, 130.7, 129.6, 129.4, 129.2, 129.2, 128.8, 124.0, 120.0, 117.9, 113.9, 110.1, 91.4, 85.7, 71.1, 71.0, 69.5, 56.4, 55.6, 55.4, 40.8, 25.8, 21.8, 18.3, 18.2, -4.3, -4.5, -5.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{NaSSi}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 881.3545$, found 881.3540 .

4-((1S,6R)-1-Hydroxy-7-(4-hydroxyphenyl)-6-((4-methoxybenzyl)oxy)-3-oxo-hept-4-yn-1-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (114) and 4($(1 S, 6 R)-7-(4-((T e r t-b u t y l d i m e t h y l s i l y l) o x y) p h e n y l)-1-h y d r o x y-6-((4-m e t h o x y-~$ benzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (115): To the TBS-keto intermediate 100b (248 mg , 0.28 mmol), HF:MeCN (5:95, 6 mL) was added and stirred at $0{ }^{\circ} \mathrm{C}$ up to starting material was completely consumed. After completion of reaction, reaction was quenched with sat. aq. NaHCO_{3}, extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography to afford 114 and 115.

114: yellow liquid, ($88 \mathrm{mg}, 48 \%$), TLC: $R f=0.2\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{26.22}=$
 +24.531 ($\mathrm{c}=0.2, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3685, 3617, 3444, 2975, 2928, 2402, 1603, 1519, 1426, 1041, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, J=$ $8.00 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23-7.17 (m, 2H), 7.13-7.04 (m, 3H), 6.90 (d, $J=1.75 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88-6.83 (m, 2H), 6.79 (dd, $J=1.81$,
$8.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.51$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.08-$ $3.00(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ((101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.0,159.6,155.0,152.2,145.3,142.7,137.8,133.4,131.0,129.7$, 129.6, 129.1, 128.7, 128.2, 124.1, 117.7, 115.3, 114.0, 110.2, 93.1, 85.3, 71.3, 69.6, 69.3, 55.8, 55.4, 54.5, 40.6, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{O}_{9} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$ 653.1816, found 653.1830.

115: yellow liquid, ($68 \mathrm{mg}, 31 \%$); TLC: $R_{f}=0.5$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /$ hexanes); $\left[\alpha \mathrm{D}^{26.25}=\right.$
 +5.11 ($c=0.5, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3425, 2976, 2402, 2359, 1640, 1520, 1426, 1041, 927; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.88 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}$, $3 \mathrm{H}), 6.90(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.77-$ $6.74(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{t}, J=6.63 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.0$, 159.6, 154.8, 152.1, 145.1, 142.5, 137.9, 133.5, 131.1, 130.7, 129.7, 129.6, 129.5, $129.2,129.0,128.7,124.1,120.1,117.7,115.0,114.0,113.9,110.2,92.6,71.3,69.5$, 69.3, 55.8, 55.4, 54.2, 40.8, 25.8, 21.8, 18.3, -4.3 ; HRMS (ESI): m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{O}_{9} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]+745.2861$, found 745.2863 .
4-((S)-6-((R)-2-(4-Hydroxyphenyl)-1-((4-methoxybenzyl)oxy)ethyl)-4-oxo-3,4-
 dihydro-2H-pyran-2-yl)-2-methoxyphenyl 4methylbenzenesulfonate (116): To the hydroxy-ynone 114 (25 mg g, 0.03 mmol) in dry DCM (2 mL), AgOTf (1.0 $\mathrm{mg}, 0.003 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 24 h . After completion of reaction, reaction was quenched with brine, extracted with DCM ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuum and the crude product was purified by silica gel column chromatography (using 30\% EtOAc in hexanes) 116 ($21 \mathrm{mg}, 87 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}} 26.20=+8.20\left(c=2.7, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3414, 2988, 2307, 1641, 1430, 1266, 1219, 1024, 897; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.82-7.77(m, 2H), 7.36-7.30 (m, 2H), 7.16-7.10(m, 3H), 7.05-6.98 (m,

2H), 6.86-6.80 (m, 3H), 6.80-6.77 (m, 1H), 6.75-6.68 (m, 2H), 5.68-5.63 (m, 1H), 5.30 (dd, $J=4.13,13.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=$ $11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=6.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 3 \mathrm{H}), 3.00-2.87(\mathrm{~m}$, $2 \mathrm{H}), 2.76-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.1\right.$, 175.3, 159.5, 154.7, 152.3, 145.4, 138.7, 138.1, 133.5, 130.8, 129.6, 129.6, 129.4, 128.9, 128.7, 124.4, 118.4, 115.3, 114.0, 110.7, 104.3, 80.4, 79.7, 72.0, 55.9, 55.5, 42.8, 39.7, 21.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{O} 9 \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 631.1996$, found 631.1995 .

4-((S)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-((4-methoxybenzyl-

)oxy)ethyl)-4-oxo-3,4-dihydro-2H-pyran-2-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (117): To the hydroxyl-ynone 115 ($116 \mathrm{mg}, 0.155 \mathrm{mmol}$) in dry DCM (4 mL), AgOTf ($3 \mathrm{mg}, 0.0015 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 24 h at the same temperature. After completion of reaction, brine was added to the reaction and extracted with DCM ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuum and the crude product was purified by silica gel column chromatography (using 20% EtOAc in hexanes) to afford 117 ($87 \mathrm{mg}, 75 \%$)as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, 40% EtOAc/hexanes); $[\alpha]_{D^{26.22}}=+7.15\left(c=0.9\right.$, CHCl $_{3}$); FTIR (cm^{-1}): 3686, 3619, 3457, 2972, 2928, 2402, 1721, 1602, 1519, 1426, 1041, 927; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right)$ \& 7.82-7.75 (m, 2H), 7.37-7.29 (m, 2H), 7.19-7.07 (m, 3H), 7.06-7.00 (m, 2H), 6.87-6.78 (m, 4H), 6.78-6.70 (m, 2H), 5.67-5.61 (m, 1H), $5.31(\mathrm{dd}, J=4.10,13.24 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.35 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=11.35 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43$ $(\mathrm{m}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 191.9, 175.1, 159.5, 154.7, 152.3, 145.3, 138.8, 138.2, 133.6, 130.6, 129.6, 129.5, 128.7, 124.4, 120.1, $118.4,114.0,110.6,104.5,80.5,79.8,72.0,55.9,55.4,43.0,39.7,25.8,21.9,18.4,-4.3$; HRMS (ESI): m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{O}_{9} \mathrm{NaSSi}[\mathrm{M}+\mathrm{Na}]+767.2681$, found 767.2701.
 4-(($2 S, 6 R)$-6-((R)-1-Hydroxy-2-(4-hydroxyphenyl)-
ethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxy-
phenyl 4-methylbenzenesulfonate (S10): To the
dihydropyranone 116 ($89 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dry ethyl
acetate (4 mL), Pd/C ($40 \mathrm{mg}, 10 \%$ wet weight) was added and the reaction mixture was stirred overnight under hydrogen atmosphere. After completion of reaction, the mixture was filtered through celite and the resulting filtrate was concentrated in vacuum. The crude product was purified by silica gel column chromatography (using 50\% ethyl acetate in hexane) to afford $\mathbf{S 1 0}$ ($50 \mathrm{mg}, 69 \%$) as a amorphous solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]^{24.29}=-17.64\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right)$: 3687, 3599, 2927, 2402, 1600, 1519, 1426, 1022, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.79(\mathrm{~d}, J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.51 \mathrm{~Hz}, 2 \mathrm{H}$), 6.89-6.84 (m, 2H), 6.75 (d, $J=8.38 \mathrm{~Hz}, 2 \mathrm{H}$), 4.95 (br. s., 1H), 4.58 (dd, $J=$ $2.75,11.51 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=$ $5.88,14.01 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50$ ($\mathrm{m}, 1 \mathrm{H}$), $2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.0,154.6,152.2,145.3$, $140.6,138.2,133.5,130.6,129.7,129.6,129.5,128.7,124.3,117.8,115.6,110.2,78.4$, 78.2, 74.5, 55.9, 49.4, 43.9, 38.8, 21.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{NaS}$ $[\mathrm{M}+\mathrm{Na}]^{+} 535.1397$, found 535.1392 .

4-((2S,6R)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxyethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (S11): To the

 dihydropyranone 117 ($18 \mathrm{mg}, 0.0241 \mathrm{mmol}$) in dry ethyl acetate, $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ was added and the reaction mixture was stirred overnight under hydrogen atmosphere. After completion of reaction, the mixture was filtered through celite and the resulting filtrate was concentrated in vacuum. The crude product was purified by silica gel column chromatography using 50\% ethyl acetate in hexanes to afford S11 ($11 \mathrm{mg}, 73 \%$) as amorphous solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /$ hexanes); [$\left.\alpha\right]_{\mathrm{D}}{ }^{26.32}$ $=-24.18$ ($\mathrm{c}=0.7, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3411, 3157, 2858, 2256, 1802, 1603, 1468, 1381, 1266, 1166, 1097, 908; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.86$ (m, 2H), 6.80-6.75 (m, 2H), 4.59 (dd, $J=3.05,11.44 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (br. s., 1H), 3.71-3.66 (m, 1H), 3.62 (s, 3H), 3.61-3.54 (m, 1H), 2.91-2.80 (m, 2H), 2.78-2.66 (m, 2H), 2.66$2.58(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.22$ (br. s., 1H), $0.97(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \operatorname{NMR}\left(\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.1,154.6,152.2,145.2\right.$,
$140.6,138.2,133.5,130.4,130.0,129.6,128.7,124.3,120.3,117.8,110.1,78.2,78.2$, 74.6, 58.7, 55.9, 49.3, 43.9, 38.9, 25.8, 21.9, 18.6, 18.3, 1.2, 0.1, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{NaSSi}[\mathrm{M}+\mathrm{Na}]^{+} 649.2262$, found 649.2269 .

4-((2S,4R,6R)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxy-ethyl)-4-hydroxytetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (119): To a stirred solution of tetra-hydro-pyranone $\mathbf{S 1 1}(12 \mathrm{mg}$,
 0.019 mmol) in THF at $-78{ }^{\circ} \mathrm{C}$ was added $L S$-selectride ($0.02 \mathrm{~mL}, 0.021 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at the same temperature. After completion of reaction it was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to rt. The organic layer was separated and aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$) and combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and crude product was purified by silica gel column chromatography (using 70\% EtOAc in hexanes) to afford 119 ($8.5 \mathrm{mg}, 70 \%$) as thick liquid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 70 \%$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}{ }^{23.96}=-22.12\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3687,2928,2402$, 2358, 2255, 1599, 1518, 1426, 1024, 911; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, $J=$ $8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 3 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.76$ $(\mathrm{d}, J=8.77 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=1.53,11.83 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{ddd}, J=$ $1.91,4.96,11.83 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72(\mathrm{q}, ~ J=6.87 \mathrm{~Hz}, 2 \mathrm{H}$), 3.58 ($\mathrm{s}, 3 \mathrm{H}$), 2.84 (dd, $J=5.34$, $13.73 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=8.01,14.11 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.85-$ 1.77 (m, 2H), 1.70-1.65 (m, 2H), 0.97 (s, 9H), 0.18 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.3,151.9,145.1,143.0,137.6,133.6,130.4,129.5,128.8,123.9,120.1$, 117.9, 110.4, 75.2, 73.9, 73.3, 64.7, 55.8, 40.7, 38.8, 34.5, 25.8, 21.8, 18.6, 1.2, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{NaSSi}[\mathrm{M}+\mathrm{Na}]^{+} 651.2418$, found 651.2418 .

4-((2S,4R,6R)-4-Hydroxy-6-((R)-1-hydroxy-2-(4-hydroxyphenyl)ethyl)-

tetrahydro-2H-pyran-2-yl)-2-methoxyphenyl

methylbenzenesulfonate (120): To a stirred solution of tetrahydro-pyranone $\mathbf{S 1 0}$ ($15 \mathrm{mg}, 0.02 \mathrm{mmol}$) in THF at $78{ }^{\circ} \mathrm{C}$ was added $L S$-Selectride ($0.03 \mathrm{~mL}, 0.03 \mathrm{mmol}$) dropwise. Then the reaction was stirred for 1 h at the
same temperature. After completion of reaction it was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to rt. The organic layer was separated and aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$) and combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and crude product was purified by silica gel column chromatography (using 70\% EtOAc in hexanes) to afford 120 (12 mg, 80\%) as colorless thick liquid. TLC: $R_{f}=0.2\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc} /\right.$ hexanes $)$; $[\alpha]_{\mathrm{D}} 25.22=-15.45\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;$ FTIR (cm^{-1}): 3687, 2402, 1600, 1519, 1426, 1022, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-$ $7.04(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=1.88,11.76 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{t}, J=2.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (ddd, $J=2.25,4.88,11.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.59-3.55(\mathrm{~m}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=5.38,13.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=7.75,13.88 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,151.9,145.1,142.9,137.6,133.5,130.6,130.2,129.5$, 128.7, 123.9, 117.9, 115.5, 110.4, 75.2, 73.9, 73.3, 64.7, 55.8, 40.6, 38.7, 34.5, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]+537.1554$, found 537.1563.

4-((2S,4R,6R)-4-Hydroxy-6-((R)-1-hydroxy-2-(4-hydroxyphenyl)ethyl)-

 tetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4methylbenzenesulfonate (120): To a solution of benzenesulfonate 119 ($15 \mathrm{mg}, 0.023 \mathrm{mmol}$) in dry THF at $0{ }^{\circ} \mathrm{C}$, TBAF ($0.02 \mathrm{~mL}, 0.028 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred for 30 min. at the same temperature. The reaction was monitored by TLC and after completion of reaction, it was quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$) and combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum and crude product was purified by silica gel column chromatography (using 70\% EtOAc in hexanes) to afford $\mathbf{1 2 0}(7 \mathrm{mg}, 87 \%)$ as colorless thick liquid. TLC: $R_{f}=0.2\left(\mathrm{SiO}_{2}\right.$, 60% EtOAc/hexanes); FTIR (cm ${ }^{-1}$): 3686, 3425, 2402, 1611, 1519, 1426, 1023, 927, 672; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 2 \mathrm{H})$, 7.12-7.06 (m, 3H), 6.87-6.83 (m, 2H), 6.77-6.72 (m, 2H), 4.82 (dd, J=1.88, 11.26 Hz , $1 \mathrm{H}), 4.41-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 3 \mathrm{H}), 2.90-$
$2.82(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.65(\mathrm{~m}, 2 \mathrm{H})$.
ent-Rhoiptelol B (29a): To a solution of $\mathbf{1 2 0}$ ($9 \mathrm{mg}, 0.017 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL})$
 was added $\mathrm{K}_{2} \mathrm{CO}_{3}(12 \mathrm{mg}, 0.08 \mathrm{mmol})$ and the mixture was heated at reflux for 2 h . After completion of reaction the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and acidified with 1 N HCl until pH of the solution reached to 2 . The combined aqueous/ MeOH solution was extracted with ethyl acetate ($3 \times 3 \mathrm{~mL}$). The organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The crude product was purified by silica gel column chromatography (using 70\% EtOAc in hexanes) to get ent-rhoiptelol (29a) as amorphous solid ($4.6 \mathrm{mg}, 76 \%$); TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 70 \% \mathrm{EtOAc} /$ hexanes); $[\alpha]_{\mathrm{D}}{ }^{26.63}=-81.04(\mathrm{c}=0.1, \mathrm{MeOH})$; FTIR $\left(\mathrm{cm}^{-1}\right): 3687,2968,2402,1722,1520,1427$, 1025, 927, 672; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=$ $1.88,8.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{dd}, 1 \mathrm{H}), 4.28(\mathrm{~m}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=$ $7.00,13.66 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dd, $J=7.25,13.26 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92-1.89 (m, 1H), 1.84-1.80 (m, $1 \mathrm{H}), 1.76(\mathrm{~d}, J=2.88 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.54(\mathrm{~m}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 156.6$, 148.8, 146.7, 136.2, 131.4, 131.2, 129.9, 119.9, 116.0, 115.8, 111.1, 76.4, 75.2, 74.3, 65.7, 56.4, 49.8, 49.6, 49.4, 49.2, 48.8, 48.6, 48.4, 41.3, 39.7, 34.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 383.1465$, found 383.1462.

1.5 References

1. David, J. N. and Gordon, M. C.; Natural products as sources of new drugs over the nearly four decades from $01 / 1981$ to $09 / 2019$ J. Nat. Prod. 2020, 83, 770-803.
2. a) Newman, D. J.; Cragg, G. M.; and Snader, K. M.; The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215-234. b) Butler, M. S.; The role of natural product chemistry in drug discovery. J. Nat. Prod., 2004, 67, 2141-2153. c) Chin, Y. W.; Balunas, M. J.; Chai, H. B. and Kinghorn, A. D.; Drug discovery from natural sources. The AAPS journal, 2006, 8, E239-E253.
d) Chopra, B. and Dhingra, A. K.; Natural products: A lead for drug discovery and development. Phytother. Res., 2021, 35, 4660-4702.
3. a) Lam, K. S.; New aspects of natural products in drug discovery. Trends in microbiology, 2007, 15, 279-289.
4. a) Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M. and Supuran, C. T.; Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20, 200-216. b) Lahlou, M.; The success of natural products in drug discovery. Pharm. Pharmacol. 2013, 4, 17-31.
5. a) Alkadi, H. and Jbeily, R.; Role of Chirality in Drugs: An Overview. Infect. Disord. Drug Targets, 2018, 18, 88-95. b) Nguyen, L. A.; He, H. and Pham-Huy, C.; Chiral drugs: an overview. Int. J. Biomed. Sci. 2006, 2, 85-100.
6. a) Ward, T. J. and Baker, B. A.; Chiral separations. Anal. Chem., 2008, 80, 43634372. b) Ward, T. J. and Ward, K. D.; Chiral separations: a review of current topics and trends. Anal. Chem., 2012, 84, 626-635.
7. a) Jahng, Y and Park, J. G.; Recent Studies on Cyclic 1,7-Diarylheptanoids: Their Isolation, Structures, Biological Activities,and Chemical Synthesis. Molecules 2018, 23, 3107 b) Ganapathy, G.; Preethi, R.; Moses, J. A.; and Anandharamakrishnan, C.; Diarylheptanoids as nutraceutical: A review. Biocatal. Agric. Biotechnol., 2019, 19, 101109. c) Alberti, Á.; Riethmüller, E. and Béni, S.; Characterization of diarylheptanoids: An emerging class of bioactive natural products. J. Pharm. Biomed. Anal. 2018, 147, 13-34.
8. a) De Albuquerque, I. L.; Galeffi, C.; Casinovi, C. G. and Marini-Bettolo, G. B.; A Tetrahydropyran Derivative Isolated from Centrolobium Wood. Gazz. Chim. Ital, 1964, 94, 287-295. b) Mohapatra, D. K.; Pal, R.; Rahaman, H. and Gurjar M. K.; Stereoselective formal total synthesis of novel antibiotic (-)-centrolobine. Heterocycles, 2010, 80, 219-227. c) Reddy, C. R.; Reddy, G. B. and Srikanth, B.; Stereoselective synthesis of a tetrahydropyranyl diarylheptanoid, entdiospongin A. Tetrahedron: Asymmetry, 2011, 22, 1725-1728.
9. a) Jiang, Z. H.; Tanaka, T; Hirata, H.; Fukuoka, R.; and Kouno, I.; Three diarylheptanoids from Rhoiptelea chiliantha. Phytochemistry, 1996, 43(5), 1049-1054. b) Jin, W.; Cai, X. F.; Na, M.; Lee, J. J.; and Bae, K.; Diarylheptanoids
from Alnus hirsuta inhibit the NF-kB activation and NO and TNF- α production. Biol. Pharm. Bull, 2007, 30, 810-813.
10. Tezuka, Y.; Ali, M. S.; Banskota, A. H. and Kadota, S; Blepharocalyxins C-E: three novel antiproliferative diarylheptanoids from the seeds of Alpinia blepharocalyx. Tetrahedron lett. 2000, 41, 5903-5907.
11. Tezuka, Y.; Gewali, M. B.; Ali, M. S.; Banskota, A. H. and Kadota, S.; Eleven novel diarylheptanoids and two unusual diarylheptanoid derivatives from the seeds of Alpinia blepharocalyx. J. Nat. Prod, 2001, 64, 208-213.
12. Yin, J.; Kouda, K.; Tezuka, Y.; Le Tran, Q.; Miyahara, T.; Chen, Y. and Kadota, S.; New diarylheptanoids from the rhizomes of Dioscorea spongiosa and their antiosteoporotic activity. Planta medica, 2004, 70, 54-58.
13. Lin, Y. S.; Lin, J. H.; Chang, C. C. and Lee, S. S.; Tetrahydropyran-and tetrahydrofuran-containing diarylheptanoids from Hedychium coronarium rhizomes. J. Nat. Prod, 2015, 78, 181-187.
14. Li, Z. and Tong, R.; Asymmetric total syntheses of (-)-hedycoropyrans A and B. The J. Org. Chem., 2017, 82, 1127-1135.
15. Reddy, C. R.; Rao, N. N.; and Srikanth, B.; Total synthesis of a diarylheptanoid, rhoiptelol B. Eur. J. Org. Chem., 2010, 345-351.
16. Yadav, J. S.; Pandurangam, T.; Reddy, V. B. and Reddy, B. S.; Total synthesis of rhoiptelol B. Synthesis, 2010, 24, 4300-4306.
17. Yadav, J. S.; Rahman, M. A.; Reddy, N. M.; Prasad, A. R. and Al Ghamdi, A. A. K.; Stereoselective Total Synthesis of Rhoiptelol B via Prins Cyclization. Synlett, 2014, 25, 661-664.
18. Tanaka, N.; Takamura, H. and Kadota, I.; Total sytnhesis of Rhoiptelol B. Heterocycles, 2018, 97(2), 1157-1164.
19. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K-S.; Kwong, H-L.; Morikawa, K.; Wang, Z-M.; Xu, D. and Zhang, X-L.; The Osmium-Catalyzed Asymmetric Dihydroxylation: A New Ligand Class and a Process Improvement. J. Org. Chem. 1992, 57, 2768-2771.
20. Reddy, A. S.; Gangadhar, P.; Srihari, P.; A convergent approach for the total synthesis of the a-glucosidase inhibitor (-)-panaxjapyne-C. Tetrahedron: Asymmetry, 2013, 24, 1524-1530.
21. Zhang, Z.; Chen, Y.; Daniel A-A.; Okumu, A. A.; Kenton, N. T. and Forsyth, C. J.; Synthesis of the C22-C40 Domain of the Azaspiracids. Org. Lett., 2016, 18, 1824-1827.
22. a) Reddy, B. V. S; Rao, R. N.; Kumaraswamy, B. and Yadav, J. S.; Stereoselective total synthesis of oplopandiol, oploxyne A and oploxyne B. Tetrahedron Lett., 2014, 55, 4590-4592; (b) Yajima, A.; Iizuka, Y.; Katsuta, R. and Nukada, T.; Synthesis and absolute configuration of formosusin A, a specific inhibitor of mammalian DNA polymerase β. Tetrahedron Lett., 2016, 57, 2012-2015.
23. Nicolaou, K. C.; Brenzovich, W. E.; Bulgera, P. G. and Francisa, T. M.; Synthesis of iso-epoxy-amphidinolide N and des-epoxy-caribenolide I structures. Initial forays. Org. Biomol. Chem., 2006, 4, 2119-2157.
24. Hanessian, S.; Focken, T. and Oza, R.; Lewis-acid catalyzed formation of dihydropyrans. Tetrahedron 2011, 67, 9870-9884.
25. a) Daniel M. M.-B.; Andrew R. N.; Calum H, J. R. D. Montgomery, Panovic, I.; Ojo, O. S.; Lancefield, C. S.; Cordes,; D. B.; Slawin, A. M. Z.; Lebl, T. and Westwood, N. J.; The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Org. Biomol. Chem., 2016, 14, 10023-10030. b) Linder, T.; Liu, R.; Atanasov, A. G.; Li, Y.; Geyrhofer, S.; Schwaiger, S.; Stuppner, H.; Schnurch, M,; Dirsch, V. M. and Mihovilovic, M. D.; Leoligin-inspired synthetic lignans with selectivity for cell-type and bioactivity relevant for cardiovascular disease. Chem. Sci., 2019, 10, 5815-5820.
26. Maruyama, T.; Asada, M.; Shiraishi, T.; Yoshida, H.; Maruyama, T.; Ohuchida, S.; Nakai, H.; Kondo, K. and Toda, M.; Design and Synthesis of a Selective EP4Receptor Agonist. Part 3: 16-Phenyl-5-thiaPGE1 and 9- β-Halo Derivatives with Improved Stability. Bioorg. Med. Chem., 2002, 10, 1743-1759.
27. Ghosh, A. K.; Schiltz, G. E.; Rusere, L. N.; Osswald, H. L.; Walters, D. E.; Amanoc, M. and Mitsuya, H.; Design and synthesis of potent macrocyclic HIV-1 protease inhibitors involving P1-P2 ligands. Org. Biomol. Chem., 2014, 12, 6842-6854.
28. a) Kiyotsuka, Y.; Katayama, Y.; Acharya, H. P.; Tomonori Hyodo, T. and Kobayashi, Y.; New General Method for Regio- and Stereoselective Allylic Substitution with Aryl and Alkenyl Coppers Derived from Grignard Reagents. J. Org. Chem. 2009, 74, 1939-1951. b) Takano, S.; Samizu, K.; Sugihara, T. and

Ogasawara, K.; Asymmetric Construction of Optically Active 3-Hydroxyalkyne Functionalities. J. Chem. Soc., Chem. Commun., 1989, 1344-1345.
29. Shiina, I.; Umezaki, Y.; Kuroda, N.; Iizumi, T.; Nagai, S. and Katoh, T.; MNBAMediated β-Lactone Formation: Mechanistic Studies and Application for the Asymmetric Total Synthesis of Tetrahydrolipstatin. J. Org. Chem. 2012, 77, 4885-490.
30. Rotte, S. C. K.; Amar G. Chittiboyina, A. G. and Khan, I. A.; Asymmetric Synthesis of Crispine A: Constructing Tetrahydroisoquinoline Scaffolds Using Pummerer Cyclizations. Eur. J. Org. Chem. 2013, 6355-6360.
31. a) Wilkinson, C. J.; Frost, E. J.; Staunton, J. and Leadlay, P.F.; Chain initiation on the soraphen-producing modular polyketide synthase from Sorangium cellulosum. Chem. Biol., 2001, 8, 1197-1208 b) Tian, Y.; Wang, J.; Liu, W.; Yuan, X.; Tang, Y.; Li, J.; Chen, Y. and Zhang, W.; Stereodivergent total synthesis of Brnannocystins underpinning the polyketide $(10 R, 11 S)$ configuration as a key determinant of potency, J. Mol. Struct. 2019, 1181, 568-578.
32. Padakanti, S.; Sreekanth, B. R.; Mahendar, V.; Pal, M.; Mukkanti, K.; Iqbal, J. and Das, P.; A Cross-Metathesis Approach to the Synthesis of Key Precursor of the Macrolide Core of Rhizoxin D. Synlett 2008, 16, 2417-2420.
33. Reddy, D. V.; Sabitha, G.; Rao, T. P. and Yadav, J. S.; Total Synthesis of Anticancer Agent EBC-23. Org. Lett. 2016, 18, 4202-4205.
34. a) Greshock, T. J.; Johns, D. M.; Noguchi, Y. and Williams, R. M.; Improved Total Synthesis of the Potent HDAC Inhibitor FK228 (FR-901228). Org. Lett. 2008, 10, 613-616. b) Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Nasu, S.; Ochiai, K. and Shoji, M.; 1,4-Asymmetric Induction using a Cobalt Alkyne Complex. Organometallics 2008, 27, 163-165. c) Kojima, N.; Nishijima, S.; Tsuge, K. and Tanaka, T.; Asymmetric alkynylation of aldehydes with propiolates without high reagent loading and any additives, Org. Biomol. Chem., 2011, 9, 44254428.
35. a) Funel, J-A. and Prunet, J.; Enyne versus Diene RCM in the Synthesis of Cyclopentene Derivatives toward the A Ring of FR182877. J. Org. Chem. 2004, 69, 4555-4558. b) Paterson, I. and Craw, P. A.; Controlled Bisepoxide Cyclisation Using a β-Diketone Group. Tetrahedron Lett. 1989, 30, 5799-5802.
36. a) Schneider, C. and Schuffenhauer, A.; Stereodivergent Synthesis of Highly Substituted Tetrahydropyrans. Eur. J. Org. Chem. 2000, 73-82. b) Bates, R. W. and Palani, K.; Model studies towards the bistramide D tetrahydropyran. Tetrahedron Lett., 2008, 49, 2832-2834. (c) Vakalopoulos, A. and Hoffmann, H. M. R.; Versatile 8-Oxabicyclo[3.2.1]oct-6-en-3-one: Stereoselective Methodology for Generating C-Glycosides, δ-Valerolactones, and Polyacetate Segments. Org. Lett. 2001, 3, 177-180. d) Lee, H.; Kim, K. W.; Park, J.; Kim, H.; Kim, S.; Kim, D.; Hu, X.; Yang, W. and Hong, J.; A General Strategy for Construction of Both 2,6-cis- and 2,6-trans-Disubstituted Tetrahydropyrans: Substrate-Controlled Asymmetric Total Synthesis of (+)-Scanlonenyne. Angew. Chem. Int. Ed. 2008, 47, 4200-4203. e) Reiter, M.; Turner, H. and Gouverneur, V.; Intramolecular Hetero-Michael Addition of b-Hydroxyenones for the Preparation of Highly Substituted Tetrahydropyranones. Chem. Eur. J. 2006, 12, 7190-7203. f) Yao, H.; Ren, J. and Tong, R.; A short and flexible route to tetrahydropyran-4-ones via conjugated nitrile oxides cycloaddition and oxaMichael cyclization: a concise diastereoselective total synthesis of (\pm)diospongin A. Chem. Commun., 2013, 49, 193-195 (g) Athe, S. and Ghosh, S.; Synthesis of the C1-C13 Fragment of Mandelalide A, Synthesis 2016, 48, 917923. (h) Silva, F.; Reiter, M.; Mills-Webb, R.; Sawicki, M.; Kla"r, D.; Bensel, N.; Alain Wagner, A. and Gouverneur, V.; Pd(II)-Catalyzed Cascade Wacker-Heck Reaction: Chemoselective Coupling of Two Electron-Deficient Reactants, J. Org. Chem. 2006, 71, 8390-8394.
37. a) Huang, W-Y.; Nishikawa, T. and Nakazaki A.; Palladium-Catalyzed Cascade Wacker/Allylation Sequence with Allylic Alcohols Leading to Allylated Dihydropyrones, ACS Omega 2017, 2, 487-495. b) Dreeßen, S.; Schabbert, S.; and Schaumann, E.; Synthesis of Hepialone and Related Dihydro- γ-pyrones by Various (3+3) Methods. Eur. J. Org. Chem. 2001, 245-251. c) Nicolaou, K. C.; Frederick, M. O.; C. B. Burtoloso, A. C. B.; Denton, R. M.; Rivas, F.; Cole, K. P.; Aversa, R. J.; Gibe, R.; Umezawa, T. and Suzuki, T.; Chemical Synthesis of the GHIJKLMNO Ring System of Maitotoxin. J. Am. Chem. Soc. 2008, 130, 74667476. (d) Nicolaou, K.C.; Cole, K. P.; Frederick, M. O.; Aversa, R. J. and Denton, R. M.; Chemical Synthesis of the GHIJK Ring System and Further Experimental

Support for the Originally Assigned Structure of Maitotoxin. Angew. Chem. Int. Ed. 2007, 46, 8875 -8879.
38. a) Trost, B. M.; Michaelis, D. J. and Malhotra, S.; Total Synthesis of (-)-18-epiPeloruside A: An Alkyne Linchpin Strategy. Org. Lett. 2013, 15, 5274-5277. b) Young, I. S.; Haley, M. W.; Tam, A.; Tymonko, S. A.; Xu, Z.; Hanson, R. L. and Goswami, A.; A Scalable Synthesis of of (R,R)-2,6-Dimethyldihydro-2H-pyran-4(3H)-one, Org. Process Res. Dev. 2015, 19, 1360-1368. c) Druais, V.; Meyer, C.; and Cossy, J.; Catalytic Diastereoselective Reductionof α, β-Epoxy and α, β Aziridinyl Ynones, Org. Lett., 2012, 14, 516-519.
39. Jo, H.; Choi, M.; Viji, M.; Lee, Y. H.; Kwak, Y-S.; Lee, K.; Choi, N. S.; Lee, Y-J.; Lee, H.; Hong, J. T.; Lee, M. K. and Jung, J-K.; Concise Synthesis of Broussonone A, Molecules 2015, 20, 15966-15975.
40. Brimble, M.A. and Bryant, C.J.; Synthesis and assignment of the absolute configuration of the anti-Helicobacter pylori agents CJ-12,954 and CJ-13,014. Org. Biomol. Chem., 2007, 5, 2858-2866.
41. Todoroki, T.; Saito, A. and Tanaka, A.; Lipase-Catalyzed Kinetic Resolution of (\pm)-cis-Flavan-4-ol and Its Acetate: Synthesis of Chiral 3-Hydroxyflavanones. Biosci. Biotechnol. Biochem., 2002, 66, 1772-1774.
42. Moriarty, R. M. and Prakash, O.; Hypervalent Iodine Oxidation of Flavanone. Synthesis of cis-and trans-3-hydroxyflavanones." J. Org. Chem. 1985, 50, 151153.

Chapter-1 NMR Spectra

(R)-3-(4-Methoxyphenyl)propane-1,2-diol (S1):

(R)-3-(4-Methoxyphenyl)propane-1,2-diol (S1):

Chapter-1 NMR Spectra

(4R)-4-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-1,3-dioxolane (97):

(4R)-4-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-1,3-dioxolane (97):

Chapter-1 NMR Spectra

(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxyphenyl)propan-1-ol (S2):

(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxyphenyl)propan-1-ol (S2):

Chapter-1 NMR Spectra

(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxyphenyl)propanal (98):

(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxyphenyl)propanal (98):

${ }^{13} \mathrm{C}$ NMR, 50 MHz
CDCl_{3}

(2R,3R)-2-((4-Methoxybenzyl)oxy)-1-(4-methoxyphenyl)hex-5-ene-3-ol (93):

(2R,3R)-2-((4-Methoxybenzyl)oxy)-1-(4-methoxyphenyl)hex-5-ene-3-ol (93):

1-(3,4-Dimethoxyphenyl)prop-2-en-1-ol (94):

1-(3,4-Dimethoxyphenyl)prop-2-en-1-ol (94):

(5R,6R,E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-2-ene-1,5-diol (92):

(5R,6R,E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-2-ene-1,5-diol (92):

(R)-1-(((4,4-Dibromo-1-(4-methoxyphenyl)but-3-en-2-yl)oxy)methyl)-4methoxybenzene (S3):

(R)-1-(((4,4-Dibromo-1-(4-methoxyphenyl)but-3-en-2-yl)oxy)methyl)-4methoxybenzene (S3):

(R)-1-Methoxy-4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl)benzene (101):

$\underbrace{}_{m} \hat{\sim}$

${ }^{1} \mathrm{H}$ NMR, 200 MHz CDCl_{3}

(R)-1-Methoxy-4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl)benzene (101):

Ethyl (E)-4-(4-methoxyphenyl)but-2-enoate (103):

Ethyl (E)-4-(4-methoxyphenyl)but-2-enoate (103):

Chapter-1 NMR Spectra

(E)-4-(4-Methoxyphenyl)but-2-en-1-ol (S4):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(E)-4-(4-Methoxyphenyl)but-2-en-1-ol (S4):

Chapter-1 NMR Spectra

((2R,3R)-3-(4-Methoxybenzyl)oxiran-2-yl)methanol (104):

((2R,3R)-3-(4-Methoxybenzyl)oxiran-2-yl)methanol (104):

(2S,3R)-2-(Chloromethyl)-3-(4-methoxybenzyl)oxirane (105):

(2S,3R)-2-(Chloromethyl)-3-(4-methoxybenzyl)oxirane (105):

(R)-1-(4-Methoxyphenyl)but-3-yn-2-ol (S5):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

-
(R)-1-(4-Methoxyphenyl)but-3-yn-2-ol (S5):

(R)-1-Methoxy-4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl)benzene (101):

(R)-1-Methoxy-4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl)benzene (101):

(S)-1-(3,4-Dimethoxyphenyl)but-3-en-1-ol (106):

${ }^{1} \mathrm{H}$ NMR, 200 MHz CDCl_{3}

(S)-1-(3,4-Dimethoxyphenyl)but-3-en-1-ol (106):

${ }^{13} \mathrm{C}$ NMR, 50 MHz CDCl_{3}
(S)-Tert-butyl((1-(3,4-dimethoxyphenyl)but-3-en-1-yl)oxy)dimethylsilane (S6):

(S)-Tert-butyl((1-(3,4-dimethoxyphenyl)but-3-en-1-yl)oxy)dimethylsilane (S6):

(S)-3-((Tert-butyldimethylsilyl)oxy)-3-(3,4-dimethoxyphenyl)propanal (102):

(S)-3-((Tert-butyldimethylsilyl)oxy)-3-(3,4-dimethoxyphenyl)propanal (102):

Chapter-1 NMR Spectra

(1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-yn-3-ol (107):

(1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-yn-3-ol (107):

(1S,6R,E)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-ol (S7):

(1S,6R,E)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-ol (S7):

(1S, 6R,E)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-mehoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-one (100):

(1S,6R,E)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-mehoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-one (100):

Chapter-1 NMR Spectra

(1S, 6R,E)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)-hept-4-en-3-one (108):

(1S,6R,E)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)-hept-4-en-3-one (108):

Chapter-1 NMR Spectra

$(R, 1 E, 4 E)$-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hepta-1,4-dien-3-one (110):

H NMR, 400 MHz CDCl_{3}

(R,1E,4E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hepta-1,4-dien-3-one (110):

(R, E)-5-((4-Methoxybenzyl)oxy)-6-(4-methoxyphenyl)hex-3-en-2-one (111):

(R, E)-5-((4-Methoxybenzyl)oxy)-6-(4-methoxyphenyl)hex-3-en-2-one (111):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

 $\stackrel{\infty}{\infty}$

3,4-Dimethoxybenzaldehyde (96):

3,4-Dimethoxybenzaldehyde (96):

(1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-yn-3-one (100a):

(1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-yn-3-one (100a):

(1S,6R)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-4-yn-3-one (108a):

(1S,6R)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-4-yn-3-one (108a):

(S)-2-(3,4-Dimethoxyphenyl)-6-((R)-1-((4-methoxybenzyl)oxy)-2-(4-methoxy-phenyl)ethyl)-2,3-dihydro-4H-pyran-4-one (109a) and (S,E)-5-(3,4-dimethoxyphenyl)-2-((R)-2-((4-methoxybenzyl)oxy)-3-(4-methoxyphenyl)propylidene)dihydrofuran-3(2H)-one (112):

(S)-2-(3,4-Dimethoxyphenyl)-6-((R)-1-((4-methoxybenzyl)oxy)-2-(4-methoxy-phenyl)ethyl)-2,3-dihydro-4H-pyran-4-one (109a) and (S,E)-5-(3,4-dimethoxyphenyl)-2-((R)-2-((4-methoxybenzyl)oxy)-3-(4-methoxyphenyl)propylidene)dihydrofuran-3(2H)-one (112):

(R,E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-1-en-4-yn-3-one (110a):

(R,E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-1-en-4-yn-3-one (110a):

4-Allylphenol (S8)

4-Allylphenol (S8)

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

(4-Allylphenoxy)(tert-butyl)dimethylsilane (95a):

(4-Allylphenoxy)(tert-butyl)dimethylsilane (95a):

Ethyl-(E)-4-(4-((tert-butyldimethylsilyl)oxy)phenyl)but-2-enoate (103a):

Ethyl-(E)-4-(4-((tert-butyldimethylsilyl)oxy)phenyl)but-2-enoate (103a):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

(E)-4-(4-((Tert-butyldimethylsilyl)oxy)phenyl)but-2-en-1-ol (S4a):

(E)-4-(4-((Tert-butyldimethylsilyl)oxy)phenyl)but-2-en-1-ol (S4a):

((2R,3R)-3-(4-((Tert-butyldimethylsilyl)oxy)benzyl)oxiran-2-yl)methanol (104a):

((2R,3R)-3-(4-((Tert-butyldimethylsilyl)oxy)benzyl)oxiran-2-yl)methanol (104a):

Tert-butyl(4-(((2R,3S)-3-(chloromethyl)oxiran-2-yl)methyl)phenoxy)dimethylsilane (105a):

Tert-butyl(4-(((2R,3S)-3-(chloromethyl)oxiran-2-yl)methyl)phenoxy)dimethylsilane (105a):

(R)-1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)but-3-yn-2-ol (S5a):

(R)-1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)but-3-yn-2-ol (S5a):

(R)-Tert-butyl(4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl)phenoxy)dimethylsilane (101a):

(R)-Tert-butyl(4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl)phenoxy)dimethylsilane (101a):

4-Formyl-2-methoxyphenyl-4-methylbenzenesulfonate (96a):

4-Formyl-2-methoxyphenyl-4-methylbenzenesulfonate (96a):

Chapter－1 NMR Spectra

4－（1－Hydroxybut－3－en－1－yl）－2－methoxyphenyl 4－methylbenzenesulphonate（S9）：

パオォ

${ }^{1} \mathrm{H}$ NMR， 400 MHz CDCl_{3}

Ts

4-(But-3-enoyl)-2-methoxyphenyl-4-methylbenzenesulfonate (113):

4-(But-3-enoyl)-2-methoxyphenyl-4-methylbenzenesulfonate (113):

(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4-methylbenzenesulphonate (106a) (prepared from 113)

(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4-methylbenzenesulphonate (106a) (prepared from 113)

(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4-methylbenzenesulphonate (106a) (prepared from 96a):

(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4-methylbenzenesulphonate (106a) (prepared from 96a):

(S)-4-(1-((Tert-butyldimethylsilyl)oxy)but-3-en-1-yl)-2-methoxyphenyl-4-methylbenzene-sulphonate (S6a):

(S)-4-(1-((Tert-butyldimethylsilyl)oxy)but-3-en-1-yl)-2-methoxyphenyl-4-methylbenzene-sulphonate (S6a):

Chapter-1 NMR Spectra

(S)-4-(1-((Tert-butyldimethylsilyl)oxy)-3-oxopropyl)-2-methoxyphenyl-4-methylbenzene-sulfonate (102a):

(S)-4-(1-((Tert-butyldimethylsilyl)oxy)-3-oxopropyl)-2-methoxyphenyl-4-methylbenzene-sulfonate (102a):

4-((1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)oxy)-phenyl)-3-hydroxy-6-((4-methoxybenzyl)oxy)hept-4-yn-1-yl)-2-methoxyphenyl-4-methylbenzene-sulfonate (107a):

4-((1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)oxy)-phenyl)-3-hydroxy-6-((4-methoxybenzyl)oxy)hept-4-yn-1-yl)-2-methoxyphenyl-4-methylbenzene-sulfonate (107a):

4-((1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)oxy)-phenyl)-6-((4-methoxybenzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl-4methylbenzenesulfonate (100b):

4-((1S,6R)-1-((Tert-butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)oxy)-phenyl)-6-((4-methoxybenzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl-4methylbenzenesulfonate (100b):

4-((1S,6R)-7-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxy-6-((4-methoxy-benzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (114):

4-((1S,6R)-7-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxy-6-((4-methoxy-benzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (114):

4-((1S,6R)-1-Hydroxy-7-(4-hydroxyphenyl)-6-((4-methoxybenzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (115):

4-((1S,6R)-1-Hydroxy-7-(4-hydroxyphenyl)-6-((4-methoxybenzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (115):

4-((S)-6-((R)-2-(4-Hydroxyphenyl)-1-((4-methoxybenzyl)oxy)ethyl)-4-oxo-3,4-dihydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (116):

4-((S)-6-((R)-2-(4-Hydroxyphenyl)-1-((4-methoxybenzyl)oxy)ethyl)-4-oxo-3,4-dihydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (116):

4-((S)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-((4-methoxybenzyl)-oxy)ethyl)-4-oxo-3,4-dihydro-2H-pyran-2-yl)-2-methoxyphenyl-4methylbenzenesulfonate (117):

4-((S)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-((4-methoxybenzyl)-oxy)ethyl)-4-oxo-3,4-dihydro-2H-pyran-2-yl)-2-methoxyphenyl-4methylbenzenesulfonate (117):

4-((2S,6R)-6-((R)-1-Hydroxy-2-(4-hydroxyphenyl)ethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (S10):

4-((2S,6R)-6-((R)-1-Hydroxy-2-(4-hydroxyphenyl)ethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (S10):

Chapter-1 NMR Spectra

4-((2S,6R)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxyethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (S11):

4-((2S,6R)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxyethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (S11):

4-((2S,4R,6R)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxyethyl)-4-hydroxytetra-hydro-2H-pyran-2-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (119):

4-((2S,4R,6R)-6-((R)-2-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxyethyl)-4-hydroxytetra-hydro-2H-pyran-2-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (119):

Chapter-1 NMR Spectra

4-((2S,4R,6R)-4-Hydroxy-6-((R)-1-hydroxy-2-(4-hydroxyphenyl)ethyl)tetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (120) (using $L S$ Selectride):

4-((2S,4R,6R)-4-Hydroxy-6-((R)-1-hydroxy-2-(4-hydroxyphenyl)ethyl)tetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (120) (using $L S$ Selectride):

 $\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{+}{\sim}$
${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-1 NMR Spectra

4-((2S,4R,6R)-4-Hydroxy-6-((R)-1-hydroxy-2-(4-hydroxyphenyl)ethyl)tetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (120) (using TBAF):

ent-Rhoiptelol B (29a):

ent-Rhoiptelol B (29a):
人込

${ }^{13} \mathrm{C}$ NMR, 101 MHz $\mathrm{CD}_{3} \mathrm{OD}$

2. $2 D-N M R$ Spectra of $4-((2 S, 4 R, 6 R)-6-((R)-2-(4-(($ tert-butyldimethyl-silyl)oxy)phenyl)-1-hydroxyethyl)-4-hydroxytetrahydro-2H-pyran-2-yl)-2methoxyphenyl 4-methylbenzenesulfonate (119):

a) COSY spectra:

b) NOESY spectra:

c) HSQC spectra

d) HMBC spectra:

Chapter-1 NMR Spectra

3. Table S1. Comparison of NMR data of rhoiptelol B (29a) (Our work, Natural (Isolated) and First synthesised)

ent-Rhioptelol B(3a)

Position	Our Work (entRhoiptelol B)		Natural Rhoiptelol B (Isolated)		First Synthesis of Rhoiptelol B	
	$\delta_{\text {H }}(J$ in Hz)	δ_{C}	$\delta_{\text {H }}(J$ in Hz)	δ_{c}	$\delta_{\text {H }}(J$ in Hz)	סc
1	$\begin{aligned} & 4.69(1 \mathrm{H}, d d, J= \\ & 2.25,11.51 \mathrm{~Hz}) \end{aligned}$	75.2	$\begin{array}{\|l\|} \hline 4.69 \quad(1 \mathrm{H}, \\ d d, J=3, \\ \hline \end{array}$	75.2 d	$\begin{aligned} & 4.69(1 \mathrm{H}, \mathrm{dd}, J \\ & =11.1,3.0 \mathrm{~Hz}) \\ & \hline \end{aligned}$	75.2
2	$\begin{aligned} & 1.76(1 \mathrm{H}, \mathrm{~d}, J= \\ & 2.88 \mathrm{~Hz}) \\ & 1.84-1.80 \\ & (1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	41.3	$\begin{aligned} & 1.75 \quad(1 \mathrm{H}, \quad d d d, \\ & J=3,11,12 \mathrm{~Hz}, \\ & a x) \\ & 1.84 \quad(1 \mathrm{H}, \quad d d, \\ & J=3,12 \mathrm{~Hz}, e q) \end{aligned}$	41.3 t	$\begin{aligned} & 1.74(1 \mathrm{H}, \mathrm{ddd}, J \\ & =13.9, \quad 11.3, \\ & 3.0 \mathrm{~Hz}) \\ & 1.83(1 \mathrm{H}, \mathrm{dd}, J \\ & =14.5,2.6 \mathrm{~Hz}) \end{aligned}$	41.3
3	4.28 (1H, m)	65.7	$\begin{aligned} & 4.27(1 \mathrm{H}, t, J=3 \\ & \mathrm{Hz}) \end{aligned}$	65.6 d	$\begin{aligned} & 4.27(1 \mathrm{H}, \mathrm{t}, J= \\ & 3.0 \mathrm{~Hz}) \end{aligned}$	65.7
4	$\begin{aligned} & \hline 1.57-1.54 \quad(1 \mathrm{H}, \\ & \mathrm{m}) \\ & 1.92-1.89(1 \mathrm{H}, \\ & \mathrm{m}) \\ & \hline \end{aligned}$	34.9	$\begin{aligned} & 1.57 \quad(1 \mathrm{H}, \quad d d, \\ & J=2,13 \mathrm{~Hz}, e q) \\ & 1.89 \quad(1 \mathrm{H}, \quad d t, \\ & J=3,13 \mathrm{~Hz}, a x) \end{aligned}$	34.9 t	$\begin{aligned} & 1.55(1 \mathrm{H}, \mathrm{dd}, J \\ & =13.4,2.0 \mathrm{~Hz}) \\ & 1.92(1 \mathrm{H}, \mathrm{dd}, J \\ & =13.5,3.0 \mathrm{~Hz}) \end{aligned}$	35.0
5	$\begin{aligned} & 3.85-3.82(1 \mathrm{H}, \\ & \mathrm{m}) \end{aligned}$	74.3	$\begin{array}{\|l\|} \hline 3.82 \quad(1 \mathrm{H}, \quad d t, \\ J=13,3 \mathrm{~Hz}) \end{array}$	74.3 d	$\begin{aligned} & 3.81(1 \mathrm{H}, \mathrm{dt}, J= \\ & 12.5,2.89 \mathrm{~Hz}) \\ & \hline \end{aligned}$	74.3
6	$\begin{aligned} & 3.60-3.57(1 \mathrm{H}, \\ & \mathrm{m}) \end{aligned}$	76.4	$\begin{aligned} & \text { 3.60, (1H, dt, J } \\ & =3,7 \mathrm{~Hz}) \\ & \hline \end{aligned}$	76.3d	$\begin{aligned} & 3.59(1 \mathrm{H}, \mathrm{dt}, J= \\ & 7.0,3.2 \mathrm{~Hz}) \end{aligned}$	76.4
7	$\begin{aligned} & 2.71(1 \mathrm{H}, \mathrm{dd}, J \\ & =7.25,13.26 \\ & \mathrm{~Hz}) \\ & 2.89(1 \mathrm{H}, \mathrm{dd}, J \\ & =7.00,13.66 \\ & \mathrm{~Hz}) \end{aligned}$	39.7	$\begin{aligned} & 2.70(1 \mathrm{H}, \mathrm{dd}, J= \\ & 7,13 \mathrm{~Hz}) \\ & 2.89(1 \mathrm{H}, \mathrm{dd}, J= \\ & 7,13 \mathrm{~Hz}) \end{aligned}$	39.7 t	$\begin{aligned} & 2.69(1 \mathrm{H}, \mathrm{dd}, J \\ & =13.4,7.3 \mathrm{~Hz}) \\ & 2.89(1 \mathrm{H}, \mathrm{dd}, J \\ & =13.4,6.8 \mathrm{~Hz}) \end{aligned}$	39.7
1 '		136.2		$\begin{gathered} 136.1 \\ \mathrm{~s} \end{gathered}$		136.2
$2 '$	7.05 (2H, br. s)	111.1	7.04 (1H, br s)	$\begin{gathered} 111.1 \\ \mathrm{~d} \\ \hline \end{gathered}$	7.04 (1H, br. s)	111.1
$3 '$		148.8		$\begin{gathered} 148.8 \\ \mathrm{~s} \end{gathered}$		148.8
4'		146.7		$\begin{gathered} 146.7 \\ \mathrm{~s} \end{gathered}$		146.8

5^{\prime}	$6.77(1 \mathrm{H}, \mathrm{d}, J=$ $8.13 \mathrm{~Hz})$	115.8	$6.77(1 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz})$	115.8 d	$6.76(1 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz})$	115.9
6^{\prime}	$6.84(1 \mathrm{H}, \mathrm{dd}, J$ $=1.88,8.38$ $\mathrm{~Hz})$	119.9	$6.84(1 \mathrm{H}, \mathrm{dd}, J=$ $2,8 \mathrm{~Hz})$	119.8 d	$6.83(1 \mathrm{H}, \mathrm{dd}, J$ $=8.1,1.9 \mathrm{~Hz})$	119.8
$1^{\prime \prime}$		129.9		131.1 s		131.2
$2^{\prime \prime}$	$7.03(1 \mathrm{H}, \mathrm{s})$	131.4	$7.03(1 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz})$	131.4 d	$7.03(2 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz})$	131.4
$3^{\prime \prime}$	$6.71-6.68(2 \mathrm{H}$, $\mathrm{m})$	116.0	$6.69(1 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz})$	116.0 d	$6.68(2 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz})$	116.0
$4^{\prime \prime}$		156.6		156.6 s		156.7
$5^{\prime \prime}$	115.8	$6.69(1 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz})$	116.0 d		116.0	
$6^{\prime \prime}$		131.4	$7.03(1 \mathrm{H}, \mathrm{d}, J=$ 8 Hz	131.4 d		131.5
0 Me	$3.88(3 \mathrm{H}, \mathrm{s})$	56.4	$3.87(3 \mathrm{H}, \mathrm{s})$	56.4 q	$3.87(1 \mathrm{H}, \mathrm{s})$	56.4

CHAPTER-2

Enantioselective Total Synthesis of Furylhydroquinone-derived Natural Products: Shikonofuran J, D, E and C

Chapter-2, Section-B: Present work

2.2.1. Hypothesis

Inspired by the interesting biological profile and structural features of shikonofurans J, D, E, and C (41-44) and our curiosity in stereoselective total synthesis of furan-containing biologically potent natural products, we embarked on the development of efficient and practical stereoselective synthetic routes for these natural products. As discussed in the previous section of this Chapter 2, we have chosen the known construction strategy of 2,4-disubstituted furan moiety 72 (used as a key intermediate for the total synthesis of shikonofurans) from acyl-tethered 3hydroxy oxetane building blocks $\mathbf{7 1}$ using Lewis- or Brønsted acid catalysis. As described in the below synthetic strategy (Scheme 2.12), this method proceeds through the initial activation of the strained oxetane ring with the aid of Lewis- or Brønsted acid, which triggers the intramolecular carbonyl (nucleophile-mediated) ring-closure (5-membered), and ring-opening (4-membered) sequence, and generates cyclic oxacarbenium. Subsequent dehydrative aromatization results in hydroxymethylated-furan intermediate 72. This hydroxy-methylated furan $\mathbf{7 2}$ can be used as a key and divergent building block for the construction of all shikonofurans in a maximum number of 7 steps (Scheme 2.12).

Scheme 2.12 | Concept of polysubstitutedfuran formation from Lewis- or Brønstedcatalyzed dehydrative cycloisomerization of α-hydroxy oxetane-tethered ketones.

2.2.2. Result and discussions

To realize our projected hypothesis, we synthesized a known α-hydroxy oxetane-tethered ketone 71a building block. We performed the reaction using previously reported $\mathrm{Sc}\left(\mathrm{OTf}_{3}\right.$ ($10 \mathrm{~mol} \%$) as a catalyst in EtOH, which delivered the
product 72a in 88% yield in 15 minutes (entry a, Scheme 2.13). Next, we tested the reaction profile using ionic liquid BAIL-4 in water, this reaction was very sluggish and gave the hydroxymethylated product 72a in 78\% in 6 h (entry b. Scheme 2.13).

Taking into consideration of drawbacks of these strategies, like expensive Scandium catalysis, tedious work-up procedures using BAIL-4 in water, and longer reaction times, we aimed at developing a facile and rapid methodology to construct 2,4-disubstituted furans using acyl-oxetane as a building block utilizing cost-effective and efficient catalytic systems and its subsequent application in enantioselective total synthesis of shikonofurans (Scheme 2.13).

Scheme 2.13 | Initial synthesis of the 2,4-disubstituted furan 72a using known protocols.

Inspired by the suitable catalytic property of $\mathrm{Sc}(\mathrm{OTf})_{3}$ for this transformation (however limited to a single example) and our group's continuing interest in bismuth catalysis, we intended to verify the catalytic profile of $\mathrm{Bi}(\mathrm{OTf})_{3}$ in this reaction. To our delight, the expected 2,4-disubstituted furan 72a was isolated in an excellent yield (99\%) from 71a within five minutes using $10 \mathrm{~mol} \%$ of $\mathrm{Bi}(\mathrm{OTf})_{3}$ in dichloromethane at room temperature. The structure of 72a was unambiguously determined by proton, carbon NMR, and mass spectrometry (Scheme 2.14).

Scheme 2.14 | Initial synthesis of 2,4-disubstituted furan 72a using bismuth triflate.

2.2.3. Further optimization of reaction conditions

We further explored the feasibility of this transformation using other Lewis acid and Brønsted acid catalysts. Considering the wide range of organic small molecules solubility in dichloromethane (DCM), dichloroethane (DCE), and methanol, all shortlisted catalysts were screened using these solvents. Since excellent results were obtained using $\mathrm{Bi}(\mathrm{OTf})_{3}$, tested the reaction using other bismuth salts BiCl_{3}, $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in DCE, which delivered the desired product in good yields albeit in a little longer reaction time of 2 h . The reaction using the AgOTf catalyst was very slow, giving the product a 44% yield even after 6 h . Next, tested the efficiency of iron salts [$\left.\mathrm{Fe}(\mathrm{OTf})_{3}, \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\right]$ as catalysts, which was found to be moderately active toward this transformation, whereas, $\mathrm{Ni}\left(\mathrm{OTf}_{2}{ }_{2}\right.$ was unable to promote the reaction. $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ delivered the product in 75% yield after 6 h . Then screened the reaction using Brønsted acid catalysts p-TSA, TFA, and TfOH in DCE, all of them were found to facilitating the reaction, TfOH delivered the product in excellent yield of 91% in 5 min with little decomposition.

Next, we screened same set of Lewis acid catalysts using polar and proteic solvent MeOH , in which reactions found to be faster compared to DCE, still, little decomposition was observed on TLC, which led to moderately compromising yields. Similarly, Brønsted acid catalysts pTSA, TFA, and TfOH in MeOH delivered the desired product 72a in moderate to good yields.

TfOH is a usual contaminant associated with triflate-based Lewis acid catalysts and is solely responsible for the catalytic activity in some instances (Entry 19 vs 23), and is known to be responsible for side reactions owing to its (TfOH) high acidity. Due to the rapid reaction (within $\sim 1 \mathrm{~min}$), clean reaction profile, and excellent isolated yields using $\operatorname{Bi}(\mathrm{OTf})_{3}$ as the catalyst, we strongly believe in the role of bismuth in this transformation, and owing to its great natural abundance, and nontoxic nature, we have chosen $\mathrm{Bi}(\mathrm{OTf})_{3}$ as a reliable catalytic system for this work instead of closely potent TfOH and other Lewis acids.

Table 2.2 | Optimization of reaction conditions ${ }^{a, b}$

Chapter-2: Enantioselective Total Synthesis of Furylhydroquinone-Derived Natural Products: Shikonofuran J, D, E and C

Entry	Catalyst	Solvent	Time	Yield ${ }^{b}$
A	Screening of Lewis acids catalysts in DCE			
1)	$\mathrm{Bi}(\mathrm{OTf})_{3}$	DCE	5 min	95
2)	BiCl_{3}	DCE	2 h	93
3)	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$	DCE	2 h	87
4)	AgOTf	DCE	6 h	44
5)	$\mathrm{Fe}(\mathrm{OTf})_{3}$	DCE	6 h	80
6)	$\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$	DCE	8 h	45
7)	$\mathrm{FeSO}_{4 .} 7 \mathrm{H}_{2} \mathrm{O}$	DCE	1 h	77
8)	$\mathrm{Ni}(\mathrm{OTf})_{2}$	DCE	24 h	N.R ${ }^{\text {c }}$
9)	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	DCE	6 h	75
B	Screening of Brønsted acid catalysts in DCE			
10)	p-TSA	DCE	40 mins	91
11)	TFA	DCE	6 h	88
12)	TfOH	DCE	5 min	91
C	Screening of Lewis acids catalysts in MeOH			
13)	$\mathrm{Bi}(\mathrm{OTf})_{3}$	MeOH	5 min	95
14)	BiCl_{3}	MeOH	30 mins	90
15)	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$	MeOH	3 h	85
16)	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	MeOH	1 h	71
17)	$\mathrm{Fe}(\mathrm{OTf})_{3}$	MeOH	15 mins	89
18)	$\mathrm{Fe}(\mathrm{OTf})_{2}$	MeOH	16 h	41
19)	$\mathrm{FeSO}_{4.7} 7 \mathrm{H}_{2} \mathrm{O}$	MeOH	3 h	73
20)	$\mathrm{Ni}(\mathrm{OTf})_{2}$	MeOH	24 h	N.R ${ }^{\text {c }}$
21)	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	MeOH	1 h	71
D	Screening of Brønsted acid catalysts in MeOH			
22)	p-TSA	MeOH	40 mins	86
23)	TFA	MeOH	12 h	75
24)	TfOH	MeOH	15 min	93

${ }^{a}$ Reaction conditions unless otherwise specified: 71a (0.5 mmol) and catalyst (10 $\mathrm{mol} \%$) solvent (0.5 mL) at room temperature (RT). ${ }^{b}$ Isolated yields of 72a. ${ }^{c} \mathrm{~N} . \mathrm{R}=\mathrm{No}$ Reaction. $\mathrm{Tf}=$ triflate $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)$.

In subsequent optimization studies, the compatibility of various solvents, THF, DMSO, DMF, toluene, and diethyl ether, delightfully was investigated, in which many solvents were found to be reliable for this transformation except DMF \& DMSO. However, a very clean reaction profile and isolated yields were observed using DCM (Table 2.2.1). Next, altered the mol \% (loading) of $\mathrm{Bi}(\mathrm{OTf})_{3}$ (using optimized solvent (DCM)), where a decrease in the catalyst loading led to an increase in reaction time and a low isolated yield of the product (Table 2.2.2).

Table 2.2.1 | Solvent screening using Bi(OTf) $\mathbf{3}^{(10 \mathrm{~mol} \%)^{a, b}}$

Entry	Solvent	Time	Yield of 72a (\%)
1$)$	MeOH	5 min	95

Chapter-2: Enantioselective Total Synthesis of Furylhydroquinone-Derived Natural Products: Shikonofuran J, D, E and C

2$)$	DCE	5 min	95
3$)$	DCM	5 min	99
4$)$	THF	15 min	96
5$)$	DMSO	6 h	N.R c
6$)$	DMF	6 h	N.R c
7$)$	Toluene	5 min	93
8$)$	$\mathrm{Et}_{2} \mathrm{O}$	15 min	95

${ }^{a}$ Reaction conditions unless otherwise specified: 71a (0.5 mmol) and catalyst (10 mol\%) solvent (0.5 mL) at room temperature (RT). ${ }^{b}$ Isolated yields of 72a. ${ }^{c} \mathrm{~N} . \mathrm{R}=$ No Reaction.

Table 2.2.2 | Screening of $\operatorname{Bi}(0 T f)_{3}$ loading using DCM as an optimal solvent ${ }^{a, b}$

Entry	Bi(OTf) $)_{3}$ loading	Time	Yield of 72a (\%)
1$)$	$10 \mathrm{~mol} \%$	5 min	99
2$)$	$5 \mathrm{~mol} \%$	30 min	85
3$)$	$2 \mathrm{~mol} \%$	3 h	65
4$)$	$1 \mathrm{~mol} \%$	24 h	30

${ }^{a}$ Reaction conditions unless otherwise specified: 71a (0.5 mmol) and DCM (0.5 mL) at room temperature (RT). ${ }^{b}$ Isolated yields of 72a. ${ }^{c}$ N.R = No Reaction.

2.2.4. Synthesis of α-hydroxy oxetane-tethered ketone building blocks (71):

a) From acid chlorides (92): To investigate the generality of this methodology, synthesized diverse α-hydroxy oxetane-tethered ketones 71 (substrates of this methodology) in a three-step sequence starting from acyl-halides 92. Acyl-halide 92 was treated with $\mathrm{NMe}(\mathrm{OMe}) \cdot \mathrm{HCl}$ salt in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in DCM solvent to form its Weinreb amide salt, which was in situ treated with diverse Grignard reagents to obtain their alkyl-ketone analogs 79. Next, an LDA-mediated aldol reaction of 79 with commercially available 3 -oxetanone gave desired α-hydroxy oxetane-tethered ketones 71 (Scheme 2.15).

Scheme 2.15
b) From ketones (79): Several commercially available ketones were converted into corresponding α-hydroxy oxetane-tethered ketones $\mathbf{7 1}$ through L-enolate addition to the oxetanone. Using this strategy, diverse protected acetophenones (with TIPS, TBS, TBDPS, benzyl, PMB, and allyl groups) were prepared from 4-hydroxy acetophenone and 2,5-dihydroxy acetophenones and used to obtain corresponding α-hydroxy oxetane-tethered ketones 71 (Scheme 2.16 and 2.17).

Scheme 2.16

Scheme 2.17. List of α - hydroxy oxetane-tethered ketones 71 synthesized.

2.2.5. Scope and generality of the reaction (Furan 72 synthesis):

With the optimal conditions established, the substrate scope concerning the construction of 2,4 disubstituted and 2,3,4-trisubstituted furans 72 from α-hydroxy oxetane-tethered ketones $\mathbf{7 1}$ is described in Scheme 2.18. Substrates having substituted aryl-ketone moiety (71, t-Bu, cyclopropyl substituted phenyl, and biphenyl, naphthyl and 0 Me) furnished the corresponding disubstituted furan 72a$\mathbf{7 2 g}$) in good to moderate yields (97-98\%). Substrates possessing electronwithdrawing groups ($\mathrm{OH}, \mathrm{NO}_{2}, \mathrm{~F}$ and CF_{3}) also delivered desired products ($\mathbf{7 2 h} \mathbf{- 7 2 k}$)

a) 2, 4-Disubstituted hydroxymethyl furans

b) 2, 3, 4-Trisubstituted hydroxymethyl furans

Scheme 2.18. Synthesis of 2,4-disubstituted and 2,3,4-trisubstituted furans
in good yields of $83 \%, 89 \%, 98 \%$ and 94% respectively. Styrene-derived substrate was also found to be a suitable substrate for this reaction and delivered corresponding furan 72 l in a good yield of 62% (entry 12, Scheme 2.18).

Next, the compatibility of aryl ketone-derived substrates having diverse protecting groups (-OTIPS, -OTBS, -OBn, -OPMB, -OTBDPS, -OAllyl and -OMe) were tested, delightfully, all delivered respective furans ($\mathbf{7 2 m} \mathbf{m 2 t}$) in good to excellent yields. diverse protecting groups were found to be compatible under these optimized conditions (entry 13-20, Scheme 2.18).

To our delight, substrates consisting of heteroaryl-ketone (thiophene, N methyl pyrrole, and furan-derived) gave corresponding bis-heterocycles 72u-72w in very good yields (entry 21-23, Scheme 2.18).

Then, we focused on the preparation of 2,3,4-trisubstituted furans 72 under optimal reaction conditions. To our delight, all these reactions delivered products containing C2-alkyl, aryl, and heteroaryl \& C3-H, aryl substituents (72x-72ac) in good to excellent yields (74-98\%) in shorter reaction time (1-5 min) (entry 24-29, Scheme 2.18).

In conclusion, we have established a rapid, efficient, and operationally simple synthetic strategy for the construction of hydroxymethyl-tethered di- or trisubstituted furans using environmentally benign and cost-effective $\operatorname{Bi}(O T f)_{3}$ as a catalytic system. The generality of this method was showcased through the construction of diverse furans containing, alkyl, cycloalkyl, aryl, and heteroaryl substituents. Moreover, diverse acid-sensitive protecting groups were found to be extremely stable under optimized reaction conditions. As we hypothesized, this methodology was effectively employed in the total synthesis of bioactive natural products, shikonofurans (vide infra).

2.2.6. Retrosynthetic analysis of shikonofurans (41-44)

After the successful establishment of the general synthetic strategy for the construction of hydroxymethyl-tethered furans, we turned our interest toward the stereoselective total synthesis shikonofurans J, D, E, and C (41-44, with varying oxygen-substituents of ether/ester groups) based on the retrosynthetic analyses described in Scheme 2.19. Shikonofurans could be accessed from substituted arene
containing hydroxyalkyl furan $\mathbf{7 8}$ via methylation (for shikonofuran J) or esterification (for shikonofuran C-E) using suitable carboxylic acids followed by deprotection steps. Intermediate $\mathbf{7 8}$ could be obtained from 2,4-disubstituted furan 72r through initial oxidation to give the corresponding aldehyde followed by TRIPcatalyzed asymmetric prenylation. This key intermediate 72r (hydroxymethyltethered furan) synthesized as part of our investigation in the previous section (Bi(III)-catalyzed dehydrative-cycloisomerization of α-hydroxy oxetane-tethered ketone 71r) (Scheme 2.19).

Scheme 2.19 \mid Common retrosynthetic analysis of shikonofurans 41-44.

2.2.6.1. Synthesis and absolute configuration of shikonofuran J (41):

Our studies started with enantioselective total synthesis of the reported structure of shikonofuran J (41), starting from commercially available 2,5-dihydroxy acetophenone (76). Allyl protection ${ }^{37}$ of 76 using allyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave 79r, and subsequent LDA-mediated aldol reaction with 3-oxetanone (77) gave the requisite aldol product 71r in 90\% yield. Next, the oxetane intermediate 71r was subjected to our in-house developed methodology of $\operatorname{Bi}(O T f)_{3}$-catalyzed dehydrative cycloisomerization reaction, which cleanly furnished the desired hydroxy-methylated furan $\mathbf{7 2 r}$ in 95% yield in 5 min . Then, $\mathbf{7 2 r}$ was oxidized to aldehyde $\mathbf{8 0}$ using Dess-Martin periodinane (DMP), ${ }^{35}$ and subsequently subjected to asymmetric prenylation reaction using chiral phosphoric acid^{38} [(S)-TRIP] and prenyl-pinacol-boronate 83 to get the anticipated chiral alcohol 78, which was used
as a common intermediate for all shikonofurans. Then methylation ${ }^{39}$ of alcohol 78 using NaH and MeI to give 84. Ultimately, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed allyl deprotection ${ }^{40}$ of both allyl groups of 84 delivered shikonofuran J (41) in 72\% yield (entry a, Scheme 2.20).
a) Synthesis of shikonofuran J (41)

b) Synthesis of ent-shikonofuran J (41a)

Scheme 2.20| Total synthesis of shikonofuran J (41) and its enantiomer 41a.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of synthesized shikonofuran J (41) was in complete agreement with that of the reported data (isolated natural product 41). To our surprise, the optical rotation value of $41\left[[\alpha]^{26.6} \mathrm{D}=+7.07(c=0.5, \mathrm{MeOH})\right.$, this work]
was found to be opposite to the reported value of natural shikonofuran $\mathrm{J}(\mathbf{4 1})\left[[\alpha]^{12} \mathrm{D}\right.$ $=-11.3(c=0.3, \mathrm{MeOH})]$.

Hence, utilizing a similar strategy that was used for the synthesis of (+)shikonofuran J (41), we have obtained its enantiomer (ent-shikonofuran J; 41a) using [(R)-TRIP] ligand in the conversion of common intermediate $\mathbf{8 0}$ into its prenylated product 78a, and its subsequent methylation and allyl deprotection steps.

Surprisingly, the optical rotation data of 41a $\left[[\alpha]_{D^{27.13}}=-7.63(c=0.5, \mathrm{MeOH})\right]$ was found to be very close to the reported data (entry b, Scheme 2.20). To further verify the authenticity of the reported optical rotation data and absolute stereochemistry of shikonofuran J [(S)-41], we further carried out ECD analyses of $[(S)-41]$ and $(\boldsymbol{R})-41$ a and compared them with the reported ECD data. Where $(S)-(+)-$ shikonofuran J ([(S)-41], this work) showed a negative Cotton effect (CE; CD, 4.3 x $10-4 \mathrm{M}, \mathrm{MeOH})$ and a positive Cotton effect at $\lambda \max 213 \mathrm{~nm}(\Delta \varepsilon=+0.187)$, which was in agreement with the data reported for (S)-isomer) of shikonofuran J (41, isolated), while the (\boldsymbol{R})-41a showed opposite ECD data compared to 41 (CD, $4.3 \times 10-$ $4 \mathrm{M}, \mathrm{MeOH}, \lambda \max (\Delta \varepsilon) 283(-0.018), 245(+0.026)$ and $213(-0.312) \mathrm{nm})$ (Figure 2.4). These investigations established the absolute stereochemistry of shikonofuran J as (S)-(+)-shikonofuram J (41) (Figure 2.4).

Figure 2.4: | ECD spectra of Shikonofuran J [(S)-41] and ent-Shikonofuran J [(R)41a].

2.2.6.2. Synthesis and absolute configuration of shikonofuran D (42):

After the successful synthesis and establishing the absolute configuration of shikonofuran J (41), we embarked on the total synthesis of shikonofurans D, E, and C,
and their antipodes utilizing common intermediates 78 and 78a. Thus, the hydroxyalkyl furan intermediate 78 (possessing the desired stereochemistry of natural products; reported data) was treated with isobutyryl chloride 85 in the presence of $E t_{3} \mathrm{~N}$, and DMAP to afford the corresponding ester 86 in 86% yield.

Table 2.3. Optimization of reaction conditions for allyl deprotection

Entry	Conditions	(\pm)-78		88	89	$\begin{aligned} & \hline \pm) \\ & -42 \end{aligned}$	$\begin{aligned} & \text { SM } \\ & (\pm)-(86) \end{aligned}$
1.	$\begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \\ & \text { reflux }, 15 \mathrm{~min} \end{aligned}$	-	-	-	90\%	-	-
2.	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}),$ $\mathrm{MeOH}, \mathrm{rt}, 3 \mathrm{~h}$	60\%	-	40\%	-	-	-
3.	$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, pyrrolidine (1 eq), DCE, rt, 5 h	5\%	20\%	-	-	-	75\%
4.	$\begin{aligned} & \mathrm{BiCl}_{3}(1 \mathrm{eq})+\mathrm{NaBH}_{4}(1 \mathrm{eq}), \mathrm{THF}, \\ & 0{ }^{\circ} \mathrm{C} \text { to rt, } 2 \mathrm{~h} \end{aligned}$	10\%	-	-	-	-	90\%
5.	$\begin{aligned} & \left.\mathrm{CeCl}_{3.7 \mathrm{H}_{2} \mathrm{O}}^{\mathrm{O}} \mathrm{l} .5 \mathrm{eq}\right) \text {, } \mathrm{NaI}(1.5 \mathrm{eq}), \mathrm{MeCN} \\ & \mathrm{rt}, 24 \mathrm{~h} \end{aligned}$	-	5\%	-	-	-	95\%
6.	$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{~mol} \%), \mathrm{NaBH}_{4}(1.5 \mathrm{eq})$, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}$	20\%	20\%	-	-	-	60\%
7.	$\mathrm{LiCl}(1 \mathrm{eq}), \mathrm{NaBH}_{4}(1 \mathrm{eq}), \mathrm{THF}$, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}$	50\%	10\%	10\%	-	-	trace
8.	$\begin{aligned} & \begin{array}{l} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}), \\ \text { dioxane, } \mathrm{rt}, 48 \mathrm{~h} \end{array} \\ & \hline \end{aligned}$	-	-	-	-	-	100\%
9.	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (3 eq), $\mathrm{NaBH}_{4}(5 \mathrm{eq})$, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 10 \mathrm{~min}$	10\%	10\%	-	-	40\%	-
10.	$\begin{aligned} & \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10 \mathrm{~mol} \%), \mathrm{Pd} / \mathrm{C}(10 \\ & \mathrm{mol} \%), \text { iPrOH, } 80^{\circ} \mathrm{C}, 12 \mathrm{~h} \end{aligned}$	50\%	10\%	-	-	-	40\%
11.	$\begin{aligned} & \mathrm{Cs}_{2} \mathrm{CO}_{3}(1 \mathrm{eq}), \mathrm{Pd}^{2}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \\ & \text { THF, rt, } 48 \mathrm{~h} \end{aligned}$	-	-	-	-	-	100\%

Then our next target was to deprotect the allyl groups in 86 employing wellestablished reaction conditions of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$ at various temperatures, unfortunately, all attempts in this line were proved to be unsuccessful (Scheme 2.22). Hence, synthesized racemic-86, and optimized reaction conditions for the allyl deprotection as described in Table 2.23. Reactions using $\operatorname{Pd}(\mathrm{PPh} 3) 4 / \mathrm{Pd}(\mathrm{OH}) 2^{41}$ and diverse bases ${ }^{42}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}-\mathrm{NaBH}_{4}{ }^{43}$, $\mathrm{LiCl}-\mathrm{NaBH}_{4}{ }^{44}$, and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaI}^{45}$, led to the ester hydrolysis and non-selective deprotected products. After extensive experimentation, $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (3 eq), $\mathrm{NaBH}_{4}(5 \mathrm{eq}), \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt conditions ${ }^{46}$ were found to be fruitful by providing the desired shikonofuran D (rac-42, in a moderate yield of 44%, along with a few unidentified and inseparable products (Table 2.3).

Scheme 2.21 |Efforts towards the total synthesis of shikonofuran D (42) and its enantiomer 42a.

Employing these optimal reaction conditions for allyl deprotection, shikonofuran D (42, reported structure) was obtained form 86. Similarly, common intermediate 78a (an enantiomer of 78, that was used in the synthesis of entshikonofuran J) was converted into ent-shikonofuran D (42a) in two steps (Scheme 2.21).

Surprisingly, the optical rotation data of 42a $\left[[\alpha]_{D^{26.54}}=+26.19(c=1.3\right.$, $\left.\left.\mathrm{CHCl}_{3}\right)\right]$ was found to be very close to the reported data which is $\left[[\alpha]_{\mathrm{D}^{20}}=+56(\mathrm{c}=0.1\right.$, CHCl_{3}) (Scheme 2.21). To further verify the authenticity of the reported optical
rotation data and absolute stereochemistry of shikonofuran $\mathrm{D}[(\boldsymbol{S}) \mathbf{- 4 2}]$, we further carried out ECD analyses of $[(S)-42]$ and $(\boldsymbol{R})-42 \mathrm{a}$, where $(S)-(+)$-shikonofuran D ([(S)-42], this work) showed a negative Cotton effect (CE; CD, $4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}$) at $\lambda \max 322 \mathrm{~nm}(\Delta \varepsilon=-1.10), 274 \mathrm{~nm}(-1.29)$ and $204 \mathrm{~nm}(-3.23)$ while the $(\boldsymbol{R})-42 \mathrm{a}$ showed opposite ECD data compared to 42 (CD, $4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}, \lambda \max (\Delta \varepsilon) 323$ $\mathrm{nm}(+1.39), 267 \mathrm{~nm}(+6.00)$ and $207 \mathrm{~nm}(+2.50)$ (Figure 2.5).

Figure 2.5. |ECD spectra of Shikonofuran D [(S)-42] and ent-Shikonofuran D [(R)42a].

2.2.6.3. Synthesis and absolute configuration of shikonofuran E (43):

To synthesize the reported structure of shikonofuran E (43), the alcohol 78 was subjected to esterification using commercially available 3-methylbut-2-enoic acid (90) under DCC and DMAP conditions to get the corresponding ester 91, which served as a common precursor for both the natural products shikonofuran E and C. Subsequent phenolic allyl deprotection using $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4} in MeOH at -60 ${ }^{\circ} \mathrm{C}$ delivered shikonofuran E (43, reported structure) in 57% yield. Similarly, common intermediate 78a (an enantiomer of 78, that was used in the synthesis of ent-shikonofuran J) was converted into ent-shikonofuran E (43a) in two steps of esterification and allyl deprotection. (Scheme 2.22).

