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Synopsis

The aim of the thesis is twofold

1. Calculate the effective structure in a continuous-size polydisperse system
and correlate the dynamics and structure at the microscopic level.

2. Thermodynamics and its correlation with dynamics in pinned systems: A
comparative study using two different methods of entropy calculation, and
correlating the dynamics and structure in pinned systems.

The thesis is divided into eight chapters. The outline of each chapter is given
below

• Chapter 1 introduces the main research area of this thesis. It provides
a short overview of this field and discusses the basics of how dynamics
work, particularly when they become slow. The chapter also talks briefly
about the connection between thermodynamics and these slow dynamics
and mentions the theoretical approaches used to understand them.

• In Chapter 2, a deeper understanding of the glass transition is achieved
through an in-depth exploration of its properties. This involves providing
detailed explanations of key definitions and the computational techniques
utilized to investigate this phenomenon. The chapter’s comprehensive ap-
proach facilitates a more thorough comprehension of the subject matter.

• In Chapter 3, we conducted a macroscopic analysis of polydisperse sys-
tems. Within this chapter, we illustrated that when a polydisperse system
is treated as a monodisperse, it exhibits artificial softening. This distor-
tion has repercussions on parameters relying on structural input, leading
to inaccurate outcomes. To address this issue, we determined the value of
M0, representing the optimum number of species required for an accurate
description of the system’s structure.

• In Chapter 4, a microscopic analysis of polydisperse systems was carried
out. We demonstrated that for an accurate depiction of the system’s
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structure, it is essential to treat it as an M0-species system. This chapter
presents a noteworthy finding: the dynamics of the system are influenced
not solely by its structure, but also significantly by the particle sizes. This
revelation underscores the intricate interplay between structure and size
in governing particle dynamics.

• In Chapter 5, our investigation revolves around the thermodynamic prop-
erties of a pinned system, which is another kind of multispecies glass-
forming system. Within this chapter, we employ two distinct methods to
calculate excess entropy. Surprisingly, one of the established thermody-
namic methods (TI) shows configurational entropy vanishes where single
particle dynamics survive, and the Adam-Gibbs relationship is not valid
for this. However, when employing the two-phase thermodynamics (2PT)
method, we observe that the difference in entropy computed using the two
approaches (2PT and TI) grows with an increase in pinning concentration.
Additionally, we discover that, for the temperature range under considera-
tion, entropy computed using the 2PT technique satisfies the Adam-Gibbs
relationship between the relaxation time and the configurational entropy

• In Chapter 6, we delve into the microscopic analysis of a pinned system.
pinned system is generated from the equilibrium configuration of the KA
system (which is a binary 80:20 system) and it is expected that the equi-
librium properties and the structure of the system do not change. Our
exploration revealed that the pinned system structure remains the same
when it is treated as a binary system but while treating the pinned system
as a modified quaternary system we observe the change in structure with
pinning. We observe that when the pinned system is approached from
a binary perspective, the correlation between structure order parameters
and dynamics is relatively diminished. However, when we consider the
pinned system as a modified quaternary system, a notable enhancement
in the correlation between structure order parameters and dynamics be-
comes evident.
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Chapter 1

Introduction of glassy dynamics
and existing theories

“Research is to see what everybody else has seen
and to think what nobody else has thought”

-Albert Szent-Györgyi

1.1 Introduction

Glass is a material that is widely used and has a big impact on our daily life.
Although silicate glasses are frequently referred to as “glass” and are used in
windows, bottles, optics, and other applications, they’re only one type of glass.
Broadly speaking, glass is an amorphous solid that exhibits a definite glass tran-
sition but lacks the long-range structural order present in crystalline materials.
Glasses are different from crystals in that their atomic arrangements are not
clearly defined, giving them special characteristics and behaviors. Glass’ amor-
phous nature gives it transparency, flexibility, and thermal insulation qualities,
which make it perfect for a variety of uses in construction, packaging, optics,
and technology. For improvements in materials engineering, product develop-
ment, and scientific research, it is essential to understand the science of glass
development and its characteristics.

According to the classical nucleation theory (CNT), if a liquid cools slowly, it
typically undergoes a first-order phase transition to the most favorable thermo-
dynamical form, which is a crystalline state, below the melting point. Usually,
the specific volume decreases as a result of this first-order phase transition. Due
to the nucleation process, crystals form. First, a tiny crystalline phase devel-
ops, and if its volume exceeds a certain threshold, it expands until it covers
the entire system. By accelerating the cooling process, this nucleation process
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can be stopped. If the liquid is cooled rapidly enough to prevent the first-
order phase transition of crystallization, or, to put it another way, if the rate
of cooling is quick enough to prevent the system from getting enough time to
rearrange and form crystals, then the system is in a liquid state below the melt-
ing point with a high viscosity and long relaxation time. This state is referred
to as the supercooled state, and the temperature at which the transition from
a liquid to a supercooled state occurs is referred to as the onset temperature
(Tonset) [1, 2, 3]. After further cooling, the supercooled state turns into glass.
The glass transition temperature Tg is the temperature at which supercooled
liquid transitions to glass. Technically, the temperature at which viscosity in-
creases from 1012 to 1013 poise or relaxation time is equal to 100 seconds known
as Tg. The temperature Tg is not constant; instead, it changes with the rate
of cooling. The volume-temperature (V-T) diagram described in Fig.1.1 can
be used to understand the relationship between liquid, supercooled liquid, and
glass. With decreasing the T, the supercooled liquid undergoes a process called
“vitrification” or “glass transition”. This transition happens when the liquid’s
viscosity increases dramatically, and it converts into an amorphous solid known
as glass.

Figure 1.1: Schematic representation of glass transition phenomena. Tg
depends on the rate of cooling. Reprinted from ref. [4]. The slow and fast
cooling rates are denoted by a and b, respectively. Tg and Tm represent the
glass transition and melting temperatures, respectively.

Gases and crystals have perfectly disordered and ordered structures. The
liquid state of matter is intermediate in nature and has complex structures
and dynamics, which is a key research area in condensed matter physics. The
relationship between structure and behavior in supercooled states is significantly
more complicated. In 1995 P. W. Anderson wrote: “The deepest and most

Palak Patel 14 CSIR-NCL
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interesting unsolved problem in solid state theory is probably the theory of the
nature of glass and the glass transition. This could be the next breakthrough in
the coming decade” [5]. According to the thermodynamical point of view, the
supercooled liquid is a metastable state, so the dynamics and thermodynamic
properties of the glass are predicted by the study of the equilibrium supercooled
liquid state. Below Tg liquid falls out of equilibrium. Note that Tg is dependent
on the cooling rate. Slow cooling rates result in a longer T range of equilibrium,
which means lower Tg (shown in Fig.1.1).

In a supercooled state, the dynamics of a liquid decrease with a small change
in structure. The link between dynamics and thermodynamics in supercooled
liquid has been a research area of interest for many years. The fundamental
characteristics of the dynamical and thermodynamic properties of supercooled
liquids and glasses will be discussed in the section that follows.

1.2 Dynamical properties

The fundamental characteristics of the dynamics of supercooled liquids and
glasses will be discussed in this section. The correlation function between gen-
eral quantities, such as the density-density correlation function, which can be
estimated from the light scattering function and simulation studies, can be used
to calculate the dynamics of the system. The definition of the dynamics corre-
lation function is

ϕ(t) =
1

N

∑

k=1

N〈
ψk(t)ψk(0)

〉
(1.1)

where k is a particle identity and ϕ is a correlation function between generic
quantities ψ with time difference t.

At high temperatures - the relaxation dynamics in a system are characterized
by different regimes. At short timescales, the motion of particles is primarily
governed by their free motion, where they move independently without strong
interactions. As time progresses, the particles start to interact with each other,
leading to an intermediate state where the relaxation is influenced by the inter-
actions between particles. Finally, at longer timescales, the relaxation follows
an exponential decay pattern known as Debye relaxation [6, 7]. This behavior
can be described by the Arrhenius equation, which states that the correlation
function decays exponentially with time. The Arrhenius equation provides a
simplified representation of the relaxation dynamics in the high-temperature
regime, highlighting the importance of temperature in determining the relax-
ation behavior of a system. Arrhenius equation is represented as,

Palak Patel 15 CSIR-NCL
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Figure 1.2: Schematic plot of the two-step relaxation of the correlators. Two
curves describe the high and the low-temperature relaxation. Adapted from ref.
[6].

ϕ(t) = ϕ0 exp (−t/τ) (1.2)

where τ is a relaxation time and ϕ0 is a constant.

However, at low temperatures, the correlation function exhibits a charac-
teristic plateau, indicating that the particles are trapped in their positions and
unable to freely move. The short-time dynamics in this region resemble the
ballistic regime observed at high temperatures, where particles exhibit unre-
stricted motion. The β relaxation refers to a time window during which the
correlation function remains close to the plateau value, indicating a slow re-
laxation process. This is a regime that propagates over many decades in time,
note the logarithmic scale in Fig.1.2. This β relaxation regime can span a wide
range of timescales, often spanning several decades when plotted on a logarith-
mic scale. The subsequent α relaxation occurs when the correlation function
departs from the plateau and decays towards zero, representing the gradual re-
laxation of the system towards its equilibrium state. At low temperatures and
in the late stages of relaxation, the dynamics exhibit non-exponential behavior.
This late relaxation can be well-described by the Kohlrausch-Williams-Watts
(KWW) stretched exponential form [8, 9, 10], which captures the gradual decay
of correlations. Understanding the non-exponential relaxation and the influence
of temperature on the dynamics of supercooled liquids is essential for compre-
hending the glass transition phenomenon. Form of Kohlraush-Williams- Watts
(KWW) stretched exponential is;

ϕ(t) = exp (−t/τ0)β 0 < β ≤ 1 (1.3)

where β is the KWW stretch exponent. β = 1 at high T and low time win-
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dow at low T, where the system shows ballistic motion, and at low T large
time window, β < 1. The value of β decreases with decreasing the T. The de-
tailed predictions of basic accuracy of β have been verified experimentally and
in computer simulations [11, 12, 13]. Equilibrium relaxation time τα is define as
ϕ(t = τα) = exp(−1) = 0.367

1.2.1 Dynamical heterogeneity

This two-step structural relaxation is a hallmark feature of supercooled liquids
and glasses that characterizes the dynamics of disordered packing in supercooled
liquid and glassy system [14, 15]. The first step, which is called β relaxation,
is associated with the ballistic motion of particle motion within cages formed
by their neighbors. The second step, which is called α relaxation, is associated
with rearrangements of cage and cage escape by the particle.

The physical origin of the stretched exponential decay of correlation function
in supercooled liquids is unclear. Two extreme scenarios are discussed in the
literature [6] :

• Homogeneous dynamics - Due to the complicated dynamics system shows
a non-exponential relaxation.

• Heterogeneous dynamics - The system does not have enough time to re-
arrange itself, resulting in each particle in the supercooled liquid having a
distinctive surrounding. In the supercooled liquid multiple domains form.
This leads to heterogeneous dynamics where different domains or “fast”
and “slow” regions evolve at different decay rates of the correlation func-
tion. Due to the contributions of many regions with different relaxation
times, the overall relaxation time becomes stretched exponentially. This
spontaneous decomposition is referred to as dynamical heterogeneity.

1.2.2 Fragility

After discussing the heterogeneity of supercooled liquids, it is important to
delve into another significant aspect of their behavior: fragility. Fragility pro-
vides valuable insights into the temperature-dependent dynamics and viscosity
of these materials as they approach the glass transition. Understanding fragility
is essential for comprehending the structural relaxation and overall behavior of
supercooled liquids. In this section, we will explore the concept of fragility and
its implications in the context of supercooled liquids.

Here we discuss the T dependence of relaxation time (τα) or viscosity η in
the supercooled liquid. It is known that in liquid state τα or η increases with
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decreasing T and follows well known Arrhenius equation, that is;

τα = τ0 exp(∆E/T ) or η = η0 exp(∆E/T ) (1.4)

where τ0 and η0 are fitting parameter, ∆E is the activation energy . For normal
liquid this ∆E is independent of temperature. Arrhenius’s law can be explained
by the phenomenology proposed by Eyring [16]. Here we briefly discuss Eyring’s
argument on the Arrhenius law. In a liquid state, a particle is surrounded by
the cage, which is formed by the neighboring particles. The relaxation process
of the liquid is assumed to be breaking the cage and escaping the particle from
the cage.

Figure 1.3: Scaled via Tg, Arrhenius representation of liquid viscosities showing
Angell’s strong–fragile pattern. Strong liquids exhibit approximate linearity
(Arrhenius behavior), indicative of a temperature-independent activation
energy E ≈ constant. Fragile liquids exhibit super-Arrhenius behavior, their
effective activation energy increasing as temperature decreases. Adapted from
refs [17, 4].

In the liquid state system follow the Arrhenius equation. Now the question
arises is it true also for supercooled liquid or not? To answer this question Angell
plotted the inverse of T dependence on log(τ) or log(η) for different systems [17]
(shown in Fig.1.3). 1/T is scaled by respective system Tg [17]. Open network liq-
uids like SiO2 and GeO2 give a straight light fit between viscosity (or structural
relaxation time) and Tg/T, throughout the T range (from high T to Tg) in An-
gell plot, which means this liquid obeys Arrhenius law and provide the “strong”

liquid extreme of the pattern. On the other hand subgroup of liquid that has van
der Waals interaction or non-directional coulomb attractions follows Arrhenius
law at high T but at low T, viscosity or relaxation time increases drastically with

Palak Patel 18 CSIR-NCL



PhD Thesis AcSIR

small changes in T. This type of liquid system is known as “fragile” liquids [17].
Most fragile liquids are polymeric in nature. This non-Arrhenius behavior is also
called super Arrhenius behavior. This strong/fragile liquid pattern is used for
the classification of liquids. This non-Arrhenius behavior can be empirically well
fitted by the Vogel-Fulcher-Tammann (VFT) equation[18, 19, 20, 21],

τα = τ0 exp
1

KV FT (
T

TV FT
− 1)

or η = η0 exp
1

KV FT (
T

TV FT
− 1)

(1.5)

where τ0 and η0 are high T relaxation time and viscosity respectively, and ob-
tained from fitting. KV FT is a fragility constant. TV FT is a divergence T of
relaxation time or viscosity. At T = TV FT , τ, η goes to infinity. During a dra-
matic change in dynamics (Dynamical slow down), there is no dramatic struc-
tural changes occur, and there are no obvious structure-based explanations for
dynamical slow down. Although there is no experimentally accessible, the di-
vergence temperature TV FT raises the possibility of a true singularity associated
with a putative phase transition, either dynamic or thermodynamic. Kauzaman
suggested that this transition may be thermodynamic in nature [22].

1.3 Thermodynamical properties

The rigidity of solids, which specified them macroscopically, conversely, has been
usually traced to their qualitatively different periodic ordered structure[23], a
concept that had already occurred to Kepler[24]. For crystals, this concept is ac-
curate. However, the existence of structural glasses (amorphous substances that
are rigid) questions this understanding. Here we briefly discuss the structural
and thermodynamic signatures of the slowdown of dynamics. In supercooled
liquid small changes in structure give a drastic change in dynamics. The cor-
relation between structure and dynamics in supercooled liquid is a hot topic of
research. Thermodynamics provides a framework for understanding the ener-
getics, stability, and phase behavior of supercooled liquids. It helps elucidate
the complex interplay between temperature (T), energy (E), entropy (S), and
molecular interactions (U), ultimately contributing to our understanding of these
metastable states and their transitions.

1.3.1 Structural arrest in supercooled liquid

In a supercooled liquid, the molecules are not arranged in a regular pattern like a
solid. Rather, they maintain a disordered or amorphous structure. The arrested
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structure in a supercooled liquid refers to the arrangement of molecules when
they become trapped, or arrested, in a metastable state during the vitrification
process. The highly organized lattice structure that distinguishes a crystalline
solid cannot be formed by these molecules. Depending on the composition,
a supercooled liquid’s precise structure can change. Generally speaking, the
arrangement of molecules in a supercooled liquid is less disordered than a real
liquid but more disordered than a crystalline solid.

The molecule’s mobility significantly decreases during the glass transition,
which causes a solid-like behavior. Several properties like specific heat capacity,
thermal expansion coefficient, viscosity, etc. behave differently when the liquid
cools towards Tg. A few properties (entropy (S), specific heat (CP )) - T behavior
at different states of the system are shown in Fig.1.4. As Tg approaches, the rate
of change for these properties accelerates. The shift in the slope of the property-
temperature curve is one of the most important signs that the glass transition is
about to occur. Because of the lengthening of the structural relaxation time and
the decreased molecular mobility, the slope gets steeper. In several experimental
observations, this shift in slope can be seen, and it is frequently connected to
the beginning of the glassy state.

Figure 1.4: A schematic diagram of the temperature dependence of (a) the
specific heat, CP , and (b) the specific entropy, s, of a crystal, liquid,
supercooled liquid, and glass. Glasses 1 and 2 are obtained with different
cooling rates and have different apparent glass transition temperatures Tg.
Glass 1, shown by the dashed curve, represents the result of a faster cooling
rate than that used to produce glass 2, the solid curve. Tg, Tm, and TK
represent the glass transition temperature, melting temperature, and Kauzmann
temperature, respectively. Adapted from ref. [25].

It is significant to remember that the precise characteristics of the slope
change can alter based on the particular material and cooling circumstances.
The ultimate volume at a temperature below Tg is lower with a slower cooling
rate, as seen in Fig.1.5. In addition, a slower cooling rate results in a lower glass
transition temperature, which is determined by the temperature at which the
slope changes. The history of preparation determines the glass that is produced.
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The glass resulting from a particular cooling rate is shown in Fig.1.5 as another
example of how, for T near Tg, the heating curve differs from the cooling curve
if the heating rate is different. As a result, the system’s characteristics close to
Tg also depend on the path. The laboratory glass transition happens when the
liquid loses equilibrium and is kinetic, as seen by its dependence on the cooling
rate and path. Near the glass transition temperature, different materials can
behave in various ways, and the rate of cooling can also affect how much and how
abruptly the slope changes. Understanding the behavior of supercooled liquids
and the creation of glasses depends on the study of these changes in slope and
other properties close to the glass transition. It has consequences for several
industries, including materials research, polymer physics, and medicines, where
managing the glass transition is crucial for the performance and stability of a
given product.

Figure 1.5: Schematic temperature dependence of the volume of a supercooled
liquid as it approaches the glass transition temperature, Tg. γ1, γ2, γ3 are
cooling rates and γ is the heating rate. See also text. Adapted from ref. [26].

1.3.2 Entropy in supercooled liquid

Entropy is a fundamental concept in thermodynamics that measures the degree
of disorder or randomness in a system. In the context of supercooled liquids,
entropy plays a significant role in understanding the behavior and properties of
these materials. In supercooled liquid, molecules have limited mobility and are
kinetically trapped in a disordered arrangement. The dependence of entropy on
the cooling rate at different T is shown in Fig.1.4 (b).

The entropy (S) of a supercooled liquid is primarily composed of two com-
ponents: configurational entropy Sc and vibrational entropy Svib. S = Sc+Svib.
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Both entropy is defined below,

• Configurational Entropy (Sc): The term configurational entropy describes
the variety of arrangements that the system’s atoms and molecules can
take in while still retaining the same energy. The configurational entropy
falls as the system gets more structurally arrested in a supercooled liquid.
As the temperature drops, molecules lose mobility and get locked in local
energy minima, which limits the number of available configurations and
lowers configurational entropy.

• Vibrational Entropy (Svib): Vibrational entropy accounts for the contri-
butions of molecular vibrations to the overall entropy of the system. Al-
though molecule’s movement in a supercooled liquid is limited, they still
have vibrational motion. Although vibrational entropy normally decreases
as temperature drops, its contribution to total entropy is relatively smaller
compared to configurational entropy.

In supercooled liquids, as the temperature approaches the glass transition
temperature (Tg), the system undergoes a rapid increase in viscosity and loss of
mobility, which results in the production of a glassy state. At the same time, the
drop in configurational entropy becomes more significant. Understanding super-
cooled liquids’ thermal behavior, phase transitions, and glass formation depends
heavily on the study of entropy in these systems. It offers an understanding of
the underlying chemical configurations, dynamics, and particular characteristics
displayed by these metastable states.

1.3.3 Entropy crisis

The specific heat Cp(T) is largest in the supercooled liquid and decreases to
a smaller value, close to the crystal phase, around Tg [27, 25]. In Fig.1.4 it is
shown that the rate at which the liquid cools significantly affects the temperature
at which the specific heat rapidly decreases. The two distinct curves in Fig.1.4
represent the outcome of cooling at two various rates. The curve would shift even
farther to lower temperatures with a slower cooling. Entropy at temperature T
has the following thermodynamic relationship:

S(T ) = S(Tref ) +

∫ T

Tref

Cp

T ′ dT
′ (1.6)

where Tref is a reference temperature. The difference between the liquid and
the crystal entropy is ∆S.
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∆S(T ) = Sliq(T )− Scry(T ) (1.7)

where Sliq(T ) is the liquid entropy and Scry(T ) is the entropy of the crystal at
temperature T. ∆S decreases with decreasing the T [25]. When extrapolating
the entropy-temperature curve from higher temperatures, the rate of entropy loss
frequently deviates from the predicted behavior. It is found that extrapolated
excess entropy goes to zero at finite temperature, and that temperature is defined
as the Kauzmann temperature TK . The Kauzmann temperature TK is very close
to the VFT divergence temperature TV FT [28].

The liquid explores a smaller and smaller region of the configurational space
as it cools. The liquid is kinetically confined at Tg, and the length of the re-
laxation time causes the configurational entropy to collapse. It’s important to
note that the entropy crisis is a simplified concept to describe the behavior of
supercooled liquids near the glass transition, and the underlying mechanisms
and dynamics are still the subject of ongoing research and investigation.

1.3.4 Kauzmann paradox or entropy in crisis

To answer this puzzling observation regarding the thermodynamics of super-
cooled liquids and the glass transition, in 1948 Walter Kauzmann proposed
Kauzmann’s paradox [22]. According to the third law of thermodynamics, as
the temperature approaches absolute zero, the entropy of a pure crystalline sub-
stance should also approach zero. However, in the case of supercooled liquids,
the extrapolated entropy-temperature curve suggests that the entropy would
reach zero at a temperature above absolute zero. According to this law, a liquid
would have more entropy than a crystalline solid, which contradicts the third
law. Now if we believe that the extrapolation is possible and go to an even
lower temperature, then the entropy of the liquid state becomes smaller than
that of the crystal state at that temperature, this is known as the entropy crisis
or Kauzmann’s Paradox. Even though there is no statistical theory that for-
bids this phenomenon, it will be a little strange if it does because the liquid is
disordered and the crystal is organized. Therefore the dotted lines in Fig.1.6
show that it is evident that the curve ∆S vs. T must become flat after some
temperature below Tg. The fact that there is no experimental support for this
extrapolation should put an end to any worries about TK . However, Tg is not a
fixed temperature, it depends on the cooling rate. Thus, in principle, one can
reach below TK by sufficiently slow cooling or by giving the system enough time
to relax. But in this process, the system crystallizes. So, the glass transition
saves the entropy crisis.
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Figure 1.6: The temperature dependence of the excess entropy. Figure adapted
from ref. [22, 4]. ∆Sm is the entropy of a system at melting T (Tm).

The resolution to Kauzmann’s paradox is still an active area of research and
is not fully understood. Various theories and explanations have been proposed,
including the idea that the extrapolated entropy curve may not accurately rep-
resent the true behavior of the system. Additionally, the role of thermodynamic
and kinetic factors, such as the existence of multiple energy minima and com-
plex relaxation dynamics, can contribute to the paradox. The understanding
of Kauzmann’s paradox has implications for our comprehension of the glass
transition, the nature of supercooled liquids, and the relationship between ther-
modynamics and kinetics in these systems. Continued research in this area aims
to resolve the paradox and provide a comprehensive understanding of the be-
havior of supercooled liquids and the glass transition phenomenon.

1.4 A summary of theories of the glass transition

The glass transition is a fascinating phenomenon in materials science, and sev-
eral theories have been proposed to explain the underlying processes and mech-
anisms. Here is a summary of some prominent theories of the glass transition:

1.4.1 Adam-Gibbs theory

In the above section, we have explained the thermodynamics and dynamics of
supercooled liquid separately. In this section, we will connect the dynamics
and thermodynamics of supercooled liquid using the Adam-Gibbs relation. The
Adam-Gibbs relation is a phenomenological equation that describes the rela-
tionship between the relaxation time (τα) which is a dynamical quantity of a
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supercooled liquid and its configurational entropy (Sc) which is a thermodynam-
ical quantity. In other words, the Adam-Gibbs (AG) relation is a bridge between
dynamics and thermodynamics. It is named after John Adam and James Gibbs,
who proposed this relationship [29, 30].

The Adam-Gibbs connection takes cooperative rearrangement regions (CRRs)
in supercooled liquids into account. CRRs are areas or clusters of molecules that
experience simultaneous cooperative motion during relaxation processes. The
Adam-Gibbs relation connects the size of these CRRs to how long it takes a
supercooled liquid to relax. The derivation is summarised in the following man-
ner:

• Size of the cooperative rearrangement region (ξ): The CRR’s size is a
defining length scale that symbolizes the geographic area in which coop-
erative motion takes place. It can be compared to the size of a group of
molecules that reorganize all at once as a result of relaxation processes.
The probability of a rearrangement of particles at temperature T (P(T))
is assumed to depend exponentially on this size of CRR:

P (T ) = A exp (−βξδµ) (1.8)

where β = 1/kBT , kB is a Boltzmann constant. δµ is associated by Adam
and Gibbs with a restricted partition function over configurations that
allow rearrangements, at temperature T.

• Correlation between relaxation time with CRR: The probability of re-
arrangement is higher, which means the dynamics of the liquid become
faster and relaxation time decreases. The probability of rearrangement is
inversely proportional to the relaxation time τα. τ ∝ P (T )−1, substitute
the value of P(T) from above equation,

τα = A exp (−βξδµ)−1 (1.9)

• Connect the configurational entropy Sc to the CRR’s size: The amount
of different configurations or arrangements of the molecules in the super-
cooled liquid is represented by the configurational entropy. It has to do
with the logarithm of the liquid volume that the CRRs have access to. If N
is the total number of particles in the system, ξ is the size of the CRR, N/ξ
gives the number of CRRs, and sc is the configurational entropy per CRR,
which is assumed to be roughly constant, then the total configurational
entropy of the system can be expressed in terms of the size of the CRR as
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Sc = (N/ξ)sc. The Adam-Gibbs relation is obtained by rearranging the
previous equation and substituting the expression for ξ in terms of Sc:

τα = A exp
(Nβδµsc

Sc

)
= A exp

( C

TSc

)
(1.10)

where C = Nβscδµ is a constant.

The assumption of cooperative motion and the idea of CRRs within the
supercooled liquid are key components in the formulation of the Adam-Gibbs
relation. It gives a phenomenological explanation of the connection between
configurational entropy and relaxation time, providing insight into the dynamics
of supercooled liquids and how they behave close to the glass transition.

1.4.2 Free volume theory

The Free Volume Theory is a theoretical framework used to explain the glass
transition in terms of changes in the free volume, or available space, between
molecules in a supercooled liquid. According to this theory, the glass transition
occurs when the free volume decreases to a critical value, hindering molecular
motion and resulting in an increase in viscosity.

The Free Volume Theory places a strong emphasis on how packing and molec-
ular arrangement affect the behavior of the glass transition. It implies that the
amount of space available for a molecule’s mobility determines the dynamic fea-
tures of a supercooled liquid, including viscosity, relaxation time, and diffusivity.
The molecules experience more intermolecular interactions while coming across
more barriers when the free volume becomes limited, resulting in the glassy be-
havior often seen.

One of the earliest hypothesis to explain the glass transition phenomenon is
the free volume theory in the glassy system. Cohen and Turnbull introduced it
initially, and Cohen and Grest later expanded on it. A few presumptions are
necessary for the free volume theory in glass to work.

• Each molecule has a definite volume on a molecular scale.

• When vf = v − vc, there is an excess volume above the critical value vc of
v. This extra volume might be considered free.

• There is no correlation between the redistribution of the free volume, vf =

v − vc, and free energy.

• A molecule can only move when its specific vf value rises above a particular
threshold, v∗f .
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D =

∫ ∞

v∗f

D(v)P (v)dv (1.11)

where P(v) is the probability density of finding a cell with a free volume between
v and v+dv and D(v) is the diffusion coefficient for a molecule possessing free
volume v. We now need to determine P(v) for a system in which a redistribution
of the free volume is not accompanied by an energy exchange. Vf is the total
free volume and N is the number of molecules, the average free volume is given
by the formula

vf = Vf/N (1.12)

Let’s partition the whole range of a molecule’s free volume values into separate
sections, each with an average value of vi. If Ni is the quantity of molecules in
the ith region with free volume, we obtain

γ
∑

i

Nivi = Vf (1.13)

where γ is a geometric factor that corrects the overlap of the free volume. For
the total free volume, and the total number of molecules is given by

∑

i

Ni = N (1.14)

The number of ways of redistributing the free volume without changing the
Ni is

W = Ni/ΠiNi! (1.15)

Now to maximize W for a given N and Vf , use the Lagrange multiplier
method and get

Ni = exp[−(γ + βvi)] (1.16)

where λ and β are the Lagrangian multipliers. By obtaining λ and β from
Eq.1.13 and 1.16, and passing to the continuum limit for vi, we find

P (v) = (γ/vf ) exp[−γv/vf ] (1.17)

Considering that D(v) is now a slowly varying function, we set it equal to
Dv∗f in Eq. 1.11 and obtain

D = const. exp[−γv∗f/vf ] (1.18)
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When there is no more free volume left in the liquid for random redistribution
(i.e., vf = 0), the free-volume equation predicts that D will disappear. Since
it is reasonable to suppose that the free volume exhibits a linear temperature
dependency, at least over small temperature ranges (i.e., vf ∝ αp(T, T0), where
αp is the coefficient of thermal expansivity), Eq. 1.18 can be expressed as,

η(T ) = A exp[B/(T − TV FT )] (1.19)

Which is in the form of Vogel-Fulcher-Tamann (VFT) [21, 18, 20, 19], where
TV FT is known as VFT temperature, the temperature at which the free volume
vanishes (and thus viscosity diverges).

It’s critical to keep in mind that the Free Volume Theory simplifies rather
than fully explains the glass transition. Other components, including molecular
interactions, energy landscapes, and dynamic heterogeneities, also play signif-
icant roles. However, the conceptual framework provided by the Free Volume
Theory can be used to understand the connection between free volume, molec-
ular mobility, and the glass transition in supercooled liquids.

1.4.3 Random first-order transition theory.

When a phase transition takes place in an amorphous or disordered system
without any long-range order, it is referred to as a random first-order transition.
Random first-order transitions happen in systems with a high degree of disor-
der, like glasses or amorphous materials, compared to conventional first-order
transitions, which often call for crystalline or organized phases. A theoretical
framework called random first-order transition theory in glasses uses the idea
of random first-order transitions to try and explain how glasses behave and
their transitions. Based on the existence of numerous metastable states and a
complicated energy landscape, it offers a perspective on the development and
characteristics of glasses. This hypothesis states that glasses are disordered sys-
tems with amorphous structure and long-range order.

This RFOT theory was proposed by Kirkpatrick, Thirumalai, and Wolynes
to investigate the behavior of supercooled liquid and glass transition [31, 32,
33, 34, 35]. It was inspired by the theory of spin-glasses. It is feasible to
find multiple physical components of a thermodynamic system to be in different
configurational states if the system has several states. Since all of the states have
an amorphous order, a border or interface between them can be used to tell two
states apart. Due to the mismatch of states at the boundary, the existence of an
interface will result in energy loss. The relationship between that energy cost
and surface area and surface tension will be proportional.
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∆Fcost = Y Rθ (1.20)

θ ≤ d − 1, where d is the physical dimension. R is the domain’s size, and Y

is the generalized surface tension. The RFOT states that a given region has
an exponentially high number of potential states and that free energy can be
reduced by traveling to different states. Therefore, the existence of various states
in a given location has an entropic origin. By traveling to various configurations,
the system can obtain free energy, which will contribute as follows:

∆Fgain = −TScR
d (1.21)

If the configurational entropy (Sc) and temperature (T ) are both given. The
system’s overall free energy can then be expressed as,

Ftotal = ∆Fcost +∆Fgain = Y Rθ − TScR
d (1.22)

A new state will form according to the classical nucleation theory, when the
two opposing forces balance, or when dFtot

dR
= 0. From this, we may derive a

length scale, and that length scale is

ξ =
(Y (T )

TSc

) 1
d−θ (1.23)

The AG theory can be recovered via RFOT theory, but with a different
exponent, d/(d− θ).

1.4.4 Mode coupling theory

A theoretical framework known as mode-coupling theory (MCT) describes the
dynamics and relaxation procedures in supercooled liquids and glasses. In 1984,
Bengtzelius, Götze and Sjölander and Leutheusser [36, 37, 38, 39] introduced
mode-coupling theory (MCT), a microscopic theory for glassy dynamics. It was
initially created to understand the glass transition phenomenon and how molec-
ular motion slows down as a liquid cools down to become glassy. The basic idea
of MCT is the assumption that the dynamics of a supercooled liquid may be
modeled as the time development of density fluctuations, or “modes” of the sys-
tem. It takes into account how different modes interact with one another and
how that affects how the material behaves during relaxation. In supercooled
liquids, MCT predicts a two-step relaxing process[11]. MCT makes quantitative
predictions about how the correlation function will reach and exit the plateau.
Thus, MCT can account for both the relaxation α and β. As of now, MCT accu-
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rately predicts the approach and exit from the plateau in addition to the short-
and long-term relaxation. It demonstrates good agreement with the experimen-
tal results. The behavior of dynamic quantities like the self-correlation function
and the intermediate scattering function can also be predicted using MCT. As
the temperature approaches the glass transition temperature, “dynamic arrest”
occurs when the relaxation time diverges and the system is stuck in a metastable
condition. MCT predict many other features of the complex dynamics of glass-
forming liquids, and one of the most prominent one is the dynamic transition
from an ideal liquid to a nonergodic glassy state at some particular temperature
Tc or particle density, ρc.

In MCT obtain an equation of motion for the time-dependent density cor-
relation function. There are many ways to derive the MCT equation, including
the projection operator formalism [40, 41], field-theoretic method [42, 43], fluc-
tuating hydrodynamics [44, 45], microscopic approach beginning with Newton’s
equations of motion, etc. Indeed, the Mode-Coupling Theory’s (MCT) pre-
diction of the plateau’s length and the divergence in the relaxation time at a
finite temperature Tc, also known as the MCT singularity, is one of the theory’s
drawbacks. This behavior makes it difficult to sufficiently explain the dynamics
of relaxation close to the glass transition. The assumption of idealized con-
ditions, such as ignoring dynamic heterogeneity and structural rearrangements
that occur in actual glass-forming systems, leads to the MCT singularity. These
simplified ways may cause the plateau length to be overestimated and the com-
plex nature of the relaxation processes to be overlooked. MCT predicts the
power-law divergence as,

τα ≈ (T − Tc)
−γ (1.24)

where Tc is the divergence temperature and γ is the fitting parameter. Although
the dynamics do not diverge at Tc, the MCT power law behavior is found to
be present for most experimental and theoretical data. It can therefore be
considered an artifact of the theory. Despite significant failures, the theory has
made a lot of contributions to our understanding of the dynamics of the liquids
that create glass, despite significant disadvantages.

1.5 Conclusion

The significance of structural relaxation, nucleation, and crystallization in su-
percooled liquids has also been mentioned in the introduction. Whether a su-
percooled liquid crystallizes or enters a glassy state, these processes play a role
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in deciding the liquid’s outcome.
Key ideas about supercooled liquid have been addressed throughout the in-

troduction, including the glass transition, which denotes the change from a
supercooled liquid to an amorphous solid. The glass transition has been exam-
ined from a thermodynamic and kinetic perspective, providing an understanding
of the underlying mechanisms and elements that control this interesting phe-
nomenon.
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Chapter 2

Definitions, methods and models

“Knowledge is a treasure hidden in the depths
of curiosity; the true quest is in the unearthing,

not the complexity of comprehension.”
- Marie Curie

After explaining the fundamental concepts and theories related to glass-
forming liquids and glass transition in chapter 1, it is important to establish
the definitions and procedures used to calculate the various quantities of inter-
est. These definitions give support for the analysis and interpretation of the
current thesis findings. It is also necessary to take into account the multiple
glass-forming liquid models that have been looked at. In this section, we’ll go
through the key terms and procedures for examining liquids that create glass.
This includes the definitions of words like configurational entropy, overlap func-
tion, and radial distribution function, etc. These values give details about the
structural and dynamic properties of the system and are frequently utilized to
explain glassy behavior.

2.1 Models details

The discovery of a more effective glass-forming mechanism depends significantly
on the addition of frustration during crystallization. Trying to build a perfectly
ordered crystalline structure in a system with different-sized particles is difficult.
In a polydisperse system, where the particles have a distribution in sizes, this
frustration can be easily introduced. Due to high frustration, the polydisperse
system is seen as better glass forming.