Scheme 2.22 | Enantioselective total synthesis of shikonofuran E (43), and its enantiomers (43a).

The optical rotation data of $[(\boldsymbol{S}) \mathbf{- 4 3}]\left[[\alpha]_{D^{30.49}}=-62.40\left(c=0.1, \mathrm{CHCl}_{3}\right)\right]$ was found to be very close to the reported data which is $\left[[\alpha]^{20}=-69\left(c=0.5, \mathrm{CHCl}_{3}\right)\right.$ (Scheme 2.2). To further verify the authenticity of the reported optical rotation data and absolute stereochemistry of shikonofuran E [(S)-43], we further carried out ECD analyses of $[(\boldsymbol{S})-43]$ and $(\boldsymbol{R})-\mathbf{4 3 a}$, where $(S)-(+)$-shikonofuran E ([(S)-43], this work) showed a negative Cotton effect (CE; CD, $4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH})$ at $\lambda \max 316 \mathrm{~nm}(\Delta \varepsilon=-$

Figure 2.6. \mid ECD spectra of Shikonofuran E [(S)-43] and ent-Shikonofuran E [(R)43a].
2.56), $274 \mathrm{~nm}(-2.59), 245 \mathrm{~nm}(-1.79)$ and a positive Cotton effect at $227 \mathrm{~nm}(+0.549)$ while the (\boldsymbol{R})-43a showed opposite ECD data compared to 43 (CD, $4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}, \lambda \max (\Delta \varepsilon) 319 \mathrm{~nm}(+3.39), 270 \mathrm{~nm}(+5.69), 227 \mathrm{~nm}(+6.33)$ and 212 nm (+3.34) (Figure 2.6).

2.2.6.4. Synthesis and absolute configuration of shikonofuran C (44):

While optimizing the allyl deprotection of 91 at various temperatures using NiCl_{2} and NaBH_{4}, we observed the reduction of the butenoic ester segment at $-40{ }^{\circ} \mathrm{C}$, which led to the formation of shikonofuran C (44). Utilizing a strategy similar to this, synthesized ent-shikonofuran C (44a) from 78a (Scheme 2.23).

Scheme 2.23 | Enantioselective total synthesis of shikonofuran C (44), and their enantiomers (44a).

Surprisingly, the optical rotation data of $44 \mathbf{a}\left[[\alpha]_{D^{27.96}}=+57.56\left(c=1.1, \mathrm{CHCl}_{3}\right)\right]$ was found to be very close to the reported data which is $\left[[\alpha]^{20}=+64\left(c=0.1, \mathrm{CHCl}_{3}\right)\right.$ (Scheme 2.23). To further verify the authenticity of the reported optical rota tion data and absolute stereochemistry of shikonofuran C [[S]-44], we further carried out ECD analyses of $[(S) \mathbf{- 4 4]}$ and $(\boldsymbol{R}) \mathbf{- 4 4 a}$, where $(S)-(+)$-shikonofuran C ([(S)-44], this work) showed a negative Cotton effect (CE; CD, $4.3 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}$) at $\lambda \max 321 \mathrm{~nm}$ ($\Delta \varepsilon=-1.76$), $283 \mathrm{~nm}(-1.68), 260 \mathrm{~nm}(-1.19)$ and $224 \mathrm{~nm}(-3.02)$ while the ($\boldsymbol{R})-44 \mathrm{a}$ showed opposite ECD data compared to 44 (CD, $4.3 \times 10^{-4} \mathrm{M}$, $\mathrm{MeOH}, \lambda \max (\Delta \varepsilon) 321$ $\mathrm{nm}(0.79), 277 \mathrm{~nm}(+2.82), 269 \mathrm{~nm}(+4.07)$ and $220 \mathrm{~nm}(+2.28)$ (Figure 2.7).

Figure 2.7. \mid ECD spectra of Shikonofuran C [(S)-44] and ent-Shikonofuran C

$$
[(R)-44 a] .
$$

In addition to analytical studies like NMR (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$, MS, optical rotation, ECD, chiral-HPLC data also supported our conclusions on this work.

2.2.7. Conclusion

In conclusion, employing a novel methodology developed as part of this work, i.e, $\operatorname{Bi}(I I I)$-catalyzed dehydrative cycloisomerization of α-hydroxy oxetane-tethered ketones to access hydroxy methyl-tethered furans, we have successfully completed the first enantioselective total synthesis of furyl-hydroquinone-derived antimicrobial natural products, shikonofurans J, D, E, and C in 7 linear steps with 38.24\%, 21.4 \%, $34.20 \%, 35.70 \%$ overall yield respectively. The absolute stereochemistry of all these natural products was established on the basis of comparison of optical rotation and ECD (electric circular dichroism) analyses. Biological activity investigations of allnatural products and their enantiomers are in progress.

2.2.8. Experimental procedures and data:

General Information: All reactions were performed under an argon atmosphere with an oven $\left(80^{\circ} \mathrm{C}\right)$ or flame-dried glassware with a septum seal. Tetrahydrofuran (THF) was distilled from sodium benzo-phenone under an argon atmosphere immediately prior to use. Anhydrous toluene and dichloromethane were purchased
from commercial sources. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel. Analytical thin layer chromatography (TLC) was performed on TLC Silica gel 60 F254. Visualization was accomplished with shortwave UV light, anisaldehyde, or KMnO_{4} staining solutions, followed by heating. chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV 200, 400, and 500 in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale ($\left.\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}\right)$, the following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; td, triplet of doublet; and br, broad. HRMS data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. . ECD spectra were recorded on a JACSO J-815 CD spectrometer. Chiral HPLC separations were achieved using an Agilent 1260 Infinity series normal phase HPLC unit and HP Chemstation software with Chiralpak Diacel columns ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$). Experimental procedures for all new compounds and known compounds without published experimental procedures are described below.

1-(4-((Triisopropylsilyl)oxy)phenyl)ethan-1-one (79m). To the 4'-hydroxy
 acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry dichloromethane (10 mL) imidazole ($1.24 \mathrm{~g}, 18.3 \mathrm{mmol}$) were added, and the reaction was stirred for 10 minutes. Then TIPSCl ($1.88 \mathrm{~g}, 8.81 \mathrm{mmol}$) were added dropwise and the reaction was stirred up to starting material was completely consumed (5h). After completion of the reaction, it was quenched with water, the aqueous layer was extracted with DCM (10 mL x 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated and the crude product was purified using silica gel column chromatography to afford the desired product 79m (1.45 g, 68\%) as a colourless liquid. (TLC: $R_{f}=0.8$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3891, 3777, 3665, 3441, 3359, 3175, 2961, 2883, 2388, 2336, 1823, 1678, 1600, 1524, 1469, 1373, 1274, 1174, 1077, 1008, 900, 833, $673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-$ $7.81(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.85(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.05-$ $1.10(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.0, 160.8, 130.7, 130.7, 119.8,
119.8, 26.5, 18.0, 17.8, 12.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+293.1931$, found 293.1933.

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)ethan-1-one (79n). To the 4'-hydroxy
 acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry DMF (10 mL), imidazole ($1.49 \mathrm{~g}, 22.0 \mathrm{mmol}$) was added, and the reaction was stirred for 10 minutes. Then TBSCl ($1.90 \mathrm{~g}, 11.0 \mathrm{mmol}$) was added, and the reaction was stirred overnight at room temperature. The reaction progress was monitored by TLC. After completion of the reaction, it was quenched with water, the aqueous layer was extracted with DCM ($10 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated and the crude product was purified using silica gel column chromatography to afford the desired product 79n (1.7 g, 93\%) as white solid. (TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3682, 2949, 2862, 1673, $1596,1513,1472,1363,1266,1112,1015,918,672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.93-7.84 (m, 2H), 6.91-6.82 (m, 2H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 10 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0,160.4,131.0,130.6,120.0,26.5,25.7,18.4,-$ 4.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+$ 251.1462, found 251.1461.

1-(4-(Benzyloxy)phenyl)ethan-1-one (790). To the 4'-hydroxy acetophenone (1g,
 $7.34 \mathrm{mmol})$ in dry acetone (10 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.03 \mathrm{~g}, 14.6 \mathrm{mmol})$ and benzyl bromide ($1.30 \mathrm{~mL}, 11.0 \mathrm{mmol}$) were added, and the reaction was refluxed for 24 h . After completion of the reaction, it was diluted with water, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL x 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, and the crude product was purified using silica gel column chromatography to afford the desired product $\mathbf{7 9 0}$ ($1.5 \mathrm{~g}, 90 \%$) as colorles liquid. (TLC: $R_{f}=0.8$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3683, 3332, 2878, 1960, 1888, 1673, 1597, 1510, 1423, 1365, 1312, 1261, 1174, 1118, 1078, 959, 922, 834, 771, $674 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (d, J = $8.88 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46-7.32 (m, 5H), 7.01 (d, $J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,162.7,136.2,130.7,130.6,128.8,128.3$, 127.5, 114.6, 70.2, 26.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+227.1067$, found 227.1067.

1-(4-((4-Methoxybenzyl)oxy)phenyl)ethan-1-one (79p). To a stirred solution of 4'-hydroxy acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry DMF (10 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.03 \mathrm{~g}, 14.6$
 mmol) and PMBCl ($0.98 \mathrm{~mL}, 7.34 \mathrm{mmol}$) were added, and the reaction was stirred for 5 h at room temperature. After completion of the reaction it was quenched with ice water, the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$), then the combined organic layer was washed with brine (20 mL),), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated and the crude product was purified using silica gel column chromatography to afford the desired product $\mathbf{7 9 p}(1.68 \mathrm{~g}, 89 \%)$ as a colorless liquid. (TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3686, 2952, 2842, 1673, 1602, 1515, 1467, 1365, 1307, 1242, 1218, 1175, 1113, 1027, 927, 795, 746, $642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.98-7.89 (m, 2H), 7.42-7.32 (m, 2H), 7.05-6.95 (m, 2H), 6.95$6.89(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.9, 162.9, 159.8, 130.7, 130.6, 129.4, 128.3, 114.7, 114.3, 70.1, 55.5, 26.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+257.1172$, found 257.1169.

1-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)ethan-1-one (79q): To the 4'-hydroxy
 acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry DMF (10 mL), imidazole ($1.24 \mathrm{~g}, 18.3 \mathrm{mmol}$) were added, and the reaction was stirred for 10 minutes. Then TBDPSCl ($3.02 \mathrm{~mL}, 11.0 \mathrm{mmol}$) were added, and reaction was stirred for 5 h at room temperature. The reaction progress was monitored by TLC. After completion of the reaction it was quenched with water, the aqueous layer was extract-ed with DCM ($10 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo and the crude product was purified using silica gel column chromatography to afford the desired product $79 \mathbf{q}(2.1 \mathrm{~g}$, 77%) as white solid. (TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hex-anes). IR (neat) $\mathrm{cm}^{-1} 3674$, 3468, 2945, 2893, 2860, 1965, 1892, 1670, 1597, 1515, 1472, 1363, 1265, 1110, 1014, 919, 749, 673; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.69(\mathrm{~m}, 7 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $6 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.1, 160.2, 135.5, 135.4, 134.9, 132.3, 130.8, 130.5, 130.3, 129.8, 128.1, 127.9, 119.8, 26.7, 26.5, 26.4, 19.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 375.1775$, found 375.1776 .

1-(2,5-Bis(allyloxy)phenyl)ethan-1-one (79r): To the 4'-hydroxy acetophenone (5

79r $\mathrm{g}, 32.8 \mathrm{mmol})$ in dry acetone (50 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(18.17 \mathrm{~g}, 131.5 \mathrm{mmol})$ and allyl bromide ($8.52 \mathrm{~mL}, 98.6 \mathrm{mmol}$) were added, and the reaction was stirred at room temperature for 24 h . After completion of the reaction, it was filtered through celite. The residue was washed with DCM. The filtrate was evaporated in vacuo and the crude product was purified using silica gel column chromatography to afford the desired product 79r (7.3 g, 96\%) as a white solid. TLC: $R_{f}=0.6$ ($\mathrm{SiO}_{2}, 10 \%$ EtOAc/ hexanes). IR (neat) 3948, 3767, 3702, 3633, 3536, 3317, 3166, 3103, 2885, 2554, 2390, 2031, 1944, 1680, 1494, 1422, 1207, 1016, 927, 811, $743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=3.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=3.25,9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.25$ (m, 2 H), 4.58 (td, $J=1.38,5.38 \mathrm{~Hz}, 2 \mathrm{H}$), 4.51 (td, $J=1.38,5.38 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=199.5,152.7,152.6,133.3,133.0,128.9,121.2,118.2$, 117.9, 115.0, 114.7, 70.2, 69.5, 32.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 255.0992 found 255.0991 .

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)ethan-1-one (79s). To the 4'-hydroxy

79s acetophenone ($1 \mathrm{~g}, 6.57 \mathrm{mmol}$) in dry DMF (10 mL), $\mathrm{Et}_{3} \mathrm{~N}(2.75$ $\mathrm{mL}, 19.7 \mathrm{mmol})$ and DMAP ($0.08 \mathrm{~g}, 0.65 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 15 minutes then TIPSCl $(4.11 \mathrm{~mL}$, $16.4 \mathrm{mmol})$ was added dropwise to this. The reaction was stirred at room temperature for 5 h . After completion of the reaction the mixture was filtered through celite, the filtrate was diluted with dichloromethane (30 mL) and washed consecutively with water ($2 \times 40 \mathrm{~mL}$) and brine (50 mL) then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed in vacuo and the crude product was purified using silica gel column chromatography to afford the desired product $79 \mathrm{~s}(2.46 \mathrm{~g}, 81 \%)$ as white solid. (TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) $\mathrm{cm}^{-1} 3429,2953,2867$, 1674, 1480, 1413, 1272, 1067, 1002, 896; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=$ $3.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=3.25,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, 1.38-1.17 (m, 7H), 1.14-1.04 (m, 36H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.5,149.8$, 149.6, 131.2, 124.5, 120.4, 120.3, 31.4, 18.1, 18.1, 18.0, 13.4, 12.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+465.3215$, found 465.3230 .

General procedure B for 1-(alkyl/aryl)-2-phenylethan-1-one (A)

To the 100 mL RBF, Mg turnings (1.2 equiv) were taken in dry THF (10 mL) was taken and BnBr (1 equiv) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was stirred for 1 h at room temperature until the Grignard was generated. The freshly prepared Grignard reagent was added dropwise to a solution of Weinreb amide (1 equiv) in dry THF at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to room temperature and stirred for 12 h . After completion of the reaction, it was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (20 mL x 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, and the crude product was purified using silica gel column chromatography to afford the desired product.

1-Phenylundecan-2-one (79y). The title compound was prepared following general
 procedure A , using N -methoxy- N -methyldecanamide $(1 \mathrm{~g}, 4.64 \mathrm{mmol})$), $\mathrm{Mg}(0.133 \mathrm{~g}, 5.57 \mathrm{mmol})$ and BnBr ($0.55 \mathrm{~mL}, 4.64 \mathrm{mmol}$), THF (20 mL). Yield ($0.97 \mathrm{~g}, 85$ \%) as colorless liquid. (TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/ hexanes). IR (neat) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9,134.5,129.5,128.8,128.6,128.5,127.1,50.3$, $42.2,38.1,32.0,29.8,29.5,29.5,29.4,29.2,23.9,22.8,14.3$; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+\mathrm{H}]+247.2056$, found 247.2056.

1-(4-Methoxyphenyl)-2-phenylethan-1-one (79aa). The title compound was
 prepared following general procedure A , using $\mathrm{N}-4-$ dimethoxy-N-methylbenzamide ($1 \mathrm{~g}, 5.12 \mathrm{mmol}$) , Mg ($0.147 \mathrm{~g}, 6.14 \mathrm{mmol}$) and $\operatorname{BnBr}(0.68 \mathrm{~mL}, 5.12 \mathrm{mmol})$, THF (20 mL). Yield ($0.95 \mathrm{~g}, 83 \%$) as a yellowish liquid. (TLC: R_{f} $=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $)$. IR (neat) 2942, 2842, 2574, 2409, 1919, 1674, 1600, 1507, 1454, 1425, 1318, 1260, 1170, 1113, 1026, 927, 835, $668 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=9.01 \mathrm{~Hz}$, 2H), 4.23 (s, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.4, 163.7, 135.1,
131.1, 129.8, 129.5, 128.8, 126.9, 113.9, 55.6, 45.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+227.1067$, found 227.1064.

1-(Furan-2-yl)-2-phenylethan-1-one (79ac). The title compound was prepared
 following general procedure A , using N -methoxy- N -methylfuran-2-carboxamide ($1 \mathrm{~g}, 6.44 \mathrm{mmol}$) $) \mathrm{Mg}(0.185 \mathrm{~g}$, 7.72 mmol) and $\mathrm{BnBr}(0.74 \mathrm{~mL}, 6.44 \mathrm{mmol})$, THF (20 mL).): Yield ($0.96 \mathrm{~g}, 81 \%$) as a colorless liquid. (TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3777, 3573, 3341, 2938, 1743, 1674, 1579, 1468, 1399, 1307, 1250, 1164, 1084, 1037, 910, 837, $717 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.33-$ 7.27 (m, 4 H), 7.25-7.19 (m, 1 H), 7.18 (d, $J=3.63 \mathrm{~Hz}, 1 \mathrm{H}$), 6.48 ($\mathrm{dd}, J=1.63,3.5 \mathrm{~Hz}, 1$ H), 4.08 (s, 2 H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 186.7,152.4,146.7,134.1,129.6$, 128.7, 127.1, 118.0, 112.5, 45.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 187.0754, found 187.0754 .

General Procedure B for the synthesis of $\boldsymbol{\alpha}$-hydroxy oxetane-tethered ketone: To a 100 mL two necked round bottom flask were added DIPA (1.2 equiv.) in anhydrous THF (mL) at $0{ }^{\circ} \mathrm{C}$ with stirring. To it, n-BuLi (1.2 equiv.) was added dropwise, and the reaction was stirred for 45 min at the same temperature. Then it was cooled to $-78{ }^{\circ} \mathrm{C}$, to this freshly prepared LDA enolate solution of acetophenone derivatives (equiv.) in anhydrous THF was added dropwise. The mixture was stirred for 1 hour at $-78{ }^{\circ} \mathrm{C}$ followed by slow addition of 3 -oxetanone (1 equiv.). Then the reaction was slowly warmed to room temperature and stirred for additional four hours. Then, reaction progress was monitored by TLC. Then, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vaccuo and the resulting crude product was purified by silica gel column chromatography (SiO_{2}, 20% EtOAc/hexane) to afford desired product in high to moderate yields.

2-(3-Hydroxyoxetan-3-yl)-1-phenylethan-1-one (71a). The titled compound was
 prepared following general procedure B, using acetophenone (79a) ($3 \mathrm{~g}, 24.96 \mathrm{mmol}$), 3-oxetanone (77) ($1.46 \mathrm{~mL}, 24.96$ mmol), n-BuLi ($2.5 \mathrm{M}, 11.98 \mathrm{~mL}, 29.95 \mathrm{mmol}$) and DIPA (3.5 $\mathrm{mL}, 29.95 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($4.3 \mathrm{~g}, 90 \%$) as a white solid.
(TLC: $\mathrm{Rf}=0.4$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3684, 3539, 2958, 2880, 1674, 1593, 1519, 1442, 1397, 1338, 1115, 1036, 970, 926, 676, $633 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=$ $7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 200.3, 136.3, 134.3, 129.0, 128.3, 83.3, 72.4, 45.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+193.0859$, found 193.0860.

2-(3-Hydroxyoxetan-3-yl)-1-(\boldsymbol{p}-tolyl)ethan-1-one (71b). The title compound was
 prepared following general procedure B, using acetophenone (79b) ($3 \mathrm{~g}, 22.35 \mathrm{mmol}$), 3-oxetanone (77) ($1.30 \mathrm{~mL}, 22.35$ mmol), n-BuLi ($2.5 \mathrm{M}, 10.73 \mathrm{~mL}, 26.82 \mathrm{mmol}$) and DIPA (3.7 $\mathrm{mL}, 26.82 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($3.74 \mathrm{~g}, 81.12 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3755, 3636, 3421, 3365, 2970, 2690, 2393, 2303, 1680, 1617, 1419, 1342, 1226, 1119, 1034, 972, 812, $752 \mathrm{~cm}^{-1} ;^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.88(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=$ $7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 199.9,145.4,133.9,129.7,128.5,83.4,72.4,45.5,21.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+207.1016$, found 207.1015.

2-(3-Hydroxyoxetan-3-yl)-1-(4-isobutylphenyl)ethan-1-one (71c). The title

 compound was prepared following general procedure B, using acetophenone (79c) ($0.3 \mathrm{~g}, 1.70 \mathrm{mmol}$), 3-oxetanone (77) ($0.09 \mathrm{~mL}, 1.70 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.27 \mathrm{~mL}, 2.04 \mathrm{mmol}$) and DIPA ($0.28 \mathrm{~mL}, 2.04 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.36 \mathrm{~g}, 87 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3861, 3763, 3648, 3527, 3443, 3356, 2967, 2770, 2663, 2337, 1682, 1615, 1410, 1226, 1120, 973, 849, 755 cm-1; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H})$, $4.78(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J$ $=7.25 \mathrm{~Hz}, 2 \mathrm{H}$), 1.91 (quind, $J=6.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 200.0,149.1,134.2,129.7,128.4,83.4,77.5,77.4,76.8$, 72.4, 45.6, 45.6, 30.3, 22.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+249.1485$, found 249.1486.

Cyclopropyl(3-hydroxyoxetan-3-yl)methanone (71d): The title compound was
 prepared following general procedure B, using acetophenone (79d) ($0.5 \mathrm{~g}, 5.94 \mathrm{mmol}$), 3-oxetanone (77) ($0.34 \mathrm{~mL}, 5.94 \mathrm{mmol}$),
 and anhydrous THF (5 mL): yield ($0.839 \mathrm{~g}, 90 \%$) as a yellowish liquid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3423, 3012, 2957, 2878, 2090, 1913, 1825, $1688,1395,1328,1260,1116,1080,1031,967,833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.64(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 2.01-1.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.10-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.4$, 83.2, 72.0, 50.0, 21.5, 11.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$157.0864, found 157.0855.

1-([1,1'-Biphenyl]-4-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71e). The title

71e compound was prepared following general procedure B, using acetophenone (79e) ($0.5 \mathrm{~g}, 2.54 \mathrm{mmol}$), 3-oxetanone (77) (0.14 $\mathrm{mL}, 2.54 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.6 \mathrm{~mL}, 3.05 \mathrm{mmol}$) and DIPA ($0.43 \mathrm{~mL}, 3.05 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.58 \mathrm{~g}, 85 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3925, 3874, 3690, 3398, 3040, 2762, 2373, 1591, 1221, 745, $672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.09-8.03$ (d, $J=8.38 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76-7.71 (d, $J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}$, $3 \mathrm{H}), 4.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 199.9,147.0,139.6,134.9,129.2,129.0,128.7,127.6$, 127.4, 83.4, 72.4, 45.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+269.1172$ found 269.1171 .

2-(3-Hydroxyoxetan-3-yl)-1-(naphthalen-2-yl)ethan-1-one (71f). The title
 compound was prepared following general procedure B, using acetophenone (79f) ($3 \mathrm{~g}, 17.62 \mathrm{mmol}$), 3-oxetanone (77) (1.46 $\mathrm{mL}, 17.62 \mathrm{mmol}), n-B u L i(2.5 \mathrm{M}, 8.4 \mathrm{~mL}, 21.15 \mathrm{mmol}$) and DIPA ($2.98 \mathrm{~mL}, 21.15 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($3.85 \mathrm{~g}, 90 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat): 3858, 3742, 2960, 2880, $2405,2313,1669,1517,1396,1119,966,672,623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.52 (s, 1H), 8.05-7.97 (m, 2H), 7.96-7.88 (m, 2H), 7.68-7.57 (m, 2H), 4.82 (d, J = 7.25 $\mathrm{Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$,
CDCl_{3}) $\delta: 200.3,136.2,133.7,132.6,130.6,129.9,129.3,129.0,128.0,127.3,123.4$, 83.4, 72.5, 45.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$243.1016, found 243.1016.

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)ethan-1-one (71g). The title
 compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 g}$) ($3 \mathrm{~g}, 19.97 \mathrm{mmol}$), 3-oxetanone (77) (1.17 $\mathrm{mL}, 19.97 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 9.5 \mathrm{~mL}, 23.96 \mathrm{mmol}$) and DIPA ($3.37 \mathrm{~mL}, 23.96 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($3.82 \mathrm{~g}, 86 \%$) as a white solid. (TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3860, 3517, 2957, 2880, 2312, 1664, 1601, 1514, 1414, 1342, 1259, 1172, 1114, 1028, 966, 835, $671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=6.88 \mathrm{~Hz}$, 2 H), 4.46 (d, $J=7.38 \mathrm{~Hz}, 2 \mathrm{H}$), $4.24(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz, CDCl 3) $\delta: 198.5,164.4,130.6,129.4,114.1,83.4,72.4,55.6,45.1$; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+223.0965$, found 223.0964 .

2-(3-Hydroxyoxetan-3-yl)-1-(4-nitrophenyl)ethan-1-one (71i). The title
 compound was prepared following general procedure B, using acetophenone (79i) ($3 \mathrm{~g}, 18.16 \mathrm{mmol}$), 3-oxetanone (77) (1.06 $\mathrm{mL}, 18.16 \mathrm{mmol}), n-B u L i(2.5 \mathrm{M}, 8.7 \mathrm{~mL}, 21.79 \mathrm{mmol}$) and DIPA ($3.07 \mathrm{~mL}, 21.79 \mathrm{mmol}$) and anhydrous THF (50 mL): yield (3.10 g, 72\%) as a yellow solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3686, 3560, 2960, 2880, 1686, 1600, 1528, 1415, 1346, 1114, 1011, 971, 927, 850, $673 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 8.15-8.09(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=$ $7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 198.4, 151.0, 140.6, 129.4, 124.2, 83.2, 72.3, 46.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+238.0710$, found 238.0710 .

1-(4-Fluorophenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71j). The title

|
 71j |
| :---: | compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 j}$) ($3 \mathrm{~g}, 21.71 \mathrm{mmol}$), 3-oxetanone (77) (1.27 $\mathrm{mL}, 21.71 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 10.40 \mathrm{~mL}, 26.06 \mathrm{mmol}$) and DIPA ($3.67 \mathrm{~mL}, 26.06 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($4.2 \mathrm{~g}, 92 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat)

$3858,3669,3455,2957,2880,1676,1598,1509,1407,1342,1157,1114,1043,968$, 924, 837, 669, $624 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11$ (m, 2 H), $4.74(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 198.3,167.6,165.1,132.8,131.1,131.0,116.2$, 116.0, 83.3, 72.3, 45.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]+211.0765$, found 211.0764.

2-(3-Hydroxyoxetan-3-yl)-1-(3-(trifluoromethyl)phenyl)-ethan-1-one (71k).

The title compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 k}$) ($0.3 \mathrm{~g}, 1.59 \mathrm{mmol}$), 3-oxetanone (77) ($0.08 \mathrm{~mL}, 1.59 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.19 \mathrm{~mL}, 1.91 \mathrm{mmol}$) and DIPA ($0.26 \mathrm{~mL}, 1.91 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.34 \mathrm{~g}, 82 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3832, 3785, 3674, 3510, 3350, 3284, 3192, 2975, 2898, 2762, 2347, 1833, 1695, 1619, 1330, 1178, $1126,1078,967,811,661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=$ $7.88 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89(\mathrm{~d}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.38 \mathrm{~Hz}$, $2 \mathrm{H}), 4.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 198.7,136.8,131.9,131.6,131.4,130.6,129.8,125.2,125.0,83.2,72.3,46.0 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]+261.0733$ found 261.0733.
(E)-1-(3-Hydroxyoxetan-3-yl)-4-phenylbut-3-en-2-one (711). The title compound

711 was prepared following general procedure B, using acetophenone (791) ($0.3 \mathrm{~g}, 2.05 \mathrm{mmol}$), 3-oxetanone (77) (0.14 $\mathrm{mL}, 2.05 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.53 \mathrm{~mL}, 2.46 \mathrm{mmol}$) and DIPA ($0.34 \mathrm{~mL}, 2.46 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.21 \mathrm{~g}, 48 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3918, 3829, 3690, 3578, 3462, 3397, 3338, 3279, 3093, 2938, 2881, 2601, 2349, 1833, 1728, 1454, 966, 758, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.69-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=16.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}$, 2 H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 200.3,145.0,134.0,131.3,129.2,128.7,126.0$, 83.4, 72.4, 47.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+219.1021$ found 219.1017.

2-(3-Hydroxyoxetan-3-yl)-1-(4-

((triisopropylsilyl)oxy)phenyl)ethan-1-one (71m). The
title compound was prepared following general procedure B, using acetophenone (79 m) ($1.45 \mathrm{~g}, 4.96 \mathrm{mmol}$), 3-oxetanone (77) ($0.29 \mathrm{~mL}, 4.96 \mathrm{mmol}$), n-BuLi (1.6 M , $3.72 \mathrm{~mL}, 5.95 \mathrm{mmol}$) and DIPA ($0.84 \mathrm{~mL}, 5.95 \mathrm{mmol}$) and anhydrous THF (30 mL): yield ($1.61 \mathrm{~g}, 89 \%$) as a colorless liquid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3541, 2954, 2873, 1660, 1597, 1515, 1473, 1420, 1280, 1113, 1009, 917, 632 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.95-7.86 (m, 2H), 6.97-6.89 (m, 2H), $4.76(\mathrm{~d}, \mathrm{~J}=$ $7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,161.8,130.7,129.7$, 120.1, 83.4, 72.4, 45.2, 18.0, 12.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 365.2143, found 365.2141.

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-

71n one (71n). The title compound was prepared following general procedure B, using acetophenone (79n) (1.5 g, 5.99 mmol), 3-oxetanone (77) ($0.43 \mathrm{~mL}, 5.99 \mathrm{mmol}$), n-BuLi (1.6 M, $4.5 \mathrm{~mL}, 7.18 \mathrm{mmol}$) and DIPA ($1.01 \mathrm{~mL}, 7.18 \mathrm{mmol}$) and anhydrous THF (20 mL): yield ($1.79 \mathrm{~g}, 67.04 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}\right.$, 20\% EtOAc/ hexanes). IR (neat) 3685, 3385, 2947, 2867, 1665, 1599, 1512, 1473, 1422, 1355, 1265, 1173, 1109, 1015, 916, 839, 747, $672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H})$, 4.48 (d, $J=7.25 \mathrm{~Hz}, 2 \mathrm{H}$), 4.19 (s, 1H), 0.99 (s, 9H), 0.25 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,161.5,131.1,130.7,126.9,120.5,120.4,115.4,83.4,72.5,45.2$, 25.7, 18.4, -4.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+323.1673$, found 323.1671.

1-(4-(Benzyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (710). The title
 compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 0}$) ($1.2 \mathrm{~g}, 5.30 \mathrm{mmol}$), 3-oxetanone (77) ($0.38 \mathrm{~mL}, 5.30 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 3.98 \mathrm{~mL}, 6.37$ mmol) and DIPA ($0.89 \mathrm{~mL}, 6.37 \mathrm{mmol}$) and anhydrous THF (15 mL): yield ($1.19 \mathrm{~g}, 75 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3606, 3541, 2956, 2880, 1661, 1600, 1508, 1420, 1316, 1174, 1116, 1011, $925,672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, \mathrm{~J}=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J$
$=7.00 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.7, 163.6, 136.0, 130.7, 129.6, 128.9, 128.5, 127.6, 115.0, 83.4, 72.4, 70.4, 45.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+299.1278$, found 299.1277.

2-(3-Hydroxyoxetan-3-yl)-1-(4-((4-methoxybenzyl)oxy)phenyl)ethan-1-one

(71p). The title compound was prepared following general procedure B, using acetophenone (79 p) ($0.772 \mathrm{~g}, 3.01 \mathrm{mmol}$), 3-oxetanone (77) ($0.17 \mathrm{~mL}, 3.01 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 2.25$ $\mathrm{mL}, 3.61 \mathrm{mmol}$) and DIPA ($0.51 \mathrm{~mL}, 3.61 \mathrm{mmol}$) and anhydrous THF (10 mL): yield ($0.856 \mathrm{~g}, 87 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc/ hexanes). IR (neat) 3686, 3399, 2929, 2858, 2360, 1626, 1515, 1471, 1367, 1102, 1025, 927, 739, 674, $630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=$ $8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.76 \mathrm{~Hz}$, $2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ (br. s., 1 H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.7, 163.7, 159.9, 130.7, 129.5, 129.5, 128.0, 115.0, 114.3, 83.4, 72.5, 70.3, 55.5, 45.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+329.1384$, found 329.1380 .

1-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-

 one (72q). The title compound was prepared following general procedure B, using acetophenone (79q) ($2.1 \mathrm{~g}, 5.61$ mmol), 3-oxetanone (77) ($0.39 \mathrm{~mL}, 5.61 \mathrm{mmol}$), n-BuLi (1.6 M, $4.2 \mathrm{~mL}, 6.73 \mathrm{mmol}$) and DIPA ($0.95 \mathrm{~mL}, 6.73 \mathrm{mmol}$) and anhydrous THF (30 mL): yield ($2.41 \mathrm{~g}, 96 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3905, 3853, 3781, 3641, 3568, 3445, 3366, 3088, 3047, 2957, 2879, 2691, 2624, 2558, 2389, 2336, 1019, 1954, 1801, 1628, 1516, 1267, $1177,1144,920,838,704 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.73-$ $7.67(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=7.00$ $\mathrm{Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,161.1,135.5,132.0,130.4,130.4,129.7,128.1,120.1,83.3$, 77.5, 76.8, 72.4, 45.2, 26.5, 19.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 447.1986, found 447.1987.

1-(2,5-Bis(allyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71r). The
 title compound was prepared following general procedure B, using acetophenone (79r) ($5 \mathrm{~g}, 21.5 \mathrm{mmol}$), 3-oxetanone (77) ($1.55 \mathrm{~mL}, 21.5 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 10.33 \mathrm{~mL}, 25.8 \mathrm{mmol}$) and DIPA ($3.68 \mathrm{~mL}, 25.8 \mathrm{mmol}$) and anhydrous THF (100 mL): yield ($5.9 \mathrm{~g}, 90 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) $3795,3643,3434,3315,3170,2940,2795,2689,1672,1493,1420,1270,1220$, $1178,1116,1011,956,819,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=3.00$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.13-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.20(\mathrm{~m}$, $4 \mathrm{H}), 4.73(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=5.50 \mathrm{~Hz}, 2 \mathrm{H}), 4.53-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $7.13 \mathrm{~Hz}, 2 \mathrm{H}$), 4.04 (br. s., 1H), $3.68(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.1$, 153.3, 152.7, 133.1, 132.6, 127.2, 122.6, 118.7, 118.0, 114.8, 114.7, 83.5, 72.6, 70.2, 69.5, 51.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+305.1384$, found 305.1380.

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one
 (71s). The title compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 s}$) ($2.6 \mathrm{~g}, 5.59 \mathrm{mmol}$), 3oxetanone (77) ($0.40 \mathrm{~mL}, 5.59 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 4.19 \mathrm{~mL}$, 6.71 mmol) and DIPA ($0.94 \mathrm{~mL}, 6.71 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($1.9 \mathrm{~g}, 63 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 2953, 2870, 1657, 1483, 1413, 1268, 1172, 1113, 1008, $896 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}, J=3.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=3.13,8.76 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 18 \mathrm{H}), 1.08(\mathrm{~d}, J$ $=7.13 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.5,150.7,150.0,128.8,126.3$, 120.8, 120.2, 83.4, 72.6, 51.0, 18.1, 18.0, 13.6, 12.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+537.3426$, found 537.3419 .

1-(2,5-Dimethoxyphenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71t). The title compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 t}$) ($0.70 \mathrm{~g}, 3.88 \mathrm{mmol}$), 3-oxetanone (77) ($0.22 \mathrm{~mL}, 3.88 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 2.91 \mathrm{~mL}, 4.66 \mathrm{mmol}$) and DIPA ($0.65 \mathrm{~mL}, 4.66 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.82 \mathrm{~g}, 84 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat)
$3605,3444,3018,2950,2840,2404,1759,1603,1502,1456,1275,1172,1040,974$, $936,670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=3.38 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=3.25$, $9.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=7.25 \mathrm{~Hz}$, 2 H), $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.3$, 154.2, 153.6, 126.8, 122.0, 113.6, 113.4, 83.5, 72.7, 56.1, 56.0, 51.4; HRMS (ESI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+253.1071$, found 253.1066.

2-(3-Hydroxyoxetan-3-yl)-1-(thiophen-3-yl)ethan-1-one (71u). The title

| |
| :---: | compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 u}$) ($3 \mathrm{~g}, 23.77 \mathrm{mmol}$), 3-oxetanone (6) (1.71 $\mathrm{mL}, 23.77 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 11.41 \mathrm{~mL}, 28.53 \mathrm{mmol}$) and DIPA ($4.0 \mathrm{~mL}, 28.53 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($2.91 \mathrm{~g}, 62 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3806, 3740, 3684, 3600, 3337, 3116, 2975, 2898, 2758, 2353, 1666, 1412, 1338, $1238,1104,962,881,809,683 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.15(\mathrm{dd}, J=1.25$, $2.88 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (dd, $J=1.13,5.13 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37(\mathrm{dd}, J=2.88,5.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (d, J $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 194.3,141.8,133.6,127.2,126.7,83.3,72.4,46.7$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+199.0423$, found 199.0424.

2-(3-Hydroxyoxetan-3-yl)-1-(1-methyl-1H-pyrrol-2-yl)ethan-1-one (71v). The
 title compound was prepared following general procedure C , using acetophenone (79v) ($3 \mathrm{~g}, 24.36 \mathrm{mmol}$), 3-oxetanone (77) ($1.42 \mathrm{~mL}, 24.36 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 11.69 \mathrm{~mL}, 29.20 \mathrm{mmol}$) and DIPA ($4.12 \mathrm{~mL}, 29.20 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($4.64 \mathrm{~g}, 98 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3687, 3456, 2958, 2879, 1630, 1521, 1475, 1410, 1107, 1060, 1026, 971, 927, $672,624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.86$ (s, 1H), 6.16 (d, J $=2.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 2 \mathrm{H}), 4.57$ (br. s., 1 H$), 4.46(\mathrm{~d}, J=6.38 \mathrm{~Hz}, 2 \mathrm{H}), 3.90$ ($\mathrm{s}, 3 \mathrm{H}$), $3.39(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 189.8,132.5,130.3,121.1$, 108.8, 83.5, 72.7, 45.0, 37.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]+196.0968$ found 196.0968.

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71w). The title compound
 was prepared following general procedure B, using acetophenone ($79 \mathbf{w}$) ($0.5 \mathrm{~g}, 4.54 \mathrm{mmol}$), 3-oxetanone (6) (0.25 $\mathrm{mL}, 4.54 \mathrm{mmol}$), $n-$-BuLi ($1.6 \mathrm{M}, 3.40 \mathrm{~mL}, 5.44 \mathrm{mmol}$) and DIPA ($0.75 \mathrm{~mL}, 5.44 \mathrm{mmol}$) and anhydrous THF (8 mL): yield (0.67 g , 91\%) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. IR (neat) 3685, 3427, 2959, 2880, 2402, 1661, 1566, 1519, 1469, 1416, 1327, 1118, 1021, 969, 928, 891, 672, $624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.64(\mathrm{dd}, J=0.63,1.63 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (dd, $J=0.75,3.63 \mathrm{~Hz}, 1 \mathrm{H}$), 6.59 (dd, $J=1.63,3.63 \mathrm{~Hz}, 1 \mathrm{H}$), 4.74 (s, 1H), 4.72 (s, 1H), $4.48(\mathrm{~d}, \mathrm{~J}=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 188.6, 152.3, 147.5, 118.7, 112.9, 83.3, 77.5, 76.8, 72.4, 45.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+183.0652$, found 183.0652 .

2-(3-Hydroxyoxetan-3-yl)-1-phenylpropan-1-one (71x). The title compound was
 prepared following general procedure B , using acetophenone (79x) ($0.3 \mathrm{~g}, 2.23 \mathrm{mmol}$), 3-oxetanone (77) ($0.12 \mathrm{~mL}, 2.23 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.67 \mathrm{~mL}, 2.68 \mathrm{mmol}$) and DIPA ($0.37 \mathrm{~mL}, 2.68$ mmol) and anhydrous THF (5 mL): yield ($0.412 \mathrm{~g}, 89 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3905, 3785, 3421, 2961, 2889, 2374, 1676, 1600, 1459, 1395, 1342, 1287, 1221, 1074, 971, 893, 762, $700,651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ 7.47 (m, 2H), 4.70 (dd, $J=6.8,8.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=6.75 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.25 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,135.4,134.3,129.1,128.7,83.8,81.6,75.3$, 46.0, 12.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+207.1016$, found 207.1015.

1-(3-Hydroxyoxetan-3-yl)-1-phenylundecan-2-one (71y). The title compound
 was prepared following general procedure B, using acetophenone ($\mathbf{7 9 y}$) ($0.5 \mathrm{~g}, 2.02 \mathrm{mmol}$), 3-oxetanone (77) (0.11 $\mathrm{mL}, 2.02 \mathrm{mmol}), n$-BuLi ($1.6 \mathrm{M}, 1.52 \mathrm{~mL}, 2.43 \mathrm{mmol}$) and DIPA ($0.33 \mathrm{~mL}, 2.43 \mathrm{mmol}$) and anhydrous THF (8 mL): yield (0.427 g , 66 \%) as a colorless liquid. TLC: $R f=0.3$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3922, 3873, 3788, 3696, 3573, 3486, 3337, 3268, 2939, 2872, 2763, 1769, 1744, 1608, 1460, 1271, 991, 773, 705, $654 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H})$,
7.66-7.59 (m, 1H), 7.55-7.47 (m, 2H), 4.70 (dd, $J=6.8,8.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.25 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=$ $7.38 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,135.4,134.3,129.1,128.7,83.8$, 81.6, 75.3, 46.0, 12.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 319.2268$, found 319.2269 .

2-(3-Hydroxyoxetan-3-yl)cyclohexan-1-one (71z). The title compound was
 prepared following general procedure B, using cyclohexanone (79 z) ($0.432 \mathrm{~g}, 2.13 \mathrm{mmol}$), 3-oxetanone (77) ($0.12 \mathrm{~mL}, 2.13$ mmol), n-BuLi ($1.6 \mathrm{M}, 1.6 \mathrm{~mL}, 2.56 \mathrm{mmol}$) and DIPA (0.35 mL , 2.56 mmol) and anhydrous THF (5 mL): yield ($0.358 \mathrm{~g}, 61 \%$) as a colorless liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. IR (neat) 3432, 3022, 2953, 2402, 2352, $2101,1642,1523,1428,1018,926,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.67(\mathrm{~d}, J=$ $7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 2.99-2.87$ $(\mathrm{m}, 1 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.1,83.5,80.8,74.1,57.1,42.6,28.0,27.8,24.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+171.1021$, found 171.1020.

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)-2-phenylethan-1-one (71aa).

The title compound was prepared following general procedure B, using acetophenone (79aa) ($0.32 \mathrm{~g}, 1.41 \mathrm{mmol}$), 3oxetanone (77) ($0.08 \mathrm{~mL}, 1.41 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.06 \mathrm{~mL}$, 1.69 mmol) and DIPA ($0.23 \mathrm{~mL}, 1.69 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.348 \mathrm{~g}, 83 \%$) as a yellow liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3896, 3782, 3701, 3643, 3514, 3434, 3314, 2954, 2889, 2487, 2396, 2324, 2124, 1669, 1603, 1465, 1326, 1258, 1177, 973, 839, $715 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}$, $1 \mathrm{H}), 4.80(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=7.13,10.76 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,164.3,134.3,131.7,129.6$, 129.1, 128.7, 128.0, 114.1, 84.2, 80.8, 75.7, 58.1, 55.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+299.1278$, found 299.1272 .

1-(4-Chlorophenyl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ab). The title compound was prepared following general procedure B, using acetophenone
(79ab) ($0.5 \mathrm{~g}, 2.16 \mathrm{mmol}$), 3-oxetanone (77) ($0.12 \mathrm{~mL}, 2.16 \mathrm{mmol}$), n-BuLi (1.6 M ,
 $1.62 \mathrm{~mL}, 2.60 \mathrm{mmol}$) and DIPA ($0.36 \mathrm{~mL}, 2.60 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.502 \mathrm{~g}, 77 \%$) as a yellow liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3945, 3881, 3764, 3636, 3422, 3338, 2965, 2892, 2486, 2394, $1680,1592,1482,1399,1253,1101,973,827,717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.91-7.79 (m, 2H), 7.40-7.27 (m, 7H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=$ $7.13 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (d, $J=7.25 \mathrm{~Hz}, 1 \mathrm{H}$), 4.44 (d, $J=6.75 \mathrm{~Hz}, 1 \mathrm{H}$), 4.39 (br. s., 1H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.2, 140.7, 134.0, 133.6, 130.6, 129.6, 129.3, 129.3, 128.4, 83.9, 80.7, 75.6, 58.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$ 303.0782, found 303.0777.

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ac). The title
 compound was prepared following general procedure B, using acetophenone (79 ac) ($0.594 \mathrm{~g}, 3.18 \mathrm{mmol}$), 3-oxetanone (77) ($0.18 \mathrm{~mL}, 3.18 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 2.39 \mathrm{~mL}, 3.82 \mathrm{mmol}$) and DIPA ($0.53 \mathrm{~mL}, 3.82 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.685 \mathrm{~g}, 83 \%$) as a colorless liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. IR (neat) $3686,3433,3023,2959,2402,2351,1676,1603,1522,1473,1423,1023,928$, $672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.57-5.55 (m, 1H), 7.42-7.37 (m, 2H), 7.37-7.29 (m, 3H), $7.20(\mathrm{~d}, J=3.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=1.63,3.63 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.78$ (d, $J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz} \mathrm{CDCl} 3) \delta$ 189.8, 151.8, 147.8, 133.6, 129.7, 129.0, 128.3, 120.2, 112.9, 84.0, 80.8, 75.6, 58.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+259.0965$, found 259.0974 .

General Procedure \boldsymbol{C} for the synthesis of 5-phenylfuran-3-yl)methanol: To the α hydroxy oxetane-tethered ketone 71a-71ac(1 equiv) in anhydrous DCM, $\operatorname{Bi}(O T f)_{3}$ (10 mol\%) were added at room temperature and the reaction was stirred up to starting material was completely consumed (1 minute). After completion of the reaction, it was quenched with saturated aqueous solution of NaHCO_{3} and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo, and the resulting crude product was purified by silica gel column chromatography ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexane) to afford desired product in high to moderate yields.
(5-Phenylfuran-3-yl)methanol (72a): The title compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-phenylethan-1-one (71a, 0.05
 $\mathrm{g}, 0.26 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.017 \mathrm{~g}, 0.026 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.0448 \mathrm{~g}, 99 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, 20\% EtOAc/ hexanes). IR (neat) 3687, 3602, 1769, 1601, 1520, 1426, 1020, 927, 678, $624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,139.4,130.8,128.8,127.7,127.3,123.9$, 105.2, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+175.0754$, found 175.0753.
(5-(p-Tolyl)furan-3-yl)methanol (72b): The title compound was prepared
 following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(p-tolyl)ethan-1-one (71b, $0.05 \mathrm{~g}, \quad 0.242 \mathrm{mmol}$), $\operatorname{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.024 \mathrm{mmol})$ and $\operatorname{DCM}(0.5 \mathrm{~mL}):$ yield ($0.044 \mathrm{~g}, 98 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3685, 3610, 3451, 2931, 2880, 1901, 1757, 1600, 1498, 1423, 1021, 971, 923, 672, $624 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.42 (d, $J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,139.1,137.6,129.5,128.1,127.2,123.9$, 104.5, 57.0, 21.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+189.0910$, found 189.0909.
(5-(4-Isobutylphenyl)furan-3-yl)methanol (72c): The title compound was
 prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-isobutylphenyl)ethan-1-one (71c, $0.05 \mathrm{~g}, 0.201 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.020 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.044 \mathrm{~g}, 96 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3625, 3363, 3008, 2945, 2832, 2513, 2040, $1638,1456,1112,1026,668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.13 \mathrm{~Hz}$, 2 H), $7.43(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=7.13$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.87 (quind, $J=6.63,13.38 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ; 13 \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,141.5,139.1,129.6,128.4,127.2,123.8,114.2,104.5,57.1,45.3$, 30.4, 22.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+231.1380$, found 231.1380.
(5-Cyclopropylfuran-3-yl)methanol (72d). The title compound was prepared following general procedure C using cyclopropyl(3-hydroxyoxetan-3-yl)methanone (71d, $0.05 \mathrm{~g}, 0.201 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.020 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.045 \mathrm{~g}, 94 \%$) as colorless liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3427, 3022, 2956, 2402, 1641, 1426, 1023, 932, $669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}$, $1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 3 \mathrm{H}), 0.77-0.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,137.8,125.9,103.8,57.0,8.9,6.7$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+139.0754$, found 139.0755 .
(5-([1,1'-Biphenyl]-4-yl)furan-3-yl)methanol (72e): The title com-pound was
 prepared following general procedure C using 1 -([1,1'-biphenyl]-4-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71e, $0.05 \mathrm{~g}, 0.186 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.012 \mathrm{~g}, 0.018 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.0448 \mathrm{~g}, 97 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3023, 2927, 2402, 1727, 1604, 1414, 1044, $850,669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 154.7,140.4,139.6,129.8,129.0,127.6,127.5,127.1,124.4,105.3,57.0 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+251.1067$, found 251.1066.
(5-(Naphthalen-2-yl)furan-3-yl)methanol (72f): The title compound was
 prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(naphthalen-2-yl)ethan-1-one (71f, $0.05 \mathrm{~g}, 0.206 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.020 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.0453 \mathrm{~g}, 98 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3021, 1518, 1216, 1022, $769,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 8.13$ (s, 1H), 7.88-7.79 (m, 3H), 7.74 (dd, J = 1.75, 8.63 Hz , 1 H), 7.53-7.42 (m, 3H), $6.82(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.0, 139.7, 133.6, 132.9, 128.6, 128.3, 128.1, 127.9, 127.5, 126.7, 126.2, 122.4, 122.4, 105.8, 57.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+225.0910$, found 225.0909 .
(5-(4-Methoxyphenyl)furan-3-yl)methanol (72g): The title compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-
 methoxyphenyl)ethan-1-one ($\mathbf{7 1 g}, 0.05 \mathrm{~g}, 0.224 \mathrm{mmol}$), $\operatorname{Bi}(0 T f)_{3}(0.014 \mathrm{~g}, 0.0224 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.043 \mathrm{~g}, 95 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/ hexanes). IR (neat) 3864, 3736, 3257, 2953, 2842, $2315,2042,1893,1611,1537,1497,1290,1179,1108,1034,914,835,670,624 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.56$ ($\mathrm{s}, 1 \mathrm{H}$), $4.58(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,155.0$, 138.8, 127.3, 125.4, 123.9, 114.3, 103.6, 57.1, 55.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$205.0859, found 205.0859.

4-(4-(Hydroxymethyl)furan-2-yl)phenol (72h): To a solution of (5-(4-((tert-
 butyldimethylsilyl)oxy)phenyl)-furan-3-yl)methanol (72n) ($0.03 \mathrm{~g}, 0.098 \mathrm{mmol}$) in dry THF at $0^{\circ} \mathrm{C}, \operatorname{TBAF}(1 \mathrm{M}$ in THF, $0.11 \mathrm{~mL}, 0.118 \mathrm{mmol}$) were added dropwise and the reaction mixture was stirred for 30 min . at the same temperature. The reaction was monitored by TLC and After completion of the reaction, it was quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$) and combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum and crude product was purified by silica gel column chromatography (using 60\% EtOAc in hexanes) to afford 72h (15 mg, 83\%) as white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;$ FTIR: 3949, 3870, 3762, 3700, 3639, 3540, 3323, 3173, 2975, 2862, 2687, 2493, 2376, 2231, 2084, 1914, 1665, 1532, 1466, 1120, 1029, 977, 771, $683 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3}$ OD) δ 7.53-7.45 (m, 2H), $7.42(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz, CD 3 OD) δ 158.4, 156.5, 139.7, 129.0, 126.4, 124.4, 116.6, 104.3, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$191.0703, found 191.0704.
(5-(4-Nitrophenyl)furan-3-yl)methanol (72i): The title compound was prepared
 following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-nitrophenyl)ethan-1-one ($\mathbf{7 1 i}, 0.05 \mathrm{~g}, 0.210 \mathrm{mmol}$), $\operatorname{Bi}(O T f)_{3}(0.013 \mathrm{~g}, 0.021 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield $(0.042 \mathrm{~g}, 89 \%)$ as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$

EtOAc/ hexanes). IR (neat) 3862, 3738, 3615, 2936, 2404, 2313, 1600, 1518, 1433, 1341, 1217, 1107, 1022, 924, 856, 672, $624 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}$, $J=8.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5,146.7,141.4,136.4,128.1,124.5,124.1$, 109.1, 56.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+220.0604$, found 220.0605 .
(5-(4-Fluorophenyl)furan-3-yl)methanol (72j): The title compound was prepared
 following general procedure C using 1-(4-fluorophenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 j}, 0.05 \mathrm{~g}, 0.237 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.023 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield $(0.044 \mathrm{~g}, 98 \%)$ as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3686, 3601, 2926, 1708, 1612, 1518, 1424, 1310, 1047, 925, $672,624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.07$ $(\mathrm{t}, J=8.63 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.6,161.2,154.1,139.4,127.3,127.2,125.8,125.7,116.0,115.8,104.9$, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]+193.0659$, found 193.0659.
(5-(3-(Trifluoromethyl)phenyl)furan-3-yl)methanol (72k): The title compound
 was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(3-(trifluoromethyl)phenyl)ethan-1one ($\mathbf{7 1 k}, 0.05 \mathrm{~g}, 0.192 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.0126 \mathrm{~g}, 0.019$ mmol) and DCM (0.5 mL): yield ($0.0434 \mathrm{~g}, 94 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3627, 3378, 3016, 2946, 2835, 2407, 1768, 1708, 1623, 1440, 1332, 1173, 1132, 1078, 1024, 926, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~s}$, $1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.4,140.1,131.5,129.4,127.6$, 126.9, 124.2, 124.1, 120.7, 120.68, 106.5, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~F}_{3}$ [M+H]+ 243.0627, found 243.0623.
(E)-(5-Styrylfuran-3-yl)methanol (721): The title compound was prepared
 following general procedure C using (E)-1-(3-hydroxyoxetan-3-yl)-4-phenylbut-3-en-2-one (711, $0.05 \mathrm{~g}, 0.229 \mathrm{mmol}$), $\operatorname{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.022 \mathrm{mmol})$ and $\operatorname{DCM}(0.5 \mathrm{~mL}):$ yield ($0.028 \mathrm{~g}, 62 \%$) as off white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat)
$3627,3375,3013,2946,2883,2407,2037,1632,1415,1110,1025,929,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.13 \mathrm{~Hz}$, 3 H), $7.04(\mathrm{~d}, J=16.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=16.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,139.5,137.0,128.9,127.8,127.4,126.5$, 116.5, 108.6, 57.0. HRMS (ESI): m / z calcd for
(5-(4-((Triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72m): The title
 compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-((triisopropylsilyl)oxy)-phnyl)ethan-1-one ($\mathbf{7 1 m}, 0.05 \mathrm{~g}, 0.137 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}$ ($0.008 \mathrm{~g}, 0.013 \mathrm{mmol}$) and DCM (0.5 mL): yield (0.042 g , 89\%) as yellow solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3899, 3767, 3643, 3426, 3320, 2956, 2885, 2694, 2633, 2379, 1919, 1609, 1503, 1272, 1176, $1009,909,837,746,682 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.75 \mathrm{~Hz}, 3 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.12$ ($\mathrm{s}, 9 \mathrm{H}$), $1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,155.2,138.7,127.3$, 125.3, 124.1, 120.3, 103.6, 57.1, 18.1, 12.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{2} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]+347.2037$, found 347.2036.
(5-(4-((Tert-butyldimethylsilyl)oxy)phenyl)furan-3-yl)methanol (72n): The
 title compound was prepared following general procedure C using 1-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 n}, 0.05 \mathrm{~g}, 0.155 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.015 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL})$: yield ($0.043 \mathrm{~g}, 91 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3876, 3798, 3671, 3566, 3474, 3390, 2938, 2875, 2758, 2644, 2102, 1598, 1468, 1372, 1276, 913, 779, $661 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-$ $7.38(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,153.0,138.8,130.7,127.3,125.4,125.3$, 120.5, 120.3, 103.7, 57.1, 25.8, 18.1, -4.3; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]+305.1567$, found 305.1567 .
(5-(4-(Benzyloxy)phenyl)furan-3-yl)methanol (720): The title com-pound was prepared following general procedure C using 1-(4-(benzyloxy)phenyl)-2-(3-
hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 0}, 0.05 \mathrm{~g}, 0.167 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf}) 3$ ($0.011 \mathrm{~g}, 0.016$
 mmol) and DCM (0.5 mL): yield ($0.045 \mathrm{~g}, 97 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3931, 3878, 3806, 3769, 3680, 3603, 3398, 3333, 3272, 3203, 2764, 2349, 1603, 1501, 1383, 1308, 1256, 1180, 1112, 1041,819, 735, $670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}$, $5 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , CDCl_{3}) $\delta 158.5,155.0,138.8,137.0,128.8,128.2,127.6,127.3,125.4,124.2,115.2$, 103.7, 70.2, 57.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$281.1172, found 281.1167.
(5-(4-((4-Methoxybenzyl)oxy)phenyl)furan-3-yl)metha-nol (72p): The title
 compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-((4-methoxybenzyl)-oxy)phenyl)ethan-1-one ($\mathbf{7 1 p}, 0.05 \mathrm{~g}, 0.152 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}$ $(0.009 \mathrm{~g}, 0.015 \mathrm{mmol})$ and DCM (0.5 mL): yield (0.034 g , 72%) as white solid TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/ hexanes). IR (neat) 3952, 3854, 3780, 3700, 3608, 3430, 3293, 3170, 3056, 2999, 2937, 2879, 2770, 2680, 2396, $2338,1923,1713,1520,1383,1255,1183,1117,1030,912,838,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H})$, 6.98 (d, $J=8.88 \mathrm{~Hz}, 2 \mathrm{H}$), 6.92 (d, $J=8.63 \mathrm{~Hz}, 2 \mathrm{H}$), 6.56 ($\mathrm{s}, 1 \mathrm{H}$), 5.01 (s, 2H), 4.58 (s , 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,158.6,155.0,138.8,129.4$, 129.0, 127.3, 125.4, 124.1, 115.3, 114.2, 103.7, 70.0, 57.1, 55.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+311.1278$, found 311.1275.
(5-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)furan-3-yl)methanol (72q): The title
 compound was prepared following general procedure C using 1-(4-((tert-butyldiphenylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71q, $0.05 \mathrm{~g}, 0.111$ $\mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.007 \mathrm{~g}, 0.011 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.037 \mathrm{~g}, 79 \%$) as white solid TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3892, 3822, 3747, 3681, 3278, 3082, 2955, 2876, 2762, 2352, 1625, 1509, 1263, 1180, 1110, 920, 838, 751, $706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.68(\mathrm{~m}$, 4 H), $7.47-7.33$ (m, 9H), 6.77 (d, J = $8.75 \mathrm{~Hz}, 2 \mathrm{H}$), 6.49 ($\mathrm{s}, 1 \mathrm{H}$), 4.55 ($\mathrm{s}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,155.1,138.7,135.6,132.8,130.1,128.0,127.2$, 125.2, 124.1, 120.1, 103.6, 57.1, 26.6, 19.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]+429.1880$, found 429.1881.
(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)methanol (72r): The title compound was
 prepared following general procedure C using 1-(2,5-bis(allyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71r, $0.05 \mathrm{~g}, 0.164 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.016 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.044 \mathrm{~g}, 95 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3923, 3800, 3545, 3438, 3095, 2936, 2881, 1767, 1653, 1610, 1503, 1431, 1284, 1218, 1013, 932, 809, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.88$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{td}, J=1.50,17.14 \mathrm{~Hz}$, $2 \mathrm{H}), 5.36-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}, J=5.38 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,151.0,149.0,138.6,133.6,133.6,127.4,118.1,117.7,114.8$, 114.0, 112.2, 110.5, 77.5, 77.4, 76.8, 70.1, 69.6, 57.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+287.1278$ found 287.1277.
(5-(2,5-Bis((triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72s): The title
 compound was prepared following general procedure C using $\quad 1-(2,5-b i s((t r i i s o p r o p y l s i l y l) o x y) p h e n y l)-2-(3-$ hydroxyoxetan-3-yl)ethan-1-one ($71 \mathrm{~s}, 0.05 \mathrm{~g}, 0.0931 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.006 \mathrm{~g}, 0.0093 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.03 \mathrm{~g}, 62 \%$) as colorless liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3894, 3793, 3706, 3645, 3313, 3166, 2958, 2881, 1491, 1390, 1221, 1012, 899, 824, $766,672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ ($\mathrm{s}, 1 \mathrm{H}$), $6.75(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=3.00,8.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 1.35-1.23$ (m, 6H), 1.13-1.10 (m, 36H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.8, 149.9, 146.6, 138.5, 127.2, 122.2, 119.8, 119.5, 117.7, 109.5, 57.2, 18.1, 18.1, 13.5, 12.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+519.3320$ found 519.3326 .

(5-(2,5-Dimethoxyphenyl)furan-3-yl)methanol
(72t):
The title com-pound was prepared following general procedure C using 1-(2,5-dimethoxyphenyl)-2-(3-
hydroxyoxetan-3-yl)ethan-1-one (71t, $0.05 \mathrm{~g}, 0.198 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.019$ $\mathrm{mmol})$ and DCM (0.5 mL): yield ($0.034 \mathrm{~g}, 74 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc/ hexanes). IR (neat) 3021, 2943, 2403, 1765, 1601, 1503, 1456, 1042, 931, $670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=3.13 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=3.13,9.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,151.0,150.0,138.6$, 127.4, 120.3, 113.8, 112.4, 111.1, 110.4, 57.2, 56.0, 56.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 235.0965$, found 235.0963 .
(5-(Thiophen-3-yl)furan-3-yl)methanol (72u): The title compound was prepared
 following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(thiophen-3-yl)ethan-1-one ($\mathbf{7 1 u}, 0.05 \mathrm{~g}, 0.252 \mathrm{mmol}$), $\operatorname{Bi}(O T f)_{3}(0.016 \mathrm{~g}, 0.025 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.0432 \mathrm{~g}, 96 \%$) as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3863, 3736, 3601, 3391, 3112, 2938, 2880, 1723, 1566, 1482, 1413, 1025, 975, 941, 856, $674 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=$ $1.25,2.88 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.37$ (m, 1H), 7.33 (dd, $J=2.88,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (dd, $J=1.38$, $5.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,138.7$, 132.5, 127.0, 126.4, 124.7, 119.4, 104.9, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]+181.0318$, found 181.0319 .
(5-(1-Methyl-1H-pyrrol-2-yl)furan-3-yl)methanol (72v): The title compound was
 prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(1-methyl-1H-pyrrol-2-yl)ethan-1one ($\mathbf{7 1 v}, 0.05 \mathrm{~g}, 0.256 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.016 \mathrm{~g}, 0.025$ mmol) and DCM (0.5 mL): yield ($0.042 \mathrm{~g}, 94 \%$) as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3884, 3830, 3787, 3670, 3543, 3334, 3131, 2969, 2754, 2499, 2383, 2346, 2125, 1630, 1469, 1317, 1266, $1175,1030,917,794,719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, 6.45-6.41 (m, 1H), $6.38(\mathrm{~s}, 1 \mathrm{H}), 6.18-6.14(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,138.3,126.7,124.8,124.3,108.9,107.9,105.3,56.7$, 35.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+178.0863$, found 178.0862 .
[2,2'-Bifuran]-4-ylmethanol (72w): The title compound was prepared following
 general procedure C using 1-(furan-2-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 w}, 0.05 \mathrm{~g}, 0.274 \mathrm{mmol}$), $\operatorname{Bi}(\mathrm{OTf})_{3}(0.018 \mathrm{~g}, 0.027 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.044 \mathrm{~g}, 98 \%$) as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3880, 3790, 3689, 3555, 3422, 3340, 3285, 2937, 2878, 2762, 2362, 2049, 1672, 1601, 1459, 1394, 1303, 1182, 1013, 883, 805, 785, $667 \mathrm{~cm}^{-}$ ${ }^{1}$; 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{dd}, J=0.75,1.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=0.88 \mathrm{~Hz}$, 1H), 6.58 (s, 1H), 6.55 (d, $J=3.38 \mathrm{~Hz}, 1 \mathrm{H}$), 6.45 (dd, $J=1.75,3.38 \mathrm{~Hz}, 1 \mathrm{H}$), 4.58-4.56 $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.5,146.4,142.1,139.1,127.1,111.5$, 105.6, 105.2, 56.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 165.0546$, found 165.0546.
(4-Methyl-5-phenylfuran-3-yl)methanol (72x): The title compound was prepared

72x following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-phenylpropan-1-one ($\mathbf{7 1 x}, \quad 0.05 \mathrm{~g}, \quad 0.242 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.024 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.041 \mathrm{~g}, 91 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) $3413,3022,2928,2403,1761,1677,1436,1017,670 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (dd, $J=1.38,8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45-7.39 (m, 3H), 7.317.27 (m, 1H), $4.58(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,139.2$, 131.8, 128.7, 127.5, 127.1, 125.7, 115.8, 55.9, 9.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]+189.0910$, found 189.0908 .
(5-Nonyl-4-phenylfuran-3-yl)methanol (72y): The title compound was prepared
 following general procedure C using 1-(3-hydroxyoxetan-3-yl)-1-phenylundecan-2-one (71y, $0.05 \mathrm{~g}, 0.157 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.015 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.038 \mathrm{~g}, 81 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta ~ 7.44-7.31(\mathrm{~m}, 6 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.68-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.26-$ $1.22(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.7, 138.9, 130.1, 129.5, 128.7, 127.0, 125.2, 120.8, 56.0, 32.0, 29.4, 29.4, 28.6, 26.6, 22.8, 14.3.
(4,5,6,7-Tetrahydrobenzofuran-3-yl)methanol (72z): The title compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)cyclohexan-1-one (71z, 0.05 g, 0.193 $\mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.012 \mathrm{~g}, 0.019 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.043 \mathrm{~g}, 93 \%$) as colorless liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/ hexanes). IR (neat) 3432, 3024, 2348, 2097, 1642, 1428, 1018, $669 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=6.00 \mathrm{~Hz}, 3 \mathrm{H}), 2.47-2.41$ $(\mathrm{m}, 3 \mathrm{H}), 1.82(\mathrm{dt}, J=3.75,5.82 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , CDCl_{3}) $\delta 152.0,138.0,124.6,116.6,77.5,76.8,56.1,23.3,23.0,22.9,20.7$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+153.0915$, found 153.0905.
(5-(4-Methoxyphenyl)-4-phenylfuran-3-yl)methanol (72aa): The title compound
 was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)-2-phenylethan-1-one (71aa, $0.05 \mathrm{~g}, 0.167 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.016$ mmol) and DCM (0.5 mL): yield ($0.045 \mathrm{~g}, 98 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3870, 3782, 3665, 3550, 3465, 3334, 3273, 3081, 2938, 2876, 2760, 2548, 2400, 2053, 1754, 1608, 1454, $1258,1183,1031,842,780,671 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.44-$ 7.36 (m, 5H), 7.36-7.32 (m, 3H), 6.84-6.74 (m, 2H), 4.48 (s, 2H), 3.78 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.1,149.9,139.2,133.4,130.0,129.0,127.6,127.4,127.2$, 123.8, 120.5, 113.9, 55.8, 55.4; HRMS (ESI): m/z calcd for C18H17O3 [M+H]+ 281.1172, found 281.1167.
(5-(4-Chlorophenyl)-4-phenylfuran-3-yl)methanol (72ab): The title compound
 was prepared following general procedure C using 1-(4-chlorophenyl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1one (71ab, $0.05 \mathrm{~g}, 0.165 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}$ ($0.010 \mathrm{~g}, 0.016$ mmol) and DCM (0.5 mL): yield ($0.041 \mathrm{~g}, 87 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3900, 3799, 3753, 3635, 3434, 3304, 3063, 2942, 2881, 2703, 2546, 2421, 2335, 2136, 1961, 1766, 1601, 1488, 1265, 1093, 1018, 835, 769, $704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.54$ (m, 1H), 7.46-7.30 (m, 7H), 7.22-7.17 (m, 2H), 4.47 (d, $J=0.75 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz, CDCl_{3}) $\delta 148.8,140.0,133.3,132.9,129.9,129.5,129.2,128.7,128.0$,
127.5, 127.0, 122.5, 55.7; HRMS (ESI): m/z calcd for C17H14O2Cl [M+H]+ 285.0677, found 285.0673.
(3-Phenyl-[2,2'-bifuran]-4-yl)methanol (72ac): The title compound was prepared
 following general procedure C using 1-(furan-2-yl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ac, $0.05 \mathrm{~g}, 0.193$ $\mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.012 \mathrm{~g}, 0.019 \mathrm{mmol})$ and DCM (0.5 mL): yield $(0.043 \mathrm{~g}, 93 \%)$ as colorless liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat)3426, 3022, 2402, 2350, 1641, 1523, 1426, 1022, 927, 670 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.35$ (dd, $J=1.75$, $3.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 146.0, 142.7, 142.1, 140.0, 132.0, 129.9, 128.7, 127.9, 126.9, 121.7, 111.3, 107.0, 55.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+241.0859$, found 241.0863.

5-(2,5-Bis(allyloxy)phenyl)furan-3-carbaldehyde (80): To the furyl alcohol 72r
 ($2.1 \mathrm{~g}, 7.33 \mathrm{mmol}$) in dry DCM, Dess Martin Periodinane (DMP, $6.22 \mathrm{~g}, 14.6 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at the same temperature. The reac-tion progress was monitored by TLC. After completion of the reaction it was quenched with 1:1 ratio of saturated aqueous solution of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and and the aqueous layer was extracted with DCM ($3 \times 50 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product $\mathbf{8 0}(1.77 \mathrm{~g}$, 85\%). TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3885, 3806, 3664, 3598, 3443, 3354, 2934, 2877, 2761, 2606, 2351, 2214, 2047, 1690, 1606, 1504, 1427, 1382, 1283, 1227, 1146, 1029, 933, 811, $667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95$ (s, 1H), 8.07 (s, 1H), 7.42 (d, J = $3.00 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 ($\mathrm{s}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.80$ (m, 1H), 6.17-6.01 (m, 2H), 5.47-5.38 (m, 2H), 5.34-5.26 (m, 2H), 4.63 (d, J = 5.38 Hz , $2 \mathrm{H}), 4.54(\mathrm{~d}, J=5.38 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.9,152.8,149.9$, $149.4,133.5,133.2,130.6,119.3,118.4,117.8,115.7,113.9,112.6,106.6,77.5,76.8$, 70.0, 69.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+$ 285.1121, found 285.1120.

4,4,5,5-Tetramethyl-2-(2-methylbut-3-en-2-yl)-1,3,2-dioxaborolane (83): Tо а

83 suspension of Mg turnings ($1.03 \mathrm{~g}, 39.3 \mathrm{mmol}$) in THF, pinacol borane ($82,5 \mathrm{~g}, 43.2 \mathrm{mmol}$) and prenyl bromide ($\mathbf{8 1}, 9.09 \mathrm{~mL}, 78.7 \mathrm{mmol}$) were added dropwise and th reaction was stirred for 0.5 h at room temperature and then another equivalent of prenyl bromide were added to the reaction mixture. The reaction was stirred for additional 2 h at room temperature then diluted with hexane and quenched with 0.1 N HCl solution at $0{ }^{\circ} \mathrm{C}$. After that the organic layer was separated and aqueous layer was extracted with hexane. Then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and used for next step without purification. TLC: $R_{f}=0.9$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3891, 3782, 3632, 3431, 3293, 2955, 2387, 2321, 2133, 1469, 1389, 1264, 1023, 803, $686 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}$ 197.1707, found 197.1707.
(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78): To
 an oven dried 100 ml RBF with a stirring bar (S)-TRIP ($0.264 \mathrm{~g}, 5.27 \mathrm{mmol}$) and $4 \AA \mathrm{MS}$ were added in N_{2} atmosphere. Then aldehyde $\mathbf{8 0}$ in dry toluene were added to this mixture drop-wise at room temperature. The reaction mixture was cooled to $-60^{\circ} \mathrm{C}$ and a solution of borane ester $83(1.03 \mathrm{~g}, 5.77$ mmol) in dry toluene were added dropwise over 20 minutes. The reaction mixture was stirred at the same temperature for 30 h . then After completion of the reaction, it was filtered through sintered funnel and solvent was evaporated under vacuum. The crude product was purified using silica gel column chromatography to afford the desired product prenyl alcohol 78 ($1.01 \mathrm{~g}, 81 \%, 94 \% \mathrm{ee}$) as yellow liquid. TLC: $R_{f}=$ $0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $\mathrm{iPrOH}=90: 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\left.\mathrm{nm}, \mathrm{t}_{\text {major }}=11.18 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.22 \mathrm{~min}\right), e e=94 \%,[\alpha]_{\mathrm{D}} 28.73=-12.81\left(c=2.1, \mathrm{CHCl}_{3}\right)$. IR (neat) 3894, 3791, 3601, 3542, 3426, 3320, 2942, 2559, 2490, 2343, 1716, 1489, $1283,1214,1015,927,805,691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=3.00 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=$ $3.13,9.01 \mathrm{~Hz}, 1 \mathrm{H}$), $6.17-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.43$ (qdd, $J=1.63,4.88,17.26 \mathrm{~Hz}, 2 \mathrm{H}$), 5.29
(qdd, $J=1.38,9.13,10.51 \mathrm{~Hz}, 2 \mathrm{H}), 5.23-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=6.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (td, $J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.73(\mathrm{~m}$, $3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,150.6,149.0,137.7,135.8$, 133.7, 133.6, 131.0, 121.0, 119.7, 117.9, 117.7, 114.7, 114.1, 112.1, 109.4, 70.1, 69.6, 67.2, 36.9, 26.1, 18.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+355.1904$ found 355.1902 .

(S)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan

(84): To the suspension of $\mathrm{NaH}(0.006 \mathrm{~g}, 0.028 \mathrm{mmol})$ in dry THF (1 mL), alcohol $78(0.1 \mathrm{~g}, 0.028 \mathrm{mmol})$ in dry THF (2 mL) were added dropwise at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 10 minutes at the same temperature. After that Mel ($0.02 \mathrm{~mL}, 0.042 \mathrm{mmol}$) dissolved in THF (0.5 mL) were added to this dropwise and the reaction was stirred for overnight at room temperature. After completion of the reaction, it was quenched with water and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, fil-tered and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product $\mathbf{8 4}$ $(0.097 \mathrm{~g}, 94 \%)$ as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was deter-mined by HPLC (CHIRALPAK AD-H column, n hexane: $i-\mathrm{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=4.74 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.06$ \min), $e e=90 \%,[\alpha] \mathrm{D}^{28.73}=-+1.27\left(c=0.5, \mathrm{CHCl}_{3}\right.$). IR (neat) 3929, 3789, 3670, 3600, $3555,3460,3392,3332,3216,2938,2760,2363,1775,1502,1441,1379,1286$, $1225,1106,1016,940,816,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=3.00 \mathrm{~Hz}$, 1 H), $7.37(\mathrm{~s}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=3.13,9.01$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.09 (dtd, $J=2.13,5.25,10.51 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.39(\mathrm{~m}, 2 \mathrm{H})$, 5.33-5.25 (m, 2H), 5.18-5.11 (m, 1H), 4.60 (td, $J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{td}, J=1.50$, $5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,150.7$, 149.0, 138.9, 133.8, 133.7, 133.6, 128.1, 121.0, 120.1, 117.9, 117.7, 114.6, 114.1, 112.1, 109.7, 76.2, 70.1, 69.6, 56.4, 35.2, 25.9, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+369.2060$, found 369.2062 .

Shikonofuran J (41): To the methoxy furan $84(0.075 \mathrm{~g}, 0.20 \mathrm{mmol})$, in dry MeOH (2 $\mathrm{mL}) \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.023 \mathrm{~g}, 0.020 \mathrm{mmol})$ were added at room temperature and the

(+)-Shikonofuran J (41) reaction was stirred for 5 minutes then activated $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.168 \mathrm{~g}, 1.21 \mathrm{mmol}$) were added to the reaction mixture and the reaction was refluxed for 15 minutes. After completion of reaction, MeOH was removed under vaccum and the residue was treated with 2 N HCl , and the aqueous layer was ex-tracted with EtOAc ($3 \times 10 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 41 ($0.042 \mathrm{~g}, 72 \%$) as yellow liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}$). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane:i$\operatorname{PrOH}=90: 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=21.09 \mathrm{~min}, \mathrm{t}_{\text {major }}=21.90$ $\min), e e=90 \%,[\alpha]_{\mathrm{D}}{ }^{28.73}=-+7.07(c=0.5, \mathrm{MeOH})$. ECD ($4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}$) ($\Delta \varepsilon$) $\lambda_{\max }$ at $283(-0.180), 245(-0.134)$ and 213 (+0.187); IR (neat) 3869, 3775, 3638, 3446, 3352, 3176, 2941, 2768, 2635, 2562, 2396, 2328, 1957, 1522, 1459, 1360, 1205, 1086, 806, $690 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.42$ ($\mathrm{s}, 1 \mathrm{H}$), 7.17 (d, J = 3.05 Hz , 1H), 6.95 (s, 1H), 6.71 (d, $J=8.54 \mathrm{~Hz}, 1 \mathrm{H}$), 6.55 (dd, $J=3.05,8.85 \mathrm{~Hz}, 1 \mathrm{H}$), 5.16-5.12 (m, 1H), 4.16 (t, J = 6.71 Hz, 1H), 3.27 (s, 3H), 2.58-2.49 (m, 1H), 2.44-2.36 (m, 1H), 1.68 (s, 3H), 1.59 (s, 3H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 153.0,151.2,148.2$, 140.0, 134.7, 129.0, 121.4, 119.9, 117.7, 116.1, 112.7, 109.6, 77.7, 56.5, 36.1, 26.1, 18.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+289.1434$, found 289.1432 .
(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyr-
 ate (86): To the prenyl alcohol 78 ($0.2 \mathrm{~g}, 0.56 \mathrm{mmol}$) in dry DCM (2 mL), DMAP ($0.006 \mathrm{~g}, 0.0056 \mathrm{mmol}$) and then $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.12 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. then isobutyryl chloride 85 ($0.07 \mathrm{~mL}, 0.67 \mathrm{mmol}$) were added dropwise at the same temper-ature. The reaction mixture was stirred for 3 h at room temperature. After completion of the reaction, water were added, and the aqueous layer was extracted with DCM ($3 \times 50 \mathrm{~mL}$), then the combined organic layer was washed with aq. 2 M NaOH and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by
silica gel column chromatography to afford the desired product 86 ($0.206 \mathrm{~g}, 86 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, n-hexane: $i \operatorname{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, tmajor $=5.24 \mathrm{~min}$, tminor $=6.36 \mathrm{~min}), e e=92 \%$, $[\alpha]_{\mathrm{D}} 26.65=-29.96\left(c=1.85, \mathrm{CHCl}_{3}\right)$. IR (neat) 3904, 3795, 3696, 3435, 3315, 2935, 2882, 2646, 2492, 2330, 2132, 1738, 1503, 1211, 1023, 935, 809, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{dd}, J=3.13,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (qdd, J $=1.63,9.25,17.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.34-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{tt}, J=1.38,7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (td, J $=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}$), $4.54(\mathrm{td}, \mathrm{J}=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.47(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.67(\mathrm{~m}$, $3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,153.0,150.5,149.0,138.7,134.8,133.7,133.6,127.3,120.9$, $119.1,117.9,117.7,114.7,114.2,112.1,109.7,70.2,69.6,68.5,34.3,33.8,25.9,19.1$, 19.0, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+425.2323$, found 425.2319.