Another effective technique for creating a good glass former is pinning the
positions of a few particles in the system to prevent them from taking part in
crystal formation. This pinning technique introduces local structural restric-
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tions, which prevent crystallization. By increasing the concentration of pinned
particles in the fluid, the glassy behavior as a whole is improved.

2.1.1 Polydisperse system

The study involves two different kinds of systems with respect to size polydis-
persity, constant volume fraction (CVF) and Gaussian (as shown in Fig.2.1) and
three different kinds of interaction potentials (as shown in Fig.2.2).
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Figure 2.1: Different kinds of distributions (a)Constant volume fraction
distribution, P1(σ) (b) Gaussian distribution, P2(σ). For the same degree of
polydispersity, compared to P1(σ) the distribution is wider for P2(σ).
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Figure 2.2: Graphical representation of the inverse power law potential (IPL),
Lennard-Jones potential (LJ), Weeks-Chandler-Andersen (WCA) potential
energy functions

The distributions of the particle sizes are continuous. This means each of
the N particles has a different radius. The form of the constant volume fraction
distribution is given by [46],

P1(σ) =
A

σ3
, σ ∈ [σmax, σmin] (2.1)

where A is the normalization constant and σmax and σmin are the maximum
and minimum values of particle diameter. σmax and σmin values are given in
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Table.2.1. The degree of polydispersity is quantified by [46] the normalized root
mean square deviation

PDI =
√
<σ2>−<σ>2

<σ>

where
〈
..
〉

defines the average of the particle size distribution.
The Gaussian distribution is given by

P2(σ) =
1√
2πδ2

exp
−(σ−<σ>)2

2δ2 (2.2)

where δ is the standard deviation. In this distribution we consider σmax/min =〈
σ
〉
± 3δ. The degree of polydispersity is quantified by,

PDI =
√
<σ2>−<σ>2

<σ>
= δ

<σ>

For all the polydisperse systems the particle sizes are chosen such that < σ >=∫
P (σ)σdσ = 1 and is kept as the unit of length for all the systems studied here.

Table 2.1: Details of the size distributions, constant volume fraction and
Gaussian, for different degrees of polydispersity PDI=

√
<σ2>−<σ>2

<σ>
. The

maximum, σmax, and minimum σmin, values of the diameter of the particles.
The volume fraction η is also given showing an increase in η with degree of
polydispersity.

Distribution PDI % σmax σmin ∆σ η
P1(σ) 5% 1.1 0.92 0.18 0.53

10% 1.21 0.85 0.36 0.54
15% 1.34 0.8 0.54 0.56

P2(σ) 5% 1.15 0.85 0.3 0.53
10% 1.3 0.7 0.6 0.54
15% 1.45 0.55 0.9 0.56

The three different interaction potentials studied here are the inverse power
law (IPL) potential, Lennard-Jones (LJ) potential and its repulsive counterpart,
the Weeks-Chandeler-Andersen (WCA) potential. Fig.2.2 illustrates the graph-
ical representation of the three potential energy functions.

The inverse power law potential (IPL) between two particles i and j is given
by, [46, 47].

U(rij) =




ϵij(

σij

rij
)12 +

∑2
l=0 c2l(

rij
σij

)2l, (
rij
σij

) ≤ xc

0, (
rij
σij

) > xc
(2.3)

The constants c0, c2 and c4 are selected such that the potential becomes contin-
uous up to its second derivative at the cutoff xc = 1.25σij.
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The LJ potential between the two particles i and j is described using trun-
cated and shifted LJ potential;

U(rij) =




U (LJ)(rij ;σij , ϵij)− U (LJ)(r

(c)
ij ;σij , ϵij), rij ≤ r

(c)
ij

0, rij > r
(c)
ij

(2.4)

where U (LJ)(rij ;σij , ϵij) = 4ϵij [(
σij

rij
)12 − (

σij

rij
)6]. The cutoff for the LJ system is

r
(c)
ij = 2.5σij and for the WCA system is r

(c)
ij = 21/6σij . The interaction strength

between two particles i and j is ϵij = 1.0. σij =
(σi+σj)

2 , where σi is the diameter of
particle ‘i’ and it varies according to the system. Length, temperature, and times are
given in units of < σ >, ϵij and

(
m<σ>2

ϵij

) 1
2 respectively.

2.1.2 Pinned system

We have used atomistic models that are simulated with two-component mixtures of
classical particles (larger “A” and smaller “B” type). Particles of type i interact with
those of type j with pair potential, u(rij), where r is the distance between the pair.
The shifted and truncated Lennard-Jones (LJ) potential form is described in Eq. 2.4.

We have used the Kob-Andersen model[13] and performed constant volume and
constant temperature (Nosé-Hoover thermostat and velocity rescaling) molecular dy-
namics simulation (NVTMD). We use σAA and ϵAA as the units of length and energy,
respectively, setting the Boltzmann constant kB = 1. We have used reduced time unit
in terms of

√
mAσ2

AA
ϵAA

and masses of both types of particles are taken to be the same
(mA = mB, set equal to unity). We have used 80% of A particles and 20% of B parti-
cles with the diameter σAA=1.0, σAB=0.8 and σBB=0.88. The interaction strengths
between the particles are ϵAA=1.0, ϵAB=1.5 and ϵBB=0.5.

In a pinned system, a fraction of particles are artificially pinned at their positions
in an equilibrated liquid. For the study of the pinned system, we use the Kob-Andersen
80:20 binary Lenard-Jones mixture[13]. The following pinning procedure is applied to
create the pinned system. The pinned particles are chosen randomly from an equi-
librium configuration of the KA system at the target temperature[48, 49]. In this
process, the ratio of the two types of particles in the pinned state remains the same
as the origin system (80:20). This has been checked after the pinning process. Note
that the two pin particles can’t be close to each other. The Nosé-Hoover thermostat is
used to simulate NVT molecular dynamics in a cubic box with N number of particle.

We have also worked on a system known as a high-mass system for this thesis.
In this case, instead of directly pinning the positions of the particles in this system,
we increased the fraction of particle mass to the level where high-mass particles are
unable to move during a short period. It acts like a pinned system as a result. This
was achieved by applying a significant amount of mass to these particles, limiting their
motion, and thus immobilizing them. At a long time interval, the high-mass particles
eventually overcame their limitations, resumed their normal motion, and exhibited
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regular Kob-Anderson (KA) system behavior.
A simple tree of system details

80:20 KA model system

Bigger A particle (NA)

Mobile A particle (N1)

NA × (1− c)

Pinned A particle (N3)

NA × c

Smaller B particle (NB)

Mobile B paricle (N2)

NB × (1− c)

Pinned B particle (N4)

NB × c

where,
Number of mobile particle = M = N1 +N2 = (1-c)N
Number of pinned particle = P = N3 +N4 = cN
Total number of particle = N = M+P = N1 +N2 +N3 +N4.

After providing an overview of the simulation model, it is important to know the
essential terminologies and their corresponding calculation methods. These terminolo-
gies play a crucial role in understanding and analyzing the simulated system.

2.2 Calculation of dynamic properties

The dynamics of supercooled liquids are calculated using a variety of techniques. These
techniques offer insightful information about the behavior and motion of particles
within the liquid. In this section, we’ll look at some of the popular techniques for
analyzing the dynamics of supercooled liquids.

2.2.1 Relaxation time calculation from overlap function

The overlap function (q(t)), a two-point time (t) correlation function of local density,
ρ(r, t), is used in the current thesis to study dynamics.

q(t) ≡
〈∫ ∫

δr⃗ρ(r⃗, t0)ρ(r⃗, t+ t0)
〉

=
〈 N∑

i=1

N∑

j=1

δ(r⃗j(t0)− r⃗i(t+ t0))
〉 (2.5)

Separating the overlap function into “self” and “collective” terms:

q(t) =
〈 N∑

i=1

δ(r⃗i(t0)− r⃗i(t+ t0))
〉
+
〈 N∑

i=1

∑

j ̸=i

δ(r⃗j(t0)− r⃗i(t+ t0))
〉

(2.6)
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The self-part of the total overlap function ignores the terms in the double summa-
tion with the value i ̸= j. It has been shown in the past that it is a good approximation
of the full overlap function. Consequently, the overlap function’s self-component can
be expressed as[2],

q(t) ≈
〈 N∑

i=1

δ(r⃗i(t0)− r⃗i(t+ t0))
〉

(2.7)

Furthermore, ω(x), a window function that defines the condition of “overlap” be-
tween two particle positions separated by a period t, approximates the δ function for
numerical computation.

q(t) =
1

N

N∑

i=1

⟨ω(|ri(t)− ri(0)|)⟩ , (2.8)

The function ω(x) = 1 if 0 ≤ x ≤ a otherwise ω(x) is 0. Based on Eq. 2.8, the
selection of the cutoff parameter changes the overlap function’s value in simulation.
This parameter has been selected to treat particle positions that are separated by
small amplitude vibrational motion as identical. The parameter “a” (cutoff radius)
is usually specified as 0.3 or 0.5, a value that is somewhat greater than the cage’s
dimensions. The overlap function q(t) is illustrated in Fig.2.3.

Figure 2.3: Illustrating the definition of the “overlap” function q(t). Adapted
from ref. [26].

We have calculated the relaxation times obtained from the decay of the overlap
function q(t), where q(t = τα, T )/N = 1/e. Here, N is the number of particles in
the system, and τα denotes the time it takes to relax at a particular temperature
T. For each temperature under consideration, we calculate the relaxation time τα

by examining the overlap function’s decay behavior. The typical timescale at which
the system experiences significant relaxation and achieves a new equilibrium state is
represented by this relaxation time. Regarding the dynamics and relaxation procedures
in the supercooled liquid, it offers useful information.
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2.2.2 Mean square displacement (MSD)

The MSD is an important tool for investigating the dynamics and motion of parti-
cles in a supercooled liquid. It provides a numerical analysis of the displacements of
the particles and can reveal important details regarding the diffusion behavior and
relaxation processes of the system. The MSD is defined as the average of the squared
displacements of particles from their initial positions. Its mathematical formula is as
follows:

MSD =
〈
(∆r)2

〉
=
〈
(r(t)− r(0))2

〉
=

1

N

N∑

i=1

(r(t)− r(0))2 (2.9)

where N represents the total number of particles, r(t) represents the position of a
particle at time t, and r(0) represents the position of a particle during the initialization
process.

The particle velocity can be used to directly determine the mean-square displace-
ment.

(∆r)2 = (v(t)dt)2 = v(t)2dt2 (2.10)

where v(t) is the particle’s velocity at time t. The MSD for the particle will be,

MSD =< (∆r)2 >=

∫ t

0
dt′
∫ t

0
dt” < v(t′)v(t”) > (2.11)

where the particle’s velocities at times t’ and t” are denoted by v(t′) and v(t”), re-
spectively.

2.2.3 Non Gaussian parameter

The first approximation self-part of the Van-Hove correlation function (Gs(r, t) =
1
N ρ
∑

i

〈
δ(r − [ri(t) − ri(0)])

〉
, where ri(t) is the position of particle i at time t, N is

the total number of particles, ρ is the particle number density, and < ... > denotes an
ensemble average over various particle trajectories) has a Gaussian form in the context
of supercooled liquids, but deviations from this form at intermediate times have been
seen in simulations of liquids that form glass and are believed to reflect the presence of
dynamical heterogeneity [50, 51](Shown in Fig.2.4). The non-Gaussian parameter α2

can be used to describe such discrepancies; in other-word α2 is a measure of the particle
displacement distribution’s divergence from Gaussian behavior (Shown in Fig.2.4). It
is frequently used to describe the dynamic characteristics of liquids that undergoes
supercooled close to the glass transition.

α2(t) =
3
〈
r4(t)

〉

5
〈
r2(t)

〉2 − 1 (2.12)
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where
〈
∆r2

〉
is the second moment (mean square displacement) of the distribution,

while
〈
∆r4

〉
is the fourth moment of the particle displacement distribution.

Figure 2.4: Left side Figure - Solid line: 4πr2Gs(r, t) of the A particles at t
= 155.5 at T= 0.4510. Dashed line: Gaussian approximation calculated using
the measured

〈
r2(t)

〉
for the same time. Right side Figure - (a) Mean

square displacement
〈
r2(t)

〉
of the A particles vs time for several values of T.

(b) Non-Gaussian parameter α2(t) vs time for the same values of T as in (a).
Figures are adapted from ref. [52].

The relaxation dynamics in supercooled liquids slow down as the temperature
approaches the glass transition temperature. As a result, the particle displacement
distribution deviates more and more from Gaussian behavior. This non-Gaussian
behavior is captured by the α2 parameter, which also provides information about the
system’s structural and dynamic heterogeneities.

A positive value of α2 suggests that the particle displacement distribution is more
dispersed than a Gaussian distribution and has heavy tails. This indicates the presence
of dynamic heterogeneities, where some liquid regions show slower relaxation dynamics
than others. A negative α2 value, on the other hand, predicts a more peaked distri-
bution and a higher level of cooperativity in the dynamics.

For the time scale at which a particle’s velocity is ballistic, α2 = 0. After entering
the time scale of the β relaxation, α2 starts to rise. At a long time limit, the relaxation
time scale of α, α2 begins to decrease from αmax to zero. Cage breakage starts at the
point in time that αmax is reached [53].

The non-Gaussian parameter in supercooled liquids can be measured and analyzed
to help scientists better understand the complex behavior and structural properties of
supercooled liquid close to the glass transition.

2.3 Calculation of static properties: Radial dis-

tribution function

In statistical mechanics and molecular dynamics simulations, the radial distribution
function (RDF), also known as the pair correlation function, is an important concept.
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It is used to describe how the particles in a system are distributed geographically. The
RDF calculates the probability of discovering a particle at a particular distance “r”

from a reference particle [10, 54]. Understanding a system’s structure and interactions
requires knowing the local density and configuration of particles surrounding a central
particle. Radial distribution function is the average number density of particles at a
distance r from a reference particle, normalized by the bulk density of the system. It
is denoted as g(r) and express as;

g(r) = [ρ(r)]/[ρbulk] (2.13)

where ρ(r) denotes the number density of particles that are r away from the reference
particle and ρbulk denotes the system’s overall number density. Often, computer mod-
els or experimental measurements are used to derive the RDF. In simulations, it is
computed by accumulating the particle-particle distances in the system and dividing
them into radial shells. To produce a smooth RDF curve, the number of particles
in each shell is then averaged over a large number of configurations. A schematic of
how the radial distribution function is calculated from particle position and the radial
distribution function at different temperatures is shown in Fig.2.5.

1 2 3 4 5 6
r

0

1

2

3

4

5

g
(r

)

High T
Low T

Figure 2.5: (Left) A schematic of how the radial distribution function is
calculated from particle position. Picture taken from Wikipedia. (Right) Radial
distribution function at 2 different temperatures. As the temperature decreases,
the peak height of g(r) increases.

Consider a system of N particles that are in thermal equilibrium with a heat bath
at temperature T (let us define β = 1

kBT , where kB is a Boltzmann constant) and
are contained in volume V (for an average number density ρ = N/V ). The canonical
ensemble, which describes the statistical distribution of particles in equilibrium with
the heat bath, provides the probability of a specific configuration of the particles.
The probability of a configuration, according to the canonical ensemble (N,V,T), is
inversely proportional to the corresponding energy’s(U(r1, r2..., rN )) Boltzmann factor
[54]:

P (r1, r2, ...., rN ) =
e−βU(r1,r2,...,rN )

ZN
(2.14)

where configurational integral ZN can be written as,
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ZN =

∫
e−βU(r1,r2,...rN)dr1, dr2, ...drN

=

∫
....

∫
dr2, ...drN = V N (If VN = 0)

(2.15)

Here, r1, r2, ..., rN is a particle coordinate. We can write the probability that particle
1 is in the volume dr1 about r1 and particle 2 is in dr2 about r2 as

P2dr1dr2 =
e−βUdr3, ..., rN

ZN
dr1dr2 (2.16)

The probability of finding n particles in the system with coordinates in the volume
element drn is given by the amount ρ

(n)
N (rn)drn, irrespective of the positions of the

remaining particles and irrespective of any momenta.

ρ
(n)
N (rn) =

N !

(N − n)!

∫
e−βUNdr(N−n)

ZN
(2.17)

While the low-order particle distribution functions, in particular, the pair den-
sity ρ

(2)
N (r1, r2), are frequently sufficient to calculate the equation of state and other

thermodynamic properties of the system, the particle densities and the closely related
equilibrium particle distribution functions, defined below, provide a complete descrip-
tion of the structure of a fluid. The n-particle density is defined as follows:

∫
ρ
(n)
N (rn) drn =

N !

(N − n)!
(2.18)

Thus,

∫
ρ
(1)
N (r)dr = N (2.19)

A uniform fluid’s single-particle density is therefore the same as its total number
density:

ρ
(1)
N (r) =

N

V
= ρ (uniform fluid) (2.20)

We are aware from Eq. 2.15 that in the exceptional situation of an ideal, uniform
gas, ZN = V N . The pair density is as a result

ρ
(2)
N = ρ

(
1− 1

N

)
(ideal gas) (2.21)

The word 1/N appears in Eq. 2.21 reflated the fact that in a system with a fixed
number of particles, the probability of finding a particle in the volume element dr1,
provided that another particle is in the element dr2, is proportional to (N − 1)/V

rather than ρ. In terms of the associated particle densities, g
(n)
N (rn) defines the n-

particle distribution function.
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g
(n)
N (rn) =

ρ
(n)
N (r1, . . . , rn)∏n

i=1 ρ
(1)
N (ri)

(2.22)

For a homogeneous system which reduces as,

ρng
(n)
N (rn) = ρ

(n)
N (rn) (2.23)

The degree to which a fluid’s structure deviates from pure randomness can be
determined by its particle distribution functions. If the system is also isotropic, the
pair distribution function g

(2)
N (r1, r2) is a function of the separation r12 = |r2 − r1|

and is, therefore, more commonly referred to as the radial distribution function and
represented as g(r). The ideal-gas limit, which can be calculated from Eq. 2.21 as
(1−1/N) ≈ 1, is reached when r is significantly larger than the interparticle potential’s
range. In a way that is particularly useful for future uses, the particle densities defined
by Eq. 2.17 are also expressible in terms of δ−functions of position. According to the
definition of a δ function,

< δ(r− r1) > =
1

ZN

∫
δ(r − r1) exp[−βUN (r1, r2, ..., rN )]drN

=
1

ZN

∫
...

∫
exp[−βUN (r1, r2, ..., rN )]dr2....dr

N
(2.24)

The particle label (here taken to be 1) does not affect the ensemble average in
Eq. 2.24, which is independent of the coordinate r. As a result, the contribution from
each particle is equal to N times the sum of the labels for all the particles. Then, it is
demonstrated by comparison with the definition Eq. 2.17

ρ
(1)
N (r) =

〈 N∑

i=1

δ(r− ri)
〉

(2.25)

This indicates the ensemble average of the particle density ρ(r) at the microscopic
scale. The average of the result of two δ− functions is similar.

〈
δ(r− r1)δ(r

′ − r2)
〉
=

1

ZN

∫
δ(r− r1)δ(r

′ − r2) exp[−βVN (r1, r2, ...., rN )]drN

=
1

ZN

∫
...

∫
exp[−βVN (r, r′, r3...., rN )]dr3....drN

(2.26)
which implies that

ρ
(2)
N (r, r′) =

〈 N∑

i=1

N∑

j=1

δ(r− ri)δ(r
′ − rj)

〉
(2.27)

Terms for which i = j must be removed are indicated by the prime on the summa-
tion sign. Finally, the radial distribution function can be represented by a useful δ−
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function. It is obvious from this that

〈 N∑

i=1

N∑

j=1

δ(r− rj + ri)
〉
=
〈 1

N

∫ N∑

i=1

N∑

j=1

δ(r′ + r− rj)δ(r
′ − ri)dr

′
〉

=
1

N

∫
ρ
(2)
N (r′ + r, r′)dr′

(2.28)

The system is homogeneous and isotropic if both properties are present.

〈 1

N

N∑

i=1

N∑

j=1

δ(r− rj + ri)
〉
=

ρ2

N

∫
g
(2)
N (r, r′)dr′ = ρg(r) (2.29)

The pair correlation function for a binary system gαβ(r) is given by,

gαβ(r) =
V

NαNβ

〈 Nα∑

i=1

Nβ∑

j=1,j ̸=i

δ(r − ri + rj)
〉

(2.30)

where V is the system’s volume, Nα, Nβ are the number of particles of the α and β

types, respectively, and ri is the ith particle’s position in the system.

In terms of partial rdf of M species, the effective one-component radial distribution
function, g(r), can be stated as follows.

g(r) =

M∑

α,β=1

χαχβgαβ(r) (2.31)

where the mole fractions of the particles α and β are denoted by χα and χβ , respec-
tively. This represents the global radial distribution or macroscopic radial distribution
function.

Particle wise radial distribution function (prdf) or microscopic radial
distribution function - One can learn more about the underlying particle interac-
tions, clustering behavior, and local structure of the system by representing the prdf as
a sum of Gaussians. To analyze and understand the system’s microscopic features, it
gives a quantitative description of the probability distribution of particles surrounding
the reference particle. The single particle radial distribution function in a single frame
can be expressed as a sum of Gaussians[55]. Mathematically, it can be represented as;

giαβ(r) =
1

4πρr2

∑

j

1√
2πδ2

exp−
(r−rij)

2

2δ2 (2.32)

where the variance of the Gaussian distribution is δ = 0.09. The discontinuous function
is transformed into a continuous one using the variance.
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2.3.1 Different parameter calculated from macroscopic ra-

dial distribution function, g(r)

We can learn important information about the structure of the system by examining
the RDF, and we can use this knowledge to calculate several thermodynamic quantities.
In this section, we use RDF as a tool to calculate a few thermodynamics parameters
which are shown below[10],

1. Energy calculation in the form of g(r)

First, a formula for the energy E in term g(r) is derived [10, 56], utilizing the
formula QN = ZN/N !Λ3N . Kinetic energy and potential energy combine to
make up the system’s total energy. Ū . It is written as,

E =
3

2
NkT + kT 2

(δ lnZN

δT

)
N,V

=
3

2
NkT + Ū

(2.33)

where,

Ū =

∫
...
∫
Ue−βUdr1....drN

ZN
(2.34)

Let’s assume that the N-body system’s total potential energy is pair-wise addi-
tive, as in,

UN (r1, r2, ..., rN ) =
∑

i<j

u(rij) (2.35)

where all molecular pair pairs are included in the summation, all thermodynamic
functions of the system can be expressed in terms of g(r). Under this assumption,
U is the product of N(N-1)/2 terms, each of which, when integrated with respect
to r1 through rN , produces the same result. As an example of these N(N-1)/2
terms in U using u(r12), we have

Ū =
N(N − 1)

2ZN

∫
...

∫
e−βU(r12)dr1....drN

=
N(N − 1)

2

∫ ∫
u(r12)

{∫ ...
∫
e−βUdr3...drN

ZN

}
dr1dr2

=
1

2

∫ ∫
u(r12)ρ

(2)(r1, r2)dr1dr2

=
N2

2V

∫ ∞

0
u(r)g(r, ρ, T )4πr2dr

(2.36)

Next comes to the entire energy E
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E

NkT
=

3

2
+

ρ

2kT

∫ ∞

0
u(r)g(r, ρ, T )4πr2dr (2.37)

The system’s per-particle potential energy can be precisely estimated using the
simulation Esim. The same thing can also be expressed using E2, the partial
radial distribution function.

E2 =
ρ

2

M∑

α,β=1

χαχβ

∫ ∞

0
4πr2Uαβ(r)gαβ(r)dr (2.38)

The energy in the efficient one-component treatment can be expressed as Eeff
2 .

Eeff
2 =

ρ

2

∫ ∞

0
4πr2U(r)g(r)dr (2.39)

This equation is called the Energy equation.

2. Pressure calculation in the form of g(r)
The pressure (P) is given by,

P = kT
(δ lnQ

δV

)
N,T

= kT
(δ lnZN

δV

)
N,T

(2.40)

where,

ZN =

∫ V 1/3

0
...

∫
e−βUdx1dy1dz1...dxNdyNdzN (2.41)

We alter the integration variables such that the limits become constants and U
becomes an explicit function of V before differentiating ZN with respect to V.
The new variables should be x

′
1, y

′
1, etc.

xk = V 1/3x
′
k, etc. (2.42)

Then

ZN = VN

∫ 1

0
...

∫ 1

0
e−βUdx

′
1....dz

′
N (2.43)

U =
∑

1≤i<j≤N

u(rij) (2.44)

and

rij = [(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2]1/2

= V 1/3[(x
′
i − x

′
j)

2 + (y
′
i − y

′
j)

2 + (z
′
i − z

′
j)

2]1/2
(2.45)
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Therefore,

(δZN

δV

)
N,T

= NV N−1

∫ ∞

0
...

∫ ∞

0
e−βUdx

′
1....dz

′
N

− V N

kT

∫ ∞

0
...

∫ ∞

0
e−βU

(δU
δV

)
dx

′
1.....dz

′
N

(2.46)

where,

(δU
δV

)
=

∑

1≤i<j≤N

du(rij)

drij

drij
dV

=
∑

1≤i<j≤N

rij
3V

du(rij)

drij
(2.47)

We now transform back to the original variables x1, ...., zN after performing the
differentiation with respect to V. Also take note of the N(N-1)/2 identical term
that results from integrating over the sum. As a result, we eventually get

(δ lnZN

δV

)
N,T

=
N

V
− 1

6V kT

∫ ∫

v
r12

du(r12)

dr12
ρ(2)(r1, r2)dr1dr2 (2.48)

This, when entered into the Eq. 2.40 produces

P

kT
= ρ− ρ2

6kT

∫ ∞

0
ru

′
(r)g(r)4πr2dr (2.49)

This equation is called the pressure equation.

3. Pair excess entropy (S2) in the form of g(r)
The pair excess entropy can be estimated using the radial distribution function
by employing methods such as the Kirkwood-Buff theory [57] or the Ornstein-
Zernike equation [58], which relate the structural information provided by the
RDF to the thermodynamic properties of the system.

The Kirkwood-Buff [57] theory relates the excess entropy of mixing to the par-
tial correlation functions, which can be derived from the RDF. By integrating
the partial correlation functions over all distances, the pair excess entropy con-
tribution can be obtained.

The Ornstein-Zernike equation [58], in combination with the radial distribu-
tion function, provides a framework for calculating the direct correlation func-
tion. From the direct correlation function, the excess entropy can be determined
through an integration procedure.

Following Kirkwood expansion the per particle excess entropy of a liquid can be
written in terms of two body and higher order correlations as[57],

Sex = S2 + S3 + ... (2.50)

where Sn is the entropy due to n-body correlation. Sex can also be calculated
via thermodynamic integration as,
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Sex(β
′
) = β

′〈
U
〉
−
∫ β

′

0
dβ
〈
U
〉

(2.51)

where
〈
U
〉

is the per particle potential energy. The potential energy in terms
of g(r) is given Eq. 2.36. Let us now assume that the system is such that there
are only two-body correlations. This will imply that g(r) = exp(−βu(r)). The
average potential energy per particle level can now be written as,

〈
U
〉
= 2πρ

∫ ∞

0
u(r) exp(−βu(r))r2dr (2.52)

Using Eq.2.52, we will go from Eq.2.51 to Eq.2.50. First we will put the value
of
〈
U
〉

from Eq.2.52 into Eq.2.51. Energy is in 2 - body correlation so now Sex

due to 2-body correlation will be

S2 = 2πρ
[ ∫ ∞

0
β∗u(r) exp(−β∗u(r))r2dr −

∫ β∗

0
dβ

∫ ∞

0
u(r) exp(−βu(r))r2dr

]

(2.53)

First term of Eq.2.53 can be written as
∫ ∞

0
β∗u(r) exp(−β∗u(r))r2dr

=

∫ ∞

0
(−) ln[exp(−β∗u(r))] exp(−β∗u(r))r2dr

= −
∫ ∞

0
ln[g(r)]g(r)r2dr

= −
∫ ∞

0
g(r) ln[g(r)]r2dr

(2.54)

as exp(−β∗u(r)) = g(r)

If we integrate the second term of Eq.2.53 for the β variable then we get as

−
∫ β∗

0
dβ

∫ ∞

0
u(r) exp(−βu(r))r2dr

= −
∫ ∞

0

[
u(r)

−1

u(r)
exp(−βu(r))

]β∗

0
r2dr

=

∫ ∞

0

[
exp(−βu(r))

]β∗

0
r2dr

=

∫ ∞

0

[
exp(−β∗u(r))− 1

]
r2dr

=

∫ ∞

0

[
g(r)− 1

]
r2dr

(2.55)

Now Eq.2.53 can be rewritten using Eq.2.54 and Eq.2.55 as
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S2 = 2πρ
[
−
∫ ∞

0
g(r) ln[g(r)]r2dr +

∫ ∞

0

[
g(r)− 1

]
r2dr

]

= −2πρ
[ ∫ ∞

0
g(r) ln[g(r)]r2dr −

∫ ∞

0

[
g(r)− 1

]
r2dr

]

= −2πρ

∫ ∞

0

[
g(r) ln g(r)− (g(r)− 1)

]
r2dr

(2.56)

The above Eq. represents the effective one component excess entropy, also de-
noted as Seff

2 . The two-body excess is also known as the pair excess entropy.

The expression of two body excess entropy of the system for a binary system,S2,

S2 = −2πρ
∑

α

xα
∑

β

xβ

∫ ∞

0
r2dr{gαβ(r) ln gαβ(r)− (gαβ(r)− 1)} (2.57)

This equation is called the pair excess entropy equation.

2.4 Thermodynamic Properties

Here, we go over the process for examining the thermodynamic characteristics of su-
percooled liquids.

2.4.1 Ideal gas entropy

We can apply statistical mechanics to determine the entropy of an ideal gas. The
microstates of an ideal gas, which represent many possible configurations of the gas
particles, are closely related to its entropy. Free energy can be related to volume and
temperature using the Maxwell equation of thermodynamics as;

dF = PdV − SdT (2.58)

If an NVT ensemble is used, the volume will not change (dV = 0). Now that the
above equation has been reduced,

dF = −SdT

S = −dF/dT
(2.59)

Microstates that represent free energy are stated as;

F = −kBT lnZ (2.60)

where Z is the number of microstates corresponding to the macroscopic state of the
gas and kB is the Boltzmann constant. Using Eq. 2.59, 2.60, the entropy of an ideal
gas may now be directly related to its microstates.

Palak Patel 48 CSIR-NCL



PhD Thesis AcSIR

S = kB ln(Z) (2.61)

The positions and momenta pi of each particle determine the microstates in an ideal
gas. In the limit of an ideal gas, particles only have momentum and do not interact
with each other with any kind of potential. The ideal gas system’s total Hamiltonian
is written as;

H(pi) =
∑

i

pi
2mi

(2.62)

It is possible to write the partition function for the monodisperse ideal gas in a
d-dimensional system at temperature T (β = 1/kBT ) as;

Z(β) = ΠN
i=1

1

hd

∫
ddqid

dpi exp[−β
p2i
2mi

]

=
V N

hdN

{∫
ddpi exp[−β]

p2

2m

}N

=
V N

ΛdN

(2.63)

where Λ =
√

βh2

2πm is the de Broglie thermal wavelength and h is the Planck constant.
The partition function is now expressed for the indistinguishable particles as;

Z =
1

N !

V N

ΛdN
(2.64)

If d=3 (3-dimensional), then Sid, from Eq. 2.61 and 2.64 can be represented as
follows:

Sid = lnV +
3

2
ln

2πmT

h2
− lnN +

5

2
(2.65)

The binary system (which contains particles of types A and B) is given to a similar
analysis.

Z(β) =
1

NA!NB!

V NA+NB

ΛdNA
A ΛdNB

B

(2.66)

For the binary system in three dimensions, the ideal gas entropy is expressed as;

Sid

kB
= N ln(V )−NA lnNA −NB lnNB − 3NA ln ΛA − 3NB ln ΛB +

5

2
N (2.67)

If the particles are separated into “M0” distinct species such that N =
∑M0

i=1Ni,
then the ideal gas entropy per particle can be expressed as follows;

Sid =
5

2
− ln(ρ) +

3

2
ln
(2πT

h2

)
+

1

N
ln

N !

ΠM0
i=1Ni!

(2.68)
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This thesis includes work on pinned systems (details of pinned systems are provided
in the section 2.1.2). If the system partition function is pinned, it is written as;

Z =
V N1

N1!Λ
3N1
1

V N2

N2!Λ
3N2
2

= Z1Z2

(2.69)

where N1, N2 represent the number of moving particles of type A and B, respectively,
and N3, N4 represent the number of pinned particles of type A and B, respectively.
Total mobile particle M = N1 +N2. In 3D, the ideal gas (Sid) can be expressed as,

MSid =
d

dT
T
[
M ln(V )−N1 ln Λ

3
1 −N2 ln Λ

3
2 − ln(N1!)− ln(N2!)

]
(2.70)

Since m3 = m4 for the pin system is so huge, Λ3 = Λ4 ≃ 0.

MSid = [M ln(V )− 3M ln Λ−
2∑

i=1

ln(Ni!)] +
3M

2

= M ln(V )− 3M ln Λ−
2∑

i=1

(Ni ln(Ni)−Ni) +
3M

2

=
3M

2
− 3M ln Λ +M(1− ln

M

V
)−

2∑

i=1

Ni ln
Ni

M

(2.71)

The ideal gas entropy for the pinned system is determined using the equation
mentioned above.

2.4.2 Excess entropy

The difference between total entropy and ideal gas entropy is known as excess entropy.
It stands for the extra entropy produced due to variations in the system’s behavior
that go beyond what an idealized model would predict. There are numerous ways to
calculate excess entropy; in this thesis, we have worked with three alternative methods.

1. Temperature-density integration - One way for calculating excess entropy
is the temperature-density integration method [59]. With respect to tempera-
ture and density, this approach integrates a thermodynamic quantity (internal
energy). These integrations can be used to calculate the excess entropy. The
entropy of an ideal gas is what is observed at high temperatures and low den-
sities. This Sid serves as a comparative benchmark for all subsequent state
point entropy calculations. When calculating alternative state point entropy, it
is possible to combine isothermal (Eq. 2.73) and isochoric (Eq. 2.74) pathways
while making sure that there are no phase transitions along the chosen path
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[59]. Temperature-density landscape is shown in Fig.2.6. The relations between
the thermodynamic quantities, internal energy (U), entropy (S), volume (V),
temperature (T), and pressure (P), are governed by fundamental principles and
equations in thermodynamics,

dU = TdS − PdV

dS =
(dU + PdV )

T∫
dS =

∫
dU

T
+

∫
PdV

T

(2.72)

We fix the temperature (T) and adjust the density (ρ) during the density inte-
gration procedure. During this integration, the system’s volume (V) shifts from
the beginning volume (V), which corresponds to a high temperature and low
density, to the target volume (V’). Another name for this procedure is energy
integration;

∫ T,V ′

T,V
dS =

∫ T,V ′

T,V

dU

T
+

∫ V ′

V

PdV

T

Sex(T, V
′)− Sex(T, V ) =

U(T, V ′)− U(T, V )

T
+

∫ V ′

V

P (V )

T
dV

(2.73)

We fix the density (ρ) and alter the temperature (T) while performing the tem-
perature integration. The system’s temperature (T) shifts from an initial tem-
perature (T) that corresponds to a high temperature and low density to a target
temperature (T’) during this integration. U is a function of T and V. Change
in volume (dV) = 0 at fixed density (ρ). Another name for this procedure is
pressure integration;

∫ T,V ′

T ′,V ′
dS =

∫ T ′

T

dU

T
+ 0

∫ T,V ′

T ′,V ′
dS =

∫ T ′

T

1

T

[( δU

δV ′

)
T
dV +

(δU
δT

)
V ′
dT
]

Sex(T
′, V ′)− Sex(T, V

′) =

∫ T ′

T

1

T

(δU
δT

)
V ′
dT

(2.74)

By addition of Eq. 2.73 and Eq. 2.74, we can obtain the excess entropy (Sex) as a
function of temperature and density, which provides insights into the additional
entropy beyond the ideal reference system caused by intermolecular interactions
and other deviations.

2. Temperature integration method - We investigate how excess entropy changes
as the system moves from infinite temperature (a very disordered state) to the
target temperature (a particular thermal state of interest) by doing the temper-
ature integration. The key benefit of this approach lies in its ability to capture
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Figure 2.6: Schematic diagram for thermodynamic (temperature - density)
integration. Adapted from ref. [60].

the thermodynamic effects connected with the system’s transition from highly
energetic, random configurations to a more defined and structured state at the
target temperature. It gives us insights into the system’s behavior and the func-
tion that temperature performs in controlling its entropy as well as the ability
to quantify the change in excess entropy associated with this shift. The target
temperature (T’) is integrated thermodynamically from infinite temperature and
ends up at the following expression, which represents the calculation of excess
entropy:

Sex(β
′) = β′ < U > −

∫ β′

0
dβ < U > (2.75)

where < U > is the average per-particle potential energy of the system at the
desired temperature and β′ = 1

kBT ′ .