1-(5-(2-(Allyloxy)-5-hydroxyphenyl)furan-3-yl)-4-methylpent-3-en-1-yl

isobutyrate (87): yellow colored liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, 30% EtOAc/ hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (s, $1 \mathrm{H}), 7.07(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}$), 6.70 (s, 1H), 6.44 (br. s., 1H), 6.11-6.00 (m, 1H), $5.77(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{qd}, J=$ $1.50,17.26 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (dd, $J=1.38,10.51 \mathrm{~Hz}, 1 \mathrm{H}$), $5.09(\mathrm{t}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (td, $J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.47(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.00 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$385.2010, found 385.2011.

4-(Allyloxy)-3-(4-(1-hydroxy-4-methylpent-3-en-1-yl)furan-2-yl)phenol (88):

 yellow colored liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.41(\mathrm{~d}, J=2.93 \mathrm{~Hz}$, 1H), 7.29-7.22 (m, 1H), 7.04-6.99 (m, 1H), 6.78 (d, $J=8.80$ $\mathrm{Hz}, 1 \mathrm{H}), ~ 6.72-6.63(\mathrm{~m}, 1 \mathrm{H}), ~ 6.19-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.37(\mathrm{~m}$, $1 \mathrm{H}), 5.30-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 2 \mathrm{H})$, $4.50(\mathrm{td}, J=1.49,5.19 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+315.1591$, found 315.1585.

2-(4-(1-Hydroxy-4-methylpent-3-en-1-yl)furan-2-yl)benzene-1,4-diol (89): Red

colored liquid. TLC: $R_{f}=0.2\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3022, 2929, 2402, 1721, 1517, 1432, 1021, 929, 670 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $3.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 1 \mathrm{H})$, 6.55 (dd, $J=3.00,8.63 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{tt}, J=1.36,7.14 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{t}, J=6.69 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+275.1278$, found 275.1275.

Shikonofuran D (42): To the isobutyryl ester $86(0.073 \mathrm{~g}, 0.17 \mathrm{mmol})$ in dry MeOH
 (2 mL), $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.122 \mathrm{~g}, 0.51 \mathrm{mmol})$ were added at 0 ${ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.032 \mathrm{~g}, 0.85 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 42 ($0.026 \mathrm{~g}, 44 \%$) as reddish liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, n hexane: $i \operatorname{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=15.32 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $17.51 \mathrm{~min}), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{31.77}=-25.32\left(c=0.2, \mathrm{CHCl}_{3}\right)$. ECD ($\left.4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}\right)$ $\lambda_{\max }(\Delta \varepsilon)$ at $322 \mathrm{~nm}(-1.10), 274 \mathrm{~nm}(-1.29)$ and $204 \mathrm{~nm}(-3.23)$; IR (neat) 3778,3645 3528, 3269, 3167, 2936, 2872, 2701, 2387, 2129, 1752, 1468, 1267, 1184, 861, 809, $737,625 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=8.63 \mathrm{~Hz} 1 \mathrm{H}$), 6.72-6.65 (m, 2H), 6.44 (br. s., 1 H), $5.77(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-$ 5.03 (m, 1H), 4.89 (br. s., 1H), 2.71-2.45 (m, 3H), 1.71-1.67 (m, 3H), 1.62 (s, 3H), 1.19$1.17(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8,152.5$, 149.3, 146.7, 138.9, 135.2, 127.3, 118.7, 118.2, 117.0, 116.6, 112.2, 106.8, 68.3, 34.3, 33.7, 25.9, 19.1, 19.0, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+345.1697$, found 345.1692.

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl-3-

methylbut-2-enoate (91): To the stirred solution of prenyl alcohol 78 ($0.2 \mathrm{~g}, 0.56$ mmol) in dry DCM (4 mL) DCC ($0.186 \mathrm{~g}, 0.090 \mathrm{mmol}$) and DMAP ($0.006 \mathrm{~g}, 0.056$
mmol) were added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 minutes. After

that 3-methylbut-2-enoic acid 90 ($0.067 \mathrm{~g}, 0.067 \mathrm{mmol}$) were added to this. The reaction was stirred for 12 h at room temperature. After completion of the reaction it was quenched with water and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 91 ($0.22 \mathrm{~g}, 89 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n hexane: $i \mathrm{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=5.43 \mathrm{~min}, \mathrm{t}_{\text {major }}=5.95$ $\min)$, $e e=88 \%,[\alpha]_{\mathrm{D}}{ }^{28.73}=-14.35\left(c=0.5, \mathrm{CHCl}_{3}\right)$. IR (neat) $3905,3804,3763,3650$, $3572,3433,3316,2962,2923,2861,1721,1647,1497,1452,1376,1273,1222$, 1137, 1026, 804, $672 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=3.00$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=3.00,8.88,1 \mathrm{H}$), 6.17$6.01(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.43$ (qdd, $J=1.63,9.76$, $17.26 \mathrm{~Hz}, 2 \mathrm{H}$), $5.29(\mathrm{qt}, J=1.25,10.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=1.38$, $5.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=1.25 \mathrm{~Hz}$, $3 \mathrm{H}), 1.89(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , CDCl_{3}) $\delta 166.1,156.8,153.0,150.4,149.0,138.9,134.8,133.6,133.6,127.3,121.0$, $119.1,117.8,117.7,116.4,114.6,114.1,112.1,109.9,70.1,69.6,67.8,33.8,27.6,25.9$, 20.4, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+437.2323$, found 437.2317 .

Shikonofuran E (43): To the ester 91 ($0.15 \mathrm{~g}, 0.343 \mathrm{mmol}$) in dry MeOH (2 mL),

Shikonofuran E (43) $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.245 \mathrm{~g}, 1.03 \mathrm{mmol})$ were added at $-60{ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.013 \mathrm{~g}, 0.343 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product $43(0.083 \mathrm{~g}, 68 \%)$ as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $\mathrm{iPrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=6.74 \mathrm{~min}$,
$\left.t_{\text {major }}=7.68 \mathrm{~min}\right), e e=66 \%, \%,[\alpha] \mathrm{D}^{30.49}=-62.40\left(c=0.1, \mathrm{CHCl}_{3}\right)$; ECD $(4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $\left.316 \mathrm{~nm}-2.56\right), 274 \mathrm{~nm}(-2.59), 245 \mathrm{~nm}(-1.79)$ and a positive Cotton effect at $227 \mathrm{~nm}(+0.549)$; IR (neat) 3894, 3841, 3784, 3652, 3544, 3422, 3379, 3327, 2986, 2937, 2777, 2706, 2632, 2551, 2334, 2053, 1952, 1845, 1697, 1457, 1230, 1161, 1085, 1022, 768, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (s, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.66(\mathrm{~m}, 1 \mathrm{H})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.48$ (m, 2H), $2.17(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,157.7,152.5,149.3,146.6,139.0,135.2$, $127.4,118.8,118.2,117.0,116.6,116.1,112.2,106.8,67.7,33.8,27.6,25.9,20.5,18.1 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+357.1697$, found 357.1691

Shikonofuran C (44): To the ester $91(0.10 \mathrm{~g}, 0.229 \mathrm{mmol})$ in dry MeOH (2 mL),

filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 44 (0.059 g, 71\%) as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane: $\mathrm{PrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, tminor $=7.89 \mathrm{~min}$, tmajor $=9.10 \mathrm{~min}), e e=94 \%$, $[\alpha]_{\mathrm{D}}{ }^{27.51}=-58.05\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;$ ECD $(4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $321 \mathrm{~nm}(-$ 1.76), $283 \mathrm{~nm}(-1.68), 260 \mathrm{~nm}(-1.19)$ and $224 \mathrm{~nm}(-3.02)$; IR (neat) 3863, 3780, 3710, 3611, 3548, 3442, 3352, 3274, 3198, 3136, 3094, 2978, 2936, 2884, 2764, 2628, 2552, 2505, 2431, 2373, 2326, 2209, 2109, 2049, 1998, 1891, 1717, 1509, $1452,1360,1291,1202,1110,1038,989,875,817,753,708,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-$ $6.64(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (br. s., $1 \mathrm{H}), 2.68-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.69$ ($\mathrm{s}, 3 \mathrm{H}$), $1.62(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{dd}, J=1.13,6.63 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.9, 152.5, 149.4, 146.6, 139.1, 135.3, 127.2, 118.7, 118.2, 117.1, 116.6, 112.2,
106.9, 68.3, 43.9, 33.7, 26.0, 25.9, 22.5, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]+359.1853$, found 359.1848.

(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78a): To

 an oven dried 100 ml RBF with a stirring bar (R)-TRIP $(0.264 \mathrm{~g}, 5.27 \mathrm{mmol})$ and $4 \AA \mathrm{MS}$ were added in N_{2} atmosphere. Then aldehyde $\mathbf{8 0}(1 \mathrm{~g}, 3.51 \mathrm{mmol})$ in dry toluene were added to this mixture drop-wise at room temperature. The reaction mixture was cooled to $-60{ }^{\circ} \mathrm{C}$ and a solution of borane ester $\mathbf{8 3}$ ($1.03 \mathrm{~g}, 5.77 \mathrm{mmol}$) in dry toluene were added dropwise over 20 minutes. The reaction mixture was stirred at the same temperature for 30 h . then After completion of the reaction, it was filtered through sintered funnel and solvent was evaporated under vacuum. The crude product was purified using silica gel column chromatography to afford the desired product prenyl alcohol 78a ($0.97 \mathrm{~g}, 79 \%, 94 \%$ ee) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane: $\mathrm{iPrOH}=90: 10$, flow rate $\left.=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=11.32 \mathrm{~min}, \mathrm{t}_{\text {major }}=13.20 \mathrm{~min}\right), e e=93 \%$, $[\alpha] \mathrm{D}^{32.24}=+13.38\left(c=1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=3.13 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=3.00,8.88$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.17-6.01 (m, 2H), 5.46-5.40 (m, 2H), 5.22-5.18 (m, 2H), 5.17-5.24 (m, 1H), $4.69(\mathrm{t}, J=6.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{td}, J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H})$, 2.57-2.45 (m, 2H), 1.77-1.72 (m, 3H), 1.66 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0$, 150.6, 149.0, 137.7, 135.8, 133.7, 133.6, 131.0, 121.0, 119.7, 117.9, 117.7, 114.7, 114.1, 112.1, 109.4, 70.1, 69.6, 67.2, 36.9, 26.1, 18.2;

(R)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan

(84a): To the suspension of $\mathrm{NaH}(0.006 \mathrm{~g}, 0.028 \mathrm{mmol})$ in
 dry THF (1 mL), alcohol 78a ($0.1 \mathrm{~g}, 0.028 \mathrm{mmol}$) in dry THF (2 mL) were added dropwise at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 10 minutes at the same temperature. After that MeI ($0.02 \mathrm{~mL}, 0.042 \mathrm{mmol}$) dissolved in THF (0.5 mL) were added to this dropwise and the reaction was stirred for overnight at room temperature. After completion of the reaction, it was quenched with water and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), then the combined organic layer was washed with
brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, fil-tered and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 84a ($0.097 \mathrm{~g}, 94 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was deter-mined by HPLC (CHIRALPAK AD-H column, n -hexane: $i-\mathrm{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=4.70 \mathrm{~min}$, $\left.\mathrm{t}_{\text {major }}=5.01 \mathrm{~min}\right), e e=90 \%,[\alpha]_{\mathrm{D}} 28.73=-1.94\left(c=1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.43(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.04(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{td}, J=1.75,17.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.31-5.27$ $(\mathrm{m}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=5.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=5.25 \mathrm{~Hz}, 2 \mathrm{H})$, $4.13(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}$, 3H), 1.59 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.0, 150.7, 149.0, 138.9, 133.8, 133.7, 133.6, 128.1, 121.0, 120.2, 117.9, 117.7, 114.6, 114.1, 112.1, 109.7, 77.5, 76.8, $76.2,70.1,69.6,56.4,35.2,25.9,18.1$
ent-Shikonofuran J (41a): To the methoxy furan 84a ($0.026 \mathrm{~g}, 0.0705 \mathrm{mmol}$), in dry
 $\mathrm{MeOH}(1 \mathrm{~mL}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.008 \mathrm{~g}, 0.00705 \mathrm{mmol})$ were added at room temperature and the reaction was stirred for 5 minutes then activated $\mathrm{K}_{2} \mathrm{CO}_{3}(0.058 \mathrm{~g}, 0.423 \mathrm{mmol})$ were added to the reaction mixture and the reaction was refluxed for 15 minutes. After completion of the reaction, MeOH was removed under vaccum and the residue was treated with 2 N HCl , and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 41a ($0.015 \mathrm{~g}, 75 \%$) as yellow liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=31.46$ $\left.\mathrm{min}, \mathrm{t}_{\text {minor }}=34.06 \mathrm{~min}\right), e e=90 \%,[\alpha]_{\mathrm{D}^{27.13}}=-7.63(c=0.5, \mathrm{MeOH}) ; \mathrm{ECD}(4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $283(-0.018), 245(+0.026)$ and $\left.213(-0.312) \mathrm{nm}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=3.05 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.54 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56(\mathrm{dd}, J=3.05,8.54 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.71 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ $(\mathrm{s}, 3 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(126 MHz, CD 3 OD) $\delta 153.0,151.2,148.2,140.0,134.7,129.0,121.4,119.9,117.7$, 116.1, 112.7, 109.6, 77.6, 56.5, 36.1, 26.1, 18.2
(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86a): To the prenyl alcohol $78 \mathrm{a}(0.2 \mathrm{~g}, 0.56 \mathrm{mmol})$ in
 dry DCM (2 mL), DMAP ($0.006 \mathrm{~g}, 0.0056 \mathrm{mmol}$) and then $\operatorname{Et} 3 \mathrm{~N}(0.15 \mathrm{~mL}, 1.12 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. then isobutyryl chloride 85 ($0.07 \mathrm{~mL}, 0.67 \mathrm{mmol}$) were added dropwise at the same temper-ature. The reaction mixture was stirred for 3 h at room temperature. After completion of the reaction, water were added, and the aqueous layer was extracted with DCM (3 x 50 mL), then the combined organic layer was washed with aq. 2 M NaOH and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 86a ($0.198 \mathrm{~g}, 83 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, nhexane: $i \operatorname{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=5.27 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $6.36 \mathrm{~min}), e e=92 \%,[\alpha]_{\mathrm{D}} 26.72=+30.84\left(c=0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=3.13,9.01 \mathrm{~Hz}$, 1 H), 6.16-6.02 (m, 2H), $5.79(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (qdd, $J=1.63,9.76,17.26 \mathrm{~Hz}$, $2 \mathrm{H}), 5.34-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=1.38,6.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=$ $1.50,6.75 \mathrm{~Hz}, 2 \mathrm{H}$), 2.68-2.47 (m, 3H), 1.71-1.67 (m, 3H), $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.17$ (d, $J=7.00$ $\mathrm{Hz}, 3 \mathrm{H}$), $1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,153.0,150.5$, 149.0, 138.7, 134.8, 133.6, 133.6, 127.2, 120.9, 119.0, 117.9, 117.7, 114.7, 114.1, $112.1,109.7,70.1,69.6,68.4,34.3,33.8,25.9,19.1,19.0,18.1$
ent-Shikonofuran D (42a): To the isobutyryl ester 86a ($0.062 \mathrm{~g}, 0.146 \mathrm{mmol}$) in dry
 $\mathrm{MeOH}(2 \mathrm{~mL}), \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.104 \mathrm{~g}, 0.438 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.027 \mathrm{~g}, 0.73 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was
concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 42a ($0.023 \mathrm{~g}, 46 \%$) as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, n-hexane: $\mathrm{PrOH}=95: 5$, flow rate $=1$ $\left.\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.52 \mathrm{~min}, \mathrm{t}_{\text {major }}=17.30 \mathrm{~min}\right), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{26.54}=$ $+26.19\left(c=1.3, \mathrm{CHCl}_{3}\right)$; ECD ($\left.4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}\right) \lambda_{\max }(\Delta \varepsilon)$ at $323 \mathrm{~nm}(+1.39), 267$ $\mathrm{nm}(+6.00)$ and $207 \mathrm{~nm}(+2.50) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=$ $3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{t}, \mathrm{J}=6.82$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.12-5.06 (m, 1H), 4.53 (br. s., 1H), 2.67-2.47 (m, 3H), 1.69 (s, 3H), 1.63 (s, $4 \mathrm{H}), 1.18(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.6, 152.5, 149.3, 146.7, 138.9, 135.2, 127.3, 118.7, 118.2, 117.0, 116.6, 112.2, $106.8,68.1,34.3,33.7,25.9,19.1,19.0,18.1$.

(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl-3-

methylbut-2-enoate (91a): To the stirred solution of prenyl alcohol 78a ($0.287 \mathrm{~g}, 0.809 \mathrm{mmol}$) in dry DCM (4 $\mathrm{mL})$ DCC ($0.267 \mathrm{~g}, 1.29 \mathrm{mmol}$) and DMAP ($0.009 \mathrm{~g}, 0.080$ mmol) were added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 minutes. After that 3-methylbut-2-enoic acid $90(0.067 \mathrm{~g}, 0.067 \mathrm{mmol})$ were added to this. The reaction was stirred for 12 h at room temperature. After completion of the reaction it was quenched with water and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 91a ($0.298 \mathrm{~g}, 84 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane: $\mathrm{PrOH}=95: 5$, flow rate $\left.=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.22 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.96 \mathrm{~min}\right), e e=92 \%,[\alpha] \mathrm{D}^{31.57}=$ $+53.23\left(c=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{t}, J=$ $6.75 \mathrm{~Hz}, 1 \mathrm{H}$), $5.72-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.43$ (qdd, $J=1.63,9.38,17.26 \mathrm{~Hz}, 2 \mathrm{H}$), $5.34-5.24(\mathrm{~m}$, $2 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H})$, 2.67-2.48 (m, 2H), 2.17 (d, $J=1.13 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}$, 3H), 1.62 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,156.8,153.0,150.4,149.0$,
138.9, 134.8, 133.7, 133.6, 127.4, 119.2, 117.8, 117.7, 116.5, 114.7, 114.2, 112.1, 109.9, 70.2, 69.6, 67.9, 33.8, 27.6, 25.9, 20.4, 18.1
ent-Shikonofuran E (43a): To the ester 91a ($0.251 \mathrm{~g}, 0.574 \mathrm{mmol}$) in dry MeOH (4
 $\mathrm{mL}), \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.409 \mathrm{~g}, 1.72 \mathrm{mmol})$ were added at $-60^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.022 \mathrm{~g}, 0.574 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 43a ($0.113 \mathrm{~g}, 55 \%$) as reddish liquid. TLC: $R_{f}=0.4$ ($\left.\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, nhexane: $\mathrm{iPrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=6.82 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $7.70 \mathrm{~min}), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{30.40}=+68.26\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right)$; $\mathrm{ECD}(4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}) \lambda_{\max }$ $(\Delta \varepsilon)$ at $319 \mathrm{~nm}(+3.39), 270 \mathrm{~nm}(+5.69), 227 \mathrm{~nm}(+6.33)$ and $212 \mathrm{~nm}(+3.34) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.75 \mathrm{~Hz}$, 1H), 6.70 (s, 1H), 6.67 (dd, $J=2.88,8.63 \mathrm{~Hz}, 1 \mathrm{H}$), $5.78(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.68$ (m, 1H), 5.13-5.05 (m, 1H), 2.67-2.57 (m, 1H), 2.57-2.48 (m, 1H), 2.19-2.15 (m, 3H), 1.92-1.87 (m, 3H), $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,157.7$, $152.4,149.3,146.6,139.0,135.2,127.4,118.8,118.2,117.1,116.6,116.2,112.2$, 106.9, 67.7, 33.8, 27.6, 25.9, 20.5, 18.2
ent-Shikonofuran C (44a): To the ester 91a ($0.150 \mathrm{~g}, 0.343 \mathrm{mmol}$) in dry MeOH (4
 $\mathrm{mL}), \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.245 \mathrm{~g}, 1.03 \mathrm{mmol})$ were added at $-40^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.052 \mathrm{~g}, 1.37 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 44a (0.078 g , 64\%) as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $\mathrm{PrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.92 \mathrm{~min}$,
$\left.t_{\text {minor }}=9.14 \mathrm{~min}\right), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{27.96}=+57.56\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$; ECD $(4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $321 \mathrm{~nm}(0.79), 277 \mathrm{~nm}(+2.82), 269 \mathrm{~nm}(+4.07)$ and 220 nm (+2.28); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.05(\mathrm{~m}$, $1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.69$ ($\mathrm{s}, 3 \mathrm{H}$), $1.62(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=1.38 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,152.5,149.3,146.7,139.0,135.3,127.2,118.7,118.2,117.1$, $116.6,112.2,106.9,68.3,43.8,33.7,26.0,25.9,22.5,18.1$

2.2.9. References

1. a) Xu, L.; Sinclair, A. J.; Faiza, M.; Li, D.; Han, X.; Yin, H.; Wang, Y.; Furan fatty acids-Beneficial or harmful to health? Prog Lipid Res. 2017, 68, 119-137; b) Lemke, R. A. S.; Peterson, A. C.; Ziegelhoffer, E.C.; Westphall, M. S.; Tjellstrom, H.; Coon, J. J.; Donohue, T. J.; Synthesis and scavenging role of furan fatty acids Proc. Natl. Acad. Sci. 2014, 111, 3450-3457; c) Spiteller, G.; Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids, 2005, 40, 755-771.
2. a) Craig, R. A.; Stoltz, B. M.; Polycyclic Furanobutenolide-derived cembranoid and norcembranoid natural products: biosynthetic connections and synthetic efforts. Chem. Rev. 2017, 117, 7878-7909. b) Rodriguez, A. D.; Shi, J. G. and Huang, S. D.; Pinnatins A-E: marine diterpenes of the rare gersolane class derived from a photochemically induced rearrangement of a conjugated 2,5-bridged furanocembrane precursor. J. Org. Chem. 1998, 63, 4425-4432.
3. a) Mellbye, F. B.; Jeppesen, P. B.; Shokouh, P.; Laustsen, C.; Hermansen, K. and Gregersen, S.; Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J. Nat. Prod. 2017, 80, 2353-2359. b) Mellbye, F. B.; Jeppesen, P. B.; Hermansen, K. and Gregersen, S.; Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J. Nat. Prod. 2015, 78, 2447-2451.
4. Ji, Y.; Xin, Z.; He, H. and Gao, S.; Total synthesis of viridin and viridiol; J. Am. Chem. Soc. 2019, 141, 16208-16212. b) Del Bel, M.; Abela, A. R.; Ng, J. D. and Guerrero, C. A.; Enantioselective chemical syntheses of the furanosteroids
(-)-viridin and (-)-viridiol; J. Am. Chem. Soc. 2017, 139, 6819-6822. c) Guo, Y.; Quan, T.; Lu, Y. and Luo, T.; Enantioselective total synthesis of (+)wortmannin; J. Am. Chem. Soc. 2017, 139, 6815-6818.
5. a) Disadee, W.; Mahidol, C.; Sahakitpichan, P.; Sitthimonchai, S.; Ruchirawat, S. and Kanchanapoom, T.; Unprecedented furan-2-carbonyl C-glycosides and phenolic diglycosides from Scleropyrum pentandrum; Phytochem. 2012, 74, 115-122. b) Sahakitpichan, P.; Disadee, W.; Buntawong, R.; Chimnoi, N.; Ruchirawat, S. and Kanchanapoom, T.; A furan-2-carbonyl C-glucoside and an alkyl glucoside from the parasitic plant, Dendrophthoe pentandra; Phytochem Lett. 2017, 21, 90-93.
6. a) Fang, C.; Zhang, Q.; Zhu, Y.; Zhang, L.; Zhang, W.; Ma, L.; Zhang, H. and Zhang, C.; Proximicins F and G and Diproximicin A: Aminofurans from the Marine-Derived Verrucosispora sp. SCSIO 40062 by Overexpression of PPtase Genes; J. Nat. Prod. 2020, 83, 1152-1156. b) El Maddah, F.; Kehraus, S.; Nazir, M.; Almeida, C. and König, G. M.; Insights into the Biosynthetic Origin of 3-(3-Furyl)alanine in Stachylidium sp. 293 K04 Tetrapeptides; J. Nat. Prod. 2016, 79, 2838-2845.
7. a) Xu, X.; Piggott, A. M.; Yin, L.; Capon, R. J. and Song, F.; Symphyocladins AG: Bromophenol adducts from a Chinese marine red alga, Symphyocladia latiuscula; Tetrahedron Lett. 2012, 53, 2103-2106. b) Ahn, J.; Chae, H.S.; Chin, Y.W.; Kim; J.; Furylhydroquinones and miscellaneous compounds from the roots of Lithospermum erythrorhizon and their anti-inflammatory effect in HaCaT cells J. Nat. Prod. Res. 2019, 33, 1691-1698.
8. Yamashita, S.; Naruko, A.; Nakazawa, Y.; Zhao, L.; Hayashi, Y. and Hirama, M.; Total synthesis of limonin; Angew Chem Int Ed. 2015, 54, 8538-8541.
9. Zheng, X.; Zheng, X.; Zhang, C.; Zhang, Q.; Jiang, Y. and Tu, P.; Cytotoxic polyacetylenes isolated from the roots and rhizomes of Notopterygium incisum, Chin. Chem. Lett. 2019, 30, 428-430.
10. Clark, B. R.; Capon, R. J.; Lacey, E.; Tennant, S. and Gill, J. H.; Polyenylpyrroles and Polyenylfurans from an Australian Isolate of the Soil Ascomycete Gymnoascus reessii; Org. Lett. 2006, 8, 701-704. b) Coleman, R. S. and Walczak, M. C.; Total synthesis of gymnoconjugatins A and B; J. Org. Chem. 2006, 71, 9841-9844.
11. Banerjee, R.; Kumar, H. K. S. and Banerjee, M.; Medicinal significance of furan derivatives: a review. Int. J. Res. Phytochem. Pharmacol. 2015, 5, 48-57.
12. Lai, S.; Shizuri, Y.; Yamamura, S.; Kawai, K.; Terada, Y. and Furukawa, H.; Novel curvularin-type metabolites of a hybrid strain ME 0005 derived from Penicillium citreo-viride B. IFO 6200 and 4692. Tetrahedron lett., 1989, 30, 2241-2244.
13. Kobayashi, J.; Watanabe, D.; Kawasaki, N.; and Tsuda, M.; Nakadomarin A, a Novel Hexacyclic Manzamine-Related Alkaloid from Amphimedon Sponge J. Org. Chem. 1997, 62, 9236.
14. Patil, A. D.; Freyer, A. J.; Killmer, L.; Offen, P.; Carte, B.; Jurewicz, A. J. and Johnson, R. K.; Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeletons from the sponge Dysidea frondosa: Inhibitors of interleukin-8 receptors. Tetrahedron, 1997, 53, 5047-5060.
15. Jadulco, R.; Proksch, P.; Wray, V.; Sudarsono, Berg, A.; and Gräfe, U.; New Macrolides and Furan Carboxylic Acid Derivative from the Sponge-Derived Fungus Cladosporium herbarum. J. Nat. Prod., 2001, 64, 527-530.
16. Valdivia, C.; Kettering, M.; Anke, H.; Thines, E. and Sterner, O.; Diterpenoids from Coprinus heptemerus. Tetrahedron, 2005, 61, 9527-9532.
17. Kanokmedhakul, S.; Kanokmedhakul, K.; Kantikeaw, I. and Phonkerd, N.; 2substituted furans from the roots of Polyalthia evecta. J. Nat. Prod., 2006, 69, 68-72.
18. Lee, Y.K.; Woo, M.H.; Kim, C.H.; Kim, Y.; Lee, S.H.; Jeong, B.S.; Chang, H.W. and Son, J.K.; Two new benzofurans from Gastrodia elata and their DNA topoisomerases I and II inhibitory activities. Planta Med., 2007, 73, 12871291.
19. Elbandy, M.; Shinde, P. B.; Dang, H. T.; Hong, J.; Bae, K. S.; and Jung, J. H.; Furan metabolites from the sponge-derived yeast Pichia membranifaciens. J. Nat. Prod., 2008, 71(5), 869-872.
20. Ding, L.J.; Gu, B.B.; Jiao, W.H.; Yuan, W.; Li, Y.X.; Tang, W.Z.; Yu, H.B.; Liao, X.J.; Han, B.N.; Li, Z.Y. and Xu, S.H.; New furan and cyclopentenone derivatives from the sponge-associated fungus Hypocrea koningii PF04. Mar. Drugs, 2015, 13, 5579-5592.
21. Wu, X., Pang, X.J., Xu, L.L., Zhao, T., Long, X.Y., Zhang, Q.Y., Qin, H.L., Yang, D.F. and Yang, X.L.; Two new alkylated furan derivatives with antifungal and antibacterial activities from the plant endophytic fungus Emericella sp. XL029. Nat. Prod. Res., 2018, 32, 2625-2631.
22. Lee, Y. J.; Kim, S. H.; Choi, H.; Lee, H. S.; Lee, J. S.; Shin, H. J. annd Lee, J.; Cytotoxic Furan-and Pyrrole-Containing Scalarane Sesterterpenoids Isolated from the Sponge Scalarispongia sp. Molecules, 2019, 24, 840.
23. a) Yoshizaki, F.; Hisamichi, S.; Kondo, Y.; Sato, Y. and Nozoe, S.; Studies on shikon. III. New furylhydroquinone derivatives, shikonofurans A, B, C, D and E, from Lithospermum erythrorhizon sieb. et zucc. Chemical and Pharmaceutical Bulletin, 1982, 30(12), 4407-4411. b) Tang, W. and Eisenbrand, G.; Lithospermum erythrorhizon Sieb. et Zucc. In Chinese Drugs of Plant Origin 1992, 613-619. Springer, Berlin, Heidelberg. c) Yazaki, K; Fukui, H and Tabata, M ; Isolation of intermediates and related metabolites of shikonin biosynthesis from lithospermum erythrorhizon cell cultures Chem. Pharma. Bull. 1986, 34 (5), 2290-2293 d) Papageorgiou, V. P.; Assimopoulou, A. N.; Elias A. Couladouros, E. A.; Hepworth, D. and Nicolaou, K.C.; The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products Angew. Chem. Int. Ed. 1999, 38, 270-300. e) Liao, M.; Li, A.; Chen, C.; Ouyang, H.; Zhang, Y.; Xu, Y.; Feng, Y. and Jiang H.; Systematic identification of shikonins and shikonofurans in medicinal Zicao species using ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry combined with a data mining strategy. J. Chromatogr. A 2015, 1425, 158-172.
24. Ahn, J.; Chae, H. S.; Chin, Y. W. and Kim, J.; Furylhydroquinones and miscellaneous compounds from the roots of Lithospermum erythrorhizon and their anti-inflammatory effect in HaCaT cells. Natural product research, 2019, 33(12), 1691-1698.
25. Kim, J. Y.; Jeong, H. J.; Park, J. Y.; Kim, Y. M.; Park, S. J.; Cho, J. K.; Park, K.H.; Ryu, Y.B. and Lee, W. S.; Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases. Bioorg. Med. Chem., 2012, 20(5), 1740-1748.
26. Wakabayashi, Y.; Fukuda, Y.; Shiragami, H.; Utimoto, K. and Nozaki, H. Preparation of furans from alkynols utilizing palladium catalyzed intramolecular addition of alcohol to acetylene as a key reaction. Tetrahedron, 1985, 41, 3655-3661.
27. Jung, J. H.; Lee, J. W. and Oh, D. Y.; A facile synthesis of 2, 4-disubstituted furans from β-hydroxy sulfones. Tetrahedron lett., 1995, 36, 923-926.
28. Katritzky, A. R.; Hür, D.; Kirichenko, K.; Ji, Y. and Steel, P. J.; Synthesis of 2, 4disubstituted furans and 4, 6-diaryl-substituted 2, 3-benzo-1, 3a, 6atriazapentalenes. Arkivoc, 2004, 2, 109-121.
29. Ma, S.; Lu, L. and Zhang, J. Catalytic regioselectivity control in ring-opening cycloisomerization of methylene-or alkylidenecyclopropyl ketones. J. Am. Chem. Soc., 2004, 126, 9645-9660.
30. Hashmi, A. S. K.; Häffner, T.; Rudolph, M. and Rominger, F.; Cyclization of 2-Alkynylallyl Alcohols to Highly Substituted Furans by Gold (I)-Carbene Complexes. Eur. J. Org. Chem. 2011, 667-671.
31. Haines, N. R.; VanZanten, A. N.; Cuneo, A. A.; Miller, J. R.; Andrews, W. J.; Carlson, D. A.; Harrington, R.M.; Kiefer, A.M.; Mason, J.D.; Pigza, J.A. and Murphree, S. S.; A sulfone-based strategy for the preparation of 2, 4disubstituted furan derivatives. J. Org. Chem., 2011, 76, 8131-8137.
32. Kramer, S. and Skrydstrup, T.; Gold-Catalyzed Carbene Transfer to Alkynes: Access to 2, 4-Disubstituted Furans. Angew. Chem. Int. Ed., 2012, 51, 46814684.
33. Li, E.; Yao, W.; Xie, X.; Wang, C.; Shao, Y. and Li, Y.; Gold-catalyzed efficient synthesis of 2, 4-disubstituted furans from aryloxy-enynes. Org. Biomol. Chem., 2012, 10, 2960-2965.
34. White, A. R.; Kozlowski, R. A.; Tsai, S. C. and Vanderwal, C. D.; "A Direct Synthesis of Highly Substituted π-Rich Aromatic Heterocycles from Oxetanes." Angew. Chem. Int. Ed., 2017, 56, 10525-10529.
35. Ni, C.; Zhao, Y. and Yang, J.; Brønsted Acid Ionic Liquid-Catalyzed Ring Opening of 3, 3-Disubstituted Oxetanes in Water: Efficient Access to Furans and Benzofurans. ACS Sustainable Chem. Eng, 2020, 8, 12741-12745.
36. Chen, V. Y. and Kwon, O.; Unified Approach to Furan Natural Products via Phosphine-Palladium Catalysis. Angew. Chem., 2021, 133, 8956-8963.
37. Kotha, S.; Shah, V. R. and Mandal, K.; Formation of Arenes via Diallylarenes: Strategic Utilization of Suzuki-Miyaura Cross-Coupling, Claisen Rearrangement and Ring-Closing Metathesis. Adv. Synth. Catal., 2007, 349(7), 1159-1172.
38. Zhang, Y. L.; Zhao, Z. N.; Li, W. L.; Li, J. J.; Kalita, S. J.; Schneider, U. and Huang, Y. Y.; Catalytic asymmetric aldehyde prenylation and application in the total synthesis of (-)-rosiridol and (-)-bifurcadiol. Chem. Comm, 2020, 56(69), 10030-10033.
39. Yonova, I. M.; Johnson, A. G.; Osborne, C. A.; Moore, C. E.; Morrissette, N. S. and Jarvo, E. R.; Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents and Identification of Selective Anti-Breast-Cancer Agents. Angew. Chem. Int. Ed., 2014, 53(9), 2422-2427.
40. Vutukuri, D. R.; Bharathi, P.; Yu, Z.; Rajasekaran, K.; Tran, M. H. and Thayumanavan, S.; A mild deprotection strategy for allyl-protecting groups and its implications in sequence specific dendrimer synthesis. J. Org.Chem, 2003, 68(3), 1146-1149.
41. Mart, A. and Shashidhar, M. S.; Elaboration of the ether cleaving ability and selectivity of the classical Pearlman's catalyst $\left[\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\right]$: concise synthesis of a precursor for a myo-inositol pyrophosphate. Tetrahedron, 2012, 68(47), 9769-9776.
42. Déziel, R.; Deprotection of allylic esters and ethers, US4788282A
43. Beugelmans, R.; Bourdet, S.; Bigot, A. and Zhu, J.; Reductive deprotection of aryl allyl ethers with $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)}$ 4/ NaBH_{4}. Tetrahedron lett. 1994, 35(25), 4349-4350.
44. Raja Ram, S.; Purushothama Chary, K.; Salahuddin, S. and Iyengar, D. S.; A mild chemoselective and rapid regeneration of alcohols from 0-allyl ethers by LiCl/NaBH4. Synth. Commun. 2002, 32(1), 133-137.
45. Bartoli, G.; Cupone, G.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Marcantoni, E. and Procopio, A.; Cerium-mediated deprotection of substituted allyl ethers. Synlett, 2001, (12), 1897-1900.
46. Chouhan, M.; Kumar, K.; Sharma, R., Grover, V. and Nair, V. A.; NiCl 2 . $6 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaBH}_{4}$ in methanol: a mild and efficient strategy for chemoselective
deallylation/debenzylation of aryl ethers. Tetrahedron Lett, 2013, 54(34), 4540-4543.

Chapter-2, Section-B: Present work

2.2.1. Hypothesis

Inspired by the interesting biological profile and structural features of shikonofurans J, D, E, and C (41-44) and our curiosity in stereoselective total synthesis of furan-containing biologically potent natural products, we embarked on the development of efficient and practical stereoselective synthetic routes for these natural products. As discussed in the previous section of this Chapter 2, we have chosen the known construction strategy of 2,4-disubstituted furan moiety 72 (used as a key intermediate for the total synthesis of shikonofurans) from acyl-tethered 3hydroxy oxetane building blocks $\mathbf{7 1}$ using Lewis- or Brønsted acid catalysis. As described in the below synthetic strategy (Scheme 2.12), this method proceeds through the initial activation of the strained oxetane ring with the aid of Lewis- or Brønsted acid, which triggers the intramolecular carbonyl (nucleophile-mediated) ring-closure (5-membered), and ring-opening (4-membered) sequence, and generates cyclic oxacarbenium. Subsequent dehydrative aromatization results in hydroxymethylated-furan intermediate 72. This hydroxy-methylated furan $\mathbf{7 2}$ can be used as a key and divergent building block for the construction of all shikonofurans in a maximum number of 7 steps (Scheme 2.12).

Scheme 2.12 | Concept of polysubstitutedfuran formation from Lewis- or Brønstedcatalyzed dehydrative cycloisomerization of α-hydroxy oxetane-tethered ketones.

2.2.2. Result and discussions

To realize our projected hypothesis, we synthesized a known α-hydroxy oxetane-tethered ketone 71a building block. We performed the reaction using previously reported $\mathrm{Sc}\left(\mathrm{OTf}_{3}\right.$ ($10 \mathrm{~mol} \%$) as a catalyst in EtOH, which delivered the
product 72a in 88% yield in 15 minutes (entry a, Scheme 2.13). Next, we tested the reaction profile using ionic liquid BAIL-4 in water, this reaction was very sluggish and gave the hydroxymethylated product 72a in 78\% in 6 h (entry b. Scheme 2.13).

Taking into consideration of drawbacks of these strategies, like expensive Scandium catalysis, tedious work-up procedures using BAIL-4 in water, and longer reaction times, we aimed at developing a facile and rapid methodology to construct 2,4-disubstituted furans using acyl-oxetane as a building block utilizing cost-effective and efficient catalytic systems and its subsequent application in enantioselective total synthesis of shikonofurans (Scheme 2.13).

Scheme 2.13 | Initial synthesis of the 2,4-disubstituted furan 72a using known protocols.

Inspired by the suitable catalytic property of $\mathrm{Sc}(\mathrm{OTf})_{3}$ for this transformation (however limited to a single example) and our group's continuing interest in bismuth catalysis, we intended to verify the catalytic profile of $\mathrm{Bi}(\mathrm{OTf})_{3}$ in this reaction. To our delight, the expected 2,4-disubstituted furan 72a was isolated in an excellent yield (99\%) from 71a within five minutes using $10 \mathrm{~mol} \%$ of $\mathrm{Bi}(\mathrm{OTf})_{3}$ in dichloromethane at room temperature. The structure of 72a was unambiguously determined by proton, carbon NMR, and mass spectrometry (Scheme 2.14).

Scheme 2.14 | Initial synthesis of 2,4-disubstituted furan 72a using bismuth triflate.

2.2.3. Further optimization of reaction conditions

We further explored the feasibility of this transformation using other Lewis acid and Brønsted acid catalysts. Considering the wide range of organic small molecules solubility in dichloromethane (DCM), dichloroethane (DCE), and methanol, all shortlisted catalysts were screened using these solvents. Since excellent results were obtained using $\mathrm{Bi}(\mathrm{OTf})_{3}$, tested the reaction using other bismuth salts BiCl_{3}, $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in DCE, which delivered the desired product in good yields albeit in a little longer reaction time of 2 h . The reaction using the AgOTf catalyst was very slow, giving the product a 44% yield even after 6 h . Next, tested the efficiency of iron salts [$\left.\mathrm{Fe}(\mathrm{OTf})_{3}, \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\right]$ as catalysts, which was found to be moderately active toward this transformation, whereas, $\mathrm{Ni}\left(\mathrm{OTf}_{2}\right)_{2}$ was unable to promote the reaction. $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ delivered the product in 75% yield after 6 h . Then screened the reaction using Brønsted acid catalysts p-TSA, TFA, and TfOH in DCE, all of them were found to facilitating the reaction, TfOH delivered the product in excellent yield of 91% in 5 min with little decomposition.

Next, we screened same set of Lewis acid catalysts using polar and proteic solvent MeOH , in which reactions found to be faster compared to DCE, still, little decomposition was observed on TLC, which led to moderately compromising yields. Similarly, Brønsted acid catalysts pTSA, TFA, and TfOH in MeOH delivered the desired product 72a in moderate to good yields.

TfOH is a usual contaminant associated with triflate-based Lewis acid catalysts and is solely responsible for the catalytic activity in some instances (Entry 19 vs 23), and is known to be responsible for side reactions owing to its (TfOH) high acidity. Due to the rapid reaction (within $\sim 1 \mathrm{~min}$), clean reaction profile, and excellent isolated yields using $\operatorname{Bi}\left(\mathrm{OTf}_{3}\right.$ as the catalyst, we strongly believe in the role of bismuth in this transformation, and owing to its great natural abundance, and nontoxic nature, we have chosen $\mathrm{Bi}(\mathrm{OTf})_{3}$ as a reliable catalytic system for this work instead of closely potent TfOH and other Lewis acids.

Table 2.2 | Optimization of reaction conditions ${ }^{a, b}$

Chapter-2: Enantioselective Total Synthesis of Furylhydroquinone-Derived Natural Products: Shikonofuran J, D, E and C

Entry	Catalyst	Solvent	Time	Yield ${ }^{b}$
A	Screening of Lewis acids catalysts in DCE			
1)	$\mathrm{Bi}(\mathrm{OTf})_{3}$	DCE	5 min	95
2)	BiCl_{3}	DCE	2 h	93
3)	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$	DCE	2 h	87
4)	AgOTf	DCE	6 h	44
5)	$\mathrm{Fe}(\mathrm{OTf})_{3}$	DCE	6 h	80
6)	$\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$	DCE	8 h	45
7)	$\mathrm{FeSO}_{4 .} 7 \mathrm{H}_{2} \mathrm{O}$	DCE	1 h	77
8)	$\mathrm{Ni}(\mathrm{OTf})_{2}$	DCE	24 h	N.R ${ }^{\text {c }}$
9)	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	DCE	6 h	75
B	Screening of Brønsted acid catalysts in DCE			
10)	p-TSA	DCE	40 mins	91
11)	TFA	DCE	6 h	88
12)	TfOH	DCE	5 min	91
C	Screening of Lewis acids catalysts in MeOH			
13)	$\mathrm{Bi}(\mathrm{OTf})_{3}$	MeOH	5 min	95
14)	BiCl_{3}	MeOH	30 mins	90
15)	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$	MeOH	3 h	85
16)	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	MeOH	1 h	71
17)	$\mathrm{Fe}(\mathrm{OTf})_{3}$	MeOH	15 mins	89
18)	$\mathrm{Fe}(\mathrm{OTf})_{2}$	MeOH	16 h	41
19)	$\mathrm{FeSO}_{4.7} 7 \mathrm{H}_{2} \mathrm{O}$	MeOH	3 h	73
20)	$\mathrm{Ni}(\mathrm{OTf})_{2}$	MeOH	24 h	N.R ${ }^{\text {c }}$
21)	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	MeOH	1 h	71
D	Screening of Brønsted acid catalysts in MeOH			
22)	p-TSA	MeOH	40 mins	86
23)	TFA	MeOH	12 h	75
24)	TfOH	MeOH	15 min	93

${ }^{a}$ Reaction conditions unless otherwise specified: 71a (0.5 mmol) and catalyst (10 $\mathrm{mol} \%$) solvent (0.5 mL) at room temperature (RT). ${ }^{b}$ Isolated yields of 72a. ${ }^{c} \mathrm{~N} . \mathrm{R}=\mathrm{No}$ Reaction. $\mathrm{Tf}=$ triflate $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)$.

In subsequent optimization studies, the compatibility of various solvents, THF, DMSO, DMF, toluene, and diethyl ether, delightfully was investigated, in which many solvents were found to be reliable for this transformation except DMF \& DMSO. However, a very clean reaction profile and isolated yields were observed using DCM (Table 2.2.1). Next, altered the mol \% (loading) of $\mathrm{Bi}(\mathrm{OTf})_{3}$ (using optimized solvent (DCM)), where a decrease in the catalyst loading led to an increase in reaction time and a low isolated yield of the product (Table 2.2.2).

Table 2.2.1 | Solvent screening using Bi(OTf) $\mathbf{3}^{(10 \mathrm{~mol} \%)^{a, b}}$

Entry	Solvent	Time	Yield of 72a (\%)
1$)$	MeOH	5 min	95

Chapter-2: Enantioselective Total Synthesis of Furylhydroquinone-Derived Natural Products: Shikonofuran J, D, E and C

2$)$	DCE	5 min	95
3$)$	DCM	5 min	99
4$)$	THF	15 min	96
5$)$	DMSO	6 h	N.R c
6$)$	DMF	6 h	N.R c
7$)$	Toluene	5 min	93
8$)$	$\mathrm{Et}_{2} \mathrm{O}$	15 min	95

${ }^{a}$ Reaction conditions unless otherwise specified: 71a (0.5 mmol) and catalyst (10 mol\%) solvent (0.5 mL) at room temperature (RT). ${ }^{b}$ Isolated yields of 72a. ${ }^{c} \mathrm{~N} . \mathrm{R}=$ No Reaction.

Table 2.2.2 | Screening of $\operatorname{Bi}(O T f)_{3}$ loading using DCM as an optimal solvent ${ }^{a, b}$

Entry	Bi(OTf) $)_{3}$ loading	Time	Yield of 72a (\%)
1$)$	$10 \mathrm{~mol} \%$	5 min	99
2$)$	$5 \mathrm{~mol} \%$	30 min	85
3$)$	$2 \mathrm{~mol} \%$	3 h	65
4$)$	$1 \mathrm{~mol} \%$	24 h	30

${ }^{a}$ Reaction conditions unless otherwise specified: 71a (0.5 mmol) and DCM (0.5 mL) at room temperature (RT). ${ }^{b}$ Isolated yields of 72a. ${ }^{c}$ N.R = No Reaction.

2.2.4. Synthesis of α-hydroxy oxetane-tethered ketone building blocks (71):

a) From acid chlorides (92): To investigate the generality of this methodology, synthesized diverse α-hydroxy oxetane-tethered ketones 71 (substrates of this methodology) in a three-step sequence starting from acyl-halides 92. Acyl-halide 92 was treated with $\mathrm{NMe}(\mathrm{OMe}) \cdot \mathrm{HCl}$ salt in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in DCM solvent to form its Weinreb amide salt, which was in situ treated with diverse Grignard reagents to obtain their alkyl-ketone analogs 79. Next, an LDA-mediated aldol reaction of 79 with commercially available 3 -oxetanone gave desired α-hydroxy oxetane-tethered ketones 71 (Scheme 2.15).

Scheme 2.15
b) From ketones (79): Several commercially available ketones were converted into corresponding α-hydroxy oxetane-tethered ketones $\mathbf{7 1}$ through L-enolate addition to the oxetanone. Using this strategy, diverse protected acetophenones (with TIPS, TBS, TBDPS, benzyl, PMB, and allyl groups) were prepared from 4-hydroxy acetophenone and 2,5-dihydroxy acetophenones and used to obtain corresponding α-hydroxy oxetane-tethered ketones 71 (Scheme 2.16 and 2.17).

Scheme 2.16

Scheme 2.17. List of α - hydroxy oxetane-tethered ketones 71 synthesized.

2.2.5. Scope and generality of the reaction (Furan 72 synthesis):

With the optimal conditions established, the substrate scope concerning the construction of 2,4 disubstituted and 2,3,4-trisubstituted furans 72 from α-hydroxy oxetane-tethered ketones $\mathbf{7 1}$ is described in Scheme 2.18. Substrates having substituted aryl-ketone moiety (71, t-Bu, cyclopropyl substituted phenyl, and biphenyl, naphthyl and 0 Me) furnished the corresponding disubstituted furan 72a$\mathbf{7 2 g}$) in good to moderate yields (97-98\%). Substrates possessing electronwithdrawing groups ($\mathrm{OH}, \mathrm{NO}_{2}, \mathrm{~F}$ and CF_{3}) also delivered desired products ($\mathbf{7 2 h} \mathbf{- 7 2 k}$)

a) 2, 4-Disubstituted hydroxymethyl furans

b) 2, 3, 4-Trisubstituted hydroxymethyl furans

Scheme 2.18. Synthesis of 2,4-disubstituted and 2,3,4-trisubstituted furans
in good yields of $83 \%, 89 \%, 98 \%$ and 94% respectively. Styrene-derived substrate was also found to be a suitable substrate for this reaction and delivered corresponding furan 72 l in a good yield of 62% (entry 12, Scheme 2.18).

Next, the compatibility of aryl ketone-derived substrates having diverse protecting groups (-OTIPS, -OTBS, -OBn, -OPMB, -OTBDPS, -OAllyl and -OMe) were tested, delightfully, all delivered respective furans ($\mathbf{7 2 m} \mathbf{m 2 t}$) in good to excellent yields. diverse protecting groups were found to be compatible under these optimized conditions (entry 13-20, Scheme 2.18).

To our delight, substrates consisting of heteroaryl-ketone (thiophene, N methyl pyrrole, and furan-derived) gave corresponding bis-heterocycles 72u-72w in very good yields (entry 21-23, Scheme 2.18).

Then, we focused on the preparation of 2,3,4-trisubstituted furans 72 under optimal reaction conditions. To our delight, all these reactions delivered products containing C2-alkyl, aryl, and heteroaryl \& C3-H, aryl substituents (72x-72ac) in good to excellent yields (74-98\%) in shorter reaction time (1-5 min) (entry 24-29, Scheme 2.18).

In conclusion, we have established a rapid, efficient, and operationally simple synthetic strategy for the construction of hydroxymethyl-tethered di- or trisubstituted furans using environmentally benign and cost-effective $\operatorname{Bi}(O T f)_{3}$ as a catalytic system. The generality of this method was showcased through the construction of diverse furans containing, alkyl, cycloalkyl, aryl, and heteroaryl substituents. Moreover, diverse acid-sensitive protecting groups were found to be extremely stable under optimized reaction conditions. As we hypothesized, this methodology was effectively employed in the total synthesis of bioactive natural products, shikonofurans (vide infra).

2.2.6. Retrosynthetic analysis of shikonofurans (41-44)

After the successful establishment of the general synthetic strategy for the construction of hydroxymethyl-tethered furans, we turned our interest toward the stereoselective total synthesis shikonofurans J, D, E, and C (41-44, with varying oxygen-substituents of ether/ester groups) based on the retrosynthetic analyses described in Scheme 2.19. Shikonofurans could be accessed from substituted arene
containing hydroxyalkyl furan $\mathbf{7 8}$ via methylation (for shikonofuran J) or esterification (for shikonofuran C-E) using suitable carboxylic acids followed by deprotection steps. Intermediate $\mathbf{7 8}$ could be obtained from 2,4-disubstituted furan 72r through initial oxidation to give the corresponding aldehyde followed by TRIPcatalyzed asymmetric prenylation. This key intermediate 72r (hydroxymethyltethered furan) synthesized as part of our investigation in the previous section (Bi(III)-catalyzed dehydrative-cycloisomerization of α-hydroxy oxetane-tethered ketone 71r) (Scheme 2.19).

Scheme 2.19 \mid Common retrosynthetic analysis of shikonofurans 41-44.

2.2.6.1. Synthesis and absolute configuration of shikonofuran J (41):

Our studies started with enantioselective total synthesis of the reported structure of shikonofuran J (41), starting from commercially available 2,5-dihydroxy acetophenone (76). Allyl protection ${ }^{37}$ of 76 using allyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave 79r, and subsequent LDA-mediated aldol reaction with 3-oxetanone (77) gave the requisite aldol product $\mathbf{7 1 r}$ in 90% yield. Next, the oxetane intermediate 71r was subjected to our in-house developed methodology of $\operatorname{Bi}(O T f)_{3}$-catalyzed dehydrative cycloisomerization reaction, which cleanly furnished the desired hydroxy-methylated furan $\mathbf{7 2 r}$ in 95% yield in 5 min . Then, $\mathbf{7 2 r}$ was oxidized to aldehyde $\mathbf{8 0}$ using Dess-Martin periodinane (DMP), ${ }^{35}$ and subsequently subjected to asymmetric prenylation reaction using chiral phosphoric acid ${ }^{38}$ [(S)-TRIP] and prenyl-pinacol-boronate 83 to get the anticipated chiral alcohol 78, which was used
as a common intermediate for all shikonofurans. Then methylation ${ }^{39}$ of alcohol 78 using NaH and MeI to give 84. Ultimately, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed allyl deprotection ${ }^{40}$ of both allyl groups of 84 delivered shikonofuran J (41) in 72\% yield (entry a, Scheme 2.20).
a) Synthesis of shikonofuran J (41)

b) Synthesis of ent-shikonofuran J (41a)

Scheme 2.20| Total synthesis of shikonofuran J (41) and its enantiomer 41a.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of synthesized shikonofuran J (41) was in complete agreement with that of the reported data (isolated natural product 41). To our surprise, the optical rotation value of $41\left[[\alpha]^{26.6}{ }_{\mathrm{D}}=+7.07(c=0.5, \mathrm{MeOH})\right.$, this work]
was found to be opposite to the reported value of natural shikonofuran J (41) [$[\alpha]^{12} \mathrm{D}$ $=-11.3(c=0.3, \mathrm{MeOH})]$.

Hence, utilizing a similar strategy that was used for the synthesis of (+)shikonofuran J (41), we have obtained its enantiomer (ent-shikonofuran J; 41a) using [(R)-TRIP] ligand in the conversion of common intermediate $\mathbf{8 0}$ into its prenylated product 78a, and its subsequent methylation and allyl deprotection steps.

Surprisingly, the optical rotation data of 41a $\left[[\alpha]_{D^{27.13}}=-7.63(c=0.5, \mathrm{MeOH})\right]$ was found to be very close to the reported data (entry b, Scheme 2.20). To further verify the authenticity of the reported optical rotation data and absolute stereochemistry of shikonofuran J [(S)-41], we further carried out ECD analyses of $[(S)-41]$ and $(\boldsymbol{R})-41$ a and compared them with the reported ECD data. Where $(S)-(+)-$ shikonofuran J ([(S)-41], this work) showed a negative Cotton effect (CE; CD, 4.3 x $10-4 \mathrm{M}, \mathrm{MeOH})$ and a positive Cotton effect at $\lambda \max 213 \mathrm{~nm}(\Delta \varepsilon=+0.187)$, which was in agreement with the data reported for (S)-isomer) of shikonofuran J (41, isolated), while the (\boldsymbol{R})-41a showed opposite ECD data compared to 41 (CD, $4.3 \times 10-$ $4 \mathrm{M}, \mathrm{MeOH}, \lambda \max (\Delta \varepsilon) 283(-0.018), 245(+0.026)$ and $213(-0.312) \mathrm{nm})$ (Figure 2.4). These investigations established the absolute stereochemistry of shikonofuran J as (S)-(+)-shikonofuram J (41) (Figure 2.4).

Figure 2.4: | ECD spectra of Shikonofuran J [(S)-41] and ent-Shikonofuran J [(R)41a].

2.2.6.2. Synthesis and absolute configuration of shikonofuran D (42):

After the successful synthesis and establishing the absolute configuration of shikonofuran J (41), we embarked on the total synthesis of shikonofurans D, E, and C,
and their antipodes utilizing common intermediates 78 and 78a. Thus, the hydroxyalkyl furan intermediate 78 (possessing the desired stereochemistry of natural products; reported data) was treated with isobutyryl chloride 85 in the presence of $E t_{3} \mathrm{~N}$, and DMAP to afford the corresponding ester 86 in 86\% yield.

Table 2.3. Optimization of reaction conditions for allyl deprotection

Entry	Conditions	(\pm)-78		88	89	$\begin{aligned} & (\pm) \\ & -42 \end{aligned}$	$\begin{aligned} & \text { SM } \\ & (\pm)-(86) \end{aligned}$
1.	$\begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \\ & \text { reflux }, 15 \mathrm{~min} \end{aligned}$	-	-	-	90\%	-	
2.	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}),$ $\mathrm{MeOH}, \mathrm{rt}, 3 \mathrm{~h}$	60\%	-	40\%	-	-	-
3.	$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, pyrrolidine (1 eq), DCE, rt, 5 h	5\%	20\%	-	-	-	75\%
4.	$\begin{aligned} & \mathrm{BiCl}_{3}(1 \mathrm{eq})+\mathrm{NaBH}_{4}(1 \mathrm{eq}), \mathrm{THF}, \\ & 0{ }^{\circ} \mathrm{C} \text { to rt, } 2 \mathrm{~h} \end{aligned}$	10\%	-	-	-	-	90\%
5.	$\begin{aligned} & \left.\mathrm{CeCl}_{3.7 \mathrm{H}_{2} \mathrm{O}}^{\mathrm{O}} \mathrm{l} .5 \mathrm{eq}\right) \text {, } \mathrm{NaI}(1.5 \mathrm{eq}), \mathrm{MeCN} \\ & \mathrm{rt}, 24 \mathrm{~h} \end{aligned}$	-	5\%	-	-	-	95\%
6.	$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{~mol} \%), \mathrm{NaBH}_{4}(1.5 \mathrm{eq})$, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}$	20\%	20\%	-	-	-	60\%
7.	$\mathrm{LiCl}(1 \mathrm{eq}), \mathrm{NaBH}_{4}(1 \mathrm{eq}), \mathrm{THF}$, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}$	50\%	10\%	10\%	-	-	trace
8.	$\begin{aligned} & \begin{array}{l} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}), \\ \text { dioxane, } \mathrm{rt}, 48 \mathrm{~h} \end{array} \\ & \hline \end{aligned}$	-	-	-	-	-	100\%
9.	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (3 eq), $\mathrm{NaBH}_{4}(5 \mathrm{eq})$, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 10 \mathrm{~min}$	10\%	10\%	-	-	40\%	-
10.	$\begin{aligned} & \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10 \mathrm{~mol} \%), \mathrm{Pd} / \mathrm{C}(10 \\ & \mathrm{mol} \%), \text { iPrOH, } 80^{\circ} \mathrm{C}, 12 \mathrm{~h} \end{aligned}$	50\%	10\%	-	-	-	40\%
11.	$\begin{aligned} & \mathrm{Cs}_{2} \mathrm{CO}_{3}(1 \mathrm{eq}), \mathrm{Pd}^{2}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \\ & \text { THF, rt, } 48 \mathrm{~h} \end{aligned}$	-	-	-	-	-	100\%

Then our next target was to deprotect the allyl groups in 86 employing wellestablished reaction conditions of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$ at various temperatures, unfortunately, all attempts in this line were proved to be unsuccessful (Scheme 2.22). Hence, synthesized racemic-86, and optimized reaction conditions for the allyl deprotection as described in Table 2.23. Reactions using $\operatorname{Pd}(\mathrm{PPh} 3) 4 / \mathrm{Pd}(\mathrm{OH}) 2^{41}$ and diverse bases ${ }^{42}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}-\mathrm{NaBH}_{4}{ }^{43}$, $\mathrm{LiCl}-\mathrm{NaBH}_{4}{ }^{44}$, and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaI}^{45}$, led to the ester hydrolysis and non-selective deprotected products. After extensive experimentation, $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (3 eq), $\mathrm{NaBH}_{4}(5 \mathrm{eq}), \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt conditions ${ }^{46}$ were found to be fruitful by providing the desired shikonofuran D (rac-42, in a moderate yield of 44%, along with a few unidentified and inseparable products (Table 2.3).

Scheme 2.21 |Efforts towards the total synthesis of shikonofuran D (42) and its enantiomer 42a.

Employing these optimal reaction conditions for allyl deprotection, shikonofuran D (42, reported structure) was obtained form 86. Similarly, common intermediate 78a (an enantiomer of 78, that was used in the synthesis of entshikonofuran J) was converted into ent-shikonofuran D (42a) in two steps (Scheme 2.21).

Surprisingly, the optical rotation data of 42a $\left[[\alpha]_{D^{26.54}}=+26.19(c=1.3\right.$, $\left.\left.\mathrm{CHCl}_{3}\right)\right]$ was found to be very close to the reported data which is $\left[[\alpha]_{\mathrm{D}^{20}}=+56(\mathrm{c}=0.1\right.$, CHCl_{3}) (Scheme 2.21). To further verify the authenticity of the reported optical
rotation data and absolute stereochemistry of shikonofuran $\mathrm{D}[(\boldsymbol{S}) \mathbf{- 4 2}]$, we further carried out ECD analyses of $[(S)-42]$ and (R)-42a, where (S)-(+)-shikonofuran D ([(S)-42], this work) showed a negative Cotton effect (CE; CD, $4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}$) at $\lambda \max 322 \mathrm{~nm}(\Delta \varepsilon=-1.10), 274 \mathrm{~nm}(-1.29)$ and $204 \mathrm{~nm}(-3.23)$ while the $\boldsymbol{(R)} \mathbf{R} \mathbf{- 4 2 a}$ showed opposite ECD data compared to 42 (CD, $4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}$, $\lambda \max (\Delta \varepsilon) 323$ $\mathrm{nm}(+1.39), 267 \mathrm{~nm}(+6.00)$ and $207 \mathrm{~nm}(+2.50)$ (Figure 2.5).

Figure 2.5. |ECD spectra of Shikonofuran D [(S)-42] and ent-Shikonofuran D [(R)42a].

2.2.6.3. Synthesis and absolute configuration of shikonofuran E (43):

To synthesize the reported structure of shikonofuran E (43), the alcohol 78 was subjected to esterification using commercially available 3-methylbut-2-enoic acid (90) under DCC and DMAP conditions to get the corresponding ester 91, which served as a common precursor for both the natural products shikonofuran E and C. Subsequent phenolic allyl deprotection using $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4} in MeOH at -60 ${ }^{\circ} \mathrm{C}$ delivered shikonofuran E (43, reported structure) in 57% yield. Similarly, common intermediate 78a (an enantiomer of 78, that was used in the synthesis of ent-shikonofuran J) was converted into ent-shikonofuran E (43a) in two steps of esterification and allyl deprotection. (Scheme 2.22).

Scheme 2.22 | Enantioselective total synthesis of shikonofuran E (43), and its enantiomers (43a).

The optical rotation data of $[(\boldsymbol{S}) \mathbf{- 4 3}]\left[[\alpha]_{D^{30.49}}=-62.40\left(c=0.1, \mathrm{CHCl}_{3}\right)\right]$ was found to be very close to the reported data which is $\left[[\alpha]^{20}=-69\left(c=0.5, \mathrm{CHCl}_{3}\right)\right.$ (Scheme 2.2). To further verify the authenticity of the reported optical rotation data and absolute stereochemistry of shikonofuran E [(S)-43], we further carried out ECD analyses of $[(\boldsymbol{S})-43]$ and $(\boldsymbol{R})-43 \mathrm{a}$, where $(S)-(+)$-shikonofuran E ([(S)-43], this work) showed a negative Cotton effect (CE; CD, $4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}$) at $\lambda \max 316 \mathrm{~nm}(\Delta \varepsilon=-$

Figure 2.6. \mid ECD spectra of Shikonofuran E [(S)-43] and ent-Shikonofuran E [(R)43a].
2.56), $274 \mathrm{~nm}(-2.59), 245 \mathrm{~nm}(-1.79)$ and a positive Cotton effect at $227 \mathrm{~nm}(+0.549)$ while the (\boldsymbol{R})-43a showed opposite ECD data compared to 43 (CD, $4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}, \lambda \max (\Delta \varepsilon) 319 \mathrm{~nm}(+3.39), 270 \mathrm{~nm}(+5.69), 227 \mathrm{~nm}(+6.33)$ and 212 nm (+3.34) (Figure 2.6).

2.2.6.4. Synthesis and absolute configuration of shikonofuran C (44):

While optimizing the allyl deprotection of 91 at various temperatures using NiCl_{2} and NaBH_{4}, we observed the reduction of the butenoic ester segment at $-40^{\circ} \mathrm{C}$, which led to the formation of shikonofuran C (44). Utilizing a strategy similar to this, synthesized ent-shikonofuran C (44a) from 78a (Scheme 2.23).

Scheme 2.23 | Enantioselective total synthesis of shikonofuran C (44), and their enantiomers (44a).

Surprisingly, the optical rotation data of $44 \mathbf{a}\left[[\alpha]_{D^{27.96}}=+57.56\left(c=1.1, \mathrm{CHCl}_{3}\right)\right]$ was found to be very close to the reported data which is $\left[[\alpha]^{20}=+64\left(c=0.1, \mathrm{CHCl}_{3}\right)\right.$ (Scheme 2.23). To further verify the authenticity of the reported optical rota tion data and absolute stereochemistry of shikonofuran C [[S]-44], we further carried out ECD analyses of $[(S) \mathbf{4 4}]$ and $(\boldsymbol{R}) \mathbf{- 4 4 a}$, where $(S)-(+)$-shikonofuran C ([(S)-44], this work) showed a negative Cotton effect (CE; CD, $4.3 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}$) at $\lambda \max 321 \mathrm{~nm}$ ($\Delta \varepsilon=-1.76$), $283 \mathrm{~nm}(-1.68), 260 \mathrm{~nm}(-1.19)$ and $224 \mathrm{~nm}(-3.02)$ while the ($\boldsymbol{R})-44 \mathrm{a}$ showed opposite ECD data compared to 44 (CD, $4.3 \times 10^{-4} \mathrm{M}$, MeOH , $\lambda \max (\Delta \varepsilon) 321$ $\mathrm{nm}(0.79), 277 \mathrm{~nm}(+2.82), 269 \mathrm{~nm}(+4.07)$ and $220 \mathrm{~nm}(+2.28)$ (Figure 2.7).

Figure 2.7. \mid ECD spectra of Shikonofuran C [(S)-44] and ent-Shikonofuran C

$$
[(R)-44 a] .
$$

In addition to analytical studies like NMR (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$, MS, optical rotation, ECD, chiral-HPLC data also supported our conclusions on this work.

2.2.7. Conclusion

In conclusion, employing a novel methodology developed as part of this work, i.e, $\operatorname{Bi}(I I I)$-catalyzed dehydrative cycloisomerization of α-hydroxy oxetane-tethered ketones to access hydroxy methyl-tethered furans, we have successfully completed the first enantioselective total synthesis of furyl-hydroquinone-derived antimicrobial natural products, shikonofurans J, D, E, and C in 7 linear steps with 38.24\%, 21.4 \%, $34.20 \%, 35.70 \%$ overall yield respectively. The absolute stereochemistry of all these natural products was established on the basis of comparison of optical rotation and ECD (electric circular dichroism) analyses. Biological activity investigations of allnatural products and their enantiomers are in progress.

2.2.8. Experimental procedures and data:

General Information: All reactions were performed under an argon atmosphere with an oven $\left(80^{\circ} \mathrm{C}\right)$ or flame-dried glassware with a septum seal. Tetrahydrofuran (THF) was distilled from sodium benzo-phenone under an argon atmosphere immediately prior to use. Anhydrous toluene and dichloromethane were purchased
from commercial sources. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel. Analytical thin layer chromatography (TLC) was performed on TLC Silica gel 60 F254. Visualization was accomplished with shortwave UV light, anisaldehyde, or KMnO_{4} staining solutions, followed by heating. chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV 200, 400, and 500 in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale ($\left.\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}\right)$, the following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; td, triplet of doublet; and br, broad. HRMS data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. . ECD spectra were recorded on a JACSO J-815 CD spectrometer. Chiral HPLC separations were achieved using an Agilent 1260 Infinity series normal phase HPLC unit and HP Chemstation software with Chiralpak Diacel columns ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$). Experimental procedures for all new compounds and known compounds without published experimental procedures are described below.

1-(4-((Triisopropylsilyl)oxy)phenyl)ethan-1-one (79m). To the 4'-hydroxy
 acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry dichloromethane (10 mL) imidazole ($1.24 \mathrm{~g}, 18.3 \mathrm{mmol}$) were added, and the reaction was stirred for 10 minutes. Then TIPSCl ($1.88 \mathrm{~g}, 8.81 \mathrm{mmol})$ were added dropwise and the reaction was stirred up to starting material was completely consumed (5h). After completion of the reaction, it was quenched with water, the aqueous layer was extracted with DCM ($10 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated and the crude product was purified using silica gel column chromatography to afford the desired product 79m (1.45 g, 68\%) as a colourless liquid. (TLC: $R_{f}=0.8$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3891, 3777, 3665, 3441, 3359, 3175, 2961, 2883, 2388, 2336, 1823, 1678, 1600, 1524, 1469, 1373, 1274, 1174, 1077, 1008, 900, 833, $673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-$ 7.81 (m, 2H), 6.95-6.85 (m, 2H), 2.54 (s, 3H), 1.35-1.21 (m, 3H), 1.11 (s, 9H), 1.05 $1.10(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.0, 160.8, 130.7, 130.7, 119.8,
119.8, 26.5, 18.0, 17.8, 12.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+293.1931$, found 293.1933.

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)ethan-1-one (79n). To the 4'-hydroxy
 acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry DMF (10 mL), imidazole ($1.49 \mathrm{~g}, 22.0 \mathrm{mmol}$) was added, and the reaction was stirred for 10 minutes. Then TBSCl ($1.90 \mathrm{~g}, 11.0 \mathrm{mmol}$) was added, and the reaction was stirred overnight at room temperature. The reaction progress was monitored by TLC. After completion of the reaction, it was quenched with water, the aqueous layer was extracted with DCM (10 mL x 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated and the crude product was purified using silica gel column chromatography to afford the desired product 79n (1.7 g, 93\%) as white solid. (TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3682, 2949, 2862, 1673, $1596,1513,1472,1363,1266,1112,1015,918,672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.93-7.84 (m, 2H), 6.91-6.82 (m, 2H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 10 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0,160.4,131.0,130.6,120.0,26.5,25.7,18.4,-$ 4.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+$ 251.1462, found 251.1461.

1-(4-(Benzyloxy)phenyl)ethan-1-one (790). To the 4'-hydroxy acetophenone (1g,
 $7.34 \mathrm{mmol})$ in dry acetone (10 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.03 \mathrm{~g}, 14.6 \mathrm{mmol})$ and benzyl bromide ($1.30 \mathrm{~mL}, 11.0 \mathrm{mmol}$) were added, and the reaction was refluxed for 24 h . After completion of the reaction, it was diluted with water, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL x 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, and the crude product was purified using silica gel column chromatography to afford the desired product $\mathbf{7 9 0}$ ($1.5 \mathrm{~g}, 90 \%$) as colorles liquid. (TLC: $R_{f}=0.8$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3683, 3332, 2878, 1960, 1888, 1673, 1597, 1510, 1423, 1365, 1312, 1261, 1174, 1118, 1078, 959, 922, 834, 771, $674 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (d, J = $8.88 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46-7.32 (m, 5H), 7.01 (d, $J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,162.7,136.2,130.7,130.6,128.8,128.3$, 127.5, 114.6, 70.2, 26.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+227.1067$, found 227.1067.

1-(4-((4-Methoxybenzyl)oxy)phenyl)ethan-1-one (79p). To a stirred solution of 4'-hydroxy acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry DMF (10 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.03 \mathrm{~g}, 14.6$
 mmol) and PMBCl ($0.98 \mathrm{~mL}, 7.34 \mathrm{mmol}$) were added, and the reaction was stirred for 5 h at room temperature. After completion of the reaction it was quenched with ice water, the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$), then the combined organic layer was washed with brine (20 mL),), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated and the crude product was purified using silica gel column chromatography to afford the desired product $\mathbf{7 9 p}(1.68 \mathrm{~g}, 89 \%)$ as a colorless liquid. (TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3686, 2952, 2842, 1673, 1602, $1515,1467,1365,1307,1242,1218,1175,1113,1027,927,795,746,642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.98-7.89 (m, 2H), 7.42-7.32 (m, 2H), 7.05-6.95 (m, 2H), 6.95$6.89(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.9, 162.9, 159.8, 130.7, 130.6, 129.4, 128.3, 114.7, 114.3, 70.1, 55.5, 26.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+257.1172$, found 257.1169.

1-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)ethan-1-one (79q): To the 4'-hydroxy

 acetophenone ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in dry DMF (10 mL), imidazole ($1.24 \mathrm{~g}, 18.3 \mathrm{mmol}$) were added, and the reaction was stirred for 10 minutes. Then TBDPSCl ($3.02 \mathrm{~mL}, 11.0 \mathrm{mmol}$) were added, and reaction was stirred for $5 h$ at room temperature. The reaction progress was monitored by TLC. After completion of the reaction it was quenched with water, the aqueous layer was extract-ed with DCM ($10 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo and the crude product was purified using silica gel column chromatography to afford the desired product $79 \mathbf{q}(2.1 \mathrm{~g}$, 77%) as white solid. (TLC: $R_{f}=0.8$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hex-anes). IR (neat) $\mathrm{cm}^{-1} 3674$, 3468, 2945, 2893, 2860, 1965, 1892, 1670, 1597, 1515, 1472, 1363, 1265, 1110, 1014, 919, 749, 673; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.69(\mathrm{~m}, 7 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $6 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 197.1, 160.2, 135.5, 135.4, 134.9, 132.3, 130.8, 130.5, 130.3, 129.8, 128.1, 127.9, 119.8, 26.7, 26.5, 26.4, 19.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 375.1775$, found 375.1776.

1-(2,5-Bis(allyloxy)phenyl)ethan-1-one (79r): To the 4'-hydroxy acetophenone (5

79r $\mathrm{g}, 32.8 \mathrm{mmol})$ in dry acetone (50 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(18.17 \mathrm{~g}, 131.5 \mathrm{mmol})$ and allyl bromide ($8.52 \mathrm{~mL}, 98.6 \mathrm{mmol}$) were added, and the reaction was stirred at room temperature for 24 h . After completion of the reaction, it was filtered through celite. The residue was washed with DCM. The filtrate was evaporated in vacuo and the crude product was purified using silica gel column chromatography to afford the desired product 79r (7.3 g, 96\%) as a white solid. TLC: $R_{f}=0.6\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/ hexanes). IR (neat) 3948, 3767, 3702, 3633, 3536, 3317, 3166, 3103, 2885, 2554, 2390, 2031, 1944, 1680, 1494, 1422, 1207, 1016, 927, 811, $743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=3.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=3.25,9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.25$ (m, 2 H), 4.58 (td, $J=1.38,5.38 \mathrm{~Hz}, 2 \mathrm{H}$), 4.51 (td, $J=1.38,5.38 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=199.5,152.7,152.6,133.3,133.0,128.9,121.2,118.2$, 117.9, 115.0, 114.7, 70.2, 69.5, 32.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 255.0992 found 255.0991 .

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)ethan-1-one (79s). To the 4'-hydroxy

79s acetophenone ($1 \mathrm{~g}, 6.57 \mathrm{mmol}$) in dry DMF (10 mL), $\mathrm{Et}_{3} \mathrm{~N}(2.75$ $\mathrm{mL}, 19.7 \mathrm{mmol})$ and DMAP ($0.08 \mathrm{~g}, 0.65 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 15 minutes then TIPSCl $(4.11 \mathrm{~mL}$, $16.4 \mathrm{mmol})$ was added dropwise to this. The reaction was stirred at room temperature for 5 h . After completion of the reaction the mixture was filtered through celite, the filtrate was diluted with dichloromethane (30 mL) and washed consecutively with water ($2 \times 40 \mathrm{~mL}$) and brine (50 mL) then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed in vacuo and the crude product was purified using silica gel column chromatography to afford the desired product $79 \mathrm{~s}(2.46 \mathrm{~g}, 81 \%)$ as white solid. (TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) $\mathrm{cm}^{-1} 3429,2953,2867$, 1674, 1480, 1413, 1272, 1067, 1002, 896; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=$ $3.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=3.25,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, 1.38-1.17 (m, 7H), 1.14-1.04 (m, 36H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.5,149.8$, 149.6, 131.2, 124.5, 120.4, 120.3, 31.4, 18.1, 18.1, 18.0, 13.4, 12.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+465.3215$, found 465.3230 .

General procedure B for 1-(alkyl/aryl)-2-phenylethan-1-one (A)

To the 100 mL RBF, Mg turnings (1.2 equiv) were taken in dry THF (10 mL) was taken and BnBr (1 equiv) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was stirred for 1 h at room temperature until the Grignard was generated. The freshly prepared Grignard reagent was added dropwise to a solution of Weinreb amide (1 equiv) in dry THF at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to room temperature and stirred for 12 h . After completion of the reaction, it was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (20 mL x 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, and the crude product was purified using silica gel column chromatography to afford the desired product.

1-Phenylundecan-2-one (79y). The title compound was prepared following general
 procedure A , using N -methoxy- N -methyldecanamide $(1 \mathrm{~g}, 4.64 \mathrm{mmol})$), $\mathrm{Mg}(0.133 \mathrm{~g}, 5.57 \mathrm{mmol})$ and BnBr ($0.55 \mathrm{~mL}, 4.64 \mathrm{mmol}$), THF (20 mL). Yield ($0.97 \mathrm{~g}, 85$ \%) as colorless liquid. (TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/ hexanes). IR (neat) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9,134.5,129.5,128.8,128.6,128.5,127.1,50.3$, 42.2, 38.1, 32.0, 29.8, 29.5, 29.5, 29.4, 29.2, 23.9, 22.8, 14.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+\mathrm{H}]+247.2056$, found 247.2056.

1-(4-Methoxyphenyl)-2-phenylethan-1-one (79aa). The title compound was
 prepared following general procedure A , using $\mathrm{N}-4-$ dimethoxy-N-methylbenzamide ($1 \mathrm{~g}, 5.12 \mathrm{mmol}$) , Mg ($0.147 \mathrm{~g}, 6.14 \mathrm{mmol}$) and $\operatorname{BnBr}(0.68 \mathrm{~mL}, 5.12 \mathrm{mmol})$, THF (20 mL). Yield ($0.95 \mathrm{~g}, 83 \%$) as a yellowish liquid. (TLC: R_{f} $=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. IR (neat) 2942, 2842, 2574, 2409, 1919, 1674, 1600, 1507, 1454, 1425, 1318, 1260, 1170, 1113, 1026, 927, 835, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=9.01 \mathrm{~Hz}$, 2H), 4.23 (s, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.4, 163.7, 135.1,
131.1, 129.8, 129.5, 128.8, 126.9, 113.9, 55.6, 45.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+227.1067$, found 227.1064.

1-(Furan-2-yl)-2-phenylethan-1-one (79ac). The title compound was prepared
 following general procedure A , using N -methoxy- N -methylfuran-2-carboxamide ($1 \mathrm{~g}, 6.44 \mathrm{mmol}$) $) \mathrm{Mg}(0.185 \mathrm{~g}$, 7.72 mmol) and $\mathrm{BnBr}(0.74 \mathrm{~mL}, 6.44 \mathrm{mmol})$, THF (20 mL).): Yield ($0.96 \mathrm{~g}, 81 \%$) as a colorless liquid. (TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3777, 3573, 3341, 2938, 1743, 1674, 1579, 1468, 1399, 1307, 1250, 1164, 1084, 1037, 910, 837, $717 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.33-$ 7.27 (m, 4 H), 7.25-7.19 (m, 1 H), 7.18 (d, $J=3.63 \mathrm{~Hz}, 1 \mathrm{H}$), 6.48 (dd, $J=1.63,3.5 \mathrm{~Hz}, 1$ H), 4.08 (s, 2 H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.7,152.4,146.7,134.1,129.6$, 128.7, 127.1, 118.0, 112.5, 45.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 187.0754, found 187.0754 .