Integrating over-density in a pinned system is neither practical nor useful be-
cause the density is fixed or restricted. The system’s thermodynamic properties
can still be studied by integrating temperature, though. Therefore, temperature
integration becomes the proper way to compute the excess entropy in a pinned
system when density integration is not relevant. For a pinned system, excess
entropy is calculated as;

NSex = Sex(T
′, V )− Sex(T, V ) =

∫ T ′

T=∞

1

T

(δUN

δT

)
V
dT (2.76)

where the system is integrated from ∞ temperature (T) to target temperature
(T’). UN is the total system energy and can be expressed as;

UN = UPP + UMP + UPM + UMM

where UPP , UPM , UMP , UMM represent interaction energy between pin-pin (PP),
mobile-pin(MP), pin-mobile(PM), mobile-mobile(MM) particles. In the pinned
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system, the pin-pin particle has no interaction, hence UPP = 0. The only source
of energy for a pinned system is a moving particle, hence its new source of energy
will be;

UM = UMM + UMP + UPM (2.77)

Since UM represents the energy for a moving particle, the energy per particle will
be UM

M . The pinned system’s excess entropy is given by the following equation:

MSex(β
′) = β′ < UM > −

∫ β′

0
dβ < UM > (2.78)

The entropy caused by moving particles in a pinned system is given by the above
equation.

3. Two-phase thermodynamics (2PT) method - The two-phase thermody-
namics method for the calculation of excess entropy involves considering a two-
phase system, typically consisting of a gas phase and a liquid phase, in equilib-
rium at a given temperature and pressure. The density of states (DOS) of the
liquid phase can be used to calculate the thermodynamic quantities in the two-
phase thermodynamics (2PT) technique. The distribution of possible states or
configurations in the system is represented by the DOS, which offers important
details on the energy levels and associated probability of the system. So we can
say that the complicated energy landscape and related thermodynamic behavior
are captured by the 2PT technique by utilizing the DOS of the liquid phase.

In the 2PT method, the phonon in the solid-like DOS was taken as a non-
interacting harmonic oscillator, just like in the Debye model, to compute the
thermodynamic quantities. On the other hand, gas-like DOS was described as
a low-density, analytically determined hard-sphere fluid. Lin et al. showed that
the LJ fluid’s thermodynamic properties can be calculated with high accuracy
throughout a wide range of thermodynamic state points with a very short MD
trajectory using the 2PT description. Later, Lin et al. used the 2PT approach
to calculate the binary fluid’s entropy. Here, we give a brief overview of how
DOS breaks down in 2PT. Nevertheless, for a thorough discussion of 2PT, we
direct the reader to the original articles. The mass-weighted atomic spectral
densities, given as, can be used to calculate the density of state function, g(ν).

g(ν) =
2

kBT

N∑

j=1

3∑

k=1

mjs
k
j (ν) (2.79)

where k stands for the direction in Cartesian coordinates, skj (ν) stands for the
atomic spectral densities, and mj is the mass of the jth atom.
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skj (ν) = lim
τ→∞

|
∫ τ
−τ ν

k
j (t)e

−i2πνtdt|2
2τ

(2.80)

where νkj (t) stands for the jth atom’s velocity component in the kth direction.
The velocity auto-correlation function (VACF) ckj (t) Fourier transform can be
used to calculate the atomic spectral density, or skj (ν).

skj (ν) = lim
τ→∞

∫ τ

−τ
ckj (t)e

−i2πνtdt (2.81)

ckj (t) is determined by:

ckj (t) = lim
τ→∞

1

2τ

∫ τ

−τ
νkj (t+ t′)νkj (t

′)dt′ (2.82)

Eq. 2.79 can be rewritten as follows:

g(ν) =
2

kBT
lim
τ→∞

∫ τ

−τ

N∑

j=1

3∑

k=1

mjc
k
j (t)e

−i2πνtdt (2.83)

In 2PT formalism, g(ν) can be divided into solid and gas-like components, as we
discussed earlier. Lin et al. presented a self-consistent fluidity factor, f, which
determines the degree of freedom shared by the solid and gas components. This
factor is based on the diffusivity of the system relative to hard-sphere gas at
the same density. It is possible to draw the link between f and dimensionless
diffusivity,

2∆−9/2f15/2 − 6∆−3f5 −∆−3/2f7/2 + 6∆−3/2f5/2 + 2f − 2 = 0 (2.84)

Dimensionless diffusivity constant ∆, based on the characteristics of the mate-
rial.

∆(T, ρ,m, g0) =
2g0
9N

( 6
π

)2/3(πkBT
m

)1/2
ρ1/3 (2.85)

where the DOS of the system at zero frequency is given by g0 = g(0). A hard-
sphere diffusive model can be used to calculate the DOS in the gas-like diffusive
component using f from Eq. 2.84 and 2.85

gg(ν) =
g0

1 +
[
πg0ν
6fN

]2 (2.86)

One can use the equation to determine the solid-like DOS, gs(ν), given the DOS
in the gas-like component.

g(ν) = gg(ν) + gs(ν) (2.87)
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Any thermodynamic quantity, A, can be computed using the relevant weight
function after DOS has been decomposed.

A = β−1
[ ∫ ∞

0
gg(ν)W g

Adν +

∫ ∞

0
gs(ν)W s

Adν
]

(2.88)

The definition of the weight function for entropy in the solid, W s
S , and gas-like,

W g
S , component

W s
S(ν) = WHO

S (ν) =
βh̄ν

exp(βh̄ν)− 1
− ln[1− exp(−βh̄ν)] (2.89)

where h is the Plank constant, h̄ = h/(2π), and β = 1/kBT .

W g
S(ν) =

1

3

SHS

k
(2.90)

where SHS stands for the hard sphere’s entropy. The total entropy of the system
can be expressed as, using Eqs. 2.87, 2.90

Stotal = SS + Sg (2.91)

2.4.3 Vibrational entropy

Vibrational entropy can be calculated by approximating harmonically with respect to
a local minimum [2, 61, 62, 63]. To obtain the vibrational density of states (DOS), we
diagonalize the Hessian that is computed (see section 2.5). The following calculations
are used to calculate Svib after finding the DOS. The vibrational DOS is made up of
a variety of vibrational energies or frequencies. It displays the number of vibrational
states that are present for each unit of frequency or energy interval. The DOS is
obtained by analyzing the eigenvalues obtained by diagonalizing the Hessian matrix.
The eigenvalues are typically transformed into frequencies by using the proper scaling
factors. We may determine the relationship between entropy, free energy, and partition
function using the equations 2.59 and 2.60.

S =
−dF

dT
= −kBT lnZ

Svib =
−dFbasin

dT
= −kBT lnZbasin

(2.92)

Free energy (F) and Z are expressed in terms of the basin in the case of vibrational
entropy. Stillinger and Weber’s work on the inherent structure formalism established
the idea of a basin in the potential energy surface. A local minimum on the potential
energy surface, which reflects a stable configuration of atoms in a system is referred to
as the inherent structure. Stillinger and Weber offered a framework for understanding
the energy landscape and the idea of basins by describing the possible energy landscape
in terms of these inherent structures. A basin is made up of a collection of locations
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that, via the sharpest fall, map to the same minimum, which is the inherent structure
energy IS.

Basin partition function and Basin entropy
The canonical partition function of a harmonic oscillator in one dimension with fre-
quency, ‘ωi’ and mass, ‘m’ is provided by;

zharm(ω, T, V ) =

∫
dpdq

h
exp(−βp2

2m
− βmω2q2

2
)

=
1

h3N

∫
d3Np exp

(−βp2

2m

)
×
∫

d3N−3q exp
(−βmω2

i q
2

2

)∫
d3q

=
1

h3N

(2mπ

β

) 3N
2
VΠ3N−3

i=1

( 2π

βmω2
i

) 1
2

= Λ−3NVΠ3N−3
i=1

( 2π

βmω2
i

) 1
2

(2.93)
Therefore, the basin partition function can be expressed as follows using harmonic

approximation:

zbasin(eIS , N, V, T ) = exp(−βeIS)
[
Π3N−3

i=1

( 2π

βmω2
i

) 1
2
]
V
(2πm
h2β

) 3N
2

= exp(−βeIS) exp(−βfbasin)

(2.94)

The distributions of the inherent structure (IS) energy, (P(eIS , T)), for various
temperatures, have been demonstrated by Sciortino et al. [64] to fall on a master
curve in the low-temperature zone. This suggests that at low temperatures, there is
no temperature dependence through eIS . With the contribution from eIS ignored,
basin-free energy can be expressed as

βfbasin = − ln zharmonic

βfbasin = −3N

2
ln
(2πm
h2β

)
− ln(V )− 1

2

3N−3∑

i=1

ln
( 2π

βmω2
i

) (2.95)

It is possible to write the basin entropy, Sbasin, as,

NSvib = Sbasin = −dfbasin
dT

= −3N

2
ln
(2πm
h2β

)
+ ln(V ) +

1

2

3N−3∑

i=1

ln
( 2π

βmω2
i

)
− 3

2
+ 3N

(2.96)

In case of pinned system we consider of a weakly vibrating system (IS) around an
inherent structure. The potential energy can be approximated well by the following
formula, if we indicate by ri the displacement of the ith particle from its point in the
IS.
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U ≈ UIS(S) +
1

2

M∑

i,j

δ2U

δriδrj
δriδrj (2.97)

In the pinned system it is crucial to understand that in inherent structure calcu-
lation, we minimize the mobile particle only, pinned particle coordinate remain same.
It is important to understand that the coordinates of pinned particles should not be
considered, just the derivative of the potential energy with respect to the coordinates
of mobile particles are considered. However, it stands to reason that U will be influ-
enced by the positions of pinned and mobile particles. The Hessian matrix is therefore
3M × 3M in size. The harmonic vibrational entropy of the given inherent structure
with the given pinned particle configuration can be represented as by introducing the
eigenvalues λ1, λ2....λ3M of the Hessian.. For pin system m3 = m4 is so large that
Λ3 = Λ4 ≃ 0, and only 3M frequencies are present. In the pinned system 3 non-zero
frequencies are not present.

zharm(ω, T, V ) = −Λ3M
3M∏

i=1

( 2π

βmω2
i

) 1
2 (2.98)

where the number of mobile particles M = (N1 + N2). N1 and N2 represent the
number of mobile A and mobile B particles, respectively.

βfbasin = − ln zharmonic,

=
3M

2
ln(

2π

h2β
)− 1

2

3M∑

i=1

ln(
2π

βmω2
i

)
(2.99)

The basin entropy, Sbasin can be written as,

MSvib = Sbasin = −δfbasin
δT

= −3M

2
ln(

2π

h2β
) +

1

2

3M∑

i=1

ln(
2π

βmω2
i

) + 3M

= 3M(1− ln Λ) +
1

2

3M∑
ln

2π

βmω2
i

(2.100)

Eq. 2.100 is used to calculate the Svib entropy for the pinned system.
Anharmonic vibrational entropy Anharmonic vibrational entropy is the term

used to describe how anharmonic vibrations affect a system’s total entropy. Anhar-
monic vibrations contain deviations from harmonic behavior and higher-order terms in
the potential energy function, in contrast to harmonic vibrations, which are modeled
by straightforward harmonic oscillators.

In general, the anharmonic potential energy variables affecting the system’s Hamil-
tonian are taken into account, and their effects on the vibrational modes are taken into
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account when calculating the anharmonic vibrational entropy. For the bulk system,
Refs. [61, 65] discuss this method in detail. The anharmonic vibrational entropy for
pinned systems is being determined in this section since it was employed in this thesis
to calculate the anharmonic vibrational entropy for pinned systems.

Uanh(c, T ) = U(T )− UIS(c, T )−
3

2
(1− c)NT (2.101)

where U(T) and UIS(c, T ) stand for the pinned system’s inherent structure en-
ergy and equilibrium bulk potential energy, respectively. The energy of the harmonic
vibrations of (1-c)N mobile particles is the last term in Eq. 2.101. Uanh(c, T ) when
expanded around the value of T = 0 yields

Uanh(c, T ) =
∑

k=2

Ck(c)T
k (2.102)

where Ck(c) are coefficients independent of T. Because the system is harmonic in
the low-temperature limit, it should be noted that the sum begins at k = 2. The
anharmonic contribution on the vibrational entropy Sanh(c, T ) is given by

Sanh(c, T ) =

∫ T

0
dT ′ 1

T ′
δUanh(c, T

′)

δT ′ (2.103)

We have set Sanh(c, T = 0) to be equal to 0. When Eq. 2.102 is substituted in Eq.
2.103, we get

Sanh(c, T ) =
∑

k=2

k

k − 1
Ck(c)T

k−1 (2.104)

A numerical approach is used to assess Sanh, the anharmonic contribution to
the entropy. Conducting simulations to determine the anharmonic potential energy,
Uanh(c, T ), as a function of the system’s configuration, c, and temperature, T, is the
first stage. To find the coefficients Ck(c), Uanh(c, T ) is then fitted using a polynomial
function of T. For this fitting technique, the first two terms, C2(c) and C3(c), are often
used. The anharmonic contribution to entropy is related by the equation 2.104, which
is used to determine Sanh(c, T ). It should be noted that the sign of Sanh(c, T ) depends
on the signs of the coefficients Ck(c).

2.4.4 Configurational entropy

Configurational entropy and vibrational entropy make up the two main components
of the total entropy of a system. The number of independent or uncorrelated configu-
rations that a system can sample from the configuration space at a given density and
temperature is connected with the configurational entropy, denoted as Sc. The entropy
connected to the small oscillations of the system’s particles around their equilibrium
positions is accounted for via vibrational entropy. The configurational entropy, on the
other hand, accounts for the entropy connected with the numerous arrangements the
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particles can make in the configuration space while retaining the same energy.
By deducting the vibrational entropy (Svib) from the total entropy (Stotal), as

shown in the equation below, one can obtain the configurational entropy (Sc):

Sc = Stotal − Svib

= Sid + Sex − Svib

= lnV +
3

2
ln
(2πmT

h2

)
− lnN +

5

2
+ Sex −

3

2
ln
(2πm
h2β

)
− ln(V )

N
+

1

2N

3N−3∑

i=1

ln
( 2π

βmω2
i

)
+

3

2N
− 3

= ln(V )
[
1− 1

N

]
− ln(N !)

N
− 3

2
[1− 1

N
]− 1

2N

3N−3∑

i=1

ln
( 2π

βmω2
i

)
+ Sex

(2.105)

2.5 Hessian calculation

The Hessian matrix is a square matrix that contains the second-order partial deriva-
tives of a function with respect to its variables. The Hessian matrix is frequently used
in thermodynamics to examine the curvature and second-order characteristics of the
potential energy surface. The second derivatives of the two-body potential ujk with
respect to the coordinates of the particles j and k must be determined to build the
Hessian matrix. The definition of the Hessian matrix H is:

Hjk =
δ2u(rjk)

δrjδrk
(2.106)

and,
δ

δrj
≡ î

δ

δxj
+ ĵ

δ

δyj
+ k̂

δ

δzj
(2.107)

where (xj , yj , zj) are the particle j’s three-dimensional cartesian coordinates. The
Hessian is a 3N × 3N matrix in three dimensions for N particles.

rjk = [(xj − xk)
2 + (yj − yk)

2 + (zj − zk)
2](1/2)

δrjk
δxj

=
xj − xk
rjk

≡ xjk
rjk

δrkj
δxk

=
xk − xj
rjk

≡ −xjk
rjk

(2.108)

The first derivative is;

δu(rjk)

δrk
= î

δu

δxk
+ ĵ

δu

δyk
+ k̂

δu

δzk

î
δu(rjk)

δxk
= î

δrjk
δxk

δu(rjk)

δrjk
=

−î(xj − xk)

rjk

δu(rjk)

δrjk

(2.109)

By using the chain rule, the first amount in the previous formula was obtained.
We also came to the same conclusion for the y and z components. We may write by
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combining them and expressing them in a vector notation,

δ

δrk
u(rjk) = −δu(rjk)

δrjk
r̂jk (2.110)

The second derivative is currently,

δ

δrj

(
− δu(rjk)

δrjk
r̂jk

)
=
(
î
δ

δxk
+ ĵ

δ

δyk
+ k̂

δ

δzk

)(
− δu(rjk)

δrjk
r̂jk

)
(2.111)

here, we demonstrate details of the algebra for just the x component:

î
δ

δxj

(
− δu(rjk)

δrjk
r̂jk

)
=
(
î
δ

δxj

−δu

δrjk

)
⊗ r̂jk +

−δu

δrjk

(
î
−δ

δxj
⊗ r̂jk

)
(2.112)

where the tensor product of two vectors is represented by ⊗. The initial term is

(
î
δ

δxj

−δu

δrjk

)
⊗ r̂jk =

(
î
δrjk
δxj

δ

δrjk

−δu(rjk)

δrjk

)
⊗ r̂jk =

( îxjk
rjk

−δ2u

δ2rjk

)
⊗ r̂jk

= − δ2u

δ2rjk

(rjk
rjk

)
x−component

⊗ rjk
rjk

= − 1

r2jk

δ2u

δ2rjk
(rjk ⊗ rjk)x−component

(2.113)

The second expression is:

−δ

δrjk

(
î
δ

δxj
⊗ r̂jk

)
=

−δ

δrjk

(
î
δ

δxj
⊗ xkj î+ yjk ĵ + zjkk̂

rjk

)

=
−δu

δrjk

(
1

rjk
î⊗ î+ î

δ

δxj

(
1

rjk

)
⊗ rjk

)

=
−δu

δrjk

(
1

rjk
î⊗ î+ î

δrjk
δxj

δ

δrjk

(
1

rjk

)
⊗ rjk

)

=
−δu

δrjk

(
1

rjk
î⊗ î+

îxjk
rjk

−1

r2jk
⊗ rjk

)

= − 1

rjk

δu

δrjk
(I)x−component +

1

r3jk

δu

δrjk
(rjk ⊗ rjk)x−component

(2.114)
where, The 3× 3 identity matrix in a 3D system is defined as I = î⊗ î+ ĵ⊗ ĵ+ k̂⊗ k̂.
When the first and second terms are combined, the second derivative is

H(j, k) =
δ

δrj

δ

δrk
u (rjk)

=

(
− 1

r2jk

δ2u

δr2jk

1

r3jk

δu

δrjk

)
rjk ⊗ rjk − 1

rjk

δu

δrjk
I.

(2.115)
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2.6 Calculation of onset temperature

The onset temperature serves as a reference point for understanding and characteriz-
ing the temperature-dependent properties and transformations of a system, providing
insights into its thermal behavior and phase transitions.

The system’s thermodynamic and dynamic properties depart from its high-temperature
behavior when it cools a glass-forming liquid from high temperatures at Tonset. Vari-
ous dynamical and thermodynamical measurements exist for Tonset. The temperature
predicted by each method is not identical but lies in a similar range. In this thesis,
we discuss the two estimates method of onset T calculation. one based on inherent
structural energy and the other on excess entropy.

2.6.1 Tonset calculation from Inherent structure energy

The inherent structural energy of a system can be used to calculate the onset tem-
perature. The energy and configuration of a system at a local energy minimum on
the potential energy landscape are referred to as the system’s inherent structure. It
represents the system in a stable or metastable state. Usually, the change in inherent
structural energy with temperature is taken into account when calculating the onset
temperature[3]. The system explores higher energy levels as the temperature increases
and undergoes transitions or transformations. The temperature at which there is a
noticeable change or divergence in the inherent structural energy is known as the onset
temperature.

The onset temperature is calculated by running simulations or calculations at var-
ious temperatures and examining the system’s inherent structural energy at each one.
One can determine the temperature range at which major changes take place by track-
ing the inherent structural energy as a function of temperature. The inherent structure
energy is the potential energy evaluated at the local minimum of the energy reaching
from the configuration via the steepest descent procedure. As suggested earlier, [3]
the onset temperature is connected to the inherent structure energy. At high tempera-
tures, as the system is not influenced by the landscape properties, the average inherent
structure energy is almost temperature-independent. However, below a certain tem-
perature, where the landscape properties influence the system, the inherent structure
energy starts to decrease rapidly (Shown in Fig.2.7). Usually, the two different regimes
are fitted to two straight lines, and the point where these lines cross is identified as
the onset temperature, Tonset.

2.6.2 Tonset calculation from excess energy

The onset temperature can be found by plotting the excess energy and pairing excess
entropy as functions of temperature. The temperature at which these two curves cross
or meet is the onset temperature[1, 66]. The thermodynamic behavior of the system
has undergone a significant change or transition at this time. When the excess energy
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Figure 2.7: Temperature dependence on inherent structure energy(eIS). AT
high T, eIS is almost constant, and below a certain T, eIS start decreases
rapidly. Adapted from ref. [3]

and pair excess entropy curves intersect, the system’s thermodynamic behavior has
significantly changed.

The pair excess entropy describes the departure from perfect gas behavior in terms
of the pairwise interactions between particles, whereas the excess energy represents the
difference between the total energy of the system and the energy of the ideal gas state.
From the thermodynamics integration, Sex can be determined (details are provided in
section 2.4.2). Additionally, the Kirkwood expansion of the excess entropy per particle
of a liquid in terms of two body and higher-order correlations can be used to determine
excess entropy. This is shown in Eq. 2.50.

Many body correlation (∆S) has a negative effect on entropy at high T, whereas it
has a favorable effect when entropy starts to fill the cage at low T. ∆S = 0 represented
the onset T.
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Chapter 3

Effective structure of a system with
continuous polydispersity

“Research is creating new knowledge.”
- Neil Armstrong

3.1 Introduction

Most systems that can be found in nature are inherently polydisperse. Polydispersity
can be of different kinds like in size, in mass, and also in the shape of the particles.
Also, the type of polydispersity and the degree of it varies with systems. Polydispersity
brings variation in the properties of the material and there are specially designed con-
trolled experiments to create monodisperse particles[67, 68]. However, in some cases
polydispersity is a desirable property. The size polydispersity is one of the most com-
mon types and it has been found that systems beyond certain value of polydispersity,
known as the terminal polydispersity are good glass former [69, 70, 71, 72, 73, 46, 74].
It was shown that in a polydisperse system due to an increase in surface free energy,
the crystal nucleation is suppressed promoting glass formation [75]. Thus in study of
supercooled liquids, polydisperse systems play an important role.

In recent time, it has been shown that structure plays an important role in the
dynamics of glass forming supercooled liquids [76, 77, 78, 79, 80, 81, 82]. Since poly-
disperse systems are good glass former describing the structure of these systems be-
comes important. For a continuous polydisperse system, the number of species is
the number of particles in the system. In this case, describing the system’s partial
structure in terms of independent species becomes an impossible task. Thus it is com-
mon practice to treat a polydisperse system in terms of an effective one component
system[83, 84, 85, 86, 87] . However, it has been shown that we not only lose a large
deal of information of the system by pre averaging the structure, the properties of the
liquid thus predicted can also give spurious results[88, 89]. Truskett and coworkers[88]
have shown that for moderate polydispersity the thermodynamic quantities like the
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pair excess entropy obtained from the effective one component radial distribution func-
tion (rdf) predicts that with an increase in interaction the static correlation becomes
weaker thus predicting structural anomaly. The study showed that when the system is
expressed in terms of 60 pseudo neighbors and the excess entropy is calculated in terms
of the partial structure factors (radial distribution functions), this structural anomaly
disappears. Weysser et. al. while working with Mode coupling theory have shown that
for a polydisperse system, we need to provide information about the partial structure
factors to obtain the correct dynamics [89]. Ozawa and Berthier have highlighted the
fact that for a system with continuous size polydispersity the contribution from the
mixing entropy term diverges [90]. This makes the calculation of entropy and any
other dependent quantity ill-defined. They showed by calculating the inherent struc-
ture properties that when the position of the particles with similar sizes is exchanged,
the system stays in a similar basin. This modifies the vibrational entropy, which also
has the same mixing entropy term. The process allowed them to group particles into
a certain finite number of pseudo species leading to a finite value of the mixing en-
tropy. These studies thus emphasize the importance of describing the structure of a
polydisperse system in terms of the partial structure factors of the pseudo species.

The present study attempts to develop a general framework to describe the struc-
ture of a system having continuous polydispersity. As discussed before, for a system
with continuous polydispersity the number of species is the same as the number of
particles which makes it difficult to describe the structure. We also know that de-
scribing all the particles in terms of a single species does not work. So the aim of this
study is to describe the system in terms of M pseudo species such that the properties
of this system are the same as the original system. The questions that we ask are i)
Can we determine the minimum number of pseudo species “M0” required to describe
the structure of the system? ii) Is this dependent on the property that we study? iii)
Does it depend on the degree and nature of polydispersity? iv) Does it depend on the
interaction potential?

To answer these questions we use the route of calculating thermodynamic quantities
which can be obtained from the structure of the liquid. Namely the potential energy
of the system and the pair excess entropy. Note that the former is a linear function of
the structure whereas the latter is a nonlinear function of the structure and thus can
have different sensitivities to the effective structure. We find that by studying these
above mentioned thermodynamical quantities, we can determine a value of M0. It
depends on the type of polydispersity, the degree of polydispersity, and the interaction
potential. We also provide an estimate of the width of polydispersity that can be
treated like a one component system. This width appears to depend primarily on the
interaction potential of the system. Systems with longer range and softer interaction
potential have a better tolerance towards polydispersity. In these cases, systems with
a wider spread of size can be addressed in terms of a one component system.

The organization of the rest of the chapter is the following. Section 3.2 contains
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the simulation details. Section 3.3 contains results with discussions, and the paper
ends with a brief conclusion in Section 3.4.

3.2 Simulation details

With continuous size polydispersity in the canonical ensemble, we simulate molecular
dynamics for a three-dimensional polydisperse system in this study. The system has
a cubic box with a volume of V, no. of particle in a system (N)=1000-4000, a number
density of system ρ = N/V = 1.0. We have used periodic boundary conditions and
Nosé-Hoover thermostat with an integration timestep 0.001τ . The time constants for
the Nosé-Hoover thermostat are taken to be 100 timesteps. We have carried out the
molecular dynamics simulations using the LAMMPS package [91]. For all state points,
the equlibration is performed for 100τα, (τα is the α- relaxation time). The study
involves two different kinds of systems with respect to size polydispersity, constant
volume fraction (CVF) and Gaussian along with three different types of interaction
potentials (LJ, WCA, and IPL). Chapter 2, Section 2.1.1, provides the details of
polydisperse system.

During the analysis, when the system is described in terms of M species the par-
ticles in the diameter range (σmax−σmin)/M are treated as single species where M =
1,2,3,.... . Thus for M = 1, all particles are assumed to have the average value of the
diameter.

3.3 Result

3.3.1 Effective one-component description

As discussed before, it is a common practice to describe the structure of a polydisperse
system in terms of an effective one component system.
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Figure 3.1: The difference in energy obtained from effective one component
radial distribution functions, Eeff

2 and simulation,Esim as a function of T at
different PDIs. Here particles are interacting via IPL potential and the particle
size distribution is given by P1(σ) (constant volume fraction distribution).
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In Fig.3.1, we plot the difference between the average per particle potential energy
of the species agnostic Eeff

2 and that obtained from simulation Esim for systems with
different PDI values (5%,10% and 15%). In the simulation study, the particle sizes
are obtained from P1(σ) distribution and they interact via IPL potential. In Fig.3.2
we also plot the Sex and the species agnostic Seff

2 for the above mentioned systems.
Note that if the structure is described properly then Esim = E2 and S2 is not exactly
equal to Sex but comprises of 80% of its value [1, 92, 93, 94, 95, 96, 97, 59].
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Figure 3.2: Excess entropy, Sex and effective one component pair excess
entropy, Seff

2 (Eq.2.56) at different PDIs. Solid line with filled symbol
represents Sex and dotted line with open symbol represents Seff

2 . Here particles
are interacting via IPL potential and the particle size distribution is given by
P1(σ) (constant volume fraction distribution).

We find that as the PDI increases the difference between Esim and Eeff
2 (as Eq.

2.39 ) and Sex and Seff
2 increases. This clearly shows that as expected, with an

increase in PDI the effective one component description of the system becomes less
accurate. In Fig.3.3 we plot both the dynamics and the effective one component rdf
of the systems. We find that within the temperature range studied here although the
dynamics remains almost the same, with an increase in polydispersity the structure
appears to soften.We have plotted the rdf at two temperatures, (T=1.0 and 0.5) and
it appears that the softening is present in both temperatures. However, the fact that
the difference between Eeff

2 and Esim reduces at low temperatures (Fig.3.1) do sug-
gest that the softening also reduces with temperature. This artificial softening of the
structure leads to the increase in Eeff

2 and Seff
2 . Note that even for 5% polydispersity

we find that the effective one component structure of the system fails to provide the
correct value of the potential energy and the pair excess entropy. These results pre-
sented in Fig.3.1 and Fig.3.2 are not surprising but a confirmation of the observations
made earlier [88, 89].

Palak Patel 66 CSIR-NCL



PhD Thesis AcSIR

10
-1

10
0

10
1

t

0

0.2

0.4

0.6

0.8

1

Q
(t

)

Monodipserse
  5%
10%
15%

T = 1.0
(a)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
r

0

0.5

1

1.5

2

2.5

3

g
(r

)

Monodipserse
  5%
10%
15%

T = 1.0     (b)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
r

0

0.5

1

1.5

2

2.5

3

3.5

g
(r

)

Monodipserse
  5%
10%
15%

T = 0.5(c)

Figure 3.3: (a) Dynamics of systems at different PDIs. The overlap function is
plotted against time. (b) Effective one component radial distribution function of
the systems at T = 1.0. (c) Same as Fig.3.3(b) at T = 0.5. Black square,red
triangle, green circle and blue diamond represent a mono disperse system, 5%
PDI, 10% PDI and 15% PDI, respectively. With an increase in PDI although
the dynamics remains almost the same the structure shows a substantial
softening. Here particles are interacting via IPL potential and the particle size
distribution is given by P1(σ) (constant volume fraction distribution).

3.3.2 Pseudo species and its dependence on degree of poly-

dispersity

Describing the structure of a continuous polydisperse system can be challenging? Un-
like in a discrete polydisperse system where each species has a finite number of particles
and all of them have the same size, for a continuous polydisperse system the number
of species is the same as the number of particles. However, let us assume that we de-
scribe a pseudo system where we divide the particles into M number of pseudo species
(where M < N) in terms of the size of the particles. In doing so we bunch particles
with similar but different sizes, in a group and assign an average size to them. This
introduces disparity in the actual size and the assigned size of the particles and leads to
an error in describing the properties of the system. An extreme case of that (M = 1)
can be seen in Fig.3.1 and Fig.3.2. For a fixed M , the maximum difference in the
actual diameter of a particle and its assigned average diameter is ∆σ/2M . Thus with
an increase in M this error reduces and at M = N the pseudo system is exact. So
the first question is can we describe the structure of a system in terms of an optimum
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number of species M0, where M0 << N such that the structure can provide a correct
estimate of the thermodynamic quantities? If we can then how does M0 depend on
the degree of polydispersity?

In Fig.3.4(a) we plot E2
ESim

as a function of M , at two different temperatures for
the different PDIs. For systems with a fixed value of PDI as we increase the value of
M the E2 decreases and after a certain value of M, E2 ≃ Esim. We find that this is
weakly temperature dependent. For this work, we consider that at T = 1 the minimum
number of pseudo species for which (E2−Esim)

Esim
< 0.01 is M0. The value of M0 is system

dependent and as expected increases with the increase in PDI value as can be seen
from Fig.3.4(b). Note that while determining M0 this choice of the relative error (0.01)
is arbitrary but practical. In principle, we can choose values much smaller or probably
larger than this. However, later, while discussing the value of M0 as obtained from
entropy, we will see that this choice is reasonable.
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Figure 3.4: Comparison between energy obtain from simulation, Esim, and
energy obtain from partial radial distribution functions, E2 (Eq. 2.38).
(a)Ratio of E2 and Esim vs the number of pseudo species M at T = 1.0 (open
red symbols) and T = 0.5 (filled blue symbols) for different PDIs.(b) Relative
error calculation between Esim and E2, (E2 − Esim)/Esim plotted as a function
of M for different PDIs. For better visualization, we have shifted the y-axis of
the 10% PDI plot by 0.1, and 15% PDI plot by 0.2. The horizontal lines
signify the corresponding large M values which are 1.0 for (a) and 0.0 for (b).
Here particles are interacting via IPL potential and the particle size
distribution is given by P1(σ) (constant volume fraction distribution).

Is the value of M0 sensitive to the thermodynamic quantity that we calculate or
is it universal? To answer this question we calculate the two body pair entropy for
different values of M . We find that similar to the energy, as M increases the S2

comes closer to Sex (Fig.3.5). However, even for large values of M , S2 is not equal
to Sex. This is because unlike the potential energy which can be exactly calculated
in terms of the partial rdf, only a part of the excess entropy can be calculated from
the rdf (Eq.2.57) [1, 92, 93, 94, 95, 96, 97, 98]. This makes it difficult to use the same
methodology as used for potential energy to make an estimation of M0 from entropy.

However, from our earlier studies, we know that if the structure of the liquid is
described properly then the excess entropy and the two body pair entropy crosses each
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Figure 3.5: Excess entropy, Sex, and pair excess entropy S2. The latter is
calculated at different values of M (Eq.2.57). Dashed dot line represents Sex

and solid lines represent S2. (a) PDI 5% (b) PDI 10% (c) PDI 15%. Here
particles are interacting via IPL potential and the particle size distribution is
given by P1(σ) (constant volume fraction distribution).

0 2 4 6 8 10 12 14 16 18 20

M

0.2

0.25

0.3

0.35

0.4

0.45

T
c
ro

s
s

  5%
10%

15%

Figure 3.6: Tcross vs M plot for different PDIs. Initially, Tcross increases with
M but after certain value of M, it saturates. For larger PDI the saturation
takes place at a higher M value. The vertical lines give the value of M0

obtained from energy criteria. Here particles are interacting via IPL potential
and the particle size distribution is given by P1(σ) (constant volume fraction
distribution).

other at a temperature,Tcross which can be considered as the onset temperature of the
supercooled liquid dynamics [1]. This onset temperature can also be obtained from the
change in the slope of the temperature dependence of the inherent structure energy
[3] and also other methods [1]. As shown earlier the values of the onset temperatures
obtained using these different methods are not exactly the same but they are in a
similar range [1].
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In Fig.3.6 we plot the variation of Tcross with M for the different systems. For
higher PDI, at small values of M , we cannot calculate Tcross which implies that S2 is
far away from Sex and never crosses it as seen in Fig.3.5. However, from our other
estimates of onset temperature, we know that we are in a temperature range where
these two forms of entropy should cross. As M increases the two functions cross at
some temperature Tcross. We find that initially Tcross increases with M and then after
a certain value of M it shows a saturation. As mentioned before S2 is not the total
excess entropy of the system. There is no other method of calculating S2. Thus it
is not possible to do a similar error estimation of pair excess entropy as done for the
potential energy. However, the saturation of Tcross is an indication of the saturation
of S2 w. r. t. M . We find that this saturation value of Tcross is in a similar range as
the estimated onset temperature using the method of inherent structure energy (see
Sec III E and Table 3.1). In this plot we also mark the M0 values as obtained from
the potential energy. We find that the M value for which Tcross saturates falls in the
similar range as M0. The values of Tcross at M = M0 and the Tonset are given in Table
3.1. Thus we show that the minimum number of pseudo species required to describe
the potential energy of the system can also describe the two body excess entropy of
the system. Note that although with M0 pseudo species we can get a reasonable value
of S2, this quantity is not the total excess entropy of the system. The residual multi-
particle entropy (RMPE) defined as the difference between the total excess entropy
and the pair excess entropy, Sex−S2 although has a small value when compared to S2,
plays an important role in describing the thermodynamics of the system. For example,
it has been observed that if we ignore RMPE then the correlation between dynamics
and thermodynamics expressed via the well known Adam-Gibbs relation does not hold
[99]. It has also been observed that in the supercooled liquid regime RMPE provides
us a measure of the activated dynamics of the system [80, 99]. Thus although the
pseudo species description provides us a reasonable estimation of S2, care should be
taken while using this quantity in describing the full thermodynamics of the system.

The details of the M0 values for the different systems are given in Table 3.1. We
also tabulate a quantity ∆σ0 =

∆σ
M0

. We find that although M0 is dependent on the PDI
this quantity ∆σ0 is not. Note that when M = M0, the maximum error in assigning
a diameter to a particle is ∆σ0

2 . Thus our study suggests that the thermodynamic
properties of the system studied here are not sensitive to a change in diameter by ∆σ0

2

and for a constant volume fraction polydisperse system interacting via IPL potential
when ∆σ ≈ 0.036 we can treat it as a monodisperse system.

Interestingly we find that when we plot the partial rdf for two consecutive pseudo
species, g11(r) and g22(r) (here these two species 1 and 2 have the largest and the
second largest number of particles, respectively) for different values of M then for
M = M0 the peaks of the two rdfs almost overlap (Fig.3.7) . Thus we can say that
when the size difference of the two consecutive species are such that there is a large
overlap between the radial distribution functions of two consecutive species then they
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can be treated as a single species.
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Figure 3.7: The partial radial distribution function for the first two species for
different values of M . (a)PDI 5% (b) PDI 10% (c) PDI 15%. For M =M0

the rdf peak of the two consecutive species almost overlap. Here particles are
interacting via IPL potential and the particle size distribution is given by P1(σ)
(constant volume fraction distribution).

Table 3.1: The values of M0 and ∆σ0 for different systems. We also provide
the values of Tcross at M =M0 and for comparison we give the Tonset values
obtained from fitting the Inherent structure energy to two straight lines.

Distribution Potential PDI % M0 ∆σ0=∆σ
M0

Tcross(M0) Tonset
P1(σ) IPL 5% 5 0.036 0.42 0.43

10% 10 0.036 0.33 0.36
15% 15 0.036 0.26 0.31

P2(σ) IPL 5% 7 0.043 0.43 0.46
10% 14 0.043 0.35 0.34
15% 21 0.043 0.28 0.30

P1(σ) WCA 15% 20 0.027 0.58 0.7
LJ 15% 12 0.045 0.67 0.81

3.3.3 Effect of the type of distribution on M0 and ∆σ0

We next study the effect of the type of distribution on M0 and ∆σ0. In Fig.3.8 we
compare the M dependence of Tcross for systems where polydispersity is described in
terms of P1(σ) (constant volume fraction) and P2(σ) (Gaussian), for three different
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PDIs. In the same plot the M0 values as obtained from the potential energy are also
marked.

At the same PDI, the nature of saturation of Tcross and also the value of M0

are different for the two different distributions. Compared to the constant volume
fraction distribution, the values of M0 are higher for the Gaussian distribution. The
reason behind this can be understood by comparing Fig.2.1 and Fig.2.2 (also see Table
2.1). For the same PDI, the Gaussian distribution is wider compared to the constant
volume fraction distribution. A closer observation tells us that the saturation of Tcross

is better for the CVF distribution when compared to the Gaussian distribution. Note
that for the Gaussian distribution M0 is higher (more number of species), and by
nature towards the tail of the distribution the number of particles is less so the partial
rdf for the largest and the smallest species are poorly averaged. We have seen that
with an increase in system size the saturation improves (not shown here).
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Figure 3.8: The effect of the type of distribution on M0. Tcross vs M plot for
different PDIs for systems where particles are interacting via IPL potential and
the particle size distribution are given by P1(σ) (constant volume fraction
distribution) and P2(σ) (Gaussian distribution). The vertical lines give the
value of M0 obtained from energy criteria (solid lines for P1 and dashed lines
for P2 distribution). At the same value of PDI for the Gaussian distribution
the M0 is higher and Tcross saturates at a higher M value.

We find that when compared to CVF distribution, the ∆σ0 is marginally higher
for the systems with Gaussian distribution (see Table 3.1). Note that we divide a con-
tinuous polydisperse system into M species in a way that the difference in diameter
of two consecutive species is always separated by ∆σ

M . This implies that the percent-
age error in calculating the size of the smaller particles are higher than that of the
larger particles. Also, note that in constant volume fraction distribution the smallest
particles are the largest in number thus by construction the error is maximum for the
dominant species. On the other hand for the Gaussian distribution, the place where
the percentage error is maximum the population of particles are the minimum. Thus
compared to the Gaussian distribution for continuous volume fraction we need to go
to marginally smaller values of ∆σ0. A way to increase ∆σ0 (decrease M0) in CVF
distribution can be to have a size dependent bin width such that the percentage error
in describing the size of a smaller particle is the same as that of a larger particle.
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3.3.4 Effect of interaction potential on M0

Next, we study the role of interaction potential on the value of M0 (also ∆σ0) and
the saturation of Tcross. For this we study P1(σ) system, with PDI=15% and vary
the interaction potential between the particles (IPL, WCA, and LJ). The parameter
values are given in Table 3.1. When we compare the IPL, WCA and LJ systems we
find that M0 value is higher for the WCA system and also the Tcross of the WCA
system appears to saturate at a higher M value (see Fig.3.9). This suggests that ∆σ0

for the WCA potential is smaller than the LJ and the IPL systems (see Table.3.1).
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Figure 3.9: Role of interaction potential on M0. Tcross vs M plot for 15% PDIs
for systems where particles are interacting via IPL, WCA and LJ potential and
the particle size distribution are given by P1(σ) (constant volume fraction
distribution). The vertical lines give the value of M0 obtained from energy
criteria. The value of M0 is higher for WCA potential and the Tcross also
saturates at higher value of M .

To understand the origin of this lower tolerance of the WCA system in Fig.3.10 we
plot for the WCA system the partial rdfs of the first two species for different values
of M and find that compared to the IPL system we need to go to higher values of M
to observe a good overlap between the two rdfs. Similar to that found for the IPL
system, at M = M0 the rdf peaks almost overlap. Note that compared to the WCA
potential the IPL potential is softer and has a longer range. Thus compared to the
WCA system the IPL system has a flatter rdf and a larger overlap of the rdfs of two
consecutive species. This definitely explains why compared to the IPL system the M0

is higher for the WCA system.
In Fig.3.11 we compare the rdf values for the first two species of the IPL, WCA

and LJ systems, for M = 15. Note that for the IPL and the LJ systems M0 ≤ 15 and
for the WCA system M0 > 15. However, compared to the WCA and IPL systems,
the partial rdfs for the LJ system are more sharply peaked. This does not explain
why the M0 for the LJ system is smaller than the WCA system. Note that the
structure along with the interaction potential describes both the potential energy and
also the two body entropy. In S2 the leading term is -g(r) ln g(r) ≃ g(r)U(r) where
U(r) = − ln g(r) can be considered as the effective potential of the system. Thus
along with the rdf the interaction potential also plays a role in determining these
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thermodynamic quantities. The range of the LJ potential is much larger compared to
the IPL and WCA potentials. Moreover, the attractive part of the potential which
provides a dominant contribution also varies much more smoothly compared to the
WCA and IPL potentials. It appears that this slow variation of the potential increases
the tolerance of thermodynamic quantities w.r.t the particle size which leads to a
smaller M0 value.

We will like to mention that in this work while working with the LJ system we
only vary the size of the particles while keeping the interaction energy constant. This
choice is quite similar to that used in earlier studies of model polydisperse systems
[74, 100, 101]. However, this choice of system is not consistent with the van der Waals
attraction dependence on particle volume. Thus the system can have some unusual
structures like that of clustering of smaller particles observed earlier [101]
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Figure 3.10: The partial radial distribution function for the first two species for
different values of M . The particles are interacting via WCA potential and the
polydispersity of the system is described by P1(σ) with 15% PDI.

0.7 0.8 0.9 1 1.1 1.2 1.3
r

0

0.5

1

1.5

2

2.5

3

3.5

4

g
ii
(r

)

g
11

(r), IPL

g
22

(r), IPL

g
11

(r), WCA

g
22

(r), WCA

g
11

(r), LJ

g
22

(r), LJ

 T = 1.0
M = 15

Figure 3.11: The partial radial distribution functions for the first two species
for IPL, WCL and LJ potentials for M = 15. The size distribution of the
particles is given by P1(σ) with 15% polydispersity.

3.3.5 System size dependence

Note that for finite number of particles (N) in the system, we can still describe the
N ∗ N partial structure factors. However in the thermodynamic limit when N → ∞
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Figure 3.12: System size dependence of relative error calculation between Esim

and E2. (E2 − Esim)/Esim plotted as a function of M for different PDIs for N
= 1000 (red open symbols) and N = 4000 (blue filled symbols). For better
visualization, we have shifted the y-axis of the 10% PDI plot by 0.1 and 15%
PDI plot by 0.2. The horizontal lines signify the corresponding zero values.

0 2 4 6 8 10 12 14 16 18 20

M

0.2

0.25

0.3

0.35

0.4

0.45

T
c
ro

s
s

5%
10%
15%

1000 Particle

4000 Particle

Figure 3.13: The system size dependence of M0. Tcross vs M plot for different
PDIs for systems where particles are interacting via IPL potential and the
particle size distribution are given by P1(σ). The open red symbols are for
N=1000 and the filled blue symbols are for N=4000. The vertical lines give the
value of M0 obtained from energy criteria. M0 from energy is independent of
system size and for systems with higher PDI the Tcross saturates better for
higher system size.

this becomes ill-defined. Thus for larger systems describing the system in terms of
pseudo species becomes even more important. In this section, we study the system size
dependence of M0. For this study, we take the system where particle size distribution
is given by P1(σ) and the particles interact via IPL potential. We study three systems
at 5%, 10% and 15% PDI. In Fig.3.12 we plot the (E2−Esim)

Esim
for systems with 1000

and 4000 particles. We find that the relative error in energy is independent of the
system size and so is M0. In Fig.3.13 we plot the Tcross values for the two different
system sizes. We find that for 5% and 10% PDI they overlap and for 15% PDI the
bigger system size predicts a better saturation of Tcross. This is because we now have
a larger number of particles in each species giving rise to better averaging. Thus we
can say that M0 is independent of system size.

Palak Patel 75 CSIR-NCL



PhD Thesis AcSIR

0 2 4 6 8 10 12 14 16 18 20

M

0.2

0.25

0.3

0.35

0.4

0.45

T
c
ro

s
s

5%
10%
15%

1000 Particle

4000 Particle

M
0
 = 2-3

M
0
 = 4 -5

M
0
 = 8-9

Figure 3.14: Alternate definition of M0. Tcross vs M has two different regimes,
low M shows growth and high M shows a near saturation. The two different
regimes are fitted to two straight lines and the M value where these lines cross
is identified as M0. The open red symbols are for N=1000 and the filled blue
symbols are for N=4000. The M0 values thus obtained are smaller than that
obtained from energy criteria and similar to that obtained by Ozawa and
Berthier [90]

3.3.6 Mutual information and radial distribution function

We have used the correlation between the total excess entropy and its two body coun-
terpart to determine the optimum number of species required to describe the system
[66]. We will now show that this method is similar in spirit to the calculation of mutual
information (MI) between the species and their structure [102].

The temperature dependence of S2 changes with M , and this also changes the
Tcross value. As shown in Fig.3.15, as a function of the number of species M , Tcross

first increases and then almost saturates at a value. This saturation value is similar
to the onset temperature obtained from other methods [1, 3, 66]. The saturation
of Tcross implies that the structure/rdf does not change considerably when an even
larger number of species is used to describe the system. Thus this provides us with
information on the optimum number of species, M = M0 required to describe the
system.

Interestingly our formalism is similar in spirit to the formalism suggested recently
using mutual information (MI) theory, the difference in two body entropy when the
system is expressed as a single species and as M species can be approximately written
as [102],

∆S2 ≃
M∑

k=1

∫ R

0
4πr2ρχkgk(r) ln

(gk(r)
g(r)

)
dr (3.1)

where gk(r) is the rdf of the kth species and the total rdf g(r) =
∑

k χkgk(r). Coslovich
et .al . beautifully argued that this difference in two body entropy is similar to the MI
[102]. From Eq. 3.1, we notice that in this formalism, the probability distribution in
the MI is replaced by the radial distribution function, which is the probability of finding
a particle at a distance r from a central particle over and above the ideal gas prediction.
Thus this formalism, instead of using the bare probability of finding a particle, is based
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on the probability of finding particles at certain interparticle distances.
In Fig.3.15 along with Tcross we also plot ∆S2 as a function of M for systems with

7% and 15% polydispersities. Both quantities are scaled by their respective saturation
values at high M . We find that both show similar M dependence. Ideally, the peak
in the ∆S2 vs M plot should describe the optimum value of M . However, there is
no such peak, but just like Tcross, the ∆S2 value increases sharply with M and then
shows saturation. Note that MI is large when the distribution between two species is
well segregated. However, the rdf of two consecutive species overlap. This may be the
reason the entropy difference does not show a peak. Results shown in Fig.3.15 clearly
suggest that for these systems, the structure and any quantity that need structure as
an input must be described by dividing the particles into a certain optimum number
of species, and this division is going to increase the MI.
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Figure 3.15: Scaled MI of ∆S2 and Tcross [66] saturated at same M. scaling is
done by dividing the ∆S2 and Tcross value by there respective saturation value
at high M .

3.3.7 Comparison with earlier predictions

Next, we compare our results with that of Ozawa and Berthier (OB) [90]. The goal
of both studies is to find an effective number of pseudo species that can describe a
polydisperse system. However, the methodologies are quite different. We work with
the partial rdf of the liquid and use them to calculate the excess entropy and total
energy near the onset temperature. Ozawa and Berthier used the information of the
vibrational entropy and the inherent structure properties and the study was performed
below the MCT transition temperature. They divided the system into M species
and then swapped particles within a species. After N such swaps, they minimized
the system and obtained the mean square displacement (MSD) between the original
equilibrium configuration and swapped configuration. The MSD as a function of M
initially decreased with increasing M and showed saturation at high values of M. They
fitted these two regimes to two different power laws, and the intersection point of the
power laws determined the value of M0. In their study they have calculated the value
of M0 for an IPL potential system with P1(σ) distribution at 23% PDI. They then
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extrapolated the value of M0 for smaller PDIs. For 10% PDI they predicted a value of
M0 = 4− 5 and for 5% PDI, M0 = 2− 3. We can do a similar exercise with Tcross. In
Fig.3.14 we show that Tcross also shows two different regimes. We fit the two different
regimes to two straight lines and the point where they cross is, M0 = 2 − 3 for 5%
PDI, M0 = 4 − 5 for 10% PDI, and M0 = 8 − 9 for 15% PDI. Interestingly these
numbers are surprisingly the same as that extrapolated by Ozawa and Berthier [90]
although the two methodologies are completely different. However, these values of
M0 are lower than our earlier prediction which was made by looking at the saturation
point of Tcross. In the OB study if they define the M0 at the value where their MSD
becomes independent of M then they too will have a higher value of M0.

We next compare our predictions with an earlier work which involved the study
of the dynamics [89]. As discussed in the Introduction, Weysser et al studied the
effect of polydispersity on the dynamics [89]. They studied a system with constant
polydispersity where ∆σ = 0.2. According to their study, the dynamics can be well
explained when the system is divided into 5 pseudo species and thus ∆σ0 = 0.04 falls
in a similar range as predicted here and so is M0.

At this point, we cannot comment on which will be a better choice of M0, the
value at which Tcross saturates or the value at which two different regimes intersect.
When we compare our result with the study using the dynamics [89] it appears that
the former which leads to higher values of M0 is a better choice whereas if we compare
with OB study then the latter seems to be a better choice. It is possible that the
dynamics is more sensitive to change in M0. This suggests that further studies are
required to narrow down the value of M0. One such option will be to see how the
configurational entropy for different values of M0 correlates with the dynamics.

3.4 Conclusion

In this work we attempt to develop a framework to describe the structure of systems
with continuous polydispersity. The study involves systems where the polydispersity is
described in terms of different distributions (constant volume fraction and Gaussian)
and the degree of polydispersity is varied. We also study the effect of the interaction
potential.

We exploit the fact that the potential energy and the pair excess entropy can be
described in terms of the partial radial distribution functions. First, we describe the
system in terms of pseudo species. In the case of potential energy, we obtain the
minimum number of pseudo species, M0 required to match the energy obtained from
the partial rdf with that obtained from the simulation. For the entropy part, since the
excess entropy and pair excess entropy are never equal, we calculate the temperature
where they cross each other. Our earlier study has shown that this Tcross is an estimate
of the onset temperature of supercooled liquids[1]. We show that for a smaller number
of species, the Tcross varies with M and as a function of species this temperature shows
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a saturation, suggesting a saturation of the pair excess entropy w.r.t M . This gives us
a second estimation of M0 which we find is similar to that obtained from the potential
energy.

Our study reveals that for a given system, it is possible to define a parameter
∆σ0 which gives the limiting width of the size distribution that can be treated as a
monodisperse system. This limiting value primarily depends on the interaction poten-
tial. The softer the interaction potential the larger is the value of ∆σ0. Depending
on the type of distribution this limiting width ∆σ0 translates into different values of
PDI.

For a 1% PDI system with constant volume fraction distribution, ∆σ = 0.036

and with Gaussian distribution,∆σ = 0.06. When we compare these values with
∆σ0, we can say that polydispersity greater than 1% when treated as an effective
monodisperse system will not provide us with the correct structure of the liquid. This
implies that when the effective one component structure is used to study the influence
of polydispersity on some property, we have to be careful in decoupling the effect of
this artificial softening of the structure from the actual effect of the polydispersity.
Note that M0 and ∆σ0 are independent of the system size. This makes this pseudo
neighbour description of a system more useful for larger systems.

After showing that for a polydisperse system, the correct structural description is
obtained only when the system is expressed in terms of multiple species, M . We show
that our method also leads to an increase in the mutual information, thus validating
the method further.
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Chapter 4

Dynamic heterogeneity in
polydisperse systems: A
comparative study of the role of
local structural order parameter
and particle size

“In the laboratory of life, wrong turns often
lead to the most groundbreaking discoveries”.

- Alexander Fleming

4.1 Introduction

When a liquid is cooled fast enough, it enters the supercooled liquid regime, where
the properties of the liquid are very different from that of the normal liquid regime.
When the supercooled liquid approaches the glass transition, its dynamics increases
by orders of magnitude [4, 17], with the structure showing marginal changes. This
observation questioned the role of structure in the dynamics and the application of
the liquid state theories [103, 104, 10] in the supercooled regime. However, studies
have shown that although the structure does not change drastically, static properties
which depend on the structure can change enough to affect the dynamics [79, 105,
82]. One of the key signatures of supercooled liquid is the dynamical heterogeneity
which increases with a decrease in temperature [25, 106, 53]. There have been a large
number of studies attempting to causally connect this dynamical heterogeneity and
local order parameter, some of the order parameters being purely structural in origin
[107, 108, 109, 110, 111, 102, 112, 113, 82, 114]. In recent studies, we have defined
a structural order parameter (SOP) that is connected to the depth of the mean-field
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caging potential [82, 114]. Our study has shown that for a large number of systems, the
SOP is a good parameter to describe the relaxation process in the systems[82]. We have
also shown that this causality persists even at the local level [114]. The distribution
of the particle level SOP becomes wider at lower temperatures, thus suggesting an
increase in the local structural heterogeneity. The correlation between the SOP and the
dynamics at the particle level is observed only below the onset of the glassy dynamics,
Tonset, and increases as the temperature is decreased. Thus, according to this study,
the structural heterogeneity and the coupling between the SOP and dynamics increase
at lower temperatures.[114].

Given the good predictive power of this new structural order parameter, it should
be tested for other glass-forming liquids. Amongst systems that are good glass form-
ers, polydisperse systems with size polydispersity come high in the order [101, 69, 115,
116, 117, 118, 119, 120]. Polydisperse systems beyond some degree of polydispersity
can be easily supercooled [69, 70, 71, 72, 73, 46, 74] and most experimental colloidal
systems are polydisperse [121, 122, 123, 124, 125, 126, 126, 127]. Moreover, the swap
Monte Carlo algorithm, which allows the system to be cooled to unprecedentedly low
temperatures, is best applied to polydisperse systems with continuous size polydisper-
sity [128, 129, 130, 90, 131, 132, 133].

However, for a system with continuous size polydispersity describing the structure
and any parameter which depends on the structure is a challenge. For these systems,
the number of species, M equals the total number of particles. Many a time, these sys-
tems are treated like a monodisperse system (M = 1), and the average structure/radial
distribution function (rdf) shows an artificial softening [66, 100, 74, 134]. Thus any
property calculated using the rdf does not show the correct value. Depending on the
diameter of the particles, we can always approximately describe the system in terms
of a certain number of species. However, what is the optimum number of species,
M = Mo needed to describe the properties of the system is a question often asked
[100, 90, 88, 66]. In earlier work, we used the correlation between the total excess
entropy of the system, and its two-body counterpart, which needs the information of
the rdf, to obtain the optimum number of species, M = Mo [66]. The method is quite
simple and much less computer intensive but provides similar results as obtained from
the study of the configurational entropy using diameter permutation [90]. In previous
chapter we have also shown that our method of describing the system into multiple
species increases the mutual information of the system.

In this chapter we will show that the SOP and its correlation with the dynamics
depend on M . It was earlier shown that the correlation between SOP and dynamics
helps us to identify Tonset [114]. Since the SOP and its correlation varies with M , so
does the Tonset. Similar to our earlier study [66], the Tonset first changes with M and
then saturates. This clearly suggests that for a polydisperse system, for the calculation
of the SOP, the system needs to be described in terms of multiple species. However,
to our surprise, we find that the correlation between the SOP and the dynamics is
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maximum for M = 1. Further study reveals that at low polydispersity, the SOP is a
good predictor of the dynamics but at high polydispersity, the size of the particle plays
a dominant role in determining the dynamics. Moreover, the SOP and the size are
also correlated, and this correlation increases with an increase in polydispersity and
decreases with an increase in M . Thus at high polydispersity and for M = 1 where
the SOP and the particle size are strongly correlated, the SOP appears to be strongly
correlated with the dynamics. However, this does not depict the true correlation and
is mediated by the particle size. We also study Vibrality, another order parameter
independent of the system’s structure. We find that at high polydispersity, compared
to the SOP, the Vibrality has an even stronger correlation with the particle size. Thus
it appears to be a better predictor of the dynamics. These results clearly suggest that
for systems with high polydispersity, any local order parameter correlated with the
particle size might appear to be a good predictor of the dynamics and these results
should be cautiously interpreted and not assumed to be a generic result.

The organization of the rest of the chapter is the following. Section 4.2 contains the
simulation details. In section 4.3, we present the calculation of the caging potential
in a polydisperse system. In section 4.4, we discuss the species dependence of the
caging potential. In section 4.5, we discuss the species dependence of the correlation
of the SOP and the particle dynamics. In section 4.6, we analyze the dynamics of
the particles having soft and hard SOP. In section 4.7, we do a comparative analysis
of the role of particle size and SOP in the dynamics. The chapter ends with a brief
conclusion in Section 4.8. This chapter contains 3 Appendix sections at the end.

4.2 Simulation Details

For this study, we have performed 3-dimensional MD simulations (using LAMMPS
package [91]) for polydisperse systems in a canonical (NVT) ensemble. N = 4000
particles are present in a cubic box with volume V and density ρ = N

V = 1.0. We have
used periodic boundary conditions (pbc) for the simulation. Nosé-Hoover thermostat
with integration timestep 0.001τ and 100 timesteps as time constants are taken in this
simulation. The study involves the Gaussian type of size distribution for continuous
size polydispersity. This means each of the N particles has a different radius.

For all the polydisperse systems, the particle sizes are chosen such that < σ >=∫
P (σ)σdσ = 1. In this study, particle i and j interact via inverse power law potential

(IPL). The interaction strength between two particles i and j is ϵij = 1.0. σij =
(σi+σj)

2 ,
where σi is the diameter of particle i. Length, temperature and time are given in units
of < σ >, ϵij and

(
m<σ>2

ϵij

) 1
2 respectively. For all state points, the equilibration is

performed for 100τα (τα is the α- relaxation time, details given in Appendix I)[66].
During the analysis, when the system is described in terms of M species the particles in
the diameter range (σmax−σmin)/M are treated as single species where M = 1,2,3,....
. Thus for M = 1, all particles are assumed to have the average value of the diameter.
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Details of polydisperse system is given in Section 2.1.1
Since these systems are not that well known, we provide information on the differ-

ent characteristic temperatures of the systems in Appendix - I

4.3 Computing local caging potential

In a recent study, we have described a structural parameter that describes the local
caging potential [82, 114]. We have also shown that for the KA model, the softness
of this potential and the short-time dynamics are causal [114]. The computation of
the local caging potential requires information on the radial distribution function. As
discussed in the previous section, the radial distribution function of a system with
continuous polydispersity depends on the number of species we divide the particles
of the system into. Extending our earlier work, the average depth of the mean-field
caging potential for a system with M species can be written as[114],

βΦav
r (∆r = 0) = −ρ

∫
dr

M∑

u=1

M∑

v=1

Cuv(r)χuχvguv(r) (4.1)

where β = 1
kBT , kB = 1, ρ is a density, and r denotes the distance between the central

tagged particle and its neighbors. ∆r is the distance of the tagged particle from its
equilibrium position. Cuv(r) is the direct correlation function and, according to the
Hypernetted chain approximation, can be written as[10],

Cuv(r) = −βUuv(r) + [guv(r)− 1]− ln[guv(r)] (4.2)

where Uuv is the interaction potential. It was shown that the depth of the potential
is inversely proportional to the curvature and thus the softness parameter [82, 114].
Please note that we consider the depth of the caging potential as an energy barrier,
and thus we work with the absolute magnitude of the caging potential (given by Eq
4.1).

For the microscopic analysis, we need to calculate βΦr(∆r = 0) for every snapshot
at a single particle level. This is given by Eq. 4.1 where the rdf and the direct
correlation function, Cuv(r) are now obtained at the single particle level. The single
particle partial rdf in a single frame can be expressed as a sum of Gaussian, and it is
calculated as: [55]

guv
i(r) =

1

4πρr2

∑

j

1√
2πδ2

exp−
(r−rij)

2

2δ2 (4.3)

where δ is the variance of the Gaussian distribution used to make the discontinuous
function a continuous one. In this work, we assume δ = 0.09 < σ >. The direct
correlation function can also be calculated at the single particle level using Eq. 4.2
but with single particle rdf. At higher PDI, when the system is described by one
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species, the rdf shows a large softening and is non-zero at very small values of ’r’
compared to the interaction potential. Thus any function that calculates the product
of the potential and rdf incurs a large error[66]. This error is higher for repulsive
potential and increases with PDI (as shown in Appendix II). In our calculation of
the potential depth, such products lead to unphysical large positive values of the
caging potential. This implies an unstable potential and negative curvature /softness
parameter. Note that this is an artificial effect. To overcome this problem, we have
made one approximation. We assume that the potential of mean force is the same
as the interaction potential i.e. −βUuv(r) = ln[guv(r)] and Capprox

uv (r) ≈ [guv(r) − 1].
For smaller polydispersity where the error due to softening of the rdf is less and we
can compute physically meaningful caging potential by assuming all three terms in
the direct correlation function, we have compared our theoretical prediction with total
and approximate direct correlation functions. As discussed in Appendix II, although
the absolute value of the caging potential is different, the prediction of the correlation
of the dynamics and softness parameter remains the same. Thus, in this work, we use
the approximate direct correlation function Capprox(r) at the single particle level to
avoid unphysical results of the caging potential at higher PDI.

The inverse of the depth of the caging potential is related to the softness, but they
are not the same [114]. There are some system dependent but temperature independent
constants that are needed for the calculation of the absolute value of softness but not
its correlation with the dynamics [135]. In this work, we will seamlessly use the term
“inverse” of the depth of the caging potential and the “softness” of the caging potential
as they are qualitatively the same.

4.4 Species dependence of the caging potential

First, we assume the systems to be monodisperse i.e M = 1 and obtain the per
particle depth of the caging potential from the microscopic version of Eq.4.1. As
shown in Fig.4.1 for all the systems, with a decrease in temperature, there is a shift
of the probability distribution of βΦr(∆r = 0) to higher values. This implies that,
as expected, the cage structure is more well-defined at lower temperatures, and the
particles sit at a deeper potential minimum. In Fig.4.1, we also plot the probability
distribution of βΦr(∆r = 0) as a function of M . We find that for all the systems with
an increase in M , the probability distribution of βΦr(∆r = 0) moves to higher values
of βΦr(∆r = 0). This shift is concurrent with the fact that when a polydisperse system
is treated as a monodisperse system, the RDF shows artificial softening [66]. However,
when the polydisperse system is divided into M number of species, the inter and intra-
species RDFs become sharper than the RDF obtained assuming single species. Thus
the cage is better defined by the multispecies system. This gives rise to the increase
in the depth of the minima. This increase in the depth of the caging potential with
an increase in M is similar to the decrease in the two-body pair entropy obtained in
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Figure 4.1: Distribution of caging potential. Top panel:- Different temperatures
for a fixed M =1. Bottom panel:- Different M values. a1 and b1 - 3% PDI and
T=0.28, a2 and b2 - 7% PDI and T=0.30, a3 and b3- 15% PDI and T=0.35.
As expected, the caging potential increases with decreasing T. The caging
potential also increases with increasing M. The temperatures are chosen such
that the relaxation times are similar for all the systems.
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Figure 4.2: Scatter plot between βΦr at M = 1 and M = 4 at different PDIs
(a) 3% PDI, at T=0.28 (b) 7% PDI, at T=0.30 (c) 15% PDI, at T=0.35. The
temperatures are chosen such that the relaxation times are similar for all the
systems. It clearly shows that the rank of the structural order parameter of a
particle changes with M. The effect increases with PDI.

our earlier study [66]. Further, to understand if this shift in the distribution of the
caging potential with M is just an increase in the depth of the particle level caging
potential affecting all particles equally, in Fig.4.2 as a representative plot, we show a
scatter plot of the particle level caging potential obtained for M=1 and M=4. This
clearly shows that this shift in the distribution is not just a shift in the value of the
particle level caging potential and affects each particle differently. As expected, the M
dependence is more at a higher PDI.

Palak Patel 85 CSIR-NCL



PhD Thesis AcSIR

4.5 Species dependence of the correlation of caging

potential with particle dynamics

In the previous section, we have shown that the distribution of the local caging poten-
tial varies with M . Suppose this variation was just a shift in the value of the caging
potential of each particle. In that case, we do not expect the correlation between the
caging potential and the dynamics to be affected by M . However, as shown, that is
not the case. Thus in this section, we study the correlation of the dynamics and the
structure obtained via the local caging potential as a function of M . To understand
the correlation between the dynamics and the structure, we follow the methodology
used in earlier works [108, 114]. We identify fast particles using a well-documented
method [136, 137, 114] also given in Appendix III. After identifying the fast particles,
we correlate them with the local SOP. We calculate the fraction of particles having
a specific value of 1/βΦr that undergoes rearrangement, PR(1/βΦr), and plot it as
a function of 1/βΦr at different T and M values. The plots for the system with
15% PDI where the effect is maximum, are shown here in Fig.4.3. The results are
similar for other systems. We find that PR(1/βΦr) has a dependence on the SOP
that becomes stronger at lower temperatures. At lower temperatures, particles with
a higher value of softness (sitting in a shallow caging potential) have a higher proba-
bility of moving. Apparently, the behavior appears to be M independent. Following
our earlier work, we plot the PR(1/βΦr) as a function of temperature for different
1/βΦr values. We find that for all the cases it can be expressed in an Arrhenius
form, PR(1/βΦr) = P0(1/βΦr) exp[∆E(1/βΦr)/T ], where ∆E is the activation en-
ergy. These plots also appear to be similar for all M values. It was earlier shown
that the temperature where these PR(1/βΦr) vs T plots for different softness values
intercept marks the onset temperature of glassy dynamics [108, 114]. The origin of
this observation was explained by the microscopic mean field theory [114, 82]. Accord-
ingly to the theory, we can correlate softness and dynamics only when the cage around
the particles is well-defined. It is well known in the supercooled liquid literature that
only below onset temperature where there is a separation between the short and the
long time dynamics the particles in the short time feel caged by their neighbors and
this cage becomes longer lived at lower temperatures. Thus the crossing of the plots
marks the highest temperature where this theory is valid and beyond that due to the
absence of any well-defined cage the theoretical formulation breaks down. Also at
lower temperatures where the lifetime of the cage increases the structure becomes a
better predictor of the dynamics. We extract the onset predicted by the crossing of
the PR(1/βΦr) vs T plots. They are plotted in Fig.4.4. It clearly shows that the
Tonset values have a M dependence. The value of M where it saturates increases with
the percentage of polydispersity. The saturation temperature is similar to the onset
temperature obtained using other methods [66]. This result is similar in spirit to that
obtained in our earlier work using two body excess entropy [66].
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Figure 4.3: Correlation between structure and dynamics as a function of M .
Left panel- (a1-a3) The fraction of particles that undergo rearrangement
PR(1/βΦr), vs the depth of the caging potential, 1/βΦr at different T (0.4
(violet circle) - 0.2(black star)), Right panel-(b1-b3) PR(1/βΦr) as a function
of 1/T at different values of the inverse of caging potential. The results are for
15% PDI
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Figure 4.4: (a) Tonset obtained from the crossing of PR(1/βΦr) vs 1/T plots
(Fig.4.3) as a function of M . The Tonset initially decreases with M before
saturating at higher values of M . With an increase in polydispersity, the
saturation increases to higher M values.
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4.6 Analysis of dynamics of soft and hard parti-

cles

Since we have established that, on average, the particles with higher softness have a
higher probability of moving, we can expect that if we compare the dynamics (via
overlap function) of a few hardest and softest particles, then at short times they will
show a large difference and eventually due to the evolution of the cage and its softness
around the particle they will decay at the same time [114]. Dynamics of particles via
overlap function (q(t)) can be calculated as:

q(t) =
1

N

N∑

i=1

ω(|ri(t)− ri(0)|) (4.4)

where function ω(x) = 1 when 0 ≤ x ≤ a and ω(x) = 0 otherwise. The cutoff of
overlap parameter a = 0.5 is chosen such that particle positions separated due to small
amplitude vibrational motion are treated as the same[2] Here we restrict our study to
one temperature for each system. For the 3% PDI system, we choose T=0.28, the
lowest temperature where we can run the system before it undergoes crystalization.
For the other two systems, we study them at temperatures where the relaxation times
are similar to that of the 3% PDI system at T=0.28. We pick a few (around 2) of
the hardest and the softest particles where the softness parameter is calculated for the
same system at different values of M (Fig.4.5).

We find that the difference in the overlap of the few hardest and softest particles
changes with M. However, beyond a certain value of M , the overlap functions of the
hardest and the softest particles do not change with M . This suggests that beyond this
M value the identification of the hardest and softest particles becomes independent
of M . We consider this as the optimum value of the species, M0, needed to describe
the system. For 3% PDI, M0 = 3, for 7% PDI, M0 = 4 and for 15% PDI, M0 = 6.
Note that the Tonset values for different PDIs (Fig.4.4) also show saturation at similar
values of M . Thus the results are consistent. The results obtained also agree with
our previous study where we showed that parameters which need the structural input
are better determined when the system is described in terms of multiple species [66]
and the optimum number of species increases with polydispersity. Thus we can say
that the structural order parameter of a system should be calculated by describing the
system in terms of M0 species. This structural order parameter will provide a true
description of the local caging potential and will correlate with the dynamics.

However, although the structure of a system is not well described for M = 1, the
difference in dynamics between the hardest and softest particles is best determined
when we treat the system as monodisperse. This is a contradictory result and it
appears that in these systems, apart from the structure, there can be other parameters
that drive the dynamic heterogeneity. To understand the result, in Fig.4.6, we plot
the distribution of the particle diameters of the hardest and the softest particles for
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Figure 4.5: Dynamics of a few softest (high 1/βΦr value)(Dotted line) and few
hardest (low 1/βΦr value)(solid line) particles at different M values. (a) 3%
PDI (T = 0.28), (b) 7% PDI (T = 0.30), (c) 15% PDI (T = 0.35). T is
chosen such that the relaxation times of each system are in the same range.
The dark lines are for M=1 and with an increase in M the plots shift.

different values of M for all three systems. We also plot the particle size distribution
of the whole system, P (σ). When M = 1, we find that the distribution of the hardest
and softest particles are skewed towards the bigger and the smaller-sized particles,
respectively. This effect is more prominent at higher polydispersity. With an increase
in M the distribution of the hardest particles moves towards P (σ). This clearly shows
that as we divide particles into species, the cage around smaller particles, which for
M = 1, is loosely defined, gets defined better at higher M. This leads to an increase
in the depth of the caging potential, thus, a decrease in the softness of the potential.
The distribution of the diameter of the softer particles also shows some change with
M , but unlike the hard particles, it always remains skewed towards smaller particles
which is similar to that observed for granular systems [138]. This implies that the
cage around the bigger particles is mostly well-defined, and this effect is again more
for higher polydispersity.