General Procedure B for the synthesis of $\boldsymbol{\alpha}$-hydroxy oxetane-tethered ketone: To a 100 mL two necked round bottom flask were added DIPA (1.2 equiv.) in anhydrous THF (mL) at $0{ }^{\circ} \mathrm{C}$ with stirring. To it, n-BuLi (1.2 equiv.) was added dropwise, and the reaction was stirred for 45 min at the same temperature. Then it was cooled to $-78{ }^{\circ} \mathrm{C}$, to this freshly prepared LDA enolate solution of acetophenone derivatives (equiv.) in anhydrous THF was added dropwise. The mixture was stirred for 1 hour at $-78{ }^{\circ} \mathrm{C}$ followed by slow addition of 3 -oxetanone (1 equiv.). Then the reaction was slowly warmed to room temperature and stirred for additional four hours. Then, reaction progress was monitored by TLC. Then, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vaccuo and the resulting crude product was purified by silica gel column chromatography (SiO_{2}, 20% EtOAc/hexane) to afford desired product in high to moderate yields.

2-(3-Hydroxyoxetan-3-yl)-1-phenylethan-1-one (71a). The titled compound was
 prepared following general procedure B, using acetophenone (79a) ($3 \mathrm{~g}, 24.96 \mathrm{mmol}$), 3-oxetanone (77) ($1.46 \mathrm{~mL}, 24.96$ mmol), n-BuLi ($2.5 \mathrm{M}, 11.98 \mathrm{~mL}, 29.95 \mathrm{mmol}$) and DIPA (3.5 $\mathrm{mL}, 29.95 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($4.3 \mathrm{~g}, 90 \%$) as a white solid.
(TLC: $\mathrm{Rf}=0.4$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3684, 3539, 2958, 2880, 1674, 1593, 1519, 1442, 1397, 1338, 1115, 1036, 970, 926, 676, $633 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=$ $7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 200.3, 136.3, 134.3, 129.0, 128.3, 83.3, 72.4, 45.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+193.0859$, found 193.0860.

2-(3-Hydroxyoxetan-3-yl)-1-(\boldsymbol{p}-tolyl)ethan-1-one (71b). The title compound was
 prepared following general procedure B, using acetophenone (79b) ($3 \mathrm{~g}, 22.35 \mathrm{mmol}$), 3-oxetanone (77) ($1.30 \mathrm{~mL}, 22.35$ mmol), n-BuLi ($2.5 \mathrm{M}, 10.73 \mathrm{~mL}, 26.82 \mathrm{mmol}$) and DIPA (3.7 $\mathrm{mL}, 26.82 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($3.74 \mathrm{~g}, 81.12 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3755, 3636, 3421, 3365, 2970, 2690, 2393, 2303, 1680, 1617, 1419, 1342, 1226, 1119, 1034, 972, 812, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.88(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=$ $7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 199.9,145.4,133.9,129.7,128.5,83.4,72.4,45.5,21.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+207.1016$, found 207.1015.

2-(3-Hydroxyoxetan-3-yl)-1-(4-isobutylphenyl)ethan-1-one (71c). The title

 compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 c}$) ($0.3 \mathrm{~g}, 1.70 \mathrm{mmol}$), 3-oxetanone (77) ($0.09 \mathrm{~mL}, 1.70 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.27 \mathrm{~mL}, 2.04 \mathrm{mmol}$) and DIPA ($0.28 \mathrm{~mL}, 2.04 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.36 \mathrm{~g}, 87 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3861, 3763, 3648, 3527, 3443, 3356, 2967, 2770, 2663, 2337, 1682, 1615, 1410, 1226, 1120, 973, 849, 755 $\mathrm{cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H})$, $4.78(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J$ $=7.25 \mathrm{~Hz}, 2 \mathrm{H}$), 1.91 (quind, $J=6.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $0.92(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 200.0,149.1,134.2,129.7,128.4,83.4,77.5,77.4,76.8$, 72.4, 45.6, 45.6, 30.3, 22.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+249.1485$, found 249.1486.

Cyclopropyl(3-hydroxyoxetan-3-yl)methanone (71d): The title compound was
 prepared following general procedure B , using acetophenone (79d) ($0.5 \mathrm{~g}, 5.94 \mathrm{mmol}$), 3-oxetanone (77) ($0.34 \mathrm{~mL}, 5.94 \mathrm{mmol}$), $n-\operatorname{BuLi}(1.6 \mathrm{M}, 4.45 \mathrm{~mL}, 7.13 \mathrm{mmol})$ and DIPA ($0.99 \mathrm{~mL}, 7.13 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.839 \mathrm{~g}, 90 \%$) as a yellowish liquid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3423, 3012, 2957, 2878, 2090, 1913, 1825, $1688,1395,1328,1260,1116,1080,1031,967,833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.64(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 2.01-1.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.10-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.4$, 83.2, 72.0, 50.0, 21.5, 11.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+157.0864$, found 157.0855.

1-([1,1'-Biphenyl]-4-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71e). The title

71e compound was prepared following general procedure B, using acetophenone (79e) ($0.5 \mathrm{~g}, 2.54 \mathrm{mmol}$), 3-oxetanone (77) (0.14 $\mathrm{mL}, 2.54 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.6 \mathrm{~mL}, 3.05 \mathrm{mmol}$) and DIPA ($0.43 \mathrm{~mL}, 3.05 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.58 \mathrm{~g}, 85 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3925, 3874, 3690, 3398, 3040, 2762, 2373, 1591, 1221, 745, $672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.09-8.03$ (d, $J=8.38 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76-7.71 (d, $J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}$, $3 \mathrm{H}), 4.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 199.9,147.0,139.6,134.9,129.2,129.0,128.7,127.6$, 127.4, 83.4, 72.4, 45.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+269.1172$ found 269.1171 .

2-(3-Hydroxyoxetan-3-yl)-1-(naphthalen-2-yl)ethan-1-one (71f). The title
 compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 f}$) ($3 \mathrm{~g}, 17.62 \mathrm{mmol}$), 3-oxetanone (77) (1.46 $\mathrm{mL}, 17.62 \mathrm{mmol}), n-B u L i(2.5 \mathrm{M}, 8.4 \mathrm{~mL}, 21.15 \mathrm{mmol}$) and DIPA ($2.98 \mathrm{~mL}, 21.15 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($3.85 \mathrm{~g}, 90 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat): 3858, 3742, 2960, 2880, $2405,2313,1669,1517,1396,1119,966,672,623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.52 (s, 1H), 8.05-7.97 (m, 2H), 7.96-7.88 (m, 2H), 7.68-7.57 (m, 2H), 4.82 (d, J = 7.25 $\mathrm{Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$,
CDCl_{3}) $\delta: 200.3,136.2,133.7,132.6,130.6,129.9,129.3,129.0,128.0,127.3,123.4$, 83.4, 72.5, 45.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+243.1016$, found 243.1016.

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)ethan-1-one (71g). The title
 compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 g}$) ($3 \mathrm{~g}, 19.97 \mathrm{mmol}$), 3-oxetanone (77) (1.17 $\mathrm{mL}, 19.97 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 9.5 \mathrm{~mL}, 23.96 \mathrm{mmol}$) and DIPA ($3.37 \mathrm{~mL}, 23.96 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($3.82 \mathrm{~g}, 86 \%$) as a white solid. (TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3860, 3517, 2957, 2880, 2312, 1664, 1601, 1514, 1414, 1342, 1259, 1172, 1114, 1028, 966, 835, $671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=6.88 \mathrm{~Hz}$, 2 H), 4.46 (d, $J=7.38 \mathrm{~Hz}, 2 \mathrm{H}$), $4.24(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz, CDCl 3) $\delta: 198.5,164.4,130.6,129.4,114.1,83.4,72.4,55.6,45.1$; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+223.0965$, found 223.0964 .

2-(3-Hydroxyoxetan-3-yl)-1-(4-nitrophenyl)ethan-1-one (71i). The title
 compound was prepared following general procedure B, using acetophenone (79i) ($3 \mathrm{~g}, 18.16 \mathrm{mmol}$), 3-oxetanone (77) (1.06 $\mathrm{mL}, 18.16 \mathrm{mmol})$, n-BuLi ($2.5 \mathrm{M}, 8.7 \mathrm{~mL}, 21.79 \mathrm{mmol}$) and DIPA ($3.07 \mathrm{~mL}, 21.79 \mathrm{mmol}$) and anhydrous THF (50 mL): yield (3.10 g, 72\%) as a yellow solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3686, 3560, 2960, 2880, 1686, 1600, 1528, 1415, 1346, 1114, 1011, 971, 927, 850, $673 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 8.15-8.09(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=$ $7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 198.4, 151.0, 140.6, 129.4, 124.2, 83.2, 72.3, 46.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+238.0710$, found 238.0710 .

1-(4-Fluorophenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71j). The title

|
 71j |
| :---: | compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 j}$) ($3 \mathrm{~g}, 21.71 \mathrm{mmol}$), 3-oxetanone (77) (1.27 $\mathrm{mL}, 21.71 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 10.40 \mathrm{~mL}, 26.06 \mathrm{mmol}$) and DIPA ($3.67 \mathrm{~mL}, 26.06 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($4.2 \mathrm{~g}, 92 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat)

$3858,3669,3455,2957,2880,1676,1598,1509,1407,1342,1157,1114,1043,968$, 924, 837, 669, $624 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11$ (m, 2 H), $4.74(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 198.3,167.6,165.1,132.8,131.1,131.0,116.2$, 116.0, 83.3, 72.3, 45.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]+211.0765$, found 211.0764.

2-(3-Hydroxyoxetan-3-yl)-1-(3-(trifluoromethyl)phenyl)-ethan-1-one (71k).

 The title compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 k}$) ($0.3 \mathrm{~g}, 1.59 \mathrm{mmol}$), 3-oxetanone (77) ($0.08 \mathrm{~mL}, 1.59 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.19 \mathrm{~mL}, 1.91 \mathrm{mmol}$) and DIPA ($0.26 \mathrm{~mL}, 1.91 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.34 \mathrm{~g}, 82 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3832, 3785, 3674, 3510, 3350, 3284, 3192, 2975, 2898, 2762, 2347, 1833, 1695, 1619, 1330, 1178, $1126,1078,967,811,661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=$ $7.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.38 \mathrm{~Hz}$, $2 \mathrm{H}), 4.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 198.7,136.8,131.9,131.6,131.4,130.6,129.8,125.2,125.0,83.2,72.3,46.0$; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]+261.0733$ found 261.0733.
(E)-1-(3-Hydroxyoxetan-3-yl)-4-phenylbut-3-en-2-one (711). The title compound

711 was prepared following general procedure B, using acetophenone (791) ($0.3 \mathrm{~g}, 2.05 \mathrm{mmol}$), 3-oxetanone (77) (0.14 $\mathrm{mL}, 2.05 \mathrm{mmol}$), $n-$-BuLi ($1.6 \mathrm{M}, 1.53 \mathrm{~mL}, 2.46 \mathrm{mmol}$) and DIPA ($0.34 \mathrm{~mL}, 2.46 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.21 \mathrm{~g}, 48 \%$) as a white solid. TLC: $R_{f}=0.3$ (SiO2, 20\% EtOAc/ hexanes). IR (neat) 3918, 3829, 3690, 3578, 3462, 3397, 3338, 3279, 3093, 2938, 2881, 2601, 2349, 1833, 1728, 1454, 966, 758, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.69-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=16.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}$, 2 H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 200.3,145.0,134.0,131.3,129.2,128.7,126.0$, 83.4, 72.4, 47.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+219.1021$ found 219.1017.

2-(3-Hydroxyoxetan-3-yl)-1-(4-

((triisopropylsilyl)oxy)phenyl)ethan-1-one (71m). The
title compound was prepared following general procedure B, using acetophenone (79 m) ($1.45 \mathrm{~g}, 4.96 \mathrm{mmol}$), 3-oxetanone (77) ($0.29 \mathrm{~mL}, 4.96 \mathrm{mmol}$), n-BuLi (1.6 M , $3.72 \mathrm{~mL}, 5.95 \mathrm{mmol}$) and DIPA ($0.84 \mathrm{~mL}, 5.95 \mathrm{mmol}$) and anhydrous THF (30 mL): yield ($1.61 \mathrm{~g}, 89 \%$) as a colorless liquid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3541, 2954, 2873, 1660, 1597, 1515, 1473, 1420, 1280, 1113, 1009, 917, 632 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=$ $7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,161.8,130.7,129.7$, 120.1, 83.4, 72.4, 45.2, 18.0, 12.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 365.2143, found 365.2141.

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-

71n one (71n). The title compound was prepared following general procedure B, using acetophenone (79n) (1.5 g, 5.99 mmol), 3-oxetanone (77) ($0.43 \mathrm{~mL}, 5.99 \mathrm{mmol}$), n-BuLi (1.6 M, $4.5 \mathrm{~mL}, 7.18 \mathrm{mmol}$) and DIPA ($1.01 \mathrm{~mL}, 7.18 \mathrm{mmol}$) and anhydrous THF (20 mL): yield ($1.79 \mathrm{~g}, 67.04 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}\right.$, 20\% EtOAc/ hexanes). IR (neat) 3685, 3385, 2947, 2867, 1665, 1599, 1512, 1473, 1422, 1355, 1265, 1173, 1109, 1015, 916, 839, 747, $672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H})$, 4.48 (d, $J=7.25 \mathrm{~Hz}, 2 \mathrm{H}$), 4.19 (s, 1H), 0.99 (s, 9H), 0.25 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,161.5,131.1,130.7,126.9,120.5,120.4,115.4,83.4,72.5,45.2$, 25.7, 18.4, -4.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+323.1673$, found 323.1671.

1-(4-(Benzyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (710). The title
 compound was prepared following general procedure B, using acetophenone (790) (1.2 g, 5.30 mmol), 3-oxetanone (77) ($0.38 \mathrm{~mL}, 5.30 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 3.98 \mathrm{~mL}, 6.37$ mmol) and DIPA ($0.89 \mathrm{~mL}, 6.37 \mathrm{mmol}$) and anhydrous THF (15 mL): yield ($1.19 \mathrm{~g}, 75 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3606, 3541, 2956, 2880, 1661, 1600, 1508, 1420, 1316, 1174, 1116, 1011, $925,672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, \mathrm{~J}=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J$
$=7.00 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.7, 163.6, 136.0, 130.7, 129.6, 128.9, 128.5, 127.6, 115.0, 83.4, 72.4, 70.4, 45.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+299.1278$, found 299.1277.

2-(3-Hydroxyoxetan-3-yl)-1-(4-((4-methoxybenzyl)oxy)phenyl)ethan-1-one

(71p). The title compound was prepared following general procedure B , using acetophenone ($\mathbf{7 9 p}$) ($0.772 \mathrm{~g}, 3.01 \mathrm{mmol}$), 3-oxetanone (77) ($0.17 \mathrm{~mL}, 3.01 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 2.25$ $\mathrm{mL}, 3.61 \mathrm{mmol}$) and DIPA ($0.51 \mathrm{~mL}, 3.61 \mathrm{mmol}$) and anhydrous THF (10 mL): yield ($0.856 \mathrm{~g}, 87 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc/ hexanes). IR (neat) 3686, 3399, 2929, 2858, 2360, 1626, 1515, 1471, 1367, 1102, 1025, 927, 739, 674, $630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=$ $8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.76 \mathrm{~Hz}$, $2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ (br. s., 1 H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,163.7,159.9,130.7$, 129.5, 129.5, 128.0, 115.0, 114.3, 83.4, 72.5, 70.3, 55.5, 45.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+329.1384$, found 329.1380.

1-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-

one (72q). The title compound was prepared following general procedure B, using acetophenone (79q) ($2.1 \mathrm{~g}, 5.61$ mmol), 3-oxetanone (77) ($0.39 \mathrm{~mL}, 5.61 \mathrm{mmol}$), n-BuLi (1.6 M, $4.2 \mathrm{~mL}, 6.73 \mathrm{mmol}$) and DIPA ($0.95 \mathrm{~mL}, 6.73 \mathrm{mmol}$) and anhydrous THF (30 mL): yield ($2.41 \mathrm{~g}, 96 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3905, 3853, 3781, 3641, 3568, 3445, 3366, 3088, 3047, 2957, 2879, 2691, 2624, 2558, 2389, 2336, 1019, 1954, 1801, 1628, 1516, 1267, 1177, 1144, 920, 838, $704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.73-$ $7.67(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=7.00$ $\mathrm{Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,161.1,135.5,132.0,130.4,130.4,129.7,128.1,120.1,83.3$, 77.5, 76.8, 72.4, 45.2, 26.5, 19.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 447.1986, found 447.1987.

1-(2,5-Bis(allyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71r). The
 title compound was prepared following general procedure B, using acetophenone (79r) ($5 \mathrm{~g}, 21.5 \mathrm{mmol}$), 3-oxetanone (77) ($1.55 \mathrm{~mL}, 21.5 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 10.33 \mathrm{~mL}, 25.8 \mathrm{mmol}$) and DIPA ($3.68 \mathrm{~mL}, 25.8 \mathrm{mmol}$) and anhydrous THF (100 mL): yield ($5.9 \mathrm{~g}, 90 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) $3795,3643,3434,3315,3170,2940,2795,2689,1672,1493,1420,1270,1220$, 1178, 1116, 1011, 956, 819, $732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=3.00$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.13-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.20(\mathrm{~m}$, $4 \mathrm{H}), 4.73(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=5.50 \mathrm{~Hz}, 2 \mathrm{H}), 4.53-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $7.13 \mathrm{~Hz}, 2 \mathrm{H}$), 4.04 (br. s., 1H), 3.68 (s, 2H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.1$, 153.3, 152.7, 133.1, 132.6, 127.2, 122.6, 118.7, 118.0, 114.8, 114.7, 83.5, 72.6, 70.2, 69.5, 51.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+305.1384$, found 305.1380.

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one
 (71s). The title compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 s}$) ($2.6 \mathrm{~g}, 5.59 \mathrm{mmol}$), 3oxetanone (77) ($0.40 \mathrm{~mL}, 5.59 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 4.19 \mathrm{~mL}$, 6.71 mmol) and DIPA ($0.94 \mathrm{~mL}, 6.71 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($1.9 \mathrm{~g}, 63 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 2953, 2870, 1657, 1483, 1413, 1268, 1172, 1113, 1008, $896 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}, J=3.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=3.13,8.76 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 18 \mathrm{H}), 1.08(\mathrm{~d}, J$ $=7.13 \mathrm{~Hz}, 18 \mathrm{H}$); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.5,150.7,150.0,128.8,126.3$, 120.8, 120.2, 83.4, 72.6, 51.0, 18.1, 18.0, 13.6, 12.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+537.3426$, found 537.3419 .

1-(2,5-Dimethoxyphenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71t). The title compound was prepared following general procedure B, using acetophenone (79 t) ($0.70 \mathrm{~g}, 3.88 \mathrm{mmol}$), 3-oxetanone (77) ($0.22 \mathrm{~mL}, 3.88 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 2.91 \mathrm{~mL}, 4.66 \mathrm{mmol}$) and DIPA ($0.65 \mathrm{~mL}, 4.66 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.82 \mathrm{~g}, 84 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat)
$3605,3444,3018,2950,2840,2404,1759,1603,1502,1456,1275,1172,1040,974$, $936,670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=3.38 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=3.25$, $9.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=7.25 \mathrm{~Hz}$, 2 H), $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.3$, 154.2, 153.6, 126.8, 122.0, 113.6, 113.4, 83.5, 72.7, 56.1, 56.0, 51.4; HRMS (ESI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+253.1071$, found 253.1066.

2-(3-Hydroxyoxetan-3-yl)-1-(thiophen-3-yl)ethan-1-one (71u). The title

| |
| :---: | compound was prepared following general procedure B, using acetophenone ($\mathbf{7 9 u}$) ($3 \mathrm{~g}, 23.77 \mathrm{mmol}$), 3-oxetanone (6) (1.71 $\mathrm{mL}, 23.77 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 11.41 \mathrm{~mL}, 28.53 \mathrm{mmol}$) and DIPA ($4.0 \mathrm{~mL}, 28.53 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($2.91 \mathrm{~g}, 62 \%$) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3806, 3740, 3684, 3600, 3337, 3116, 2975, 2898, 2758, 2353, 1666, 1412, 1338, $1238,1104,962,881,809,683 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.15(\mathrm{dd}, J=1.25$, $2.88 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (dd, $J=1.13,5.13 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37(\mathrm{dd}, J=2.88,5.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (d, J $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 194.3,141.8,133.6,127.2,126.7,83.3,72.4,46.7$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+199.0423$, found 199.0424.

2-(3-Hydroxyoxetan-3-yl)-1-(1-methyl-1H-pyrrol-2-yl)ethan-1-one (71v). The
 title compound was prepared following general procedure C , using acetophenone (79v) ($3 \mathrm{~g}, 24.36 \mathrm{mmol}$), 3-oxetanone (77) ($1.42 \mathrm{~mL}, 24.36 \mathrm{mmol}$), n-BuLi ($2.5 \mathrm{M}, 11.69 \mathrm{~mL}, 29.20 \mathrm{mmol}$) and DIPA ($4.12 \mathrm{~mL}, 29.20 \mathrm{mmol}$) and anhydrous THF (50 mL): yield ($4.64 \mathrm{~g}, 98 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3687, 3456, 2958, 2879, 1630, 1521, 1475, 1410, 1107, 1060, 1026, 971, 927, $672,624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.86$ (s, 1H), 6.16 (d, J $=2.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 2 \mathrm{H}), 4.57$ (br. s., 1 H$), 4.46(\mathrm{~d}, J=6.38 \mathrm{~Hz}, 2 \mathrm{H}), 3.90$ (s, 3H), $3.39(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 189.8,132.5,130.3,121.1$, 108.8, 83.5, 72.7, 45.0, 37.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]+196.0968$ found 196.0968.

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71w). The title compound
 was prepared following general procedure B, using acetophenone ($79 \mathbf{w}$) ($0.5 \mathrm{~g}, 4.54 \mathrm{mmol}$), 3-oxetanone (6) (0.25 $\mathrm{mL}, 4.54 \mathrm{mmol}$), $n-$ BuLi ($1.6 \mathrm{M}, 3.40 \mathrm{~mL}, 5.44 \mathrm{mmol}$) and DIPA ($0.75 \mathrm{~mL}, 5.44 \mathrm{mmol}$) and anhydrous THF (8 mL): yield (0.67 g , 91\%) as a white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. IR (neat) 3685, 3427, 2959, 2880, 2402, 1661, 1566, 1519, 1469, 1416, 1327, 1118, 1021, 969, 928, 891, 672, $624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.64(\mathrm{dd}, J=0.63,1.63 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (dd, $J=0.75,3.63 \mathrm{~Hz}, 1 \mathrm{H}$), 6.59 (dd, $J=1.63,3.63 \mathrm{~Hz}, 1 \mathrm{H}$), 4.74 (s, 1H), 4.72 (s, 1H), $4.48(\mathrm{~d}, \mathrm{~J}=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 188.6, 152.3, 147.5, 118.7, 112.9, 83.3, 77.5, 76.8, 72.4, 45.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+183.0652$, found 183.0652 .

2-(3-Hydroxyoxetan-3-yl)-1-phenylpropan-1-one (71x). The title compound was
 prepared following general procedure B , using acetophenone (79x) ($0.3 \mathrm{~g}, 2.23 \mathrm{mmol}$), 3-oxetanone (77) ($0.12 \mathrm{~mL}, 2.23 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.67 \mathrm{~mL}, 2.68 \mathrm{mmol}$) and DIPA ($0.37 \mathrm{~mL}, 2.68$ mmol) and anhydrous THF (5 mL): yield ($0.412 \mathrm{~g}, 89 \%$) as a white solid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3905, 3785, 3421, 2961, 2889, 2374, 1676, 1600, 1459, 1395, 1342, 1287, 1221, 1074, 971, 893, 762, $700,651 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ 7.47 (m, 2H), 4.70 (dd, $J=6.8,8.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=6.75 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.25 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,135.4,134.3,129.1,128.7,83.8,81.6,75.3$, 46.0, 12.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+207.1016$, found 207.1015.

1-(3-Hydroxyoxetan-3-yl)-1-phenylundecan-2-one (71y). The title compound
 was prepared following general procedure B, using acetophenone ($\mathbf{7 9 y}$) ($0.5 \mathrm{~g}, 2.02 \mathrm{mmol}$), 3-oxetanone (77) (0.11 $\mathrm{mL}, 2.02 \mathrm{mmol})$, n-BuLi ($1.6 \mathrm{M}, 1.52 \mathrm{~mL}, 2.43 \mathrm{mmol}$) and DIPA ($0.33 \mathrm{~mL}, 2.43 \mathrm{mmol}$) and anhydrous THF (8 mL): yield (0.427 g , 66 \%) as a colorless liquid. TLC: $R f=0.3$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3922, 3873, 3788, 3696, 3573, 3486, 3337, 3268, 2939, 2872, 2763, 1769, 1744, 1608, 1460, 1271, 991, 773, 705, $654 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H})$,
7.66-7.59 (m, 1H), 7.55-7.47 (m, 2H), 4.70 (dd, $J=6.8,8.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.25 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=$ $7.38 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,135.4,134.3,129.1,128.7,83.8$, 81.6, 75.3, 46.0, 12.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+319.2268$, found 319.2269 .

2-(3-Hydroxyoxetan-3-yl)cyclohexan-1-one (71z). The title compound was
 prepared following general procedure B, using cyclohexanone (79 z) ($0.432 \mathrm{~g}, 2.13 \mathrm{mmol}$), 3-oxetanone (77) ($0.12 \mathrm{~mL}, 2.13$ mmol), n-BuLi ($1.6 \mathrm{M}, 1.6 \mathrm{~mL}, 2.56 \mathrm{mmol}$) and DIPA (0.35 mL , 2.56 mmol) and anhydrous THF (5 mL): yield ($0.358 \mathrm{~g}, 61 \%$) as a colorless liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3432, 3022, 2953, 2402, 2352, $2101,1642,1523,1428,1018,926,670 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.67(\mathrm{~d}, J=$ $7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 2.99-2.87$ $(\mathrm{m}, 1 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.1,83.5,80.8,74.1,57.1,42.6,28.0,27.8,24.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+171.1021$, found 171.1020.

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)-2-phenylethan-1-one (71aa).

The title compound was prepared following general procedure B, using acetophenone (79aa) ($0.32 \mathrm{~g}, 1.41 \mathrm{mmol}$), 3oxetanone (77) ($0.08 \mathrm{~mL}, 1.41 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 1.06 \mathrm{~mL}$, 1.69 mmol) and DIPA ($0.23 \mathrm{~mL}, 1.69 \mathrm{mmol}$) and anhydrous THF (5 mL): yield ($0.348 \mathrm{~g}, 83 \%$) as a yellow liquid. TLC: $R_{f}=0.3$ ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3896, 3782, 3701, 3643, 3514, 3434, 3314, 2954, 2889, 2487, 2396, 2324, 2124, 1669, 1603, 1465, 1326, 1258, 1177, 973, 839, $715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}$, 1 H), $4.80(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=7.13,10.76 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,164.3,134.3,131.7,129.6$, 129.1, 128.7, 128.0, 114.1, 84.2, 80.8, 75.7, 58.1, 55.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+299.1278$, found 299.1272 .

1-(4-Chlorophenyl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ab). The title compound was prepared following general procedure B, using acetophenone
(79ab) ($0.5 \mathrm{~g}, 2.16 \mathrm{mmol}$), 3-oxetanone (77) ($0.12 \mathrm{~mL}, 2.16 \mathrm{mmol}$), n-BuLi (1.6 M ,
 $1.62 \mathrm{~mL}, 2.60 \mathrm{mmol}$) and DIPA ($0.36 \mathrm{~mL}, 2.60 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.502 \mathrm{~g}, 77 \%$) as a yellow liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3945, 3881, 3764, 3636, 3422, 3338, 2965, 2892, 2486, 2394, $1680,1592,1482,1399,1253,1101,973,827,717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.91-7.79 (m, 2H), 7.40-7.27 (m, 7H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=$ 7.13 Hz, 1H), 4.48 (d, $J=7.25 \mathrm{~Hz}, 1 \mathrm{H}$), 4.44 (d, $J=6.75 \mathrm{~Hz}, 1 \mathrm{H}$), 4.39 (br. s., 1H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.2,140.7,134.0,133.6,130.6,129.6,129.3$, 129.3, 128.4, 83.9, 80.7, 75.6, 58.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$ 303.0782 , found 303.0777 .

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ac). The title
 compound was prepared following general procedure B, using acetophenone (79 ac) ($0.594 \mathrm{~g}, 3.18 \mathrm{mmol}$), 3-oxetanone (77) ($0.18 \mathrm{~mL}, 3.18 \mathrm{mmol}$), n-BuLi ($1.6 \mathrm{M}, 2.39 \mathrm{~mL}, 3.82 \mathrm{mmol}$) and DIPA ($0.53 \mathrm{~mL}, 3.82 \mathrm{mmol}$) and anhydrous THF (8 mL): yield ($0.685 \mathrm{~g}, 83 \%$) as a colorless liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. IR (neat) $3686,3433,3023,2959,2402,2351,1676,1603,1522,1473,1423,1023,928$, $672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.57-5.55 (m, 1H), 7.42-7.37 (m, 2H), 7.37-7.29 $(\mathrm{m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=3.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=1.63,3.63 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}$, $J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz} \mathrm{CDCl} 3) \delta$ $189.8,151.8,147.8,133.6,129.7,129.0,128.3,120.2,112.9,84.0,80.8,75.6,58.3$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+259.0965$, found 259.0974 .

General Procedure \boldsymbol{C} for the synthesis of 5-phenylfuran-3-yl)methanol: To the α hydroxy oxetane-tethered ketone 71a-71ac(1 equiv) in anhydrous DCM, $\operatorname{Bi}(O T f)_{3}$ (10 mol\%) were added at room temperature and the reaction was stirred up to starting material was completely consumed (1 minute). After completion of the reaction, it was quenched with saturated aqueous solution of NaHCO_{3} and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo, and the resulting crude product was purified by silica gel column chromatography ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexane) to afford desired product in high to moderate yields.
(5-Phenylfuran-3-yl)methanol (72a): The title compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-phenylethan-1-one (71a, 0.05
 $\mathrm{g}, 0.26 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.017 \mathrm{~g}, 0.026 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.0448 \mathrm{~g}, 99 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, 20\% EtOAc/ hexanes). IR (neat) 3687, 3602, 1769, 1601, 1520, 1426, 1020, 927, 678, $624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,139.4,130.8,128.8,127.7,127.3,123.9$, 105.2, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+175.0754$, found 175.0753.
(5-(p-Tolyl)furan-3-yl)methanol (72b): The title compound was prepared
 following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(p-tolyl)ethan-1-one ($\mathbf{7 1 b}, \quad 0.05 \mathrm{~g}, \quad 0.242 \mathrm{mmol}$), $\operatorname{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.024 \mathrm{mmol})$ and $\operatorname{DCM}(0.5 \mathrm{~mL}):$ yield ($0.044 \mathrm{~g}, 98 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3685, 3610, 3451, 2931, 2880, 1901, 1757, 1600, 1498, 1423, 1021, 971, 923, 672, $624 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.42 (d, $J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,139.1,137.6,129.5,128.1,127.2,123.9$, 104.5, 57.0, 21.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+189.0910$, found 189.0909.
(5-(4-Isobutylphenyl)furan-3-yl)methanol (72c): The title compound was
 prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-isobutylphenyl)ethan-1-one (71c, $0.05 \mathrm{~g}, 0.201 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.020 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.044 \mathrm{~g}, 96 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3625, 3363, 3008, 2945, 2832, 2513, 2040, 1638, 1456, 1112, 1026, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.13 \mathrm{~Hz}$, 2 H), $7.43(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=7.13$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.87 (quind, $J=6.63,13.38 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ; 13 \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,141.5,139.1,129.6,128.4,127.2,123.8,114.2,104.5,57.1,45.3$, 30.4, 22.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+231.1380$, found 231.1380.
(5-Cyclopropylfuran-3-yl)methanol (72d). The title compound was prepared following general procedure C using cyclopropyl(3-hydroxyoxetan-3-yl)methanone (71d, $0.05 \mathrm{~g}, 0.201 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.020 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.045 \mathrm{~g}, 94 \%$) as colorless liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3427, 3022, 2956, 2402, 1641, 1426, 1023, 932, $669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}$, $1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 3 \mathrm{H}), 0.77-0.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,137.8,125.9,103.8,57.0,8.9,6.7$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+139.0754$, found 139.0755 .
(5-([1,1'-Biphenyl]-4-yl)furan-3-yl)methanol (72e): The title com-pound was
 prepared following general procedure C using 1 -([1,1'-biphenyl]-4-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71e, $0.05 \mathrm{~g}, 0.186 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.012 \mathrm{~g}, 0.018 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.0448 \mathrm{~g}, 97 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3023, 2927, 2402, 1727, 1604, 1414, 1044, $850,669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.7,140.4,139.6,129.8,129.0,127.6,127.5,127.1,124.4,105.3,57.0 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+251.1067$, found 251.1066.
(5-(Naphthalen-2-yl)furan-3-yl)methanol (72f): The title compound was
 prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(naphthalen-2-yl)ethan-1-one (71f, $0.05 \mathrm{~g}, 0.206 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.020 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.0453 \mathrm{~g}, 98 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3021, 1518, 1216, 1022, $769,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 8.13$ (s, 1H), 7.88-7.79 (m, 3H), 7.74 (dd, $J=1.75,8.63 \mathrm{~Hz}$, 1 H), 7.53-7.42 (m, 3H), $6.82(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.0, 139.7, 133.6, 132.9, 128.6, 128.3, 128.1, 127.9, 127.5, 126.7, 126.2, 122.4, 122.4, 105.8, 57.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 225.0910$, found 225.0909 .
(5-(4-Methoxyphenyl)furan-3-yl)methanol (72g): The title compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-
 methoxyphenyl)ethan-1-one ($\mathbf{7 1 g}, 0.05 \mathrm{~g}, 0.224 \mathrm{mmol}$), $\operatorname{Bi}(0 T f)_{3}(0.014 \mathrm{~g}, 0.0224 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.043 \mathrm{~g}, 95 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/ hexanes). IR (neat) 3864, 3736, 3257, 2953, 2842, $2315,2042,1893,1611,1537,1497,1290,1179,1108,1034,914,835,670,624 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.56$ ($\mathrm{s}, 1 \mathrm{H}$), $4.58(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,155.0$, 138.8, 127.3, 125.4, 123.9, 114.3, 103.6, 57.1, 55.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$205.0859, found 205.0859.

4-(4-(Hydroxymethyl)furan-2-yl)phenol (72h): To a solution of (5-(4-((tert-
 butyldimethylsilyl)oxy)phenyl)-furan-3-yl)methanol (72n) ($0.03 \mathrm{~g}, 0.098 \mathrm{mmol}$) in dry THF at $0^{\circ} \mathrm{C}$, TBAF (1 M in THF, $0.11 \mathrm{~mL}, 0.118 \mathrm{mmol}$) were added dropwise and the reaction mixture was stirred for 30 min . at the same temperature. The reaction was monitored by TLC and After completion of the reaction, it was quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$) and combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum and crude product was purified by silica gel column chromatography (using 60\% EtOAc in hexanes) to afford 72h (15 mg, 83\%) as white solid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc} /\right.$ hexanes $) ;$ FTIR: 3949, 3870, 3762, 3700, 3639, 3540, 3323, 3173, 2975, 2862, 2687, 2493, 2376, 2231, 2084, 1914, 1665, 1532, 1466, 1120, 1029, 977, 771, $683 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3}$ OD) δ 7.53-7.45 (m, 2H), $7.42(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz, CD 3 OD) $\delta 158.4,156.5,139.7,129.0,126.4,124.4,116.6,104.3,56.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$191.0703, found 191.0704.
(5-(4-Nitrophenyl)furan-3-yl)methanol (72i): The title compound was prepared
 following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-nitrophenyl)ethan-1-one ($\mathbf{7 1 i}, 0.05 \mathrm{~g}, 0.210 \mathrm{mmol}$), $\operatorname{Bi}(O T f)_{3}(0.013 \mathrm{~g}, 0.021 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield $(0.042 \mathrm{~g}, 89 \%)$ as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$

EtOAc/ hexanes). IR (neat) 3862, 3738, 3615, 2936, 2404, 2313, 1600, 1518, 1433, 1341, 1217, 1107, 1022, 924, 856, 672, $624 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}$, $J=8.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5,146.7,141.4,136.4,128.1,124.5,124.1$, 109.1, 56.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+220.0604$, found 220.0605 .
(5-(4-Fluorophenyl)furan-3-yl)methanol (72j): The title compound was prepared
 following general procedure C using 1-(4-fluorophenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 j}, 0.05 \mathrm{~g}, 0.237 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.023 \mathrm{mmol})$ and $\operatorname{DCM}(0.5 \mathrm{~mL}):$ yield ($0.044 \mathrm{~g}, 98 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3686, 3601, 2926, 1708, 1612, 1518, 1424, 1310, 1047, 925, $672,624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.07$ (t, J = $8.63 \mathrm{~Hz}, 2 \mathrm{H}$), $6.63(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.6,161.2,154.1,139.4,127.3,127.2,125.8,125.7,116.0,115.8,104.9$, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]+193.0659$, found 193.0659.
(5-(3-(Trifluoromethyl)phenyl)furan-3-yl)methanol (72k): The title compound
 was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(3-(trifluoromethyl)phenyl)ethan-1one ($\mathbf{7 1 k}, 0.05 \mathrm{~g}, 0.192 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.0126 \mathrm{~g}, 0.019$ mmol) and DCM (0.5 mL): yield ($0.0434 \mathrm{~g}, 94 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3627, 3378, 3016, 2946, 2835, 2407, 1768, 1708, 1623, 1440, 1332, 1173, 1132, 1078, 1024, 926, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~s}$, $1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.4,140.1,131.5,129.4,127.6$, 126.9, 124.2, 124.1, 120.7, 120.68, 106.5, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~F}_{3}$ [M+H]+ 243.0627, found 243.0623.
(E)-(5-Styrylfuran-3-yl)methanol (721): The title compound was prepared
 following general procedure C using (E)-1-(3-hydroxyoxetan3 -yl)-4-phenylbut-3-en-2-one (711, $0.05 \mathrm{~g}, 0.229 \mathrm{mmol}$), $\operatorname{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.022 \mathrm{mmol})$ and $\operatorname{DCM}(0.5 \mathrm{~mL}):$ yield ($0.028 \mathrm{~g}, 62 \%$) as off white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat)
$3627,3375,3013,2946,2883,2407,2037,1632,1415,1110,1025,929,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.13 \mathrm{~Hz}$, $3 \mathrm{H}), 7.04(\mathrm{~d}, J=16.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=16.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,139.5,137.0,128.9,127.8,127.4,126.5$, 116.5, 108.6, 57.0. HRMS (ESI): m / z calcd for
(5-(4-((Triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72m): The title
 compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-((triisopropylsilyl)oxy)-phnyl)ethan-1-one ($\mathbf{7 1 m}, 0.05 \mathrm{~g}, 0.137 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}$ ($0.008 \mathrm{~g}, 0.013 \mathrm{mmol}$) and DCM (0.5 mL): yield (0.042 g , 89\%) as yellow solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3899, 3767, 3643, 3426, 3320, 2956, 2885, 2694, 2633, 2379, 1919, 1609, 1503, 1272, 1176, $1009,909,837,746,682 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.75 \mathrm{~Hz}, 3 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.12$ ($\mathrm{s}, 9 \mathrm{H}$), $1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,155.2,138.7,127.3$, 125.3, 124.1, 120.3, 103.6, 57.1, 18.1, 12.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{2} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]+347.2037$, found 347.2036.
(5-(4-((Tert-butyldimethylsilyl)oxy)phenyl)furan-3-yl)methanol (72n): The
 title compound was prepared following general procedure C using 1-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 n}, 0.05 \mathrm{~g}, 0.155 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.015 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL})$: yield ($0.043 \mathrm{~g}, 91 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3876, 3798, 3671, 3566, 3474, 3390, 2938, 2875, 2758, 2644, 2102, 1598, 1468, 1372, 1276, 913, 779, $661 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-$ $7.38(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,153.0,138.8,130.7,127.3,125.4,125.3$, 120.5, 120.3, 103.7, 57.1, 25.8, 18.1, -4.3; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]+305.1567$, found 305.1567 .
(5-(4-(Benzyloxy)phenyl)furan-3-yl)methanol (72o): The title com-pound was prepared following general procedure C using 1-(4-(benzyloxy)phenyl)-2-(3-
hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 0}, 0.05 \mathrm{~g}, 0.167 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf}) 3$ ($0.011 \mathrm{~g}, 0.016$
 mmol) and DCM (0.5 mL): yield ($0.045 \mathrm{~g}, 97 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3931, 3878, 3806, 3769, 3680, 3603, 3398, 3333, 3272, 3203, 2764, 2349, 1603, 1501, 1383, 1308, 1256, 1180, 1112, 1041,819, 735, $670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}$, $5 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , CDCl_{3}) $\delta 158.5,155.0,138.8,137.0,128.8,128.2,127.6,127.3,125.4,124.2,115.2$, 103.7, 70.2, 57.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$281.1172, found 281.1167.
(5-(4-((4-Methoxybenzyl)oxy)phenyl)furan-3-yl)metha-nol (72p): The title
 compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-((4-methoxybenzyl)-oxy)phenyl)ethan-1-one ($\mathbf{7 1 p}, 0.05 \mathrm{~g}, 0.152 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}$ $(0.009 \mathrm{~g}, 0.015 \mathrm{mmol})$ and DCM (0.5 mL): yield (0.034 g , 72%) as white solid TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/ hexanes). IR (neat) 3952, 3854, 3780, 3700, 3608, 3430, 3293, 3170, 3056, 2999, 2937, 2879, 2770, 2680, 2396, $2338,1923,1713,1520,1383,1255,1183,1117,1030,912,838,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H})$, 6.98 (d, $J=8.88 \mathrm{~Hz}, 2 \mathrm{H}$), 6.92 (d, $J=8.63 \mathrm{~Hz}, 2 \mathrm{H}$), 6.56 ($\mathrm{s}, 1 \mathrm{H}$), 5.01 ($\mathrm{s}, 2 \mathrm{H}$), 4.58 (s , $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,158.6,155.0,138.8,129.4$, 129.0, 127.3, 125.4, 124.1, 115.3, 114.2, 103.7, 70.0, 57.1, 55.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+311.1278$, found 311.1275.
(5-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)furan-3-yl)methanol (72q): The title
 compound was prepared following general procedure C using 1-(4-((tert-butyldiphenylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71q, 0.05 g, 0.111 $\mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.007 \mathrm{~g}, 0.011 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.037 \mathrm{~g}, 79 \%$) as white solid TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3892, 3822, 3747, 3681, 3278, 3082, 2955, 2876, 2762, 2352, 1625, 1509, 1263, 1180, 1110, 920, 838, 751, $706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.68(\mathrm{~m}$, 4 H), 7.47-7.33 (m, 9H), 6.77 (d, J = $8.75 \mathrm{~Hz}, 2 \mathrm{H}$), 6.49 (s, 1H), 4.55 (s, 2H), $1.10(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,155.1,138.7,135.6,132.8,130.1,128.0,127.2$, 125.2, 124.1, 120.1, 103.6, 57.1, 26.6, 19.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]+429.1880$, found 429.1881.
(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)methanol (72r): The title compound was
 prepared following general procedure C using 1-(2,5-bis(allyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71r, $0.05 \mathrm{~g}, 0.164 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.016 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.044 \mathrm{~g}, 95 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3923, 3800, 3545, 3438, 3095, 2936, 2881, 1767, 1653, 1610, 1503, 1431, 1284, 1218, 1013, 932, 809, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=3.00 \mathrm{~Hz}, 1 \mathrm{H})$, , $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.88$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{td}, J=1.50,17.14 \mathrm{~Hz}$, $2 \mathrm{H}), 5.36-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}, J=5.38 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,151.0,149.0,138.6,133.6,133.6,127.4,118.1,117.7,114.8$, 114.0, 112.2, 110.5, 77.5, 77.4, 76.8, 70.1, 69.6, 57.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+287.1278$ found 287.1277.
(5-(2,5-Bis((triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72s): The title
 compound was prepared following general procedure C using $\quad 1-(2,5-b i s((t r i i s o p r o p y l s i l y l) o x y) p h e n y l)-2-(3-$ hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 s}, 0.05 \mathrm{~g}, 0.0931 \mathrm{mmol}$), $\operatorname{Bi}(O T f)_{3}(0.006 \mathrm{~g}, 0.0093 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.03 \mathrm{~g}, 62 \%$) as colorless liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3894, 3793, 3706, 3645, 3313, 3166, 2958, 2881, 1491, 1390, 1221, 1012, 899, 824, $766,672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ ($\mathrm{s}, 1 \mathrm{H}$), $6.75(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=3.00,8.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 1.35-1.23$ (m, 6H), 1.13-1.10 (m, 36H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.8, 149.9, 146.6, 138.5, 127.2, 122.2, 119.8, 119.5, 117.7, 109.5, 57.2, 18.1, 18.1, 13.5, 12.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+519.3320$ found 519.3326 .

(5-(2,5-Dimethoxyphenyl)furan-3-yl)methanol
(72t):
The title com-pound was prepared following general procedure C using 1-(2,5-dimethoxyphenyl)-2-(3-
hydroxyoxetan-3-yl)ethan-1-one (71t, $0.05 \mathrm{~g}, 0.198 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.013 \mathrm{~g}, 0.019$ $\mathrm{mmol})$ and DCM (0.5 mL): yield ($0.034 \mathrm{~g}, 74 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc/ hexanes). IR (neat) 3021, 2943, 2403, 1765, 1601, 1503, 1456, 1042, 931, $670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=3.13 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=3.13,9.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,151.0,150.0,138.6$, 127.4, 120.3, 113.8, 112.4, 111.1, 110.4, 57.2, 56.0, 56.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 235.0965$, found 235.0963 .
(5-(Thiophen-3-yl)furan-3-yl)methanol (72u): The title compound was prepared
 following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(thiophen-3-yl)ethan-1-one ($\mathbf{7 1 u}, 0.05 \mathrm{~g}, 0.252 \mathrm{mmol}$), $\operatorname{Bi}(\mathrm{OTf})_{3}(0.016 \mathrm{~g}, 0.025 \mathrm{mmol})$ and $\operatorname{DCM}(0.5 \mathrm{~mL}):$ yield ($0.0432 \mathrm{~g}, 96 \%$) as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3863, 3736, 3601, 3391, 3112, 2938, 2880, 1723, 1566, 1482, 1413, 1025, 975, 941, 856, $674 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=$ $1.25,2.88 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.37$ (m, 1H), 7.33 (dd, $J=2.88,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (dd, $J=1.38$, $5.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,138.7$, 132.5, 127.0, 126.4, 124.7, 119.4, 104.9, 56.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]+181.0318$, found 181.0319 .
(5-(1-Methyl-1H-pyrrol-2-yl)furan-3-yl)methanol (72v): The title compound was
 prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(1-methyl-1H-pyrrol-2-yl)ethan-1one ($\mathbf{7 1 v}, 0.05 \mathrm{~g}, 0.256 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.016 \mathrm{~g}, 0.025$ mmol) and DCM (0.5 mL): yield ($0.042 \mathrm{~g}, 94 \%$) as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3884, 3830, 3787, 3670, 3543, 3334, 3131, 2969, 2754, 2499, 2383, 2346, 2125, 1630, 1469, 1317, 1266, 1175, 1030, 917, 794, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, 6.45-6.41 (m, 1H), $6.38(\mathrm{~s}, 1 \mathrm{H}), 6.18-6.14(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,138.3,126.7,124.8,124.3,108.9,107.9,105.3,56.7$, 35.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+178.0863$, found 178.0862 .
[2,2'-Bifuran]-4-ylmethanol (72w): The title compound was prepared following
 general procedure C using 1-(furan-2-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one ($\mathbf{7 1 w}, 0.05 \mathrm{~g}, 0.274 \mathrm{mmol}$), $\operatorname{Bi}(\mathrm{OTf})_{3}(0.018 \mathrm{~g}, 0.027 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.044 \mathrm{~g}, 98 \%$) as yellow solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3880, 3790, 3689, 3555, 3422, 3340, 3285, 2937, 2878, 2762, 2362, 2049, 1672, 1601, 1459, 1394, 1303, 1182, 1013, 883, 805, 785, $667 \mathrm{~cm}^{-}$ ${ }^{1}$; 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{dd}, J=0.75,1.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=0.88 \mathrm{~Hz}$, 1H), 6.58 (s, 1H), 6.55 (d, $J=3.38 \mathrm{~Hz}, 1 \mathrm{H}$), 6.45 (dd, $J=1.75,3.38 \mathrm{~Hz}, 1 \mathrm{H}$), 4.58-4.56 $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.5,146.4,142.1,139.1,127.1,111.5$, 105.6, 105.2, 56.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 165.0546$, found 165.0546.
(4-Methyl-5-phenylfuran-3-yl)methanol (72x): The title compound was prepared

72x following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-phenylpropan-1-one ($\mathbf{7 1 x}, \quad 0.05 \mathrm{~g}, \quad 0.242 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.015 \mathrm{~g}, 0.024 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.041 \mathrm{~g}, 91 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) $3413,3022,2928,2403,1761,1677,1436,1017,670 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (dd, $J=1.38,8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45-7.39 (m, 3H), 7.317.27 (m, 1H), $4.58(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,139.2$, 131.8, 128.7, 127.5, 127.1, 125.7, 115.8, 55.9, 9.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]+189.0910$, found 189.0908 .
(5-Nonyl-4-phenylfuran-3-yl)methanol (72y): The title compound was prepared
 following general procedure C using 1-(3-hydroxyoxetan-3-yl)-1-phenylundecan-2-one (71y, $0.05 \mathrm{~g}, 0.157 \mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.015 \mathrm{mmol})$ and DCM (0.5 mL): yield ($0.038 \mathrm{~g}, 81 \%$) as white solid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~ \delta ~ 7.44-7.31(\mathrm{~m}, 6 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.68-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.26-$ $1.22(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.7, 138.9, 130.1, 129.5, 128.7, 127.0, 125.2, 120.8, 56.0, 32.0, 29.4, 29.4, 28.6, 26.6, 22.8, 14.3.
(4,5,6,7-Tetrahydrobenzofuran-3-yl)methanol (72z): The title compound was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)cyclohexan-1-one (71z, $0.05 \mathrm{~g}, \quad 0.193$ $\mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.012 \mathrm{~g}, 0.019 \mathrm{mmol})$ and $\mathrm{DCM}(0.5 \mathrm{~mL}):$ yield ($0.043 \mathrm{~g}, 93 \%$) as colorless liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat) 3432, 3024, 2348, 2097, 1642, 1428, 1018, $669 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=6.00 \mathrm{~Hz}, 3 \mathrm{H}), 2.47-2.41$ $(\mathrm{m}, 3 \mathrm{H}), 1.82(\mathrm{dt}, J=3.75,5.82 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , CDCl_{3}) $\delta 152.0,138.0,124.6,116.6,77.5,76.8,56.1,23.3,23.0,22.9,20.7$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+153.0915$, found 153.0905.
(5-(4-Methoxyphenyl)-4-phenylfuran-3-yl)methanol (72aa): The title compound
 was prepared following general procedure C using 2-(3-hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)-2-phenylethan-1-one (71aa, $0.05 \mathrm{~g}, 0.167 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}(0.010 \mathrm{~g}, 0.016$ mmol) and DCM (0.5 mL): yield ($0.045 \mathrm{~g}, 98 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3870, 3782, 3665, 3550, 3465, 3334, 3273, 3081, 2938, 2876, 2760, 2548, 2400, 2053, 1754, 1608, 1454, $1258,1183,1031,842,780,671 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.44-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.1,149.9,139.2,133.4,130.0,129.0,127.6,127.4,127.2$, 123.8, 120.5, 113.9, 55.8, 55.4; HRMS (ESI): m/z calcd for C18H17O3 [M+H]+ 281.1172, found 281.1167.
(5-(4-Chlorophenyl)-4-phenylfuran-3-yl)methanol (72ab): The title compound
 was prepared following general procedure C using 1-(4-chlorophenyl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1one (71ab, $0.05 \mathrm{~g}, 0.165 \mathrm{mmol}$), $\mathrm{Bi}(\mathrm{OTf})_{3}$ ($0.010 \mathrm{~g}, 0.016$ mmol) and DCM (0.5 mL): yield ($0.041 \mathrm{~g}, 87 \%$) as white solid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3900, 3799, 3753, 3635, 3434, 3304, 3063, 2942, 2881, 2703, 2546, 2421, 2335, 2136, 1961, 1766, 1601, 1488, 1265, 1093, 1018, 835, 769, $704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.54$ (m, 1H), 7.46-7.30 (m, 7H), 7.22-7.17 (m, 2H), 4.47 (d, $J=0.75 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz, CDCl_{3}) $\delta 148.8,140.0,133.3,132.9,129.9,129.5,129.2,128.7,128.0$,
127.5, 127.0, 122.5, 55.7; HRMS (ESI): m/z calcd for C17H14O2Cl [M+H]+ 285.0677, found 285.0673.
(3-Phenyl-[2,2'-bifuran]-4-yl)methanol (72ac): The title compound was prepared
 following general procedure C using 1-(furan-2-yl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ac, $0.05 \mathrm{~g}, 0.193$ $\mathrm{mmol}), \mathrm{Bi}(\mathrm{OTf})_{3}(0.012 \mathrm{~g}, 0.019 \mathrm{mmol})$ and DCM (0.5 mL): yield $(0.043 \mathrm{~g}, 93 \%)$ as colorless liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/ hexanes). IR (neat)3426, 3022, 2402, 2350, 1641, 1523, 1426, 1022, 927, 670 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.35(\mathrm{dd}, J=1.75$, $3.38 \mathrm{~Hz}, 1 \mathrm{H}$), $6.30(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 146.0, 142.7, 142.1, 140.0, 132.0, 129.9, 128.7, 127.9, 126.9, 121.7, 111.3, 107.0, 55.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+241.0859$, found 241.0863.

5-(2,5-Bis(allyloxy)phenyl)furan-3-carbaldehyde (80): To the furyl alcohol 72r
 ($2.1 \mathrm{~g}, 7.33 \mathrm{mmol}$) in dry DCM, Dess Martin Periodinane (DMP, $6.22 \mathrm{~g}, 14.6 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at the same temperature. The reac-tion progress was monitored by TLC. After completion of the reaction it was quenched with 1:1 ratio of saturated aqueous solution of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and and the aqueous layer was extracted with DCM ($3 \times 50 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product $\mathbf{8 0}(1.77 \mathrm{~g}$, 85\%). TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). IR (neat) 3885, 3806, 3664, 3598, 3443, 3354, 2934, 2877, 2761, 2606, 2351, 2214, 2047, 1690, 1606, 1504, 1427, 1382, 1283, 1227, 1146, 1029, 933, 811, $667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95$ (s, 1H), 8.07 (s, 1H), 7.42 (d, J = $3.00 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 ($\mathrm{s}, 1 \mathrm{H}$), 6.94-6.87 (m, 1H), 6.87-6.80 (m, 1H), 6.17-6.01 (m, 2H), 5.47-5.38 (m, 2H), 5.34-5.26 (m, 2H), 4.63 (d, J = 5.38 Hz, $2 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=5.38 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.9,152.8,149.9$, $149.4,133.5,133.2,130.6,119.3,118.4,117.8,115.7,113.9,112.6,106.6,77.5,76.8$, 70.0, 69.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+$ 285.1121, found 285.1120.

4,4,5,5-Tetramethyl-2-(2-methylbut-3-en-2-yl)-1,3,2-dioxaborolane (83): To а

83 suspension of Mg turnings ($1.03 \mathrm{~g}, 39.3 \mathrm{mmol}$) in THF, pinacol borane ($82,5 \mathrm{~g}, 43.2 \mathrm{mmol}$) and prenyl bromide ($\mathbf{8 1}, 9.09 \mathrm{~mL}, 78.7 \mathrm{mmol}$) were added dropwise and th reaction was stirred for 0.5 h at room temperature and then another equivalent of prenyl bromide were added to the reaction mixture. The reaction was stirred for additional 2 h at room temperature then diluted with hexane and quenched with 0.1 N HCl solution at $0{ }^{\circ} \mathrm{C}$. After that the organic layer was separated and aqueous layer was extracted with hexane. Then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and used for next step without purification. TLC: $R_{f}=0.9$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3891, 3782, 3632, 3431, 3293, 2955, 2387, 2321, 2133, 1469, 1389, 1264, 1023, 803, $686 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}$ 197.1707, found 197.1707.
(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78): To
 an oven dried 100 ml RBF with a stirring bar (S)-TRIP ($0.264 \mathrm{~g}, 5.27 \mathrm{mmol}$) and $4 \AA \mathrm{MS}$ were added in N_{2} atmosphere. Then aldehyde $\mathbf{8 0}$ in dry toluene were added to this mixture drop-wise at room temperature. The reaction mixture was cooled to $-60^{\circ} \mathrm{C}$ and a solution of borane ester $83(1.03 \mathrm{~g}, 5.77$ mmol) in dry toluene were added dropwise over 20 minutes. The reaction mixture was stirred at the same temperature for 30 h . then After completion of the reaction, it was filtered through sintered funnel and solvent was evaporated under vacuum. The crude product was purified using silica gel column chromatography to afford the desired product prenyl alcohol $78(1.01 \mathrm{~g}, 81 \%, 94 \% \mathrm{ee})$ as yellow liquid. TLC: $R_{f}=$ $0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $\mathrm{iPrOH}=90: 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\left.\mathrm{nm}, \mathrm{t}_{\text {major }}=11.18 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.22 \mathrm{~min}\right), e e=94 \%,[\alpha]_{\mathrm{D}} 28.73=-12.81\left(c=2.1, \mathrm{CHCl}_{3}\right)$. IR (neat) 3894, 3791, 3601, 3542, 3426, 3320, 2942, 2559, 2490, 2343, 1716, 1489, $1283,1214,1015,927,805,691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=3.00 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=0.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=$ $3.13,9.01 \mathrm{~Hz}, 1 \mathrm{H}$), $6.17-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{qdd}, J=1.63,4.88,17.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.29$
(qdd, $J=1.38,9.13,10.51 \mathrm{~Hz}, 2 \mathrm{H}), 5.23-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=6.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (td, $J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.73(\mathrm{~m}$, $3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,150.6,149.0,137.7,135.8$, 133.7, 133.6, 131.0, 121.0, 119.7, 117.9, 117.7, 114.7, 114.1, 112.1, 109.4, 70.1, 69.6, 67.2, 36.9, 26.1, 18.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 355.1904$ found 355.1902 .

(S)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan

(84): To the suspension of $\mathrm{NaH}(0.006 \mathrm{~g}, 0.028 \mathrm{mmol})$ in dry THF (1 mL), alcohol $78(0.1 \mathrm{~g}, 0.028 \mathrm{mmol})$ in dry THF $(2 \mathrm{~mL})$ were added dropwise at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 10 minutes at the same temperature. After that Mel ($0.02 \mathrm{~mL}, 0.042 \mathrm{mmol}$) dissolved in THF (0.5 mL) were added to this dropwise and the reaction was stirred for overnight at room temperature. After completion of the reaction, it was quenched with water and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, fil-tered and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 84 $(0.097 \mathrm{~g}, 94 \%)$ as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was deter-mined by HPLC (CHIRALPAK AD-H column, n hexane: $i-\mathrm{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=4.74 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.06$ \min), $e e=90 \%,[\alpha] \mathrm{D}^{28.73}=-+1.27\left(c=0.5, \mathrm{CHCl}_{3}\right.$). IR (neat) 3929, 3789, 3670, 3600, $3555,3460,3392,3332,3216,2938,2760,2363,1775,1502,1441,1379,1286$, $1225,1106,1016,940,816,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=3.00 \mathrm{~Hz}$, 1 H), $7.37(\mathrm{~s}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=3.13,9.01$ $\mathrm{Hz}, 1 \mathrm{H}), 6.09(\mathrm{dtd}, J=2.13,5.25,10.51 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.39(\mathrm{~m}, 2 \mathrm{H})$, 5.33-5.25 (m, 2H), 5.18-5.11 (m, 1H), 4.60 (td, $J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{td}, J=1.50$, $5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.0, 150.7, 149.0, 138.9, 133.8, 133.7, 133.6, 128.1, 121.0, 120.1, 117.9, 117.7, 114.6, 114.1, 112.1, 109.7, 76.2, 70.1, 69.6, 56.4, 35.2, 25.9, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+369.2060$, found 369.2062 .

Shikonofuran J (41): To the methoxy furan $84(0.075 \mathrm{~g}, 0.20 \mathrm{mmol})$, in dry MeOH (2 $\mathrm{mL}) \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.023 \mathrm{~g}, 0.020 \mathrm{mmol})$ were added at room temperature and the

(+)-Shikonofuran J (41) reaction was stirred for 5 minutes then activated $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.168 \mathrm{~g}, 1.21 \mathrm{mmol}$) were added to the reaction mixture and the reaction was refluxed for 15 minutes. After completion of reaction, MeOH was removed under vaccum and the residue was treated with 2 N HCl , and the aqueous layer was ex-tracted with EtOAc ($3 \times 10 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 41 ($0.042 \mathrm{~g}, 72 \%$) as yellow liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}$). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane:i$\operatorname{PrOH}=90: 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=21.09 \mathrm{~min}, \mathrm{t}_{\text {major }}=21.90$ $\min), e e=90 \%,[\alpha]_{\mathrm{D}}{ }^{28.73}=-+7.07(c=0.5, \mathrm{MeOH})$. ECD ($4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}$) ($\Delta \varepsilon$) $\lambda_{\max }$ at $283(-0.180), 245(-0.134)$ and 213 (+0.187); IR (neat) 3869, 3775, 3638, 3446, 3352, 3176, 2941, 2768, 2635, 2562, 2396, 2328, 1957, 1522, 1459, 1360, 1205, 1086, 806, $690 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.42$ ($\mathrm{s}, 1 \mathrm{H}$), 7.17 (d, J = 3.05 Hz , 1H), 6.95 (s, 1H), 6.71 (d, $J=8.54 \mathrm{~Hz}, 1 \mathrm{H}$), 6.55 (dd, $J=3.05,8.85 \mathrm{~Hz}, 1 \mathrm{H}$), 5.16-5.12 (m, 1H), 4.16 (t, J = 6.71 Hz, 1H), 3.27 (s, 3H), 2.58-2.49 (m, 1H), 2.44-2.36 (m, 1H), 1.68 (s, 3H), 1.59 (s, 3H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 153.0,151.2,148.2$, 140.0, 134.7, 129.0, 121.4, 119.9, 117.7, 116.1, 112.7, 109.6, 77.7, 56.5, 36.1, 26.1, 18.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+289.1434$, found 289.1432.
(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyr-
 ate (86): To the prenyl alcohol $78(0.2 \mathrm{~g}, 0.56 \mathrm{mmol})$ in dry DCM (2 mL), DMAP ($0.006 \mathrm{~g}, 0.0056 \mathrm{mmol}$) and then $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.12 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. then isobutyryl chloride 85 ($0.07 \mathrm{~mL}, 0.67 \mathrm{mmol}$) were added dropwise at the same temper-ature. The reaction mixture was stirred for 3 h at room temperature. After completion of the reaction, water were added, and the aqueous layer was extracted with DCM (3 x 50 mL), then the combined organic layer was washed with aq. 2 M NaOH and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by
silica gel column chromatography to afford the desired product 86 ($0.206 \mathrm{~g}, 86 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, n-hexane: $i \operatorname{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, tmajor $=5.24 \mathrm{~min}$, tminor $=6.36 \mathrm{~min}), e e=92 \%$, $[\alpha]_{\mathrm{D}} 26.65=-29.96\left(c=1.85, \mathrm{CHCl}_{3}\right)$. IR (neat) 3904, 3795, 3696, 3435, 3315, 2935, 2882, 2646, 2492, 2330, 2132, 1738, 1503, 1211, 1023, 935, 809, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{dd}, J=3.13,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (qdd, J $=1.63,9.25,17.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.34-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{tt}, J=1.38,7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (td, J $=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}$), $4.54(\mathrm{td}, \mathrm{J}=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.47(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.67(\mathrm{~m}$, $3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,153.0,150.5,149.0,138.7,134.8,133.7,133.6,127.3,120.9$, $119.1,117.9,117.7,114.7,114.2,112.1,109.7,70.2,69.6,68.5,34.3,33.8,25.9,19.1$, 19.0, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+425.2323$, found 425.2319.

1-(5-(2-(Allyloxy)-5-hydroxyphenyl)furan-3-yl)-4-methylpent-3-en-1-yl

isobutyrate (87): yellow colored liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, 30% EtOAc/ hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (s, $1 \mathrm{H}), 7.07(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}$), 6.70 (s, 1H), 6.44 (br. s., 1H), 6.11-6.00 (m, 1H), $5.77(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{qd}, J=$ $1.50,17.26 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (dd, $J=1.38,10.51 \mathrm{~Hz}, 1 \mathrm{H}$), $5.09(\mathrm{t}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (td, $J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.47(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.00 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$385.2010, found 385.2011.

4-(Allyloxy)-3-(4-(1-hydroxy-4-methylpent-3-en-1-yl)furan-2-yl)phenol (88):

 yellow colored liquid. TLC: $R_{f}=0.3\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.41(\mathrm{~d}, J=2.93 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.80$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.72-6.63 (m, 1H), 6.19-6.02 (m, 1H), 5.47-5.37 (m, $1 \mathrm{H}), 5.30-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 2 \mathrm{H})$, 4.50 (td, $J=1.49,5.19 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53-2.40 (m, 2H), 1.70 (s, 3H), 1.63 ($\mathrm{s}, 3 \mathrm{H}$); HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+315.1591$, found 315.1585.

2-(4-(1-Hydroxy-4-methylpent-3-en-1-yl)furan-2-yl)benzene-1,4-diol (89): Red

colored liquid. TLC: $R_{f}=0.2\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $)$. IR (neat) 3022, 2929, 2402, 1721, 1517, 1432, 1021, 929, 670 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $3.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 1 \mathrm{H})$, 6.55 (dd, $J=3.00,8.63 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{tt}, J=1.36,7.14 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{t}, J=6.69 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+275.1278$, found 275.1275.

Shikonofuran D (42): To the isobutyryl ester $86(0.073 \mathrm{~g}, 0.17 \mathrm{mmol})$ in dry MeOH
 (2 mL), $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.122 \mathrm{~g}, 0.51 \mathrm{mmol})$ were added at 0 ${ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.032 \mathrm{~g}, 0.85 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 42 $(0.026 \mathrm{~g}, 44 \%)$ as reddish liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, n hexane: $\mathrm{iPrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=15.32 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $17.51 \mathrm{~min}), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{31.77}=-25.32\left(c=0.2, \mathrm{CHCl}_{3}\right)$. ECD ($\left.4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}\right)$ $\lambda_{\max }(\Delta \varepsilon)$ at $322 \mathrm{~nm}(-1.10), 274 \mathrm{~nm}(-1.29)$ and $204 \mathrm{~nm}(-3.23)$; IR (neat) 3778,3645 3528, 3269, 3167, 2936, 2872, 2701, 2387, 2129, 1752, 1468, 1267, 1184, 861, 809, $737,625 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=8.63 \mathrm{~Hz} 1 \mathrm{H}$), 6.72-6.65 (m, 2H), 6.44 (br. s., 1 H), 5.77 (t, $J=6.75 \mathrm{~Hz}, 1 \mathrm{H}$), $5.14-$ 5.03 (m, 1H), 4.89 (br. s., 1H), 2.71-2.45 (m, 3H), 1.71-1.67 (m, 3H), 1.62 (s, 3H), 1.19$1.17(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8,152.5$, 149.3, 146.7, 138.9, 135.2, 127.3, 118.7, 118.2, 117.0, 116.6, 112.2, 106.8, 68.3, 34.3, 33.7, 25.9, 19.1, 19.0, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+345.1697$, found 345.1692.

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl-3-

methylbut-2-enoate (91): To the stirred solution of prenyl alcohol 78 ($0.2 \mathrm{~g}, 0.56$ mmol) in dry DCM (4 mL) DCC ($0.186 \mathrm{~g}, 0.090 \mathrm{mmol}$) and DMAP ($0.006 \mathrm{~g}, 0.056$
mmol) were added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 minutes. After

that 3-methylbut-2-enoic acid 90 ($0.067 \mathrm{~g}, 0.067 \mathrm{mmol}$) were added to this. The reaction was stirred for 12 h at room temperature. After completion of the reaction it was quenched with water and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 91 ($0.22 \mathrm{~g}, 89 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n hexane: $i \operatorname{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=5.43 \mathrm{~min}, \mathrm{t}_{\text {major }}=5.95$ $\mathrm{min}), e e=88 \%,[\alpha]_{\mathrm{D}}{ }^{28.73}=-14.35\left(c=0.5, \mathrm{CHCl}_{3}\right)$. IR (neat) $3905,3804,3763,3650$, 3572, 3433, 3316, 2962, 2923, 2861, 1721, 1647, 1497, 1452, 1376, 1273, 1222, 1137, 1026, 804, $672 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=3.00$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=3.00,8.88,1 \mathrm{H}$), 6.17$6.01(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{qdd}, J=1.63,9.76$, $17.26 \mathrm{~Hz}, 2 \mathrm{H}$), $5.29(\mathrm{qt}, J=1.25,10.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=1.38$, $5.25 \mathrm{~Hz}, 2 \mathrm{H}$), 4.54 (td, $J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=1.25 \mathrm{~Hz}$, 3 H), 1.89 (d, $J=1.25 \mathrm{~Hz}, 3 \mathrm{H}$), 1.70-1.67 (m, 3H), 1.62 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.1,156.8,153.0,150.4,149.0,138.9,134.8,133.6,133.6,127.3,121.0$, 119.1, 117.8, 117.7, 116.4, 114.6, 114.1, 112.1, 109.9, 70.1, 69.6, 67.8, 33.8, 27.6, 25.9, 20.4, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 437.2323$, found 437.2317.

Shikonofuran E (43): To the ester 91 ($0.15 \mathrm{~g}, 0.343 \mathrm{mmol}$) in dry MeOH (2 mL),

Shikonofuran E (43) $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.245 \mathrm{~g}, 1.03 \mathrm{mmol})$ were added at $-60{ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.013 \mathrm{~g}, 0.343 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 43 ($0.083 \mathrm{~g}, 68 \%$) as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $\mathrm{iPrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=6.74 \mathrm{~min}$,
$\left.t_{\text {major }}=7.68 \mathrm{~min}\right), e e=66 \%, \%,[\alpha] \mathrm{D}^{30.49}=-62.40\left(c=0.1, \mathrm{CHCl}_{3}\right)$; ECD $(4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $\left.316 \mathrm{~nm}-2.56\right), 274 \mathrm{~nm}(-2.59), 245 \mathrm{~nm}(-1.79)$ and a positive Cotton effect at $227 \mathrm{~nm}(+0.549)$; IR (neat) 3894, 3841, 3784, 3652, 3544, 3422, 3379, 3327, 2986, 2937, 2777, 2706, 2632, 2551, 2334, 2053, 1952, 1845, 1697, 1457, 1230, 1161, 1085, 1022, 768, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (s, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.66(\mathrm{~m}, 1 \mathrm{H})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.48$ ($\mathrm{m}, 2 \mathrm{H}$), $2.17(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,157.7,152.5,149.3,146.6,139.0,135.2$, $127.4,118.8,118.2,117.0,116.6,116.1,112.2,106.8,67.7,33.8,27.6,25.9,20.5,18.1 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+357.1697$, found 357.1691

Shikonofuran C (44): To the ester $91(0.10 \mathrm{~g}, 0.229 \mathrm{mmol})$ in dry MeOH (2 mL),

filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 44 (0.059 g, 71\%) as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane: $\mathrm{PrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, tminor $=7.89 \mathrm{~min}$, tmajor $=9.10 \mathrm{~min}), e e=94 \%$, $[\alpha]_{\mathrm{D}}{ }^{27.51}=-58.05\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;$ ECD $(4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $321 \mathrm{~nm}(-$ 1.76), $283 \mathrm{~nm}(-1.68), 260 \mathrm{~nm}(-1.19)$ and $224 \mathrm{~nm}(-3.02)$; IR (neat) 3863, 3780, 3710, 3611, 3548, 3442, 3352, 3274, 3198, 3136, 3094, 2978, 2936, 2884, 2764, 2628, 2552, 2505, 2431, 2373, 2326, 2209, 2109, 2049, 1998, 1891, 1717, 1509, $1452,1360,1291,1202,1110,1038,989,875,817,753,708,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-$ $6.64(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=7.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (br. s., $1 \mathrm{H}), 2.68-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.69$ ($\mathrm{s}, 3 \mathrm{H}$), $1.62(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{dd}, J=1.13,6.63 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.9, 152.5, 149.4, 146.6, 139.1, 135.3, 127.2, 118.7, 118.2, 117.1, 116.6, 112.2,
106.9, 68.3, 43.9, 33.7, 26.0, 25.9, 22.5, 18.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]+359.1853$, found 359.1848.

(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78a): To

 an oven dried 100 ml RBF with a stirring bar (R)-TRIP $(0.264 \mathrm{~g}, 5.27 \mathrm{mmol})$ and $4 \AA \mathrm{MS}$ were added in N_{2} atmosphere. Then aldehyde $\mathbf{8 0}(1 \mathrm{~g}, 3.51 \mathrm{mmol})$ in dry toluene were added to this mixture drop-wise at room temperature. The reaction mixture was cooled to $-60{ }^{\circ} \mathrm{C}$ and a solution of borane ester $\mathbf{8 3}$ ($1.03 \mathrm{~g}, 5.77 \mathrm{mmol}$) in dry toluene were added dropwise over 20 minutes. The reaction mixture was stirred at the same temperature for 30 h . then After completion of the reaction, it was filtered through sintered funnel and solvent was evaporated under vacuum. The crude product was purified using silica gel column chromatography to afford the desired product prenyl alcohol 78a ($0.97 \mathrm{~g}, 79 \%, 94 \%$ ee) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane: $\mathrm{iPrOH}=90: 10$, flow rate $\left.=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=11.32 \mathrm{~min}, \mathrm{t}_{\text {major }}=13.20 \mathrm{~min}\right), e e=93 \%$, $[\alpha]_{\mathrm{D}}^{32.24}=+13.38\left(c=1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=3.13 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=3.00,8.88$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.17-6.01 (m, 2H), 5.46-5.40 (m, 2H), 5.22-5.18 (m, 2H), 5.17-5.24 (m, 1H), $4.69(\mathrm{t}, J=6.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{td}, J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H})$, 2.57-2.45 (m, 2H), 1.77-1.72 (m, 3H), 1.66 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0$, 150.6, 149.0, 137.7, 135.8, 133.7, 133.6, 131.0, 121.0, 119.7, 117.9, 117.7, 114.7, 114.1, 112.1, 109.4, 70.1, 69.6, 67.2, 36.9, 26.1, 18.2;

(R)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan

(84a): To the suspension of $\mathrm{NaH}(0.006 \mathrm{~g}, 0.028 \mathrm{mmol})$ in dry THF (1 mL), alcohol 78a ($0.1 \mathrm{~g}, 0.028 \mathrm{mmol}$) in dry THF (2 mL) were added dropwise at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 10 minutes at the same temperature. After that MeI ($0.02 \mathrm{~mL}, 0.042 \mathrm{mmol}$) dissolved in THF (0.5 mL) were added to this dropwise and the reaction was stirred for overnight at room temperature. After completion of the reaction, it was quenched with water and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), then the combined organic layer was washed with
brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, fil-tered and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 84a ($0.097 \mathrm{~g}, 94 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was deter-mined by HPLC (CHIRALPAK AD-H column, n -hexane: $i-\mathrm{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=4.70 \mathrm{~min}$, $\left.\mathrm{t}_{\text {major }}=5.01 \mathrm{~min}\right), e e=90 \%,[\alpha]_{\mathrm{D}} 28.73=-1.94\left(c=1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.43(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.04(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{td}, J=1.75,17.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.31-5.27$ $(\mathrm{m}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=5.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=5.25 \mathrm{~Hz}, 2 \mathrm{H})$, $4.13(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}$, 3H), 1.59 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.0, 150.7, 149.0, 138.9, 133.8, 133.7, 133.6, 128.1, 121.0, 120.2, 117.9, 117.7, 114.6, 114.1, 112.1, 109.7, 77.5, 76.8, $76.2,70.1,69.6,56.4,35.2,25.9,18.1$
ent-Shikonofuran J (41a): To the methoxy furan 84a ($0.026 \mathrm{~g}, 0.0705 \mathrm{mmol}$), in dry
 $\mathrm{MeOH}(1 \mathrm{~mL}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.008 \mathrm{~g}, 0.00705 \mathrm{mmol})$ were added at room temperature and the reaction was stirred for 5 minutes then activated $\mathrm{K}_{2} \mathrm{CO}_{3}(0.058 \mathrm{~g}, 0.423 \mathrm{mmol})$ were added to the reaction mixture and the reaction was refluxed for 15 minutes. After completion of the reaction, MeOH was removed under vaccum and the residue was treated with 2 N HCl , and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), then the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 41a ($0.015 \mathrm{~g}, 75 \%$) as yellow liquid. TLC: $R_{f}=0.4$ ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=31.46$ $\left.\min , t_{\text {minor }}=34.06 \mathrm{~min}\right), e e=90 \%,[\alpha]_{\mathrm{D}^{27.13}}=-7.63(c=0.5, \mathrm{MeOH}) ;$ ECD $(4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $283(-0.018), 245(+0.026)$ and $\left.213(-0.312) \mathrm{nm}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=3.05 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.54 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56(\mathrm{dd}, J=3.05,8.54 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.71 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ $(\mathrm{s}, 3 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(126 MHz, CD 3 OD) $\delta 153.0,151.2,148.2,140.0,134.7,129.0,121.4,119.9,117.7$, 116.1, 112.7, 109.6, 77.6, 56.5, 36.1, 26.1, 18.2
(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86a): To the prenyl alcohol 78a ($0.2 \mathrm{~g}, 0.56 \mathrm{mmol}$) in
 dry DCM (2 mL), DMAP ($0.006 \mathrm{~g}, 0.0056 \mathrm{mmol}$) and then $\operatorname{Et} 3 \mathrm{~N}(0.15 \mathrm{~mL}, 1.12 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. then isobutyryl chloride 85 ($0.07 \mathrm{~mL}, 0.67 \mathrm{mmol}$) were added dropwise at the same temper-ature. The reaction mixture was stirred for 3 h at room temperature. After completion of the reaction, water were added, and the aqueous layer was extracted with DCM (3 x 50 mL), then the combined organic layer was washed with aq. 2 M NaOH and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 86a ($0.198 \mathrm{~g}, 83 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, nhexane: $i \operatorname{PrOH}=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=5.27 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $6.36 \mathrm{~min}), e e=92 \%,[\alpha]_{\mathrm{D}} 26.72=+30.84\left(c=0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=3.13,9.01 \mathrm{~Hz}$, 1 H), 6.16-6.02 (m, 2H), $5.79(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (qdd, $J=1.63,9.76,17.26 \mathrm{~Hz}$, $2 \mathrm{H}), 5.34-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=1.38,6.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=$ $1.50,6.75 \mathrm{~Hz}, 2 \mathrm{H}$), 2.68-2.47 (m, 3H), 1.71-1.67 (m, 3H), $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=7.00$ $\mathrm{Hz}, 3 \mathrm{H}$), $1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,153.0,150.5$, 149.0, 138.7, 134.8, 133.6, 133.6, 127.2, 120.9, 119.0, 117.9, 117.7, 114.7, 114.1, $112.1,109.7,70.1,69.6,68.4,34.3,33.8,25.9,19.1,19.0,18.1$
ent-Shikonofuran D (42a): To the isobutyryl ester 86a ($0.062 \mathrm{~g}, 0.146 \mathrm{mmol}$) in dry
 $\mathrm{MeOH}(2 \mathrm{~mL}), \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.104 \mathrm{~g}, 0.438 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.027 \mathrm{~g}, 0.73 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was
concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 42a ($0.023 \mathrm{~g}, 46 \%$) as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. The enantiomeric purity was determined by HPLC (CHIRALART Cellulose-SC column, n-hexane: $\mathrm{iPrOH}=95: 5$, flow rate $=1$ $\left.\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.52 \mathrm{~min}, \mathrm{t}_{\text {major }}=17.30 \mathrm{~min}\right), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{26.54}=$ $+26.19\left(c=1.3, \mathrm{CHCl}_{3}\right) ; \mathrm{ECD}(4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $323 \mathrm{~nm}(+1.39), 267$ $\mathrm{nm}(+6.00)$ and $207 \mathrm{~nm}(+2.50) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=$ $3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{t}, \mathrm{J}=6.82$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.12-5.06 (m, 1H), 4.53 (br. s., 1H), 2.67-2.47 (m, 3H), 1.69 (s, 3H), 1.63 (s, $4 \mathrm{H}), 1.18(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.6, 152.5, 149.3, 146.7, 138.9, 135.2, 127.3, 118.7, 118.2, 117.0, 116.6, 112.2, $106.8,68.1,34.3,33.7,25.9,19.1,19.0,18.1$.