Notice that the shift in the size distribution of the hardest/softest particles (Fig.4.6)
with M is also accompanied by a shift in the overlap function of the hardest/softest
particles with M (Fig.4.5) suggesting that these shifts are correlated. In both cases
(particle size distribution and overlap), the shift is more for the harder particles and
also increases with polydispersity. This implies that the size also plays a role in the dy-
namics. In Fig.4.7, we plot the dynamics of the two biggest and two smallest particles
and compare them with the two hardest and softest particles for M=1. We find that
for the 3% PDI, the difference in dynamics of the biggest and smallest particles are less
than the softest and hardest particle. This implies that the heterogeneity in the dy-
namics is primarily determined by the local structural heterogeneity. With an increase
in polydispersity, the scenario reverses. For the 15% PDI system, the difference in the
dynamics is better described by the size than the local structural order parameter. We
know from our earlier study [114] that at lower temperatures, the structure becomes
a better predictor of the dynamics. To understand the role of temperature, we choose
the 15% PDI system, where the size appears to be dominant, and plot the different
overlap functions at two different temperatures (Fig.4.8). We find that at the lower
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Figure 4.6: Particle size distribution, D(σ), of the hardest and softest particles
as a function of M (as defined in Fig.4.5).Top panel: (a1-a3) Size distribution
of all hard particles. Bottom panel:(b1-b3) Size distribution of all soft particles.
a1 and b1 are for 3% PDI, a2 and b2 are for 7% PDI, a3 and b3 are for 15%
PDI. For comparison, we also plot the size distribution of all the particles,
P (σ).

temperature, although the structure becomes a better predictor of the dynamics, the
size still plays a dominant role in determining the dynamics.
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Figure 4.7: Overlap function of 2 hardest particles (Red circle), 2 softest
particles (Black triangle), 2 biggest in size particles (Blue diamond), and 2
smallest in size particles (Green square) at different PDIs. The structural
order parameter is calculated for M=1 (a) 3% PDI (b) 15% PDI

4.7 Comparative study of the role of particle size

and local structure on the dynamics

The above analysis suggests that for polydisperse systems, both size and local structure
can play a role in the dynamics. To quantify the dependence of the dynamics on the
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Figure 4.8: Overlap function for 15% PDI at T = 0.35 (Closed symbol), T =
0.22(open symbol). Color codes are similar like Fig.4.7.

structure and particle size, we perform isoconfigurational runs (IC). IC is a powerful
technique introduced by Harrowell and co-workers to investigate the role of structure
in the dynamical heterogeneity of the particles [139, 140, 107, 141]. Among other
factors, a particle’s displacement can depend on the structure and also the initial
momenta. This technique was proposed to remove the uninteresting variation in the
particle displacements arising from the choice of initial momenta and extract the role
of initial configuration on the dynamics and its heterogeneity. For each system, five
different isoconfigurational runs are carried out for 4000 particles. To ensure that all
configurations are different, the configurations are chosen such that the two sets are
greater than 100τα apart. We run 100 trajectories for each configuration with different
starting velocities randomly assigned from the Maxwell-Boltzmann distribution for the
corresponding temperatures. Mobility, µ is the average displacement of each particle
over these 100 runs and is calculated as, µj(t) = 1

NIC

∑NIC
i=1

√
(rji (t)− rji (0))

2. Here
µj(t) is the mobility of jth particle at time t and NIC is the number of trajectories.
We calculate the Spearman rank correlation (CR) between different parameters as a
function of time (scaled by the α relaxation time τα). We plot CR(µ, 1/βΦr) against
time for M = 1 and M = M0. We find that CR(µ, 1/βΦr) decreases with an increase
in M . This result is similar in spirit to that observed for the difference in the overlap
functions of the hardest and softest particles (Fig.4.5). In Fig.4.9 we also plot CR(µ, σ).
We find that for all systems, it grows at longer times, and for systems with higher
polydispersity, the correlation is large, even at shorter times. This supports our earlier
conclusion that at higher PDI, the size of the particles plays a greater role in describing
the dynamic heterogeneity.

Note that apart from the softness parameter described in this work, other param-
eters are often used to describe the local static property of a supercooled liquid [111].
We check if size plays any role in an order parameter that does not include the radial
distribution function. Earlier studies have shown that Vibrality, the local Debye-Waller
Factor [111, 109, 107], is a good predictor of the dynamics. The analysis is done on the
inherent structure. The Fast Inertial Relaxation Engine (FIRE) algorithm is employed
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Figure 4.9: Spearman rank correlation CR between mobility and different order
parameters at different PDIs (a) 3% PDI (b) 7% PDI (c) 15% PDI. (colour
code - CR(µ, 1/βΦr) M = 1 (black star), M = M0 (red square), CR(µ,Ψ)
(green triangle), CR(µ, σ) (violet circle). M0 = 3, 4, and 6 for 3%, 7%, and
15% PDI respectively.

to obtain the inherent structures [142]. Vibrality is written as, Ψ(i) =
∑3N−3

k=1
|vk

i|2

ωk
2

where the sum runs over the entire set of eigenmode with frequency ωk. vk
i is a vector

that has the three components of the eigenvector −→vk associated with the ith particle. Ψ
(i) is the mean square vibrational amplitude of ith particle, assuming the vibrational
energy is equally distributed to all modes. In Fig.4.9, we plot CR(µ,Ψ) and find that
it increases with polydispersity which is similar to CR(µ, σ). It appears that CR(µ, σ)

affects CR(µ,Ψ) more compared to CR(µ, 1/βΦr).

To quantify the above observations, we now use multiple linear regression to model
mobility in terms of Φ and σ. To evaluate the predictive power of the model, we use
the standard 5-fold cross-validation approach, where the data is randomly split into
five equal sets and a model built on four parts is used to predict mobility on the held-
out test set. This is done five times, with each data point tested exactly once. The
mean relative error, MRE = 1

N

∑N
j=1

|µj
p−µj

t|
m ujt and the root mean square deviation,

RMSD =
√

1
N

∑N
j=1(µ

j
p − µj

t)
2 are shown along with the error bar computed from

the five test sets. Here µj
p and µj

t are the predicted mobility and true mobility of jth

particle respectively. The mobility used here is calculated at t = 5, but the results are
independent of t.

We compare results with simple linear regression, also evaluated in the same man-
ner, but using only one of the parameters i.e either Φ or σ. From the analysis of the
errors plotted in Fig.4.10, we find that for lower PDI the caging potential is a good
parameter to describe the mobility. However, with an increase in PDI, size becomes
the dominant variable in prediction. We also do a similar analysis using Ψ and σ and
find that between this pair, size always plays a dominant role for all systems. For
smaller PDI where size does not play a strong role, it appears that among the three
variables, SOP is the best predictor of the dynamics.

Note that in the above analysis, although we have treated Φ and Ψ as independent
variables, both have some dependence on the size. The dependence of Φ on size can be
seen in Fig.4.6, where we find that soft particles are primarily small and hard particles
are primarily big in size. The figure also suggests that this dependence increases with
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PDI and decreases as we increase M. Note that in the figure, we have taken only the
hardest and softest particles. To quantify this observation for all particles, in Table 4.1,
we report the Spearman rank correlations between the different parameters, and the
correlation values do support the inference drawn from Fig.4.6. For all the systems, the
correlation between the local structure and size is more for M=1. Now since dynamics
is also correlated with the size of the particles thus, the local structure appears to be
better correlated with the dynamics for M=1. This effect increases with polydispersity.
We also find that at higher polydispersity, compared to Φ, Ψ is more correlated with
σ. Thus at higher polydispersity, at longer times, the Vibrality appears to be a better
predictor of the dynamics, as seen in Fig.4.9. Thus for systems with large PDI, any
order parameter which is correlated with the size of the particles will appear to be a
good predictor of the dynamics.
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Figure 4.10: Error between predicted and true value of mobility µ (a) Mean
relative error- MRE = 1

N

∑N
j=1

|µj
p−µj

t|
µj

t
and (b) Root mean square deviation,

RMSD =
√

1
N

∑N
j=1(µ

j
p − µj

t)
2. Color code - Independent variables are Φr

and σ (Blue, dash-dot line), Independent variable is Φr (Black, solid line),
Independent variable is σ (Green, dashed line), Independent variables are Ψ
and σ (Red, dotted line) and Independent variable is Ψ (Indigo, dash-double
dot line).

Table 4.1: Spearman rank correlation, CR between particle size, σ and local
caging potential, βΦr when the system is assumed to be monodisperse, M = 1
and when the system is described in terms of the optimum number of species,
Mo. We also report the Spearman correlation between σ and Vibrality, Ψ. The
systems are polydisperse with polydispersity index 3% at T=0.28, 7% at
T=0.30, and 15% at T=0.35.

PDI CR(σ, βΦr) M = 1 CR(σ, βΦr) M = M0 CR(σ,Ψ)
3% 0.1390155 0.082205 -0.1109721
7% 0.2932547 0.1292865 -0.2533036
15% 0.4645949 0.195008 -0.5164553
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4.8 Conclusion

In a recent study, we proposed a new structural order parameter that strongly cor-
relates with the dynamics [114]. This SOP is the inverse of the depth of the local
mean-field caging potential, described in terms of the local liquid structure. We fur-
ther showed that this correlation between the SOP and dynamics is valid below the
onset temperature of the glassy dynamics. Thus the validity of the theory can be used
to determine the onset of glassy dynamics. Since polydisperse systems are good model
systems to study supercooled liquid dynamics, in this work, we study the structural
order parameter and its correlation with the dynamics for a few polydisperse systems.
Note that this SOP needs information on the local structure. It is well known that
describing the structure of a polydisperse system is tricky [88, 66]. Treating the system
as a monodisperse system leads to artificial softening of the structure.

We find that the distribution of the particle level SOP, changes with M . We also
find that this change does not affect all particles similarly. Thus if we rank particles
in terms of the value of the order parameter, then the rank order changes and finally
appears to saturate beyond a certain M value. We also find that the detection of the
onset temperature from the correlation of the SOP and the dynamics depends on M .
The onset temperature first changes with M , and at higher values of M , it saturates.
The saturation of the onset temperature and the rank of the particle order parameter
allows us to estimate the optimum number of species needed to describe the system.
Like in our earlier study[66], the value of M0 increases with polydispersity.

However, the most surprising result is that although the structure is not well
defined for M = 1, the correlation between the structure and dynamics is maximum
when the system is assumed to be monodisperse. Further analysis using multiple
linear regression shows that although at low polydispersity, the local SOP determines
the dynamics, at higher polydispersity, the size of the particle plays a dominant role
in the dynamics. We also find that for M = 1, the bigger particles are primarily well-
caged, and the smaller particles appear loosely caged. Thus there is a high correlation
between the local SOP and the size of the particles. However, with an increase in
M and a better description of the structure, the cage is better defined, especially for
smaller particles. This reduces the correlation between the SOP and the particle size.
Since size plays a dominant role in determining the dynamics, this reduction in the
correlation reduces the apparent predictive power of the SOP at higher M values. To
test if order parameter-size correlation is present for other order parameters where the
local structural information is not needed, we calculate the Vibrality, which is the local
Debye-Waller factor, known to be a good predictor of the dynamics [111, 109]. We
first show that Vibrality also correlates with size, and this correlation increases sharply
with an increase in polydispersity. At lower polydispersity, compared to Vibrality, the
SOP is a better predictor of the dynamics. However, at higher polydispersity, the
Vibrality performs marginally better. This increase in the predictive power of the
Vibrality is due to its stronger coupling with the size of the particle.
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Thus our study suggests that for a polydisperse system with high PDI, any order
parameter with a strong coupling with the particle size will appear to be a good pre-
dictor of the dynamics. However, this may not reflect the true predictive power of the
order parameter. Thus for a polydisperse system with reasonably high polydispersity,
the correlation between dynamics and any static order parameter must be interpreted
cautiously, as the size can play a role in this correlation, and the results may not be
generic.

In this chapter, we have studied the structure-dynamics correlation at a single
particle level which is an acceptable practice [111, 108, 112, 107, 139]. However, the
correlation between structure and dynamics is weak when we use single particle infor-
mation [141, 143, 110, 113, 140]. On the other hand, the correlation improves when we
consider collective dynamical property over a certain region [144, 141, 140] or correlate
the coarse grained structural property with the longtime dynamics [110, 113, 143, 102].
In a polydisperse system, this coarse graining of the SOP over a static length reduces
the coupling between the order parameter and particle size. It thus can be a useful
way to study the real correlation between the order parameter and the dynamics.

Appendix I: DYNAMICS AND EXCESS ENTROPY
To elucidate the temperature range of the system, we first obtain the onset temperature
of the glassy dynamics for the systems by analysing the temperature dependence of
their inherent structures (IS)[3] (Fig.4.11). The IS is obtained using FIRE algorithm
[142]. For PDI 3%, 7%, and 15% the onset temperatures are 0.64, 0.43, and 0.37,
respectively. We calculate the relaxation time τα by examining the overlap function
(see Eq. 4.4) decay to 1/e = 0.367. The relaxation time versus temperature below
the onset temperature is plotted in Fig.4.12. The temperature dependence of the
relaxation time is fitted to the well known Vogel-Fulcher-Tammann (VFT) equation
[21], and the resulting VFT temperatures for the different systems are as follows: 3%
- 0.073, 7% - 0.117, and 15% - 0.154. However, as mentioned in the main text the
system with 3% PDI crystallizes at a reasonably high temperature (below T = 0.28)
compared to its VFT temperature.
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Figure 4.11: Inherent structure energy (eIS) as a function of temperature. (a)
3% PDI (b)7% PDI (c) 15% PDI. Near the onset temperature the value of IS
starts deviating from its high temperature value thus allowing us to predict the
onset

Excess entropy, Sex is a loss of entropy due to the interaction between particles.

Palak Patel 95 CSIR-NCL



PhD Thesis AcSIR

1.5 2 2.5 3 3.5 4 4.5 5 5.5

1/T

10
0

10
1

10
2

10
3

τ
α

3%
 7% 

15%
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Excess entropy is calculated via temperature integration (TI) method [54, 145]. As
discussed in the main text pair excess entropy, S2 takes into account the excess entropy
due to two-body correlation. S2 and Sex crosses each other at a temperature Tcross

which is similar to the onset temperature [1]. In Fig.4.13 we plot the temperature
dependence of Sex and S2 for 7% and 15% PDI where S2 is calculated at different
values of M . Both S2 and Tcross change with M . Initially, they vary strongly, and
then the variation is weaker with M.
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Figure 4.13: Temperature dependence of S2 changes with M and this also
changes the Tcross values (a) 7% PDI (b) 15% PDI

Appendix II: CALCULATION OF LOCAL CAGING POTENTIAL US-
ING Cuv and Cuv

approx

The potential energy depth calculation using this direct correlation function is given in
Eq. 4.1. The expression of Cuv(r) according to the Hypernetted chain approximation
(HNC)[10] is given in Eq. 4.2. At higher PDI, when the system is described by one
species, the rdf shows a large softening and is non-zero at very small values of ’r’ com-
pared to the interaction potential (Shown in Fig.4.14. In experimental systems where
the interaction potential is not known, it is often assumed that the potential of mean
force is the same as the interaction potential i.e. −βUuv(r) = ln[guv(r)]. Under this
assumption, the expression of the direct correlation function, Capprox

uv (r) ≈ [guv(r)−1].
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Here we present an analysis that shows that using C(r) and Capprox(r) primarily shifts
the distribution of the potential energy depth but does not affect the correlation be-
tween the structural order parameter and the dynamics. In Fig.4.15 (a), we show
a scatter plot of βΦ(r) calculated using Cuv(r) vs that using Cuv

approx and find that
they are strongly correlated. Averaged over 1000 frame, the Spearman rank correlation
between (Cuv, C

approx
uv ) = 0.948 and Pearson correlation is = 0.955. This confirms that

the use of the approximate direct correlation function primarily shifts the distribution
of βΦ(r) as shown in Fig.4.15 (b). We also plot the distribution of the softness for
the fast particles, and it shows that in both cases, more than 80% of the fast parti-
cles have a softness value higher than the average softness. In Fig.4.15 (c), we plot
the onset temperature obtained when βΦ(r) is calculated using C(r) and Capprox(r)

(Details of onset temperature calculation is given in Section. 4.5) and interestingly
both results are identical. The dynamics of a few hardest and a few softest particles
are plotted in Fig.4.15 (d). It clearly shows that using an approximate direct corre-
lation function does not reduce the predictive power of the structural order parameter.
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Figure 4.14: Inverse power law potential, U and radial distribution function,
g(r) for different PDIs at M=1.

Appendix III: IDENTIFICATION OF FAST PARTICLES
There are many ways of identifying fast particles [53, 146, 147, 136, 137]. Here we use
the method proposed by Candelier et al.[136, 137]. In that method, for each particle
in a certain time window W = [t1, t2], they calculated quantity phop(i, t). When the
average position of a particle changes rapidly, a cage jump happens. Expression for
phop(i, t) is,

phop(i, t) =
√〈

(ri −
〈
ri
〉
U
)2
〉
V

〈
(ri −

〈
ri
〉
V
)2
〉
U

(4.5)

where ∆t timescale over which the particles can rearrange and U = [t - ∆ t/2,t] and
V = [t,t + ∆ t/2]. For a time window W, the small value of phop means the particle is
within the same cage, and large phop means that within that time window, the particle
has moved between two distinct cages. With the help of phop, fast particles are defined
in this work. If phop is greater than pc then we identify that as a fast particle[112, 114].
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Figure 4.15: Different parameter for justification of 1/βΦr can calculated from
Cuv(r) and Capprox

uv(r) both. This analysis is done at 3% PDI. (a) Single
frame scatter plot from Cuv(r) and Capprox

uv(r) at T =0.28 (b) Distribution of
inverse of βΦr of all particles P(1/βΦr) in the system (Solid line with filled
symbol) and of those which are about to rearrange (Dotted line with open
symbol) at T = 0.28, from C(r) (Black) and Capprox(r) (Magenta). (c) Onset
temperature obtained from C(r) (Square) and Capprox(r) (Circle) (d) Overlap
function of few particles which has highest {Solid line (C(r)) or closed symbol
(Capprox(r))} and lowest value of βΦ(r) {Dotted line (C(r)) or open symbol
(Capprox(r))} at T = 0.28.
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pc is the value of the mean square displacement at time tmax, where tmax is a time
where the non-Gaussian parameter is maximum. Although we are working with a
polydisperse system we have kept the pc value fixed for all particles. For more details
refer to Reference [114].
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Chapter 5

Thermodynamics and its
correlation with dynamics in a
pinned systems: A comparative
study using two different methods
of entropy calculation

“Don’t raise your voice.
Improve your argument”.

- Desmond Tutu

5.1 Introduction

The slowing down of the dynamics in supercooled liquids and its correlation with the
thermodynamics of the system have been topics of intense research. There are several
characteristic temperatures where both thermodynamic and dynamic properties of the
system change in a significant manner. At the onset temperature (Tonset), the relax-
ation dynamics of the system start to differ from that of a typical liquid because due to
the lowering of temperature, the system begins to explore the underlying free energy
landscape [3]. This onset temperature can also be identified as the temperature where
the pair part of the excess entropy becomes less than the total excess entropy of the
system [1, 66]. Below Tonset, the temperature dependence of the dynamics can be de-
scribed reasonably well by the so-called mode-coupling theory (MCT), which predicts
a power-law divergence of the relaxation times at a dynamic transition temperature
Tc.[11] However, experimental and numerical studies found [148, 149, 150, 13, 151, 152]
that the relaxation time does not diverge at Tc as predicted by the MCT, but instead
shows a smooth crossover to weaker temperature dependence. This crossover scenario
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is consistent with the predictions of the so-called random first-order transition (RFOT)
theory [153, 31] and it has been related to the properties of the underlying potential
energy landscape [154].

According to the RFOT theory and the phenomenological Adam-Gibbs (AG) the-
ory [29], the low-temperature dynamics of supercooled liquid is controlled by its con-
figurational entropy (Sc), which measures the number of possible distinct states ac-
cessible to the system. The AG theory predicts the following relationship between
the α relaxation time (τ) and the configurational entropy (Sc): τ = τ0 exp(A/TSc)

where τ0 is a microscopic timescale and A is a system-dependent constant. Thus,
according to the AG theory, the temperature T0 where the relaxation time diverges is
the same as the Kauzmann temperature TK where the configurational entropy goes
to zero [22]. For a large number of systems the AG relationship is found to hold
[29, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164]. There has been a recent study
which showed that it is the diffusion coefficient which follows the AG relationship for
the widest temperature range [165].

The validity of the AG theory in the form presented above has recently been chal-
lenged [155]. It has been argued that according to the RFOT theory, the reduction
in the configurational entropy is related to the growth of a static correlation length
over which the activation happens, giving rise to the relaxation process. This theory
predicts a generalized AG relation given by τ = τ0 exp(−A/TSα

c ), where α can be
different from unity. It was further shown that the generalized AG relation holds [155]
both in experiments and in simulations. Note that even according to the generalized
AG relationship, the relaxation timescale should diverge below T = TK when the con-
figurational entropy vanishes. Also, by definition, Sc can not be negative.

Walter et al. have shown that with an increase in c, the Kauzmann temperature
becomes higher[166]. However, for larger c systems, they found that the configurational
entropy vanishes at temperatures close to the onset temperature. On the contrary, of
self part of the dynamics shows complete relaxation well below the temperature where
the configurational entropy vanishes[167, 49]. Thus we can access states with negative
configurational entropy. This is an unphysical result by definition. Besides, it also
violates the RFOT prediction.

The goal of the present work is to understand the thermodynamic properties of
the pinned system and its correlation with the dynamics. To do so we employ a com-
pletely different method to calculate the entropy of the system, namely the two-phase
thermodynamics (2PT) method and compare the results with the entropy obtained via
the TI method. The 2PT method is a well-known method [168, 169] that has provided
accurate entropy values over a wide range of thermodynamic state points for the LJ
fluid and different water models [168, 170]. We first test this method for a standard
Kob-Anderson model which is the c = 0, system in the pinned system. Where c repre-
sents the pinning concentration. We compare the entropy values obtained via the TI
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and the 2PT methods and find them close to each other. We then employ the 2PT
method for different pinned systems and compare the results with those obtained by
the TI method. We find that with increasing pinning concentration (c), the difference
in entropy obtained by the two methods increases. The entropy calculated using the
2PT method does not produce any negative configurational entropy state points. We
also find that it predicts a Kauzmann temperature which is similar to the temperature
where the α relaxation time diverges, thus validating the RFOT prediction. Inciden-
tally, we find that in the range of temperature studied here, the standard AG relation
holds. We also show that the thermodynamics transition detected by the TI method
of entropy calculation is related to the fractionation of the total accessible volume.

The rest of the chapter is organized as follows: Section 5.2 contains the simulation
details. In Section 5.3, we discuss the characteristic temperatures of the pinned sys-
tems. In Section 5.4, we discuss about all the finding. The chapter ends with a brief
conclusion in Section 5.6. This chapter contains three Appendix sections at the end.

5.2 Simulation Details

In this work, we study a pinned system in which a fraction of particles are artifi-
cially pinned at their positions in an equilibrated liquid. For the study of the pinned
system, we use the Kob-Andersen 80:20 binary Lenard-Jones mixture[13]. Details of
this model are given in chapter 2, section 2.1.2. For creating the pinned system, the
following pinning protocol is used. The pinned particles are chosen randomly from
an equilibrium configuration of the system at the temperature of interest [166, 49].
NVT molecular dynamics simulation is performed in a cubic box using a Nose-Hoover
thermostat where N=1000 at ρ = 1.2 (Lbox=9.41036) using a time integration step
of ∆t = 0.005, at three different pinning concentration (c), i.e. 0.05, 0.10 and 0.15.
Production runs of pinned configurations are long enough to ensure that within the
simulation time, the overlap correlation function Q(t) decays to zero. Details of the
pinned system model are given in Section 2.1.2

5.3 Characteristic temperatures of the pinned sys-

tems

To calculate the temperature range of the system, we first obtain the onset temperature
of the glassy dynamics. In Fig.5.1, we plot the inherent structure energy as a function of
T to calculate the onset temperature (Tonset) from the inherent structure (IS). Tonset

at different pinning concentrations is given in Table 5.1. The IS is obtained using
the FIRE algorithm[142]. From this analysis, we observe that the onset temperature
increases with increasing pinning concentration, “c" (see Table 5.1).

In this work, to characterize the dynamics, we consider the self part of the overlap
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Figure 5.1: Inherent structure energy (eIS) as a function of temperature (T).
Onset temperature increases as c increases.

function, q(t), defined as;

q(t) =
1

N

N∑

i=1

ω(|ri(t)− ri(0)|) (5.1)

where function ω(x) = 1 when 0 ≤ x ≤ a and ω(x) = 0 otherwise. The overlap
parameter cutoff (a) = 0.3 is taken such that particle positions separated due to small
amplitude vibrational motion are treated as the same [2]. We calculate the relaxation
time τα by examining the overlap function decay to 1/e = 0.367. The relaxation
time vs temperature below the Tonset is plotted in Fig.5.2. Dynamics become slower
with increasing pinning concentration. The temperature dependence of the relaxation
time is fitted to the well-known Vogel–Fulcher–Tammann (VFT) equation[21]: τα =

τ0 exp(
1

KV FT ( T
TV FT

−1)
), where τ0 are high T relaxation time, TV FT and KV FT is the

VFT temperature and fragility constant respectively. The TV FT and KV FT for the
different pinned systems are shown in Table 5.1. We find that, as reported earlier, the
fragility decreases with increasing pinning concentration [49].
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τ
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c = 0.15

Figure 5.2: Relaxation time (τα) as a function of inverse of temperature (1/T)
for different concentrations of pinning (c). Solid lines represent the VFT fits.
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Table 5.1: Onset temperature (Tonset), VFT temperature (TV FT ) and fragility
constant (KV FT ) at different pinning concentration (c)

c Tonset TV FT KV FT

0.00 0.80 0.314 0.266
0.05 0.89 0.3058 0.1645
0.10 1.01 0.3026 0.1142
0.15 1.27 0.3003 0.0874

5.4 Result

5.4.1 Binary system entropy

We must first validate the 2PT approach in the well-known KA system before applying
it to the pinned system. We will analyze the 2PT approach in the KA system in this
section. For a binary system in the 2PT method of entropy calculation, we need to
provide the information of the partial volume fraction which can be calculated as [171],

V̄i =
σ3
i∑

j xjσ
3
j

V

N
(5.2)

where, Vi = V̄iNi.
Partial volume fraction depends on the radii of the particles. In the KA system,

the diameter of the A and B particles are 1 and 0.88, respectively. However, the
potential in the KA model is designed in such a way that it allows interpenetration
between the A and the B particles (σAB < (σA + σB)/2). Thus if we assume that
the B particles are surrounded by all A particles then the effective diameter of a B

particle will be 0.6. To understand the role of partial volume fraction on the entropy
we calculated Stot from the 2PT method, assuming the B particle diameter to be 0.8
and 0.6, respectively. We find that at high temperatures the 0.6 value provides a better
result but at low temperatures, the entropy is almost independent of the small changes
in the partial volume fraction. Thus for these systems, we assume the diameter of the
B particles to be 0.6.

We compare the total entropy of the system as estimated from the TI [63] and
from the 2PT [168] methods. Fig.5.3 shows that the Stot obtained from TI and 2PT
methods have similar values. The error bar for the 2PT data is estimated from a set of
ten runs at each temperature. We find some deviation in the low temperature. At low
temperatures as the dynamics become slow, we need longer runs to get a converged
DOS. Fig.5.4 shows the effect the time step has on the value of total entropy at lower
temperatures. With an increase in time step, the entropy value approaches the value
calculated using the TI method. However, at longer times, the slope of the curve
decreases.

Configurational entropy, Sc obtained in the two different methods is plotted in
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Figure 5.3: Stot vs.T for the KA model using the TI and the 2PT method. The
two methods agree reasonably well. A small systematic deviation in the
low-temperature regime is due to the limited averaging possible for the 2PT
method, see Fig.5.4.
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Figure 5.4: The total entropy via the 2PT method as a function of the number
of time frames over which the velocity autocorrelation function is integrated to
obtain the spectral density at a low temperature T = 0.45. For comparison, we
also plot the entropy value obtained using the TI method. The difference
decreases with increasing time intervals, but the rate of convergence becomes
slower at longer times.

Fig.5.5. We find that the values of Kauzmann temperature (TK) using two different
methods are close which validates the applicability of the 2PT method for the calcu-
lation of the configurational entropy.

We have compared the density of states calculated from the calculation of Hessian
and the Fourier transform of the velocity autocorrelation function. We find both
methods show a similar result in a density of states (Graphical representation is given
in Reference [145]).

5.4.2 Pinned system entropy

In a pinned system, a fraction c of the particles is pinned. The details about the pinned
system have been discussed in section 2.1.2 Using the TI method the total entropy of
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Figure 5.5: TSc vs. T for the KA model using the TI and the 2PT methods.
The value of TK estimated by the two methods are similar (T TI

K =0.27,
T 2PT
K =0.24).

moving particle in the pinned system, Stot is given by [166],

Stot =
3M

2
− 3M

2
ln
(2πT

h2

)
+M(1− ln

N

V
)

−
2∑

i=1

Ni ln
Ni

N
+ β∗〈U

〉
−
∫ β∗

0
dβ
〈
U
〉 (5.3)

where N1 and N2 are number of moving particles of type A and B respectively. V is the
total volume of system, M is the total number of moving particles. The total potential
energy of system U = UMP + UMM , where UMM and UMP denotes the interaction
energy between moving- moving particles and moving-pinned particles respectively.

In the pinned system [166, 49, 172, 173, 174], the relaxation time obtained from
single-particle dynamics remains finite at temperatures for which the configurational
entropy vanishes, and there is some evidence[167] that the relaxation time associated
with the collective dynamics also remains finite at such temperatures. It has also been
argued that the configurational entropy has a finite value when the vibrational entropy
is calculated using an anharmonic approximation [172].

We calculate the total entropy of the pinned system using the TI method used in
earlier studies [166] and also mention in Eq. 5.3. We apply the 2PT method in the
pinned system and compare it with the TI method. In Fig.5.6 we plot (a) the total
entropy obtained using two different methods and in Fig.5.6 (b) their differences, for
three different pinning densities and (c) the relative difference. For comparison, we
also show the KA system with no pinning which is the same as the KA system. We
find a difference between the entropy calculated via the 2PT and the TI methods that
increases systematically with pinning. We next calculate the configurational entropy as
predicted by the two methods and plot the temperature dependence of TSc in Fig.5.7.
Both methods predict positive Kauzamnn temperatures for each system and similar
to the case of mean-field systems[145], the Kauzmann temperature predicted by the
2PT method is lower than that by the TI method, see Table.5.2. In this calculation,
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we have used the harmonic approximation for the vibrational entropy.
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Figure 5.6: Comparison of the TI and 2PT methods of calculation of entropy
for a pinned system with different pinning concentrations. (a) The total
entropy Stot vs T . Filled symbols represent the results of the TI method and
open symbols represent those of the 2PT method. (b)The difference in Stot

between 2PT and TI methods increases with increasing pinning concentration
c. (c) The relative difference in the total entropy, ∆Stot
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, between 2PT and TI

shows similar behavior as Fig.5.6 (b).
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Figure 5.7: TSc vs. T for systems with different pinning concentrations
c = 0, 0.5, 0.10, 0.15 using (a) the TI method and (b) the 2PT method. Both the
T TI
K and the T 2PT

K increase with increasing pinning concentration but
T 2PT
K < T TI

K , see Table.5.2.

Table 5.2: The values of all characteristic temperatures for pinned systems
with different pin concentrations c. T TI

K is the Kauzmann temperature
estimated from TI. T 2PT

K is the Kauzmann temperature estimated from the
2PT method.

c TTI
K T2PT

K

0.00 0.28 0.24
0.05 0.31 0.30
0.10 0.41 0.32
0.15 0.57 0.41
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Next, we need to understand if the lowering of the TK value in the 2PT method
is sufficient to describe the dynamics. In Fig.5.8 we show semi-log plots of τ vs. 1

TSc

where the entropy is calculated using the 2PT and the TI methods. The TI method
shows a strong breakdown of the AG relation for c = 0.1 and c = 0.15, whereas the
2PT method follows the AG relation for all c.
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Figure 5.8: Testing the AG relation between τ vs. 1
TSc

for c = 0, 0.5, 0.10, 0.15
systems using (a) the TI method (b) the 2PT method. In the temperature range
studied here, the AG relation is violated for c = 0.1 and c = 0.15 when Sc is
calculated using the TI method. However, the AG relation holds for all c when
Sc is calculated via the 2PT method.

In their study, Kob et al. highlighted that the vibrational entropy in systems is not
solely governed by harmonic contributions but also includes anharmonic contributions
[172]. They suggested that incorporating anharmonic configuration entropy leads to
a positive contribution. Therefore, to ensure the completeness of our analysis, we
have considered the inclusion of anharmonic contributions in the calculation of the
vibrational entropy. In our analysis, we observe that the anharmonic approximation
will equally affect both the 2PT and TI entropy values. Details of anharmonic entropy
calculation are given in chapter 2, Section 2.4.3.

We calculate the configurational entropy by subtracting the vibration entropy from
the total entropy by taking into consideration the anharmonic contribution. The tem-
perature dependence of the configurational entropy after taking care of the anharmonic
contribution is plotted in Fig.5.9 (a) and the corresponding Adam-Gibbs plot is shown
in Fig.5.10 (a). Even after the addition of the anharmonic contribution, the AG rela-
tionship is violated. In figure Fig.5.9 (b) we plot the temperature dependence of the
configurational entropy where the total entropy is calculated using the 2PT method
and the anharmonic contribution is taken into consideration. We show the AG plot
of the same data in Fig.5.10 (b). We find that when the total entropy is calculated
using the 2PT method the AG relationship holds and also the temperature where the
entropy vanishes is lower than that given by the TI method (see Table.5.3).

From Figs. 5.9, 5.10 and Table.5.2 we find that even after taking into consideration
the anharmonic term the Kauzmann temperature TK appears to be high and the AG
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Figure 5.9: TSc vs. T for c = 0, 0.5, 0.10, 0.15 systems using (a) the TI method
and (b) the 2PT method. Sc is computed by including the anharmonic
contribution. T TI

K and T 2PT
K increase with increasing pinning concentration but

T 2PT
K < T TI

K , see Table.5.3.
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Figure 5.10: Testing the AG relation between τ and 1
TSc

for c = 0, 0.5, 0.10, 0.15
systems using (a) the TI method and (b) the 2PT method. Sc is computed by
including the anharmonic contribution. In the temperature range studied here,
the AG relation is violated for c = 0.10 and c = 0.15 when entropy is calculated
using the TI method. However, the AG relation holds when entropy is
calculated via the 2PT method.

Table 5.3: The value of all characteristic temperatures for systems with
different ’c’ values. T TI

K (anh),and T 2PT
K (anh) are Kauzmann temperature

estimated from TI and 2PT respectively after the addition of anharmonic
contribution.

c TTI
K (anh) T2PT

K (anh)
0.00 0.22 0.18
0.05 0.24 0.22
0.10 0.34 0.26
0.15 0.47 0.33

relationship is violated.
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As discussed above, the unphysical feature of negative configurational entropy does
not appear in the TI results for the pinned system. Also, the observation that the 2PT
results for Sc lie above the results obtained from the TI method suggests that the 2PT
results are less accurate than the TI results because, as mentioned above, there are
arguments [172, 133] that suggest that actual configurational entropy is lower than
the TI result. However, it should be noted that the expectation that the TI results
overestimate the true Sc has not been verified by any calculation for the pinned system.
Also, a difference between the value of the configurational entropy per particle obtained
from the TI method and its actual value would require the presence of an exponentially
large number of energy minima that differ from a particular minimum by the movement
of a small number of particles. We are not aware of any study that establishes the
presence of such a large number (exponential in the number of particles) of nearby
minima.

Available results for the dynamics [49, 173, 167] of the pinned system suggest
that the TI results for Sc may not be consistent with the RFOT theory. There are
arguments [174, 172] that suggest that the inconsistency with the RFOT theory may
disappear if the relaxation time associated with the collective dynamics (instead of
the time scale obtained from single-particle dynamics) is considered. It has also been
argued [172] that the disagreement with the RFOT theory may be accounted for by
the overestimation of Sc in the TI method. However, these arguments have not been
verified from explicit calculations.

A similar observation of the mismatch between entropy and dynamics for the
pinned system has been observed in experimental studies [175]. It was found that
although for unpinned systems, the local dynamics correlate with the local pair excess
entropy, with an increase in the pinning density, such correlation disappears [175].
Thus, for the pinned system, these traditional methods of entropy calculation cannot
explain the dynamics. On the other hand, the 2PT method appears to explain the
dynamics quite well. For these reasons, we believe that more studies are necessary to
decide the relative merits of the TI and 2PT methods for the pinned system.

5.5 Analysis of the origin of increasing saturation

point in pinned system

We note that both the 2PT entropy and the dynamics from the self overlap provide
us with information on the local behavior. Whereas the entropy calculated via the
TI method and the collective overlap provide us with non-local information. So it is
important to understand the dynamics and its correlation with the entropy calculated
via the TI method.