(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl-3-

methylbut-2-enoate (91a): To the stirred solution of prenyl alcohol 78a ($0.287 \mathrm{~g}, 0.809 \mathrm{mmol}$) in dry DCM (4 $\mathrm{mL})$ DCC ($0.267 \mathrm{~g}, 1.29 \mathrm{mmol}$) and DMAP ($0.009 \mathrm{~g}, 0.080$ mmol) were added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 minutes. After that 3-methylbut-2-enoic acid $90(0.067 \mathrm{~g}, 0.067 \mathrm{mmol})$ were added to this. The reaction was stirred for 12 h at room temperature. After completion of the reaction it was quenched with water and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaccuo and the resulting crude product was purified by silica gel column chromatography to afford the desired product 91a ($0.298 \mathrm{~g}, 84 \%$) as yellow liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n-hexane: $\mathrm{PrOH}=95: 5$, flow rate $\left.=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.22 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.96 \mathrm{~min}\right), e e=92 \%,[\alpha]_{\mathrm{D}}^{31.57}=$ $+53.23\left(c=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=3.00,8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{t}, J=$ $6.75 \mathrm{~Hz}, 1 \mathrm{H}$), $5.72-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{qdd}, J=1.63,9.38,17.26 \mathrm{~Hz}, 2 \mathrm{H}), 5.34-5.24(\mathrm{~m}$, $2 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=1.50,5.38 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{td}, J=1.50,5.25 \mathrm{~Hz}, 2 \mathrm{H})$, 2.67-2.48 (m, 2H), 2.17 (d, $J=1.13 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}$, 3 H), $1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,156.8,153.0,150.4,149.0$,
138.9, 134.8, 133.7, 133.6, 127.4, 119.2, 117.8, 117.7, 116.5, 114.7, 114.2, 112.1, 109.9, 70.2, 69.6, 67.9, 33.8, 27.6, 25.9, 20.4, 18.1
ent-Shikonofuran E (43a): To the ester 91a ($0.251 \mathrm{~g}, 0.574 \mathrm{mmol}$) in dry MeOH (4
 $\mathrm{mL}), \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.409 \mathrm{~g}, 1.72 \mathrm{mmol})$ were added at $-60^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.022 \mathrm{~g}, 0.574 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 43a ($0.113 \mathrm{~g}, 55 \%$) as reddish liquid. TLC: $R_{f}=0.4$ ($\left.\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} / \mathrm{hexanes}\right)$. The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, nhexane: $\mathrm{iPrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=6.82 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $7.70 \mathrm{~min}), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{30.40}=+68.26\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right)$; $\mathrm{ECD}(4.3 \times 10-4 \mathrm{M}, \mathrm{MeOH}) \lambda_{\text {max }}$ $(\Delta \varepsilon)$ at $319 \mathrm{~nm}(+3.39), 270 \mathrm{~nm}(+5.69), 227 \mathrm{~nm}(+6.33)$ and $212 \mathrm{~nm}(+3.34) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.75 \mathrm{~Hz}$, 1H), 6.70 (s, 1H), 6.67 (dd, $J=2.88,8.63 \mathrm{~Hz}, 1 \mathrm{H}$), $5.78(\mathrm{t}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.68$ (m, 1H), 5.13-5.05 (m, 1H), 2.67-2.57 (m, 1H), 2.57-2.48 (m, 1H), 2.19-2.15 (m, 3H), 1.92-1.87 (m, 3H), 1.68 ($\mathrm{s}, 3 \mathrm{H}$), $1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,157.7$, $152.4,149.3,146.6,139.0,135.2,127.4,118.8,118.2,117.1,116.6,116.2,112.2$, 106.9, 67.7, 33.8, 27.6, 25.9, 20.5, 18.2
ent-Shikonofuran C (44a): To the ester 91a ($0.150 \mathrm{~g}, 0.343 \mathrm{mmol}$) in dry MeOH (4
 $\mathrm{mL}), \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.245 \mathrm{~g}, 1.03 \mathrm{mmol})$ were added at $-40^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.052 \mathrm{~g}, 1.37 \mathrm{mmol})$ were added at the same temperature. The reaction was stirred for 10 minutes. After completion of the reaction, it was quenched with MeOH and stirred for another 20 minutes. Then it was filtered through celite and the filtrate was concentrated and the crude product was purified by silica gel column chromatography to afford the desired product 44a (0.078 g , 64\%) as reddish liquid. TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). The enantiomeric purity was determined by HPLC (CHIRALPAK AD-H column, n -hexane: $\mathrm{PrOH}=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.92 \mathrm{~min}$,
$\left.t_{\text {minor }}=9.14 \mathrm{~min}\right), e e=92 \%,[\alpha]_{\mathrm{D}}{ }^{27.96}=+57.56\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$; $\mathrm{ECD}(4.3 \times 10-4 \mathrm{M}$, $\mathrm{MeOH}) \lambda_{\max }(\Delta \varepsilon)$ at $321 \mathrm{~nm}(0.79), 277 \mathrm{~nm}(+2.82), 269 \mathrm{~nm}(+4.07)$ and 220 nm (+2.28); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.05(\mathrm{~m}$, $1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.69$ ($\mathrm{s}, 3 \mathrm{H}$), $1.62(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=1.38 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,152.5,149.3,146.7,139.0,135.3,127.2,118.7,118.2,117.1$, $116.6,112.2,106.9,68.3,43.8,33.7,26.0,25.9,22.5,18.1$

2.2.9. References

1. a) Xu, L.; Sinclair, A. J.; Faiza, M.; Li, D.; Han, X.; Yin, H.; Wang, Y.; Furan fatty acids-Beneficial or harmful to health? Prog Lipid Res. 2017, 68, 119-137; b) Lemke, R. A. S.; Peterson, A. C.; Ziegelhoffer, E.C.; Westphall, M. S.; Tjellstrom, H.; Coon, J. J.; Donohue, T. J.; Synthesis and scavenging role of furan fatty acids Proc. Natl. Acad. Sci. 2014, 111, 3450-3457; c) Spiteller, G.; Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids, 2005, 40, 755-771.
2. a) Craig, R. A.; Stoltz, B. M.; Polycyclic Furanobutenolide-derived cembranoid and norcembranoid natural products: biosynthetic connections and synthetic efforts. Chem. Rev. 2017, 117, 7878-7909. b) Rodriguez, A. D.; Shi, J. G. and Huang, S. D.; Pinnatins A-E: marine diterpenes of the rare gersolane class derived from a photochemically induced rearrangement of a conjugated 2,5-bridged furanocembrane precursor. J. Org. Chem. 1998, 63, 4425-4432.
3. a) Mellbye, F. B.; Jeppesen, P. B.; Shokouh, P.; Laustsen, C.; Hermansen, K. and Gregersen, S.; Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J. Nat. Prod. 2017, 80, 2353-2359. b) Mellbye, F. B.; Jeppesen, P. B.; Hermansen, K. and Gregersen, S.; Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J. Nat. Prod. 2015, 78, 2447-2451.
4. Ji, Y.; Xin, Z.; He, H. and Gao, S.; Total synthesis of viridin and viridiol; J. Am. Chem. Soc. 2019, 141, 16208-16212. b) Del Bel, M.; Abela, A. R.; Ng, J. D. and Guerrero, C. A.; Enantioselective chemical syntheses of the furanosteroids
(-)-viridin and (-)-viridiol; J. Am. Chem. Soc. 2017, 139, 6819-6822. c) Guo, Y.; Quan, T.; Lu, Y. and Luo, T.; Enantioselective total synthesis of (+)wortmannin; J. Am. Chem. Soc. 2017, 139, 6815-6818.
5. a) Disadee, W.; Mahidol, C.; Sahakitpichan, P.; Sitthimonchai, S.; Ruchirawat, S. and Kanchanapoom, T.; Unprecedented furan-2-carbonyl C-glycosides and phenolic diglycosides from Scleropyrum pentandrum; Phytochem. 2012, 74, 115-122. b) Sahakitpichan, P.; Disadee, W.; Buntawong, R.; Chimnoi, N.; Ruchirawat, S. and Kanchanapoom, T.; A furan-2-carbonyl C-glucoside and an alkyl glucoside from the parasitic plant, Dendrophthoe pentandra; Phytochem Lett. 2017, 21, 90-93.
6. a) Fang, C.; Zhang, Q.; Zhu, Y.; Zhang, L.; Zhang, W.; Ma, L.; Zhang, H. and Zhang, C.; Proximicins F and G and Diproximicin A: Aminofurans from the Marine-Derived Verrucosispora sp. SCSIO 40062 by Overexpression of PPtase Genes; J. Nat. Prod. 2020, 83, 1152-1156. b) El Maddah, F.; Kehraus, S.; Nazir, M.; Almeida, C. and König, G. M.; Insights into the Biosynthetic Origin of 3-(3-Furyl)alanine in Stachylidium sp. 293 K04 Tetrapeptides; J. Nat. Prod. 2016, 79, 2838-2845.
7. a) Xu, X.; Piggott, A. M.; Yin, L.; Capon, R. J. and Song, F.; Symphyocladins AG: Bromophenol adducts from a Chinese marine red alga, Symphyocladia latiuscula; Tetrahedron Lett. 2012, 53, 2103-2106. b) Ahn, J.; Chae, H.S.; Chin, Y.W.; Kim; J.; Furylhydroquinones and miscellaneous compounds from the roots of Lithospermum erythrorhizon and their anti-inflammatory effect in HaCaT cells J. Nat. Prod. Res. 2019, 33, 1691-1698.
8. Yamashita, S.; Naruko, A.; Nakazawa, Y.; Zhao, L.; Hayashi, Y. and Hirama, M.; Total synthesis of limonin; Angew Chem Int Ed. 2015, 54, 8538-8541.
9. Zheng, X.; Zheng, X.; Zhang, C.; Zhang, Q.; Jiang, Y. and Tu, P.; Cytotoxic polyacetylenes isolated from the roots and rhizomes of Notopterygium incisum, Chin. Chem. Lett. 2019, 30, 428-430.
10. Clark, B. R.; Capon, R. J.; Lacey, E.; Tennant, S. and Gill, J. H.; Polyenylpyrroles and Polyenylfurans from an Australian Isolate of the Soil Ascomycete Gymnoascus reessii; Org. Lett. 2006, 8, 701-704. b) Coleman, R. S. and Walczak, M. C.; Total synthesis of gymnoconjugatins A and B; J. Org. Chem. 2006, 71, 9841-9844.
11. Banerjee, R.; Kumar, H. K. S. and Banerjee, M.; Medicinal significance of furan derivatives: a review. Int. J. Res. Phytochem. Pharmacol. 2015, 5, 48-57.
12. Lai, S.; Shizuri, Y.; Yamamura, S.; Kawai, K.; Terada, Y. and Furukawa, H.; Novel curvularin-type metabolites of a hybrid strain ME 0005 derived from Penicillium citreo-viride B. IFO 6200 and 4692. Tetrahedron lett., 1989, 30, 2241-2244.
13. Kobayashi, J.; Watanabe, D.; Kawasaki, N.; and Tsuda, M.; Nakadomarin A, a Novel Hexacyclic Manzamine-Related Alkaloid from Amphimedon Sponge J. Org. Chem. 1997, 62, 9236.
14. Patil, A. D.; Freyer, A. J.; Killmer, L.; Offen, P.; Carte, B.; Jurewicz, A. J. and Johnson, R. K.; Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeletons from the sponge Dysidea frondosa: Inhibitors of interleukin-8 receptors. Tetrahedron, 1997, 53, 5047-5060.
15. Jadulco, R.; Proksch, P.; Wray, V.; Sudarsono, Berg, A.; and Gräfe, U.; New Macrolides and Furan Carboxylic Acid Derivative from the Sponge-Derived Fungus Cladosporium herbarum. J. Nat. Prod., 2001, 64, 527-530.
16. Valdivia, C.; Kettering, M.; Anke, H.; Thines, E. and Sterner, O.; Diterpenoids from Coprinus heptemerus. Tetrahedron, 2005, 61, 9527-9532.
17. Kanokmedhakul, S.; Kanokmedhakul, K.; Kantikeaw, I. and Phonkerd, N.; 2substituted furans from the roots of Polyalthia evecta. J. Nat. Prod., 2006, 69, 68-72.
18. Lee, Y.K.; Woo, M.H.; Kim, C.H.; Kim, Y.; Lee, S.H.; Jeong, B.S.; Chang, H.W. and Son, J.K.; Two new benzofurans from Gastrodia elata and their DNA topoisomerases I and II inhibitory activities. Planta Med., 2007, 73, 12871291.
19. Elbandy, M.; Shinde, P. B.; Dang, H. T.; Hong, J.; Bae, K. S.; and Jung, J. H.; Furan metabolites from the sponge-derived yeast Pichia membranifaciens. J. Nat. Prod., 2008, 71(5), 869-872.
20. Ding, L.J.; Gu, B.B.; Jiao, W.H.; Yuan, W.; Li, Y.X.; Tang, W.Z.; Yu, H.B.; Liao, X.J.; Han, B.N.; Li, Z.Y. and Xu, S.H.; New furan and cyclopentenone derivatives from the sponge-associated fungus Hypocrea koningii PF04. Mar. Drugs, 2015, 13, 5579-5592.
21. Wu, X., Pang, X.J., Xu, L.L., Zhao, T., Long, X.Y., Zhang, Q.Y., Qin, H.L., Yang, D.F. and Yang, X.L.; Two new alkylated furan derivatives with antifungal and antibacterial activities from the plant endophytic fungus Emericella sp. XL029. Nat. Prod. Res., 2018, 32, 2625-2631.
22. Lee, Y. J.; Kim, S. H.; Choi, H.; Lee, H. S.; Lee, J. S.; Shin, H. J. annd Lee, J.; Cytotoxic Furan-and Pyrrole-Containing Scalarane Sesterterpenoids Isolated from the Sponge Scalarispongia sp. Molecules, 2019, 24, 840.
23. a) Yoshizaki, F.; Hisamichi, S.; Kondo, Y.; Sato, Y. and Nozoe, S.; Studies on shikon. III. New furylhydroquinone derivatives, shikonofurans A, B, C, D and E, from Lithospermum erythrorhizon sieb. et zucc. Chemical and Pharmaceutical Bulletin, 1982, 30(12), 4407-4411. b) Tang, W. and Eisenbrand, G.; Lithospermum erythrorhizon Sieb. et Zucc. In Chinese Drugs of Plant Origin 1992, 613-619. Springer, Berlin, Heidelberg. c) Yazaki, K; Fukui, H and Tabata, M ; Isolation of intermediates and related metabolites of shikonin biosynthesis from lithospermum erythrorhizon cell cultures Chem. Pharma. Bull. 1986, 34 (5), 2290-2293 d) Papageorgiou, V. P.; Assimopoulou, A. N.; Elias A. Couladouros, E. A.; Hepworth, D. and Nicolaou, K.C.; The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products Angew. Chem. Int. Ed. 1999, 38, 270-300. e) Liao, M.; Li, A.; Chen, C.; Ouyang, H.; Zhang, Y.; Xu, Y.; Feng, Y. and Jiang H.; Systematic identification of shikonins and shikonofurans in medicinal Zicao species using ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry combined with a data mining strategy. J. Chromatogr. A 2015, 1425, 158-172.
24. Ahn, J.; Chae, H. S.; Chin, Y. W. and Kim, J.; Furylhydroquinones and miscellaneous compounds from the roots of Lithospermum erythrorhizon and their anti-inflammatory effect in HaCaT cells. Natural product research, 2019, 33(12), 1691-1698.
25. Kim, J. Y.; Jeong, H. J.; Park, J. Y.; Kim, Y. M.; Park, S. J.; Cho, J. K.; Park, K.H.; Ryu, Y.B. and Lee, W. S.; Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases. Bioorg. Med. Chem., 2012, 20(5), 1740-1748.
26. Wakabayashi, Y.; Fukuda, Y.; Shiragami, H.; Utimoto, K. and Nozaki, H. Preparation of furans from alkynols utilizing palladium catalyzed intramolecular addition of alcohol to acetylene as a key reaction. Tetrahedron, 1985, 41, 3655-3661.
27. Jung, J. H.; Lee, J. W. and Oh, D. Y.; A facile synthesis of 2, 4-disubstituted furans from β-hydroxy sulfones. Tetrahedron lett., 1995, 36, 923-926.
28. Katritzky, A. R.; Hür, D.; Kirichenko, K.; Ji, Y. and Steel, P. J.; Synthesis of 2, 4disubstituted furans and 4, 6-diaryl-substituted 2, 3-benzo-1, 3a, 6atriazapentalenes. Arkivoc, 2004, 2, 109-121.
29. Ma, S.; Lu, L. and Zhang, J. Catalytic regioselectivity control in ring-opening cycloisomerization of methylene-or alkylidenecyclopropyl ketones. J. Am. Chem. Soc., 2004, 126, 9645-9660.
30. Hashmi, A. S. K.; Häffner, T.; Rudolph, M. and Rominger, F.; Cyclization of 2-Alkynylallyl Alcohols to Highly Substituted Furans by Gold (I)-Carbene Complexes. Eur. J. Org. Chem. 2011, 667-671.
31. Haines, N. R.; VanZanten, A. N.; Cuneo, A. A.; Miller, J. R.; Andrews, W. J.; Carlson, D. A.; Harrington, R.M.; Kiefer, A.M.; Mason, J.D.; Pigza, J.A. and Murphree, S. S.; A sulfone-based strategy for the preparation of 2, 4disubstituted furan derivatives. J. Org. Chem., 2011, 76, 8131-8137.
32. Kramer, S. and Skrydstrup, T.; Gold-Catalyzed Carbene Transfer to Alkynes: Access to 2, 4-Disubstituted Furans. Angew. Chem. Int. Ed., 2012, 51, 46814684.
33. Li, E.; Yao, W.; Xie, X.; Wang, C.; Shao, Y. and Li, Y.; Gold-catalyzed efficient synthesis of 2, 4-disubstituted furans from aryloxy-enynes. Org. Biomol. Chem., 2012, 10, 2960-2965.
34. White, A. R.; Kozlowski, R. A.; Tsai, S. C. and Vanderwal, C. D.; "A Direct Synthesis of Highly Substituted π-Rich Aromatic Heterocycles from Oxetanes." Angew. Chem. Int. Ed., 2017, 56, 10525-10529.
35. Ni, C.; Zhao, Y. and Yang, J.; Brønsted Acid Ionic Liquid-Catalyzed Ring Opening of 3, 3-Disubstituted Oxetanes in Water: Efficient Access to Furans and Benzofurans. ACS Sustainable Chem. Eng, 2020, 8, 12741-12745.
36. Chen, V. Y. and Kwon, O.; Unified Approach to Furan Natural Products via Phosphine-Palladium Catalysis. Angew. Chem., 2021, 133, 8956-8963.
37. Kotha, S.; Shah, V. R. and Mandal, K.; Formation of Arenes via Diallylarenes: Strategic Utilization of Suzuki-Miyaura Cross-Coupling, Claisen Rearrangement and Ring-Closing Metathesis. Adv. Synth. Catal., 2007, 349(7), 1159-1172.
38. Zhang, Y. L.; Zhao, Z. N.; Li, W. L.; Li, J. J.; Kalita, S. J.; Schneider, U. and Huang, Y. Y.; Catalytic asymmetric aldehyde prenylation and application in the total synthesis of (-)-rosiridol and (-)-bifurcadiol. Chem. Comm, 2020, 56(69), 10030-10033.
39. Yonova, I. M.; Johnson, A. G.; Osborne, C. A.; Moore, C. E.; Morrissette, N. S. and Jarvo, E. R.; Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents and Identification of Selective Anti-Breast-Cancer Agents. Angew. Chem. Int. Ed., 2014, 53(9), 2422-2427.
40. Vutukuri, D. R.; Bharathi, P.; Yu, Z.; Rajasekaran, K.; Tran, M. H. and Thayumanavan, S.; A mild deprotection strategy for allyl-protecting groups and its implications in sequence specific dendrimer synthesis. J. Org.Chem, 2003, 68(3), 1146-1149.
41. Mart, A. and Shashidhar, M. S.; Elaboration of the ether cleaving ability and selectivity of the classical Pearlman's catalyst $\left[\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\right]$: concise synthesis of a precursor for a myo-inositol pyrophosphate. Tetrahedron, 2012, 68(47), 9769-9776.
42. Déziel, R.; Deprotection of allylic esters and ethers, US4788282A
43. Beugelmans, R.; Bourdet, S.; Bigot, A. and Zhu, J.; Reductive deprotection of aryl allyl ethers with $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)}$ 4/ NaBH_{4}. Tetrahedron lett. 1994, 35(25), 4349-4350.
44. Raja Ram, S.; Purushothama Chary, K.; Salahuddin, S. and Iyengar, D. S.; A mild chemoselective and rapid regeneration of alcohols from 0-allyl ethers by LiCl/NaBH4. Synth. Commun. 2002, 32(1), 133-137.
45. Bartoli, G.; Cupone, G.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Marcantoni, E. and Procopio, A.; Cerium-mediated deprotection of substituted allyl ethers. Synlett, 2001, (12), 1897-1900.
46. Chouhan, M.; Kumar, K.; Sharma, R., Grover, V. and Nair, V. A.; NiCl 2 . $6 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaBH}_{4}$ in methanol: a mild and efficient strategy for chemoselective
deallylation/debenzylation of aryl ethers. Tetrahedron Lett, 2013, 54(34), 4540-4543.

Chapter-2 NMR Spectra

Table S1: Comparison of ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR data of natural and synthetic shikonofuran J (41).

Shikonofuran J (1)

Position	Synthetic (This work)		Natural	
	$\begin{gathered} \delta_{\mathrm{H}}(\text { mult, } J \text { in } \mathrm{Hz}) \\ (500 \mathrm{MHz}) \end{gathered}$	$\delta_{\mathrm{c}}(126 \mathrm{MHz})$	$\begin{gathered} \delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{~J} \text { in Hz}) \\ (400 \mathrm{MHz}) \\ \hline \end{gathered}$	$\delta_{\mathrm{c}}(100 \mathrm{MHz})$
1	-	148.2	-	148.0
2	-	119.9	-	119.7
3	7.17, d (3.05), CH	112.7	7.17, d (2.7), CH	112.5
4	-	151.2	-	151.1
5	$\begin{gathered} 6.55, \mathrm{dd} \\ (8.85,3.05), \mathrm{CH} \\ \hline \end{gathered}$	116.1	$\begin{gathered} 6.55 \mathrm{dd}(8.6,2.7), \\ \text { CH } \\ \hline \end{gathered}$	115.9
6	6.71, d (8.54), CH	117.7	6.71, d (8.6), CH	117.6
2^{\prime}	-	153.0	-	152.9
3'	6.95, s, CH	109.6	6.94, s, CH	109.5
4^{\prime}	-	129.0	-	128.9
5'	7.42, s, CH	140.0	7.41, s, CH	139.8
$1{ }^{\prime \prime}$	4.16, t (6.71), CH	77.7	$\begin{gathered} 4.15 \mathrm{dd}(6.7,6.7) \\ \mathrm{CH} \end{gathered}$	77.5
2"	$\begin{gathered} 2.53 \mathrm{~m}, 2.40 \mathrm{~m}, \\ \mathrm{CH}_{2} \end{gathered}$	36.1	$\begin{gathered} 2.53 \mathrm{~m}, 2.40 \mathrm{~m}, \\ \mathrm{CH}_{2} \end{gathered}$	35.9
$3 \prime \prime$	5.14, m, CH	121.4	$\begin{gathered} 5.13 \mathrm{dd}(6.5,6.5), \\ \text { CH } \\ \hline \end{gathered}$	121.2
$4 \prime \prime$	-	134.7	-	134.5
5"	1.59 , s, CH_{3}	18.2	$1.59, \mathrm{~s}, \mathrm{CH}_{3}$	18.0
$6^{\prime \prime}$	1.68 , s, CH3	26.1	1.68 , s, CH3	25.9
OCH_{3}	3.27, s, OCH_{3}	56.5	3.26, s, OCH_{3}	56.4

Chapter-2 NMR Spectra

Table S2: Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of natural and synthetic shikonofuran D (42).

Shikonofuran D (2)

Position	Synthetic (This work)		Natural	
	$\begin{gathered} \delta_{\mathrm{H}}(\text { mult, } J \text { in Hz) } \\ (500 \mathrm{MHz}) \end{gathered}$	$\delta \mathrm{c}$ $(126 \mathrm{MHz})$	$\delta_{\mathrm{H}}(\text { mult, } J \text { in } \mathrm{Hz})$ (400 MHz)	$\delta \mathrm{c}$ $(100 \mathrm{MHz})$
1	-	149.3	-	149.3
2	-	117.0	-	117.0
3	7.01, d (3.00), CH	112.2	7.02, d (3.4), CH	112.1
4	-	146.7	-	146.6
5 \& 3'	$\begin{gathered} \text { 6.72-6.65, m, CH } \\ \& \mathrm{CH} \end{gathered}$	116.6 \& 106.8	$\begin{gathered} 6.69-6.66, \mathrm{~m}, \mathrm{CH} \\ \& \mathrm{CH} \end{gathered}$	116.6, 106.7
6	6.81 d (8.6), CH	118.2	6.80, d (8.8), CH	118.1
2^{\prime}	-	152.5	-	152.4
4^{\prime}	-	127.3	-	128.9
5'	7.44, s, CH	138.9	7.43, s, CH	138.8
1 "	5.77, t (6.7), CH	68.3	5.76, t (6.7), CH	68.2
2" \& 2a	$\begin{gathered} 2.71-2.45, \mathrm{~m} \\ \mathrm{CH}_{2}, \mathrm{CH} \end{gathered}$	33.7 \& 34.3	$\begin{gathered} 2.62-2.48, \mathrm{~m} \\ \mathrm{CH}_{2}, \mathrm{CH} \\ \hline \end{gathered}$	33.6 \& 34.3
$3^{\prime \prime}$	5.14-5.03, m, CH	118.7	5.08, t (7.14), CH	118.6
$4{ }^{\prime \prime}$	-	135.2	-	135.2
5"	1.62, s, CH_{3}	18.1	1.61, s, CH_{3}	18.1
6 "	1.71-1.67, m, CH3	25.9	1.68 , s, CH3	25.8
1a	-	176.8	-	176.8
3a	1.18, d (7.0), CH_{3}	19.1	1.17, d (6.7), CH_{3}	19.0
4 a	$\begin{gathered} \hline 1.15, \mathrm{~d}(7.00) \\ \mathrm{CH}_{3} \\ \hline \end{gathered}$	19.0	1.15, d (6.7), CH_{3}	18.9

Chapter-2 NMR Spectra

Table S3: Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of natural and synthetic shikonofuran E (43).

Shikonofuran E (3)

Position	Synthetic (This work)		Natural	
	$\begin{gathered} \delta_{\mathrm{H}}(\mathrm{mult}, J \text { in } \mathrm{Hz}) \\ (400 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} \delta c(\text { mult, } J \text { in } \\ \mathrm{Hz}) \\ (126 \mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \mathrm{H}(\mathrm{mult}, J \text { in } \mathrm{Hz}) \\ (500 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} \delta \mathrm{c}(\mathrm{mult}, J \text { in } \\ \mathrm{Hz}) \\ (100 \mathrm{MHz}) \\ \hline \end{gathered}$
1	-	149.3	-	149.3
2	-	117.0	-	117.0
3	6.98 d, (2.9), CH,	112.2	6.99, d (3), CH	112.1
4	-	146.6	-	146.5
5	6.69-6.66, m, CH,	116.6	$\begin{gathered} 6.68 \mathrm{dd} \\ (9,3), \mathrm{CH} \end{gathered}$	116.5
6	6.80 d, (8.6), CH	118.2	6.79 d, (9), CH	118.1
2'	-	152.5	-	152.4
3'	6.69, s, CH	106.8	6.70, s, CH	106.8
4^{\prime}	-	127.4	-	127.3
5'	7.44, s, CH	139.0	7.44, s, CH	139.0
$1{ }^{\prime \prime}$	5.79, t, (6.8), CH	67.7	5.79, t, (7), CH	67.7
2"	$2.67-2.48 \mathrm{~m}, \mathrm{CH}_{2}$	33.8	2.60, t, (7), CH_{2}	33.7
3"	5.12-5.07, m, CH	118.8	5.09, br t, (7) CH	118.7
$4{ }^{\prime \prime}$	-	135.2	-	135.2
5"	1.61, s, CH_{3}	18.1	1.61, s, CH_{3}	18.1
6 "	1.68 , s, CH3	25.9	1.68 , s, CH3	25.9
1a	-	166.3	-	166.3
2a	5.73-5.69, m, CH	116.1	5.71, br., s, CH	116.1
3a	-	157.7	-	157.7
4a	$\begin{gathered} 1.90, \mathrm{~d},(1.25) \\ \mathrm{CH}_{3} \end{gathered}$	27.6	1.90, s, CH3	27.6
5a	$\begin{gathered} 2.17 \mathrm{~d},(1.25) \\ \mathrm{CH}_{3} \end{gathered}$	20.5	2.17, s, CH3	20.4

Chapter-2 NMR Spectra

Table S7: Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of natural and synthetic shikonofuran C (44).

Shikonofuran C (4)

Position	Synthetic (This work)		Natural	
	$\begin{gathered} \delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{~J} \text { in Hz) } \\ (400 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} \delta \mathrm{c}(\mathrm{mult}, J \text { in } \\ \mathrm{Hz}) \\ (126 \mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \delta_{\text {H }}(\mathrm{mult}, J \text { in Hz) } \\ (500 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} \delta \mathrm{c}(\text { mult, } J \text { in } \\ \mathrm{Hz}) \\ (100 \mathrm{MHz}) \end{gathered}$
1	-	149.3	-	149.2
2	-	117.1	-	106.7
3	7.01, d, (2.88), CH,	112.2	7.00, d (2.0), CH	111.2
4	-	146.6	-	146.6
3' \& 5	$\begin{gathered} \hline 6.74-6.64, \mathrm{~m}, \mathrm{CH} \& \\ \mathrm{CH} \\ \hline \end{gathered}$	106.9 \& 116.6	6.69, m, CH \& CH	$\begin{gathered} 106.8 \& \\ 116.5 \end{gathered}$
6	6.81, d, (8.63), CH	118.2	6.81, d, (8.4), CH	118.1
2^{\prime}	-	152.5	-	152.4
4^{\prime}	-	127.2	-	127.2
5'	7.45, s, CH	139.1	7.43, d, (3.2) CH	139.0
$1{ }^{\prime \prime}$	5.79, t, (6.88), CH	68.3	5.76, , (6.9), CH	68.2
2"	$\begin{gathered} \hline 2.68-2.57, \mathrm{~m}, \& \\ 2.56-2.44, \mathrm{~m}, \mathrm{CH}_{2} \\ \hline \end{gathered}$	33.7	$\begin{gathered} \hline \text { 2.61, m, \& } \\ \text { 2.51, } \mathrm{m}, \mathrm{CH}_{2} \\ \hline \end{gathered}$	33.6
3"	5.09, t, (7.13), CH	118.7	$5.08, \mathrm{~m}, \mathrm{CH}$	118.6
$4 \prime$	-	135.3	-	135.2
5"	1.62 , s, CH_{3}	18.1	1.62 , s, CH3	18.0
6 "	1.69 , s, CH3	25.9	1.68 , s, CH_{3}	25.8
1a	-	172.9	-	172.8
2a	2.23-2.17, m, CH_{2}	43.9	2.20, m, CH_{2}	43.8
3a	2.17-2.02, m, CH	26.0	2.09, m, CH	16.7
4a \& 5a	$\begin{gathered} \text { 0.94, dd, (} 1.13, \\ \text { 6.63), } \mathrm{CH}_{3} \& \mathrm{CH}_{3} \end{gathered}$	22.5	$\begin{gathered} \text { 0.94, dd, }(1.6,6.8), \\ \mathrm{CH}_{3} \& \mathrm{CH}_{3} \end{gathered}$	22.4

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

Chapter-2 NMR Spectra

1-(4-((Triisopropylsilyl)oxy)phenyl)ethan-1-one (79m)

1-(4-((Triisopropylsilyl)oxy)phenyl)ethan-1-one (79m)

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)ethan-1-one (79n)

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)ethan-1-one (79n)

Chapter-2 NMR Spectra

1-(4-(Benzyloxy)phenyl)ethan-1-one (790):

1-(4-(Benzyloxy)phenyl)ethan-1-one (790):

$\begin{aligned} & \text { N } \\ & \dot{\phi} \\ & \stackrel{i}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{\mathrm{U}} \\ & \stackrel{\oplus}{\mathrm{O}} \end{aligned}$		$\stackrel{\stackrel{\circ}{\dot{G}}}{\stackrel{1}{1}}$	

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(4-((4-Methoxybenzyl)oxy)phenyl)ethan-1-one (79p):

1-(4-((4-Methoxybenzyl)oxy)phenyl)ethan-1-one (79p):
-196.91

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter－2 NMR Spectra

1－（4－（（Tert－butyldiphenylsilyl）oxy）phenyl）ethan－1－one（79q）：

$\stackrel{\infty}{\text { ベ }}$
$\stackrel{\digamma}{\square}$

$\overline{0}$
1

1－（4－（（Tert－butyldiphenylsilyl）oxy）phenyl）ethan－1－one（79q）：
$\stackrel{\infty}{\circ}$
$\stackrel{\circ}{\circ}$
N

ヘico

${ }^{13} \mathrm{C}$ NMR， 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(2,5-Bis(allyloxy)phenyl)ethan-1-one (79r):

CHLOROFORM-d

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(2,5-Bis(allyloxy)phenyl)ethan-1-one (79r):

CHLOROFORM-d
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{8}$
$\stackrel{1}{1}$

$\stackrel{N}{\stackrel{N}{\mathrm{~N}}}$

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)ethan-1-one (79s):

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)ethan-1-one (79s):
CDCl_{3}

デ

${ }^{13} \mathrm{C}$ NMR, 101 MHz
 \qquad

Chapter－2 NMR Spectra

1－Phenylundecan－2－one（79y）：

\because ダタき
ベ～
「iois
8
i
i

${ }^{1} \mathrm{H}$ NMR， 400 MHz CDCl_{3}

1－Phenylundecan－2－one（79y）：

${ }^{13} \mathrm{C}$ NMR， 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(4-Methoxyphenyl)-2-phenylethan-1-one (79aa):

$$
\underset{\substack{\infty \\ 广}}{\mathscr{O}}
$$

1-(4-Methoxyphenyl)-2-phenylethan-1-one (79aa):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(Furan-2-yl)-2-phenylethan-1-one (79ac):

1-(Furan-2-yl)-2-phenylethan-1-one (79ac):

CHLOROFORM-d

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-phenylethan-1-one (71a):

CHLOROFORM-d

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

2-(3-Hydroxyoxetan-3-yl)-1-phenylethan-1-one (71a):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(p-tolyl)ethan-1-one (71b):

2-(3-Hydroxyoxetan-3-yl)-1-(p-tolyl)ethan-1-one (71b):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(4-isobutylphenyl)ethan-1-one (71c):

2-(3-Hydroxyoxetan-3-yl)-1-(4-isobutylphenyl)ethan-1-one (71c):

Chapter-2 NMR Spectra

Cyclopropyl(3-hydroxyoxetan-3-yl)methanone (71d):

Cyclopropyl(3-hydroxyoxetan-3-yl)methanone (71d):

Chapter-2 NMR Spectra

1-([1,1'-Biphenyl]-4-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71e):

1-([1,1'-Biphenyl]-4-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71e):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(naphthalen-2-yl)ethan-1-one (71f):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

2-(3-Hydroxyoxetan-3-yl)-1-(naphthalen-2-yl)ethan-1-one (71f):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)ethan-1-one (71g):

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)ethan-1-one (71g):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(4-nitrophenyl)ethan-1-one (71i):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

2-(3-Hydroxyoxetan-3-yl)-1-(4-nitrophenyl)ethan-1-one (71i):

Chapter-2 NMR Spectra

1-(4-Fluorophenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71j):

1-(4-Fluorophenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71j):

2-(3-Hydroxyoxetan-3-yl)-1-(3-(trifluoromethyl)phenyl)ethan-1-one (71k):

2-(3-Hydroxyoxetan-3-yl)-1-(3-(trifluoromethyl)phenyl)ethan-1-one (71k):

Chapter-2 NMR Spectra

(E)-1-(3-Hydroxyoxetan-3-yl)-4-phenylbut-3-en-2-one (711):

(E)-1-(3-Hydroxyoxetan-3-yl)-4-phenylbut-3-en-2-one (711):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(4-((triisopropylsilyl)oxy)phenyl)ethan-1-one (71m):

2-(3-Hydroxyoxetan-3-yl)-1-(4-((triisopropylsilyl)oxy)phenyl)ethan-1-one (71m):

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71n):

1-(4-((Tert-butyldimethylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71n):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(4-(Benzyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (710):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(4-(Benzyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (710):

$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{1}$

$\stackrel{\text { ¢ }}{\substack{0 \\ \hline 1 \\ \hline 1}}$	
	-

$\stackrel{\infty}{\stackrel{\infty}{\dot{4}}}$

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(4-((4-methoxybenzyl)oxy)phenyl)ethan-1-one (71p):

2-(3-Hydroxyoxetan-3-yl)-1-(4-((4-methoxybenzyl)oxy)phenyl)ethan-1-one (71p):

Chapter－2 NMR Spectra

1－（4－（（Tert－butyldiphenylsilyl）oxy）phenyl）－2－（3－hydroxyoxetan－3－yl）ethan－1－one （71q）

		in
へへへへ入入入入。里	ボずすぐ	¢

${ }^{1} \mathrm{H}$ NMR， 400 MHz CDCl_{3}

1－（4－（（Tert－butyldiphenylsilyl）oxy）phenyl）－2－（3－hydroxyoxetan－3－yl）ethan－1－one （71q）：

1-(2,5-Bis(allyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71r):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(2,5-Bis(allyloxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71r):

$\stackrel{\circ}{\square}$
$\stackrel{+}{+}$

$\stackrel{n}{i}$

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71s):

1-(2,5-Bis((triisopropylsilyl)oxy)phenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71s):

Chapter-2 NMR Spectra

1-(2,5-Dimethoxyphenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71t):

$\stackrel{-}{\circ}$

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(2,5-Dimethoxyphenyl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71t):
$\stackrel{\stackrel{N}{N}}{\stackrel{\sim}{\square}}$
No

NiN

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(thiophen-3-yl)ethan-1-one (71u):

CHLOROFORM-d

$\xrightarrow{\infty}{ }^{\infty}{ }^{\infty}$

Nin ơo

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

2-(3-Hydroxyoxetan-3-yl)-1-(thiophen-3-yl)ethan-1-one (71u):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(1-methyl-1H-pyrrol-2-yl)ethan-1-one (71v):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

2-(3-Hydroxyoxetan-3-yl)-1-(1-methyl-1H-pyrrol-2-yl)ethan-1-one (71v):

Chapter-2 NMR Spectra

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71w):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)ethan-1-one (71w):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-phenylpropan-1-one (71x):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

2-(3-Hydroxyoxetan-3-yl)-1-phenylpropan-1-one (71x):

${ }^{13} \mathrm{C} \mathrm{NMR}$,

Chapter-2 NMR Spectra

1-(3-Hydroxyoxetan-3-yl)-1-phenylundecan-2-one (71y):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(3-Hydroxyoxetan-3-yl)-1-phenylundecan-2-one (71y):

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)cyclohexan-1-one (71z):
$\stackrel{\ominus}{\text { N}}$
$\underbrace{\infty 080}$

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

2-(3-Hydroxyoxetan-3-yl)cyclohexan-1-one (71z):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)-2-phenylethan-1-one (71aa):

CHLOROFORM-d

2-(3-Hydroxyoxetan-3-yl)-1-(4-methoxyphenyl)-2-phenylethan-1-one (71aa):

Chapter-2 NMR Spectra

1-(4-Chlorophenyl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ab):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(4-Chlorophenyl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ab):

Chapter-2 NMR Spectra

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ac):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

1-(Furan-2-yl)-2-(3-hydroxyoxetan-3-yl)-2-phenylethan-1-one (71ac):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

62'89-

Chapter－2 NMR Spectra

（5－Phenylfuran－3－yl）methanol（72a）：

${ }^{1} \mathrm{H}$ NMR， 400 MHz CDCl_{3}

（5－Phenylfuran－3－yl）methanol（72a）：

CHLOROFORM－d

			－
$\bar{\square}$	寸	$\stackrel{\square}{1}$	$\stackrel{\infty}{+}$
先	M్ల్ల	$\stackrel{\text { ¢ }}{ }$	Nべ¢
$\stackrel{\square}{1}$	¢	$\stackrel{\square}{1}$	，

${ }^{13} \mathrm{C}$ NMR， 101 MHz CDCl_{3}

，

Chapter-2 NMR Spectra

(5-(p-Tolyl)furan-3-yl)methanol (72b):

 へin

$$
\stackrel{80}{\stackrel{8}{1}}
$$

$\stackrel{\%}{i}$
8
i

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}
(5-(p-Tolyl)furan-3-yl)methanol (72b):

Chapter-2 NMR Spectra

(5-(4-Isobutylphenyl)furan-3-yl)methanol (72c):

$\stackrel{8}{10}$

(5-(4-Isobutylphenyl)furan-3-yl)methanol (72c):

Chapter-2 NMR Spectra

(5-Cyclopropylfuran-3-yl)methanol (72d):
Nị Nָ
8
$\stackrel{\infty}{+}$

(5-Cyclopropylfuran-3-yl)methanol (72d):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(5-([1,1'-Biphenyl]-4-yl)furan-3-yl)methanol (72e):

$\stackrel{\text { ® }}{\stackrel{\circ}{1}}$
8
0
0

(5-([1,1'-Biphenyl]-4-yl)furan-3-yl)methanol (72e):

Chapter-2 NMR Spectra

(5-(Naphthalen-2-yl)furan-3-yl)methanol (72f):

CHLOROFORM-d

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(5-(Naphthalen-2-yl)furan-3-yl)methanol (72f):

Chapter-2 NMR Spectra

(5-(4-Methoxyphenyl)furan-3-yl)methanol (72g):

(5-(4-Methoxyphenyl)furan-3-yl)methanol (72g):

Chapter-2 NMR Spectra

4-(4-(Hydroxymethyl)furan-2-yl)phenol (72h):

4-(4-(Hydroxymethyl)furan-2-yl)phenol (72h):
-158.44
$\mathbf{L}_{156.46}$
-139.65

-128.97
-126.39
\mathbf{L}_{1248}
-116.63

-104.29
$\underbrace{\text { Mon }}$

Chapter-2 NMR Spectra

(5-(4-Nitrophenyl)furan-3-yl)methanol (72i):

(5-(4-Nitrophenyl)furan-3-yl)methanol (72i):

Chapter-2 NMR Spectra

(5-(4-Fluorophenyl)furan-3-yl)methanol (72j):

CHLOROFORM-d

$\stackrel{\infty}{\stackrel{\infty}{1}}$
$\stackrel{?}{i}$
8
1
1

(5-(4-Fluorophenyl)furan-3-yl)methanol (72j):

CHLOROFORM-d

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(5-(3-(Trifluoromethyl)phenyl)furan-3-yl)methanol (72k):

(5-(3-(Trifluoromethyl)phenyl)furan-3-yl)methanol (72k):
CHLOROFORM

Chapter-2 NMR Spectra

(E)-(5-styrylfuran-3-yl)methanol (721):

(E)-(5-styrylfuran-3-yl)methanol (721):

$\stackrel{\sim}{\sim}$	
过	
I	1% ¢1,

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(5-(4-((Triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72m):

(5-(4-((Triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72m):

Chapter－2 NMR Spectra

（5－（4－（（Tert－butyldimethylsilyl）oxy）phenyl）furan－3－yl）methanol（72n）：
 Nへへべ入i ioige

${ }^{1} \mathrm{H}$ NMR， 400 MHz CDCl_{3}

（5－（4－（（Tert－butyldimethylsilyl）oxy）phenyl）furan－3－yl）methanol（72n）：

Chapter-2 NMR Spectra

(5-(4-(Benzyloxy)phenyl)furan-3-yl)methanol (72o):

(5-(4-(Benzyloxy)phenyl)furan-3-yl)methanol (720):

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{巾} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\otimes}{0} \\ & \stackrel{\oplus}{\Gamma} \end{aligned}$		$\stackrel{\stackrel{\circ}{+}}{\stackrel{1}{1}}$	

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(5-(4-((4-Methoxybenzyl)oxy)phenyl)furan-3-yl)methanol (72p):

$\stackrel{\check{0}}{\stackrel{\infty}{0}} \stackrel{\infty}{i}$

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(5-(4-((4-Methoxybenzyl)oxy)phenyl)furan-3-yl)methanol (72p):

Chapter-2 NMR Spectra

(5-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)furan-3-yl)methanol (72q):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(5-(4-((Tert-butyldiphenylsilyl)oxy)phenyl)furan-3-yl)methanol (72q):

Chapter-2 NMR Spectra

(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)methanol (72r):

寸 গ ন

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)methanol (72r):

둑

 CDCl_{3}

Chapter-2 NMR Spectra

(5-(2,5-Bis((triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72s):

(5-(2,5-Bis((triisopropylsilyl)oxy)phenyl)furan-3-yl)methanol (72s):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(5-(2,5-Dimethoxyphenyl)furan-3-yl)methanol (72t):

(5-(2,5-Dimethoxyphenyl)furan-3-yl)methanol (72t):

Chapter-2 NMR Spectra

(5-(Thiophen-3-yl)furan-3-yl)methanol (72u):

CHLOROFORM-d

$\stackrel{5}{1}$

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(5-(Thiophen-3-yl)furan-3-yl)methanol (72u):

Chapter-2 NMR Spectra

(5-(1-Methyl-1H-pyrrol-2-yl)furan-3-yl)methanol (72v):

$$
\stackrel{\sim}{0}
$$

(5-(1-Methyl-1H-pyrrol-2-yl)furan-3-yl)methanol (72v):

Chapter－2 NMR Spectra

［2，2＇－Bifuran］－4－ylmethanol（72w）：

CHLOROFORM－d

耳 न
へべへべ

$$
\stackrel{\substack{0 \\ 1}}{1}
$$

${ }^{1} \mathrm{H}$ NMR， 400 MHz
CDCl_{3}

［2，2＇－Bifuran］－4－ylmethanol（72w）：

Chapter－2 NMR Spectra

（4－Methyl－5－phenylfuran－3－yl）methanol（72x）：

CHLOROFORM－d

へへへへへべ入入入
$\stackrel{\infty}{\oplus}$
$\stackrel{\text { N }}{\substack{1}}$
8
0
i

${ }^{1} \mathrm{H}$ NMR， 400 MHz
CDCl_{3}

（4－Methyl－5－phenylfuran－3－yl）methanol（72x）：

CHLOROFORM－d

${ }^{13} \mathrm{C}$ NMR， 101 MHz CDCl_{3}

Chapter－2 NMR Spectra

（5－Nonyl－4－phenylfuran－3－yl）methanol（72y）：

$\stackrel{5}{10}$

© 0

N®
「－「～～
응

${ }^{1} \mathrm{H}$ NMR， 400 MHz CDCl_{3}

（5－Nonyl－4－phenylfuran－3－yl）methanol（72y）：

$\stackrel{\infty}{\infty}$	
	「近行

${ }^{13} \mathrm{C}$ NMR， 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(4,5,6,7-Tetrahydrobenzofuran-3-yl)methanol (72z):
$\stackrel{\sim}{N}$
$\stackrel{\infty}{\stackrel{\circ}{\mid}}$

8

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(4,5,6,7-Tetrahydrobenzofuran-3-yl)methanol (72z):

$\stackrel{\infty}{\circ}$	$\stackrel{\square}{ }$	$\stackrel{\rightharpoonup}{\underset{N}{N}}$
$\stackrel{\text { in }}{\square}$	$\stackrel{\text { ¢ }}{\sim}$	
I		

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(5-(4-Methoxyphenyl)-4-phenylfuran-3-yl)methanol (72aa):

$\stackrel{\infty}{\infty}$
0.0
0.0
i

(5-(4-Methoxyphenyl)-4-phenylfuran-3-yl)methanol (72aa):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(5-(4-Chlorophenyl)-4-phenylfuran-3-yl)methanol (72ab):

$\stackrel{\text { チ }}{\ddagger}$
$\stackrel{\circ}{i}$

(5-(4-Chlorophenyl)-4-phenylfuran-3-yl)methanol (72ab):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(3-Phenyl-[2,2'-bifuran]-4-yl)methanol (72ac):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(3-Phenyl-[2,2'-bifuran]-4-yl)methanol (72ac):

Chapter-2 NMR Spectra

5-(2,5-Bis(allyloxy)phenyl)furan-3-carbaldehyde (80):
欠.

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

5-(2,5-Bis(allyloxy)phenyl)furan-3-carbaldehyde (80):
No

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-2 NMR Spectra

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78):

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78):

NiNo

Chapter-2 NMR Spectra

(S)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan (84):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(S)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan (84):
N.

$\stackrel{\infty}{\infty}$
$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$

Chapter-2 NMR Spectra

Shikonofuran J (41):

Shikonofuran J (41):

¢ ¢ ¢ ¢ ¢								

${ }^{13} \mathrm{C}$ NMR, 126 MHz $\mathrm{CD}_{3} \mathrm{OD}$

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86):

Chapter-2 NMR Spectra

1-(5-(2-(Allyloxy)-5-hydroxyphenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (87):

4-(Allyloxy)-3-(4-(1-hydroxy-4-methylpent-3-en-1-yl)furan-2-yl)phenol (88):

Chapter-2 NMR Spectra

2-(4-(1-Hydroxy-4-methylpent-3-en-1-yl)furan-2-yl)benzene-1,4-diol (89):

Shikonfuran D (42):

Chapter-2 NMR Spectra

Shikonfuran D (42):

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl 3-methylbut-2enoate (91):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

Chapter-2 NMR Spectra

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl 3-methylbut-2enoate (91):

		$\infty \times 1$ N	
		$\stackrel{+}{\wedge}$	¢ ¢
		-	

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Shikonofuran E (43):

Shikonofuran C (44):

Chapter-2 NMR Spectra

Shikonofuran C (44):

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78a):


```
\underbrace~
```


Chapter-2 NMR Spectra

(S)-1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78a):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

(R)-2-(2,5-bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan (84a):

Chapter-2 NMR Spectra

(R)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan (84a):

$\stackrel{N}{\sim}$

Shikonofuran J (41a):

Chapter-2 NMR Spectra

Shikonofuran J (41a):

(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86a):

(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86a):

ent-Shikonfuran D (42a):

Chapter-2 NMR Spectra

ent-Shikonfuran D (42a):

(R)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl 3-methylbut-2enoate (91a):

Chapter-2 NMR Spectra

(R)-1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl 3-methylbut-2enoate (91a):

ent-Shikonfuran E (43a):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

Chapter-2 NMR Spectra

${ }^{13} \mathrm{C}$ NMR spectrum of compound ent-Shikonfuran $\mathrm{E}(3 \mathrm{a}):$

ent-Shikonofuran C (44a):

io

${ }^{1} \mathrm{H}$ NMR, 400 MHz

ent-Shikonofuran C (44a):

2D-NMR

Chapter-2 NMR Spectra

COSY spectrum of shikonofuran J (41)

NOESY spectrum of shikonofuran J (41)

HSQC spectrum of shikonofuran J (41)

HMBC spectrum of shikonofuran J (41)

Chapter-2 NMR Spectra

COSY spectrum of shikonofuran D (42):

NOESY spectrum od shikonofuran D (42):

Chapter-2 NMR Spectra

HSQC spectrum of shikonofuran D (42):

HMBC spectrum of Shikonofuran D (42):

Chapter-2 NMR Spectra

COSY spectrum of shikonofuran E (43):

NOESY spectrum of shikonofuran E (43):

Chapter-2 NMR Spectra

HSQC spectrum of shikonofuran E (43):

HMBC spectrum of shikonofuran E (43):

Chapter-2 NMR Spectra

COSY spectrum of shikonofuran C (44):

NOESY spectrum of shikonofuran C (44):

HSQC spectrum of shikonofuran C (44):

HMBC spectrum of shikonofuran C (44):

ECD Analysis

Chapter-2 NMR Spectra

Shikonofuran J (41) and ent-shikonofuran J (41a)

Shikonofuran D (42) and ent-shikonofuran D (42a):

Shikonofuran E (43) and ent-shikonofuran E (43a):

Shikonofuran C (44) and ent-shikonofuran C (44a):

HPLC Spectra

Chapter-2 NMR Spectra

1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (\pm)-78:

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
11.247	107034083	49.80
13.187	107894660	50.20
Totals		

Column: CHIRALPAK AD-H
Eluent System: $90: 10$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
11.187	113655148	97.31
13.220	3146385	2.69
Totals		

Column: CHIRALPAK AD-H

Eluent System: $90: 10$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

(R)-1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-ol (78a):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
11.327	4919381	3.50
13.200	135793806	96.50
Totals		

Column: CHIRALPAK AD-H
Eluent System: 90 : 10 (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol:: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

2-(2,5-bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan ($\mathbf{\pm}$)-(84):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
4.707	12538741	48.70
5.020	13207891	51.30
Totals		

Column: CHIRALPAK AD-H
Eluent System: 90 : 10 (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

(S)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan (84):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
4.747	10440943	95.40
5.060	503709	4.60
Totals		10944652

Column: CHIRALPAK AD-H
Eluent System: $90: 10$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

(R)-2-(2,5-Bis(allyloxy)phenyl)-4-(1-methoxy-4-methylpent-3-en-1-yl)furan (84a):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
4.707	627530	4.80
5.013	12453976	95.20
Totals		
	13081506	100.00

Column:	CHIRALPAK AD-H	
Eluent System:	$90: 10$ (HEXANE:IPA)	
Flow rate:	$1.0 \mathrm{ml} / \mathrm{min}$	
Injection vol::	10 ul	
Wavelength:	254 nm	
Sample Conc.:	$1.5 \mathrm{mg} / \mathrm{ml}$	

Shikonofuran J (土)- (41):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm Results

Retention Time	Area	Area $\%$
31.193	23898982	52.06
33.973	22005151	47.94
Totals		100.00

Column: CHIRALPAK AD-H
Eluent System: $95: 5$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

Shikonofuran J (41):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
31.547	3624519	4.50
34.093	76920800	95.50
Totals		100.00

Column: CHIRALPAK AD-H
Eluent System: $93: 7$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

ent-Shikonofuran J (41a):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

| Retention Time | Area | Area $\%$ |
| ---: | ---: | ---: | ---: |
| 31.467 | 59815060 | 94.10 |
| 34.060 | 3751782 | 5.90 |
| Totals | | |

Column: CHIRALPAK AD-H
Eluent System: $93: 7$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate ($\mathbf{\pm}$)-86:

Results

Retention Time	Area	Area $\%$
5.247	49549448	50.12
6.347	49305774	49.88
Totals		

Column:
CHIRALART Cellulose-SC
Eluent System: $95: 5$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: $\quad 254 \mathrm{~nm}$
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

(S)-1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
5.247	52208846	96.42
6.367	1936754	3.58
Totals		

Column:
CHIRALART Cellulose-SC
Eluent System: 95:5 (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

(R)-1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl isobutyrate (86a):

Results

Retention Time	Area	Area $\%$
5.273	4934668	4.41
6.367	106842964	95.59
Totals	111777632	100.00

Column:
Eluent System:
CHIRALART Cellulose-SC
Flow rate:
$99: 1$ (HEXANE:IPA)
$1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc: $1.5 \mathrm{mg} / \mathrm{ml}$

Shikonofuran D ($\mathbf{\pm}$)-(42):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
15.500	28789825	49.45
17.500	29425102	50.55
Totals		

Column:
Eluent System:
CHIRALART Cellulose-SC
95:5 (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

Shikonofuran D (42):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
15.320	116653936	96.39
17.513	4363420	3.61
Totals		
		121017356

Column: CHIRALART Cellulose-SC
Eluent System: $95: 5$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

ent-Shikonofuran D (42a):

DAD: Signal A, $250 \mathrm{~mm} /$ Bw: 4 nm
Results

	Retention Time	Area	Area \%
	15.527	4639523	3.71
	17.307	120459998	96.29
Totals			
		125099521	100.00
Column: CHIRALART Cellulose-SC			
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$			
Injection vol.: 10 ul			
Wavelength: 254 nm			
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$			

1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl-3-methylbut-2enoate ($\mathbf{\pm}$)-(91):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
5.293	44240749	50.31
6.040	43702687	49.69
Totals	87943436	100.00

Column: CHIRALPAK AD-H

Eluent System: $95: 5$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: $\quad 254 \mathrm{~nm}$
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

Chapter-2 NMR Spectra

(S)-1-(5-(2,5-Bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl-3-methylbut-2enoate (91):

Results

Retention Time	Area	Area $\%$
5.433	2573237	5.76
5.953	42092773	94.24
Totals		

Column:

CHIRALPAK AD-H
Eluent System:
$95: 5$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

(R)-1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl-3-methylbut-2enoate (91a):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Shikonofuran E ($\mathbf{\pm}$)-(43):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
6.753	39859627	49.41
7.613	40813271	50.59
Totals		100.00

Column: CHIRALPAK AD-H
Eluent System: $80: 20$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

Shikonofuran E (43):

DAD: Signal A, $250 \mathrm{~nm} /$ Bw: 4 nm
Results

Retention Time	Area	Area $\%$
6.740	538331	17.17
7.680	2596370	82.83
Totals		

Column:	CHIRALPAK AD-H
Eluent System:	$80: 20$ (HEXANE:IPA)
Flow rate:	$1.0 \mathrm{ml} / \mathrm{min}$
Injection vol::	10 ul
Wavelength:	254 nm
Sample Conc::	$1.5 \mathrm{mg} / \mathrm{ml}$

ent-Shikonofuran E (43a):

DAD: Signal A, $250 \mathrm{~nm} / \mathrm{Bw}: 4 \mathrm{~nm}$
Results

Retention Time	Area	Area \%
6.827	54250842	96.01
7.707	2254536	3.99
Totals		

Column:
CHIRALPAK AD-H
Eluent System: $80: 20$ (HEXANE:IPA)
Flow rate: $\quad 1.0 \mathrm{ml} / \mathrm{min}$
Injection vol.: 10 ul
Wavelength: 254 nm
Sample Conc.: $1.5 \mathrm{mg} / \mathrm{ml}$

Shikonofuran C ($\mathbf{\pm} \mathbf{) - (4 4) : ~}$
<Chromatogram>

<Peak Table>
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%	Height	Height\%
1	7.938	5533924	50	312052	52
2	9.150	5597782	50	291552	48
Total		11131706	100	603604	100

Chapter-2 NMR Spectra

Shikonofuran C (44):

<Peak Table>
PDA Ch1 254nm

Peak	Ret. Time	Area	Area\%	Height	Height\%
1	7.895	373995	3	23082	3
2	9.108	13853194	97	712795	97
Total		14227189	100	735876	100

ent-Shikonofuran C (44a):

<Peak Table>
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Area\%	Height	Height\%
1	7.926	64587590	96	3292212	96
2	9.142	2495423	4	133344	4
Total		67083013	100	3425557	100

CHAPTER-3

Design, Synthesis and Biological Evaluation of Eugenol Derivatives as
 Potential Antidiabetic Agents

Chapter-3, Section-A: Introduction and previous approaches

3.1 Introduction

Diabetes mellitus is one of the world's fastest-growing health crises in the twentyfirst century. It is a serious \& chronic disorder that occurs when the human body is incapable of producing or ineffectively uses hormone insulin, resulting in elevation of blood glucose level (hyperglycemia). According to the International Diabetic Federation, in the year 2021 five hundred thirty seven million people on earth suffer from diabetes and it is probable to increase to six hundred fourty three million by 2030 and seven hundred eighty three million by 2045. According to diabetes predictions for 2021, the prevalence of diabetes is rising with age, and similar patterns are anticipated for 2045. Adults aged 20 to 24 have the lowest prevalence rates, with 2.2% in 2021 . For adults beyond age, the expected prevalence of diabetes is 24% in 2021 in those aged 75 to 79 and is predicted to increase to 24.7% by 2045 . The world's population is getting older, which will result in a more significant percentage of people with diabetes now over the age of sixty (Figure 3.1). ${ }^{1}$ In addition, preliminary studies suggest that people with diabetes have a high risk of developing severe complications while suffering from COVID-19 infection, such as SARS CoV 2 pneumonia, failure of respiratory organs, and acute respiratory distress syndrome (ARDS). ${ }^{2}$ However, it has been demonstrated that SARS-CoV-2 infections might cause new cases of metabolic abnormalities and the worsening of existing ones. Diabetes patients are at an elevated risk for COVID-19's acute phase, but they also appear to be more frequently impacted by long-COVID and to suffer from longerlasting effects than persons without diabetes. ${ }^{3}$

Figure 3.1. The number of people with diabetes in 2021 and estimated prevalence in 2045 by age group.

There are four types of diabetes based on etiology and diagnostic norms viz; T1DM, T2DM, Gestational diabetes, and other specific types. In case of, T1DM (5\%) which is an autoimmune disease, and T2DM (95\%), which is related to obesity, are the two most prevalent types of diabetes. Gestational diabetes develops during pregnancy, and other types of diabetes are exceedingly rare and caused by a single gene mutation.

Type 1 diabetes (T1DM): It is a chronic autoimmune disease that selectively destroys the pancreatic β-cells that produce insulin, resulting in a deficiency of insulin, causing accumulation of high glucose levels in the blood. The phenomenon is caused by type hypersensitivity reaction, also known as a cell-mediated immune response, where the individual's own T-cells attack the pancreatic β-cells. The body produces "self-tolerance" in response to the reaction. This self-tolerance among T lymphocytes that target specific beta cell antigens is lost in T1DM due to a genetic anomaly. As a result, T-cells are allowed to coordinate an attack against insulinsecreting beta cells with the help of other immune cells. This occurs when twin recipients who have chronic diabetes receive pancreatic transplants from identical twin donors without immune suppression and designated as insulin-dependent diabetes mellitus (IDDM) or juvenile-onset diabetes.

It is caused due to the inherent tendency of type 1 diabetes, specific viruses (e.g. German measles or mumps), environmental elements, etc. As mentioned above, In type 1 diabetes, the human body cannot produce insulin due to the loss of pancreatic β-cells. So they entirely depend upon the administered insulin, without this, they may not survive.

Type 2 diabetes (T2DM): T2DM, is the non-insulin dependent diabetes mellitus (NIDDM), which is also called as adult-onset diabetes. It is defined as the body's inability to react appropriately to insulin action or insulin secretion, which is produced by pancreatic β-cells. T2DM is shown to be the cause of almost 90% of diabetes patients. T2DM is most frequently carried by adults. Early stages of T2DM are characterized by decreased insulin sensitivity. Around the world, it has an influence on $5-7 \%$ of the population. The disease is generally under control with dietary changes, regular exercise, and hypoglycemic medication. This is the most
prevalent kind of diabetes mellitus, and family history of the disease, old age, obesity, and inactivity are all directly correlated to it.

Gestational diabetes (GDM): This disorder is often recognized in women with increased blood glucose during pregnancy due to the pregnancy hormones that interfere with insulin's actions and insulin receptors. Gestational diabetes is not present in pregnant women with diabetes mellitus (DM) that began before becoming pregnant; instead of GDM, they have DM.

Other types of diabetes mellitus include some exclusive reasons like (i) Genetic defects of beta cells of the pancreas (like chromosome 20, HNF4 α, chromosome 7, glucokinase, etc.), (ii) Genetic defect in insulin production or insulin action (lipoatrophic diabetes, leprechaunism, etc.), (iii) Exocrine pancreas diseases (fibrocalculous, pancreatopathy, pancreatitis, cystic fibrosis, pancreatectomy, etc.), (iv) Endocrinopathies (v) Medication induced diabetes, (vi) Microbe-induced (congenital rubella, cytomegalovirus, etc.), (vii) DM caused by rare forms of immunemediated syndromes, (viii) DM caused by genetic disorders.

Diabetes treatments: In Type-1 diabetes body is not produce insulin as we already discussed above, so the only treatment for T1DM patients is insulin given by outsourcing. Patients with Type-2 diabetes are usually treated with orally given antidiabetic medications. These medications help in controlling hyperglycemia by increasing secretion of insulin and its sensitivity. It helps with absorption of glucose and decreases glucose production in hepatic cells. However, due to limited effects and unwanted side effects, the efficacies of these medications are debatable. Here we have discussed various oral drugs used for diabetes management. ${ }^{5}$

1. Biguanide: Metformin is a biguanide sold under the brand name Glucophage (Figure 3.2.1). It reduces hyperglycemia by preventing the liver to make an excess of glucose and aids in the uptake of glucose by cells. ${ }^{5}$ It is the most commonly used medicine worldwide to treat type 2 diabetes. The side effects of this medicine include diarrhea, gas, indigestion, weakness, dizziness, nausea, vomiting, headache, and lactic acidosis (in patients with kidney problems; rare). The other biguanides are phenformin, Buformin etc.

Metformin (1)
i) Developed by: Bristol-Myers Squibb
ii) US-FDA approval year: 1998
iii) Dosage form: Tab $500 \mathrm{mg} /$ dose

Figure 3.2.1
2. Sulfonylureas: It helps the body to stimulate the secretion of insulin by attaching to specific sulphonylurea receptors on pancreatic β-cells. Glimepiride, glyburide, chlorpropamide, glipizide, tolbutamide, and tolazamide are anti-hyperglycemic sulfonylurea agents used to treat type-2 DM. ${ }^{5}$ The common side effects of sulfonylurea drugs are hypoglycemia, weight gain, dizziness, and headache (Figure 3.2.2).

Chlorpropamide (2)
i) Developed by: Pfizer
ii) US-FDA approval year: 2002
iii) Dosage form: Tab $500 \mathrm{mg} /$ dose

Figure 3.2.2
3. Meglitinides: These are also called non-sulfonylureas insulin secretagogues which act as antihyperglycemic agents by binding with non-sulfonylurea receptors present on pancreatic beta cells and increasing insulin secretion. ${ }^{5}$ Repaglinide and nateglinide drugs are examples of meglitinides (Figure 3.2.3). The side effect of these drugs is hypoglycaemia.

i) Developed by: Novo Nordisk
ii) US-FDA approval year: 2008
iii) Dosage form: Tab 0.5 mg to $4 \mathrm{mg} /$ dose

Repaglinide (3)

Figure 3.2.3
4. Thiazolidinediones (TZDs): They are heterocyclic compounds that act as antihyperglycemic agents by helping the body's cells utilize glucose. The examples of TZDs are pioglitazone and rosiglitazone (Figure 3.2.4). ${ }^{5}$ The side effects of these drugs are fluid retention, weight gain, heart failure, low RBC count, infection in the upper respiratory path etc.

Figure 3.2.4
5. $\boldsymbol{\alpha}$-Glucosidase inhibitors: The inhibition of α-glucosidase is found beneficial in the treatment of diabetes. They control the levels of blood glucose by inhibition of higher sugar digestion into glucose. ${ }^{5}$ Miglitol and acarbose are α-glucosidase inhibiting agents (Figure 3.2.5). Among these acarbose is a widely used α-glucosidase inhibitor agent worldwide to treat T2DM. They show stomach pain, diarrhea, gas, and liver problems as side effects.

Figure 3.2.5
6. Dipeptidyl-peptidase-4 inhibitors (DPP-4 inhibitors): These inhibitors like Sitagliptin is sold under the brand name Januvia (Figure 3.2.6). It is also used with the combination of metformin which is sold as Janumet and Janumet XR. It was the $88^{\text {th }}$ most frequently prescribed medication in the US in $2019 .{ }^{5}$ It acts as an antihyperglycemic agent by increasing insulin secretion to treat T2DM. The others DPP-4 inhibitors include alogliptin, saxagliptin, and linagliptin. The common side effect of these agents is upper respiratory infection and headache.

Figure 3.2.6
7. Glucagon-like peptide- 1 receptor agonists (GLP-1 RAs): These therapeutic agents protect pancreatic β-cells without generating hypoglycemia while enhancing glycemic control through controlling glucose-dependent insulin release. ${ }^{5}$ Exenatide, albiglutide, dulaglutide, and liraglutide are the drugs included in this class of antihyperglycemic agents (Figure 3.2.7). These drugs have a lesser risk of hypoglycemia than the other class of drugs like sulfonylureas and meglitinides, which stimulate insulin secretion.

Figure 3.2.7
8. Sodium-glucose co-transporter-2 inhibitors (SGLT-2 inhibitors): These inhibitors show hypoglycemic effects through increasing glycosuria. They prevent the resorption of glucose in the close convoluted path of the kidney to reduce the blood glucose level. ${ }^{5}$ For example, invokamet, dapagliflozin, canagliflozin, and empagliflozin are SGLT-2 inhibitors (Figure 3.2.8) and the side effect of these drugs includes the infection in vagina by yeasts and UTIs.

Figure 3.2.8

Among various drugs with diverse pharmacological action described above, the therapeutic strategies like inhibition of α-glucosidase and advanced glycation end products (AGEs) helps in regulating diabetic complications and found to be beneficial in the treatment of diabetes. The inhibition of the α-glucosidase enzyme regulates the levels of blood glucose by retarding the digestion of higher sugars into glucose. A sequence of non-enzymatic reactions among reducing sugars and amino groups of the protein forms AGEs. AGEs bind to the receptor for AGEs (RAGE), reactive oxygen species, and downstream signaling elicits a pro-inflammatory response.

Conventional modern medication does not always work well to control DM, in all cases due to the emergence of insulin resistance and the production of insulin antagonists in the body. Insulin cannot always be considered to be a viable treatment, whereas oral anti-hyperglycemic drugs are found to have limited utility in many situations due to the significant side effects. Therefore search for improved treatment from natural sources is still in progress. Ayurvedic medications help diabetes patients maintain their metabolic stability and immune power, in addition to their hypoglycemic effects. According to the international ayurvedic medical journal, there are more than 400 conventional plant-based treatments available for diabetes management, but only a few of them are recognized scientifically and evaluated for medicinal use. There are many ayurvedic plants like Allium cepa, Allium sativum, Azadirachta indica, Curcuma Longa, Syzygium cumini, Momordica charantia, Ocimum sanctum, Syzygium aromaticum., etc which are reported in the literature for their anti-diabetic activities. ${ }^{6}$

Eugenol belongs to the phenylpropanoid class of natural products, which was isolated from various plant-like Syzygium aromaticum, Ocimum basilicum, Cinnamomum tamala, Myristica fragrans, etc. However, the major source of eugenol is

Syzygium aromaticum (clove oil) only in which 45-90\% of eugenol is present as its component. It is a natural monoterpene molecule, isolated as pale yellow color oil, that is very cheap, readily available, and pharmacologically active. It has the IUPAC name of 4-allyl-2-methoxyphenol with a molecular weight of 164.2 and molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$. It can also be synthesized at the industrial level via allylation of guaiacol using allyl chloride which is showing similar properties with respect to the isolated one (Figure 3.3)

Figure 3.3. Structures of eugenol

It has attracted the attention of researchers in past years because of its chemical versatility and biological activity toward diabetes management. In addition to the extraordinary antioxidant ${ }^{7}$, antidiabetic ${ }^{8}$ and anti-inflammatory ${ }^{9}$ properties, it also shows hypotensive ${ }^{10}$, anticarcinogenic ${ }^{11}$, antiparasitic ${ }^{12}$, antifungal ${ }^{13}$, antibacterial ${ }^{14}$, antimicrobial ${ }^{15}$, antiseptic ${ }^{16}$, dental analgesic ${ }^{17}$, antiviral ${ }^{18}$ properties. However, molecules with antioxidant activity have been demonstrated to have a better potential for preventing and treating diabetes (Figure 3.4).

Figure 3.4. Therapeutic Properties of Eugenol

In 2016, Ashok Giri and co-workers reported the dual role of eugenol isolated from Ocimum species acts as an inhibitor of α-glucosidase as well as an AGEs. For that, they screened the leaf and inflorescent extracts of different Ocimum species (such as O. gratissimum, O. tenuiflorum, and 0 . kilimandscharicum) for the antiglycation activities by BSA-AGE assay. The major metabolites in these species include ocimene, camphor, eugenol methyl ether (EME), eugenol, eucalyptol, β caryophyllene, terpinolene, farnesene, and α-pinene (Figure 3.5). Among all three species, the inflorescent leaf extract of O. gratissimum extract showed the highest inhibition of glycation by inhibiting AGEs formation with 74% and 72% respectively. These species have high eugenol content, and the leaf extract of 0 . tenuiflorum with high EME shows very less antiglycation activity with 10% inhibition.

Figure 3.5. Structure of Ocimum species metabolites
The leaf and inflorescence of O. kilimandscharicum with major metabolites camphor and eucalyptol showed moderate AGE inhibition with 46% and 42%, respectively, and the other components like ocimene, β-caryophyllene, terpinolene, farnesene, and α-pinene, etc. were not showed AGE inhibition significantly. Among all these components eugenol shows very good antiglycation activity in vitro, hence they have chosen this metabolite for the in vitro and in vivo SAR (structure-activity relationship) studies.

According to the assay of BSA-AGE, 4-allyl-2-methoxyphenol (eugenol) has proved to be a effective AGE inhibitor as compared to eugenol methyl ether which is because of the existence of a hydroxy group in eugenol, which participates in proteineugenol interaction. For more study about protein (serum albumin) and eugenol interaction, they performed docking study. The result shows stronger binding (which is approx $6 \mathrm{kcal} / \mathrm{mol}$ binding energy) of eugenol with surface exposed lysine (Lys-236 and Lys-375) that is more than aminoguanidine hydrochloride ($4.3 \mathrm{kcal} / \mathrm{mol}$). Thus to understand the role of eugenol-protein interaction, they also performed an assay related to intrinsic fluorescence and electronic circular dichroism (ECD). The intrinsic assay clearly revealed that the binding of eugenol with BSA is a concentratedependent pattern in which a steady drop in intrinsic fluorescence intensity was observed as eugenol concentration was raised, and the CD indicated the secondary structure of the protein was unaffected after binding with eugenol.

Further, the in vivo studies showed a significant lowering of blood glucose level in mice which was treated with eugenol as compared to those without treating eugenol mice. Hence less formation of the advanced glycation end product and the other reason for low blood glucose level due to α-glucosidase inhibition. The α glucosidase is an enzyme that is present in the small intestine (at brush border epithelium), it converts the higher carbohydrates like maltose, sucrose, etc into glucose and increases the blood glucose level. Thus, eugenol act as an α-glucosidase inhibitor by inhibiting this conversion and lowering the blood glucose level (Figure 3.6) This proves that the eugenol which is isolated from the species O. gratissimum is a potent inhibitor by showing the dual mode of action as a inhibitor of α-glucosidase as well as AGE and can be used in diabetes management. ${ }^{19}$

Inspired by the dual activation of eugenol in diabetes management we focused on the studies related to the inhibition of α-amylase, α-glucosidase, glycation inhibition, and antioxidant properties of the eugenol molecule. These activities are further optimized by the derivatization of functional groups of eugenol because eugenol

Figure 3.6. The dual action of eugenol in diabetes management
is an oily compound, and it is not water-soluble. It should be administered into the body by the intra-peritoneal route only, and we cannot use it orally. Thus, there was a desperate need for the synthesis of water-soluble derivatives which could be given orally to diabetic patients.

In this chapter, we have discussed the synthesis and biological studies of various eugenol derivatives of lipophilic esters, amino acid conjugates, and carbamates based on a pro-drug concept. Prodrugs are molecules whose pharmacological activity is either less or none which converted into an active parent drug, under in vivo conditions. This takes place with the help of enzymatic or chemical reactions, or both. Prodrugs have emerged from being developed by chance to being intentionally designed (Figure 3.6). Such advancement has aided in overcoming drug development challenges, which have limited the options of formulations or resulted in the poor biochemical performance. The prodrug concept improves the biochemical properties of active compounds by overcoming the barriers like solubility, orally absorption, and slow mechanism of action. More than 30 prodrugs, which accounts for more than 12% of all authorised small-molecule new chemical entities have been approved by the US Food and Drug Administration in last decade (Figure 3.7). ${ }^{20}$

Figure 3.7. Prodrug concept

This approach opens the opportunity for a flexible \& wide therapeutic window for the treatment of diabetes. These derivatives further show better solubility, bioavailability, permeability, adsorption, and anti-diabetic activity

Chapter-3, Section-B: Present work

3.2.1 Hypothesis

As we discussed in the introduction, eugenol showed anti-diabetic activity by inhibiting α-glucosidases and the formation of AGEs. Major concerns associated with this natural product are the lowest water solubility and bioavailability. Hence, designed a series of novel analogs of eugenol based on the prodrug concept, which undergoes in vivo non-enzymatic or enzymatic transformations (with the aid of acidic/basic environment or lipases/esterase/amidases) and releases active ingredient eugenol into extracellular and/or intracellular domains.

3.2.2 Result and discussion:

3.2.2.1: Synthesis of eugenol analogs:

Accordingly, the free hydroxyl group of eugenol is used as a functional handle to synthesize corresponding lipophilic esters (enhances the cell-membrane permeability and undergoes enzymatic hydrolysis with the aid of lipases), amino acid esters, amino acid ester-salts, and carbamates (soluble in highly polar solvents like water and DMSO (undergoes enzymatic hydrolysis with the aid of esterases), as shown in Figure 3.8.

Figure 3.8. The general classification of eugenol derivatives.

1. Lipophilic ester derivatives of eugenol: Long-chain aliphatic and aromatic ester derivatives of eugenol were synthesized aiming at increasing the cell wall permeability of eugenol. The general procedure for the synthesis of lipophilic esters (19-24) is shown in Scheme 3.1. Using the appropriate acid and eugenol in the presence of the coupling reagent EDC.HCl or DCC ${ }^{21}$, esters 29-24 were produced. The coupling reagent was chosen based on yield and purification ease. In general, EDC.HCl was utilized for aliphatic acids whereas DCC was used for aromatic acids.

Scheme 3.1. Lipophilic ester derivatives of eugenol (19-24).
2. Amino acid-derived ester derivatives of eugenol: To increase the solubility and bioavailability of eugenol, connected polar amino acid (Boc-protected) to eugenol via ester linkage using EDC. HCl as a coupling reagent to access corresponding amino acid conjugates of eugenol 25-35 (Scheme 3.2).

Scheme 3.2. Synthesis of Amino acid derivatives of Eugenol

Subsequently, the Boc group was removed using HCl in diethyl ether (etherial HCl), which concomitantly delivered corresponding HCl salts of amino acid-derived eugenol analogs 36-45 (Scheme 3.3).

Scheme 3.3. Synthesis of HCl salt of amino acid derivatives of eugenol

Next, The boc-protected amino acid ester derivatives of eugenol were treated with TFA in DCM at room temperature, ${ }^{22}$ to access corresponding free amine analogs of eugenol 46-55 (Scheme 3.4).