We show that, in pinned system the intermediate scatting function F (q, t → ∞)

and collective overlap Qc(t → ∞) saturation point increases as increasing the pinning
concentration (c). We next show that for systems where instead of the pinned particles
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we have particles with heavy mass the dynamic correlation functions F(q,t) and Qc(t)

show a similar behavior. It’s also known as soft pinning. Instead of saturating at a
finite value at long time the correlation functions shows a plateau and decays from
there. We note that the F(q,t) and Qc(t) saturation points of the pinned system and
the heavy mass system are similar at the initial time when the heavy mass particle
cannot move; however, once the heavy mass particle begins to move, the heavy mass
saturation point decreases and matches with the KA system or the unpinned system
(shown in Fig.5.11). This width of the plateau increases with the mass of the heavy
particles. This clearly shows that the long time saturation value of the F (q, t → ∞)

and Qc(t → ∞) are related to the immobility of the pinned particles.
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Figure 5.11: (a)Collective overlap at different c and heavy mass system
saturated at the normal system saturation point, ones high mass particle start
moving.(b)Collective intermediate scattering function at different c and heavy
mass saturated at the normal system saturation point, once high mass particle
starts moving.

For a regular glass forming system above the glass transition temperature, the
intermediate scatting function F (q, t → ∞) decays to zero, and below the glass tran-
sition temperature F (q, t → ∞), has a finite value. This jump of F (q, t → ∞) from
zero to a finite value marks the glass transition of the system. However for the pinned
system we find that F (q, t → ∞) does not show such a transition and has a finite value
even at very high temperature where the entropy is large (Shown in Fig.5.12). Thus
identification of glass transition temperature from the saturation of F(q,t) is difficult.

As shown by Kob et al. studying the overlap qαβ between two configurations α

and β is an alternate strategy for identifying and characterizing the thermodynamic
transition: qαβ = N−1

∑
ij θ(a−|rαi −rβj |), where the length scale a is 0.3, the Heaviside

function is θ, and rαi , is the position of particle i in configuration α. According to
RFOT, the average value | < q > | will quickly rise at the glass transition from a
small value in the fluid phase to a large value in the glass phase. Here < ... > and [...]
stand for the thermal and disorder averages, respectively. Kob et al. have computed
the overlap distribution P(q) using replica exchange molecular dynamics[166]. They
plotted the P(q) as a function of q, which is reproduced in Fig.5.13(a). They observe
that at high temperatures, [P(q)] remains single-peaked for all c, and as c rises, the
peak position gradually moves towards greater q. The coexistence of the fluid and
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Figure 5.12: Dynamics analysis at high temperature. (a) Collective overlap
Qc(t) as a function of time (t) (b) Intermediate scattering function as a
function of t (c) Intermediate scattering function at long t.

Figure 5.13: Plot adopted from reference [166].(a)P(q) calculated from replica
exchange molecular dynamics (b) average overlap | < q > | as a function of c
(c) Kauzmann temperature from different methods.

glass phases is signaled by the temperature being single-peaked at low and high c, but
having a double-peak structure at intermediate c, which suggests that the transition
from the fluid phase to the glass phase is first-order-like. The average overlap | < q > |
as a function of c was plotted by Kob. et al., and we have reproduced this plot in
Fig.5.13(b). The ideal glass transition temperature TK(q) can be determined using
this overlap approach by determining the temperature at which the skewness of [p(q)]
disappears. TK(q) as a function of c is shown in Fig.5.13(c)[166].

Note that Qc(t → ∞) = | < q > |. For the regular KA system, Qc(t → ∞) =
N
V

4πa3

3 , where a = 0.3 is employed in the calculation of Qc(t) to take into account the
particle’s vibrational motion within the cage. Due to this finite value of ‘a’, Qc(t) in a
regular KA system does not decay to zero and instead saturates at 0.135 in the long
time limit. In the pinned system, this expression is no longer the same as a regular
KA system. Due to pinned particles, the total volume of the system is not available
to the mobile particles. We can write

Qc(t → ∞, c) =
(N −Nc)

(V −Ncve)

4

3
πa3

=
N

V

(1− c)

(1− ρcve)

4

3
πa3

= Qc(t, c = 0)
(1− c)

(1− ρcve)

(5.4)
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where a = 0.3, Nc is the number of pinned particles, ve is the per pinned particle
excluded volume, and V is the system’s entire volume. This ρcve provides the infor-
mation of the total excluded volume for the pinned particles. Thus, if we have the
value of Qc(t → ∞, c), then we can calculate the excluded volume due to pinned par-
ticles.

Now we reanalyzing the data presented by Kob et al. . We estimated the total ex-
cluded volume ρc(ve) using the Qc(t → ∞)= | < q > | from Fig.5.13. In Fig.5.14, ρcve
as a function of T is plotted. From this, we observe that as c grows, we see a dramatic
increase in the excluded volume, and after a certain value, the excluded volume no
longer increases and saturates to a value (≈ 0.83). We demonstrate in Fig.5.14 that
the temperature at which the excluded volume achieves a fixed value (≈ 0.8) matches
with the TK value for each system. Thus, we suggest that the thermodynamic transi-
tion predicted by the TI method of entropy is related to the excluded volume reaching
a finite value. We believe that at this value of the excluded volume, the available
volume of the systems undergoes a fractionation; thus, the total available volume is
not accessible to all the mobile particles. Here, we also show that not only the distri-
bution of q but also the average value can provide information of the thermodynamic
transition.
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Figure 5.14: Excluded volume calculated from Eq. 5.4. Note that the q(t)
values were adopted from Figure 2(c) of the reference [166] and also shown in
Fig.5.13. (b) Excluded volume as a function of c at different T. Symbol
represent TK, which is adapted from reference [166], also shown in Fig.5.13(b).

5.6 Conclusion

The present work aims to study the thermodynamics of the system and understand
its correlation with the dynamics. To study thermodynamics, we first calculate the
entropy using the well-known TI method [78]. We then study the correlation of the
entropy with the dynamics. The pinned system shows super-Arrhenius dynamics simi-
lar to conventional glassy liquids, suggesting that the RFOT description should apply.
However, it is found that configurational entropy vanishes [166] at a temperature that
is close to the onset temperature of the system. It is also shown that the relaxation
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times calculated from single-particle dynamics remain finite at temperatures where
the configurational entropy vanishes[49, 167]. This is different from the prediction
of RFOT and the behavior seen in conventional glass-forming liquids for which the
(extrapolated) values of TK and T0 are found to be close to each other [29, 155, 176].
This observation also indicates that the system samples state points with negative
configurational entropy, which is unphysical by definition.

We thus use another technique, namely the 2PT method, to calculate the entropy.
The 2PT method assumes that a liquid can be represented as partially a gas and par-
tially a solid and this fraction is a function of the thermodynamic parameters of the
system and also of the size of the particles. The 2PT method has been extensively
used to calculate the entropy for many systems, mostly in the high-temperature regime
[171, 168]. In recent work, this method was also extended to lower temperatures [170].
We find that for the KA system at c = 0, both the 2PT method and the TI method
provide similar results. We then compare the total entropy calculated by the 2PT
method with that by the TI method for different pinned density systems. We find
that the difference between the entropy values obtained in the two methods system-
atically increases with increasing c. We also find that the entropy calculated via the
2PT method describes the dynamics quite well and confirms the RFOT prediction.
We note that both the 2PT entropy and the dynamics from the self overlap provide us
with information on the local behavior. In contrast, the entropy calculated via the TI
method and the collective overlap provide non-local information. Since the collective
overlap at a long time has a finite nonzero value even at high temperatures, just by
looking at the value it is difficult to identify the transition temperature. We show
here that the collective overlap’s long-time value provides us with information on the
excluded volume due to the pinned particles. This excluded volume initially increases
with the lowering of temperature, and then when the excluded volumes start to over-
lap, the growth stalls. When the excluded volume overlaps, then the total accessible
volume of the system gets fractionated. This fractionation of the volume is what is
referred to as thermodynamic phase transition by Kob and co-workers[166]. We also
show that the TK value for all the systems coincides with the temperature where the
excluded volume reaches a fixed value (≈ 0.8). Thus, we suggest that the thermody-
namic transition predicted by the TI method of entropy is related to the fractionation
of the total volume into smaller domains, which can be identified from the estimation
of the excluded volume. Thus, it shows that the TI method can identify thermody-
namic transition, which has a signature in the dynamics and can be obtained from
the long-time saturation value of the collective overlap function for the pinned system.
However, the entropy obtained via the 2PT method measures the entropy at the local
level and thus correlates well with the self-overlap function. In regular systems, these
two entropies and the self and collective dynamics provide similar information. How-
ever, for other classes of systems, like the pinned and the meanfield system they are
not identical.
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APPENDIX A: Different types of entropy calculation
The various forms of entropy in pinned systems are discussed here.

• Ideal gas entropy : The ideal gas entropy in pinned systems only comes from
the moving particle, as discussed in chapter 2. The pinned system’s ideal gas
entropy is calculated as;

MSid =
3M

2
− 3M ln Λ +M(1− ln

M

V
)−

2∑

i=1

Ni ln
Ni

M
(5.5)

where M is the total number of particles that are moving and, Λ =
√

βh2

2πm is the
de Broglie thermal wavelength and h is the Planck constant.This is explained
in more detail in chapter 2, Eq. 2.71. We have plotted the ideal gas entropy
of pinned systems at various pinning concentrations in Fig.5.15. As the pinning
increases, we see a increase in ideal gas entropy.
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Figure 5.15: Per mobile particle ideal gas entropy. Ideal gas entropy increases
as increasing the pinning concentration.

• Vibrational entropy : We consider of a weakly vibrating system (IS) around
an inherent structure. The potential energy can be approximated well by the
following formula, if we indicate by ri the displacement of the ith particle from
its point in the IS.

U ≈ UIS(S) +
1

2

M∑

i,j

δ2U

δriδrj
δriδrj (5.6)

Note that in inherent structure calculation, we minimize the mobile particle only,
pinned particle coordinate remain same. It is important to understand that the
coordinates of pinned particles should not be considered, just the derivative of
the potential energy with respect to the coordinates of mobile particles. (How-
ever, it stands to reason that U will be influenced by the positions of pinned
and mobile particles.) The Hessian matrix is therefore 3M × 3M in size. The
harmonic vibrational entropy of the given inherent structure with the given
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pinned particle configuration can be represented as by introducing the eigenval-
ues λ1, λ2....λ3M of the Hessian.

MSvib = 3M(1− ln Λ) +
1

2

3M∑

i=1

ln
2π

βmω2
i

(5.7)

This is explained in more detail in chapter 2, Eq. 2.100. We have plotted
the vibrational entropy of pinned systems at various pinning concentrations in
Fig.5.16. As the pinning increases, we see a drop in vibrational entropy.
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Figure 5.16: Per mobile particle vibrational entropy. Vibrational entropy drops
as increasing the pinning concentration.

• Excess entropy : We employ the thermodynamic integration approach to de-
termine entropy from simulations. The TI technique, which is most frequently
used to study Lennard-Jones particles, connects the ideal gas state and the state
of interest by combining a compression path (increasing density) and a cooling
path (decreasing temperature). Though it is unclear how compression for pinned
fluids should be characterised. In order to avoid modifying the density, we only
employ the cooling path from the ideal gas limit T = ∞ to the target temper-
ature. Here, we apply the same version of the TI that has been employed for
bulk Lennard-Jones particles to pinned systems. Before we start calculating the
disorder average over realisations, we first apply the TI to the entropy of a cer-
tain pinned particle configuration. At the desired temperature β′, the entropy
of the system with the pinned particles S can be written as;

MSM
ex (β

′) = β′ < UM > −
∫ β′

0
dβ < UM > (5.8)

where UM is a thermal average of the potential energy. Total system energy can
be decomposed as

UN = UPP + UMP + UPM + UMM

where UN represent total energy of system. UPP , UPM , UMP , UMM represent in-
teraction energy between pin-pin (PP), mobile-pin(MP), pin-mobile(PM), mobile-
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mobile(MM) particles. Note that UMP = UPM . We should be aware that the
pinned system is produced by the KA model, which has two types of particles,
large A and small B particles, and in which we pin a fraction of the particle
positions. We now have two additional types of particles: pin A particles are
designated as C, while pin B types are designated as D. As a result, there are
now four different types of particles, including two movable and two pinned
types. Energy can now be expressed as an A, B, C, or D kind of particle as
follows:

UN =

4∑

i,j=1

Uij

Note that Uij = Uji. In the pinned system, pin-pin particle has no interaction,
hence UPP = 0. The only source of energy for a pinned system is a moving
particle, hence its new source of energy will be;

UM = UMM + UMP + UPM (5.9)

Because UPP = 0, UCC , UDD, UCD, and UDC will be zero. Now, energy is
expressed in terms of the particles A, B, C, and D as follows:

UM =

2∑

i,j=1

Uij + 2×
2∑

j=1

4∑

i=3

Uij

This is explained in more detail in chapter 2, Eq. 2.78. We have plotted the
excess entropy of pinned systems at various pinning concentrations in Fig.5.17.
As the pinning increases, we see a drop in excess entropy.
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Figure 5.17: Per mobile particle excess entropy. Excess entropy drops as
increasing the pinning concentration.

APPENDIX B: Configurations entropy with half interaction potential

As demonstrated in section 5.4.2, employing the TI method system produced a
negative entropy and a breakdown of Adam-Gibbs relation. In the pinned system
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using the TI method to obtain the excess entropy, we observe that the interaction
between a mobile and a pinned particle all together contributes to the loss of entropy
of the mobile particle as the pinned particles do not have any entropy (Eq 5.8). In the
system where all the particles are mobile, this is not the case. The interaction between
the particles contributes to the loss of entropy of both particles. We wanted to test
how the entropy behaves if we assume that half of the interaction energy between
a pinned and mobile particle contributes to entropy loss (excess entropy). Potential
energy for a pinned system is;

U I
M = UMM +

1

2
UMP +

1

2
UPM (5.10)

In this case, the excess entropy can be written as;

SI
ex = β′ < U I

M > −
∫ β′

0
dβ < U I

M > . (5.11)

As shown in Fig.5.18, we find that the excess entropy, SI
ex, does not decrease

with pinning. Rather, it shows a marginal increase. This analysis clearly shows that
the decrease in the excess entropy with pinning is due to the higher potential energy
contribution of the pinned particles, which leads to a stronger confinement of the
mobile particles.
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Figure 5.18: Per mobile particle excess entropy with half interaction, SI
ex.

Excess entropy slightly increases as increasing the pinning concentration.

The configuration’s entropy can now be written as;

MSI
c = MSid +MSI

ex −MSvib

= MSid −MSvib + β′ < U I
M > −

∫ β′

0
dβ < U I

M >
(5.12)

where U I
M is the thermal average of the potential energy containing half of the energy

generated by the mobile-pin interaction (U I
M ). When taking into account full interac-

tion, we find that configurational entropy decreases as the pinning concentration grows
(Fig 5.19), but when considering half interaction, surprisingly, we find that the value
of TK decreases (Fig.5.20) i.e. considering half interaction the configurational entropy
increases as the pinning concentration increases, as shown in Fig.5.19. This behaviour
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Figure 5.19: Left side: Per mobile particle configurational entropy,
TSM

c = T (Sid + SM
ex − Svib), as a function of T . Right side: Per mobile

particle configurational entropy with half interaction,
TSI

c = T (Sid + SI
ex − Svib), as a function of T.
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Figure 5.20: (a) τ vs. 1/TSM
c (b) τ vs. 1/TSI

c . The solid lines show the
Adam-Gibbs fitting. Adam-Gibbs valid with half interaction.

is similar to that observed for the single particle relaxation dynamics. It was earlier
shown that the TV FT decreases with increasing pinning [49].

In addition, we also find that the Adam-Gibbs relation remains valid when plotted
against this entropy (Fig.5.20). The table 5.4 displays the TK values for both when
we consider total interaction (T TI

K ) and the partial interaction (T TI(I)
K ) contributing

to the entropy of the mobile particle. T TI
K rises with rising c, whereas T

TI(I)
K drops

with rising c.

We do not have a scientific explanation for considering half of the interaction.
However, this analysis shows that the reason there is a breakdown of the AG relation
in the pinned system is that the interaction between the pinned and mobile particle
reduces the entropy of the mobile particle by a significant amount.

APPENDIX C: Velocity auto correlation function (VACF), density of
state (DOS), and fluidity analysis of pinned system

Here, we present some functions used in the calculation of the entropy using 2PT
method for the pinned system. The 2PT method is described in chapter 2, section
2.4.2. The first step is to calculate the velocity auto correlation function (VACF). The
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Table 5.4: The values of all characteristic temperatures for pinned systems
with different pin concentrations c. T TI

K is the Kauzmann temperature
estimated from TI. T TI(I)

K is the Kauzmann temperature estimated from the TI
method with half interaction potential energy.

c TTI
K TTI(I)

K

0.00 0.28 0.28
0.05 0.31 0.21
0.10 0.41 0.19
0.15 0.57 0.16

VACF at various pinning concentrations is shown in Fig. 5.21). Notably, we found
that as the pinning concentration increased, the depth of the VACF also increased.
This suggests a rise in the caging potential, indicating that the particles become more
confined with higher pinning concentrations.
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Figure 5.21: Velocity auto correlation function (VACF) as a function of time.

We next obtain the Density of States (DOS) from the VACF and plot it against
frequency (Fig. 5.22). We then use the 2PT method to separate the gaseous and solid
phases. As the pinning concentration increased, we found that the solid contribution
to entropy increased, accompanied by a decrease in the gaseous contribution. This
DOS analysis is illustrated in Fig. 5.22.

To enhance our understanding, we investigated the fluidity of the system as a
function of temperature (Fig. 5.23). Consistent with the DOS findings, the trend
indicated a decrease in fluidity with increasing pinning concentration. This aligns
with the concept that as the gaseous contribution decreases and the solid contribution
increases, the overall fluidity of the system decreases. It also shows that with an
increase in pinning, the fluidity of the system decreases.

Our exploration using VACF, DOS, and fluidity provides a clear picture of how
increasing pinning concentration affects the system—resulting in heightened caging
potential, a shift from gaseous to solid dominance, and a subsequent decrease in flu-
idity.
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Figure 5.22: (a)Total density of state (DOS) as a function of frequency (ν).
(b) Solid and gaseous density of state (DOS) as a function of frequency (ν).
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Figure 5.23: Fluidity as a function of temperature (T). With increasing
pinning concentration (c), or decreasing the temperature, mobility decreases
because solid contribution increases and gaseous contribution decreases,
resulting in fluidity decreasing.
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Chapter 6

Effect of the presence of pinned
particles on the structural
parameters of a liquid and
correlation between structure and
dynamics at the local level

“A goal should scare you a little
and excite you a lot”.

- Joe Vitale

6.1 Introduction

In the previous chapter, we have already introduced the system where a fraction of
the particles are pinned. We have shown that the correlation between the dynamics
and thermodynamic quantities is not similar to that of a system where all particles
are mobile[166, 145]. The entropy calculated via the thermodynamic integration (TI)
method[54, 177] deviates from the entropy calculated by the two-phase thermodynam-
ics (2PT) method[168, 169, 171]. The single particle dynamics is controlled by the
2PT entropy, whereas the transition obtained in the collective dynamics due to the
overlap of the excluded volume of the pinned particles is predicted by the TI entropy.
The entropy calculated via the TI method, which vanishes at a higher temperature,
cannot explain the single particle dynamics [166, 49, 173, 174] and is lower than that
obtained using 2PT method [145].

The studies mentioned above were all performed at the macroscopic level[166, 49,
173, 174, 145]. However, there have also been microscopic studies of the correlation
between entropy and dynamics. The correlation between local pair excess entropy,
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which depends on the structure and the local dynamics of the pinned system, was also
studied [175]. It was shown that since the pinning process is expected not to affect
the structure, the local pair excess entropy remains the same as the unpinned system,
whereas the dynamics slows down due to pinning. Thus, there is a decorrelation
between pair excess entropy and dynamics even at the microscopic level.

From the above discussion, it appears that both at macroscopic and microscopic
levels, the dynamics and the entropy are not correlated. However, at the macroscopic
level, pinning decreases the configurational entropy more than slowing down the dy-
namics [166], whereas, at the microscopic level, the pinning process does not alter
the pair excess entropy but slows down the dynamics. Thus, the decorrelation be-
tween entropy and dynamics observed at the macroscopic and microscopic levels is
just the opposite. Note that for the unpinned system, the macroscopic pair excess
entropy, S2 contributes to 80% of the excess entropy [92]. The configurational entropy
Sc = Sid + Sex − Svib has a contribution from three terms: the ideal gas entropy Sid,
the excess entropy, Sex and the vibrational entropy, Svib. Since pair excess entropy
does not change due to pinning, we can expect the excess entropy, which is usually
obtained using thermodynamic integration (TI) method [54, 177] also not to change.
In that case, we may expect that the other terms are responsible for the observed
decrease in the configurational entropy of the pinned systems.

In this chapter, we first revisit the calculation of the configurational entropy. We
show that the decrease in the excess entropy is primarily responsible for the decrease
in the configurational entropy. We further show that in the calculation of the excess
entropy, the pinned particles should be treated as a different species, and the analytical
expression shows that compared to the interaction with another mobile particle, the
interaction with a pinned particle contributes twice in decreasing the excess entropy
of a mobile particle. We next show that when we use a similar methodology in the
calculation of the pair excess entropy, both at macroscopic and microscopic levels, it
decreases with pinning. The expression of the pair excess entropy shows that this
decrease again comes from the stronger interaction between the pinned and mobile
particles.

We then extend the recently developed theoretical formulation, where we describe
that each particle in a mean field caging potential for the pinned system. Note that,
as shown before, this mean field caging potential is obtained from the structure of the
liquid [82, 114, 135]. We find that even the mean field potential, both at microscopic
and macroscopic levels, shows that the pinned particles have a stronger interaction with
the mobile particles, thus increasing the depth of the caging potential and confining
the mobile particles. We refer to the inverse depth of the caging potential as the
structural order parameter(SOP). Interestingly, a similar confinement effect of the
pinned particles was observed in the elastically collective nonlinear equation (ECNLE)
theory [178, 179]. In ECNLE theory, the dynamics of the system was obtained using
Langevin dynamics on the dynamic free energy surface. The studies showed that with
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pinning, the depth of the free energy barrier increases, and the particles are more
confined. In the ECNLE theory, while treating the system, the Authors considered
that the pinned particles do not change the structure, but the pinned particles are
considered to be a different species. Thus, it appears that in any formulation to
obtain the stronger confinement effect by the pinned particles, the pinned particles
should be treated as a different species.

We next show that contrary to the common belief, the pinning process does change
the structure, which can be observed only when the partial radial distribution functions
are calculated, assuming the pinned particles are a different species. Our study reveals
that with an increase in pinning, it is a combined effect of the change in structure
and the stronger contribution of pinned particles in decreasing the potential energy of
the mobile partciles that reduces both S2 and SOP, the latter effect playing a more
dominant role. Finally, we show that the correlation between the local structural
parameters (S2 and SOP) and local dynamics increases when the above mentioned
two effects are taken into consideration in the calculation of S2 and SOP.

The rest of the chapter is organized as follows: section 6.2 contains the simulation
details. The analysis at the macroscopic level is presented in section 6.3 with excess
entropy, Sex, in section 6.3.1, pair excess entropy, S2, in section 6.3.2, the depth of
local caging potential, βΦr, in section 6.3.3 and the numerical results in section 6.3.4.
The analysis at the microscopic level is presented in section 6.4 with microscopic S2 in
section 6.4.1, microscopic βΦr in section 6.4.2 and numerical results in section 6.4.3.
In section 6.5, we analyze the structure dynamics correlation at the microscopic level.
The chapter ends with a brief conclusion in section 6.6. This chapter contains five
Appendix sections at the end.

6.2 Simulation Details

In this work, we study a pinned system in which a fraction of particles are artificially
pinned at their positions in an equilibrated liquid. For the study of the pinned system,
we use the Kob-Andersen 80:20 binary Lenard-Jones mixture[13]. Details of this model
are given in chapter 2, section 2.1.2. For creating the pinned system, the following
pinning procedure is applied to create the pinned system. The pinned particles are
chosen randomly from an equilibrium configuration of the KA system at the target
temperature[48, 49]. In this process, the ratio of the two types of particles in the
pinned state remains the same as the origin system (80:20). This has been checked
after the pinning process. Note that the two pin particles can’t be close to each other.
The Nosé-Hoover thermostat is used to simulate NVT molecular dynamics in a cubic
box with N = 4000, ρ = 1.2, integration time step ∆t = 0.005. We have generated
three different pinning concentrations “c”, i.e., 0.05, 0.10, and 0.15 for this work.
Production runs of pinned configurations are long enough to ensure that the overlap
correlation function q(t) (Eq. 2.8) decays to zero during the simulation time. Details
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of the pinned system model are given in chapter 2, section 2.1.2.

6.3 Entropy and mean field caging potential at

macroscopic level

6.3.1 Macroscopic excess entropy

The excess entropy of a system is the loss of entropy due to the interaction between
particles. The excess entropy of pinned systems has been calculated before, and it
was also shown that compared to the unpinned system, the configurational entropy
of the system disappears at a higher temperature [166, 145]. As discussed in the
Introduction, this disappearance of the configurational entropy at a temperature where
the dynamics continues has been a topic of intense research [166, 49, 173, 174, 145]. The
configurational entropy, Sc = Sid + Sex − Svib is obtained from the ideal gas entropy,
Sid, excess entropy, Sex and the vibrational entropy, Svib of the system. All these
three terms change due to pinning. Here, we first revisit the configurational entropy
calculation and find out which terms are primarily responsible for the vanishing of
the configurational entropy of the pinned system at a higher temperature[166, 180].
As shown in chapter 5, we find that as we increase the pinning concentration, the
per particle ideal gas entropy increases. However, the per particle excess entropy and
per particle vibrational entropy decrease. The decrease in the excess entropy appears
to be stronger than the vibrational entropy. We make a comparative analysis of the
excess entropy of the pinned and the unpinned systems to understand what leads to
this substantial decrease in the excess entropy.

The excess entropy per particle level is expressed as[54, 177];

Sex(β
′) = β′〈U

〉
−
∫ β′

0
dβ
〈
U
〉

(6.1)

where
〈
U
〉

is per partial potential energy.

In the case of a regular binary system, the per particle potential energy in terms
of the radial distribution function, g(r), can be expressed as[10]:

〈
UB

〉
= 2πρ

∫ ∞

0

2∑

i=1

2∑

j=1

Ni

N

Nj

N
uij(r)gij(r)r

2dr

= 2πρ

∫ ∞

0

2∑

i=1

2∑

j=1

χiχjuij(r)gij(r)r
2dr

(6.2)

where, χi =
Ni
N is the fraction of particles in type i. N is the total number of particles

in the system.

Note that when we pin particles in a binary system, we actually create a quaternary
system of two types of mobile particles and two types of pinned particles. We refer to
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the first type of mobile particles as species 1, the second type of mobile particles as
species 2, the first type of pinned particles as species 3, and the second type of pinned
particles as species 4. The potential energy per particle for a regular quaternary system
can be expressed as follows:

〈
UQ

〉
= 2πρ

∫ ∞

0

4∑

i=1

4∑

j=1

N
′
i

N

N
′
j

N
uij(r)gij(r)r

2dr

= 2πρ

∫ ∞

0

4∑

i=1

4∑

j=1

χ
′
iχ

′
juij(r)gij(r)r

2dr

(6.3)

Now if we assume that a fraction, c of particles are pinned then N
′
1 = (1 −

c)N1, N
′
2 = (1 − c)N2, N

′
3 = cN1, N

′
4 = cN2, χ

′
i =

N
′
i

N . The number of mobile par-
ticles can be written as M = (1 − c)N . In our model system, the pinned particles
do not interact with each other[166]; thus, uPP = u33 = u34 = u43 = u44 = 0. We
also know that the interaction between pinned and mobile particles is symmetric, for
example, u13 = u31. These conditions modify the quaternary expression and reduce
the first summation in Eq. 6.3 only over types 1 and 2. Moreover, for a system with
pinned particles, the excess entropy, SM

ex , is calculated only for the mobile particles,
and the total potential energy is divided only between the M mobile particles. This
further modifies the quaternary expression (Eq. 6.3), and the potential energy at per
mobile particle level for the pinned system, which we now also refer to as the modified
quaternary system,

〈
UM

〉
= N

M ×
〈
UQ(uPP = 0)

〉
can be written as;

〈
UM

〉
= 2πρ

∫ ∞

0
r2dr

2∑

i=1

N
′
i

M

[ 2∑

j=1

N
′
j

N
uij(r)gij(r) + 2×

4∑

j=3

N
′
j

N
uij(r)gij(r)

]

= 2πρ

∫ ∞

0
r2dr

2∑

i=1

(1− c)Ni

(1− c)N

[ 2∑

j=1

N
′
j

N
uij(r)gij(r) + 2×

4∑

j=3

N
′
j

N
uij(r)gij(r)

]

= 2πρ

∫ ∞

0
r2dr

2∑

i=1

χi

[ 2∑

j=1

χ
′
juij(r)gij(r) + 2×

4∑

j=3

χ
′
juij(r)gij(r)

]

(6.4)
The above expression of the potential energy, when replaced in Eq. 6.1, provides us
with the excess entropy of the mobile particles in the pinned system, SM

ex (β
′). The

first and second terms in Eq. 6.4 describe the potential energy of a mobile particle
due to the interaction with other mobile particles and pinned particles, respectively.
The expression of the first and second term are identical except for the fact that the
2nd term has a factor of 2. This implies that compared to a mobile particle, a pinned
particle has a stronger effect in decreasing the potential energy of a mobile particle.
In chapter 5, we show that if we neglect this stronger effect of the pinned particles on
the mobile particle i.e. remove the factor 2 in the second term of < UM > (Eq. 6.4)
then the excess entropy shows a marginal change and the per particle configurational
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entropy increases with an increase in pinning density. This is because, with the increase
in pinning density, the increase in the ideal gas entropy is more than the decrease in the
vibrational entropy. This result is not physical, but it clearly shows that the vanishing
of the configurational entropy at higher temperatures is due to the stronger effect of
the pinned particles in confining the mobile particles and thus decreasing the excess
entropy. We will show in section 6.3.2 and 6.3.3 that this effect of the pinned particles
plays an important role in the two body excess entropy and the mean field caging
potential.

6.3.2 Macroscopic pair excess entropy

The excess entropy, Sex can be written in terms of an infinite series via the Kirkwood
factorization method[57, 181],

Sex = S2 + S3 + S4....

= S2 +∆S
(6.5)

While Sex represents the loss of entropy due to total interaction, the pair excess en-
tropy, S2 describes the loss of entropy due to interaction described by the two-body
correlation. ∆S is the loss of entropy due to many body correlations (beyond pair
correlation). The per particle pair excess entropy, which contributes to 80% of the
total excess entropy[92] can be written as[181];

SB
2

kB
= −2πρ

∫ ∞

0

2∑

i=1

2∑

j=1

χiχj

{
gij(r) ln gij(r)− (gij(r)− 1)

}
r2dr (6.6)

Pair excess entropy per particle level for the quaternary system is expressed as;

SQ
2

kB
= −2πρ

∫ ∞

0
r2dr

4∑

i=1

4∑

j=1

χ
′
iχ

′
j{gij(r) ln gij(r)− (gij(r)− 1)} (6.7)

To obtain the pair excess entropy of the pinned system, SM
2 , we make similar

modifications to the pure quaternary system as is done for the calculation of the excess
entropy given in the previous system. First, we assume that there is no structure
between the pinned particles, i.e. gPP = g33 = g44 = g34 = g44 = 1. This assumption
is justified as u33 = u34 = u43 = u44 = 0, and we can also neglect any higher order
correlation between the pinned particles, thus assuming that the potential of mean
force between the pinned particles also vanishes. We also assume that the partial rdf
between mobile and pinned particles is symmetric. Thus, the first summation in Eq.
6.7 is only over the mobile particles, types 1 and 2. Next, in the modified system,
we calculate the entropy of only the mobile particles. The total pair excess entropy,
N ∗ SQ

2 (gPP = 1) is divided only amongst the mobile particles, and the per particle
pair excess entropy of the mobile particles, SM

2 = N
M ∗SQ

2 (gPP = 1). Thus, in the first
summation χ

′
i is replaced by χi like in Eq. 6.4. The pair excess entropy per particle
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level of the mobile particles in the pinned system, SM
2 can be written as,

SM
2

kB
= −2πρ

∫ ∞

0
r2dr

2∑

i=1

χi

[ 2∑

j=1

χ
′
j{gij(r) ln gij(r)− (gij(r)− 1)}

+ 2×
4∑

j=3

χ
′
j{gij(r) ln gij(r)− (gij(r)− 1)}

]

=
SMM
2

kB
+

SMP
2

kB

(6.8)

where SMM
2 is the pair excess entropy due to mobile-mobile(MM) interaction and

expressed as SMM
2 = −2πρ

∫∞
0 r2dr

∑2
i=1

∑2
j=1 χiχj{gij(r) ln gij(r) − (gij(r) − 1)}

and SMP
2 represent the pair excess entropy due to mobile-pin(MP) interaction and

expressed as SMP
2 = −2×2πρ

∫∞
0 r2dr

∑2
i=1

∑4
j=3 χiχj{gij(r) ln gij(r)− (gij(r)−1)}.

Note that χ1 = (1-c)χ′
1, χ2 = (1-c)χ′

2, χ3 = cχ′
1, χ4 = cχ′

2. From Eq. 6.8, we find
that similar to that discussed for excess entropy, when we treat the pinned system
as this modified quaternary system, the effect of the pinned particles in determining
the entropy of the mobile particles is stronger (factor of 2) compared to other mobile
particles.

When we pin the particles at their equilibrium position, the structure/rdf of the
system is not expected to change. Thus, pinning is believed to keep the equilibrium
of the system the same[182, 175, 183]. If the structure/rdf remains the same, then
treating the system as quaternary or binary in the calculation of the two body excess
entropy gives us identical results, SQ

2 = SB
2 (see Appendix I). However, note that for

the pinned system, the pair excess entropy is not given by SQ
2 (Eq. 6.7) but by SM

2

(Eq. 6.8). In the expression of SM
2 , even if we assume there is no change in structure

due to pinning, the pair excess entropy of the system, SM ′
2 is different from that of a

binary system and can be written as,

SM ′
2

kB
= −2πρ

∫ ∞

0
r2dr

[
χ1(χ

′
1 + 2χ

′
3){g11(r) ln g11(r)− (g11(r)− 1)}

+ χ1(χ
′
2 + 2χ

′
4){g12(r) ln g12(r)− (g12(r)− 1)}

+ χ2(χ
′
1 + 2χ

′
3){g21(r) ln g21(r)− (g21(r)− 1)}

+ χ2(χ
′
2 + 2χ

′
4){g22(r) ln g22(r)− (g22(r)− 1)}

]

=
SB
2

kB
− 2πρ

∫ ∞

0
r2dr

2∑

i=1

2∑

j=1

χiχ
′
(j+2){gij(r) ln gij(r)− (gij(r)− 1)}

(6.9)

Note that in writing the last equality, we have applied the relation, χ1 = χ
′
1 + χ

′
3

and χ2 = χ
′
2 + χ

′
4. Thus, it shows that even if the pinning process does not change

the structure, the pair excess entropy for mobile particles in the pinned system is
lower than that in the unpinned system. This implies that the pinned particles have
a stronger confinement effect on the mobile particle. In the next section, we will show
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that this stronger confining effect of the pinned particles is present not only in entropy
but also in other quantities.

6.3.3 Macroscopic mean field caging potential

The time evolution of the density, under mean-field approximation, can be written in
terms of a Smoluchowski equation in an effective mean field caging potential, which is
obtained from the Ramakrishnan-Yussouff free energy functional[76, 82, 114]. Follow-
ing our earlier studies, the caging potential is calculated by assuming that the cage is
static when the particle moves by a distance ∆r[82]. The mean field caging potential
is expressed in terms of the static structure factor/radial distribution function of the
liquid [114]. In this section, we obtain a pinned system’s mean field caging potential.
Previous work by some of us showed that the depth of caging potential is coupled to
the dynamics[82, 114]. Thus, in this study, instead of dealing with the whole potential,
we deal with the absolute magnitude of the depth of the caging potential as we view
the depth of the caging potential as an energy barrier. We first start with the bi-
nary system, where the average depth of mean field caging potential can be expressed
as[114];

βΦB
r (∆r = 0) = −4πρ

∫
r2dr

2∑

i=1

2∑

j=1

χiχjCij(r)gij(r) (6.10)

Here r is the separation between the tagged particle and its neighbors and β = 1/kBT ,
kB = 1, ρ is the density. ∆r is the tagged particle’s distance from its equilibrium posi-
tion. According to Hypernetted chain approximation, the direct correlation function,
Cij(r), can be represented as;

Cij(r) = −βuij(r) + [gij(r)− 1]− ln[gij(r)]. (6.11)

For a regular quaternary system, the caging potential can be expressed as;

βΦQ
r (∆r = 0) = −4πρ

∫
r2dr

4∑

i=1

4∑

j=1

χ
′
iχ

′
jCij(r)gij(r) (6.12)

Next, for the calculation of the mean field caging potential for the pinned system,
we apply similar conditions as discussed before for the calculation of the excess and
pair excess entropies. Under these conditions the average depth of mean field caging
potential of the mobile particles in the pinned system, βΦM

r can be written as;

βΦM
r (∆r = 0) = −4πρ

∫
r2dr

2∑

i=1

χi

[ 2∑

j=1

χ
′
jCij(r)gij(r) + 2×

4∑

j=3

χ
′
jCij(r)gij(r)

]

(6.13)

Note that similar to excess and pair excess entropy, the depth of the mean field caging
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potential of mobile particles in this modified quaternary system is affected more by
the pinned particles (factor of 2) than by other mobile particles. Also, if the structure
does not change due to pinning, the expression of the caging potential for a quaternary
and binary system is identical, but that is not the case for the modified quaternary
system. The expression for the depth of the mean field caging potential under the
assumption that the structure does not change due to pinning can be written as,

βΦM ′
r (∆r = 0) = −4πρ

∫
r2dr

[
χ1(χ

′
1 + 2χ

′
3)C11(r)g11(r) + χ1(χ

′
2 + 2χ

′
4)C12(r)g12(r)

+ χ2(χ
′
1 + 2χ

′
3)C21(r)g21(r) + χ2(χ

′
2 + 2χ

′
4)C22(r)g22(r)

]

= βΦB
r (∆r = 0)− 4πρ

∫
r2dr

2∑

i=1

2∑

j=1

χiχ
′
(j+2)Cij(r)gij(r)

(6.14)

In the last equality we have applied the relation that χ1 = χ
′
1 + χ

′
3 and χ2 = χ

′
2 + χ

′
4.