Scheme 3.4. Synthesis of TFA salt of amino acid derivatives of eugenol
3. Carbamate derivatives of eugenol: Another class of amino acid-based analog of eugenol was synthesized using L-proline. Accordingly, L-proline was converted into its methyl ester $\mathbf{S 1}$ using SOCl_{2}-mediated acid chloride formation followed by in situ methanolysis. ${ }^{23}$ Next, $\mathbf{S 1}$ was converted into carbamoyl chloride $\mathbf{S} 2$ using triphosgene and $\mathrm{Et}_{3} \mathrm{~N}$, in THF. ${ }^{24}$ Finally, carbamoyl chloride was coupled with eugenol in pyridine at reflux conditions to form carbamate derivative 56 (Scheme 3.5). ${ }^{25}$

Scheme 3.5. Synthesis of carbamate derivative of eugenol
4. Miscellaneous analogs of eugenol: Other eugenol derivatives (57-61) were synthesized through the modification of allyl and hydroxyl functionalities. Epoxidation of the double bond of eugenol using m-CPBA gave analog 57, ${ }^{26}$ and $\mathrm{OsO}_{4}-$

Scheme 3.5. Synthesis of miscellaneous analogs of eugenol
mediated dihydroxylation delivered corresponding diol analog 58 in 71% yield. ${ }^{27}$ This trihydroxy derivative of eugenol 58 was further transformed into triacetate 59 and tribenzoate $\mathbf{6 0}$ derivatives using known the reaction conditions. ${ }^{28}$ The reactionof vinyl magnesium chloride with vanillin gave the hydroxyl vinyl derivative of eugenol 61 in a 73\% isolated yield (Scheme 3.6). ${ }^{29}$

3.2.2.2: Biochemical Studies:

Docking Studies:

Docking is an effective and competent tool for in silico screening. In studying the various properties associated with protein-ligand interactions, docking is a powerful tool. The molecules in nature have a tendency to be found in their energy form. Understanding these properties is crucial in the rational design of potent inhibitors. It plays an important and ever-increasing role in rational drug design. Docking is a computational procedure for an appropriate ligand that fits both energetically the protein's binding site. In other words, it is a study of how two or more molecules e.g. ligand and protein, fit together. Docking has been proven very efficient tool for novel drug discovery for targeting protein. Among different types of docking, protein-ligand docking is of special interest, because of its application in the medical industry. Protein-ligand docking refers to searching for the accurate ligand conformations within a targeted protein when the structure of proteins is known. Docking procedures are basically a combination of search algorithms and scoring functions.

Experimental Procedures:

Ligand preparation: The ligand structures were retrieved from PubChem. All the molecules were checked for stereo-chemical properties and then converted to *.pdbqt format using Auto Dock Tools. This library was used for further docking studies.

Preparation of the target molecules: Crystal structures of Human α-amylase (HAA; PDB ID: 5E0F), human α-glucosidase (HAG; PDB ID: 5NN5), and human serum albumin (HAS; PDB ID: 4LA0) were downloaded from the RCSB Protein Data Bank. Water and other heteroatoms were deleted from these structures. The grid was set around active site residues with the dimension of $24 \times 24 \times 24 \AA$ using the Auto Grid program of Auto Dock Tools. The protein is converted to *.pdbqt for further docking studies. These target molecules were then further used for virtual screening.

Virtual screening using Auto dock vina: Prepared receptor molecules and ligands were set for the virtual screening by Auto Dock Vina based Lamarckian Genetic

Algorithm (LGA) parameter for ligand tethering of the proteins using 10 runs criteria. The top hits of ligands were selected based on their docking score against targets. Two-dimensional ligand interaction images are made using Biovia Discovery Studio 4.5.

The results of the docking study revealed that the binding score comparison illustrated that all the derived molecules are binding with higher interaction energy. The eugenol, A, B, C, and D compounds have shown good binding scores with the energy of $-5.6,-6.4,-6.1,-6.7$, and $-6.2 \mathrm{kcal} / \mathrm{mol}$ against α-amylase respectively, energy of $-5.2,-5.4,-6.1,-5.9$ and $-6.2 \mathrm{kcal} / \mathrm{mol}$ against α-glucosidase respectively and $-6.4,-7.6,-7.4,-7.4,-6.5$ against human serum albumin (HSA) respectively. These results indicate that $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D derivatives are more potent as compared to parental molecules i. e. Eugenol.

All these prodrug-based analogs (Figure 3.9) can deliver eugenol (active molecule) into the biological system with the aid of naturally abundant enzymes such as lipases, esterases, amidases, etc. After preliminary investigations, we found that

Figure 3.9. Active eugenol derivatives
analogs A, B, C, D, E, F, and G are relatively more aqueous soluble and are chosen for in vitro inhibitory activity analyses (α-amylase, α-glucosidase and glycation
inhibition, and the results were furnished below. Since Oxidative Stress is also a predisposing factor for the development of diabetes, we have investigated further the antioxidant activity of these selected molecules (A to G) using DPPH free radical scavenging studies (Figure 3.9).

DPPH Free Radical Scavenging Activity:

Free radicals, which are produced by the chemical the reaction of organic compounds, could damage the body's tissues and cells, and produces oxidative stress which leads to many human diseases like diabetes, cancer, cardiac damage etc. Oxidative stress is the main culprit of many diseases. Therefore, it is very important to find antioxidants for scavenging these free radicals. Various in-vitro and in-vivo methods have been developed for the assessment of antioxidative activities. From the standpoint of in-vitro, the standard method that has been proposed for evaluating the antioxidative activity is the 1,1-diphenyl-2-pierylhydrazyl (DPPH) method. DPPH method is one of the universal tools for estimating the antioxidative activities of different products. DPPH radical, a very stable nitrogen-centered radical, can be used to determine the free radical scavenging ability, which is related to their antioxidative activities. The method is based on the spectrophotometric measurement of DPPH• concentration changes resulting from the DPPH• the reaction with an antioxidant. If free radicals have been scavenged, DPPH will have generated its color to yellow. We have performed this assay to evaluate the antioxidant property of eugenol and its derivatives. The molecule which has antioxidant property those molecules can treat diabetes in a better way.

Procedure: The solutions of test compounds (Shown in Figure 3.10) were prepared in absolute ethanol at concentrations ranging from 25-1000 $\mu \mathrm{g} / \mu \mathrm{L}$. A DPPH blank was prepared without compound, and ethanol was used for the baseline correction. The well-known antioxidant, ascorbic acid was used for comparison or as a positive control. DPPH solution was freshly prepared daily and was kept in the dark at $4^{\circ} \mathrm{C}$ between the measurements. 1 mL of each compound solution having different concentrations were taken in different test tubes, and 1 mL of 0.1 mM ethanol solution of DPPH was added, and shaken vigorously. The tubes were then incubated at $37^{\circ} \mathrm{C}$ for 30 min . Changes in absorbance were measured at 517 nm using a UV/Vis
spectrophotometer and the remaining DPPH was calculated. The radical scavenging activity was expressed as percentage inhibition of DPPH and was calculated using the equation.

Inhibition Percentage $=$ [Abs517 (control) - Abs517 Test compound] / Abs517 (control) x 100
Where, A0 is the absorbance of the control (blank, without compound) and A1 is the absorbance of the compounds.

Mean of DPPH assay values

Compound	Concentration ($\mu \mathrm{g} / \mu \mathrm{l}$)						
	25	100	200	400	600	800	1000
Ascorbic acid	$\begin{aligned} & 76.6 \pm \\ & 1.18 \end{aligned}$	$\begin{aligned} & 90.7 \pm \\ & 3.55 \end{aligned}$	$\begin{array}{\|l\|} \hline 91.6 \pm \\ 0.43 \end{array}$	$\begin{aligned} & 94.4 \pm \\ & 1.19 \end{aligned}$	$\begin{aligned} & 95.7 \pm \\ & 1.03 \end{aligned}$	$\begin{aligned} & 95.9 \pm \\ & 0.63 \end{aligned}$	$\begin{array}{\|l\|} \hline 95.1 \pm \\ 0.67 \end{array}$
Eugenol	$\begin{aligned} & 28.4 \pm \\ & 1.24 \end{aligned}$	$\begin{array}{\|l} \hline 30.1 \pm \\ 2.00 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 36.7 \pm \\ 1.12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 40.3 \pm \\ 0.98 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 59.9 \pm \\ 0.63 \\ \hline \end{array}$	$\begin{aligned} & 65.6 \pm \\ & 2.08 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 74.9 \pm \\ 1.13 \\ \hline \end{array}$
A	$\begin{aligned} & 39.6 \pm \\ & 0.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.8 \pm \\ & 2.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 45.4 \pm \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 58.9 \pm \\ 0.70 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 61.8 \pm \\ 0.73 \\ \hline \end{array}$	$\begin{aligned} & 70.5 \pm \\ & 1.19 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 76.5 \pm \\ 0.70 \\ \hline \end{array}$
B	$\begin{aligned} & \hline 34.6 \pm \\ & 0.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.5 \pm \\ & 3.64 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40.5 \pm \\ & 1.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 59.6 \pm \\ & 1.12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60.7 \pm \\ & 0.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 61.2 \pm \\ & 0.87 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 82.9 \pm \\ 0.89 \\ \hline \end{array}$
C	$\begin{aligned} & 36.5 \pm \\ & 0.94 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 37.3 \pm \\ 3.51 \\ \hline \end{array}$	$\begin{aligned} & 39.7 \pm \\ & 0.46 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 43.8 \pm \\ 0.60 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 51.6 \pm \\ 1.20 \\ \hline \end{array}$	$\begin{aligned} & 53.9 \pm \\ & 0.66 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 78.6 \pm \\ 1.13 \\ \hline \end{array}$
D	$\begin{aligned} & 35.8 \pm \\ & 1.18 \end{aligned}$	$\begin{aligned} & \hline 37.2 \pm \\ & 3.14 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.4 \pm \\ & 0.68 \end{aligned}$	$\begin{aligned} & 43.1 \pm \\ & 1.06 \end{aligned}$	$\begin{aligned} & 57.2 \pm \\ & 1.20 \end{aligned}$	$\begin{aligned} & 77.9 \pm \\ & 1.12 \end{aligned}$	$\begin{aligned} & 85.2 \pm \\ & 0.92 \\ & \hline \end{aligned}$
E	$\begin{aligned} & 31.4 \pm \\ & 0.84 \end{aligned}$	$\begin{aligned} & 36.5 \pm \\ & 3.36 \end{aligned}$	$\begin{aligned} & \hline 39.4 \pm \\ & 0.89 \end{aligned}$	$\begin{aligned} & 49.1 \pm \\ & 0.84 \end{aligned}$	$\begin{aligned} & 66.3 \pm \\ & 1.11 \end{aligned}$	$\begin{aligned} & 68.7 \pm \\ & 1.21 \end{aligned}$	$\begin{array}{\|l\|} \hline 79.5 \pm \\ 0.84 \end{array}$
F	$\begin{aligned} & 30.5 \pm \\ & 0.66 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 33.5 \pm \\ 2.42 \\ \hline \end{array}$	$\begin{aligned} & \hline 36.7 \pm \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 50.2 \pm \\ 0.90 \\ \hline \end{array}$	$\begin{aligned} & \hline 68.1 \pm \\ & 1.12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70.9 \pm \\ & 1.13 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 78.3 \pm \\ 1.17 \\ \hline \end{array}$
G	$\begin{aligned} & 31.3 \pm \\ & 0.71 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.6 \pm \\ & 1.83 \end{aligned}$	$\begin{aligned} & 47.2 \pm \\ & 1.09 \end{aligned}$	$49.6 \pm$ 1.21	$\begin{aligned} & 71.3 \pm \\ & 1.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 72.8 \pm \\ & 1.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 76.4 \pm \\ & 1.28 \\ & \hline \end{aligned}$

At varying concentrations, DPPH Free Radical Scavenging was done with the compounds, taking Ascorbic Acid as the standard. At the highest concentration $(100 \mu \mathrm{~g} / \mu \mathrm{l})$, the highest percentage of inhibition was observed. The values of A, B, C, D, E, F, and G are $76.5,82.9,78.6,85.2,79.5,78.3$, and 76.4 , respectively. The Ascorbic acid and eugenol showed 95.1 and 74.9 \% inhibition at the highest concentration. The percentage of inhibitions of A, B, C, D, E, F, and G compounds was better than eugenol but slightly less than ascorbic acid (Figure 3.10).

Figure 3.10. Graph represents DPPH free radical scavenging activity of the test compounds

α-Amylase inhibitory activity:

α-amylase is an enzyme that converts starch into glucose. Complex carbohydrates are broken into simpler substances, giving rise to high blood glucose levels. It causes hyper-glycemia i. e. Diabetes Mellitus. In the α-amylase inhibition assay, α-amylase acts on the substrate i.e. starch, releasing reducing sugar (glucose). The reducing groups released from starch are measured by the reduction of $3,5 \mathrm{di}$ nitrosalicylic acid. The primary role of the enzyme is starch digestion. The enzyme that we used was pancreatic porcine α-amylase. DNSA is an aromatic compound that reacts with the reducing sugars and α other reducing molecules to form 3-amino-5nitrosalicylic acid, which absorbs light at 540 nm . On heating with reducing sugars, the 3-nitro group $\left(\mathrm{NO}_{2}\right)$ of DNSA is reduced to an amino group $\left(\mathrm{NH}_{2}\right)$. The color changes depending upon the concentration of reducing sugar present. The purpose of heating is dual inactivation of the enzyme as well as efficient binding of reducing sugar to DNS to give ANS, which shows maximum absorbance. The maximum inhibition of enzyme means maximum antidiabetic activity.

Procedure: The assay mixture containing $200 \mu \mathrm{~L}$ of 0.02 M sodium phosphate buffer $\mathrm{pH} 7.0,20 \mu \mathrm{l}$ of α-amylase en-zyme and the test compounds (Given in figure 3.11) in con-centration range $20-100 \mu \mathrm{~g} / \mu \mathrm{L}$ of distilled water (Eugenol in DMSO) were incubated for 15 minutes at room temperature followed by addition of $200 \mu \mathrm{l}$ of starch in all eppendorf tube. The reaction was terminated with the addition of $500 \mu \mathrm{l}$ DNSA (3,5-dinitro salicylic acid) reagent and placed in a boiling water bath for 5 minutes, cooled, and absorbance was measured at 540 nm . The control samples were prepared without test compounds. The percentage inhibition was calculated according to the formula

Inhibition Percentage $=$ [Abs540 (control) - Abs540 Test compound] / Abs540 (control) x 100

As it can be inferred from the graphical representation, Acarbose was taken as the standard, while the compounds A, B, C, D, E, F, and G were put into experimentation with respect to it. The values fluctuated within the range of 60 to 90% inhibition, at the different concentrations taken, i.e., $20,40,60,80$, and 100 $(\mu \mathrm{g} / \mu \mathrm{L})$. The highest percentage of inhibition was observed at $100 \mu \mathrm{~g} / \mu \mathrm{L}$, with compound A showing the highest inhibition activity. The values obtained at the highest concentration are $89.1,86.9,88.4,84.1,85.1,86.9$, and 85.2 , for compounds A, B, C, D, E, F, and G respectively. The standard compound acarbose and eugenol showed 93.3 and 83.4 percent of α-amylase inhibition at the same concentration. The percentage of inhibitions of A A, B, C, D, E, F, and G compounds was better than eugenol but slightly less than acarbose (Figure 3.11).

Mean of α-amylase assay values

Compound	Concentration ($\boldsymbol{\mu g} / \boldsymbol{\mu l} \mathbf{)}$					
	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	
Acarbose	77.2 ± 0.26	85.8 ± 0.58	89.1 ± 0.57	90.7 ± 0.52	93.3 ± 0.75	
Eugenol	69.5 ± 0.35	70.3 ± 0.63	75.9 ± 0.63	78.7 ± 0.11	83.4 ± 0.61	
A	70.4 ± 1.32	78.3 ± 0.99	85.7 ± 0.66	86.5 ± 0.44	89.1 ± 0.52	
B	75.9 ± 0.56	79.6 ± 0.61	80.5 ± 0.88	81.4 ± 0.61	86.9 ± 0.45	
C	78 ± 0.63	82.4 ± 0.61	84.7 ± 0.57	87.1 ± 0.49	88.4 ± 0.31	

Chapter-3: Design, Synthesis and Biological Evaluation of Eugenol Derivatives as Potential Antidiabetic Agents f Alkynols and α-Ketoesters

\mathbf{D}	72.2 ± 0.95	79.6 ± 0.99	81.6 ± 1.00	86.7 ± 0.28	84.1 ± 0.17
\mathbf{E}	74.3 ± 0.52	77.5 ± 0.49	79.2 ± 0.46	84.7 ± 0.46	85.1 ± 0.40
\mathbf{F}	73.9 ± 0.33	75.4 ± 0.54	80.1 ± 0.57	84.5 ± 0.57	86.9 ± 0.63
\mathbf{G}	72.5 ± 0.37	77.4 ± 0.46	81.6 ± 0.55	83.5 ± 0.63	85.2 ± 1.21

Figure 3.11. Graph represents α-amylase inhibitory activity of the test compounds.

α-Glucosidase inhibitory activity:

α-Glucosidase enzymes catalyze the hydrolysis of starch to simple sugars. In humans, these enzymes aid digestion of dietary carbohydrates and starches to produce glucose for intestinal absorption, which in turn, leads to an increase in blood glucose levels. α-glucosidase is an enzyme that converts complex polysaccharides into simple monosaccharides, resulting in increased blood glucose levels. It causes hyperglycemia i.e. Diabetes Mellitus. In the α-glucosidase inhibition assay, In contrast to glucoamylases, α-glucosidases favor oligosaccharides as substrates.

Procedure: $50 \mu \mathrm{~L}$ of the test compounds (given in figure 3.12) in a concentration range $20-100 \mu \mathrm{~g} / \mu \mathrm{L}$ of distilled water (Eugenol in DMSO) with $100 \mu \mathrm{~L}$ of the α glucosidase enzyme was incubated for 10 min in 96 well microplates after the incubation $50 \mu \mathrm{~L}$ of the substrate ($5 \mathrm{mM}, p$-nitrophenyl α-D-glucopyranoside in 100 mM phosphate buffer $\mathrm{pH}, 6.9$) was added. The reaction mixtures were incubated
for 5 min at $25{ }^{\circ} \mathrm{C}$. Release of p-nitrophenyl is measured at 405 nm by 96 well microplate reader (BioTek synergy4 multimode microplate reader). The control samples were prepared without test compounds. The percentage inhibition was measured by using the following formulae given below.
Inhibition Percentage $=$ [Abs405 (control) -Abs405 Test compound] / Abs405 (control) x 100
α-Glucosidase inhibitory potential of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, and G at the highest concentration ($100 \mu \mathrm{~g} / \mu \mathrm{L}$) was $83.3,78.9,85.37,86.58,79.58,88.26$, and 87.63 respectively. The standard compound acarbose and eugenol showed 90.2 and 77.1 percent of α-glucosidase inhibition at the same concentration. The percentage of inhibitions of A, B, C, D, E, F, and G compounds was better than eugenol but slightly less than acarbose (Figure 3.12).

Mean of α-glucosidase assay values

Compound	Concentration ($\mu \mathrm{g} / \boldsymbol{\mu \mathbf { l })}$				
	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Acarbose	62.5 ± 0.72	78.5 ± 0.73	83.4 ± 0.29	90.1 ± 0.52	90.2 ± 0.46
Eugenol	20.1 ± 0.57	48.6 ± 0.49	68.3 ± 0.43	70.2 ± 0.46	77.1 ± 0.63
\mathbf{A}	21.6 ± 0.43	46.4 ± 0.74	75.4 ± 0.35	77.8 ± 0.55	83.3 ± 0.52
B	23.7 ± 0.56	57.6 ± 0.40	67.1 ± 0.14	69.7 ± 0.18	78.9 ± 0.66
\mathbf{C}	24.8 ± 0.51	54.1 ± 0.41	71.6 ± 0.42	74.5 ± 0.30	85.3 ± 0.56
\mathbf{D}	23.3 ± 0.64	60.2 ± 0.45	69.4 ± 0.39	72.3 ± 0.35	86.5 ± 0.66
\mathbf{E}	21.3 ± 0.34	59.1 ± 0.54	64.2 ± 0.90	72.6 ± 0.51	79.5 ± 0.30
F	20.1 ± 0.033	61.3 ± 0.61	70.1 ± 0.46	78.2 ± 0.49	88.2 ± 0.057
\mathbf{G}	23.1 ± 0.033	64.2 ± 0.69	77.3 ± 0.46	78.2 ± 0.66	87.6 ± 0.61

Figure 3.12. Graph represents α-glucosidase inhibitory activity of the test compounds.

BSA-AGE Glycation Inhibition Assay: The glycation the reaction involves a series of non-enzymatic the reactions between the carbonyl group on reducing sugars, and the amino group on proteins to form advanced glycation end product (AGE's), which are involved in the pathogenesis of diabetes mellitus and aging-related complications. In the case of postprandial hyperglycemia, there is a high blood glucose level that leads to an increase in glycation the reaction, which can alter protein conformation and impair function by altering enzyme activity, altering immunogenicity, modifying protein half-life, and causing crosslinking of structural proteins. Due to the good α amylase and α-glucosidase inhibition potential of the compounds A, B, C, D, E, F, G and eugenol, it was further tested for glycation inhibition potential. Bovine Serum Albumin (BSA) is a filler or a carrier protein found in cow's milk, identical to Human Serum Albumin (HSA). In fact, Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) are the two most abundant multifunctional proteins in human and bovine blood. Digging deeper into human albumin, it belongs to the family of globular proteins made by the liver. Albumin keeps the fluid in the bloodstream avoiding its leakage into the other tissues. It is primarily a carrier protein for steroids, fatty acids, and thyroid hormones, playing an eminent role in stabilizing extracellular fluid volume. BSA is used in AGE inhibition assay due to several reasons. One of them is
that it prevents low-level binding of aliquot growth factor to the storage container and prevents inactivation, while under frozen conditions. It also prevents precipitation of the pure protein in water solution, as well as sticking to the carrier vessel by hydrophobic interactions. BSA is a protein that binds with dextrose, a form of glucose, undergoing glycation. Glucose can be bonded and transported by BSA, mainly involving hydrogen bonds and Vander Waal interactions ($\Delta \mathrm{H}=-86.13 \mathrm{KJ} / \mathrm{mol}$). In the BSA-AGE inhibition assay, protein BSA binds with the substrate dextrose monohydrate, producing AGEs. The buffer supports the pH of the reaction, and the temperature is kept at $37{ }^{\circ} \mathrm{C}$. The bacteriostat, Sodium Azide is used to avoid microbial growth and contamination in the reaction.

Procedure: BSA glycation the reaction was carried out by incubating 1 mL of $50 \mathrm{mg} / \mathrm{mL}$ BSA in 0.1 mM phosphate buffer (pH 7.4) and 0.5 M dextrose monohydrate containing 5 mM sodium azide as bacteriostat at $37^{\circ} \mathrm{C}$ for 7 days with $50 \mu \mathrm{l}$ of the test compounds (given in Figure 3.13). The concentrations of test compounds were 2.5-15 $\mu \mathrm{g} / \mu \mathrm{L}$. The BSA glycation was monitored for excitation at 330 nm and emission at 440nm by using a spectrofluorometer (Thermo, Varioskan Flash Multimode Reader). The control samples were prepared without test compounds. Percentage inhibition of glycation was calculated by using the following formulae.

$$
(\mathrm{C}-\mathrm{T}) / \mathrm{C} \times 100
$$

Where C is the relative fluorescence intensity of glycated BSA in the absence of an inhibitor and T is the relative fluorescence intensity of glycated BSA in the presence of an inhibitor.

At varying concentrations, glycation inhibition activity was done with the compounds, taking amino-guanidine hydrochloride as the standard. At the highest concentration ($15 \mu \mathrm{~g} / \mu \mathrm{L}$), the highest percentage of inhibition was observed. The values of A, B, C, D, E, F, and G are $90,89,85,91,88,92$, and 91 , respectively. The aminoguanidine hydrochloride and eugenol showed 96% and 77% inhibition respectively at the highest concentration. The percentage of inhibitions of A, B, C, D, E, F , and G compounds was better than eugenol but slightly less than aminoguanidine hydrochloride (Figure 3.13).

Mean of glycation inhibition assay values:

Chapter-3: Design, Synthesis and Biological Evaluation of Eugenol Derivatives as Potential Antidiabetic Agents f Alkynols and α-Ketoesters

Compound	Concentration ($\mu \mathrm{g} / \boldsymbol{\mu \mathbf { l }})$				
	$\mathbf{2 . 5}$	$\mathbf{5}$	$\mathbf{7 . 5}$	$\mathbf{1 0}$	$\mathbf{1 5}$
Aminoguanidine	88.3 ± 0.29	90.1 ± 0.40	92.7 ± 0.38	95.2 ± 0.34	96.4 ± 0.35
Eugenol	71.6 ± 0.36	72.4 ± 0.1	72.5 ± 0.057	74.3 ± 0.21	76.8 ± 0.057
A	75.3 ± 0.57	80.6 ± 0.11	82.1 ± 0.088	85.7 ± 0.46	90.4 ± 0.80
B	77.3 ± 0.42	82.5 ± 0.72	86.2 ± 0.52	85.1 ± 0.11	89.7 ± 0.37
C	72.4 ± 0.15	78.6 ± 0.26	79.1 ± 0.11	82.4 ± 0.91	85.5 ± 0.81
D	79.6 ± 0.55	81.2 ± 0.14	83.8 ± 0.58	89.3 ± 0.40	91.1 ± 0.45
E	71.7 ± 0.61	79.9 ± 0.17	82.6 ± 0.84	86.2 ± 0.26	88.5 ± 0.52
F	79.3 ± 0.11	81.2 ± 0.057	84.2 ± 0.057	87.4 ± 0.11	92.7 ± 0.28
G	77.5 ± 0.37	79.4 ± 0.31	84.3 ± 0.21	89.8 ± 0.35	91.7 ± 0.93

Figure 3.13. Graph represents α-glucosidase inhibitory activity of the test compounds.

Animals Study (In-Vivo Experiment):

Postprandial non-insulin dependent anti-hyperglycemic activity of compounds A, B, C, D, E, F, G, Eugenol, and Acarbose was determined by standard method i.e. postprandial glycemic test (Tiwari et.al 2008, Tiwari et.al 2011, Tiwari et.al 2013, Rao et.al 2011, Agawane et.al 2019, Misra et.al 2011 and Raju et.al 2009). The animal
experiment was carried out at the NCL-IISER animal house facility (NIAU), Pune (Registration No. CPCSEA Reg No. 1496/GO/ReBi/S/11/CPCSEA) upon approval by the Institutional Animal Ethics Committee of IISER, Pune. Healthy CD-1 mice were obtained from an in-house source. Mice were quarantined for 7 days. Animals were maintained under standard laboratory conditions. Animal welfare guidelines were observed during the maintenance and experimentation period. All animals were fed with standard rodent pelleted feed. All animals were given good-quality drinking water.

For this study, 48 male CD-1 mice were divided into 8 different groups each containing 6 male CD-1 mice. All the animals were kept for overnight fasting. The next day morning, blood was collected from the retroorbital plexus, and blood glucose level (' 0 ' hr) was estimated. All the groups of animals DC, A, B, C, D, E, F, G, Eugenol, and Acarbose except the NC group were given soluble Potato Starch $2 \mathrm{~g} / \mathrm{kg}$ b.w. to induce diabetes mellitus. Group NC mice served as Normal Controls and received a normal diet and water. Group DC mice served as Diabetes Control and received only distilled water followed by Potato Starch. Mice of groups A, B, C, D, E, F, G Eugenol and Acarbose served as Treatment Groups and received the specific treatments orally as mentioned in Table $1 @ 100 \mathrm{mg} / \mathrm{kg}$ b.w. 15 min before starch feeding. Blood was collected, and glucose levels were measured at the intervals of 0th, 30 th, 60 th, 90 th, $120^{\text {th }}$, and 180th minutes. All the data related to the animal study were analyzed by standard statistical methods. Determination of the degree of significance $p<0.05$ between the groups of animals was done by the Two Way ANOVA test.

Table 1: (Treatments)

Group name	Specification (n=6)
NC	Normal Control didn't receive any treatment
DC	Disease Control received Potato Starch 2 gm/kg b.w.
A	Potato Starch 2gm/kg b.w. + 2-methoxy-4-(oxiran-2-ylmethyl) phenol $100 \mathrm{mg} / \mathrm{kg}$ b.w.
B	Potato Starch 2gm/kg b.w. propane-1,2-dioI $100 \mathrm{mg} / \mathrm{kg}$ b.w..

Chapter-3: Design, Synthesis and Biological Evaluation of Eugenol Derivatives as Potential Antidiabetic Agents f Alkynols and α-Ketoesters

C	Potato Starch 2gm/kg b.w. + bis(4-allyl-2-methoxyphenyl) L-aspartate hydrochloride $100 \mathrm{mg} / \mathrm{kg}$ b.w.
D	Potato Starch $2 \mathrm{gm} / \mathrm{kg} \mathrm{b.w}. \mathrm{+} \mathrm{4-(1-hydroxyaIIyl)-2-methoxyphenol}$ $100 \mathrm{mg} / \mathrm{kg}$ b.w.
E	Potato Starch $2 \mathrm{gm} / \mathrm{kg}$ b.w. + 4-allyl-2-methoxyphenyl L-isoleucinate hydrochloride $100 \mathrm{mg} / \mathrm{kg}$ b.w.
F	Potato Starch $2 \mathrm{gm} / \mathrm{kg}$ b.w. + bis(4-allyl-2-methoxyphenyl) L-glutamate $100 \mathrm{mg} / \mathrm{kg}$ b.w.
G	Potato Starch $2 \mathrm{gm} / \mathrm{kg}$ b.w. + bis(4-allyl-2-methoxyphenyl) L-glutamate hydrochloride $100 \mathrm{mg} / \mathrm{kg}$ b.w.
Eugenol	Potato Starch 2gm/kg b.w. + Eugenol 100mg/kg b.w.
Acarbose	Potato Starch 2gm/kg b.w. + Acarbose 100mg/kg b.w.

Table 2:- Mean of Blood Glucose estimations (mg/dl)

Treatments	On $0^{\text {th }}$	On 30 ${ }^{\text {th }}$	On 60 ${ }^{\text {th }}$	On 90 ${ }^{\text {th }}$	$\begin{aligned} & \hline \text { On } \\ & \mathbf{1 2 0}^{\text {th }} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { On } \\ 180^{\text {th }} \\ \hline \end{array}$
Normal Control	$\begin{aligned} & \hline 83.98 \pm \\ & 2.08 \end{aligned}$	$\begin{aligned} & 85.90 \pm \\ & 3.31 \end{aligned}$	$\begin{aligned} & 87.08 \\ & \pm 4.29 \end{aligned}$	83.78 ± 6.33	$\begin{aligned} & 79.70 \\ & \pm 5.01 \end{aligned}$	$\begin{aligned} & 80.95 \\ & \pm 2.56 \end{aligned}$
Diabetic Control	$\begin{aligned} & 85.91 \pm \\ & 4.20 \end{aligned}$	$\begin{aligned} & 184.5 \\ & \pm 8.86 \end{aligned}$	$\begin{array}{r} 214.1 \\ \pm 4.98 \end{array}$	234.65 ± 6.01	$\begin{aligned} & 258.56 \\ & \pm 9.19 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 288.63 \\ \pm 11.30 \\ \hline \end{array}$
$\begin{gathered} \text { Compound } \\ \mathrm{A} \\ \hline \end{gathered}$	$\begin{aligned} & 84.7 \pm \\ & 0.68 \\ & \hline \end{aligned}$	$\begin{aligned} & 190.45 \pm \\ & 2.53 \\ & \hline \end{aligned}$	$\begin{aligned} & 112.3 \pm \\ & 3.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 102.56 \pm \\ & 2.15 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 92.98 \pm \\ 2.75 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 85.25 \pm \\ 0.51 \\ \hline \end{array}$
$\begin{gathered} \hline \text { Compound } \\ \text { B } \\ \hline \end{gathered}$	$\begin{aligned} & 83.65 \pm \\ & 1.80 \end{aligned}$	$\begin{aligned} & 186.43 \pm \\ & 2.41 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 112.05 \pm \\ & 1.87 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 102.51 \pm \\ & 3.71 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 92.61 \pm \\ 1.82 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 86.25 \pm \\ 1.48 \\ \hline \end{array}$
$\begin{gathered} \text { Compound } \\ \text { C } \\ \hline \end{gathered}$	$\begin{aligned} & 85.43 \pm \\ & 0.99 \end{aligned}$	$\begin{aligned} & 189.43 \pm \\ & 2.68 \\ & \hline \end{aligned}$	$\begin{aligned} & 113.3 \pm \\ & 2.54 \end{aligned}$	$\begin{aligned} & 101.46 \pm \\ & 2.45 \end{aligned}$	$\begin{aligned} & \hline 96.8 \pm \\ & 1.04 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 89.43 \pm \\ 0.95 \\ \hline \end{array}$
$\begin{gathered} \hline \text { Compound } \\ \text { D } \\ \hline \end{gathered}$	$\begin{aligned} & 86.51 \\ & \pm 5.74 \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 188.78 \\ \pm 7.92 \\ \hline \end{array}$	$\begin{aligned} & \hline 111.5 \\ & \pm 7.24^{*} \end{aligned}$	96.11 $\pm 5.61 *$	$\begin{aligned} & \hline 89.53 \\ & \pm 6.65^{*} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 84.13 \\ \pm 2.45^{*} \\ \hline \end{array}$
$\begin{gathered} \text { Compound } \\ E \end{gathered}$	$\begin{aligned} & 83.13 \\ & \pm 3.36 \end{aligned}$	$\begin{aligned} & 184.8 \\ & \pm 7.71 \end{aligned}$	$\begin{aligned} & 108.2 \\ & \pm 8.65^{*} \end{aligned}$	$98.00 \pm 5.61 *$	$\begin{aligned} & \hline 92.21 \\ & \pm 4.79^{*} \end{aligned}$	$\begin{array}{\|l\|} \hline 86.10 \\ \pm 3.53^{*} \end{array}$
$\begin{gathered} \hline \text { Compound } \\ F \\ \hline \end{gathered}$	$\begin{array}{r} 85.28 \\ \pm 4.98 \\ \hline \end{array}$	$\begin{array}{r} 189.6 \\ \pm 7.52 \\ \hline \end{array}$	$\begin{aligned} & 108.28 \\ & \pm 5.18^{*} \end{aligned}$	$99.86 \pm 2.62 *$	$\begin{array}{l\|} \hline 97.46 \\ \pm 3.07^{*} \\ \hline \end{array}$	$\begin{array}{l\|} \hline 87.16 \\ \pm 5.33^{*} \\ \hline \end{array}$
$\begin{gathered} \hline \text { Compound } \\ G \\ \hline \end{gathered}$	$\begin{array}{r} 84.20 \\ \pm 3.81 \\ \hline \end{array}$	$\begin{aligned} & \hline 189.46 \\ & \pm 6.42 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 111.21 \\ & \pm 6.48^{*} \\ & \hline \end{aligned}$	$95.70 \pm 3.21 *$	$\begin{aligned} & \hline 92.51 \\ & \pm 4.83^{*} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 84.73 \\ \pm 4.12^{*} \\ \hline \end{array}$
Eugenol	$\begin{array}{r} 83.43 \\ \pm 2.30 \\ \hline \end{array}$	$\begin{aligned} & 187.41 \\ & \pm 6.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 138.95 \\ & \pm 5.31^{*} \\ & \hline \end{aligned}$	123.98 $\pm 5.24 *$	$\begin{aligned} & 96.55 \\ & \pm 2.57^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & 93.58 \\ & \pm 4.25^{*} \\ & \hline \end{aligned}$
Acarbose	$\begin{array}{ll} \hline 84.8 & \pm \\ 5.50 & \\ \hline \end{array}$	$\begin{aligned} & 187.66 \\ & \pm 8.61 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 109.36 \\ & \pm 7.82^{*} \\ & \hline \end{aligned}$	98.00 $\pm 6.00^{*}$	$\begin{aligned} & \hline 87.81 \\ & \pm 6.07^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 83.76 \\ & \pm 4.43^{*} \\ & \hline \end{aligned}$

Each of the values is expressed as mean \pm S.E.M , $\mathrm{n}=6$.
*Significantly different from control, $\mathrm{p}<0.05$.

Figure 3.14. Blood Glucose Estimation in Mice.
Anti-hyperglycemic activity of Compounds A, B, C, D, E, F, and G in mice revealed the reduction of blood glucose levels at different time points 0th, 30th, 60th, 90th, 120th, and 180th minutes (Figure 3.14). Two ways ANOVA analysis was applied to find the difference between the groups of animals at p < 0.05 when compared to the control. Compounds A, B, C, D, E, F, and G significantly reduced the blood glucose levels when compared to the diabetic control and had equally potent antidiabetic potential when compared with acarbose. The animal study proved the antidiabetic activity of Compounds A, B, C, D, E, F and G is better than Eugenol. It is due to its better absorption, pharmacokinetics, retention, time and bioavailability than Eugenol.

Discussion:

The antioxidant activity of eugenol derivatives (Compounds A, B, C, D, E, F and G) and eugenol is due to the presence of phenylpropanoid i.e. phenol. The phenols are very important constituents of eugenol and its derivatives. They showed a high scavenging ability of free radicals due to their hydroxyl group. The high correlation between the content of phenolic compounds leads to antioxidant activity has been well studied (Borneo et al., 2008). Antioxidants play an important role in neutralizing
free radicals and protecting important biological molecules from being damaged by free radicals. Antioxidants significantly prevent the oxidation of cell content like proteins, lipids, carbohydrates, and DNA (Borneo et al., 2008). There are many therapeutic approaches, which may prove to be beneficial for the treatment of type II diabetes mellitus (postprandial hyperglycemia). This can be done by reducing the absorption of glucose through the inhibition of two key enzymes linked to type II diabetes mellitus (PPHG) in the digestive tract. It has been studied that the inhibition of carbohydrate hydrolyzing enzymes, like α-amylase and α-glucosidase are better therapeutic approaches to treat type 2 diabetes mellitus (Shobana et al., 2009). Invitro and in-vivo evaluation of eugenol derivatives (A, B, C, D, E, F, and G) and eugenol have very good antidiabetic activity.

Inhibitors of α-amylase and α-glucosidase enzymes delay carbohydrate digestion in the body and overall carbohydrate digestion time causing a significant decrease in the rate of glucose absorption by blunting the postprandial plasma glucose level. In Type 2 Diabetes Mellitus (Post Prandial Hyperglycemia), inhibition of α-amylase and α-glucosidase therapy is beneficial to delay the absorption of glucose after a meal. These enzymes play a role in the conversion of carbohydrates into glucose. By inhibiting α-amylase and α-glucosidase, glucose levels in the blood can be returned within normal limits (Elya et al., 2011). The glycation the reaction involves a series of non-enzymatic the reactions between the carbonyl group on reducing sugars and the amino group on proteins to form advanced glycation end products (AGEs), which are involved in the pathogenesis of diabetes mellitus and aging-related complications.

In the case of postprandial hyperglycemia, there is a high blood glucose level that leads to an increase in glycation the reaction, which can alter protein conformation and impair function by altering enzyme activity, altering immunogenicity, modifying protein half-life and causing cross-linking of structural proteins. A decrease in blood glucose level subsequently results in the reduction of AGE formation. The glycation inhibition potential of eugenol derivatives (A, B, C, D, E, F, and G) and eugenol is due to the higher content of phenylpropanoid i.e. phenols. It has been already been studied that phenols block the formation of AGEs and other glycated proteins. Eugenol and its derivatives competitively inhibit the binding of sugar to serum albumin by binding to the amine group of surface-exposed lysine
residues via its reactive $4^{\prime}-\mathrm{OH}$ group. Anti-hyperglycemic activity of (A, B, C, D, E, F, and G) and eugenol in mice revealed the reduction of blood glucose levels at different time points 0 th, 30 th, 60 th, 90 th, $120^{\text {th }}$, and 180 th minutes. The (A, B, C, D, E, F, and G) and eugenol significantly reduced the blood glucose levels when compared to the diabetic control and had equally potent antidiabetic potential when compared with acarbose. Animal studies proved that the antidiabetic activity of compounds A, B, C, $\mathrm{D}, \mathrm{E}, \mathrm{F}$, and G is better than Eugenol. It may be due to its better absorption, pharmacokinetics, retention time, and bioavailability than Eugenol.

3.2.3 Conclusion

In conclusion, we designed and synthesized 43 derivatives of eugenol comprising ester, carbamate, and hydroxyl functionalities based on the prodrug approach, which were found to be more soluble and bioavailable than eugenol. These novel compounds showed very good α-glucosidase and α-amylase inhibition (mimicking the effect of combination therapy). Besides, these analogs displayed very good antioxidant activity, which plays a critical role in many illnesses including diabetes. Molecular docking investigations strongly supported our findings of in-vitro and invivo studies. The antidiabetic activity of compounds A, B, C, D, E, F, and G was found to be better than the parent molecule eugenol.

3.2.4 Experimental Procedures and Data:

Experimental section: All the reactions were performed under an argon atmosphere with an oven $\left(80^{\circ} \mathrm{C}\right)$ or flame-dried glassware with a septum seal. Tetrahydrofuran (THF) was distilled from sodium benzophenone under an argon atmosphere immediately before use. Anhydrous dichloromethane was purchased from commercial sources. The reaction temperatures are reported as the temperature of the bath surrounding the reactionvessel. Analytical thin-layer chromatography (TLC) was performed on TLC Silica gel 60 F254. Visualization was accomplished short-wave wave UV light, anisaldehyde, or KMnO_{4} staining solutions, followed by heating. Chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. 1H and 13C NMR spectra were recorded on Bruker AV 200, 400, and 500 MHz in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references, and
the chemical shifts were converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=\right.$ 77.16 ppm , and $\mathrm{CD}_{3} \mathrm{OD}: \delta{ }^{1} \mathrm{H}=3.31 \mathrm{ppm}, \delta \mathrm{C}=49.15 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR). The following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; td, triplet of doublet; and br, broad. HRMS data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. Experimental procedures for all new compounds and known compounds without published experimental procedures are described below.

General procedure for preparation of lipophilic ester derivatives of Eugenol: To the acid (aliphatic 1eq) in anhydrous THF, DCC, or EDC.HCl (1.4 eq) was added, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$, After 10 min ., DMAP (0.1 eq) was added, and the reaction mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$, then eugenol (1 eq)was added to the reaction mixture and stirred for 24 h at rt . After the completion of the reaction(checked by TLC), the solvent was evaporated in vacuo. The crude was partitioned between ethyl acetate ($3-10 \mathrm{~mL}$) and sodium bicarbonate. The aqueous layer was extracted with ethyl acetate thrice, and the combined organic layer was washed with water followed by brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo, and the crude was purified by silica gel column chromatography.

Bis(4-allyl-2-methoxyphenyl) nonanediote (19): Azelaic acid ($1 \mathrm{~g}, 5.31 \mathrm{mmol}$),
 Eugenol ($1.62 \mathrm{~mL}, 10.62 \mathrm{mmol}$), EDC.HCl ($4.0 \mathrm{~g}, 21.25 \mathrm{mmol}$), DMAP ($0.285 \mathrm{~g}, 2.33 \mathrm{mmol}$); TLC: $R_{f}=0.8$ $\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/hexanes), the solvent system for column chromatography (2% EtOAc in hexanes); Yield (1.76 g, 70%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.94(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.03-$ 5.89 (m, 2H), 5.15-5.05 (m, 4H), 3.81 (s, 6H), 3.38 (d, $J=6.75 \mathrm{~Hz}, 4 \mathrm{H}$), 2.62-2.53 (m, $4 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,151.0$, 139.0, 138.2, 137.2, 122.6, 120.8, 116.2, 112.8, 55.9, 40.2, 34.1, 29.0, 29.0, 25.1; ; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]+481.2585$, found 481.2581 .

4-Allyl-2-methoxyphenyl oleate (20): Oleic acid ($1 \mathrm{~g}, 5.31 \mathrm{mmol}$), Eugenol (1.62 $\mathrm{mL}, 10.62 \mathrm{mmol})$, EDC. $\mathrm{HCl}\left(4.0 \mathrm{~g}, 21.25 \mathrm{mmol}\right.$), DMAP ($0.285 \mathrm{~g}, 2.33 \mathrm{mmol}$); TLC: $R_{f}=$
0.8 ($\mathrm{SiO}_{2}, 10 \%$ EtOAc/hexanes), ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.02-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.87-$
 $6.68(\mathrm{~m}, 2 \mathrm{H}), 6.19-5.72(\mathrm{~m}, 1 \mathrm{H})$, 5.51-5.25 (m, 2H), 5.22-4.99 (m, 2H), 3.88-3.71 (m, 3H), 3.50-3.25 (m, 2H), 2.68-2.49 (m, 2H), 2.26$1.88(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.15(\mathrm{~m}, 20 \mathrm{H}), 1.00-0.79(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 172.1,151.0,138.9,138.2,137.2,130.1,129.9,122.7,120.8$, 116.2, 112.8, 55.9, 40.2, 34.2, 32.0, 29.9, 29.8, 29.7, 29.7, 29.4, 29.3, 29.3, 29.2, 27.3, 27.3, 27.3, 25.2, 22.8, 14.2; HRMS (ESI): m/z calcd for C28H44O3Na [M+Na]+ 451.3183, found 451.3394.

4-Allyl-2-methoxyphenyl benzoate (21): Eugenol (1 g, 6.09 mmol), DMAP (0.14 g ,

1.22 mmol), DCC (9.13 mmol), benzoic acid ($1.15 \mathrm{~g}, 9.13$ mmol), TLC: $R_{f}=0.6$ ($\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /$ hexanes), the solvent system for column chromatography ($4 \% \mathrm{EtOAc}$ in hexanes); Yield (1.52 g, 93\%); FTIR (cm-1): 3545.15, 3020.95, 2924.94, 1739.30, 1593.53, 1215.32; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, \mathrm{~J}=$ $7.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.93 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H})$, 6.90-6.79 (m, 2H), 6.08-5.91 (m, 1H), 5.19-5.05 (m, 2H), 3.81 (s, 3H), 3.41 (d, J = 6.71 $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,151.2,139.2,138.3,137.2,133.5,130.4$, 129.7, 128.6, 122.8, 120.9, 116.3, 113.0, 56.0, 40.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+291.0992$, found 291.0987.

4-Allyl-2-methoxyphenyl decanoate (22): decanoic acid (1 g, 5.31 mmol), Eugenol
 ($1.62 \mathrm{~mL}, 10.62 \mathrm{mmol}$), EDC.HCl ($4.0 \mathrm{~g}, 21.25$ mmol), DMAP ($0.285 \mathrm{~g}, 2.33 \mathrm{mmol}$); TLC: $R_{f}=0.8$ ($\mathrm{SiO}_{2}, 10 \%$ EtOAc/hexanes), FTIR (cm^{-1}): 3019.52, 2927.92, 1755.45, 1604.25, 1439.81, 1215.68; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 6.96(\mathrm{~d}, J=7.71 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.14-5.83(\mathrm{~m}$, 1H), $5.25-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=6.69 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.33 \mathrm{~Hz}$, 2H), 1.93-1.69 (m, 2H), 1.50-1.20 (br. s., 12H), 0.99-0.84 (t, J = 6.06 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 172.0,151.0,138.8,138.1,137.1,122.5,120.6,116.1,112.7,55.7$, 40.1, 34.1, 31.9, 29.5, 29.3, 29.1, 25.1, 22.7, 14.1 HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 341.2087$, found 341.2082.

4-Allyl-2-methoxyphenyl 4-nitrobenzoate (23): Eugenol (1 g, 6.09 mmol), DMAP

($0.14 \mathrm{~g}, 1.22 \mathrm{mmol}$), DCC (9.13 mmol), nitrobenzoic acid $(1.52 \mathrm{~g}, 9.13 \mathrm{mmol}), \mathrm{TLC}: R_{f}=0.6\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/hexanes), the solvent system for column chromatography (4\% EtOAc in hexanes); Yield (1.56 g, 82\%); FTIR (cm-1): 3687.24, 3022.34, 1744.25, 1602.53, 1215.46; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 8.47-8.26 (m, 4H), 7.16-7.02 (m, 1H), 6.90-6.78 (m, 2H), 6.15-5.86 (m, 1H), 5.27-5.04 (m, 2H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=6.69 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl} 3$) δ : 163.1, 150.9, 139.8, 137.8, 137.0, 135.1, 131.5, 123.7, 122.4, 120.9, 116.4, 113.0, 56.0, 40.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 336.0842$, found 336.0838.

4-Allyl-2-methoxyphenyl nonanoate (24): nonanoic acid (1 g, 5.31 mmol), Eugenol
 ($1.62 \mathrm{~mL}, 10.62 \mathrm{mmol}$), EDC.HCl ($4.0 \mathrm{~g}, 21.25 \mathrm{mmol}$), DMAP ($0.285 \mathrm{~g}, 2.33 \mathrm{mmol}$); TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/hexanes), FTIR (cm^{-1}): 3020.34, 2929.47, 1754.23, 1604.00, 1453.97, 1216.06; ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.05-6.88(\mathrm{~m}, 1 \mathrm{H})$, 6.88-6.65 (m, 2H), 6.16-5.80(m, 1H), 5.25-4.97 (m, $2 \mathrm{H}), 3.87-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.69(\mathrm{~m}, 2 \mathrm{H})$, 1.30 (br. s., 11H), 1.02-0.78 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.1,151.1,138.9$, 138.2, 137.2, 122.7, 120.8, 116.2, 112.9, 55.9, 40.2, 34.2, 31.9, 29.4, 29.3, 29.2, 25.2, 22.8, 14.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$327.1931, found 327.1927.

General procedure for preparation of amino acid derivatives of Eugenol: To the acid (amino acid 1eq) in anhydrous THF, EDC.HCl (1.4 eq) was added, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$, After 10 min ., DMAP (0.1 eq) was added, and the reaction mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$, then eugenol (1 eq) was added to the reaction mixture and stirred for 24 h at rt . After the completion of the reaction (checked by TLC), the solvent was evaporated in vacuo. The crude was partitioned between ethyl acetate ($3-10 \mathrm{~mL}$) and sodium bicarbonate. The aqueous layer was extracted with ethyl acetate thrice and the combined organic layer was washed with water followed by brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo and the crude was purified by silica gel column chromatography.

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-D-alaninate (25): Amino acid
 ($0.5 \mathrm{~g}, 0.00264 \mathrm{mmol}$), Amount of Eugenol ($0.477 \mathrm{~g}, 0.00291$ mmol), EDC.HCl ($0.728 \mathrm{~g}, 0.00380 \mathrm{mmol}$), DMAP (0.035 g , 0.00029 mmol). The solvent system for column chromatography: 20% ethyl acetate in hexane. Yield: 50.05\%; IR (cm^{-1}): $3437.01,3022.94,1644.75,1216.15 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.88-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.17(\mathrm{~m}, 2 \mathrm{H})$, 4.54-4.66 (m, 1 H), 3.80 (s, 3 H), 3.38 (d, J = 6.7 Hz, 2 H), 1.57 (d, J = 7.3 Hz, 4 H), 1.47 ppm (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 171.8, 155.1, 150.7, 139.2, 137.8, 137.0, 122.3, 120.7, 116.2, 112.8, 79.9, 77.4, 77.0, 76.7, 55.8, 49.3, 40.1, 28.3, 18.9 ppm; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 336.1805$, found 336.1800.

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-valinate (26): Amino acid (2 g,
 9.20 mmol), Amount of Eugenol ($1.41 \mathrm{~mL}, 9.20 \mathrm{mmol}$), EDC.HCl (2.53g, 13.2 mmol$)$, DMAP ($0.123 \mathrm{~g}, 0.101 \mathrm{mmol}$). The solvent system for column chromatography: 20\% ethyl acetate in hexane. Yield: 46.96%., IR (cm^{-1}): 3436.73, 3024.21, 1644.37, 1216.17; ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl3): $\delta 6.98-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.74$ $(\mathrm{m}, 2 \mathrm{H}), 6.02-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.50(\mathrm{dd}, J=4.58,9.16 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79 (s, 3H), 3.38 (d, J = 6.10 Hz, 2H), 2.44-2.33 (m, 1H), 1.47 (s, 9H), 1.09 (d, J = 6.87 $\mathrm{Hz}, 3 \mathrm{H}$), $1.04(\mathrm{~d}, \mathrm{~J}=6.87 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 170.7,155.8,150.8$, $139.3,137.7,137.1,122.6,122.5,120.8,116.3,112.8,79.9,58.6,55.9,55.7,40.1,31.5$, 28.4, 19.2, 17.3; HRMS (ESI): m/z calcd for C20H2905NNa [M+Na]+ 386.1938, found 386.1932.

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-phenylalaninate (27): Amino
 acid ($2 \mathrm{~g}, 7.53 \mathrm{mmol}$), Amount of Eugenol ($1.15 \mathrm{~mL}, 7.53$ $\mathrm{mmol})$, EDC.HCl ($2.07 \mathrm{~g}, 10.8 \mathrm{mmol}$), DMAP (0.101 g , 0.828 mmol). The solvent system for column chromatography: 20% ethyl acetate in hexane. Yield: 44.86\%., IR (cm-1): 3435.90, 3023.52, 2402.04, 1645.00, 1216.31. ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}): $\delta 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 5.99-5.88(\mathrm{~m}$, 1H), 5.13-5.05 (m, 2H), 5.02 (d, J = $8.39 \mathrm{~Hz}, 1 \mathrm{H}$), 4.89-4.80 (m, 1H), 3.79 (s, 3H), 3.36 (d, $J=6.87 \mathrm{~Hz}, 2 \mathrm{H}$), $3.34-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=6.10,13.73 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,155.2,150.8,139.4,137.7,137.1,136.2,129.8$, 128.6, 127.1, 122.5, 120.8, 116.4, 112.9, 80.1, 55.8, 54.5, 40.2, 38.4, 28.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 434.1938$, found 434.1934.

2-(4-Allyl-2-methoxyphenyl) 1-(tert-butyl) (S)-pyrrolidine-1,2-dicarboxylate

(28): Amino acid ($0.726 \mathrm{~g}, 0.00337 \mathrm{mmol}$), Amount of Eugenol ($0.5 \mathrm{~g}, 0.00304 \mathrm{mmol}$), EDC. HCl (0.841 g , 0.00438 mmol), DMAP ($0.04 \mathrm{~g}, 0.000337 \mathrm{mmol}$). The solvent system for column chromatography: 20\% ethyl acetate in hexane. Yield: 57.4%. IR (cm^{-1}): 3436.09, 3023.57, 1645.09, 1215.57; ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta 6.91(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.88(\mathrm{~m}$, 1H), 5.14-5.05 (m, 2H), 4.48 (dd, $J=3.81,8.39 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 3.66-3.59 (m, 1H), 3.53-3.45 (m, 1H), 3.39-3.34 (m, 3H), 2.39-2.23 (m, 3H), 2.13-1.87 (m, 3H), 1.47 (s , 9 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 101 \mathrm{MHz}$): δ 171.4, 154.0, 150.9, 139.2, 137.9, 137.1, 122.3, $120.8,116.3,112.9,80.2,59.2,59.0,55.9,55.8,46.5,40.2,31.2,28.6,28.5,23.6 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+362.1962$, found 362.1957.

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-leucinate (29): Amino acid (1g,
 4.32 mmol), Amount of Eugenol ($0.66 \mathrm{~mL}, 4.32 \mathrm{mmol}$), EDC.HCl (1.192g, 6.22 mmol), DMAP ($0.058 \mathrm{~g}, 0.47$ mmol). The solvent system for column chromatography: 20% ethyl acetate in hexane. Yield: 18.34%., IR (cm^{-1}): 3440.53, 3022.79, 2402.64, 1644.75, 1216.19; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51$ (d, J $=7.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 2 \mathrm{H}), 5.98-$ $5.87(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 5.11-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=$ $6.87 \mathrm{~Hz}, 2 \mathrm{H}$), 1.45 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,154.9,150.8,139.4$, $137.9,137.1,136.9,128.9,128.6,127.7,122.3,120.8,116.3,113.0,80.3,57.8,55.7$, 40.1, 28.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 400.2094$, found 400.2091 .

4-Allyl-2-methoxyphenyl

(S)-2-((tert-butoxycarbonyl)amino)-2-phenylacetate (30): Amino acid ($2 \mathrm{~g}, 7.95 \mathrm{mmol}$), Amount of Eugenol ($1.22 \mathrm{~mL}, 7.95 \mathrm{mmol}$), EDC.HCl $(2.194 \mathrm{~g}, 11.4 \mathrm{mmol})$, DMAP ($0.106 \mathrm{~g}, 0.87 \mathrm{mmol}$). The solvent system for
column chromatography: 20% ethyl acetate in hexane. Yield: 83.79\%., IR (cm-1): $3437.92,3023.09,1645.29,1216.28 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=7.63 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.99-5.88(\mathrm{~m}, 1 \mathrm{H})$, 5.63 (br. s., 1H), 5.12-5.08 (m, 1H), 5.07 (s, 1H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H})$, 1.46 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,154.9,150.8,139.4,137.8,137.0$, 136.9, 128.8, 128.6, 127.6, 122.2, 120.7, 116.3, 113.0, 80.3, 57.8, 55.7, 40.1, 28.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]+420.1781$, found 420.1775 .

Bis(4-allyl-2-methoxyphenyl)(tert-butoxycarbonyl)-L-aspartate (31): Amino
 acid ($0.5 \mathrm{~g}, 2.14 \mathrm{mmol}$), Amount of Eugenol (0.65 mL , 4.28 mmol), EDC.HCl ($1.23 \mathrm{~g}, 6.42 \mathrm{mmol}$), DMAP ($0.057 \mathrm{~g}, 0.47 \mathrm{mmol}$). The solvent system for column chromatography: 20\% ethyl acetate in hexane. Yield: 21.96\%., IR (cm^{-1}): 3437.57, 3023.00, 1763.42, and 1216.22. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.52(\mathrm{~m}, 4 \mathrm{H}), 6.09-5.79$ $(\mathrm{m}, 2 \mathrm{H}), 5.18-4.96(\mathrm{~m}, 4 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.29(\mathrm{~m}, 4 \mathrm{H})$, 3.29-3.13 (m, 1H), 1.53-1.41 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4,168.8,155.5$, $150.9,150.7,139.4,137.9,137.7,137.1,122.6,120.8,116.3,112.9,112.8,80.3,77.8$, $76.5,55.9,50.3,40.2,37.2,28.5$; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{8} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 548.2255 , found 548.2248.

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-methioninate (33): Amino acid
 ($1.553 \mathrm{~g}, 6.23 \mathrm{mmol}$), Amount of Eugenol ($0.95 \mathrm{~mL}, 6.23$ $\mathrm{mmol})$, EDC.HCl ($1.719 \mathrm{~g}, 8.96 \mathrm{mmol}$), DMAP (0.083 g , $0.68 \mathrm{mmol})$. The solvent system for column chromatography: 20% ethyl acetate in hexane. Yield: 55.28%. IR (cm^{-1}): $3463.13,3022.86,1644.44,1216.45 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.96 (d, $J=7.63 \mathrm{~Hz}, 1 \mathrm{H}$), 6.81-6.71 (m, 2H), 6.01-5.89 (m, 1H), 5.24 (d, $J=8.39 \mathrm{~Hz}$, 1H), 5.13-5.05 (m, 2H), 4.76-4.63 (m, 1H), 3.79 (s, 3H), 3.37 (d, J=6.10 Hz, 2H), 2.67 $(\mathrm{t}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,155.4,150.7,139.5,137.7,137.1,122.4$, 120.9, 116.4, 112.8, 80.2, 55.8, 53.1, 40.2, 32.6, 29.8, 28.4, 15.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{NNaS}[\mathrm{M}+\mathrm{Na}]^{+} 418.1659$, found 418.1659.

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-isoleucinate (34): Amino acid
 ($1.56 \mathrm{~g}, 6.76 \mathrm{mmol}$), Amount of Eugenol ($0.93 \mathrm{~mL}, 6.09 \mathrm{mmol}$), EDC. $\mathrm{HCl}(1.685 \mathrm{~g}, 8.79 \mathrm{mmol})$, DMAP $(0.081 \mathrm{~g}, 0.66 \mathrm{mmol})$. The solvent system for column chromatography: 20\% ethyl acetate in hexane. Yield: 71.65\%. IR (cm^{-1}): 3440.90, 3022.89, 1644.97, 1216.28; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad 6.95(\mathrm{~d}, J=$ $7.71 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83-6.70(m, 2H), 6.08-5.80 (m, 1H), 5.15-5.04 (m, 2H), 3.78 (s, 3H), 3.37 (d, $J=6.57 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08 (br. s., 1H), 1.74-1.56 (m, 1H), 1.46 (s, 9H), 1.06 (d, J = $6.82 \mathrm{~Hz}, 3 \mathrm{H}$), $0.99(\mathrm{t}, J=7.33 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,155.7$, 150.8, 139.4, 138.0, 137.7, 137.1, 122.6, 121.3, 120.8, 116.3, 115.7, 114.4, 112.8, 111.2, 79.9, 58.2, 56.0, 55.7, 40.2, 40.0, 38.4, 28.5, 24.8, 15.6, 12.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 400.2094$, found 400.2090.

Bis(4-allyl-2-methoxyphenyl) (tert-butoxycarbonyl)-L-glutamate (35): Amino
 acid ($1.7 \mathrm{~g}, 6.87 \mathrm{mmol}$), Amount of Eugenol ($2.11 \mathrm{~mL}, 13.7 \mathrm{mmol}$), EDC.HCl ($1.896 \mathrm{~g}, 9.89$ mmol), DMAP ($0.092 \mathrm{~g}, 0.755 \mathrm{mmol}$). The solvent system for column chromatography: 20% ethyl acetate in hexane. Yield: 44.24%., IR (cm^{-1}): $3435.37,3023.13,1644.85$, and 1216.45. 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.02-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.04-$ $5.88(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.77-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, 6 H), $3.38(\mathrm{~d}, J=6.71 \mathrm{~Hz}, 4 \mathrm{H}), 2.92-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2,170.7,155.4,150.8,150.6,139.4,139.1,137.9,137.7$, 137.1, 137.0, 122.6, 122.4, 120.8, 120.7, 116.3, 116.2, 112.7, 80.2, 55.8, 55.7, 53.1, 40.1, 30.1, 28.4, 28.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{8} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]+562.2411$, found 562.2409.

General procedure for preparation of HCl salt of amino acid derivatives of

Eugenol: To the amino acid ester, HCl in ether 2 M (in excess) was added at $0^{\circ} \mathrm{C}$ and stirred for 30 minutes. The reaction mixture was then evaporated in vacuo and then kept for high vacuum for 1 hr to get the desired salt without purification.

4-Allyl-2-methoxyphenyl D-alaninate hydrochloride (36): Ester of the amino acid
 ($0.357 \mathrm{~g}, 0.59 \mathrm{mmol}$), HCl etherate (in excess). Yield: 97%. IR
$\left(\mathrm{cm}^{-1}\right): 3436.10,3023.32,2102.08,1643.50,1215.86 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.76 (br. s., 2H), 6.97 (d, $J=7.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.96-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.09-$ $5.02(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H})$, $1.72(\mathrm{~d}, \mathrm{~J}=6.87 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.8,150.6,139.7,137.5$, 137.0, 122.5, 120.7, 116.4, 112.8, 56.1, 49.4, 40.2, 16.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+236.1281$, found 236.1278.

4-Allyl-2-methoxyphenyl L-valinate hydrochloride (37): Ester of the amino acid
 ($0.5 \mathrm{~g}, 1.37 \mathrm{mmol}$), HCl etherate (in excess); Yield: 100%. IR $\left(\mathrm{cm}^{-1}\right): 3440.72,3022.53,2103.08,1643.38,1271.71 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.98-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.69(\mathrm{~m}$, 2H), 6.11-5.80 (m, 1H), 5.17-5.02 (m, 2H), 3.84-3.75 (m, 3H), 3.63-3.50 (m, 1H), 3.37 (d, $J=6.62 \mathrm{~Hz}, 3 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05$ (br. s., 2 H), 1.03 (d, $J=6.84 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.84 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.1,170.7$, 155.8, 150.8, 139.3, 137.7, 137.1, 122.5, 120.8, 116.3, 112.8, 79.9, 58.6, 55.9, 55.7, 40.1, 31.5, 31.0, 28.4, 19.1, 17.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+$ 264.1594 found 264.1592 .

4-Allyl-2-methoxyphenyl L-phenylalaninate hydrochloride (38): Ester of the
 amino acid ($0.5 \mathrm{~g}, 1.21 \mathrm{mmol}$), HCl etherate (in excess); Yield: 99\%. IR (cm^{-1}): 3432.56, 3022.91, 1643.60, 1216.37; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.83$ (br. s., 2 H), 7.40-7.19 (m, 5H), 6.95-6.86 (m, 1H), 6.83-6.62 (m, 2H), 6.05-5.79 (m, 1H), 5.17-5.00 (m, 2H), 4.56 (br. s., 1H), $3.82(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.56-$ 3.47 (m, 1H), 3.39 (d, $J=6.87 \mathrm{~Hz}, 1 \mathrm{H}$), $3.35-3.19$ (m, 2H), 2.45 (br. s., 1H), 1.43 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,167.3,155.2,150.8,150.5,139.7,139.4$, 137.7, 137.2, 137.1, 136.9, 136.1, 133.9, 130.0, 129.7, 128.9, 128.6, 127.7, 127.1, $122.5,120.8,120.8,116.3,112.8,80.0,56.0,55.8,54.4,40.2,40.1,38.3,36.2,28.4$; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+312.1594$ found 312.1591.

4-Allyl-2-methoxyphenyl L-prolinate hydrochloride (39): Ester of the amino acid

($0.5 \mathrm{~g}, 0.00138 \mathrm{mmol}$), HCl etherate (in excess); Yield: 99\%. IR (cm^{-1}): 3438.71, 3025.4, 2102.56, 1644.30, 1215.75; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.96-6.84(\mathrm{~m}, 1 \mathrm{H})$,
6.78-6.68(m, 2H), 6.08-5.78(m, 1H), 5.15-4.98(m, 2H), 4.62(t, J=7.61 Hz, 1H), 3.75 (s, 3H), 3.50-3.26 (m, 4H), 2.57-2.23 (m, 2H), 2.16-1.90 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 167.6,150.4,139.9,137.2,136.9,122.4,120.8,116.4,112.6,77.5,77.2,76.8$, 59.2, 56.0, 46.1, 40.1, 29.2, 28.4, 23.5 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 262.1438$ found 262.1436 .

4-Allyl-2-methoxyphenyl L-leucinate hydrochloride (40): Ester of the amino acid
 ($0.3 \mathrm{~g}, 0.75 \mathrm{mmol}$), HCl etherate (in excess). Yield: 96%. IR (cm-1): 3433.98, 3022.88, 2402.92, 1643.01, 1216.22; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.92$ (br. s., 1H), 7.05 (d, $J=7.63$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.02-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.02$ (m, 2H), $4.19(\mathrm{t}, J=6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J$ $=6.10 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=$ $6.10 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.73(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3): $\delta 168.3$, 150.6, 139.6, 139.1, 138.0, 137.9, 137.4, 137.1, 137.0, 122.6, 121.2, 120.8, 116.3, $115.6,112.8,112.8,111.2,56.0,55.9,51.9,42.0,40.2,40.1,40.0,39.7,31.0,28.4,24.4$, 23.0, 22.3, 22.1, 20.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+278.1751$ found 278.1749 .

4-Allyl-2-methoxyphenyl (S)-2-amino-2-phenylacetate hydrochloride (41):
 Ester of the amino acid ($0.5 \mathrm{~g}, 1.25 \mathrm{mmol}$), HCl etherate (in excess); Yield: 100\%. IR (cm^{-1}): 3443.32, 3023.22, 2403.17, 1645.58, 1216.67; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.57-7.30 (m, 5H), 6.99-6.81 (d, J = 8.60 Hz, 1H), 6.81-6.55 $(\mathrm{m}, 2 \mathrm{H}), 6.07-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.62$ (br. s., 1 H), 5.15-5.00 (m, 2H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}$, 1H), 3.35 (d, $J=6.39 \mathrm{~Hz}, 2 \mathrm{H}$); HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 298.1438$ found 298.1434.

4-Allyl-2-methoxyphenyl L-isoleucinate hydrochloride (42): Ester of the amino
 acid ($0.5 \mathrm{~g}, 1.32 \mathrm{mmol}$), HCl etherate (in excess). Yield: 99\%. IR (cm^{-1}): 3438.57, 3023.09, 2402.74, 1644.61, 1216.15. : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87$ (br. s., 2 H), 7.06 (d, $J=7.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.81(\mathrm{~m}, 1 \mathrm{H})$, 5.11-5.00 (m, 2H), $4.19(\mathrm{~d}, J=3.81 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$,
3.39-3.27 (m, 3H), 3.32-2.16 (m, 1H), 1.68-1.55 (m, 1H), 1.52-1.37 (m, 2H), 1.12 (d, J = $6.87 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.25 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,150.6$, 139.6, 137.3, 137.1, 122.8, 120.8, 116.3, 112.7, 57.6, 55.8, 40.2, 36.8, 25.4, 14.8, 11.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 400.2094$, found 400.2086.

4-Allyl-2-methoxyphenyl L-methioninate hydrochloride (43): Ester of the amino
 acid ($0.5 \mathrm{~g}, 1.26 \mathrm{mmol}$), HCl etherate (in excess). Yield: 99\%. IR (cm^{-1}): 3436.19, 3023.54, 2096.85, 1642.35, 1216.11. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.04(\mathrm{~d}, J=8.39$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.99-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.10-$ $5.00(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{t}, \mathrm{J}=6.10 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 4 \mathrm{H}), 3.32$ (d, $J=6.87 \mathrm{~Hz}, 2 \mathrm{H}$), 2.82-2.74 (m, 1H), 2.71-2.64 (m, 1H), $2.39(\mathrm{q}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,150.4,139.8,137.2,137.0,122.6$, 120.9, 116.4, 112.7, 56.0, 52.4, 40.2, 29.8, 29.0, 28.4, 15.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{NS}[\mathrm{M}+\mathrm{H}]+296.1315$ found 296.1313 .

Bis(4-allyl-2-methoxyphenyl) L-aspartate hydrochloride (44): Ester of the amino
 acid ($0.5 \mathrm{~g}, 1.17 \mathrm{mmol}$), HCl etherate (in excess). Yield: 99\%. IR (cm^{-1}): 3438.41, 3023.78, 2110.60, 1644.57, 1216.59; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 9.07$ (br. s., 2H), 7.10-6.96 (m, 2H), 6.77-6.64 (m, 4H), 6.04-5.77 (m, 2H), 5.15-4.96(m, 4H), 4.85 (br. s., 1 H), 3.70 (s, 3H), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.61-3.45 (m, 1H), 3.32 (d, J $=5.40 \mathrm{~Hz}, 4 \mathrm{H}$), 2.63 (br. s., 2 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.2, 150.6, 139.7, 137.0, 133.9, 130.1, 129.0, 127.7, 122.5, 120.8, 116.4, 112.9, 56.0, 54.4, 40.2, 40.2, 36.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+426.1911$, found 426.1908 .

Bis(4-allyl-2-methoxyphenyl) L-glutamate hydrochloride (45): Ester of the amino
 acid ($0.5 \mathrm{~g}, 9.26 \mathrm{mmol}$), HCl etherate (in excess). Yield: 100%. IR (cm^{-1}): 3436.17, 3023.57, 1642.85, 1216.28; ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66$ (br. s., 1 H), 8.46 (br. s., $1 \mathrm{H}), 7.03(\mathrm{t}, J=8.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.83(\mathrm{~m}$, 1H), 6.78-6.55 (m, 4H), 6.07-5.76 (m, 2H), 5.61 (br. s., 4H), 5.19-4.94 (m, 4H), 4.47 (br.
s., 1H), $3.88(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=5.95 \mathrm{~Hz}, 4 \mathrm{H}), 3.09-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.5,170.5,150.6,146.6,144.0,139.6,137.9,137.5,137.0$, 132.0, 122.2, 121.2, 120.8, 116.4, 115.6, 114.4, 112.8, 111.3, 77.5, 76.8, 56.0, 55.9, 55.5, 40.1, 40.0, 29.8, 29.3, 25.1 HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 440.2068 found 440.2054 .

General procedure for preparation of TFA salt of amino acid derivatives of

 Eugenol: To the ester (1 eq) in dry DCM, TFA (5 eq) was added, and the reactionwas run at room temperature by checking TLC constantly. After complete consumption of the starting material, the reaction mixture was evaporated under reduced pressure and NaHCO_{3} was added, and the aqueous layer was extracted with DCM thrice and the combined organic layer was washed brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo and the crude was purified by silica gel column chromatography.4-Allyl-2-methoxyphenyl D-alaninate (46): Ester of the amino acid (0.1 g,
 0.001902 mmol), TFA ($0.091 \mathrm{~mL}, 0.00095 \mathrm{mmol}$). Yield: 40.7\%. IR (cm^{-1}): 3435.91, 3023.74, 2106.04, 1645.15, 1216.13; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.98-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.81-$ $6.64(\mathrm{~m}, 2 \mathrm{H}), 6.11-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.77$ (m, 3H), 3.35 (dd, $J=6.62,12.13 \mathrm{~Hz}, 2 \mathrm{H}$), 2.70 (br. s., 1 H), 1.52 (d, $J=7.06 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $175.2,150.8,146.7,144.1,139.2,138.0,137.9,137.1,131.9$, $122.4,121.2,120.8,116.3,115.6,114.5,112.8,111.3,77.5,76.8,55.9,50.1,40.2,40.0$, 20.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+236.1281$ found 236.1280 .

4-Allyl-2-methoxyphenyl L-valinate (47): Ester of the amino acid ($0.5 \mathrm{~g}, 1.37$
 mmol), TFA ($0.52 \mathrm{~mL}, 6.87 \mathrm{mmol}$); Yield: 99.6\%. IR (cm^{-1}): 3435.49, 3024.05, 2107.66, 1646.22, 1216.08. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.97-6.89 (m, 1H), 6.79-6.72 (m, 2H), 6.05-5.88 (m, 1H), 5.13-5.01 (m, 2H), 3.78 (s, 3H), 3.64$3.52(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (br. s., 1 H), 2.05 (br. s., $1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 174.0, 150.9, 139.1, 137.9, 137.9, 137.1, 122.5, 120.7, 116.2, 112.7, 59.9, 55.7, 40.1,
32.1, 19.4, 16.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$264.1594, found 264.1594.

4-Allyl-2-methoxyphenyl L-phenylalaninate (48): Ester of the amino acid (0.5 g,
 1.21 mmol), TFA ($0.46 \mathrm{~mL}, 6.07 \mathrm{mmol}$); Yield: 100%. IR (cm^{-1}): 3435.23, 3023.61, 2401.98, 1649.02, 1215.91; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.42-7.18 (m, 5H), 6.88-6.84 $(\mathrm{m}, 1 \mathrm{H}), 6.78-6.67(\mathrm{~m}, 3 \mathrm{H}), 6.04-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.43$ (br. s., 3 H), $5.14-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.29-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=6.10,11.44 \mathrm{~Hz}$, 4H), 3.28-3.17 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.4,150.8,150.6,139.7$, 139.4, 137.1, 136.2, 134.0, 130.1, 129.8, 129.0, 128.6, 127.7, 122.5, 120.8, 120.8, 116.4, 112.9, 80.1, 77.5, 76.8, 55.8, 54.4, 40.2, 40.2, 36.3, 28.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+312.1594$, found 312.1590.

4-Allyl-2-methoxyphenyl L-prolinate (49): Ester of the amino acid ($0.3 \mathrm{~g}, 0.83$

49 mmol), TFA ($0.31 \mathrm{~mL}, 4.15 \mathrm{mmol}$); Yield: 59.55\%. IR (cm^{-} ${ }^{1}$): 3435.81, 3023.08, 2108.99, 1649.79, 1214.30; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.98-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.62(\mathrm{~m}, 2 \mathrm{H})$, 6.08-5.76 (m, 1H), 5.16-4.98 (m, 2H), 4.62 (t, $J=6.73 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 166.4,146.7,144.1,137.9,131.8,121.1,115.5,114.5,111.3,60.5$, 55.8, 45.2, 39.9, 27.7, 23.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+262.1438$, found 262.1435 .

4-Allyl-2-methoxyphenyl L-leucinate (50): Ester of the amino acid ($0.328 \mathrm{~g}, 0.86$
 mmol), TFA ($0.33 \mathrm{~mL}, 4.34 \mathrm{mmol}$). Yield: $100 \%{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.06-6.86(\mathrm{~m}, 1 \mathrm{H}), ~ 6.78-6.67(\mathrm{~m}, 2 \mathrm{H})$, 6.05-5.82 (m, 1H), 5.15-5.03 (m, 2H), 4.10 (br. s., 1H), 3.75 (s, 3H), 3.35 (d, J = $6.17 \mathrm{~Hz}, 3 \mathrm{H}$), 1.87 (br. s., 3H), 0.89 (br. s., 6H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.9,150.5,146.6,144.0,139.9,137.9,137.2$, 136.9, 132.1, 122.2, 121.3, 120.9, 116.4, 115.6, 114.4, 112.8, 111.3, 56.0, 55.8, 51.7, 40.2, 40.1, 40.0, 39.8, 24.3, 22.0, 21.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 278.1751, found 278.1751.

4-Allyl-2-methoxyphenyl (S)-2-amino-2-phenylacetate (51): Ester of the amino
 acid ($0.5 \mathrm{~g}, 1.25 \mathrm{mmol}$), TFA ($0.484 \mathrm{~mL}, 6.28 \mathrm{mmol}$). Yield: 62.22\%. IR (cm^{-1}): 3441.55, 3023.13, 2402.26, 1647.72, 1215.83; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.52 (d, $J=6.87 \mathrm{~Hz}$, 2H), 7.44-7.31 (m, 3H), 6.87-6.83 (m, 1H), 6.75-6.70 (m, 2H), 6.03-5.89 (m, 1H), 5.12-5.06 (m, 2H), $4.91(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=6.87$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.23 (br. s., 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,150.8,146.7,144.1$, 139.6, 139.2, 137.9, 137.0, 131.8, 128.7, 128.2, 127.2, 122.2, 121.1, 120.6, 116.2, 115.5, 114.6, 112.8, 111.3, 58.7, 55.8, 55.6, 40.0, 39.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+298.1438$, found 298.1434.

4-Allyl-2-methoxyphenyl L-isoleucinate (52): Ester of the amino acid ($0.5 \mathrm{~g}, 1.27$
 mmol), TFA ($0.49 \mathrm{~mL}, 6.38 \mathrm{mmol}$). Yield: 63.27%. IR (cm^{-1}): 3435.23, 3022.44, 2402.60, 1646.31, 1270.18; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.97-8.67(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78-6.65 (m, 3H), 6.00-5.83 (m, 1H), 5.11-5.00 (m, 2H), 4.19 (d, $J=3.00 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (s, 3H), 3.38-3.26 (m, 3H), 2.30-2.14 (m, 1H), 1.70-1.55 (m, 1H), 1.51-1.37 (m, 1H), $1.11(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ ($\mathrm{t}, J=7.25 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,150.6,139.6,137.3,137.0$, 122.8, 120.8, 116.3, 112.7, 57.6, 55.8, 40.1, 40.0, 36.7, 25.4, 14.7, 11.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 400.2094$, found 400.2094.

4-Allyl-2-methoxyphenyl L-methioninate (53): Ester of the amino acid ($0.5 \mathrm{~g}, 1.26$
 mmol), TFA ($0.48 \mathrm{~mL}, 6.32 \mathrm{mmol}$). Yield: 85.75\%. IR $\left(\mathrm{cm}^{-1}\right): 3438.66,3024.21,2108.13,1646.91,1215.81$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.72$ (br. s., 1H), 6.79$6.64(\mathrm{~m}, 2 \mathrm{H}), 6.55$ (dd, $J=1.63,7.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.83$ (m, 1H), 5.12-4.94 (m, 2H), 4.01-3.90 (m, 1H), 3.73 (s, 4H), $3.24(\mathrm{~d}, \mathrm{~J}=6.63 \mathrm{~Hz}, 3 \mathrm{H})$, 2.64-2.51 (m, 2H), 2.13-1.99 (m, 3H), 1.97-1.83 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSOd6): $\delta 167.8,147.5,144.7,138.2,130.5,120.5,115.4,115.3,112.6,55.5,54.9,53.0$, 32.4, 28.8, 14.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+312.1594$, found 312.1590 .