The above expression suggests that even when we assume that the structure does
not change due to pinning, the depth of the caging potential for the pinned system is
deeper compared to the unpinned system. This higher confinement effect comes due to
the stronger interaction with the pinned particles. Interestingly, a similar effect of the
pinned particles has been discussed while studying the nonlinear Langevin equation
on a dynamic free energy surface [178, 179]. Note that our mean field caging potential
is obtained from the functional derivative of the static version of this dynamic free
energy [184, 76]. Similar to the methodology used here, their study, [178, 179] on
a monoatomic liquid treats the pinned system as a binary system, thus considering
the pinned particle as a different species. They also consider the dynamic free energy
of only the mobile particles. Under these conditions, they show that the free energy
barrier and confinement of the mobile particles increase with pinning density.

6.3.4 Numerical results for the macroscopic pair excess

entropy and mean field caging potential

Note that the two body excess entropy and the mean field caging potential are both
functions of the radial distribution function (rdf) given by,

gij(r) =
V

NiNj

〈 Ni∑

α=1

Nj∑

β=1,β ̸=α

δ(r − rα + rβ)
〉

(6.15)

where V is the system’s volume, Ni, Nj are the number of particles of the i and j types,
respectively. rα, rβ are the αth and βth particle’s position in the system respectively.

In Fig. 6.1, we plot the partial rdfs of the system where we do not differentiate
between the pinned and unpinned particles and we find that, as expected, the rdf
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remains the same as the unpinned regular KA model (c=0).
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Figure 6.1: Radial distribution function, g(r) while treating the pinned system
as a binary system, at T = 0.68 (a) gAA as a function of r (b) gAB as a
function of r. Here A and B are the bigger and smaller sizes of particles
respectively.

In the rest of the article when we refer to the unpinned binary KA system, following
the usual norm, we refer to the particles as A and B types. However, as discussed in
the previous sections, when we pin particles in a binary system, we actually create a
quaternary system. We refer to the mobile A type of particles as 1, mobile B type of
particles as 2, pinned A type of particles as 3, and pinned B type of particles as 4.

We next plot some representative partial rdfs assuming the system to be quaternary
at different pinning concentrations (Fig. 6.2). We find that with increased pinning
density, the partial rdfs start deviating from the c=0 system. With an increase in “c",
there is a drop in the peak value of the rdfs between two mobile particles (g11, g12).
On the other hand, the first peak height of the partial rdfs between mobile and pinned
particles (g13, g14) grows with “c". To ensure that this is not an art effect of choosing
the pinned particles as a different species, in the c=0 system, we randomly choose
15% of the particles and treat them as a different species. In Fig. 6.3, we show that
in that case, g11 = g13 = gAA. A similar result is also observed for other partial rdfs
(not shown here). This clearly shows that when we pin a certain fraction of particles,
contrary to the common belief, there is a structural change.

We observe that this structural change happens quickly, immediately after the
pinning process. We calculate g(r), averaged from t = 0 − 100 and t = 101 − 200,
where the pinning is performed at t=0. We find that both rdfs overlap (Appendix II,
Fig. 6.11). In Appendix II, Fig. 6.12, we also show that χ

′
1g11 + χ

′
3g13 is the same as

χAgAA and χ
′
2g12 + χ

′
4g14 is the same as χBgBB. This is precisely why we do not see

a change in structure when the pinned particles are not treated as a different species
(Fig. 6.1). Note that this change in the partial rdfs is independent of the integration
timestep and system size (Fig. 6.14).

Thus, from this analysis, it is clear that the structure of the system does change
when particles are pinned. However, this change is significant at higher pinning densi-
ties only when we treat the pinned particles as a different species. In Fig. 6.4, we plot
the pair excess entropy, SM ′

2 (Eq. 6.9) and the caging potential, βΦM ′
r (Eq. 6.14) of
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Figure 6.2: Radial distribution function, g(r) while treating the pinned system
as a quaternary system, at T = 0.68. (a)g11 as a function of r (b) g12 as a
function of r (c) g13 as a function of r (d) g14 as a function of r. Inset: We
have zoomed onto the first peak of the respective figures, which clearly shows
the difference in the radial distribution functions. Note that color coding is
similar to Fig. 6.1. Here, we refer to the mobile A type of particles as 1,
mobile B type of particles as 2, pinned A type of particles as 3, and pinned B
type of particles as 4.
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Figure 6.3: Comparison between radial distribution functions, g(r)s by
randomly picking 15% particles in the KA system and treating them as
different species (magenta, diamond = g13, magenta solid line = g11) and
pinning 15% of particles position during the simulation and treating the pinned
particles as different species (green, triangle = g13, green solid line = g11). We
also plot the g(r) for a regular KA (c=0) system for comparison (blue, star).
The plots are shown only for the big particles.

the pinned systems where we assume that the structure does not change due to pin-
ning. We also plot SM

2 (Fig. 6.4 (a)) and βΦM
r (Fig. 6.4 (b)), where we consider that

the structure changes due to pinning. We find that, even when we consider that the
structure does not change, the pair excess entropy of the pinned system differs from
that of the binary system and decreases with increasing pinning density. This decrease
in entropy is due to the stronger effect of the pinned particles in confining the mobile
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particles. When we consider that the structure changes due to pinning, as shown in
Fig. 6.2, then the entropy further decreases, and like the structure, this decrease is
significant at higher pinning densities. The plot of the mean field caging potential
shows a similar effect. The caging potential depth increases with pinning, even if the
change in the structure due to pinning is ignored. There is a further increase in the
depth when the change in the structure is taken into account.
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Figure 6.4: (a) Macroscopic S2 as a function of T, (b) macroscopic βΦr as a
function of T. Solid line represents SM ′

2 ( Eq. 6.9) or βΦM ′
r (Eq. 6.14) and

symbol represents SM
2 (Eq. 6.8) or βΦM

r (Eq. 6.13).

Thus, we find that both the pair excess entropy and the mean field caging potential
for the pinned system differ from that of the unpinned system, and this difference
comes due to two factors. Firstly, compared to the interaction between two mobile
particles, the interaction between a mobile and a pinned particle is stronger, leading
to a decrease in entropy and an increase in the caging potential. Secondly, due to
pinning, the structure of the liquid changes, and this further decreases the entropy
and increases the mean field caging potential. As seen from Fig. 6.4, the first effect is
stronger and plays a dominant role.

In Appendix I, we show that the well-known crossover[1] between the excess entropy
and the pair excess entropy takes place at a physically meaningful temperature only
when we take into consideration these two effects in the calculation of the entropy.

6.4 Pair excess entropy and mean field caging po-

tential at the microscopic level

In the previous section, we developed the protocol for calculating the caging potential
and pair excess entropy at the macroscopic level for the pinned system. However,
our primary goal is to understand how these two order parameters can describe the
dynamics at the local level. We clearly demonstrate that the pinned system should
be treated as a modified quaternary system. In this section, we make a comparative
analysis of these two structural quantities, when the pinned system is treated as a
binary system and a modified quaternary system. First, we start with the microscopic
expressions, which are obtained from the macroscopic expressions. The bigger “A"
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particles, which are larger in number, are the ones for which all microscopic calculations
are performed. This is done to make sure that there is no size inhomogeneity, which
we know also affects the dynamics[185].

6.4.1 Microscopic pair excess entropy

Calculation of the pair excess entropy at the macroscopic level (S2) is given in section
6.3.

In the binary system, the pair excess entropy of each mobile “A" particle, which
is type “1" in our notation, can be expressed by removing the first summation in Eq.
6.6;

SB
2 (A)

kB
= −2πρ

∫ ∞

0
r2dr

2∑

j=1

χj{g1j(r) ln g1j(r)− (g1j(r)− 1)} (6.16)

Similarly, in the modified quaternary system, the pair excess entropy of each mobile
“A" particle (type 1) can be expressed by removing the first summation in Eq. 6.8;

SM
2 (A)

kB
= −2πρ

∫ ∞

0
r2dr

[ 2∑

j=1

χ
′
j{g1j(r) ln g1j(r)− (g1j(r)− 1)}

+ 2×
4∑

j=3

χ
′
j{g1j(r) ln g1j(r)− (g1j(r)− 1)}

] (6.17)

Note that the differences between the binary and modified quaternary are the fol-
lowing. In the binary expression, when treating the neighbors, we do not differentiate
between the mobile and pinned particles; however, in the quaternary expression, we
do. Thus, in the binary expression, the effect of the mobile neighbors on the tagged
particle is the same as that of the pinned neighbors. However, in the quaternary
expression, the effect of the pinned neighbors on the tagged particle is twice that of
the mobile neighbors. As shown in the macroscopic calculation (Fig. 6.4), it is this
second effect that plays a dominant role in differentiating between the binary and the
modified quaternary values of the entropy.

6.4.2 Microscopic mean field caging potential

The macroscopic calculation of the depth of the caging potential (βΦr), the inverse of
which we refer to as the structural order parameter (SOP), is given in section 6.3.3.
At the microscopic level for a binary system, the caging potential of a mobile “A" type
of particle can be written by removing the first summation in Eq. 6.10;

βΦB
r (A,∆r = 0) = −4πρ

∫
r2dr

2∑

j=1

χjC1j(r)g1j(r) (6.18)
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The mean field caging potential for a mobile “A" type of particle in a modified
quaternary system can be written by removing the first summation in Eq. 6.13,

βΦM
r (A,∆r = 0) = −4πρ

∫
r2dr

[ 2∑

j=1

χ
′
jC1j(r)g1j(r) + 2×

4∑

j=3

χ
′
jC1j(r)g1j(r)

]

(6.19)

Thus, note that similar to that discussed for the pair excess entropy, in the modified
quaternary expression, compared to the mobile neighbors, the pinned neighbors have
a stronger effect in confining the tagged particle.

6.4.3 Numerical results for the microscopic pair excess en-

tropy and mean field caging potential

To perform the microscopic investigation, we determine βΦr(∆r = 0) and S2 for every
snapshot at the single particle level that requires the partial rdfs to be calculated at
a single particle level. In this calculation, the sum of Gaussian can be used to express
the single particle partial rdf in a single frame, and it is calculated as follows[55];

gαij(r) =
1

4πρr2

∑

β

1√
2πδ2

exp−
(r−rαβ)2

2δ2 (6.20)

where “α” is the particle index, ρ is the density. The Gaussian distribution’s variance
(δ) is employed to transform the discontinuous function into a continuous form. We use
δ = 0.09σAA for this work. Single particle rdf is used to derive the direct correlation
function at the single particle level from Eq. 6.11.

We can determine caging potential (Eq. 6.10, 6.12, 6.13) by combining the direct
correlation function (Eq. 6.11) and particle level rdf (Eq. 6.20). This leads to a term
that is a product of the interaction potential and the rdf. As shown in an earlier
work[114], at distances shorter than the average rdf, the particle level rdf generated by
the Gaussian approximation has finite values. At small “r” due to this finite value of
the rdf, its product with the interaction potential, which diverges at small “r”, leads to
a large unphysical contribution from this range. To get around this problem, we use
an approximate expression of the direct correlation function, Capprox(r) = [gij(r)− 1]

where we assume that the interaction potential is equal to the potential of mean force
−βuij(r) = ln(gij(r)). It has also been shown earlier that using Capporx

ij (r) marginally
improves the theoretical prediction of structure-dynamics correlation[185, 135]. In the
rest of the microscopic calculation, we will use Capporx

ij (r) in place of Cij(r).

In Fig. 6.5, we plot the distribution of pair excess entropy and local caging potential
by describing the pinned system as binary. Note that for all the cases, the quantities
are calculated only for the mobile “A" particles. We find that the distribution remains
similar to the unpinned system (KA model at c=0). This is because the expressions
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are identical for pinned and unpinned systems, and even for c=0.15, there are enough
mobile “A" particles to give the correct statistics. However, when we calculate the
quantities assuming the pinned system as a modified quaternary system (Eq. 6.13
and 6.8), we observe that as “c" increases, the depth of the caging potential increases
and the pair excess entropy decreases. Distribution of βΦM

r , and SM
2 are shown in

Fig. 6.5. This analysis clearly shows that the entropy and the SOP (inverse depth
of the caging potential) are higher when the system is treated as binary compared to
when it is treated as a modified quaternary. In the next section, we will show that the
correlation between the dynamics and structural quantities differs when we treat the
pinned system as binary or modified quarternary.
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Figure 6.5: Distribution of pair excess entropy (S2) and depth of mean field
caging potential (βΦr) in different pinned systems at T = 0.68. (a1) -
Distribution of S2 treating pinned system as binary, (a2) Distribution of βΦr

treating pinned system as binary (b1) - Distribution of S2 treating pinned
system as modified quaternary, (b2) Distribution of βΦr treating pinned system
as modified quaternary. The distribution remains the same for binary
treatment, while for the modified quaternary treatment, the caging potential
increases with increasing c, and pair excess entropy decreases, with increasing
c.

6.5 Correlation between structure and dynamics

at microscopic level

In the following section, we study the correlation between two structural order pa-
rameters, namely the S2 and SOP, with the dynamics using different techniques. To
make a comparative analysis, while calculating the structural quantities, we treat the
pinned system both as binary and modified quaternary systems.
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6.5.1 Correlation between structure and dynamics using

isoconfiguration runs

In this section, we study the correlation between structure and dynamics using isocon-
figuration runs (IC). IC is a powerful technique developed by Harrowell et al.[139, 140,
107, 141] to examine the role the structure plays in the dynamics (details are given in
Appendix III).

We calculate the Spearman rank correlation, CR(X,Y ) = 1 − 6
∑

d2i
m(m2−1)

(where d2i

= R(Xi) - R(Yi) is the difference between the ranks, R(Xi) and R(Yi) of the raw data
Xi and Yi respectively, and m denotes the number of data), between the mobility, µ
and the pair excess entropy (CR(µ, S2)), and between the mobility, µ and the SOP
CR(µ, 1/βΦr). In Figs. 6.6(a) and 6.6(b), we plot CR(µ, S2) and CR(µ, 1/βΦr) respec-
tively, for the pinned systems as a function of scaled time. We observe that when con-
sidering the system as a binary system, the correlations, CR(µ, S

B
2 ) and CR(µ, 1/βΦ

B
r )

decrease as the pinning concentration increases (Fig. 6.6). This observation is concur-
rent with the findings of Williams et al.[175]. However, when the system is treated as a
modified quaternary system, we observe an increase in CR(µ, S

M
2 ) and CR(µ, 1/βΦ

M
r )

compared to when the system is treated as binary. This suggests that treating the
system as binary does not capture the full complexity of the structure-dynamics rela-
tionship. In the modified quaternary treatment of the system, the pinning decreases
the pair excess entropy and the SOP, which is commensurate with the slowing down
of the dynamics.

Between the SOP and the pair excess entropy, we find that the SOP can predict
the dynamics better and CR(µ, 1/βΦ

M
r ) > CR(µ, S

M
2 ). This is similar to that observed

in an earlier study where, for attractive systems compared to entropy, the SOP is a
better predictor of the dynamics [135]. Also note that for all values of “c", the peak
height of the CR(µ, 1/βΦ

M
r ) almost remains constant, whereas the peak height of

CR(µ, S
M
2 ) drops with an increase in “c". Thus the difference between CR(µ, 1/βΦ

M
r )

and CR(µ, S
M
2 ) increases with “c". This drop in the value of CR(µ, S

M
2 ) with an

increase in “c" may be connected to the breakdown of the AG relationship at the
macroscopic level. However, we cannot calculate the configurational entropy at the
microscopic level, but we do find from Fig. 6.5 that the shift in the distribution of the
pair excess entropy with pinning density is stronger than the shift in the distribution
of SOP.

We also find that with increasing pinning concentration, the peak height of CR(µ, 1/βΦ
B
r )

moves to smaller values of t/τα. A similar observation was made while comparing
the more fragile Lennard-Jones (LJ) and the less fragile Weeks-Chandler-Anderson
(WCA) models[135]. Note that in the case of pinned systems, the fragility decreases
with increasing “c"[49]. Thus, it appears that for more fragile systems, the correlation
between structure and dynamics continues for longer times. However, at this point,
this is only a conjecture, and to make more concrete statements, further investigations
are needed, which is beyond the scope of the present study.
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Figure 6.6: Spearman rank correlation, CR between different parameters, while
treating the pinned system as binary (filled symbol) and modified quaternary
(open symbol) (a) Spearman rank correlation (CR) between mobility (µ) and
pair excess entropy (S2) (b) Spearman rank correlation (CR) between mobility
(µ) and inverse depth of caging potential (1/βΦr). Working temperature for c
= 0.05, 0.10 and 0.15 is 0.52, 0.60, and 0.68 respectively. Note that T is
chosen such that all the pinned systems have approximately the same τα ≈ 103.

6.5.2 Analysis of dynamics of particles belonging to the

softest and hardest regions

Since we show that the inverse of the mean field caging potential, SOP, is a better
predictor of the dynamics, in the next two subsections, we will present the study of
the structure-dynamics correlation using only the SOP. At short timescales, we expect
to observe a significant difference in the dynamics of the hardest (in a deep cage) and
softest (in a shallow cage) particles. The hardest particles, less likely to escape their
local cages, will exhibit slower dynamics. On the other hand, the softest particles,
with a higher probability of moving, will display faster dynamics. However, over a
longer time, as the cage evolves, the separation in dynamics between the hardest and
softest particles diminishes[114, 82, 185]. We average over a few (approximately 2-3)
hardest and softest particles and compare their dynamics via the overlap function (Eq.
2.8). Note that the identity of the soft and hard particles depends on how the SOP is
calculated, i.e. assuming the system to be binary or modified quaternary.

The dynamics of the hardest and softest particle for different concentrations of
the pinning is shown in Fig. 6.7. When we calculate the SOP treating the system
as a modified quaternary system, the difference in dynamics between the hard and
the soft particles is wider compared to the case where the system is treated as binary
(Fig. 6.7). Note that the difference is greater for the hard particles. This is because
our analysis reveals that the identity of the softest particles does not change when
we treat the system as binary or modified quaternary. However, the identity of the
hardest particles completely changes because, in the binary treatment, we neglect the
stronger interaction between the pinned and the mobile particles, which is present in
the modified quaternary treatment. Due to this effect in the modified quaternary treat-
ment, the hardest particles are the ones that have pinned particles as their neighbors.
As shown in Fig. 6.7, the hardest particles, as identified by the modified quaternary
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Figure 6.7: Comparison of the dynamics of a few hardest (filled symbol) and a
few softest (open symbol) particles at different pinning concentrations while
treating the pinned system as binary (Black), and modified quaternary (Red)
(a)c = 0.05 (at T = 0.52), (b)c = 0.10 (at T = 0.60) (c)c = 0.15 (at T =
0.68). Note that T is chosen such that all pinned system has approximately the
same τα.

treatment, are slower than those identified by the binary treatment. This is precisely
the reason why the modified quaternary treatment of the system shows higher value
of CR(µ, 1/βΦ

M
r ) compared to the binary treatment of the system.

6.5.3 Correlation between structure and dynamics and pre-

diction of onset temperature

In this section, we use the structure dynamics correlation to identify the onset tem-
perature of the glassy dynamics, a methodology used in earlier studies[108, 114].

We identify fast particles using a well-documented method[136, 137, 114] (details
are given in Appendix IV). In Fig. 6.8 we plot PR(1/βΦr) as a function of temper-
ature for different 1/βΦr values and find that it can be expressed in an Arrhenius
form, PR(1/βΦr) = P0(1/βΦr) exp(∆E(1/βΦr)/T ), where activation energy, ∆E is
a function of 1/βΦr and is higher for smaller 1/βΦr values. The plots cross at a
certain temperature, which describes the limiting temperature where the theory is
valid[114] and has been identified earlier as the onset temperature of the supercooled
liquid[108, 114, 185].

In this analysis, we find that when we treat the system as binary, the onset tem-
perature remains similar for all pinning concentrations. However, when we treat the
system as a modified quaternary system, the onset temperature increases with in-
creasing pinning concentration[180]. As we show in chapter 5, this predicted onset
temperature is similar to the onset temperature predicted from the well known inher-
ent structure energy method (Fig. 5.1 and Table 5.1)[3].

6.6 Conclusion

As discussed in the Introduction, earlier studies on the pinned system have shown that
both at macroscopic and microscopic levels, the correlation between the dynamics and
entropy breaks down. However, the nature of the breakdown at the microscopic and
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Figure 6.8: log PR(1/βΦr) as a function of 1/T at different values of the SOP
(1/βΦr). Top panel - In the calculation of the SOP, the pinned system is
treated as a binary system (a1) c = 0.05, (b1) c = 0.10, and (c1) c = 0.15.
Bottom panel- In the calculation of the SOP, the pinned system is treated as a
modified quaternary system (a2) 0.05, (b2) c = 0.10, (c2) c = 0.15.

macroscopic levels is not similar but just the opposite. At the macroscopic level,
with pinning, the configurational entropy disappears, whereas the dynamics continues
[166, 145, 173]. At the microscopic level, the pair excess entropy remains high and
the same as the unpinned system, whereas the dynamics slows down with an increase
in pinning density [175]. This is possible only when the macroscopic configurational
entropy and the microscopic pair excess entropy are uncorrelated. However, it is well
known that for the unpinned systems, the pair excess entropy contributes to about
80% of the excess entropy, which in turn contributes to the configurational entropy
[92]. Thus, to understand the different results at the macroscopic and microscopic
levels, we revisit the excess entropy calculation of the pinned system.

We show that when we pin particles in a binary system, we should treat this pinned
system as a quaternary system under the assumption that there is no interaction
between pinned particles (an assumption we use while simulating the system) and the
potential energy is only distributed amongst the mobile particles. The excess entropy
of this modified quaternary system predicts that the effect of a pinned particle in
stabilizing a mobile particle by decreasing the potential energy is a factor of two more
than the effect of another mobile particle. We show that this effect leads to the well
documented vanishing of configurational entropy at higher temperatures[180] and the
breakdown of the Adam-Gibbs relationship in a pinned system[166, 145].

We follow the same methodology to calculate the pair excess entropy and the
mean field caging potential at macroscopic and microscopic levels. We first show
that the expression of S2 and SOP (inverse depth of the mean field caging potential)
differ when the system is treated as binary and modified quaternary. In the binary
treatment, the effect of a pinned particle on the mobile particle is identical to that of
another mobile particle. However, in modified quaternary treatment, similar to that
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observed in the calculation of the excess entropy, the pinned particles have a stronger
effect on the mobile particles than other mobile particles. We next show that contrary
to the common belief that if pinned at the equilibrium position, the properties of
the system do not change, pinning changes the structure of the liquid, which can be
observed only when we treat the pinned particles as a different species. We then show
that when we treat the system as a modified quaternary system, the entropy and the
SOP are much lower than that obtained by treating the system as a binary system.
The analysis reveals that more than the change in structure, the stronger effect of the
pinned particles on the mobile particles plays a dominant role in confining the mobile
particles by decreasing the entropy and the SOP. Interestingly, a similar confinement
effect of the pinned particles was discussed in an earlier study of a monotonic system,
where it was shown that the free energy barrier of the mobile particles increases with
pinning density[178, 179]. Note that similar to the the present study in these earlier
studies[178, 179], the pinned particles were treated as a different species.

We further study the correlation between structure and dynamics using different
techniques. In all cases, we show that compared to the case where the pinned system is
treated as a binary system, there is an increased correlation between structural order
parameters and the dynamics when the pinned system is treated as a modified qua-
ternary system. This is because, unlike in the binary case, in the modified quaternary
case, the pinned particles affect not only the dynamics but also the structural proper-
ties. We also show that compared to the entropy, the SOP can predict the dynamics
better. The correlation between fast particles and the SOP can only predict the cor-
rect onset temperature when the SOP is calculated, assuming the pinned system is a
modified quaternary system.

In Summary, our study reveals two important points. The pinning affects not only
the bulk macroscopic quantities but also the microscopic quantities. The effect of
the pinned particles can be expressed by treating the pinned particles as a different
species, which then shows that a pinned particle confines the mobile particle more than
another mobile particle which then alters the microscopic expression of the quantities
that depend on the structure. Thus, pinning not only slows down the dynamics of the
mobile particle but also changes the structural parameters. Along with this, the pin-
ning process also affects the structure of the liquid. In future studies, these two effects
should be considered when calculating different properties of the pinned system. Also,
note that, like local pair excess entropy, the local mean field caging potential depends
on the local structure. This allows us to apply it to experimental colloidal systems
where, both for quiescent and sheared systems, we find a good structure dynamics
correlation [186]. Thus, the mean field caging potential can be applied to study the
structure-dynamics correlation even in experimental pinned systems [175, 187].

Appendix I: Pair excess entropy
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In section 6.3.2, we show that the pair excess entropy can have different expressions
when the system is treated as binary, quaternary, and modified quaternary. We also
show that the rdf is different when the system is treated as binary and quaternary
(section 6.3.4).

If the structure (rdf) does not change, then treating the system as quaternary or
binary in the calculation of the S2 gives us identical results. This can be easily seen
when comparing Eq. 6.6 and Eq. 6.8. If we assume that in the rdfs we can replace 3
by 1 and 4 by 2 then Eq. 6.7 can be rewritten as,

SQ
2

kB
= −2πρ

∫ ∞

0
r2dr

[
(χ

′
1χ

′
1 + 2χ

′
1χ

′
3 + χ

′
3χ

′
3){g11(r) ln g11(r)− (g11(r)− 1)}

+ (χ
′
1χ

′
2 + χ

′
1χ

′
4 + χ

′
3χ

′
2 + χ

′
3χ

′
4){g12(r) ln g12(r)− (g12(r)− 1)}

+ (χ
′
2χ

′
1 + χ

′
2χ

′
3 + χ

′
4χ

′
1 + χ

′
4χ

′
3){g21(r) ln g21(r)− (g21(r)− 1)}

+ (χ
′
2χ

′
2 + 2χ

′
2χ

′
4 + χ

′
4χ

′
4){g22(r) ln g22(r)− (g22(r)− 1)}

]

= −2πρ

∫ ∞

0
r2dr

[
(χ

′
1 + χ

′
3)

2{g11(r) ln g11(r)− (g11(r)− 1)}

+ (χ
′
1 + χ

′
3)(χ

′
2 + χ

′
4)){g12(r) ln g12(r)− (g12(r)− 1)}

+ (χ
′
2 + χ

′
4)(χ

′
1 + χ

′
3)){g21(r) ln g21(r)− (g21(r)− 1)}

+ (χ
′
2 + χ

′
4)

2{g22(r) ln g22(r)− (g22(r)− 1)}
]

= −2πρ

∫ ∞

0
r2dr

2∑

i,j=1

χiχj{gij(r) ln gij(r)− (gij(r)− 1)}

(6.21)

The last equality can be written because χ1 = χ
′
1 + χ

′
3 and χ2 = χ

′
2 + χ

′
4.

In Fig. 6.9 we plot SM
2 where the change in structure due to the pinned particles

is considered. We find that at high temperatures SM
2 is larger than SM

ex , and at low
temperatures, the scenario is reversed.
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Figure 6.9: The crossing between pair excess entropy SM
2 (Eq. 6.8) and excess
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ex (Eq. 5.8). The S2 and Sex crosspoint are indicated by a dotted

upward arrow, while the onset temperature from the inherent structure (Fig.
5.1) is shown by a solid downward arrow.
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Figure 6.10: Many body correlation (∆S), which is a difference between excess
entropy (SM

ex ) and pair excess entropy (S2) while treating the pinned system as
modified quaternary (a) Many body correlation due to interaction between
mobile-mobile(MM) and mobile-pin(MP) (b) Many body correlation due to
interaction between mobile-mobile(MM) (c) Many body correlation due to
interaction between mobile-pin(MP).

The many-body correlations due to MM and MP interaction can be written as;

∆SM = SM
ex − SM

2

= (SMM
ex + SMP

ex )− (SMM
2 + SMP

2 )

= (SMM
ex − SMM

2 ) + (SMP
ex − SMP

2 )

= ∆SMM +∆SMP

(6.22)

The difference between these two entropies is the many body contribution, ∆S (Eq.
6.22) which is plotted in Fig.6.10. The temperature where these two entropies cross
each other is the ∆S = 0 (Eq. 6.5) point. For the KA model (c=0) and other systems,
it was earlier shown that the temperature where these two entropies cross is similar to
the onset temperature of glassy dynamics[1, 66]. However, it has also been found that
in systems with mean field like characteristics, the temperature where ∆S = 0 is lower
than the onset temperature[80, 188]. The latter scenario is similar to what we find
for pinned systems. We find that with the increase in pinning, the difference between
the onset temperature and the temperature where the two entropies cross increases.
Interestingly, a similar difference between the freezing point and ∆S = 0 was observed
for higher dimensional systems[189] and Gaussian core model (GCM)[190]. Note that
if the pair excess entropy is calculated assuming the pinned system to be a binary
system, then the cross over between the pair excess entropy and the total entropy will
take place at unphysically low temperatures.

To further analyze the origin of this ∆S = 0 point moving to lower temperatures
we separately analyze the contribution from mobile-mobile and mobile-pin interactions
(Eq. 6.22). In Fig.6.10 we plot both the contributions to the many-body entropy. We
find that the many-body excess entropy due to mobile-mobile interaction does not
change with concentration of pinned particles. However, with an increase in “c” the
∆SMP remains negative till a lower temperature, thus shifting the ∆SM = 0 point
to a lower temperature. Positive many body excess entropy is connected to activated
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motion [1, 80]. Thus, it shows that with an increase in pinning density, there is a sup-
pression of activated motion, and this primarily arises from the mobile-pin interaction.

Appendix II: Radial distribution function

In Fig. 6.2 (assuming the pinned particles are of a different species) we find that
with increased pinning density, the partial rdfs start deviating from the c=0 system.
With an increase in “c", there is a drop in the peak value of the rdfs between two
mobile particles (g11, g12). On the other hand, the height of the first peak of the
partial rdfs between mobile and pinned particles (g13, g14) grows with “c".

We observe that this structural change happens quickly, immediately after the
pinning process. In Fig. 6.11, we plot g(r), averaged from t = 0−100 and t = 101−200,
where the pinning is done at t=0. We find that both rdfs overlap. This is shown for
the c=0.15 system where the difference is maximum.
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Figure 6.11: Radial distribution function, g(r) at different time intervals for c
= 0.15 system. The solid line and symbol represent the radial distribution
function at time t = 0− 100 and t = 100− 200, respectively.

We also show that χ
′
1g11 + χ

′
3g13 is the same as χAgAA and χ

′
2g12 + χ

′
4g14 is the

same as χBgBB (Fig. 6.12). This is precisely why we do not see a change in structure
when the pinned particles are not treated as a different species (Fig. 6.1).
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Figure 6.12: (a) (χ
′
1g11 + χ

′
3g13) of the pinned system and χAgAA of the KA

system as a function of r (b)(χ′
2g12 + χ

′
4g14) of the pinned system and χBgAB of

the KA system as a function of r.

To check the system size dependence, in Fig. 6.13, we plot the rdfs for a 4000
particle and 1000 particle system. We find that change in the rdf with pinning is
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almost independent of the system size, with the difference between the rdfs of the
unpinned and pinned systems increasing marginally for larger system sizes.
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Figure 6.13: System size dependence in radial distribution function, g(r) while
treating the pinned system as a quaternary system, at T = 0.68 (a)g11 as a
function of r (b) g12 as a function of r (c) g13 as a function of r (d) g14 as a
function of r. Inset: We have zoomed onto the first peak of the respective
figures, which clearly shows the difference in the radial distribution functions.
Note that color coding is similar to Fig. 6.1. Here we refer to the mobile A
type of particles as 1, mobile B type of particles as 2, pinned A type of particles
as 3, and pinned B type of particles as 4. The solid line represents the 4000
particle system and the symbol represents the 1000 particle system.

We also check the dependence of the rdf on the integration time ∆t (Fig. 6.14).
From this plot, we observe that rdf is independent of the integration time step.

Appendix III: Isoconfiguration run (IC)
To quantify the dependence of the dynamics on the structure and particle size, we per-
form isoconfigurational runs (IC). IC is a powerful technique introduced by Harrowell
and co-workers to investigate the role of structure in the dynamical heterogeneity of
the particles[139, 140, 107, 141]. Among other factors, a particle’s displacement can
depend on its structure and also its initial momenta. This technique was proposed to
remove the uninteresting variation in the particle displacements arising from the choice
of initial momenta and extract the role of the initial configuration on the dynamics and
its heterogeneity. For each system, five different isoconfigurational runs are carried out
for 4000 particles. To ensure that all configurations are different, the configurations
are chosen such that the two sets are greater than 100τα apart. All these five IC has
different structure as well as contain different pin particle position. Note that since
we have shown in section 6.3.4 that after pinning, the structure changes; thus after
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Figure 6.14: Effect of integration time step, ∆t on radial distribution function,
g(r) while treating the pinned system as a quaternary system, at T = 0.68
(a)g11 as a function of r (b) g12 as a function of r (c) g13 as a function of r (d)
g14 as a function of r. Inset: We have zoomed onto the first peak of the
respective figures, which clearly shows the difference in the radial distribution
functions. Note that color coding is similar to Fig. 6.1. Here we refer to the
mobile A type of particles as 1, mobile B type of particles as 2, pinned A type
of particles as 3, and pinned B type of particles as 4.

we pin the equilibrium position of the mobile particles, we run the system for t=100
timestep and then consider that as our initial configuration. We run 100 trajectories
for each configuration with different starting velocities randomly assigned from the
Maxwell-Boltzmann distribution for the corresponding temperatures.

Mobility, µ is the average displacement of each particle over these 100 runs and is
calculated as[107],

µj(t) =
1

NIC

NIC∑

i=1

√
(rji (t)− rji (0))

2 (6.23)

where jth particle’s mobility at time t is represented by the term µj(t). The position
of the jth particle in the ith trajectory at time t is denoted by the term rji (t), and its
initial position is denoted by the term rji (0). The sum of the values is calculated over
each of the NIC trajectories that were carried out during the isoconfiguration runs.
We determine the average displacement or mobility for the jth particle at time t by
averaging these displacements over all trajectories.

Appendix IV: Identification of fast particles

There are various methods available for identifying fast particles in the literature[53,
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146, 147, 136, 137]. In our study, we employ the approach proposed by Candelier et
al.[136, 137]. This method involves the calculation of a quantity called phop(i, t) for
each particle within a specified time window W = [t1, t2].

The phop(i, t) quantity captures the rate of change in the average position of a
particle, indicating the occurrence of a cage jump. The expression for phop(i, t) is
given as follows[108]:

phop(i, t) =
√〈

(ri −
〈
ri
〉
U
)2
〉
V

〈
(ri −

〈
ri
〉
V
)2
〉
U

(6.24)

here, ri represents the position of particle i, and ⟨·⟩ denote the averages over the
time. The time window W is divided into two intervals, U = [t - ∆t/2, t] and V =
[t, t + ∆t/2]. By calculating phop(i, t) for each particle, we can determine whether
a particle experiences a significant change in its average position, indicating its in-
volvement in cage jumps and enhanced dynamics. In our analysis, we compare the
calculated phop(i, t) values to a threshold value pc, which is determined as the mean
square displacement,

〈
∆r(t)2

〉
at a specific time tmax where the non-Gaussian param-

eter, α2 =
3
〈
∆r(t)4

〉

(
〈
∆r(t)2

〉
)2
−1 is maximized. If phop(i, t) exceeds pc, we identify the particle

as a fast particle[114, 112, 66].

It is important to note that in our study, we specifically analyze the structure
and dynamics of the mobile A particles. Therefore, we calculate the Mean Square
Displacement (MSD) and the non-Gaussian parameter specifically for the mobile A
particles. For a more comprehensive understanding of the method and its application
in our study, we refer readers to Reference[114, 66, 112, 108].