Bis(4-allyl-2-methoxyphenyl) L-aspartate (54): Ester of the amino acid ($0.1 \mathrm{~g}, 1.92$
 mmol), TFA ($0.091 \mathrm{~mL}, 0.95 \mathrm{mmol}$). Yield: 40.07%. IR (cm-1): 3436.48, 3022.91, 2402.44, 1645.93, 1215.94; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.08-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.84-$ $6.59(\mathrm{~m}, 4 \mathrm{H}), 6.16-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.19-4.97(\mathrm{~m}, 4 \mathrm{H})$, 4.26 (br. s., 1H), 3.86-3.73 (m, 6H), 3.38 (d, $J=6.28 \mathrm{~Hz}$, 4 H), 3.33-3.04 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,169.5,150.8,139.3$, 137.9, 137.9, 137.8, 137.1, 122.6, 122.5, 121.3, 120.8, 116.3, 115.6, 114.4, 112.8, 111.2, 56.0, 55.9, 51.6, 40.2, 40.0, 39.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 426.1911, found 426.1900.

Bis(4-allyl-2-methoxyphenyl) L-glutamate (55): Ester of the amino acid (0.224 g ,
 0.415 mmol), TFA ($0.15 \mathrm{~mL}, 2.07 \mathrm{mmol}$); Yield: 78.57%. IR (cm^{-1}): 3443.16, 3023.76, 2402.16, 1642.78, 1216.32; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.94(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 1 \mathrm{H})$, 6.86-6.82 (m, 1H), 6.80-6.75 (m, 2H), 6.70$6.66(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.89(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{dd}, J=3.81,8.39 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=6.10 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.53$ (m, 1H), 2.53-2.37 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.3,170.6,150.6,146.6$, 144.0, 139.6, 137.9, 137.5, 137.0, 131.9, 122.2, 121.2, 120.8, 116.4, 115.6, 114.4, 112.8, 111.3, 55.9, 55.9, 55.4, 40.1, 39.9, 29.8, 29.2, 25.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+440.2068$, found 440.2049 .

2.4. Carbamate derivatives of eugenol:

1-(4-Allyl-2-methoxyphenyl) 2-methyl (S)-pyrrolidine-1,2-dicarboxylate (56):

Eugenol ($0.01 \mathrm{~mL}, 0.07 \mathrm{mmol}$) was added to carbamoyl chloride ($0.072 \mathrm{~g}, 0.37 \mathrm{mmol}$) obtained, and then dissolved in pyridine (5 mL). The mixture was stirred at reflux conditions for 24 hrs . After completion of the reaction, pyridine was evaporated, and the residue was purified via column chromatography. Yield $24 \% 1 \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98$ (dd, $J=8.05,15.99 \mathrm{~Hz}, 1 \mathrm{H}$), 6.78-6.68 (m, 2H), 6.07-5.78 (m, 1H), 5.16-4.97 (m, 2H),
4.65-4.38 (m, 1H), 3.92-3.83 (m, 1H), $3.80(\mathrm{~d}, J=3.31 \mathrm{~Hz}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=4.63 \mathrm{~Hz}$, $3 \mathrm{H}), 3.69-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=6.62 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.91(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,173.0,153.3,152.7,151.6,151.5,138.6,138.6$, 138.5, 137.4, 123.2, 120.8, 120.7, 116.1, 116.1, 113.0, 113.0, 77.4, 76.9, 59.5, 59.4, 56.2, 56.1, 52.4, 47.2, 47.1, 40.2, 31.2, 30.1, 24.6, 23.7, HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+320.1492$ found 320.1486 .

Other eugenol derivatives:

2-Methoxy-4-(oxiran-2-ylmethyl)phenol (57): A solution of 10 mmol of m -
 chloroperoxy-benzoic acid (m-CPBA) was added dropwise over the period of 15 minutes to a solution of 5 mmol of Eugenol in chloroform under stirring at $0^{\circ} \mathrm{C}$ to room temperature. The mixture was stirred under nitrogen, and the progress of the reaction was monitored by thin-layered chromatography (TLC). After completion of the reaction mixture was washed with a saturated aqueous solution of NaHCO_{3} (sodium bicarbonate) and distilled water. The organic layers were separated out and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentrate that compound by using a rotary evaporator and the crude was purified by silica gel column chromatography. TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/hexanes), FTIR (cm^{-1}): 3545.15, 3020.09, 1515, 1432.15, 1215.83; 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.71$ (m, 2H), 5.72 (br. s., 1H), 3.87 (s, 3H), 3.17-3.09 (m, 1H), 2.81-2.78 (m, 3H), 2.54 (dd, J $=2.78,5.05 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$) $\delta: 146.6,144.5,129.1,121.7,114.5$, 111.7, 56.0, 52.8, 46.9, 38.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+291.0992$, found 291.0987.

3-(4-Hydroxy-3-methoxyphenyl)propane-1,2-diol (58): Eugenol (1 mmol) in
 tertiary butanol (t-BuOH) 15 mL and tetrahydrofuran (THF) 5 mL were added to the solution of N -methylmorpholine N -oxide (NMO, 1.20 mmol) in water and osmium tetraoxide (OsO_{4} $2 \% \mathrm{~mol}$) stirred at room temperature for 12 hours and progress of the reaction being monitored by thin layered chromatography (TLC). After completion of the reaction, it was cooled at $0{ }^{\circ} \mathrm{C}$, and the mixture was washed with a saturated aqueous solution of NaHSO_{3} (sodium bisulphate). The mixture was warmed
and stirred for 45 minutes and add ethyl acetate to it. The organic layers were separated out and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentrate that compound by using a rotary evaporator and the crude was purified by silica gel column chromatography. TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/hexanes), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.84(\mathrm{~s}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.52$ (dd, $J=4.38,11.13 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (dd, $J=6.25,11.13 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, $J=5.75,13.88$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.62 (dd, $J=7.38,13.88 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 148.8, 145.9, 131.6, 123.0, 116.1, 114.2, 74.8, 66.6, 56.5, 40.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+} 221.0784$, found 221.0781 .

3-(4-Acetoxy-3-methoxyphenyl)propane-1,2-diyl diacetate (59): A mixture of 3-
 (4-hydroxy-3-methoxyphenyl)propane-1,2-diol ($0.24 \mathrm{~g}, 1.21$ mmol), acetic anhydride ($1.14 \mathrm{~mL}, 12.10 \mathrm{mmol}$) and anhydrous pyridine (3 mL) was stirred at room temperature for 24 hours and progress of the reaction being monitored by thin layered chromatography (TLC). After completion of the reaction mixture was washed with ethyl acetate (20 mL) and partitioned between 20% aqueous solution of
 dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentrate that compound by using rotary evaporator. After that purify that compound by silica gel column chromatography using (2% EtOAc in hexanes) to afford 3-(4-acetoxy-3-methoxyphenyl)propane-1,2-diyl diacetate (59) ($0.212 \mathrm{~g}, 54 \%$); TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;$ FTIR ($\left.\mathrm{cm}^{-1}\right)$: 3020.93, 1739.11, 1600.24, 1512.08, 1216.67; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.98-6.87$ $(\mathrm{m}, 1 \mathrm{H}), 6.84-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.13-3.94(\mathrm{~m}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{dd}, J=4.17,6.95 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 170.7,170.4,169.1,151.0,138.6,135.3,122.8,121.5,113.3$, 71.9, 64.2, 55.9, 36.9, 21.0, 20.8, 20.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 347.1101 , found 347.1092 .

3-(4-(Benzoyloxy)-3-methoxyphenyl)propane-1,2-diyl

dibenzoate (60): A 3-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol ($0.2 \mathrm{~g}, 1.01 \mathrm{mmol}$) was added dropwise in pyridine (5 $\mathrm{mL})$ to benzoyl chloride ($0.36 \mathrm{~mL}, 3.02 \mathrm{mmol}$) stirred at $0^{\circ} \mathrm{C}$. The reactionmixture warmed to room temperature and stirred for 24
hours and progress of the reaction being monitored by thin layered chromatography
 (TLC). After completion of the reaction mixture added to ethyl acetate (20 mL) and cold water (20 mL). After that separate organic layer and washed with saturated aqueous solution of NaHCO_{3} (sodium bicarbonate) and brine solution. The organic layer were separate out and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrate that compound by silica gel column chromatography on using (2\% EtOAc in hexanes) to afford 3-(4-(benzoyloxy)-3-methoxyphenyl)propane-1,2-diyl dibenzoate (60) ($0.19 \mathrm{~g}, 39 \%$); TLC: $R_{f}=0.8\left(\mathrm{SiO}_{2}\right.$, 10\% EtOAc/hexanes); FTIR (cm ${ }^{-1}$): 3020.49, 1721.10, 1215.32; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.35-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.12-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.36(\mathrm{~m}, 9 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 1 \mathrm{H})$, 7.02-6.82 (m, 2H), 5.85-5.60(m, 1H), 4.72-4.41 (m, 2H), 3.83-3.71 (m, 3H), 3.31-3.03 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.3,166.0,164.8,151.4,139.0,135.3,133.5$, 133.3, 130.4, 130.1, 129.8, 129.5, 128.6, 123.1, 121.8, 113.7, 72.8, 64.8, 55.9, 37.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+533.1571$, found 533.1585 .

4-(1-Hydroxylallyl-2-methoxyphenol (61): To the vanillin (1 g, 6.57 mmol) in dry THF (10 mL), vinyl magnesium bromide (1 M in THF) ($7.88 \mathrm{~mL}, 7.88 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, and the reaction was stirred at the same temperature for 1 h , After completion of the reaction it was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc thrice, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, and the crude product was purified by silica gel column chromatography using EtOAc in hexanes. ($0.862 \mathrm{~g}, 73 \%$); TLC: $R_{f}=0.4\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.09-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.69(\mathrm{~m}$, $1 \mathrm{H}), 5.33(\mathrm{td}, J=1.38,17.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{td}, J=1.38,10.38 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=5.75$ Hz, 1H), 3.88 (s, 3H), 2.15 (br. s., 1H)); 13C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,145.3$, 140.4, 134.8, 119.6, 115.0, 114.4, 109.0, 75.3, 56.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+181.0859$, found 181.0859 .

3.2.5 References

1. IDF Diabetes Atlas 2021-10th edition | www.diabetesatlas.org
2. a) Wu C, Chen X, Cai Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Corona-virus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020, 180, 934-943. b) Hu Y,

Sun J.; Dai Z.; Deng H.; Li X and Huang Q. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Virol. 2020, 127, 104371. c) Huang, I.; Lim M. A. and Pranata, R.; Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - A systematic review, meta-analysis, and metaregression. Diabetes Metab. Syndr.: Clin. Res. Rev. 2020, 14, 395-403.
3. Steenblock, C., Hassanein, M., Khan, E. G., Yaman, M., Kamel, M., Barbir, M Lorke, D.E., Rock, J.A., Everett, D., Bejtullah, S.; Heimerer, A.; Tahirukaj, E.; Beqiri, P. and Bornstein, S. R. Diabetes and COVID-19: Short-and long-term consequences. Horm. Metab. Res., 2022, 54, 503-509.
4. a) Alberti, K. G. M. M., \& Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med., 1998, 15, 539-553. b) Chaudhary, N., and Tyagi, N. Diabetes mellitus: An Overview. Int. J. Res. Dev. Pharm. L. Sci., 2018, 7, 3030-3033. c) Avery, L. Diabetes mellitus types 1 and 2: an overview. Nursing Standard (through 2013), 1998, 13(8), 35.
5. a) Defeudis, G., Mazzilli, R., Di Tommaso, A. M., Zamponi, V., Carlomagno, F., Tuccinardi, D., Watanabe, M., Faggiano, A. and Gianfrilli, D. Effects of diet and antihyperglycemic drugs on erectile dysfunction: A systematic review. Andrology, 2022, 1-13. b) Madhukar, D. S.; Laxman, G. K.; Shivaji, G. P.; Vasant, H. M.; Kailas, I. S.; and Dnyaneshwar, J. M. (2022). A review on antidiabetic drugs (allopathy). 2022
6. a) Kundlikrao, I. R. Antidiabetic drugs in ayurveda. Int. Res. J. Pharm, 2013, 4, 21-24. b) Shukla, A.; and Shukla, H. M. (2015). Antidiabeticherbal drugs: A review. Int. Ayurvedic Med. J., 2015, 3, 134-47. c) Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S. and Devasagayam, T. P. A.; Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40, 163-173. d) Modak, D. A review: anti-diabetic activity of herbal drugs. PharmaTutor, 2015, 3, 36-42.
7. a) Tominaga, H.; Kobayashi, Y.; Goto, T.; Kasemura, K. and Nomura, M. DPPH radical-scavenging effect of several phenylpropanoid compounds and their glycoside derivatives. J. Pharm. Soc. Jpn., 2005, 125, 371-375. b) Farias, M. A.;

Oliveiraa, P. S.; Dutrac, F. S. P.; Thiely, T. J.; Pereiraa, C. M. P.; Oliveirad, S. Q. de; Stefanelloa, F. M.; Lencinac, C. L. and Barschaka, A. G.; Eugenol derivatives as potential anti-oxidants: is phenolichydroxyl necessary to obtain an effect? J. Pharm. Pharmacol. 2013, 66, 733-746. c) Silva, F. F. M. da; Monte, F. J. Q.; Lemos, T. L. G. de.; Nascimento, P. G. do.; Costal, A. K. de M. and Paiva1; L. M. M. de. Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem. Cent. J. 2018, 12:34. d) Raja, M. R. C.; Srinivasan, V.; Selvaraj, S.; Mahapatra, S. K.; Versatile and Synergistic Potential of Eugenol: A Review, Pharm Anal Acta 2015, 6, 367.
8. a) Srinivasan, S.; Sathish, G.; Jayanthi, M.; Muthukumaran, J.; Muruganathan, U.; Ramachandran, V., Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats, Mol. Cell. Biochem. 2014, 385, 159-168. b) Jeong, K.J.; Kim, D.Y.; Quan, H.Y.; Jo, H.K.; Kim, G.W.; Chung, S.H. Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice, Fitoterapia, 2014, 93, 150-162. c) Al-Trada, B.; Alkhateebb, H.; Alsmadia, W.; Al-Zoubib M. Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat, Life Sciences, 2019, 216, 183-188. d) Ponnusamy, S.; Ravindran, R.; Zinjarde, S.; Bhargava, S.; Kumar, A. M. Evaluation of Traditional Indian Antidiabetic Medicinal Plants for Human Pancreatic Amylase Inhibitory Effect In Vitro, Evid.-based Complement. Altern. Med., 2011, 1-10.
9. a) Daniel, A. N.; Sartoretto, S. M.; Schmidt, G.; Caparroz-Assef, S. M.; BersaniAmado, C. A. Cuman, R. K. N.; Anti-inflammatory and antinociceptive activities of eugenol essential oil in experimental animal models, Rev Bras Farmacogn. 2009, 19, 212-217. b) Raghavenraa, H.; Diwakra, B. T.; Lokeshb, B. R. and Naidu, K. A.; Eugenol- The active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells, Prostaglandins Leukot. Essent. Fat. Acids, 2006, 74, 23-27.
10. Lahloua, S.; Figueiredoa, A. F.; Magalhãesb, P. J. C.; Leal-Cardosoc, J. H. and Gloria, P. D.; Cardiovascular effects of methyleugenol, a natural constituent of many plant essential oils, in normotensive rats, Life Sci. 2004, 74, 2401-2412.
11. Manikandan, P.; Murugan, R. S.; Priyadarsini, R. V.; Vinothini, G. and Nagini, S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG, Life Sci. 2010, 86, 936-941.
12. Misra, P.; Kumar, A.; Khare, P.; Gupta, S.; Kumar, N. and Dube, A. Pro-apoptotic effect of the landrace Bangla Mahoba of Piper betle on Leishmania donovani may be due to the high content of eugenol, J. Microbiol. 2009, 58, 1058-1066.
13. Abrao, P. H. O.; Pizi, R. B.; Souza1, T. B. de.; Silva, N. C.; Fregnan, A. M.; Silva, F. N.; Luiz Felipe L. Coelho, L. F. L.; Malaquias, L. C. C.; Dias, A. L. T.; Dias, D. F.; Veloso, M. P. and Carvalho, D. T. Synthesis and Biological Evaluation of New Eugenol Mannich Bases as Promising Antifungal Agents, Chem Biol Drug Des 2015, 86, 459-465.
14. Hemaiswarya, S. and Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria, Phytomedicine, 2009, 16, $997-$ 1005.
15. Oliveira, S. P. de.; Cunha, G. S. P.; Prates, J. P. B.; Fonseca, F. S. A.; Souza, K. S. S. de.; Azevedo, A. M.; Xavier, A. R. E. de. O.; Santos, E. M. S.; Santos, H. O. and Almeida, A. C. de.; Antimicrobial activity of essential oils extracted from clove and lemongrass against pathogenic bacteria isolated from bovine, swine and poultry feces, Semin Cienc Agrar. Londrina, 2019, 40, 1937-1950.
16. Hume, W. R. Effect of Eugenol on Constrictor Responses in Blood Vessels of the Rabbit Ear, J Dent Res. 1983, 62, 1013-1015.
17. Markowitz, K.; Michael Moynihan, M.; Liu, M. and Kim, S. Biologic properties of eugenol and zinc oxide-eugenol, Oral Surg Oral Med Oral Pathol, 1992, 73, 729736.
18. a) Su, W-J.; Lv, W-J.; Li, Li-Na.; Yin, G.; Hang, X.; Xue, Y.; Chen, J.; and Shi, Z. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SIPer in tomato plants, New Biotechnol. 2016, 33, 345-354. b) Kong, X.; Liu, X.; Li, J. and Yang, Y. Advances in Pharmacological Research of Eugenol, Curr Opin Complement Alternat Med. 2014, 1, 8-11.
19. Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R.; Kulkarni, M.J.; Thulasiram, H.V.; Giri, A.P., Potential dual role of eugenol in inhibiting advanced
glycation end products in diabetes: proteomic and mechanistic insights, Sci. Rep. 2016, 6, 18798.
20. Rautio, J.; Meanwell, N. A.; Di, L.; and Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov, 2018, 17, 559-587.
21. Raja, M. R. C.; Velappan, A. B.; , Chellappan, D.; Debnath, J.; Mahapatra, S. K., Eugenol derived immunomodulatory molecules against visceral leishmaniasis, Eur. J. Med. Chem., 2017, 139, 503-518.
22. Venkateswarlu; A.; Uday; S.; Reddy, K. A.; Preparation of pyridinecarbonylaminoacetic acid phenyl ester derivatives and analogs for use as anti-Alzheimer's agents, PCT Int. Appl., 2011089576, 28 Jul 2011.
23. Rengasamy, R.; Curtis-Long, M. J.; Seo, W. D.; Jeong, S. H.; Jeong, I-Y. and Park, K. H. New Building Block for Polyhydroxylated Piperidine: Total Synthesis of 1,6-Dideoxynojirimycin, J. Org. Chem. 2008, 73, 2898-2901.
24. Yasui, Y.; Tsuchida, S.; Miyabe, H. and Takemoto, Y. One-Pot Amidation of Olefins through Pd-Catalyzed Coupling of Alkylboranes and Carbamoyl Chlorides, J. Org. Chem. 2007, 72, 5898-5900.
25. Huang, M-Y.; Lin, J.; Huang, Z-J.; Xu, H-G.; Hong, J.; Sun, P-H.; Guo J-L. and Chen, W-M. Design, synthesis and anti-inflammatory effects of novel 9-0-substituted-berberine derivatives, Med. Chem. Commun., 2016, 7, 658-666.
26. a) Bilgiclia, H. G.; Ergona, D.; Taslimib, P.; Tüzünc, B.; Kurua, I. A.; Zengina, M. and Gülçind I.; Novel propanolamine derivatives attached to 2 -metoxifenol moiety: Synthesis, characterization, biological properties, and molecular docking studies, Bioorg. Chem. 2020, 101, 103969. b) Elgendya, E. M. and Khayyatb, S. A. Oxidation The reactions of Some Natural Volatile Aromatic Compounds: Anethole and Eugenol, Russ. J. Org. Chem., 2008, 44, 823-829.
27. Yadav, Y.; Owens, E. A.; Sharma, V.; Aneja, R. and Henary, M.; Synthesis and evaluation of antiproliferative activity of a novel series of hydroxychavicol analogs, Eur. J. Med. Chem. 2014, 75, 1-10.
28. Jung, J-C.; Lim, E.; Kim, S. H.; Kim, N. S.; Jung, M. and Oh, S.; Practical Synthesis and Biological Evaluation of Bergenin Analogs, Chem Biol Drug Des 2011, 78, 725-729.
29. Wang, Y.; Chen, Y.; Yang Y. and Zhou, B.; A Rh(III)-catalyzed redox-neutral C-H alkylation the reaction with allylic alcohols by using a traceless oxidizing directing group, Org. Chem. Front., 2018, 5, 1844-1847.

Chapter-3 NMR Spectra

Bis(4-allyl-2-methoxyphenyl) nonanediote (19):

Bis(4-allyl-2-methoxyphenyl) nonanediote (19):

4-Allyl-2-methoxyphenyl oleate (20):

4-Allyl-2-methoxyphenyl oleate (20):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl benzoate (21):

4-Allyl-2-methoxyphenyl benzoate (21):

${ }^{13} \mathrm{C}$ NMR, 50 MHz

4-Allyl-2-methoxyphenyl decanoate (22):

๗ึ๗゙ ๗゙

${ }^{1} \mathrm{H}$ NMR, 200 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl decanoate (22):

${ }^{13} \mathrm{C}$ NMR, 50 MHz
CDCl_{3}

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl 4-nitrobenzoate (23):

4-allyl-2-methoxyphenyl 4-nitrobenzoate (23):

${ }^{13} \mathrm{C}$ NMR, 50 MHz CDCl_{3}

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl nonanoate (24):

${ }^{1} \mathrm{H}$ NMR, 200 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl nonanoate (24):
号

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-D-alaninate (25):

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-D-alaninate (25):

${ }^{13} \mathrm{C}$ NMR, 101 MHz
CDCl_{3}

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-valinate (26):

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-valinate (26):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-phenylalaninate (27):

${ }^{1} \mathrm{HNMR}, 400 \mathrm{MHz}$ CDCl_{3}

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-phenylalaninate (27):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

2-(4-Allyl-2-methoxyphenyl) 1-(tert-butyl) (S)-pyrrolidine-1,2-dicarboxylate (28):

${ }^{1} \mathrm{H}$ NMR, 400 MHz
CDCl_{3}

2-(4-Allyl-2-methoxyphenyl) 1-(tert-butyl) (S)-pyrrolidine-1,2-dicarboxylate (28):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-leucinate (29):

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-leucinate (29):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

4－Allyl－2－methoxyphenyl（S）－2－（（tert－butoxycarbonyl）amino）－2－phenylacetate（30）：

$\stackrel{\stackrel{1}{4}}{\stackrel{1}{1}}$

${ }^{1} \mathrm{H}$ NMR， 400 MHz

4－Allyl－2－methoxyphenyl（S）－2－（（tert－butoxycarbonyl）amino）－2－phenylacetate（30）：

${ }^{13} \mathrm{C}$ NMR， 101 MHz CDCl_{3}

	R边	$\stackrel{0}{\square}$
\＆Nぺ	กొ ค ค	\％

$\stackrel{ \pm}{\sim}$

Chapter-3 NMR Spectra

Bis(4-allyl-2-methoxyphenyl) (tert-butoxycarbonyl)-L-aspartate (31):

CDCl_{3}

Bis(4-allyl-2-methoxyphenyl) (tert-butoxycarbonyl)-L-aspartate (31):

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-methioninate (33):

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-methioninate (33):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-isoleucinate (34):

4-Allyl-2-methoxyphenyl (tert-butoxycarbonyl)-L-isoleucinate (34):

Bis(4-allyl-2-methoxyphenyl) (tert-butoxycarbonyl)-L-glutamate (35):

Bis(4-allyl-2-methoxyphenyl) (tert-butoxycarbonyl)-L-glutamate (35):

on in on

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl D-alaninate hydrochloride (36):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl D-alaninate hydrochloride (36):

4-Allyl-2-methoxyphenyl L-valinate hydrochloride (37):

${ }^{1} \mathrm{H}$ NMR, 200 MHz
CDCl_{3}

4-Allyl-2-methoxyphenyl L-valinate hydrochloride (37):

4-Allyl-2-methoxyphenyl L-phenylalaninate hydrochloride (38):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}
 $\stackrel{\text { ? }}{i}$ 8

4-Allyl-2-methoxyphenyl L-phenylalaninate hydrochloride (38):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl L-prolinate hydrochloride (39):

4-Allyl-2-methoxyphenyl L-prolinate hydrochloride (39):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl L-leucinate hydrochloride (40):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl L-leucinate hydrochloride (40):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl (S)-2-amino-2-phenylacetate hydrochloride (41):

4-Allyl-2-methoxyphenyl L-isoleucinate hydrochloride (42):

4-Allyl-2-methoxyphenyl L-isoleucinate hydrochloride (42):

4-Allyl-2-methoxyphenyl L-methioninate hydrochloride (43):
$\overline{0}$
i
i

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

Chapter-3 NMR Spectra

4-Allyl-2-methoxyphenyl L-methioninate hydrochloride (43):

Bis(4-allyl-2-methoxyphenyl) L-aspartate hydrochloride (44):

Chapter-3 NMR Spectra

Bis(4-allyl-2-methoxyphenyl) L-aspartate hydrochloride (44):

Bis(4-allyl-2-methoxyphenyl) L-glutamate hydrochloride (45):

Bis(4-allyl-2-methoxyphenyl) L-glutamate hydrochloride (45):

4-Allyl-2-methoxyphenyl D-alaninate (46):

4-Allyl-2-methoxyphenyl D-alaninate (46):

4-Allyl-2-methoxyphenyl L-valinate (47):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl L-valinate (47):

4-Allyl-2-methoxyphenyl L-phenylalaninate (48):

${ }^{1} \mathrm{H}$ NMR, 400 MHz CDCl_{3}

4-Allyl-2-methoxyphenyl L-phenylalaninate (48):

4-Allyl-2-methoxyphenyl L-prolinate (49):

${ }^{1} \mathrm{H}$ NMR, 200 MHz CDCl_{3}

4－Allyl－2－methoxyphenyl L－prolinate（49）：

4－Allyl－2－methoxyphenyl L－leucinate（50）：

	ल下o ¢0	은	$\stackrel{\sim}{\sim}$	べ	\bigcirc	$\stackrel{\circ}{\circ}$	O．
		$\stackrel{+}{\dagger}$	¢	¢	$\stackrel{+}{1}$	－	0

4-Allyl-2-methoxyphenyl L-leucinate (50):

${ }^{13} \mathrm{C}$ NMR, 101 MHz
CDCl_{3}

4-Allyl-2-methoxyphenyl (S)-2-amino-2-phenylacetate (51):

O
1

${ }^{1} \mathrm{H}$ NMR, 400 MHz

4-Allyl-2-methoxyphenyl (S)-2-amino-2-phenylacetate (51):

4-Allyl-2-methoxyphenyl L-isoleucinate (52):

4-Allyl-2-methoxyphenyl L-isoleucinate (52):

4-Allyl-2-methoxyphenyl L-methioninate (53):

> N

${ }^{1} \mathrm{H}$ NMR, 400 MHz DMSO-d ${ }_{6}$

4-Allyl-2-methoxyphenyl L-methioninate (53):

 ค

${ }^{13} \mathrm{C}$ NMR, 101 MHz DMSO-d ${ }_{6}$

Bis(4-allyl-2-methoxyphenyl) L-aspartate (54):

Chapter-3 NMR Spectra

Bis(4-allyl-2-methoxyphenyl) L-aspartate (54):

Bis(4-allyl-2-methoxyphenyl) L-glutamate (55):

Bis(4-allyl-2-methoxyphenyl) L-glutamate (55):

1-(4-Allyl-2-methoxyphenyl) 2-methyl (S)-pyrrolidine-1,2-dicarboxylate (56):

${ }^{1} \mathrm{H}$ NMR, 200 MHz
CDCl_{3}

1-(4-Allyl-2-methoxyphenyl) 2-methyl (S)-pyrrolidine-1,2-dicarboxylate (56):

${ }^{13} \mathrm{C}$ NMR, 126 MHz CDCl_{3}

2-Methoxy-4-(oxiran-2-ylmethyl)phenol (57):

2-Methoxy-4-(oxiran-2-ylmethyl)phenol (57):

3-(4-Hydroxy-3-methoxyphenyl)propane-1,2-diol (58):

Chapter-3 NMR Spectra

3-(4-Hydroxy-3-methoxyphenyl)propane-1,2-diol (58):

3-(4-Acetoxy-3-methoxyphenyl)propane-1,2-diyl diacetate (59):

3-(4-Acetoxy-3-methoxyphenyl)propane-1,2-diyl diacetate (59):

${ }^{13} \mathrm{C}$ NMR, 50 MHz
CDCl_{3}

3-(4-(Benzoyloxy)-3-methoxyphenyl)propane-1,2-diyl dibenzoate (60):

${ }^{1} \mathrm{H}$ NMR, 200 MHz
CDCl_{3}

3-(4-(Benzoyloxy)-3-methoxyphenyl)propane-1,2-diyl dibenzoate (60):

${ }^{13} \mathrm{C}$ NMR, 50 MHz CDCl_{3}

Chapter-3 NMR Spectra

4-(1-Hydroxylallyl-2-methoxyphenol (61):

4-(1-Hydroxylallyl-2-methoxyphenol (61):

${ }^{13} \mathrm{C}$ NMR, 101 MHz CDCl_{3}

Abstract

Name of the Student: Ms. Priyanka Kataria Registration No.: 10CC16J26018 Faculty of Study: Chemical Science Year of Submission: 2022 AcSIR academic centre/CSIR Lab: Name of the Supervisor: Dr. Ravindar Kontham CSIR-National Chemical Laboratory, Pune Title of the thesis: "Studies on the Enantioselective Total Synthesis of Diarylheptanoid and Furylhydroquinone-Derived Natural Products, and Eugenol Derivatives as Potential Antidiabetic Agents"

Natural products are a diverse group of chemical substances produced by nature (living organism like animal plant and microorganism) However, these molecules are often produced in minimal quantities, which creates supply issues and hamper systematic chemical and biochemical investigations and utilization. Hence, the development of efficient, facile, and sustainable synthetic methodologies and their application in devising concise and practical synthetic routes for biologically potent natural and unnatural molecules is one of the pivotal objectives for synthetic organic chemists worldwide. In this context, in chapter 1, we have developed concise and enantioselective synthetic routes for diarylheptanoidderived natural product des-hydroxy hedycoropyran B, and in chapter 2 we established the absolute configuration for anti-inflammatory and antibacterial natural products shikonofurans J, D, E, C and their enantiomers possessing furylhydroquinone scaffold as a key structural unit, using an unprecedented $\operatorname{Bi}(\mathrm{OTf})_{3}$-catalyzed furan construction from acylhydroxy oxetanes, followed by chiral-phosphoric acid (TRIP)-mediated asymmetric prenylation reactions as key steps. In addition, in chapter 3, we synthesised the derivatives of eugenol and in vitro antidiabetic activity evaluation of natural product eugenol and its derivatives having improved bioavailability.

List of Publications Emanating from the Thesis Work

1. Kataria, P.; Nomula, R. and Kontham R.; Studies directed toward the synthesis of hedycoropyrans: total synthesis of des-hydroxyl (-)-hedycoropyran B entrhoiptelol B). Org. Biomol. Chem., 2022, 20, 444-463.
2. Kataria, P.; Sahoo S. S.; Kontham, R.; Development of a facile synthetic strategy for substituted furans from keto-oxetanes using Bi(III) catalysis: application to unified total synthesis of furylhydroquinone-derived natural products shikonofuran J, D, E, and C. Manuscript under preparation.
3. Kataria, P.; Kontham, R.; Kulkarni M. J.; Giri A. P.; Agawane S. B.; Design, synthesis and biological evaluation of eugenol derivatives as potential antidiabetic agents. Manuscript under preparation.
4. Kataria. P.; Kontham, R. Kulkarni M. J.; Giri A. P.; Agawane S. B.; Eugenol derivatives with improved anti-diabetic and related activitives, NCLI-INV-2019031 (Patent submitted)

List of Publications Non-Emanating from the Thesis Work

5. Thorat, S. S.; Kataria. P.; Kontham, R.Synthesis of Furo[2,3-b]pyran-2-ones through $\operatorname{Ag}(\mathrm{I})$ - or $\operatorname{Ag}(\mathrm{I})-\mathrm{Au}(\mathrm{I})$-catalyzed cascade annulation of alkynols and α-ketoesters Org. Lett. 2018, 20, 872-875.
6. Nakate, A. K.; Kataria P.; Gamidi, R. K.; Kontham, R.; Bi(OTf) $)_{3}$-catalyzed cascade annulations of alkynols and sulfonyl imine: remote α, β-unsaturated imine $\mathrm{C}=\mathrm{C}$ activation for inverse-electron-demand aza-Diels-Alder reaction. Manuscript under preparation.

List of Posters Presented with Details

1. Oral presentation in Annual Student's Conference 2022, organised by NCL Research Foundation \& CSIR-National Chemical Laboratory, Pune (November 29-30, 2022).
Title: Synthesis of Substituted Furans from Keto-Oxetanes using Bi(III) Catalysis: Application to Unified Total Synthesis of Shikonofuran J, D, E and C. Abstract: A mild, efficient, and facile methodology for the synthesis of hydroxy methyl-derived polysubstituted furans employing an unprecedented $\mathrm{Bi}(\mathrm{III})$ catalyzed dehydrative cycloisomerization of α-hydroxy oxetane-tethered ketones is developed. Following this simple and facile protocol, a broad range of products was prepared in good to excellent yields and we successfully applied this protocol in the first enantioselective total synthesis of furyl-hydroquinone-derived antibacterial and anti-inflammatory natural products shikonofurans J, D, E, and C in 7 linear steps from simple and readily accessible building blocks of 2,5-dihydroxy acetophenone, 3oxetanone and prenyl bromide employing chiral-phosphoric acid (TRIP)-catalyzed asymmetric prenylation, and also synthesized their enantiomers to establish the absolute stereochemistry
2. Oral presentation (YouTube) at Indian National Young Academy of Sciences (INYAS)Saransh - Thesis Competition for PhD students 2022 (October 25, 2022).
3. Received Dr. D. S. Bhakuni Award for the oral presentation in the 58th Annual Convention of Chemists, 2021 \& International Conference on "Recent Trends in Chemical Sciences (RTCS-2021)" organized by the Indian Chemical Society, Kolkata (December 21-24, 2021).
Title: Studies directed toward the synthesis of hedycoropyrans: total synthesis of des-hydroxy (-)-hedycoropyran B (ent-rhoiptelol B).
4. Oral presentation in Annual Student's Conference 2021, organised by NCL Research Foundation \& CSIR-National Chemical Laboratory, Pune (November 29, 2021).

Title: Studies directed toward the synthesis of hedycoropyrans: total synthesis of deshydroxy (-)-hedycoropyran B (ent-rhoiptelol B).

Abstract: A full account of our efforts directed towards the synthesis of diarylheptanoid-derived natural products hedycoropyrans that led to the total synthesis of ent-rhoiptelol B is described. In this endeavor, we have attempted two distinct synthetic strategies to access hedycoropyrans A and B, which led us to establish a facile synthetic route for des-hydroxy (-)-hedycoropyran B (ent-rhoiptelol B) from simple and readily accessible building blocks of 4-allylanisole and vanillin employing Sharpless asymmetric epoxidation, CBS-reduction, and intramolecular AgOTf-catalyzed oxa-Michael reaction of suitably functionalized hydroxy-ynone as key transformations. Investigations disclosed herein would provide insights in designing novel synthetic routes for THP-DAH-derived natural products.
5. National Science Day Poster presentation at CSIR-National Chemical Laboratory, Pune (February 25-27, 2021):

Title: Stereoselective Total Synthesis of ent-Rhioptelol B.
Abstract: Diarylheptanoids constitute an important class of natural products due to their interesting biological and pharmacological properties (anti-inflammatory, antioxidant, anticancer, inhibition of NO production, DPPH-radical scavenging activity, etc) Rhoiptelol B, a diarylheptanoid containing a tetrahydropyran ring, was first isolated in 1996 from the fruits of Rhoiptelea chiliantha, having inhibitory activity against LPS-induced NF-kB activation, NO and TNF- α production and HIF-1 in AGS cells. During our efforts towards the total synthesis of hedycoropyran B, a simple and efficient total synthesis of ent-rhoiptelol B (antipode of Rhioptelol B) is achieved using Sharpless asymmetric epoxidation, CBS-reduction, aldol reaction and AgOTf-catalyzed oxa-Michael reaction of hydroxy-ynone as key transformations.
6. National Science Day Poster presentation at CSIR-National Chemical Laboratory, Pune (February 25-27, 2018):
Title: Synthesis of Furo[2,3-b]pyran-2-ones through $\operatorname{Ag}(\mathrm{I})$ - or $\operatorname{Ag}(\mathrm{I})-\mathrm{Au}(\mathrm{I})$-Catalyzed Cascade Annulation of Alkynols and α-Ketoesters
Abstract: $\mathrm{Ag}(\mathrm{I})$ - or $\mathrm{Ag}(\mathrm{I})-\mathrm{Au}(\mathrm{I})$-catalyzed cascade annulation of alkynols (5-hexyn-1ol systems) with α-ketoesters involving a dual activation process (π and σ) has been
developed for the first time. This reaction proceeds through cycloisomerization of alkynol to give the 6 -endo-enol ether followed by annulation with an α-ketoester to furnish furo[2,3-b]pyran-2-ones in good yields. Chemical structures of all products were rigorously confirmed by single crystal X-ray analysis and analogy.

List of Conference Attended with Details

International Conference on Nature Inspired Initiatives in Chemical Trends Organic synthesis (2016).

Cite this: DOI: $10.1039 /$ d1ob01972d

Received 8th October 2021,
Accepted 1st December 2021
DOI: 10.1039/d1ob01972d
rsc.li/obc

Studies directed toward the synthesis of hedycoropyrans: total synthesis of des-hydroxy (-)-hedycoropyran B (ent-rhoiptelol B) \dagger

Priyanka Kataria, (iD ${ }^{\text {a,b }}$ Rajesh Nomula (D) ${ }^{\text {a }}$ and Ravindar Kontham (D) *a,b

Abstract

A full account of our efforts directed towards the synthesis of the diarylheptanoid-derived natural products hedycoropyrans that led to the total synthesis of ent-rhoiptelol B is described. In this endeavor, we have attempted two distinct synthetic strategies to access hedycoropyrans A and B, which led us to establish a facile synthetic route for des-hydroxy (-)-hedycoropyran B (ent-rhoiptelol B) from simple and readily accessible building blocks of 4 -allylanisole and vanillin, employing Sharpless asymmetric epoxidation, CBS reduction, and an intramolecular AgOTf-catalyzed oxa-Michael reaction of suitably functionalized hydroxy-ynone as key transformations. The investigations disclosed herein will provide insights into designing novel synthetic routes for THP-DAH-derived natural products.

Introduction

Diarylheptanoids (DAHs) belong to one of the emerging structural classes of natural products known to display interesting biological profiles of anti-inflammatory, antioxidation, anticancer, inhibition of NO production, DPPH-radical scavenging activity, and others. ${ }^{1}$ These DAHs are structurally either acyclic or cyclic (containing a tetrahydropyran/tetrahydrofuran ring), and two aryl rings are connected at the C1 and C7 positions of the heptanoid skeleton. ${ }^{2}$ Interesting biological profiles of tetra-hydropyran-containing diarylheptanoids (THP-DAHs), particularly centrolobines, calyxins, diospongins, rhoiptelol B, and others, have led to a substantial interest in medicinal and synthetic organic chemistry that has produced elegant synthetic strategies involving Prins cyclization, reductive etherification, oxa-Michael reactions, Diels-Alder reactions, palladiummediated cyclization, FeCl_{3}-mediated cyclization, radical cyclization, Maitland-Japp reactions (Knoevenagel/Michael addition cascades), olefin metathesis and intramolecular Barbier-type reactions as key transformations for the construction of the THP ring system. ${ }^{3}$

In 2015, Lee and co-workers isolated two new DAHs, hedycoropyrans A (1) and B (2), from the $n-\mathrm{BuOH}$ soluble fraction of the rhizome of Hedychium coronarium, which possesses 2,6trans and 2,6-cis configured THP-DAHs, respectively, along with other hedycorofurans and several cytotoxic labdane-type

[^0]diterpenoids. The chemical structures of hedycoropyrans A and B were established using density functional theory (DFT) and 2D NMR analyses, and the absolute configurations were assigned through quantum chemical calculations of the ECD spectra. ${ }^{4}$ Hedycoropyrans A and B possessed extra hydroxyl groups at C3 and C4 of the THP ring and at C7 compared with centrolobines (4), and only at C3 compared with rhoiptelol B (3). Recently in 2017, Li/Tong disclosed an elegant first asymmetric total synthesis of (-)-hedycoropyrans A and B in 18 and 19 steps, respectively, using their in-house-developed Achmatowicz rearrangement, Zn -mediated reductive deoxygenation, and Heck-Matsuda coupling reactions to construct an unusual and thermodynamically disfavored trans-2-aryl-6alkyl THP core (Scheme 1). ${ }^{5}$

(-)-Hedycoropyran A(1)

(+)-Rhoiptelol B (${ }^{(3)}$

(-)-Hedycoropyran B(2)

(-)-Centrolobine (4)

Scheme 1 Chemical structures of representative diarylheptanoidderived natural products.

In continuation of our interest in the stereoselective total synthesis of THP-containing biologically potent natural products, ${ }^{6}$ we herein report our studies directed toward the total synthesis of hedycoropyrans that led us to showcase very interesting synthetic transformations and establish a facile synthetic route for des-hydroxy (- -hedycoropyran B , which is entrhoiptelol B, from the readily accessible building blocks of 4 -allylanisole and vanillin using Sharpless asymmetric epoxidation, Corey-Bakshi-Shibata reduction and an AgOTf-catalyzed oxa-Michael reaction of hydroxyl alkyl tethered ynone as key steps.

Results and discussion

In the initial retrosynthetic analysis, as described in Scheme 2, we envisioned a unified approach for the synthesis of hedycoropyrans A (1) and B (2) from a suitably functionalized dihydroxy alkene intermediate 6 (containing allylic and homoallylic alcohol functionalities) via allylic carbocation-mediated ringclosure that would deliver advanced 2,6-trans/2,6-cis dihydropyran intermediate $\mathbf{5 a} / \mathbf{5 b}$. This key intermediate $\mathbf{6}$ could be obtained through a cross-metathesis reaction of homoallylic alcohol 7 and allylic alcohol 8. Alkenols 7 and 8 would be synthesized from the commercially available and costeffective building blocks 4-allylanisole (estragole, 9) and veratraldehyde (10), employing interesting synthetic manipulations (Scheme 2).

Hence, our efforts began to access the key DAH-derived dihydroxy alkene intermediate 6 starting from building blocks 9 and 10. 4-Allylanisole (estragole, 9) was subjected to Sharpless asymmetric dihydroxylation ${ }^{7}$ using AD mix- $\beta /$ $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ to obtain the corresponding 1,2-diol, which was

Scheme 2 Initial retrosynthetic analysis of hedycoropyrans A (1) and B (2).
subsequently protected as its p-methoxy benzylidene acetal 11. ${ }^{8}$ The regioselective reductive opening ${ }^{9}$ of the 1,2 -acetal 11 using DIBAL-H followed by Dess-Martin periodinane oxidation ${ }^{10}$ delivered aldehyde 12. The substrate-controlled addition of allyltributyltin onto aldehyde 12 in the presence of $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ delivered the requisite homoallylic alcohol 7 as only a diastereomer. ${ }^{11}$ Then, cross-metathesis reaction ${ }^{12}$ of 7 and 8 (prepared from the vinylation of veratraldehyde 10$)^{13}$ using the Grubbs $2^{\text {nd }}$-generation catalyst furnished the desired DAH-derived dihydroxy alkene intermediate 6 (exclusively trans-olefin) in an excellent yield of 95%. Next, the crucial allylic carbocation-induced ring-closure reaction of alkene-diol 6 was attempted using well-established reaction conditions of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{12} \quad \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{12}$ and Pd $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{12}$ at low to ambient $\left(-78{ }^{\circ} \mathrm{C}\right.$ to rt) temperatures, which proved to be unsuccessful, and starting material 6 was decomposed in all cases. If this proposed transformation to access 5a/5b from 6 had worked well, our next sequence of reactions (as reported by Li and Tong) ${ }^{5}$ as described via diols 13a/13b would have led to the total synthesis of hedycoropyrans A (1) and B (2) (Scheme 3).

Since this initially designed strategy was unsuccessful, we were required to seek a distinct approach to access natural products 1 and/or 2, and we considered a new retrosynthetic analysis based on the intramolecular oxa-Michael reaction that provides access to the THP ring system with desired stereochemistry as depicted in Scheme 4. Thus, we envisioned the construction of hedycoropyran B (2) via intramolecular oxa-

Scheme 3 Efforts toward the synthesis of hedycoropyrans A (1) and B (2) via allylic carbocation-mediated ring closure.

Scheme 4 New retrosynthetic analysis of hedycoropyran B (2) based on the oxa-Michael reaction of hydroxy-enone or hydroxy-ynone.

Michael-induced ring closure of suitably constructed enone 14 or ynone $\mathbf{1 4 a} / \mathbf{1 4 b}$ intermediates with varying O-substituents. In this context, we anticipated a convergent approach comprising Li-acetylide (generated from 15/15a) addition onto the chiral-aldehydes $16 / \mathbf{1 6 a}$ followed by oxidation to access the enone/ynone intermediates (14/14a, 14b). Intermediates 15/ 15a and 16/16a could be obtained from commercially available 4 -allylanisole (9) and veratraldehyde (10) or their congeners (9a and vanillin) respectively (Scheme 4).

Hence, this alternate route began with the synthesis of alkyne intermediate 15 from 4-allylanisole (9) in two distinct pathways. In the first route, aldehyde 12 (prepared from 9 in Scheme 3) was subjected to Corey-Fuchs olefination ${ }^{14}$ and subsequently treated with n - BuLi^{14} to afford the desired alkyne fragment 15 (path A, Scheme 5). Furthermore, an alternate route for 15 was also evaluated via epoxy alcohol 18. Thus, ally-
Synthesis of Alkyne Fragment 15

Synthesis of Aldehyde Fragment 16

Scheme 5 Synthesis of alkyne fragment 15 and aldehyde fragment 16.
lanisole 9 was converted into α, β-unsaturated ester 17 employing a cross-metathesis reaction, ${ }^{12}$ and was then reduced using DIBAL-H to afford allylic alcohol and subsequently converted into chiral epoxy alcohol 18 under Sharpless conditions. ${ }^{15}$ Next, epoxy alcohol 18 was transformed into chloride 19 using TPP and $\mathrm{CCl}_{4} \cdot{ }^{16}$ It was subjected to a base-mediated (n - BuLi) rearrangement reaction to obtain propargylic alcohol, which was subsequently protected as its PMB ether to get the desired alkyne fragment 15 (path B, Scheme 5). ${ }^{17}$ After establishing a reliable synthetic route for 15, we synthesized an aldehyde coupling partner 16 from veratraldehyde 10. Asymmetric Keck allylation of $\mathbf{1 0}$ (using (S)-BINOL, $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$, and allyltributyltin) to give allyl alcohol 20, ${ }^{18}$ followed by TBS protection ${ }^{19}$ and dihydroxylative cleavage $\left(\mathrm{OsO}_{4}, 2,6 \text {-lutidine, and } \mathrm{NaIO}_{4}\right)^{20}$ steps, cleanly delivered aldehyde 16 (Scheme 5).

Having synthesized alkyne 15 and aldehyde 16 fragments on a gram scale, the stage was set for the coupling and to verify our hypothesis of an intramolecular oxa-Michael reaction. Initially, we wanted to evaluate the oxa-Michael reaction using enone 14 as a substrate (path A, Scheme 6). Thus, alkyne 15 and aldehyde 16 were coupled using n-BuLi in THF to obtain propargylic alcohol 21. ${ }^{21}$ Next, partial reduction of alkyne 21 using Red-Al ${ }^{22}$ followed by Dess-Martin periodinane oxidation ${ }^{10}$ cleanly delivered enone 14 in a good yield. TBS deprotection ${ }^{23}$ of $\mathbf{1 4}$ using HF in $\mathrm{CH}_{3} \mathrm{CN}$ gave hydroxy-alkyl tethered enone 22 in 74% yield. Next, the crucial oxa-Michael reaction of the hydroxy-enone 22 to give pyranone 23 proved to be insurmountable, under base ($\mathrm{KO}^{t} \mathrm{Bu},{ }^{24 a} \mathrm{NaH},{ }^{24 b, c} \mathrm{DBU}^{24 d}$), acid (Amberlyst-15) ${ }^{24 e_{2} f}$ and $\operatorname{Pd}($ II $)$ catalyzed ${ }^{24 g, h}$ reaction conditions, leading to either the corresponding dehydrated product 24 or retro-aldol products 10 and 25 (path A, Scheme 6; Table 1).

Hence, we slightly altered the strategy by replacing enone 22 with the corresponding ynone 22 a as an oxa-Michael addition precursor to verify the reactivity patterns, as shown in path B of Scheme 6. Therefore, ynone 22a was prepared from 21 through Dess-Martin periodinane oxidation, ${ }^{10}$ and HF- $\mathrm{CH}_{3} \mathrm{CN}$-mediated TBS deprotection ${ }^{23}$ steps, and was evaluated for the intramolecular oxa-Michael reaction using wellreported procedures (Table 2). Initial conditions of using Pd $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$-mediated cyclization ${ }^{25 a}$ led to the decomposition of the starting material. Cyclization using $\mathrm{NaH}^{25 b}$ and/or mild Lewis acid (AgOTf, catalytic) ${ }^{25 c}$ resulted in the undesired dehydrated product 24a, whereas AuCl-catalyzed cyclization ${ }^{26}$ was found to be non-selective towards this oxa-Michael reaction by providing an inseparable mixture ($1: 1$ ratio) of desired pyranone 23a (through the 6-exo-dig mode of cyclization) and furanone 26 (through the 5-endo-dig mode of cyclization) (path-B, Scheme 6). These unfruitful results (except for the AuCl reaction of entry 4 , Table 2) reveal the sensitivity of the benzylic hydroxyl group (of 22 and 22a) toward basic or acidic conditions, which could be due to the stabilization of the benzylic carbocation through the mesomeric effect of the p-OMe group of the phenyl ring (path A and path B , Scheme 6).

Suspecting the role of the p-OMe group (of 22 and 22a, Scheme 6) in the failure of the above intramolecular oxa-

Scheme 6 Efforts toward the synthesis of hedycoropyran B (2) via an oxa-Michael reaction of hydroxy-enone/hydroxy-ynone.

Table 1 Efforts toward the synthesis of pyranone 23

Entry	Conditions	Result
1	$\mathrm{KO}^{t} \mathrm{Bu}$ (0.1 equiv.)	24, 13%; 25, 60% and $\mathbf{1 0}, 26 \%$
	$\mathrm{EtOH}, 0^{\circ} \mathrm{C}$ to rt	
2	NaH (2.2 equiv.)	24, $8 \% ; 25,49 \%$ and 10,32\%
	$-78{ }^{\circ} \mathrm{C}, \mathrm{THF}$	
3	DBU (4 equiv.)	24, 68\%
	DCM, $0^{\circ} \mathrm{C}$	
4	Amberlyst-15 (2 equiv.)	24, 74\%
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt	
5	$\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ (0.1 equiv.)	22, recovered
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$	

Table 2 Efforts toward the synthesis of dihydropyranone 23a

Entry	Conditions	Result
1	$\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ (0.1 equiv.), Cu (OAc) ${ }_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.1 equiv.), PPh_{3}, DME, $65^{\circ} \mathrm{C}, 24 \mathrm{~h}$	22a, decomposed
2	NaH (1 equiv.), THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$	24a, 78\%
3	AgOTf (0.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 18 h	24a, 72\%
4	AuCl (0.02 equiv.), $\mathrm{NaHCO}_{3}, \mathrm{MS} 4 \AA$, 5 h	$23 a$ and 26 (1:1), 90\%, inseparable

Michael reactions and the literature precedence of a successful survival of similar benzylic hydroxyl groups in the presence of p-OAc and p-OTs substituents, ${ }^{3}$ we intended to verify the fate of our endeavor by replacing the p-OMe group with p-OTs (replacing alkyne 15 and aldehyde 16 fragments with 15a (having p-OTBS) and 16a (having p-OTs) respectively), as described in Scheme 7. Demethylation ${ }^{27}$ of 4 -allylanisole (9) using BBr_{3} followed by TBS protection gave allylbenzene 9a. Next, the cross-metathesis reaction ${ }^{12}$ of 9 a with ethyl acrylate delivered α, β-unsaturated ester 17a. The DIBAL-H reduction of 17a followed by Sharpless epoxidation using (-)-DET, TBHP, and $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$ resulted in epoxy alcohol 18a. We then used a similar reaction sequence employed for preparation of 15 (Scheme 5) to obtain alkyne fragment 15a from 18a. Next, the aldehyde coupling partner 16a containing the p-OTs group was obtained from vanillin (27). A four-step sequence comprising tosylation, Keck asymmetric allylation, and TBS protection followed by dihydroxylative cleavage of olefin $\left(\mathrm{OsO}_{4}, \mathrm{NMO}\right.$, then NaIO_{4}) delivered the desired fragment 16a $(\mathbf{2 7} \rightarrow \mathbf{1 0 a} \rightarrow \mathbf{2 0 a} \rightarrow$ 16a). In an alternative route, allylic alcohol 20a was obtained from a common tosylate intermediate 10a, in which 10a was subjected to allylation, and Dess-Martin periodinane oxidation steps to obtain ketone 28. Subsequent Corey-BakshiShibata reduction ${ }^{28}$ (using (R)-CBS catalyst) of 28 gave the common precursor 20a (27 $\rightarrow \mathbf{1 0 a} \rightarrow \mathbf{2 8} \rightarrow \mathbf{2 0 a}$; Scheme 7).
Synthesis of Alkyne Fragment 15a

Now, the stage was set to verify our envisioned ultimate strategy to access hedycoropyrans using p-OTs substituted intermediates. Accordingly, lithiated alkyne 15a was coupled with aldehyde 16a to obtain propargylic alcohol 21a as a mixture of diastereomers in a good yield of 65%, which was then subjected to DMP oxidation to furnish the desired ynone 14b. As expected, HF-CH3 CN -mediated TBS deprecation led to the fully and partially deprotected alcohols 29 and 30. Then we tested the subsequent intramolecular oxa-Michael reaction of $29 / 30$ using $10 \mathrm{~mol} \%$ of AgOTf at $0^{\circ} \mathrm{C}$. To our delight, pyranones 31/32 were obtained in good yields without anticipated retro-aldol by-products. At this stage, the TBS-protected dihydro-pyranone 32 was subjected to α-hydroxylation using diverse conditions of NaHMDS, Davis oxaziridine, ${ }^{29}$ and PIDA, ${ }^{30}$ which failed to provide the desired product 33 and hampered the possibility to access hedycoropyran B (2) (Scheme 8).

As we had a sufficient quantity of intermediates 31 and 32 in hand, we embarked on accessing the structurally close diarylheptanoid ent-rhoiptelol B (des-hydroxy hedycoropyran B, 3a). Rhoiptelol B (3) was isolated from the fruits of Rhoiptelea chiliantha and also from the bark of Alnus hirsuta in 1996 and 2007 and is known to display inhibitory activities against LPSinduced NF-KB activation, NO and TNF- α production, and HIF-1 in AGS cells. ${ }^{3}$ Thus, dihydropyranones 31 and 32 were subjected to hydrogenation ($\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$) of the olefin followed by L-selectride reduction of the carbonyl group, which cleanly delivered the respective pyrans 35 and 34 (34 was subjected to TBS deprotection to get 35; NOE analyses confirmed 2,6-cis stereochemistry of THP 34). Finally, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH-mediated

Scheme 7 Synthesis of alkyne fragment 15a and aldehyde fragment 16a.

Scheme 8 Completion of the total synthesis of des-hydroxy hedycoropyran B (ent-rhoiptelol B).

Fig. 1 ECD spectrum of ent-rhoiptelol (3a).
detosylation of 35 delivered des-hydroxy hedycoropyran B (entrhoiptelol B, 3a) (Scheme 8).
ent-Rhoiptelol B (3a) was confirmed by comparing ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and ESI-MS (HRMS) data with the reported data. As expected, the optical rotation value of $3 \mathbf{a}\left([\alpha]_{D}^{26.6}=-81.04(c=\right.$ $0.1, \mathrm{MeOH})$, this work) was found to be opposite to the reported value of natural product (+)-rhoiptelol B (4) ([$\alpha]_{D}^{12}=+97(c=0.3$, $\mathrm{MeOH})$, literature data). The assigned absolute configuration of 3a was further supported by electronic circular dichroism (ECD) analyses; the ECD spectrum of 3 a showed a negative Cotton effect (CE) at $227.10 \mathrm{~nm}\left(\mathrm{CD}, 0.4 \times 10^{-3} \mathrm{M}, \mathrm{EtOH}\right), \lambda_{\max }(\Delta \varepsilon)$ $214.44(+0.91), 227.10(-3.09)(\mathrm{nm})$, which was similar to the data reported for structurally and stereochemically (particularly 2,6-cis THP) closer hedycoropyran B (2) (which showed ECD $\left(\mathrm{MeCN}\right.$, c $\left.\left.2.66 \times 10^{-5} \mathrm{M}\right)[\theta]_{231}-3226,[\theta]_{285}+1556\right)\left(\right.$ Fig. 1). ${ }^{4}$

Conclusions

In conclusion, we have attempted a couple of synthetic strategies for the total synthesis of the diarylheptanoid natural products hedycoropyrans, which were unfruitful, but led us to showcase some efficient synthetic organic chemistry and the development of a total synthetic route for des-hydroxy hedycoropyran B (ent-rhoiptelol B) in 19 steps using the commercially available and affordable building blocks 4 -allylanisole (estragole), veratraldehyde and vanillin. Cross-metathesis, Sharpless asymmetric epoxidation, CBS-reduction/Keck asymmetric allylation, and AgOTf-mediated intramolecular oxa-Michael addition of hydroxy-ynone were used as key steps in this work. Our investigations disclosed in this paper would provide insights into designing novel synthetic routes for THP-DAHderived natural products. Further study of the structureactivity relationships of rhoiptelol B and its congeners is in progress and will be published in due course.

Experimental

General information

All reactions were performed under an argon atmosphere with oven $\left(90{ }^{\circ} \mathrm{C}\right)$ or flame dried glassware with a septum seal.

Anhydrous dichloromethane, tetrahydrofuran, N, N-dimethylformamide, benzene, and methanol solvents were purchased from commercial sources and used under an argon atmosphere. The temperature of $26{ }^{\circ} \mathrm{C}$ corresponded to the room temperature (rt) of the laboratory when the experiments were carried out. The reaction temperatures are reported as the temperatures of the bath surrounding the reaction vessel. Analytical thin-layer chromatography (TLC) was performed on TLC Silica gel 60 F254. Visualization was accomplished with short-wave UV light, anisaldehyde, or KMnO_{4} staining solutions followed by heating. Chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV 200, 400, and 500 spectrometers in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=\right.$ 77.16 ppm); the following abbreviations were used: s , singlet; d , doublet; t , triplet; q , quartet; m , multiplet; $\mathrm{AB} \mathrm{q}, \mathrm{AB}$ quartet; dd, doublet of doublets; td, triplet of doublets; and br, broad. HRMS data were recorded on a Q Exactive Hybrid ${ }^{\mathrm{TM}}$ Quadrupole-Orbitrap ${ }^{\mathrm{TM}}$ mass spectrometer (Thermo Scientific $^{\mathrm{TM}}$, Accela 1250 pump). ECD spectra were recorded on a JASCO J-815 CD spectrometer. Experimental procedures for all new compounds and known compounds without published experimental procedures are described below.

(R)-3-(4-Methoxyphenyl)propane-1,2-diol (S1)

To a stirred solution of $t-\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$ were added AD mix- β ($6.74 \mathrm{~g}, 13.4 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}(1.28 \mathrm{~g}$, 13.4 mmol) at room temperature. The mixture was vigorously stirred at room temperature until both the phases were clear, and was then cooled to $0^{\circ} \mathrm{C}$. A solution of p-allylanisole $9(2 \mathrm{~g}$, 13.4 mmol) in t-BuOH was added at $0^{\circ} \mathrm{C}$. The reaction was stirred at the same temperature for about 48 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ by the addition of solid sodium sulphite, warmed to rt and further stirred for 1 h at rt . The reaction mixture was extracted with EtOAc and the combined layers were washed with 2 N KOH solution, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography (using 40% EtOAc in hexanes) to afford $\mathbf{S 1}(1.84 \mathrm{~g}, 75 \%)$ as a white solid. $R_{\mathrm{f}}=0.6$ $\left(\mathrm{SiO}_{2}, 100 \%\right.$ EtOAc in hexanes); reported $[\alpha]_{\mathrm{D}}^{25}=+12.90(c=2$, $\left.\mathrm{CHCl}_{3}\right)$, observed $[\alpha]_{\mathrm{D}}^{26.30}=+5.495\left(c=1.8, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right)$: 3682, 3614, 3444, 2402, 1612, 1515, 1427, 1036, 927; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H})$, 3.53-3.47 (m, 1H), 2.80-2.63(m, 2H), 2.19 (br. s, 2 H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 158.5,130.4,129.7,114.2,73.3,66.2$, 55.4, 39.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 205.0835, found 205.0835.

(4R)-4-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-1,3-dioxolane (11)

To a solution of $\mathbf{S} \mathbf{1}(1.96 \mathrm{~g}, 10.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added 1-(dimethoxymethyl)-4-methoxybenzene ($2.93 \mathrm{~g}, 16.13 \mathrm{mmol}$) and PPTS $(270 \mathrm{mg}, 1.07 \mathrm{mmol})$ at rt . The resulting mixture was
stirred at rt for 5 h , and then the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and subjected to silica gel column chromatography (using 12\% EtOAc in hexanes) to afford 11 ($2.6 \mathrm{~g}, 76 \%$) as a white solid (mixture of diastereomers). TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}\right.$, 30% EtOAc/hexanes); FTIR (cm ${ }^{-1}$): 3425, 2973, 2402, 1622, 1516, 1430, 1299, 1078, 1037, 927; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right):$ δ 7.49-7.34 (m, 2H), 7.20-7.13 (m, 2H), 6.95-6.82 (m, 4H), 5.84 $(\mathrm{m}, 1 \mathrm{H}), 4.48-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.20-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.79(\mathrm{~m}$, 6H), 3.79-3.64 (m, 1H), 3.11-3.01 (m, 1H), 2.89-2.73 (m, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 160.4,158.5,130.6,130.3$, 129.3, 128.2, 127.9, 114.1, 113.9, 104.3, 103.5, 70.3, 69.6, 55.4, 39.2, 38.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 323.1254, found 323.1251.

(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxy-phenyl)propan-1-ol (S2)

To a solution of (4R)-4-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1,3-dioxolane (11) ($2.6 \mathrm{~g}, 8.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at $-78{ }^{\circ} \mathrm{C}$, DIBAL-H ($13.72 \mathrm{~mL}, 13.70 \mathrm{mmol}$) was added dropwise and the mixture was stirred for about 2 h . The reaction was monitored by TLC. After completion of the reaction, it was quenched with sodium potassium tartrate $\left(\mathrm{Na}^{+}-\mathrm{K}^{+}\right.$tartrate) and the reaction mass was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and filtered through Celite. The filtrate containing organic compound was filtered through $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the crude product was subjected to silica gel column chromatography (using 30% EtOAc in hexanes) to afford $\mathbf{S} 2(2.28 \mathrm{~g}$, $91 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes); $[\alpha]_{\mathrm{D}}^{26.30}=+2.93\left(c=1.3, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3417$, 1638, 1381, 1249, 1072, 805, 743; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ 7.21 (d, $J=8.46 \mathrm{~Hz}, 2 \mathrm{H}$), $7.13(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.80$ (m, 4H), 4.55-4.38 (m, 2H), 3.85-3.77 (m, 6H), 3.71-3.58 (m, $2 \mathrm{H}), 3.54-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.66(\mathrm{~m}, 1 \mathrm{H})$, 2.10 (br. s, 1 H$) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 159.3,158.2$, 130.4, 130.3, 129.5, 113.9, 80.7, 71.6, 63.7, 55.3, 36.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$325.1410, found 325.140.

(R)-2-((4-Methoxybenzyl)oxy)-3-(4-methoxy-phenyl)propanal (12)

To a solution of (R)-2-((4-methoxybenzyl)oxy)-3-(4-methoxyphe-nyl)propan-1-ol (S2) ($846 \mathrm{mg}, 2.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added Dess-Martin Periodinane (DMP) ($1.79 \mathrm{~g}, 4.22 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under an inert atmosphere. The reaction progress was monitored by TLC. After completion of the reaction, aqueous NaHCO_{3} and sodium thiosulphate $(1: 1)$ were added. Then, extracted with DCM using a separating funnel. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, and the crude product was subjected to silica gel column chromatography (using 15\% EtOAc in hexanes) to afford $12(712 \mathrm{mg}, 84 \%)$ as a colorless oil. TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}\right.$, 30% EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.23}=+4.36\left(c=1.2, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3686,3618,3455,2975,2402,1721,1603,1518,1426$, 1039, 927; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.64(\mathrm{~d}, J=1.98 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.72 \mathrm{~Hz}, 4 \mathrm{H}), 6.92-6.72(\mathrm{~m}, 4 \mathrm{H}), 4.58-4.35(\mathrm{~m}$, $2 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.07-2.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$

NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 203.6, 191.1, 142.1, 133.6, 132.2, 130.6, 129.8, 128.2, 114.5, 114.0, 84.2, 72.7, 55.7, 55.4, 36.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$323.1254, found 323.1249.

(2R,3R)-2-((4-Methoxybenzyl)oxy)-1-(4-methoxyphenyl)hex-5-ene-3-ol (7)

To a solution of aldehyde $12(500 \mathrm{mg}, 1.66 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ in a 100 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}, \mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(687 \mathrm{mg}$, 2.66 mmol) was added in one portion. After 10 min , allyltributyltin ($0.87 \mathrm{~mL}, 2.82 \mathrm{mmol}$) was added dropwise over 10 min . After completion of the addition, the reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$ and the reaction progress was monitored by TLC. After completion of the reaction it was quenched by aq. sat. NaHCO_{3}, the layers were separated, the aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum. The residue was purified by silica gel column chromatography (using 15% EtOAc in hexanes) to afford $7(456 \mathrm{mg}, 80 \%)$ as a colorless liquid. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $)$; $[\alpha]_{\mathrm{D}}^{25.23}=+4.49\left(c=1.9, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3680,3620,2975$, 2399, 1611, 1512, 1476, 1423, 1300, 1035, 928, 877, 849; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.76(\mathrm{~m}$, $5 \mathrm{H}), 5.95-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.18-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.23(\mathrm{~m}, 2 \mathrm{H})$, 3.82-3.78 (m, 6H), 3.57-3.40 (m, 2H), 2.97-2.74 (m, 2H), 2.36-2.15 (m, 3H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.4, 158.2, 135.0, 130.6, 130.3, 129.7, 129.7, 117.3, 113.9, 113.9, 82.0, 72.6, 71.5, 55.3, 38.5, 36.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 365.1723$, found 365.1728.

1-(3,4-Dimethoxyphenyl)prop-2-en-1-ol (8)

To a solution of aldehyde $\mathbf{1 0}(2 \mathrm{~g}, 12.0 \mathrm{mmol})$ in dry THF, vinyl magnesium bromide (1 M in THF, $14.44 \mathrm{~mL}, 14.4 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at the same temperature. After completion of the reaction, the reaction was quenched with sat. aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated, the aqueous layer was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$, the combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo and the crude product was purified by silica gel column chromatography (using 30\% EtOAc in hexanes) to afford $8(1.05 \mathrm{~g}, 47 \%)$ as a colorless liquid. TLC: R_{f} $=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3673,3490$, 2841, 2598, 2410, 2054, 1847, 1729, 1648, 1598, 1512, 1457, 1423, 1374, 1146, 1036, 928, 858; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.97-6.75 (m, 3H), 6.15-5.90 (m, 1H), 5.31 (d, $J=17.05 \mathrm{~Hz}$, 1H), $5.23-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.75(\mathrm{~m}, 6 \mathrm{H}), 2.28$ (br. s., 1H); ${ }^{13} \mathrm{C}$ $\{\mathrm{H}\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3,148.8,140.4,135.4,118.8$, 115.1, 111.2, 109.6, 75.2, 56.1, 56.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 217.0835$, found 217.0835.
(5R,6R,E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-2-ene-1,5-diol (6)
To a solution of $7(450 \mathrm{mg}, 2.33 \mathrm{mmol})$ and $8(100 \mathrm{mg}$, $0.292 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added the G-II generation
catalyst ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$) and the mixture was stirred at rt for 1 h . The solvent was evaporated in a vacuum and the residue was purified by silica gel column chromatography (using 40% EtOAc in hexanes) to afford $6(637 \mathrm{mg}, 95 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.8\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes $) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3685,3618,2974,2403,1674,1596,1516,1426,1149$, 1034, $927 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.20-7.12(\mathrm{~m}, 3 \mathrm{H})$, 7.09 (d, $J=3.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 6 \mathrm{H})$, 5.77-5.62 (m, 2H), $5.10(\mathrm{~d}, J=4.04 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.20(\mathrm{~m}, 2 \mathrm{H})$, 3.98-3.92 (m, 1H), 3.89 (br. s., 1H), 3.87 (s, 6H), 3.79 (s, 6H), 3.57-3.37 (m, 2H), 2.84 (dd, $J=2.78,5.81 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.24$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 159.5,158.4,149.3$, 148.6, 135.4, 130.6, 130.3, 129.9, 118.5, 114.0, 111.2, 109.5, 82.1, 74.9, 72.6, 56.0, 55.4, 36.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 531.2353$, found 531.2367.

(R)-1-(((4,4-Dibromo-1-(4-methoxyphenyl)but-3-en-2-yl)oxy) methyl)-4-methoxybenzene (S3)

To a solution of $\mathrm{CBr}_{4}(4.86 \mathrm{~g}, 14.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40{ }^{\circ} \mathrm{C}$, TPP ($(7.70 \mathrm{~g}, 29.3 \mathrm{mmol})$ dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) under an inert atmosphere was added. After stirring for 20 min , a cold solution of $12(1.47 \mathrm{~g}, 4.89 \mathrm{mmol})$ containing $\mathrm{Et}_{3} \mathrm{~N}(0.68 \mathrm{~mL}, 4.89 \mathrm{mmol})$ was added dropwise to the reaction mixture. The reaction was monitored by TLC. After completion of the reaction, $\mathrm{Et}_{3} \mathrm{~N}$ and MeOH were added successively at the same temperature, then the solvent was evaporated and diethyl ether was added, and then the reaction mass was filtered through a sintered funnel containing Celite. The filtrate was collected, concentrated and subjected to column chromatography (using 7\% EtOAc in hexanes) to afford S3 $\left(1.45 \mathrm{~g}, 65 \%\right.$ yield) as a white solid. TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); FTIR (cm^{-1}): 3685, 3619, 3453, 2975, 2402, 1608, 1518, 1427, 1049, 927; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ $7.23-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.91-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.43(\mathrm{~d}, J=8.34 \mathrm{~Hz}, 1 \mathrm{H})$, 4.51 (d, $J=11.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.13$ (m, 1H), 3.84-3.78 (m, 6H), 2.99-2.67 (m, 2H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 159.3,158.4,139.6,130.8,130.2,129.4$, 129.3, 113.8, 113.8, 91.4, 80.1, 70.9, 55.4, 40.0; HRMS (ESI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Br}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 478.9651$, found 478.9646 .

(R)-1-Methoxy-4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl) benzene (15)

To a solution of (R)-1-(((4,4-dibromo-1-(4-methoxyphenyl)but-3-en-2-yl)oxy)methyl)-4-methoxybenzene (S3) ($1.45 \mathrm{~g}, 3.17 \mathrm{mmol}$) in anhydrous tetrahydrofuran at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi (1.6 $\mathrm{M}, 4.3 \mathrm{~mL}, 6.99 \mathrm{mmol}$) dropwise at the same temperature. The reaction was monitored with TLC for about an hour. After the completion of the reaction, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction mass and this was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and subjected to silica gel column chromatography (using 10% EtOAc in hexanes) to afford 15 ($800 \mathrm{mg}, 98 \%$ yield) as a colorless oil. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{26.20}=+20.0(c=$ 1.4, CHCl_{3}); FTIR (cm^{-1}): 3685, 3415, 2927, 2402, 1610, 1516, 1428, 1036, 927; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 7.25-7.14(\mathrm{~m}$,

4H), 6.90-6.79 (m, 4H), 4.75 (d, $J=11.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (d, $J=$ $11.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dt}, J=2.02,6.82 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}$, $6 \mathrm{H}), 3.11-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=2.02 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 159.3,158.5,130.8,129.9,129.6,129.3$, 113.9, 113.7, 82.7, 74.7, 70.4, 69.5, 55.4, 55.3, 41.3; HRMS (ESI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 319.1305$, found 319.1302.

Ethyl(E)-4-(4-methoxyphenyl)but-2-enoate (17)

To a solution of Grubb's 2nd generation catalyst (21 mg , $0.03 \mathrm{mmol}) p$-allylanisole $9(500 \mathrm{mg}, 3.37 \mathrm{mmol})$ and ethyl acrylate ($0.71 \mathrm{~mL}, 6.74 \mathrm{mmol}$) were added simultaneously via a syringe. The resulting mixture was heated at $40^{\circ} \mathrm{C}$ until consumption of the starting material occurred as determined by TLC analysis. The reaction was cooled to rt, and concentrated and the residue was purified by column chromatography (using 10% EtOAc in hexanes) to afford 17 ($540 \mathrm{mg}, 73 \%$) as a colorless liquid. TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); FTIR $\left(\mathrm{cm}^{-1}\right): 3681,3427,2842,2403,1711,1651,1611,1513,1432$, 1376, 1037, 984, 926; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18-6.96$ $(\mathrm{m}, 3 \mathrm{H}), 6.91-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{td}, J=1.64,15.54 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17 (q, $J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.46$ (dd, $J=1.39,6.69$ $\mathrm{Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.07 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}): $\delta 166.2,158.2,147.6,132.1,132.0,131.4,131.3,129.6$, 129.4, 128.4, 128.3, 127.2, 121.8, 113.9, 113.7, 60.0, 54.9, 37.3, 14.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 243.0992, found 243.0990 .

(E)-4-(4-Methoxyphenyl)but-2-en-1-ol (S4)

To a solution of the corresponding ester $17(1.08 \mathrm{~g}, 4.9 \mathrm{mmol})$ in DCM (10 mL) at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1 M in toluene, $10.30 \mathrm{~mL}, 10.3 \mathrm{mmol}$) dropwise. The solution was stirred at this temperature until consumption of the starting material was observed by TLC, at which point the reaction was quenched by the careful addition of methanol. The reaction was allowed to warm to rt whereupon sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$tartrate and EtOAc were added and the mixture was stirred vigorously for 1 h . The phases were then separated and the aqueous phase was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic phases were combined, washed with sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$tartrate, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column chromatography (using 20\% EtOAc in hexanes) to afford S4 ($703 \mathrm{mg}, 80 \%$) as a colorless liquid. TLC: $R_{\mathrm{f}}=0.3\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes) FTIR (cm^{-1}): 3686, 3619, 3444, 2973, 2402, 1766, 1600, 1521, 1426, 1041, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(\mathrm{~d}, J=8.54 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.54 \mathrm{~Hz}, 2 \mathrm{H}), 5.88-5.77$ $(\mathrm{m}, 1 \mathrm{H}), 5.74-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.32$ (d, $J=6.10 \mathrm{~Hz}, 2 \mathrm{H}$), 1.79 (br. s, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1,132.2,132.0,130.1,129.6,114.0$, 63.5, 55.4, 37.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}$201.0886, found 201.0886.

((2R,3R)-3-(4-Methoxybenzyl)oxiran-2-yl)methanol (18)

To a stirred suspension of M.S. (4 $\AA, 2.0 \mathrm{~g})$ in anhydrous DCM $(5 \mathrm{~mL})$ was added (-)-DET $(0.09 \mathrm{~mL}, 0.561 \mathrm{mmol})$ and the
resulting mixture was cooled to $-25{ }^{\circ} \mathrm{C}$. To this $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$ $(0.24 \mathrm{~mL}, 0.084 \mathrm{mmol})$ and TBHP ($2.46 \mathrm{~mL}, 1.23 \mathrm{mmol}$) were added and the mixture was stirred at $-25{ }^{\circ} \mathrm{C}$ for 30 min . A solution of allylic alcohol S4 (1 g, 5.61 mmol$)$ in dry DCM was added to the above mixture and it was kept in a freezer at about $-25{ }^{\circ} \mathrm{C}$ for 18 h . Water was added to the reaction mixture and this was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of 10% aq. NaOH was then added and the mixture was warmed to rt for 1 h . The product was extracted with DCM $(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum and purified by silica gel column chromatography (using 25% EtOAc in hexanes) to afford 18 ($980 \mathrm{mg}, 82 \%$) as a colorless liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{25.27}=$ $+15.71\left(c=2.9, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3415,2404,1615,1515$, 1432, 1035, 927; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.15 (d, $J=8.39$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, 3 H), 3.66-3.59 (m, 1H), 3.17 (dt, $J=2.29,5.34 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{t}, J=6.10 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.6,130.1,129.0,114.1$, 61.6, 58.3, 56.2, 55.4, 37.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 217.0835$, found 217.083.

(2S,3R)-2-(Chloromethyl)-3-(4-methoxybenzyl)oxirane (19)

To a solution of epoxy alcohol $18(1.68 \mathrm{~g}, 8.64 \mathrm{mmol})$ in DCM, $\mathrm{CCl}_{4}(1.67 \mathrm{~mL}, 17.2 \mathrm{mmol})$ and triphenylphosphine (3.01 g , 14.9 mmol) were added at $0^{\circ} \mathrm{C}$ and the mixture was refluxed for 6 h . After completion of the reaction, the mixture was diluted with hexane and filtered through Celite. The filtrate was concentrated to give a residue which was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford $19(1.48 \mathrm{~g}, 80 \%)$ as a yellowish liquid. TLC: $R_{\mathrm{f}}=0.8$ $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{25.30}=+9.46\left(c=1.9, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3415, 2402, 1611, 1516, 1432, 1038, 928; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.80$ (s, 3H), 3.60-3.49 (m, 2H), 3.12-3.01 (m, 2H), 2.95-2.79 (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 158.6, 130.1, 128.6, 114.1, 59.2, 57.0, 55.4, 44.6, 36.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$213.0677, found 213.0679.

(R)-1-(4-Methoxyphenyl)but-3-yn-2-ol (S5)

To a solution of chloride $19(1.48 \mathrm{~g}, 6.97 \mathrm{mmol})$ in dry THF (20 mL), n-BuLi ($15.25 \mathrm{~mL}, 24.3 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 30 min . After completion of the reaction, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The organic phase was separated and the aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum, and the crude product was purified by silica gel column chromatography (using 12% EtOAc in hexanes) to afford $\mathbf{S 5}$ (1.05 g , $86 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes); $[\alpha]_{\mathrm{D}}^{25.32}=+3.50\left(c=2.9, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3683$, 3303, 2926, 2850, 2403, 1728, 1609, 1511, 1455, 1298, 1036, 925; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.81$ $(\mathrm{m}, 2 \mathrm{H}), 4.53$ (br. s, 1H), 3.79 (s, 3H), 3.03-2.88 (m, 2H), 2.49 (d, $J=1.83 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (br. s, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz ,
CDCl_{3}): δ 158.7, 130.9, 128.3, 114.0, 84.4, 73.9, 63.2, 55.3, 43.0; HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$199.0730, found 199.0727.

(R)-1-Methoxy-4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl) benzene (15)

To a suspension of $\mathrm{NaH}(0.1 \mathrm{~g}, 4.19 \mathrm{mmol})$ in DMF (2 mL) at $0^{\circ} \mathrm{C}$ was added a solution of alcohol $\mathbf{S} 5$ ($369 \mathrm{mg}, 2.09 \mathrm{mmol}$) in DMF (3 mL). After that the reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then PMBCl $(0.313 \mathrm{~mL}, 2.29 \mathrm{mmol})$ and TBAI $(43 \mathrm{mg}, 0.209 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 40 min at rt. After completion of the reaction saturated aqueous NaHCO_{3} was added at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered and the solvent was evaporated; then the crude product was purified by silica gel column chromatography (using 10% EtOAc in hexanes) to afford $15(510 \mathrm{mg}, 82 \%)$ as a yellow oil. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.19}=+22.10\left(c=1.4, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3684,3619,3454,3304,2964,2403,1612,1514,1456$, 1298, 1039, $928 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18$ (d, $J=8.39$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=8.39 \mathrm{~Hz}, 4 \mathrm{H}), 4.75$ (d, $J=11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dt}, J=$ $1.91,6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 6 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.48$ (d, $J=1.91 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.3$, 158.5, 130.8, 129.9, 129.6, 129.3, 113.9, 113.7, 82.7, 74.7, 70.4, 69.5, 55.4, 55.3, 41.3.

(S)-1-(3,4-Dimethoxyphenyl)but-3-en-1-ol (20)

To a 50 mL round-bottom flask, a mixture of (S)-BINOL $(861 \mathrm{mg}, 3.00 \mathrm{mmol}), 1.0 \mathrm{M} \mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}(3 \mathrm{~mL}, 3.00 \mathrm{mmol})$ in DCM and freshly activated $4 \AA$ MS powder in DCM was refluxed for 1 h . The red-brown mixture was cooled to rt and then aldehyde 10 ($5 \mathrm{~g}, 30.08 \mathrm{mmol}$) was added. After being stirred for 10 min the contents were cooled to $-78{ }^{\circ} \mathrm{C}$ and allyltributyltin ($10.95 \mathrm{~mL}, 33.08 \mathrm{mmol}$) was added. The reaction mixture was stirred for 10 min and then placed in a $-20{ }^{\circ} \mathrm{C}$ freezer. After 70 h , saturated $\mathrm{NaHCO}_{3}, 1.5 \mathrm{~mL}$, was then added and the contents were stirred for 1 h , dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (using 20\% EtOAc in hexanes) to afford $20(4.52 \mathrm{~g}, 72 \%)$ as a white solid. TLC: $R_{\mathrm{f}}=$ $0.5\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.07}=-4.13\left(c=0.3, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3686, 3616, 2974, 2402, 1599, 1517, 1426, 1146, 1036, 926, 860; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.93(\mathrm{~s}, 1 \mathrm{H})$, 6.91-6.82 (m, 2H), 5.96-5.67 (m, 1H), 5.19 (d, $J=7.96 \mathrm{~Hz}, 1 \mathrm{H})$, 5.12 (s, 1H), 4.69 (dt, $J=2.78,6.69 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88$ (s, 3H), $2.51(\mathrm{t}, J=6.95 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~d}, J=2.91 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\{\mathrm{H}\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.2,148.6,136.7,134.7,118.5$, 118.2, 111.1, 109.1, 73.3, 56.1, 56.0, 44.0; HRMS (ESI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$231.0992, found 231.0991.

(S)-tert-Butyl((1-(3,4-dimethoxyphenyl)but-3-en-1-yl)oxy) dimethylsilane (S6)

2,6-Lutidine ($2.97 \mathrm{~mL}, 25.58 \mathrm{mmol}$) was added to a solution of alcohol $20(3.6 \mathrm{~g}, 17.28 \mathrm{mmol})$ in dry $\mathrm{DCM}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$.

After 10 min TBSOTf ($3.97 \mathrm{~mL}, 17.28 \mathrm{mmol}$) was added and the reaction mixture was stirred for 20 min at this temperature. The reaction mixture was diluted with DCM and the organic layers were washed with water and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum. The crude product was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford $\mathbf{S 6}(4.5 \mathrm{~g}, 80 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=$ $0.5\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.11}=-34.53$ ($c=2.8$, CHCl_{3}); FTIR (cm^{-1}): 3775, 3685, 3619, 3456, 2966, 2402, 2358, 1600, 1516, 1466, 1425, 1148, 1079, 1037, 925; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.63$ $(\mathrm{m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=3.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=$ $5.43,7.07 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (m, 6H), 2.54-2.25 (m, 2H), 0.92-0.83 $(\mathrm{m}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.09-0.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \quad$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.8,148.0,138.1,135.5,118.1,116.9$, 110.6, 109.2, 74.9, 56.0, 55.9, 45.8, 26.0, 18.4, $-4.5,-4.8$; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$345.1856, found 345.1855.

(S)-3-((tert-Butyldimethylsilyl)oxy)-3-(3,4-dimethoxyphenyl)propanal (16)

To a solution of olefin $\mathbf{S 6}(1.29 \mathrm{~g}, 4.00 \mathrm{mmol})$ in THF: $\mathrm{H}_{2} \mathrm{O}$ (3:1, $7.5 \mathrm{~mL}: 2.5 \mathrm{~mL}$) were added 2,6-lutidine (1.86 mL , $16.02 \mathrm{mmol}), \mathrm{OsO}_{4}(0.02 \mathrm{~g}, 0.08 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(1.70 \mathrm{~g}$, 8.00 mmol). The reaction mixture was stirred for 2 h at rt . After completion of the reaction, the reaction was quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and then filtered through Celite using EtOAc. The filtrate was concentrated in a vacuum and the crude product was purified by silica gel column chromatography (using 10% EtOAc in hexanes) to afford the desired product 16 ($938 \mathrm{mg}, 73 \%$) as a yellowish liquid. TLC: $R_{\mathrm{f}}=0.6$ $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ; ~[\alpha]_{\mathrm{D}}^{26.13}=-32.98\left(c=0.2, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3683, 3615, 3433, 2976, 2402, 2357, 1637, 1520, 1426, 1041, 927 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.76$ (dd, $J=$ $2.13,2.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.76$ (m, 2H), 5.15 (dd, $J=4.13,8.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (s, 3H), 3.86 (s, 3H), 2.82 (ddd, $J=2.88,8.25,15.76 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (ddd, $J=2.00,4.13$, $15.76 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 201.5, 149.1, 148.4, 136.6, 117.8, 110.9, 108.8, 70.6, 56.0, 55.9, 54.2, 25.8, 18.2, $-4.5,-5.1$; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$347.1649, found 347.1645.
(1S,6R)-1-((tert-Butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-
(4-methoxyphenyl)hept-4-yn-3-ol (21)
To the alkyne 15 ($482 \mathrm{mg}, 1.62 \mathrm{mmol}$) in dry THF (5 mL), n-BuLi ($1.1 \mathrm{~g}, 1.78 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature. After that aldehyde $\mathbf{1 6}(263 \mathrm{mg}$, 0.81 mmol) was added in one shot and the reaction mixture was stirred for 2 h . After completion of the reaction, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and subjected to silica gel column chromatography to afford the desired product 21 ($650 \mathrm{mg}, 65 \%$) as a yellowish
liquid. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes; $[\alpha]_{\mathrm{D}}^{26.11}=+4.85$ ($c=3.7, \mathrm{CHCl}_{3}$); FTIR $\left(\mathrm{cm}^{-1}\right): 3685,3618,2972,2402,1604$, 1517, 1426, 1216, 1040, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.24-7.12 (m, 4H), 6.93-6.72 (m, 7H), 5.02 (ddd, $J=3.05, ~ 7.93$, $15.87 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.59$ (br. s., 1 H), 4.41 (d, $J=$ $11.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.10 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.84-3.74$ $(\mathrm{m}, 6 \mathrm{H}), 3.08-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.86(\mathrm{~m}$, $1 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 9 \mathrm{H}), 0.10-0.01(\mathrm{~m}, 3 \mathrm{H}),-0.15$ to $-0.23(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.3, 158.5, 149.0, $148.4,136.8,130.8,130.0,129.5,118.3,118.1,113.8,113.6$, $110.8,109.1,87.5,83.5,72.9,70.4,69.7,60.2,56.0,55.9,55.4$, 55.3, 48.6, 47.1, 46.9, 41.5, 25.9, 18.2, -4.3, -4.4, -4.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 643.3062$, found 643.3053.
(1S,6R,E)-1-((tert-Butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-ol (S7)
To a stirred solution of alcohol $21(50 \mathrm{mg}, 0.048 \mathrm{mmol})$ in dry THF, Red-Al ($0.031 \mathrm{~mL}, 0.161 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at the same temperature for 40 minutes. After completion of the reaction, it was quenched with sat. aq. Rochelle salt and the whole reaction mixture was stirred at rt for 30 min and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column chromatography using (10% EtOAc in hexanes) to afford $\mathbf{S 7}$ (30 mg , $60 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes). $[\alpha]_{\mathrm{D}}^{29.77}=-10.48\left(c=0.1, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3685$, 3619, 3461, 2971, 2402, 1728, 1604, 1515, 1426, 1040, 925; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29$ (d, $J=8.39 \mathrm{~Hz}, 1 \mathrm{H}$), $7.12-7.05$ (m, 3H), 6.91-6.87 (m, 1H), 6.82-6.75 (m, 6H), 5.69-5.52 (m, $2 \mathrm{H}), 4.90-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.43(\mathrm{~m}, 1 \mathrm{H})$, 4.37-4.29 (m, 1H), 4.25-4.19 (m, 1H), 3.89-3.87 (m, 6H), 3.81-3.76 (m, 6H), 2.89-2.81 (m, 1H), 2.74-2.66 (m, 1H), 2.01-1.74 (m, 2H), 1.69-1.63 (m, 1H), 0.93-0.89 (m, 9H), 0.09-0.05 (m, 3H), -0.10-0.14 (m, 1H), -0.22 (s, 2H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0,158.1,149.1,148.4,137.4$, $135.5,130.8,130.7,130.3,129.2,129.2,128.8,118.2,114.0$, $113.7,113.5,110.8,110.7,109.0,80.4,80.4,76.1,71.6,70.0$, 65.1, 56.0, 55.9, 55.4, 55.3, 55.3, 47.7, 41.7, 31.1, 25.9, 18.1, $-4.2,-4.5,-4.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+$ $\mathrm{Na}]^{+} 645.3218$ found 645.3210 .

(1S,6R,E)-1-((tert-Butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-mehoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-en-3-one (14)

To a stirred solution of alcohol $\mathbf{S} 7(104 \mathrm{mg}, 0.167 \mathrm{mmol})$ in dry DCM, DMP ($212 \mathrm{mg}, 0.501 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at the same temperature. After completion of the reaction, the reaction mixture was quenched with hypo solution (sat. aq. solution of NaHCO_{3} and sat. aq. solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)$) and the aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concen-
trated and the crude product was purified by silica gel column chromatography (using 10% EtOAc in hexanes) to afford 14 ($92 \mathrm{mg}, 89 \%$) as a yellow liquid. TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{28.93}=-12.33\left(c=1.6, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right)$: 3425, 2967, 2403, 1614, 1513, 1464, 1426, 1079, 1036, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.90(\mathrm{~m}$, 1H), 6.89-6.78 (m, 6H), 6.75-6.62 (m, 1H), 6.28-6.16 (m, 1H), 5.17 (ddd, $J=1.75,3.88,8.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.38$ (m, 1H), 4.26-4.19 (m, 1H), 4.13-4.04 (m, 1H), 3.82-3.91 (m, 6H), $3.82-3.76$ (m, 6H), 3.06 (dd, $J=8.76,14.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.81$ (m, 1H), 2.79-2.70 (m, 1H), 2.62 (dd, $J=4.13,14.76 \mathrm{~Hz}, 1 \mathrm{H})$, $0.91-0.76(\mathrm{~m}, 9 \mathrm{H}), 0.0$ to $-0.02(\mathrm{~m}, 3 \mathrm{H}),-0.11$ to -0.18 (m, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 198.6, 159.3, 158.4, 149.0 , 148.3, 146.6, 137.5, 131.2, 130.6, 130.1, 129.6, 129.4, 118.0, 113.9, 113.8, 110.8, 109.0, 79.3, 72.0, 71.1, 71.1, 56.0, 55.4, 55.4, 51.5, 41.0, 25.9, 18.3, -4.5, -5.0; HRMS (ESI): m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 643.3062$, found 643.3051 .
(1S,6R,E)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)-hept-4-en-3-one (22)
To the TBS-alcohol $\mathbf{1 4}$ ($77 \mathrm{mg}, 0.12 \mathrm{mmol}$), HF: MeCN (5:95, 4 mL) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 24 h . After completion of the reaction, the reaction mixture was quenched with sat. aq. NaHCO_{3}. Both aqueous and organic layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel chromatography (using 25% EtOAc in hexanes) to afford 22 ($46 \mathrm{mg}, 74 \%$) as a yellow viscous liquid. TLC: $R_{\mathrm{f}}=0.2$ $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) .[\alpha]_{\mathrm{D}}^{28.56}=+4.35\left(c=1.5, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3687, 3402, 1600, 1518, 1426, 1026, 922; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=1.75 \mathrm{~Hz}$, 1H), $6.91-6.79(\mathrm{~m}, 6 \mathrm{H}), 6.72$ (ddd, $J=1.75,6.00,16.01 \mathrm{~Hz}, 1 \mathrm{H})$, 6.20 (ddd, $J=1.13,3.13,16.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (dd, $J=2.75$, $8.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=1.88,11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.38$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 6 \mathrm{H}), 3.84-3.75$ (m, 6H), 3.41 (br. s, 1H), 3.01-2.85 (m, 3H), 2.76 (dd, $J=$ $6.00,13.88 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.2$, 159.4, 158.5, 149.3, 148.7, 147.5, 135.7, 130.6, 130.2, 130.0, $129.4,129.3,118.0,113.9,113.9,111.2,109.1,79.3,79.2$, 71.3, 70.0, 56.1, 56.0, 55.4, 55.4, 48.9, 48.8, 40.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$529.2197, found 529.2197.

(R,1E,4E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hepta-1,4-dien-3-one (24): (R,E)-5-((4-methoxybenzyl)oxy)-6-(4-methoxyphenyl)hex-3-en-2-one (25) and 3,4-dimethoxybenzaldehyde (10)

To the alcohol 22 ($46 \mathrm{mg}, 0.090 \mathrm{mmol}$) in EtOH at $0^{\circ} \mathrm{C}, \mathrm{KO}^{t} \mathrm{Bu}$ $(1.0 \mathrm{mg}, 0.013 \mathrm{mmol})$ in EtOH (2 mL) was added and the reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated in a vacuum, then sat. aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column
chromatography to afford 24 as a yellow liquid ($6 \mathrm{mg}, 13 \%$). TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 50 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=16.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.06(\mathrm{~m}, 5 \mathrm{H})$, 6.93-6.76 (m, 7H), $6.54(\mathrm{~d}, J=15.76 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.38$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.14(\mathrm{~m}, 1 \mathrm{H})$, 3.97-3.86 (m, 6H), 3.79 (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{dd}, J=7.25$, $13.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=5.88,13.76 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.1,159.4,158.4,151.6,149.4,145.9$, $144.0,130.8,130.2,129.7,129.4,129.1,127.8,123.4,123.3$, 113.9, 113.8, 111.2, 109.9, 79.7, 71.2, 56.2, 56.1, 55.4, 55.4, 41.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$489.2272, found 489.2273.

(R, E)-5-((4-Methoxybenzyl)oxy)-6-(4-methoxyphenyl)hex-3-en-2-

 one (25)Colorless oil ($18 \mathrm{mg}, 60 \%$); TLC $R_{\mathrm{f}}=0.7\left(\mathrm{SiO}_{2}, 50 \%\right.$ EtOAc/ hexanes); $[\alpha]_{\mathrm{D}}^{29.80}=+8.76\left(c=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): 7.15-7.04 (m, 4H), 6.88-6.79 (m, 4H), 6.65 (dd, $J=$ $6.38,16.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (dd, $J=1.13,16.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J$ $=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.00 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 2.92(\mathrm{dd}, J=7.25,13.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=$ $5.88,13.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz , CDCl_{3}): $\delta 198.5,159.4,158.5,146.7,131.3,130.7,130.1,129.4$, 129.4, 113.9, 113.9, 79.3, 71.2, 55.4, 55.4, 41.0, 27.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 363.1567$, found 363.1573.

3,4-Dimethoxybenzaldehyde (10)

Off white solid ($4 \mathrm{mg}, 26 \%$); TLC $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.85-9.82(\mathrm{~m}, 1 \mathrm{H})$, 7.47-7.42 (m, 1H), 7.41-7.37 (m, 1H), 7.00-6.93 (m, 1H), 3.97-3.94 (m, 3H), 3.93-3.90 (m, 3H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 191.0,154.6,149.7,130.2,127.0,110.5,109.0,56.3$, 56.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$167.0703, found 167.0703.

(1S,6R)-1-((tert-Butyldimethylsilyl)oxy)-1-(3,4-dimethoxyphenyl)-6-((4-methoxybenzyl)-oxy)-7-(4-methoxyphenyl)hept-4-yn-3-one (14a)

To the alcohol 21 ($395 \mathrm{mg}, 0.63 \mathrm{mmol}$) in dry DCM (5 mL), Dess-Martin periodinane (DMP) ($405 \mathrm{mg}, 0.95 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred for 1 h . After completion of the reaction, the reaction was quenched with hypo solution 1:1 (aq. NaHCO_{3} : aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$), extracted with DCM $(3 \times 5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, and the crude product was purified by silica gel column chromatography (using 12% EtOAc in hexanes) to afford $\mathbf{1 4 a}(395 \mathrm{mg}, 97 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes; $[\alpha]_{\mathrm{D}}^{26.12}=$ $+16.41\left(c=0.7, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3424,2974,2402,1622$, 1517, 1428, 1039, 927; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.13$ $(\mathrm{m}, 4 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.78(\mathrm{~m}, 6 \mathrm{H}), 5.17$ (ddd, $J=3.81$, $9.16,17.93 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.63,11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}$, $J=5.34,11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dt}, J=1.53,6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.09-2.94(\mathrm{~m}, 3 \mathrm{H})$, 2.69 (ddd, $J=3.81,7.25,14.88 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-0.83(\mathrm{~m}, 9 \mathrm{H}), 0.02$ (d, $J=10.68 \mathrm{~Hz}, 3 \mathrm{H}),-0.16(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 3 \mathrm{H})) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR
(126 MHz, CDCl_{3}): 185.2, 159.5, 158.7, 149.1, 148.5, 136.7, $130.8,129.7,129.3$, 128.6, 118.1, 114.0, 113.9, 110.9, 109.0, 91.0, 86.0, 71.4, 71.0, 69.7, 69.5, 56.8, 56.0, 56.0, 55.4, 55.4, 40.7, 31.7, 25.9, -4.5, -5.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$641.2905, found 641.2895.

(1S,6R)-1-(3,4-Dimethoxyphenyl)-1-hydroxy-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-4-yn-3-one (22a)

To the TBS-alcohol 14a ($50 \mathrm{mg}, 0.08 \mathrm{mmol}$), HF : MeCN (5:95, 2 mL) was added and stirred at $0^{\circ} \mathrm{C}$ until the starting material was completely consumed (24 h). After completion of the reaction, the reaction was quenched with sat. aq. NaHCO_{3}, extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography (using 30% EtOAc in hexanes) to afford 22a ($31 \mathrm{mg}, 77 \%$) as a yellow liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes; $[\alpha]_{\mathrm{D}}^{26.13}=$ $+16.97\left(c=1.6, \mathrm{CHCl}_{3}\right)$. FTIR $\left(\mathrm{cm}^{-1}\right): 3686,3618,3444,2974$, 2403, 1605, 1518, 1427, 1039, 927; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}$, $1 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 6 \mathrm{H}), 5.13(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $11.83 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.49 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 3 \mathrm{H})$, 3.09-2.94 (m, 3H), 2.91-2.84 (m, 1H), 2.76 (br. s., 1 H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.2,159.5,158.8,149.3,148.8$, 135.1, 130.8, 129.7, 129.2, 128.4, 118.0, 114.0, 113.8, 111.2, 109.0, 92.1, 85.3, 71.2, 69.7, 69.5, 56.1, 56.0, 55.4, 55.3, 54.3, 40.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 527.2040, found 527.2045.
(S)-2-(3,4-Dimethoxyphenyl)-6-((R)-1-((4-methoxybenzyl)oxy)-2-(4-methoxyphenyl)ethyl)-2,3-dihydro-4H-pyran-4-one (23a), and (S,E)-5-(3,4-dimethoxyphenyl)-2-((R)-2-((4-methoxybenzyl) oxy)-3-(4-methoxyphenyl)propylidene)dihydrofuran-3(2H)-one (26)

AuCl (1.0 mg) was taken in DCM in a 10 mL round-bottom flask, then activated molecular sieves were added to this and the mixture was stirred for 15 min . Then hydroxy-ynone 22a ($11 \mathrm{mg}, 0.021 \mathrm{mmol}$) in DCM was added to the AuCl mixture dropwise, NaHCO_{3} was added to the reaction mixture and the mixture was stirred for 1 h at rt . After completion of the reaction, the mixture was filtered through Celite, the filtrate was concentrated, and the crude product was purified by silica gel column chromatography (using 30\% EtOAc in hexanes) to afford the inseparable mixture of 23a and $26(10 \mathrm{mg}, 90 \%)$ as a yellow oil. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.12}=$ $-2.31\left(c=0.6, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3686,3620,3455,2975$, 2403, 1600, 1521, 1427, 1041, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.86-6.78(\mathrm{~m}, 5 \mathrm{H}), 5.66(\mathrm{~d}, J=$ $15.57 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (dd, $J=3.66,13.28 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (dd, $J=$ $2.75,14.20 \mathrm{~Hz}, 1 \mathrm{H}$), 4.51 (dd, $J=11.45,16.49 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39-4.23 (m, 1H), 4.09-4.00 (m, 1H), 3.93-3.86 (m, 7H), $3.81-3.76(\mathrm{~m}, 6 \mathrm{H}), 3.02-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.54 (m, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 192.9, 192.7, 176.4, 175.4, 159.4, 158.5, 149.6, 149.3, 130.6, 130.5, 130.2 , 129.5, 129.1, 119.1, 119.1, 113.9, 113.8, 111.2, 109.8, 109.6, 104.1, 104.0, 81.1, 79.8, 79.7, 71.9, 71.8, 56.1, 55.4, 55.3,
42.8, 42.6, 39.9, 39.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{7}[\mathrm{M}+$ $\mathrm{H}]^{+} 505.2221$, found 505.2217.

(R, E)-1-(3,4-Dimethoxyphenyl)-6-((4-methoxybenzyl)oxy)-7-(4-methoxyphenyl)hept-1-en-4-yn-3-one (24a)

To the solution of alcohol 22 a ($40 \mathrm{mg}, 0.079 \mathrm{mmol}$), NaH ($1 \mathrm{mg}, 0.079 \mathrm{mmol}, 55-60 \%$ in mineral oil) was added in one portion at $0^{\circ} \mathrm{C}$. The reaction was stirred for 15 min . After completion of the reaction, it was quenched with water and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography (using 15% EtOAc in hexanes) to afford 24 a ($30.4 \mathrm{mg}, 78 \%$) as a yellow viscous liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc in hexanes); FTIR (cm^{-1}): 3433, 2974, 2402, 2361, 2104, 1630, $1518,1427,1340,1040,927 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48$ (d, $J=16.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{dd}, J=1.88,8.25$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~d}, J$ $=16.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.51$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=6.63,13.76 \mathrm{~Hz}, 1 \mathrm{H})$, 3.06 (dd, $J=7.00,13.63 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz , CDCl_{3}): $\delta 177.9,159.5,158.7,152.2,149.5,149.2,130.9,129.8$, $129.4,128.6,127.1,126.6,123.9,114.0,113.9,111.2$, 110.1, 90.9, 84.2, 71.1, 69.8, 56.2, 56.1, 55.4, 55.3, 40.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 487.2115$, found 487.2132.

4-Allylphenol (S8)

Allyl anisole ($5 \mathrm{~g}, 33.7 \mathrm{mmol}$) was dissolved in DCM (50 mL) and $\mathrm{BBr}_{3}(3.52 \mathrm{~mL}, 37.1 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for 1 h at the same temperature. After completion of the reaction, it was quenched with water and extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (using 8\% EtOAc in hexanes) to afford 4 -allylphenol ($\mathbf{S 8}$) ($4.3 \mathrm{~g}, 95 \%$) as a colorless liquid. TLC: $R_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/hexanes); FTIR (cm^{-1}): 3944, 3687, 3583, 2986, 2685, 2521, 2410, 2304, 1605, 1546, 1512, 1428, 1171, 995, 898; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.11-7.03(\mathrm{~m}$, 2H), 6.86-6.72 (m, 2H), 6.07-5.89 (m, 1H), 5.42 (br. s., 1H), 5.16-5.03 (m, 2H), 3.34 (d, $J=6.63 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 153.8,138.0,132.4,129.8,115.6,115.4$, 39.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$135.0804, found 135.0809.

(4-Allylphenoxy)(tert-butyl)dimethylsilane (9a)

To the allyphenol S8 ($4.3 \mathrm{~g}, 32.0 \mathrm{mmol}$) in dry DCM, (tertbutyl)dimethylsilylchloride ($5.79 \mathrm{~g}, 38 \mathrm{mmol}$) and imidazole $(4.35 \mathrm{~g}, 64 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred overnight. After completion of the reaction, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (using 3\% EtOAc in hexanes) to afford 9a $(6.5 \mathrm{~g}, 82 \%)$ as a colorless liquid. TLC: $R_{\mathrm{f}}=0.8\left(\mathrm{SiO}_{2}\right.$,

20\% EtOAc/hexanes); FTIR (cm ${ }^{-1}$): 3685, 3620, 2940, 2894, 2861, 2403, 1887, 1609, 1511, 1446, 1426, 1258, 1101, 1043, 915, 834; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.08-7.01(\mathrm{~m}, 2 \mathrm{H})$, 6.83-6.73 (m, 2H), 6.03-5.89 (m, 1H), 5.12-5.01 (m, 2H), 3.33 (d, $J=6.63 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 154.0,138.1,132.8,129.6,120.1,115.5$, 39.6, 25.9, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 249.1669$, found 249.1670 .

Ethyl-(E)-4-(4-((tert-butyldimethylsilyl)oxy)phenyl)but-2-enoate (17a)

To a solution of Grubb's 2nd generation catalyst (123 mg , 0.1 mmol (4-allylphenoxy)(tert-butyl)dimethylsilane (9a) $(4.89 \mathrm{~g}, 19.7 \mathrm{mmol})$ and ethyl acrylate ($4.33 \mathrm{~mL}, 39.4 \mathrm{mmol}$) were added simultaneously via a syringe. The resulting mixture was heated at $40^{\circ} \mathrm{C}$ until consumption of the starting material occurred as determined by TLC analysis. The reaction was cooled to rt, and concentrated and the residue was purified by column chromatography (using 10% EtOAc in hexanes) to afford $17 \mathrm{a}(4.88 \mathrm{~g}, 77 \%)$ as a yellowish liquid. TLC: $R_{\mathrm{f}}=0.6$ ($\mathrm{SiO}_{2}, 20 \%$ EtOAc/hexanes); FTIR (cm^{-1}): 3531, 2985, 2481, 2254, 2090, 2015, 1887, 1742, 1561, 1449, 1374, 1232, 1165, 1099, 1046, 914, 847; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.07$ (d, $J=$ $15.51 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.73$ (m, 2H), 5.78 (td, J $=1.75,15.63 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=$ $1.50,6.88 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.13 \mathrm{~Hz}, 4 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 166.8,154.5,147.9$, 130.4, 129.9, 122.2, 120.4, 60.4, 37.9, 25.8, 18.3, 14.4, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$343.1700, found 343.1709.

(E)-4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)but-2-en-1-ol (S4a)

To a solution of the corresponding ester $\mathbf{1 7 a}(4.88 \mathrm{~g}$, 15.2 mmol) in DCM at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1 M in toluene, $12.99 \mathrm{~mL}, 22.8 \mathrm{mmol}$) dropwise. The solution was stirred at this temperature until consumption of the starting material was observed by TLC, at which point the reaction was quenched by the careful addition of methanol. The reaction mixture was allowed to warm to rt, whereupon sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$ tartrate and EtOAc were added and the mixture was stirred vigorously for 1 h . The phases were then separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic phases were combined, washed with sat. aq. $\mathrm{Na}^{+}-\mathrm{K}^{+}$ tartrate, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column chromatography (using 20\% EtOAc in hexanes) to afford S4a ($3.2 \mathrm{~g}, 75 \%$) as a yellow liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc/hexanes); FTIR $\left(\mathrm{cm}^{-1}\right): 3944,3424,3056,2987$, 2685, 2522, 2410, 2304, 1764, 1640, 1552, 1427, 1263, 1159, 1055, 901; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): ~ \delta 7.08-6.98(\mathrm{~m}, 2 \mathrm{H})$, $6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.61(\mathrm{~m}, 1 \mathrm{H})$, 4.17-4.09 (m, 2H), $3.31(\mathrm{~d}, J=6.50 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$, $0.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 154.1,132.7$, 132.2, 130.1, 129.6, 120.1, 63.7, 38.0, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$279.1775, found 279.1773.

((2R,3R)-3-(4-((tert-Butyldimethylsilyl)oxy)benzyl)oxiran-2-yl) methanol (18a)

To a stirred suspension of M.S. ($4 \AA, 10 \mathrm{~g}$) in anhydrous DCM (20 mL) was added (-)-DET ($0.27 \mathrm{~mL}, 1.59 \mathrm{mmol}$), then the suspension was cooled to $-25{ }^{\circ} \mathrm{C}$. To this $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$ $(0.70 \mathrm{~mL}, 2.39 \mathrm{mmol})$ and TBHP (5 M in DCM, 7.02 mL , 35.1 mmol) were added and the mixture was stirred at $-25^{\circ} \mathrm{C}$ for 30 min . A solution of allylic alcohol S4a (4.45 g, 15.97 mmol) in dry DCM was added to the above mixture and it was kept in a freezer at about $-25^{\circ} \mathrm{C}$ for 18 h . Water was added to the reaction mixture, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of $10 \% \mathrm{aq}$. NaOH was then added and the mixture was warmed to rt for 1 h . The product was extracted with DCM $(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum and purified by silica gel column chromatography using (20% EtOAc in hexanes) to afford $18 \mathrm{a}(4.53 \mathrm{~g}, 96 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, 40% EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.49}=+15.31\left(c=2.1, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3434,2964,2865,2403,2361,2086,1763,1614,1513$, 1471, 1425, 1257, 1216, 1043, 917, 838; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.12-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.84$ $(\mathrm{m}, 1 \mathrm{H}), 3.68-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=2.25,5.50 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{t}, J=6.25 \mathrm{~Hz}, 1 \mathrm{H})$, $0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta$ 154.6, 130.0, 129.7, 120.3, 61.6, 58.3, 56.2, 37.2, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$295.1724, found 295.1716.

tert-Butyl(4-(((2R,3S)-3-(chloromethyl)oxiran-2-yl)methyl) phenoxy)dimethylsilane (19a)

To a solution of epoxy alcohol $18 \mathrm{a}(5 \mathrm{~g}, 17.9 \mathrm{mmol})$ in DCM $(50 \mathrm{~mL}), \mathrm{CCl}_{4}(3.47 \mathrm{~mL}, 35.9 \mathrm{mmol})$ and triphenylphosphine $(6.57 \mathrm{~g}, 25.06 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$ and the mixture was then refluxed for 6 h . After completion of the reaction, the mixture was diluted with hexane and filtered through Celite. The filtrate was concentrated to give a residue which was purified by silica gel column chromatography (using 3\% EtOAc in hexanes) to afford $19 \mathrm{a}(4.01 \mathrm{~g}, 71 \%)$ as a yellow liquid. TLC: R_{f} $=0.6\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $; ~[\alpha]_{\mathrm{D}}^{26.51}=+22.24(c=1.4$, CHCl_{3}); FTIR (cm^{-1}): 3679, 3426, 2971, 2402, 2361, 2096, 1764, 1640, 1516, 1478, 1426, 1043, 921; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$ $\delta 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.49(\mathrm{~m}, 2 \mathrm{H})$, 3.13-3.02 (m, 2H), 2.96-2.74 (m, 2H), 0.98 (s, 9H), 0.19 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 154.7,130.3,130.1,129.3$, 120.5, 120.3, 59.3, 57.1, 44.7, 37.1, 25.8, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{ClSi}[\mathrm{M}+\mathrm{H}]^{+} 313.1385$, found 313.1385 .

(R)-1-(4-((tert-Butyldimethylsilyl)oxy)phenyl)but-3-yn-2-ol (S5a)

To a solution of chloride $19 \mathrm{a}(4 \mathrm{~g}, 12.7 \mathrm{mmol})$ in dry THF, n-BuLi (2.5 M in hexane, $17.78 \mathrm{~mL}, 44.7 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 30 min after completion of the reaction; the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The organic phase was separated and the aqueous phase was
extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum and the crude product was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford S5a $(3.2 \mathrm{~g}, 91 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes); $[\alpha]_{\mathrm{D}}^{26.20}=+1.87\left(c=1.2, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3685$, 3615, 3305, 2965, 2893, 2402, 1606, 1513, 1473, 1426, 1257, 1216, 1041, 919; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.06-7.12$ (m, 2H), 6.81-6.77 (m, 2H), $4.54(\mathrm{dq}, J=1.91,6.10 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=1.91 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=5.72$ $\mathrm{Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 154.9,130.9,128.9,120.2$, 84.4, 73.8, 63.2, 43.2, 25.8, 18.3, -4.3; HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+$ $\mathrm{H}]^{+}$277.1618, found 277.1618.

(R)-tert-Butyl(4-(2-((4-methoxybenzyl)oxy)but-3-yn-1-yl) phenoxy)dimethylsilane (15a)

PMB-TCAI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added via a cannula to a solution of $(R)-1-(4-(($ tert-butyldimethyl-silyl $)$ oxy $)$ phenyl)but-3-yn-2-ol S5a ($3.421 \mathrm{~g}, 10.87 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$ under N_{2} at room temperature. PPTS (856 mg , 3.372 mmol) was then added and the resultant mixture was stirred for 17 h . After the addition of a saturated solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, the phases were separated and the organic layer was washed with brine (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography (using 5\% EtOAc in hexanes) to afford $\mathbf{1 5 a}(3.0 \mathrm{~g}, 84 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.7\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.51}=+17.0(c=2.6$, CHCl_{3}); FTIR (cm^{-1}): 3425, 2976, 2402, 1640, 1519, 1427, 1041, 927; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.18(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (d, $J=$ $8.39 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=11.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.44 \mathrm{~Hz}$, 1 H), 4.19 (dt, $J=1.53,6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.91(\mathrm{~m}$, $2 \mathrm{H}), 2.47(\mathrm{~d}, J=2.29 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 159.3,154.5,130.7$, 130.0, 129.9, 129.6, 119.8, 113.8, 82.7, 74.6, 70.4, 69.4, 55.4, 41.5, 25.8, 18.3, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$397.2193, found 397.2193.

4-Formyl-2-methoxyphenyl-4-methylbenzenesulfonate (10a)

To a stirred solution of vanillin ($5 \mathrm{~g}, 32.86 \mathrm{mmol}$) in DCM at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($4.5 \mathrm{~mL}, 32.86 \mathrm{mmol}$) followed by p-toluene sulphonylchloride ($6.26 \mathrm{~g}, 32.86 \mathrm{mmol}$); then the reaction temperature was raised to $25{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . The reaction mixture was diluted with 1 N HCl and the layers were separated. The organic layer was further washed with 1 N HCl followed by sat. aq. NaHCO_{3} and brine. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (using 8% EtOAc in hexanes) to afford $\mathbf{1 0 a}(9.2 \mathrm{~g}, 91 \%)$ as a white solid. TLC: $R_{\mathrm{f}}=0.7 \mathrm{SiO}_{2}, 20 \%$ EtOAc/hexanes; FTIR (cm^{-1}): 3859, 3425, 2926, 2856, 1694, 1502, 1379, 1276, 1214, 1103, 1035, 855; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.01$ Hz, 2H), $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 3.62$
$(\mathrm{s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.9$, 152.7, 145.6, 143.1, 135.9, 133.0, 129.6, 128.7, 124.6, 124.4, 111.2, 55.9, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 307.0635$, found 307.0634.

4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4methylbenzenesulphonate (S9)

To a solution of aldehyde $10 \mathrm{a}(9.2 \mathrm{~g}, 30.2 \mathrm{mmol})$ in dry THF (100 mL), allyl magnesium chloride (2 M in THF, 22.71 mL , 45.4 mmol) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at the same temperature. After completion of the reaction, the reaction was quenched with a sat. aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum and the crude product was purified by silica gel column chromatography (using 15\% EtOAc in hexanes) to afford S9 (10 g, 95\%) as a colorless oil. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes, FTIR (cm^{-1}): 3434, 2971, 2927, 2860, 2403, 2068, 1640, 1606, 1507, 1460, 1372, 1273, 1104, 1039, 927, 854; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10$ (d, $J=8.26 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}$, $1 \mathrm{H}), 5.85-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=4.75$, $8.00 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, 2.43-2.35 (m, 1H), 2.12-2.06 (br. s, 1H); ${ }^{13} \mathrm{C}\{\mathrm{H}\} \quad$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.9,145.1,144.2,137.6,134.2,133.4$, 129.5, 128.7, 123.9, 119.0, 117.9, 110.1, 72.8, 55.7, 44.1, 21.8.

4-(But-3-enoyl)-2-methoxyphenyl-4-methylbenzenesulfonate (28)
To the allyl alcohol S9 ($10 \mathrm{~g}, 28.7 \mathrm{mmol}$) in dry DCM (100 mL) at $0^{\circ} \mathrm{C}$, DMP $(18.26 \mathrm{~g}, 43.0 \mathrm{mmol})$ was added and the reaction mixture was stirred up until the starting material was completely consumed (1 h). After completion of the reaction, the reaction was quenched with hypo solution (1:1 ratio of sat. NaHCO_{3} and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$) and the aqueous layer was extracted with DCM $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the crude product was purified by silica gel column (using 15\% EtOAc in hexanes) chromatography to afford $28(8.1 \mathrm{~g}, 81 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, 30% EtOAc/hexanes), FTIR (cm^{-1}): 3680, 3517, 2970, 2928, 2858, 2625, 2405, 1917, 1674, 1596, 1502, 1455, 1409, 1374, 1281, 1167, 1119, 1032, 962, 914, 847; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.74(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=1.75,8.25 \mathrm{~Hz}$, 1H), $7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $8.26 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.16(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=$ $6.75 \mathrm{~Hz}, 2 \mathrm{H}$), $3.60(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz , CDCl_{3}): $\delta 196.9,152.2,145.5,142.2,136.2,133.1,130.8,129.6$, 128.7, 124.1, 121.5, 119.1, 112.0, 55.8, 43.5, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 347.0948$, found 347.0948.

(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4methylbenzenesulphonate (20a)

(R)-CBS ($23.40 \mathrm{~mL}, 23.4 \mathrm{mmol}$) reagent was added to a solution of $\mathrm{BH}_{3}-\mathrm{Me}_{2} \mathrm{~S}(2.21 \mathrm{~mL}, 23.4 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$, stirred
for 15 min at rt, and then cooled to $-20^{\circ} \mathrm{C}$. After that a solution of 4 -(but-3-enoyl)-2-methoxyphenyl-4-methylbenzenesulfonate 28 ($8.1 \mathrm{~g}, 23.4 \mathrm{mmol}$) in dry THF (60 mL) was added to this dropwise. Then the reaction mixture was stirred for 2 h at the same temperature, quenched with MeOH and warmed to rt for 1 h . Then the solvent was removed in a vacuum and the crude product was purified by silica gel column chromatography (using 15\% EtOAc in hexanes) to afford 20a ($8 \mathrm{~g}, 98 \%$) as a colorless oil. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc/hexanes); reported $[\alpha]_{\mathrm{D}}^{25}=+17.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$ for (\boldsymbol{R}) 20a, observed $[\alpha]_{\mathrm{D}}^{26.27}=-11.038\left(c=2.3, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right)$: 3433, 2976, 2402, 2361, 2100, 1640, 1515, 1423, 1376, 1084, 1041, 926, 850; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76-7.69$ (m, $2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (d, $J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=$ $1.88 \mathrm{~Hz}, 1 \mathrm{H}$), 6.86-6.77 (m, 1H), 5.82-5.70 (m, 1H), 5.18-5.08 (m, 2H), 4.67 (dd, $J=4.75,7.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (br. s, 1H); ${ }^{13} \mathrm{C}$ $\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.9,145.1,144.2,137.6,134.2$, 133.4, 129.5, 128.7, 123.9, 119.0, 117.9, 110.1, 72.8, 55.7, 44.1, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$349.1104, found 349.1320.

(S)-4-(1-Hydroxybut-3-en-1-yl)-2-methoxyphenyl-4methylbenzenesulphonate (20a)

To a stirred solution of oven-dried MS $4 \AA$ in DCM under a N_{2} atmosphere was added S-BINOL ($953 \mathrm{mg}, 3.32 \mathrm{mmol}$), a 1.0 M solution of $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}(1.66 \mathrm{~mL}, 1.66 \mathrm{mmol})$ in DCM and a freshly prepared 1 M solution of TFA $(0.09 \mathrm{~mL}$, 0.099 mmol) in DCM. The reaction mixture was heated under reflux for a period of 3 h and then cooled to rt, and a solution of tosyl aldehyde 10 a ($5.1 \mathrm{~g}, 16.64 \mathrm{mmol}$) in DCM was added to the reaction mixture, which was stirred for 0.5 h at rt and then cooled to $-78{ }^{\circ} \mathrm{C}$. Allyltributyltin (7.16 mL , 21.64 mmol) was slowly added and the reaction mixture was stirred for an additional 10 min at $-78^{\circ} \mathrm{C}$ and then kept in a $-20{ }^{\circ} \mathrm{C}$ freezer. After 4 d , the reaction mixture was filtered through a pad of Celite into a 500 mL flask, then it was treated with sat. aq. NaHCO_{3} solution, the resulting mixture was stirred for 1 h and then the layers were separated. The aq. layer was extracted with DCM. The combined layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by silica gel column chromatography to afford $20 \mathrm{a}(3.97 \mathrm{~g}, 68 \%)$ as a colorless oil. TLC: $R_{\mathrm{f}}=$ $0.4\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{25.89}=-13.50(c=2.2$, CHCl_{3}); FTIR (cm^{-1}): 3607, 3434, 3019, 2403, 2360, 2067, 1638, 1608, 1508, 1461, 1419, 1376, 1123, 1085, 1041, 938, 853; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}$, 1H), 6.86-6.80 (m, 1H), 5.82-5.72 (m, 1H), 5.18-5.11 (m, 2H), 4.68 (dd, $J=4.96,7.63 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.18$ (br. s, 1 H$) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.9,145.1,144.2,137.6,134.2$, 133.4, 129.4, 128.7, 123.9, 118.9, 117.9, 110.2, 72.8, 55.7, 44.0, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$ 371.0924 , found 371.0923 .
(S)-4-(1-((tert-Butyldimethylsilyl)oxy)but-3-en-1-yl)-2-methoxyphenyl-4-methylbenzene sulphonate (S6a)

To a solution of (S)-4-(1-hydroxybut-3-en-1-yl)-2-methoxyphe-nyl-4-methyl-benzenesulphonate 20a ($8 \mathrm{~g}, 22.96 \mathrm{mmol}$) in dry DCM (50 mL), imidazole ($2.34 \mathrm{~g}, 34.44 \mathrm{mmol}$) and DMAP ($280 \mathrm{mg}, 2.29 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 min . After that TBSCl (3.97 g, 26.4 mmol) was added to this reaction mixture and it was stirred for 24 h . After completion of the reaction it was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with DCM $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum and the crude product was purified with silica gel column chromatography to afford S6a ($10 \mathrm{~g}, 94 \%$) as a colorless oil. TLC: $R_{\mathrm{f}}=0.8\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc/hexanes; $[\alpha]_{\mathrm{D}}^{26.26}=-25.92(c=$ 2.6, CHCl_{3}); FTIR (cm^{-1}): 3426, 2937, 2860, 2403, 1640, 1604, 1504, 1462, 1418, 1370, 1088, 1039, 925, 845; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.39$ $\mathrm{Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=1.53,8.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}$, 2 H), 4.62 (dd, $J=5.34,7.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, 2.40-2.29 (m, 2H), $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5,145.6,145.0,137.2,134.8$, 133.1, 129.2, 128.8, 123.5, 117.9, 117.3, 110.1, 74.5, 55.5, 45.4, 25.9, 21.7, 18.3, $-4.6,-4.8$; HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{NaSSi}[\mathrm{M}+\mathrm{Na}]^{+} 485.1788$, found 485.2017.

(S)-4-(1-((tert-Butyldimethylsilyl)oxy)-3-oxopropyl)-2-methoxyphenyl-4-methylbenzene sulfonate (16a)

To a solution of (S)-4-(1-((tert-butyldimethylsilyl)oxy)but-3-en-1-yl)-2-methoxyphenyl-4-methylbenzene sulphonate S6a (10 g, 21.6 mmol) in 30 mL of acetone: water ($3: 1,45 \mathrm{~mL}: 5 \mathrm{~mL}$) were added $\mathrm{OsO}_{4}(54 \mathrm{mg}, 2.16 \mathrm{mmol})$ and NMO ($5.52 \mathrm{~g}(50 \%$ solution), 25.9 mmol) at rt and the mixture was stirred for 5 h . After that the solvent was evaporated and the residue was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in a vacuum. To a solution of the above crude diol in 20 mL of THF : water ($4: 1$), $\mathrm{NaIO}_{4}(9.21 \mathrm{~g}, 43.2 \mathrm{mmol})$ was added and the reaction mixture was stirred 1 h at rt ; then the solid was removed by filtration, and the filtrate was extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in a vacuum. The crude aldehyde was purified by silica gel column chromatography to afford 16a $(6.4 \mathrm{~g}, 64 \%)$ as a colorless oil. TLC: $R_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes); $[\alpha]_{\mathrm{D}}^{26.27}=-39.398\left(c=3.7, \mathrm{CHCl}_{3}\right) ; \operatorname{FTIR}\left(\mathrm{cm}^{-1}\right): 3425$, 2942, 2859, 2403, 1719, 1672, 1605, 1505, 1462, 1417, 1372, 1263, 1096, 1037, 933, 847; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.74$ (dd, $J=1.88,2.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=4.13,8.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$, 2.80 (ddd, $J=2.63,8.13,15.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ (ddd, $J=1.75,4.00$, $16.01 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 200.8,151.9,145.1,144.3$, 137.6, 133.1, 129.4, 128.8, 124.1, 117.7, 110.0, 70.2, 55.6, 54.0,
25.8, 21.8, 18.1, -4.6, -5.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 465.1762$, found 465.3765 .

4-((1S,6R)-1-((tert-Butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)oxy)phenyl)-3-hydroxy-6-((4-methoxybenzyl) oxy)hept-4-yn-1-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (21a)

To the alkyne 15a ($2.76 \mathrm{~g}, 6.95 \mathrm{mmol}$) in dry THF (20 mL), LiHMDS (1.0 M in THF, 9.75 mL , 9.7 mmol) was added at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at the same temperature. After that aldehyde $16 \mathrm{a}(3.23 \mathrm{~g}, 6.97 \mathrm{mmol})$ was added in one shot and the reaction mixture was stirred for 2 h . After completion of the reaction, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and subjected to silica gel column chromatography (using 15% EtOAc in hexanes) to afford 21a $(3.9 \mathrm{~g}, 65 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes); $[\alpha]_{\mathrm{D}}^{26.26}=-4.74\left(c=2.6, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3684$, 3615, 2968, 2403, 1730, 1599, 1413, 1468, 1424, 1374, 1085, 1040, 922; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H})$, $6.84-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=3.15,8.83 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.78(\mathrm{dd}, J=4.10,9.46,0.5 \mathrm{H}), 4.69(\mathrm{dd}, J=5.67,11.66 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=2.21,11.66 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26-4.19 (m, 1H), 3.81-3.79 (m, 3H), 3.52-3.48 (m, 3H), $3.02-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 4 \mathrm{H}), 0.05(\mathrm{~d}, J=16.71 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$, -0.19-0.25 (m, 3H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 163.4, 159.3, 154.5, 151.9, 145.1, 144.9, 144.8, 137.7, 137.6, 133.3, 130.7, $130.2,130.1,130.0,129.5,129.4,128.9,124.0,119.9,118.1,118.0$, 114.1, 113.9, 110.2, 91.9, 87.2, 87.0, 84.4, 83.9, 73.4, 72.3, 70.5, 69.7, 65.3, 61.1, 59.8, 55.6, 55.4, 48.5, 47.2, 41.7, 25.9, 25.9, 21.8, 18.4, 18.2, $-4.3,-4.4,-4.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{65} \mathrm{O}_{9} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{H}]^{+}$861.3882, found 861.3925.

4-((1S,6R)-1-((tert-Butyldimethylsilyl)oxy)-7-(4-((tert-butyldimethylsilyl)oxy)phenyl)-6-((4-methoxybenzyl)oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (14b)

To the alcohol 21a ($1.6 \mathrm{~g}, 1.8 \mathrm{mmol}$) in dry DCM (15 mL), DMP $(1.18 \mathrm{~g}, 2.7 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . After completion of the reaction, the reaction was quenched with hypo solution 1:1 (saturated aq. NaHCO_{3} : saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$), extracted with DCM (3 \times 15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated and the crude product was purified by silica gel column chromatography (using 10% EtOAc in hexanes) to afford the desired product $14 \mathrm{~b}(1.2 \mathrm{~g}, 75 \%)$ as a yellow viscous liquid. TLC: $R_{\mathrm{f}}=$ $0.6\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) ; ~[\alpha]_{\mathrm{D}}^{26.26}=+1.69\left(c=2.5, \mathrm{CHCl}_{3}\right)$; FTIR (cm^{-1}): 3681, 3613, 3409, 2973, 2402, 2360, 1729, 1612, 1516, 1425, 1042, $926 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75-7.68$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.71(\mathrm{~m}$, $6 \mathrm{H}), 5.18(\mathrm{dd}, J=3.88,9.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.65(\mathrm{~m}, 1 \mathrm{H})$, 4.43-4.37 (m, 1H), 4.35-4.30 (m, 1H), 3.81-3.77 (m, 3H), $3.54-3.50(\mathrm{~m}, 3 \mathrm{H}), 3.07-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.43$ $(\mathrm{s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.05-0.01(\mathrm{~m}$,

3H), -0.15 to $-0.20(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 184.6, 159.5, 154.8, 151.9, 145.1, 144.3, 137.7, 133.2, 130.7, $129.6,129.4,129.2,129.2,128.8$, 124.0, 120.0, 117.9, 113.9, 110.1, 91.4, 85.7, 71.1, 71.0, 69.5, 56.4, 55.6, 55.4, 40.8, 25.8, 21.8, 18.3, 18.2, $-4.3,-4.5,-5.0$; HRMS (ESI): m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{NaSSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$881.3545, found 881.3540.

4-((1S,6R)-1-Hydroxy-7-(4-hydroxyphenyl)-6-((4-methoxybenzyl) oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl
4-methylbenzenesulfonate (29) and 4-((1S, $6 R)-7-(4-(($ tert-butyldimethylsilyl)oxy)phenyl)-1-hydroxy-6-((4-methoxybenzyl)-oxy)-3-oxohept-4-yn-1-yl)-2-methoxyphenyl
4-methylbenzenesulfonate (30)
To the TBS-keto intermediate $\mathbf{1 4 b}$ ($248 \mathrm{mg}, 0.28 \mathrm{mmol}$), HF: MeCN ($5: 95,6 \mathrm{~mL}$) was added and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ up until the starting material was completely consumed. After completion of the reaction, the reaction was quenched with sat. aq. NaHCO_{3}, extracted with EtOAc ($3 \times$ 5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and subjected to column chromatography to afford 29 and 30.

29: yellow liquid ($88 \mathrm{mg}, 48 \%$); TLC: $R_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{26.22}=+24.531\left(c=0.2, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right)$: 3685, 3617, 3444, 2975, 2928, 2402, 1603, 1519, 1426, 1041, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30$ $(\mathrm{m}, J=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.90$ (d, $J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=1.81,8.32$ $\mathrm{Hz}, 1 \mathrm{H}), 6.7-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.88 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39-4.33 (m, 1H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 1 \mathrm{H})$, 2.98-2.89 (m, 2H), 2.87-2.80 (m, 2H), $2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 186.0,159.6,155.0,152.2,145.3,142.7\right.$, $137.8,133.4,131.0,129.7,129.6,129.1,128.7,128.2,124.1$, 117.7, 115.3, 114.0, 110.2, 93.1, 85.3, 71.3, 69.6, 69.3, 55.8, 55.4, 54.5, 40.6, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{O}_{9} \mathrm{NaS}$ $[\mathrm{M}+\mathrm{Na}]^{+} 653.1816$, found 653.1830 .

30: yellow liquid ($68 \mathrm{mg}, 31 \%$); TLC: $R_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{26.25}=+5.11\left(c=0.5, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{cm}^{-1}\right):$ 3425, 2976, 2402, 2359, 1640, 1520, 1426, 1041, 927; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.88$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}$, $3 \mathrm{H}), 6.90(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.74(\mathrm{~m}$, $2 \mathrm{H}), 5.18-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $11.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.63 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.00$ (m, 1H), 2.99-2.96 (m, 1H), 2.92-2.88 (m, 2H), $2.44(\mathrm{~s}, 3 \mathrm{H})$, 0.97 (s, 9H), 0.17 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 186.0, 159.6, 154.8, 152.1, 145.1, 142.5, 137.9, 133.5, 131.1, 130.7, 129.7, 129.6, 129.5, 129.2, 129.0, 128.7, 124.1, 120.1, 117.7, 115.0, 114.0, 113.9, 110.2, 92.6, 71.3, 69.5, 69.3, 55.8, 55.4, 54.2, 40.8, 25.8, 21.8, 18.3, -4.3; HRMS (ESI): m/z calcd for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{O}_{9} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 745.2861$, found 745.2863.

4-((S)-6-((R)-2-(4-Hydroxyphenyl)-1-((4-methoxybenzyl)oxy) ethyl)-4-oxo-3,4-dihydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (31)

To the hydroxy-ynone $29(25 \mathrm{mg} \mathrm{g}, 0.03 \mathrm{mmol})$ in dry DCM $(2 \mathrm{~mL})$, AgOTf $(1.0 \mathrm{mg}, 0.003 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and the
mixture was stirred at the same temperature for 24 h . After completion of the reaction, the reaction was quenched with brine, extracted with DCM ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in a vacuum and the crude product was purified by silica gel column chromatography (using 30% EtOAc in hexanes) to afford 31 ($21 \mathrm{mg}, 87 \%$) as a yellow liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}, 60 \%\right.$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{26.20}=+8.20(c=$ 2.7, CHCl_{3}); FTIR (cm^{-1}): 3414, 2988, 2307, 1641, 1430, 1266, 1219, 1024, 897; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.77$ (m, 2H), 7.36-7.30 (m, 2H), 7.16-7.10 (m, 3H), 7.05-6.98 (m, 2H), 6.86-6.80 (m, 3H), 6.80-6.77 (m, 1H), 6.75-6.68 (m, 2H), 5.68-5.63 (m, 1H), $5.30(\mathrm{dd}, J=4.13,13.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.01$ $(\mathrm{m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.51 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{t}, J=6.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 3 \mathrm{H})$, $3.00-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\{\mathrm{H}\}$ NMR ($\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.1,175.3,159.5,154.7$, 152.3, 145.4, 138.7, 138.1, 133.5, 130.8, 129.6, 129.6, 129.4, 128.9, 128.7, 124.4, 118.4, 115.3, 114.0, 110.7, 104.3, 80.4, 79.7, 72.0, 55.9, 55.5, 42.8, 39.7, 21.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$631.1996, found 631.1995.

4-((S)-6-((R)-2-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-((4-methoxybenzyl)oxy)ethyl)-4-oxo-3,4-dihydro-2H-pyran-2-yl)-2-methoxyphenyl-4-methylbenzenesulfonate (32)

To the hydroxyl-ynone 30 ($116 \mathrm{mg}, 0.155 \mathrm{mmol}$) in dry DCM $(4 \mathrm{~mL})$, AgOTf ($3 \mathrm{mg}, 0.0015 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 24 h at the same temperature. After completion of the reaction, brine was added to the reaction mixture and the reaction mixture was extracted with DCM $(3 \times$ 5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in a vacuum and the crude product was purified by silica gel column chromatography (using 20\% EtOAc in hexanes) to afford $32(87 \mathrm{mg}, 75 \%)$ as a yellow liquid. TLC: $R_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, 40% EtOAc $/$ hexanes $) ;[\alpha]_{\mathrm{D}}^{26.22}=+7.15\left(c=0.9, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{cm}^{-1}\right): 3686,3619,3457,2972,2928,2402,1721,1602,1519$, 1426, 1041, $927 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.75$ (m, 2H), 7.37-7.29 (m, 2H), 7.19-7.07 (m, 3H), 7.06-7.00 (m, 2H), 6.87-6.78 (m, 4H), 6.78-6.70 (m, 2H), 5.67-5.61 (m, 1H), 5.31 (dd, $J=4.10,13.24 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (d, $J=11.35 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (d, J $=11.35 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, 3.03-2.89 (m, 2H), 2.76-2.64 (m, 1H), 2.64-2.54 (m, 1H), 2.51-2.43 (m, 3H), 0.98 (s, 9H), 0.18 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.9,175.1,159.5,154.7,152.3,145.3$, 138.8, 138.2, 133.6, 130.6, 129.6, 129.5, 128.7, 124.4, 120.1, $118.4,114.0,110.6,104.5,80.5,79.8,72.0,55.9,55.4,43.0$, 39.7, 25.8, 21.9, 18.4, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{O}_{9} \mathrm{NaSSi}[\mathrm{M}+\mathrm{Na}]^{+} 767.2681$, found 767.2701.

4-((2S,6R)-6-((R)-1-Hydroxy-2-(4-hydroxyphenyl)ethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (S 10)

To the dihydropyranone 31 ($89 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry ethyl acetate (4 mL), Pd/C ($40 \mathrm{mg}, 10 \%$ wet weight) was added and the reaction mixture was stirred overnight under a hydrogen atmosphere. After completion of the reaction, the mixture was filtered through Celite and the resulting filtrate was concen-
trated in a vacuum. The crude product was purified by silica gel column chromatography (using 50% ethyl acetate in hexane) to afford $\mathbf{S 1 0}$ ($50 \mathrm{mg}, 69 \%$) as an amorphous solid. TLC: $R_{\mathrm{f}}=0.3\left(\mathrm{SiO}_{2}, 60 \%\right.$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{24.29}=-17.64(c=$ $0.8, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3687, 3599, 2927, 2402, 1600, 1519, 1426, 1022, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{~d}, J=8.38$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=8.51 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.38 \mathrm{~Hz}$, 2H), 4.95 (br. s., 1H), 4.58 (dd, $J=2.75,11.51 \mathrm{~Hz}, 1 \mathrm{H})$, 3.82-3.75 (m, 2H), 3.73-3.66 (m, 1H), 3.62 (s, 3H), 2.89 (dd, $J=$ $5.88,14.01 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.66(\mathrm{~m}, 2 \mathrm{H})$, 2.64-2.59 (m, 1H), 2.56-2.50 (m, 1H), $2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (101 MHz, CDCl_{3}): δ 206.0, 154.6, 152.2, 145.3, 140.6, 138.2, 133.5, 130.6, 129.7, 129.6, 129.5, 128.7, 124.3, 117.8, 115.6, 110.2, 78.4, 78.2, 74.5, 55.9, 49.4, 43.9, 38.8, 21.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$535.1397, found 535.1392.

4-((2S,6R)-6-((R)-2-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-hydroxyethyl)-4-oxotetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (S 11)

To the dihydropyranone $32(18 \mathrm{mg}, 0.0241 \mathrm{mmol})$ in dry ethyl acetate, $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ was added and the reaction mixture was stirred overnight under a hydrogen atmosphere. After completion of the reaction, the mixture was filtered through Celite and the resulting filtrate was concentrated in a vacuum. The crude product was purified by silica gel column chromatography using 50% ethyl acetate in hexanes to afford $\mathbf{S 1 1}$ ($11 \mathrm{mg}, 73 \%$) as an amorphous solid. TLC: $R_{\mathrm{f}}=0.3\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{26.32}=-24.18\left(c=0.7, \mathrm{CHCl}_{3}\right)$; $\operatorname{FTIR}\left(\mathrm{cm}^{-1}\right)$: 3411, 3157, 2858, 2256, 1802, 1603, 1468, 1381, 1266, 1166, 1097, 908; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{~d}, J=8.39 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.59$ (dd, $J=3.05,11.44 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (br. s, 1H), $3.71-3.66$ (m, 1H), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.66$ (m, 2H), 2.66-2.58 (m, 1H), 2.57-2.51 (m, 1H), 2.47-2.45 (m, 3 H), 2.43-2.37 (m, 1H), 2.22 (br. s, 1H), 0.97 (s, 9H), 0.18 (s, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ((101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 206.1,154.6,152.2$, $145.2,140.6,138.2,133.5,130.4,130.0,129.6,128.7,124.3$, 120.3, 117.8, 110.1, 78.2, 78.2, 74.6, 58.7, 55.9, 49.3, 43.9, 38.9, 25.8, 21.9, 18.6, 18.3, 1.2, 0.1, -4.3; HRMS (ESI): m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{NaSSi}[\mathrm{M}+\mathrm{Na}]^{+}$649.2262, found 649.2269.

4-((2S,4R,6R)-6-((R)-2-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-hydroxyethyl)-4-hydroxytetrahydro-2H-pyran-2-yl)-2methoxyphenyl 4-methylbenzenesulfonate (34)

To a stirred solution of tetra-hydro-pyranone S11 (12 mg, 0.019 mmol) in THF at $-78{ }^{\circ} \mathrm{C}$ was added LS-selectride $(0.02 \mathrm{~mL}, 0.021 \mathrm{mmol})$. The reaction mixture was stirred for 1 h at the same temperature. After completion of the reaction it was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to rt. The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$; the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum and the crude product was purified by
silica gel column chromatography (using 70\% EtOAc in hexanes) to afford $34(8.5 \mathrm{mg}, 70 \%)$ as a thick liquid. TLC: $R_{\mathrm{f}}=$ $0.3\left(\mathrm{SiO}_{2}, 70 \% \mathrm{EtOAc} / \mathrm{hexanes}\right) ;[\alpha]_{\mathrm{D}}^{23.96}=-22.12$ ($c=0.8$, CHCl_{3}); FTIR (cm^{-1}): 3687, 2928, 2402, 2358, 2255, 1599, 1518, 1426, 1024, 911; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77$ (d, $J=8.39$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 3 \mathrm{H})$, 6.88-6.84 (m, 2H), $6.76(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=1.53$, $11.83 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40-4.35 (m, 1H), 3.88 (ddd, $J=1.91,4.96$, $11.83 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{q}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{dd}, J$ $=5.34,13.73 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=8.01,14.11 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, 3H), 1.93-1.87 (m, 1H), 1.85-1.77 (m, 2H), 1.70-1.65 (m, 2H), 0.97 (s, 9H), 0.18 (s, 6H); ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.3, 151.9, 145.1, 143.0, 137.6, 133.6, 130.4, 129.5, 128.8, 123.9, 120.1, 117.9, 110.4, 75.2, 73.9, 73.3, 64.7, 55.8, 40.7, 38.8, 34.5, 25.8, 21.8, 18.6, 1.2, -4.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{NaSSi}[\mathrm{M}+\mathrm{Na}]^{+} 651.2418$, found 651.2418.

4-((2S,4R,6R)-4-Hydroxy-6-((R)-1-hydroxy-2-(4-hydroxyphenyl) ethyl)tetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (35)

To a stirred solution of tetrahydro-pyranone $\mathbf{S 1 0}$ (15 mg , 0.02 mmol) in THF at $-78{ }^{\circ} \mathrm{C}$, LS-selectride (0.03 mL , 0.03 mmol) was added dropwise. Then the reaction was stirred for 1 h at the same temperature. After completion of the reaction it was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to rt. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$); the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum and the crude product was purified by silica gel column chromatography (using 70\% EtOAc in hexanes) to afford 35 ($12 \mathrm{mg}, 80 \%$) as a colorless thick liquid. TLC: $R_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}^{25.22}=-15.45(c=$ $0.3, \mathrm{CHCl}_{3}$); FTIR (cm^{-1}): 3687, 2402, 1600, 1519, 1426, 1022, 927; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.70$ (m, 2H), 4.82 (dd, $J=1.88,11.76 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=2.75 \mathrm{~Hz}$, 1 H), 3.88 (ddd, $J=2.25,4.88,11.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.59-3.55$ (m, 3H), 2.85 (dd, $J=5.38,13.88 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dd, J $=7.75,13.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.4, 151.9, 145.1, 142.9, 137.6, 133.5, 130.6, 130.2, 129.5, 128.7, 123.9, 117.9, 115.5, 110.4, 75.2, 73.9, 73.3, 64.7, 55.8, 40.6, 38.7, 34.5, 21.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{NaS}$ $[\mathrm{M}+\mathrm{Na}]^{+} 537.1554$, found 537.1563 .

4-((2S,4R,6R)-4-Hydroxy-6-((R)-1-hydroxy-2-(4-hydroxyphenyl) ethyl)tetrahydro-2H-pyran-2-yl)-2-methoxyphenyl 4-methylbenzenesulfonate (35)
To a solution of benzenesulfonate $34(15 \mathrm{mg}, 0.023 \mathrm{mmol})$ in dry THF at $0^{\circ} \mathrm{C}$, TBAF ($0.02 \mathrm{~mL}, 0.028 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred for 30 min at the same temperature. The reaction was monitored by TLC and after completion of the reaction, it was quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$); the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and con-
centrated in a vacuum and the crude product was purified by silica gel column chromatography (using 70\% EtOAc in hexanes) to afford $35(7 \mathrm{mg}, 87 \%)$ as a colorless thick liquid. TLC: $R_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}, 60 \%\right.$ EtOAc/hexanes $) ;$ FTIR $\left(\mathrm{cm}^{-1}\right): 3686$, 3425, 2402, 1611, 1519, 1426, 1023, 927, 672; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75(\mathrm{~d}, J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.13$ Hz, 2H), 7.12-7.06 (m, 3H), 6.87-6.83 (m, 2H), 6.77-6.72 (m, $2 \mathrm{H}), 4.82$ (dd, $J=1.88,11.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.35(\mathrm{~m}, 1 \mathrm{H})$, 4.14-4.09 (m, 1H), 3.88-3.83 (m, 1H), 3.60-3.57 (m, 3H), 2.90-2.82 (m, 1H), 2.78-2.70 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.86$ (m, 1H), 1.85-1.78 (m, 1H), 1.72-1.65 (m, 2H).

ent-Rhoiptelol B (3a)

To a solution of $35(9 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(12 \mathrm{mg}, 0.08 \mathrm{mmol})$ and the mixture was heated under reflux for 2 h . After completion of the reaction, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and acidified with 1 N HCl until the pH of the solution reached 2 . The combined aqueous $/ \mathrm{MeOH}$ solution was extracted with ethyl acetate $(3 \times$ 3 mL). The organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in a vacuum. The crude product was purified by silica gel column chromatography (using 70\% EtOAc in hexanes) to obtain ent-rhoiptelol (3a) as an amorphous solid ($4.6 \mathrm{mg}, 76 \%$). TLC: $R_{\mathrm{f}}=0.3\left(\mathrm{SiO}_{2}, 70 \%\right.$ EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{26.63}=-81.04(c=0.1, \mathrm{MeOH}) ;$ FTIR $\left(\mathrm{cm}^{-1}\right)$: 3687, 2968, 2402, 1722, 1520, 1427, 1025, 927, 672; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=$ $1.88,8.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 2 \mathrm{H})$, $4.69(\mathrm{dd}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H})$, 3.82-3.79 (m, 1H), 3.60-3.57 (m, 1H), 2.89 (dd, $J=7.00,13.66$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71$ (dd, $J=7.25,13.26 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=2.88 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.54(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ 156.6, 148.8, 146.7, 136.2, 131.4, 131.2, 129.9, 119.9, 116.0, 115.8, 111.1, 76.4, 75.2, 74.3, 65.7, 56.4, 49.8, 49.6, 49.4, 49.2, 48.8, 48.6, 48.4, 41.3, 39.7, 34.9; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 383.1465, found 383.1462.

Author contributions

R. K. conceived the project and directed the research work. P. K. and R. N. carried out the synthetic experiments, analyzed data, and prepared the ESI. \dagger All authors commented on the manuscript and the ESI. \dagger

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Financial support from SERB (Science \& Engineering Research Board), New Delhi, India (Grant No. YSS/2015/000725) is grate-
fully acknowledged. P. K. thanks UGC India, for the award of Senior Research Fellowships (SRF).

Notes and references

1 (a) K. Tabata, Y. Yamazaki, M. Okada, K. Fukumura, A. Shimada, Y. Sun, K. Yasukawa and T. Suzuki, Anticancer Res., 2009, 29, 4981-4988; (b) H. Matsuda, S. Ando, T. Kato, T. Morikawa and M. Yoshikawa, Bioorg. Med. Chem., 2006, 14, 138-142; (c) N. X. Nhiem, P. V. Kiem, C. V. Minh, N. Kim, S. Park, H. Y. Lee, E. S. Kim, Y. H. Kim, S. Kim, Y.-S. Koh and S. H. Kim, J. Nat. Prod., 2013, 76, 495-502;
(d) M. Masullo, V. Cantone, A. Cerulli, G. Lauro, F. Messano, G. L. Russo, C. Pizza, G. Bifulco and S. Piacente, J. Nat. Prod., 2015, 78, 2975-2982; (e) G. Ganapathy, R. Preethi, J. A. Moses and C. Anandharamakrishnan, Biocatal. Agric. Biotechnol., 2019, 19, 101-109; (f) J.-S. Zhang, X.-X. Cao, J.-H. Yu, Z.-P. Yu and H. Zhang, Bioorg. Med. Chem. Lett., 2020, 30, 127026; (g) K. Akiyama, H. Kikuzaki, T. Aoki, A. Okuda, N. H. Lajis and N. Nakatani, J. Nat. Prod., 2006, 69, 1637-1640.
2 (a) Y. Jahng and J. G. Park, Molecules, 2018, 23, 3107; (b) Á. Alberti, E. Riethmüller and S. Béni, J. Pharm. Biomed. Anal., 2018, 147, 13-34.
3 (a) S. Chandrasekhar, S. Jaya Prakash and T. Shyamsunder, Tetrahedron Lett., 2005, 46, 6651-6653; (b) X. Tian, J. J. Jaber and S. D. Rychnovsky, J. Org. Chem., 2006, 71, 3176-3183; (c) G. Kumaraswamy, G. Ramakrishna, P. Naresh, B. Jagadeesh and B. Sridhar, J. Org. Chem., 2009, 74, 8468-8847; (d) C. R. Reddy, N. N. Rao and B. Srikanth, Eur. J. Org. Chem., 2010, 345-351; (e) H. Fuwa, K. Kenkichi Noto and M. Sasaki, Heterocycles, 2010, 82, 641-647; (f) J.-H. Xie, L.-C. Guo, X.-H. Yang, L.-X. Wang and Q.-L. Zhou, Org. Lett., 2012, 14, 4758-4761; (g) K. Nakata, T. Tokumaru, H. Iwamoto, Y. Nishigaichi and I. Shiina, Asian J. Org. Chem., 2013, 2, 920-922; (h) K. Sudarshan and I. K. Aidhen, Eur. J. Org. Chem., 2013, 2298-2302; (i) N. Tanaka, H. Takamura and I. Kadota, Heterocycles, 2018, 97, 1157-1164.
4 Y.-S. Lin, J.-H. Lin, C.-H. Chang and S.-S. Lee, J. Nat. Prod., 2015, 78, 181-187.
5 Z. Li and R. Tong, J. Org. Chem., 2017, 82, 1127-1135.
6 (a) D. A. Kambale, S. S. Thorat, M. S. Pratapure, R. G. Gonnade and R. Kontham, Chem. Commun., 2017, 53, 6641-6644; (b) S. S. Thorat, P. Kataria and R. Kontham, Org. Lett., 2018, 20, 872-875; (c) S. S. Thorat, M. N. Palange and R. Kontham, ACS Omega, 2018, 3, 7036-7045; (d) B. R. Borade, R. Dixit and R. Kontham, Org. Lett., 2020, 22, 8561-8565.
7 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeong, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu and X.-L. Zhang, J. Org. Chem., 1992, 57, 2768-2771.
8 A. S. Reddy, P. Gangadhar and P. Srihari, Tetrahedron: Asymmetry, 2013, 24, 1524-1530.

9 Z. Zhang, Y. Chen, A.-A. Daniel, A. A. Okumu, N. T. Kenton and C. J. Forsyth, Org. Lett., 2016, 18, 1824-1827.
10 (a) B. V. S. Reddy, R. N. Rao, B. Kumaraswamy and J. S. Yadav, Tetrahedron Lett., 2014, 55, 4590-4592; (b) A. Yajima, Y. Iizuka, R. Katsuta and T. Nukada, Tetrahedron Lett., 2016, 57, 2012-2015.
11 K. C. Nicolaou, W. E. Brenzovich, P. G. Bulgera and T. M. Francisa, Org. Biomol. Chem., 2006, 4, 2119-2157.

12 S. Hanessian, T. Focken and R. Oza, Tetrahedron, 2011, 67, 9870-9884.
13 (a) D. M. Miles-Barrett, A. R. Neal, C. Hand, J. R. D. Montgomery, I. Panovic, O. S. Ojo, C. S. Lancefield, D. B. Cordes, A. M. Z. Slawin, T. Lebl and N. J. Westwood, Org. Biomol. Chem., 2016, 14, 10023-10030; (b) T. Linder, R. Liu, A. G. Atanasov, Y. Li, S. Geyrhofer, S. Schwaiger, H. Stuppner, M. Schnurch, V. M. Dirsch and M. D. Mihovilovic, Chem. Sci., 2019, 10, 5815-5820.

14 T. Maruyama, M. Asada, T. Shiraishi, H. Yoshida, T. Maruyama, S. Ohuchida, H. Nakai, K. Kondo and M. Toda, Bioorg. Med. Chem., 2002, 10, 1743-1759.

15 A. K. Ghosh, G. E. Schiltz, L. N. Rusere, H. L. Osswald, D. E. Walters, M. Amanoc and H. Mitsuya, Org. Biomol. Chem., 2014, 12, 6842-6854.
16 (a) Y. Kiyotsuka, Y. Katayama, H. P. Acharya, T. Tomonori Hyodo and Y. Kobayashi, J. Org. Chem., 2009, 74, 19391951; (b) S. Takano, K. Samizu, T. Sugihara and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1989, 13441345.

17 I. Shiina, Y. Umezaki, N. Kuroda, T. Iizumi, S. Nagai and T. Katoh, J. Org. Chem., 2012, 77, 4885-4490.

18 S. C. K. Rotte, A. G. Chittiboyina and I. A. Khan, Eur. J. Org. Chem., 2013, 6355-6360.
19 (a) C. J. Wilkinson, E. J. Frost, J. Staunton and P. F. Leadlay, Chem. Biol., 2001, 8, 1197-1208; (b) Y. Tian, J. Wang, W. Liu, X. Yuan, Y. Tang, J. Li, Y. Chen and W. Zhang, J. Mol. Struct., 2019, 1181, 568-578.

20 S. Padakanti, B. R. Sreekanth, V. Mahendar, M. Pal, K. Mukkanti, J. Iqbal and P. Das, Synlett, 2008, 2417-2420.

21 D. V. Reddy, G. Sabitha, T. P. Rao and J. S. Yadav, Org. Lett., 2016, 18, 4202-4205.
22 (a) T. J. Greshock, D. M. Johns, Y. Noguchi and R. M. Williams, Org. Lett., 2008, 10, 613-616; (b) Y. Hayashi, H. Yama-guchi, M. Toyoshima, S. Nasu, K. Ochiai and M. Shoji, Organometallics, 2008, 27, 163-165; (c) N. Kojima, S. Nishijima, K. Tsuge and T. Tanaka, Org. Biomol. Chem., 2011, 9, 4425-4428.
23 (a) J.-A. Funel and J. Prunet, J. Org. Chem., 2004, 69, 45554558; (b) I. Paterson and P. A. Craw, Tetrahedron Lett., 1989, 30, 5799-5802.
24 (a) C. Schneider and A. Schuffenhauer, Eur. J. Org. Chem., 2000, 73-82; (b) R. W. Bates and K. Palani, Tetrahedron Lett., 2008, 49, 2832-2834; (c) A. Vakalopoulos and H. M. R. Hoffmann, Org. Lett., 2001, 3, 177-180; (d) H. Lee, K. W. Kim, J. Park, H. Kim, S. Kim, D. Kim, X. Hu, W. Yang and J. Hong, Angew. Chem., Int. Ed., 2008, 47, 4200-4203; (e) M. Reiter, H. Turner and V. Gouverneur, Chem. - Eur. J.,

2006, 12, 7190-7203; (f) H. Yao, J. Ren and R. Tong, Chem. Comтun., 2013, 49, 193-195; (g) S. Athe and S. Ghosh, Synthesis, 2016, 917-923; (h) F. Silva, M. Reiter, R. MillsWebb, M. Sawicki, D. Klär, N. Bensel, A. Wagner and V. Gouverneur, J. Org. Chem., 2006, 71, 8390-8394.

25 (a) W.-Y. Huang, T. Nishikawa and A. Nakazaki, ACS Omega, 2017, 2, 487-495; (b) S. Dreeßen, S. Schabbert and E. Schaumann, Eur. J. Org. Chem., 2001, 245-251; (c) K. C. Nicolaou, M. O. Frederick, A. C. B. Burtolo, R. M. Denton, F. Rivas, K. P. Cole, R. J. Aversa, R. Gibe, T. Umezawa and T. Suzuki, J. Am. Chem. Soc., 2008, 130, 7466-7476; (d) K. C. Nicolaou, K. P. Cole, M. O. Frederick, R. J. Aversa and R. M. Denton, Angew. Chem., Int. Ed., 2007, 46, 8875-8879.

26 (a) B. M. Trost, D. J. Michaelis and S. Malhotra, Org. Lett., 2013, 15, 5274-5277; (b) I. S. Young, M. W. Haley, A. Tam, S. A. Tymonko, Z. Xu, R. L. Hanson and A. Goswami, Org. Process Res. Dev., 2015, 19, 1360-1368; (c) V. Druais, C. Meyer and J. Cossy, Org. Lett., 2012, 14, 516-519.

27 H. Jo, M. Choi, M. Viji, Y. H. Lee, Y.-S. Kwak, K. Lee, N. S. Choi, Y.-J. Lee, H. Lee, J. T. Hong, M. K. Lee and J. K. Jung, Molecules, 2015, 20, 15966-15975.

28 M. A. Brimble and C. J. Bryant, Org. Biomol. Chem., 2007, 5, 2858-2866.

29 T. Todoroki, A. Saito and A. Tanaka, Biosci. Biotechnol. Biochem., 2002, 66, 1772-1774.
30 R. M. Moriarty and O. Prakash, J. Org. Chem., 1985, 50, 151-153.

Erratum

[^0]: ${ }^{a}$ Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. E-mail: k.ravindar@ncl.res.in
 ${ }^{b}$ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India \dagger Electronic supplementary information (ESI) available. See DOI: 10.1039/ d1ob01972d