Appendix V: Comparison between binary, quaternary, and modified
quaternary

From the above analysis, it is clear that considering a pinned system as a mod-
ified quaternary system correctly predicts the structural parameters and predicts a
stronger structure-dynamics correlation. Note that in the modified quaternary sys-
tem, the pinned particles have a dual effect. First, it modifies the structure, and then
it contributes a factor of two more towards confining the mobile particles /decreasing
their entropy. To understand the independent role of these two effects, in Fig.6.15,
we plot the different structural parameters at different “c” values where we assume
the system as binary, quaternary and modified quaternary. In the last two cases, we
assume the structure is modified due to pinning. The expressions for the binary and
modified quaternary are given in Section 6.4.

In the quaternary system, the pair excess entropy of each mobile “A" particle,
which is type “1" in our notation, can be expressed by removing the first summation
in Eq. 6.7;
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Figure 6.15: Distribution of caging potential (βΦr), the inverse of caging
potential (1/βΦr), and pair excess entropy (S2) in different pinned systems
treating them as binary (Black), quaternary (Blue), and modified quaternary
(Red) at T = 0.68. (a1-c1)Distribution of depth of local caging potential (βΦr)
for different systems, (a2-c2) Distribution of inverse of depth of local caging
potential (1/βΦr) for different systems, (a3-c3) Distribution of pair excess
entropy (S2) for different systems (a1-a3) c = 0.05, (b1-b3)c = 0.10, (c1-c3)c
= 0.15.

SQ
2 (A)

kB
= −2πρ

∫ ∞

0
r2dr

4∑

j=1

χj{g1j(r) ln g1j(r)− (g1j(r)− 1)} (6.25)

The mean field caging potential for a mobile “A" type of particle in a quaternary
system can be written by removing the first summation in Eq. 6.12,

βΦQ
r (A,∆r = 0) = −4πρ

∫
r2dr

4∑

j=1

χjC1j(r)g1j(r) (6.26)

We find that even when we go from a binary to a quaternary system due to the
change in structure, the caging potential increases and the entropy decreases. However,
the caging potential further increases, and the entropy further decreases when we
consider the higher effect (factor of 2) of the pinned particles on the mobile particles.

We also plot the Spearman rank correlation, CR between mobility (µ) and the
inverse depth of caging potential (1/βΦr) and the pair excess entropy (S2) for different
systems in Fig.6.16. When we treat the pinned system as quaternary rather than
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Figure 6.16: Spearman rank correlation between different parameters at
different pinning concentrations (c), while treating the pinned system as binary
(Black), quaternary (Blue), and modified quaternary (Red). (a1-c1)Spearman
rank correlation (CR) between mobility (µ) and inverse depth of caging
potential (1/βΦr) for different system, (a2-c2) Spearman rank correlation (CR)
between mobility (µ) and pair excess entropy (S2) for different systems, (a1-a2)
c = 0.05 (at T = 0.52), (b1-b2) c = 0.10 (at T = 0.60), (c1-c2) c = 0.15 (at
T = 0.68).

binary, we see an increase in correlation. This increase in correlation is due to the
change in structure. However, we find that the correlation grows further when we
treat the system as a modified quaternary system. As expected, with the increase
in pinning density, the difference between the quaternary and modified quaternary
increases.
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Chapter 7

Summary and future work

“The end is never the end.
It is always the the beginning of somethingȷ.

— Kate Lord Brown

7.1 Summary

The structure, dynamics, and thermodynamics of the glass-forming liquid and the
correlation between them are not completely understood and are a topic of intense
research. Despite huge efforts through experiments, simulations, and theoretical work,
a complete understanding of this system remains challenging. Many studies have
clarified the glass transition phenomena and the behavior of materials that create
glass, providing valuable details. However, there are still a lot of unanswered questions,
which motivates researchers to keep exploring this fascinating field to learn more about
the complexities governing glassy behavior and the change from liquid to solid-like
states without undergoing crystallization. The work presented in this thesis aims to
contribute to ongoing efforts to understand the glass-forming process better.

In Chapter 1, we delved into crucial concepts surrounding the glass transition,
exploring its significance and the most widely accepted theories that provide insights
into various properties of this phenomenon. Building on this foundation, in chapter
2 we expanded on the understanding of the glass transition by elaborating on its
properties and offering detailed explanations of relevant definitions and computational
techniques employed in this study.

In Chapter 3, we present the study of polydisperse systems and highlight a signif-
icant issue when treating them as monodisperse systems. Polydispersity is ubiquitous
in nature as most experimental systems are polydisperse. With the invention of the
swap Monte Carlo and the observation that, using this technique, we can equilibrate a
polydisperse system till very low temperatures, the polydisperse systems have become
a system of choice in studying low-temperature glass-forming liquids. However, doing
analytical calculations for systems with continuous-size polydispersity is a challenge.
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According to liquid state theories, the structure can describe the thermodynamical
properties and dynamics of the system. The exact way to describe the structure of
a system with continuous size polydispersity is via N(N-1) partial structure factors,
which present analytic difficulties, and this issue becomes more severe with increas-
ing system size. To avoid this, the systems are typically treated as an effective one-
component system, which leads to artificial structural softening and incorrect measures
of the thermodynamical quantities. We describe a way to define the system in terms of
an optimal number of species, M0 while keeping M0 << N . This is done in a way such
that we can use the partial structure factors to correctly obtain the thermodynamical
quantities of the system. We show that M0 changes with the type of polydispersity
and interaction potential. Notably, M0 does not depend on the size of the system,
highlighting its importance in describing bigger systems where the exact number of
species that grows linearly with N is large. We also employ the information theoretical
techniques and show that this definition of M0 leads to the maximum value of mutual
information in the system.

In Chapter 4, we explore the structure dynamics correlation in polydisperse systems
using recently developed microscopic mean-field theory [76]. We define the mean
field caging potential as an order parameter that describes the local structural order
(SOP) [82]. Previous studies have shown that this SOP describes the particle-level
dynamics [114]. In polydisperse systems, describing the structure and any structural
order parameter (SOP) is not trivial as it varies with the number of species we use to
describe the system, M . As discussed in previous chapter, depending on the degree
of polydispersity, there is an optimum value of M = M0. However, surprisingly,
the analysis reveals that the correlation between a recently proposed SOP and the
dynamics is highest for M = 1, where we know that the structure is not described
properly. This effect increases with polydispersity. We find that the SOP at M = 1 is
coupled with the particle size, σ, and this coupling increases with polydispersity and
decreases with an increase in M . Careful analysis shows that at lower polydispersities,
the SOP is a good predictor of the dynamics. However, at higher polydispersity, the
dynamics is strongly dependent on σ. Since the coupling between the SOP and σ is
higher for M = 1, it appears to be a better predictor of the dynamics. We also study
the Vibrality an order parameter independent of structural information. Compared to
SOP, at high polydispersity we find Vibrality to be a marginally better predictor of
the dynamics. However, this high predictive power of Vibrality, which is not there at
lower polydispersity, appears to be due to its stronger coupling with σ. Therefore our
study suggests that for systems with high polydispersity, the correlation of any order
parameter and σ will affect the correlation between the order parameter and dynamics
and need not project a generic predictive power of the order parameter.

In Chapter 5, after analysis of polydisperse now we work on another multispecies
glass forming system known as the pinned system. In a polydisperse system, due to
distribution in sizes, frustration can be easily introduced in the system. Due to high
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frustration, the polydisperse system is seen as better glass forming. Another effective
technique for creating a good glass former is pinning the positions of a few particles
in the system to prevent them from taking part in crystal formation. This pinning
technique introduces local structural restrictions, which prevent crystallization. By
increasing the concentration of pinned particles in the fluid, the glassy behaviour of
the whole system is improved and it is shown that at high pinning concentration, the
system undergoes a glass transition at a high temperature where the single particle
dynamics still survives. In this chapter, we conduct a thermodynamic analysis of the
pinned system. It has been found that the usual thermodynamic integration (TI)
approach of estimating entropy predicts that configurational entropy will vanish at
a temperature where the system’s single-particle dynamics show complete relaxation
[166, 49]. To understand the correlation between entropy and dynamics and how dy-
namics survives when the entropy vanishes, we use a new method to compute entropy,
called the two-phase thermodynamics (2PT) approach. We discover that the difference
in entropy computed using the two approaches (2PT and TI) grows with an increase in
pinning concentration. Additionally, we discover that, for the temperature range under
consideration, entropy computed using the 2PT technique satisfies the Adam-Gibbs
relationship between the relaxation time and the configurational entropy, whereas en-
tropy calculated using the TI method strongly violates the same. Note that the 2PT
entropy is obtained from the velocity autocorrelation function, which is a local prop-
erty. In the regular KA model, the local and the global entropy are similar. But our
study reveals that in the pinned system they deviate from each other, and the local
entropy is correlated to the single particle dynamics.

In Chapter 6, we next address the problem of describing the structure and struc-
tural order parameter of a system where a fraction of particles are pinned and then
study the structure dynamics correlation. These particles are pinned at the equilibrium
configuration of the KA system (which is a binary 80:20 system) and it is expected
that the equilibrium properties and the structure of the system do not change. First,
we show that even after pinning the particles at the equilibrium position of the mo-
bile particle, the structure of the liquid changes and this change is visible only when
we treat the pinned particles as a different species. We then derive the expression of
the pair excess entropy and the mean-field caging potential for a pinned system by
assuming it is a binary and a modified quaternary system. We find that apart from
the change in structure, the pinned particles also act towards increasing the caging
potential/decreasing the entropy more than other mobile particles. We also show that
when the system is treated as binary, the structure dynamics correlation decreases
with pinning, whereas it remains similar when the system is treated as a modified
quaternary system. Thus, we conclude that structure dynamics correlation at a local
level persists with increasing pinning.
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7.2 Future work

In this thesis, we have conducted a comprehensive investigation into the role of size
polydispersity in dynamics and structure. Our findings reveal that particle size signif-
icantly influences the system’s dynamics in addition to its structure. As a next step,
we plan to explore the relationship between interaction energy and dynamics. Dyer et
al.[134], have shown that different energy systems can exhibit similar structures and
dynamics (Fig. 7.1). We propose to analyze the local caging potential, which is influ-
enced by potential energy, and use it to distinguish between hard and soft regions in
the system. We anticipate that increasing the energy polydispersity will enhance the
accuracy of this region separation, allowing for a deeper understanding of the interplay
between dynamics and energy in complex systems. This investigation holds promise
for shedding further light on the complex behaviour of polydisperse systems and their
glass-forming properties.

Figure 7.1: Left side: Effect of energy polydispersity on the average rdf at the
state point (ρ, T ) = (0.85,0.70). Right side: Effect of energy polydispersity on
the incoherent intermediate scattering function (ISF) Fs(q, t) at the state point
(ρ, T ) = (0.85,0.70) for the wave vector corresponding to the first peak of the
static structure factor of the monodisperse system. Adopted from Ref. [134].

Once we know how interaction potential affects the analysis of caging potential, we
can move on to other types of polydispersity, such as mass, size and mass combinations
etc.
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Intense research is being done to understand the relationship between the glass-forming liquid's structure, dynamics, and
thermodynamics. The fact that there are so many unsolved problems encourages researchers to continue studying this interesting
topic to understand the complexity driving glassy behavior and the transition from liquid to solid-like states without crystallization. To
understand the glassy behavior, we deal with two different multi-species systems known as polydisperse and pinned systems. These
systems are known as good glass former.

Polydispersity is ubiquitous in nature as most experimental systems are polydisperse. With the invention of the swap Monte Carlo
and the observation that using this technique, we can equilibrate a polydisperse system till very low temperatures, the polydisperse
systems have become a system of choice in studying low-temperature glass-forming liquids. However, doing analytical calculations
for systems with continuous-size polydispersity is a challenge. According to liquid state theories, the structure can describe the
thermodynamical properties and dynamics of the system. The exact way to describe the structure of a system with continuous size
polydispersity is via N(N-1) partial structure factors, which present analytic difficulties, and this issue becomes more severe with
increasing system size. To avoid this, the systems are typically treated as an effective one-component system, which leads to artificial
structural softening and incorrect measures of the thermodynamical quantities. We describe a way to define the system in terms of an
optimal number of species, M0 while keeping M0<< N. This is done in a way such that we can use the partial structure factors to
correctly obtain the thermodynamical quantities of the system. We also employ the information theoretical techniques and show that
this definition of M0 leads to the maximum value of mutual information in the system. We next explore the structure dynamics
correlation in polydisperse systems using recently developed microscopic mean-field theory. We define the mean field caging
potential as an order parameter that describes the local structural order (SOP). Previous studies have shown that this SOP describes
the particle-level dynamics. Here, we show that for a system with low polydispersity, the SOP is a good parameter to describe the
particle-level dynamics. However, with an increase in polydispersity, we find that the dynamics is primarily determined by the size of
the particles. We also find that the SOP and the size of the particle are coupled. The study emphasizes the complexities present in
polydisperse systems due to the intercoupling of structure, size, and dynamics and the caution we should take in interpreting their
roles.

After analysis of polydisperse, we work on another multispecies glass forming system known as the pinned system. By increasing the
concentration of pinned particles in the fluid, the glassy behavior of the whole system is improved and it is shown that at high pinning
concentration, the system undergoes a glass transition at a high temperature where the single particle dynamics still survives. It has
been found that the usual thermodynamic integration (TI) approach to estimating entropy predicts that configurational entropy will
vanish at a temperature where the system’s single-particle dynamics show complete relaxation. To understand the correlation
between entropy and dynamics and how dynamics survive when the entropy vanishes, we use a new method to compute entropy,
called the two-phase thermodynamics (2PT) approach. We discover that the difference in entropy computed using the two
approaches (2PT and TI) grows with increasing the pinning concentration. Additionally, we discover that, for the temperature range
under consideration, entropy computed using the 2PT technique satisfies the Adam-Gibbs relationship between the relaxation time
and the configurational entropy, whereas entropy calculated using the TI method strongly violates the same. We also address the
problem of describing the structure and structural order parameters in pinned systems. In pinned system particles are pinned at the
equilibrium configuration of the KA system (which is a binary 80:20 system) and it is expected that the equilibrium properties and the
structure of the system do not change. We show that even after pinning the particles at the equilibrium position of the mobile particle,
the structure of the liquid changes, and this change is visible only when we treat the pinned particles as a different species. We then
derive the expression of the pair excess entropy and the mean-field caging potential for a pinned system by assuming it is a binary
and a modified quaternary system. We find that apart from the change in structure, the pinned particles also act towards increasing
the caging potential/decreasing the entropy more than other mobile particles. We also show that when the system is treated as
binary, the structure dynamics correlation decreases with pinning, whereas it remains similar when the system is treated as a
modified quaternary system. Thus, we conclude that structure dynamics correlation at a local level persists with increasing pinning.
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ABSTRACT

In a system of N particles, with continuous size polydispersity, there exists an N(N − 1) number of partial structure factors, making it ana-
lytically less tractable. A common practice is to treat the system as an effective one component system, which is known to exhibit an artificial
softening of the structure. The aim of this study is to describe the system in terms of M pseudospecies such that we can avoid this artificial
softening but, at the same time, have a value of M ≪ N. We use potential energy and pair excess entropy to estimate an optimum number
of species, M0. We then define the maximum width of polydispersity, Δσ0, that can be treated as a monodisperse system. We show that M0
depends on the degree and type of polydispersity and also on the nature of the interaction potential, whereas Δσ0 weakly depends on the
type of polydispersity but shows a stronger dependence on the type of interaction potential. Systems with a softer interaction potential have
a higher tolerance with respect to polydispersity. Interestingly, M0 is independent of system size, making this study more relevant for bigger
systems. Our study reveals that even 1% polydispersity cannot be treated as an effective monodisperse system. Thus, while studying the role of
polydispersity by using the structure of an effective one component system, care must be taken in decoupling the role of polydispersity from
that of the artificial softening of the structure.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038812., s

I. INTRODUCTION

Most systems that can be found in nature are inherently poly-
disperse. Polydispersity can be different types such as in size, in
mass, and also in the shape of particles. In addition, the type of
polydispersity and the degree of it vary with systems. Polydisper-
sity brings a variation in the properties of the material, and there are
specially designed controlled experiments to create monodisperse
particles.1,2 However, in some cases, polydispersity is a desirable
property. Size polydispersity is one of the most common types, and it
has been found that systems beyond a certain value of polydispersity,
known as terminal polydispersity, are good glass formers.3–9 It was
shown that in a polydisperse system due to an increase in surface
free energy, the crystal nucleation is suppressed, promoting glass
formation.10 Thus, in the study of supercooled liquids, polydisperse
systems play an important role.

In recent times it has been shown that the structure plays
an important role in the dynamics of glass-forming supercooled

liquids.11–19 Since polydisperse systems are good glass formers,
describing the structure of these systems becomes important. For a
continuous polydisperse system, the number of species is the same as
the number of particles in the system. In this case, describing the sys-
tem’s partial structure in terms of independent species becomes an
impossible task. Thus, it is common practice to treat a polydisperse
system in terms of an effective one component system.20–24 How-
ever, it has been shown that we lose a large deal of information of
the system by pre-averaging the structure, and the properties of the
liquid thus predicted can also give spurious results.25,26 Truskett and
co-workers25 showed that for moderate polydispersity, the thermo-
dynamic quantities such as the pair excess entropy obtained from the
effective one component radial distribution function (rdf) predicts
that with an increase in interaction, the static correlation becomes
weaker, thus predicting structural anomaly. The study showed that
when the system is expressed in terms of 60 pseudoneighbors and
the excess entropy is calculated in terms of partial structure factors
(radial distribution functions), this structural anomaly disappears.
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Weysser et al., while working with mode coupling theory, showed
that for a polydisperse system, we need to provide information about
the partial structure factors to obtain the correct dynamics.26 Ozawa
and Berthier highlighted the fact that for a system with continu-
ous size polydispersity, the contribution from the mixing entropy
term diverges.27 This makes the calculation of entropy and any
other dependent quantity ill-defined. They showed by calculating
the inherent structure properties that when the position of particles
with similar sizes is exchanged, the system stays in a similar basin.
This modifies the vibrational entropy, which also has the same mix-
ing entropy term. The process allowed them to group particles into
a certain finite number of pseudospecies, leading to a finite value
of mixing entropy. These studies thus emphasize the importance of
describing the structure of a polydisperse system in terms of partial
structure factors of the pseudospecies.

The present study attempts to develop a general framework to
describe the structure of a system having continuous polydisper-
sity. As discussed before, for a system with continuous polydisper-
sity, the number of species is the same as the number of particles,
which makes it difficult to describe the structure. We also know that
describing all the particles in terms of a single species does not work.
Hence, the aim of this study is to describe the system in terms of M
pseudospecies such that the properties of this system are the same as
the original system. The questions that we ask are as follows: (i) Can
we determine the minimum number of pseudospecies “M0” required
to describe the structure of the system? (ii) Is this dependent on
the property that we study? (iii) Does it depend on the degree and
nature of polydispersity? (iv) Does it depend on the interaction
potential?

To answer these questions, we use the method of calculating
thermodynamic quantities, which can be obtained from the struc-
ture of the liquid, namely, the potential energy of the system and the
pair excess entropy. Note that the former is a linear function of the
structure, whereas the latter is a nonlinear function of the structure
and, thus, can have different sensitivities to the effective structure.
We find that by studying these above-mentioned thermodynamical
quantities, we can determine a value of M0. It depends on the type
of polydispersity, the degree of polydispersity, and the interaction
potential. We also provide an estimate of the width of polydispersity
that can be treated like a one component system. This width appears
to depend primarily on the interaction potential of the system. Sys-
tems with a longer range and a softer interaction potential have a
better tolerance toward polydispersity. In these cases, systems with a
wider spread of size can be addressed in terms of a one component
system.

The organization of the rest of this paper is as follows. Section II
contains the simulation details. In Sec. III, we discuss the methods
used for evaluating the various quantities of interest. Section IV con-
tains the results with discussions, and this paper ends with a brief
conclusion in Sec. V.

II. SIMULATION DETAILS

In this study, we perform molecular dynamics simulations for
a three-dimensional polydisperse system with continuous size poly-
dispersity in the canonical ensemble. The system contains N = 1000–
4000 particles in a cubic box of volume V. The number density for all

the systems is ρ = N/V = 1.0. In our simulations, we have used peri-
odic boundary conditions and the Nosé–Hoover thermostat with an
integration time step of 0.001τ. The time constants for the Nosé–
Hoover thermostat are taken to be 100 time steps. We have carried
out molecular dynamics simulations using the LAMMPS package.28

This study involves two different kinds of systems with respect to
size polydispersity, constant volume fraction (CVF) and Gaussian
distributions (as shown in Fig. 1), and three different kinds of inter-
action potentials. The distributions of the particle size are continu-
ous. This means that each of the N particles has a different radius.
The form of the constant volume fraction distribution is given by8

P1(σ) = A
σ3 , σ ∈ [σmax, σmin], (1)

where A is the normalization constant and σmax and σmin are the
maximum and minimum values of particle diameter. σmax and σmin
values are given in Table I. The degree of polydispersity is quantified
by8 the normalized root mean square deviation,

PDI =
√⟨σ2⟩ − ⟨σ⟩2⟨σ⟩ ,

where ⟨..⟩ defines the average of the particle size distribution.
The Gaussian distribution is given by

P2(σ) = 1√
2πδ2

exp
−(σ−⟨σ⟩)2

2δ2 , (2)

FIG. 1. Different kinds of distributions: (a) constant volume fraction distribution,
P1(σ), and (b) Gaussian distribution, P2(σ). For the same degree of polydispersity,
compared to P1(σ), the distribution is wider for P2(σ).
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TABLE I. Details of size distributions, constant volume fraction and Gaussian, for

different degrees of polydispersity PDI =

√⟨σ2⟩−⟨σ⟩2⟨σ⟩ . The maximum, σmax, and min-

imum, σmin, values of the diameter of particles. The volume fraction η is also given,
showing an increase in η with a degree of polydispersity.

Distribution PDI (%) σmax σmin Δσ η

P1(σ) 5 1.1 0.92 0.18 0.53
10 1.21 0.85 0.36 0.54
15 1.34 0.8 0.54 0.56

P2(σ) 5 1.15 0.85 0.3 0.53
10 1.3 0.7 0.6 0.54
15 1.45 0.55 0.9 0.56

where δ is the standard deviation. In this distribution, we consider
σmax/min = ⟨σ⟩ ± 3δ. The degree of polydispersity is quantified by

PDI =
√⟨σ2⟩ − ⟨σ⟩2⟨σ⟩ = δ⟨σ⟩ .

For all the polydisperse systems, particle sizes are chosen such that⟨σ⟩ =∫P(σ)σdσ = 1 and is kept as the unit of length for all the systems
studied here.

The three different interaction potentials studied here are the
inverse power law (IPL) potential, the Lennard-Jones (LJ) poten-
tial, and its repulsive counterpart the Weeks–Chandler–Andersen
(WCA) potential. The inverse power law potential (IPL) between
two particles i and j is given by8,29

U(rij) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϵij( σijrij )12

+∑2
l=0 c2l( rijσij )2l

, ( rijσij ) ≤ xc
0, ( rijσij ) > xc. (3)

Constants c0, c2, and c4 are selected such that the potential becomes
continuous up to its second derivative at the cutoff xc = 1.25σij.

The LJ potential between two particles i and j is described using
the truncated and shifted LJ potential,30

U(rij) = ⎧⎪⎪⎨⎪⎪⎩
U(LJ)(rij; σij, ϵij) −U(LJ)(r(c)ij ; σij, ϵij), rij ≤ r(c)ij

0, rij > r(c)ij ,
(4)

where U(LJ)(rij; σij, ϵij) = 4ϵij[( σijrij )12 − ( σijrij )6]. The cutoff for the LJ

system is r(c)ij = 2.5σij, and that for the WCA system is r(c)ij = 21/6σij.31

The interaction strength between two particles i and j is ϵij = 1.0.
σij = (σi+σj)2 , where σi is a diameter of particle i and it varies accord-
ing to the system. Length, temperature, and times are given in units

of ⟨σ⟩, ϵij and (m⟨σ⟩2

ϵij
) 1

2 , respectively. For all state points, the equi-
libration is performed for 100τα (τα is the α-relaxation time), and
three to five independent samples are analyzed. As will be discussed
later, in this work, both potential energy and pair excess entropy
are calculated using the partial structure factors. In a system with
continuous polydispersity, each particle has a different diameter.
Therefore, there are N×N

2 partial radial distribution functions. For

N = 1000, there are, thus, 500 000 partial rdfs, and with an increase
in N, this number grows as N2. Calculating these many partial rdfs
with good precision is an impossible task. However, in this study,
we divide the total system into M species. Particles with a diame-
ter range (σmax − σmin)/M are treated as a single species. Note that
this is an approximation because particle sizes in a single species are
still different. With an increase in M, this diameter range becomes
narrow and the approximation leads to less error. The maximum
value of M that we have used in this work is 26. Thus, we have
calculated at the most 338 partial rdfs. Although the study is per-
formed in the high-temperature regime where the production run
length is usually around 100τα, where τα varies between 5–100, for
this study, to get a good precision of the partial rdf, we require
longer production run lengths to compensate for the poor parti-
cle averaging. For 5% PDI, the production run length is 107, and
for 15% PDI and 10% PDI, the production run lengths are 107 for
T = 5.0–0.38 and 6 × 107 for T = 0.36–0.2, respectively.

III. DEFINITION AND BACKGROUND

A. Radial distribution function

The partial radial distribution gαβ(r) is defined as follows:

gαβ(r) = V
NαNβ

⟨Nα∑
i=1

Nβ∑
j=1,j≠i δ(r − ri + rj)⟩, (5)

where V is the volume of the system and Nα, Nβ are the number of
α- and β-type of particles, respectively.

The effective one component radial distribution function, g(r),
can be written in terms of partial rdf of M species as32

g(r) = M∑
α,β=1

χαχβgαβ(r), (6)

where χα and χβ are the mole fraction of α and β particles, respec-
tively.

B. Potential energy

The per particle potential energy of the system can be exactly
calculated from simulation Esim. The same can also be written in
terms of the partial radial distribution function, E2, as follows:

E2 = ρ
2

M∑
α,β=1

χαχβ ∫ ∞
0

4πr2Uαβ(r)gαβ(r)dr. (7)

In the effective one component treatment, the energy can be
written as Eeff

2 , which is given as follows:

Eeff
2 = ρ

2 ∫
∞

0
4πr2U(r)g(r)dr. (8)

C. Excess entropy

Excess entropy Sex is a loss of entropy due to the interaction
between particles, or in other words, excess entropy is a difference
between Stotal and Sideal at the same temperature T and density ρ.
The value of Sex is always negative. Sex can be evaluated by thermo-
dynamic integration (temperature density landscape).33 Entropy at
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high temperature and low density is the same as that of an ideal
gas entropy. This Sideal is a relative reference for any other state
points’ entropy calculation. Other state point entropy can be cal-
culated using a combination of isotherms [Eq. (9)] and isochoric
[Eq. (10)] paths, making sure that no phase transitions occur along
the selected path,33

Sex(T,V′)−Sex(T,V) = U(T,V′) −U(T,V)
T

+∫ V′

V

P(V)
T

dV , (9)

Sex(T′,V′) − Sex(T,V′) = ∫ T′

T

1
T
(δU
δT
)
V′
dT. (10)

Addition of Eqs. (9) and (10) gives the total excess entropy.

D. Pair entropy

Using the Kirkwood factorization,34 the excess entropy can also
be expressed in terms of an infinite series,

Sex = S2 + S3 + S4 . . . . (11)

Here Sn is an entropy contribution due to n particle spatial corre-
lation. The pair excess entropy S2 includes 80% of the total excess
entropy.35 We can calculate S2 from the partial rdf of M species,33

S2

kB
= −2πρ

M∑
α,β=1

χαχβ ∫ ∞
0

r2dr{gαβ(r) ln gαβ(r) − (gαβ(r) − 1)},
(12)

where kB is the Boltzmann constant.
If we do not consider different species, then the entropy for an

effective one component system can be written as Seff2 , which is given
as follows:

Seff2

kB
= −2πρ∫ ∞

0
r2dr{g(r) ln g(r) − (g(r) − 1)}. (13)

E. Onset temperature calculation from inherent
structure energy

While cooling a glass-forming liquid from high temperatures
at the onset temperature, Tonset , the system’s thermodynamic and
dynamic properties deviate from its high-temperature behavior.
There are different dynamical and thermodynamical measures of
Tonset . The temperature predicted by using each method is not iden-
tical but lies in a similar range. A comparison of the different meth-
ods is given in Ref. 15. In this work, we will discuss the one calculated
from the inherent structure energy and the other from the excess
entropy.

The inherent structure energy is the potential energy evaluated
at the local minimum of the energy reached from the configuration
via the steepest descent procedure. As suggested earlier,36 the onset
temperature is connected to the inherent structure energy. At high
temperatures, as the system is not influenced by the landscape prop-
erties, the average inherent structure energy is almost temperature
independent. However, below a certain temperature, where the land-
scape properties influence the system, the inherent structure energy
starts to decrease rapidly. Usually, the two different regimes are fit-
ted to two straight lines, and the point where these lines cross is
identified as the onset temperature, Tonset .

F. Dynamics

In this work, to characterize the dynamics, we consider the self-
part of the overlap function Q(t), defined as37

Q(t) = 1
N

N∑
i=1
⟨ω(∣ri(t) − ri(0)∣)⟩, (14)

where the function ω(x) is 1 if 0 ≤ x ≤ a and ω(x) = 0 otherwise.
Parameter a is chosen to be 0.3, a value that is slightly larger than the
size of the cage.

Note that the dynamics can also be obtained from the self-
intermediate scattering function Fs(q, t), where q = 2π/rmax, with
rmax being the position of the first peak of the radial distribution
function. Since relaxation times from Q(t) and Fs(q, t) behave very
similarly at the low temperature, we use Q(t) for the dynamics.

IV. RESULT

A. Effective one component description

As discussed before, it is a common practice to describe the
structure of a polydisperse system in terms of an effective one
component system.

In Fig. 2, we plot the difference between the average per particle
potential energy of the species agnostic Eeff

2 and that obtained from
simulation Esim for systems with different PDI values (5%, 10%, and
15%). In the simulation study, the particle sizes are obtained from
P1(σ) distribution, and they interact via the IPL potential. In Fig. 3,
we also plot Sex and the species agnostic Seff2 for the above-mentioned
systems. Note that if the structure is described properly, then Esim
= E2 and S2 is not exactly equal to Sex but comprises of 80% of its
value.15,33,35,38–42

We find that as the PDI increases, the difference between
Esim and Eeff

2 and Sex and Seff2 increases. This clearly shows that
as expected, with an increase in PDI, the effective one compo-
nent description of the system becomes less accurate. In Fig. 4, we
plot both the dynamics and the effective one component rdf of the
systems. We find that within the temperature range studied here,
although the dynamics remains almost the same, with an increase in
polydispersity, the structure appears to soften. We have plotted the

FIG. 2. The difference in energy obtained from effective one component radial
distribution functions, Eeff

2 , and simulation, Esim, as a function of T at different PDIs.
Here, particles are interacting via the IPL potential, and the particle size distribution
is given by P1(σ) (constant volume fraction distribution).
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FIG. 3. Excess entropy, Sex , and effective one component pair excess entropy,
Seff

2 [Eq. (13)], at different PDIs. Solid lines with filled symbols represent Sex , and
dotted lines with open symbols represent Seff

2 . Here, particles are interacting via the
IPL potential, and the particle size distribution is given by P1(σ) (constant volume
fraction distribution).

rdf at two temperatures (T = 1.0 and 0.5), and it appears that the soft-
ening is present in both temperatures. However, the fact that the dif-
ference between Eeff

2 and Esim reduces at low temperatures (Fig. 2) do
suggest that the softening also reduces with temperature. This arti-
ficial softening of the structure leads to the increase in Eeff

2 and Seff2 .
Note that even for 5% polydispersity, we find that the effective one
component structure of the system fails to provide the correct value
of the potential energy and the pair excess entropy. These results
presented in Figs. 2 and 3 are not surprising, but a confirmation of
the observations is made earlier.25,26

B. Pseudospecies and its dependence on degree
of polydispersity

Describing the structure of a continuous polydisperse system
can be challenging. Unlike in a discrete polydisperse system where
each species has a finite number of particles and all of them have
the same size, for a continuous polydisperse system, the number
of species is the same as the number of particles. However, let us
assume that we describe a pseudosystem where we divide the par-
ticles into M number of pseudospecies (where M < N) in terms of
the size of particles. In doing so, we bunch similar particles but with
different sizes in a group and assign an average size to them. This
introduces disparity in the actual size and in the assigned size of the
particles and leads to an error in describing the properties of the sys-
tem. An extreme case of that (M = 1) can be seen in Figs. 2 and 3.
For a fixed M, the maximum difference in the actual diameter of a
particle and in its assigned average diameter is Δσ/2M. Thus, with an
increase in M, this error reduces, and at M = N, the pseudosystem is
exact. Therefore, the first question is can we describe the structure
of a system in terms of an optimum number of species M0, where
M0≪N such that the structure can provide a correct estimate of the
thermodynamic quantities? If we can, then how does M0 depend on
the degree of polydispersity?

In Fig. 5(a), we plot E2
ESim

as a function of M, at two different
temperatures for the different PDIs. For systems with a fixed value
of PDI, as we increase the value of M, E2 decreases, and after a certain
value of M, E2 ≃ Esim. We find that this is weakly temperature depen-
dent. For this work, we consider that at T = 1, the minimum number

FIG. 4. (a) Dynamics of systems at different PDIs. The overlap function is plotted
against time. (b) Effective one component radial distribution function of the systems
at T = 1.0. (c) Same as (b) at T = 0.5. Black square, red triangle, green circle,
and blue diamond represent a monodisperse system with 5% PDI, 10% PDI, and
15% PDI, respectively. With an increase in PDI, although the dynamics remains
almost the same, the structure shows a substantial softening. Here, particles are
interacting via the IPL potential, and the particle size distribution is given by P1(σ)
(constant volume fraction distribution).

of pseudospecies for which (E2−Esim)
Esim

< 0.01 is M0. The value of M0 is
system dependent and as expected increases with the increase in the
PDI value, as shown in Fig. 5(b). Note that while determining M0,
this choice of the relative error (0.01) is arbitrary but practical. In
principle, we can choose values much smaller or probably larger than
this. However, later, while discussing the value of M0 as obtained
from entropy, we will see that this choice is reasonable.

Is the value of M0 sensitive to the thermodynamic quantity that
we calculate or is it universal? To answer this question, we calculate
the two body pair entropy for different values of M. We find that
similar to the energy, as M increases, S2 comes closer to Sex (Fig. 6).
However, even for large values of M, S2 is not equal to Sex. This is
because unlike the potential energy that can be exactly calculated in
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FIG. 5. Comparison between the energy obtained from simulation, Esim, and the
energy obtained from partial radial distribution functions, E2 [Eq. (7)]. (a) Ratio of
E2 and Esim vs the number of pseudospecies M at T = 1.0 (open red symbols)
and T = 0.5 (filled blue symbols) for different PDIs. (b) Relative error calculation
between Esim and E2, with (E2 − Esim)/Esim plotted as a function of M for different
PDIs. For better visualization, we have shifted the y axis of the 10% PDI plot by 0.1
and 15% PDI plot by 0.2. The horizontal lines signify the corresponding large M
values, which are 1.0 for (a) and 0.0 for (b). Here, particles are interacting via the
IPL potential, and the particle size distribution is given by P1(σ) (constant volume
fraction distribution).

terms of the partial rdf, only a part of the excess entropy can be cal-
culated from the rdf [Eq. (11)].15,33,35,38–42 This makes it difficult to
use the same methodology as used for potential energy to make an
estimation of M0 from entropy.

However, from our earlier studies, we know that if the struc-
ture of the liquid is described properly, then the excess entropy and
the two body pair entropy cross each other at a temperature, Tcross,
which can be considered as the onset temperature of the supercooled
liquid dynamics.15 This onset temperature can also be obtained from
the change in the slope of the temperature dependence of the inher-
ent structure energy36 and also other methods.15 As shown earlier,
the values of the onset temperatures obtained using these different
methods are not exactly the same, but they are in a similar range.15

In Fig. 7, we plot the variation of Tcross with M for the different
systems. For higher PDI, at small values of M, we cannot calculate
Tcross, which implies that S2 is far away from Sex and never crosses it,
as shown in Fig. 6. However, from our other estimates of the onset
temperature, we know that we are in a temperature range where
these two forms of entropy should cross. As M increases, the two
functions cross at some temperature Tcross. We find that initially
Tcross increases with M, and then, after a certain value of M, it shows
a saturation. As mentioned before, S2 is not the total excess entropy
of the system. There is no other method for calculating S2. Thus, it

FIG. 6. Excess entropy, Sex , and pair excess entropy S2. The latter is calculated
at different values of M [Eq. (12)]. Dashed-dotted lines represent Sex , and solid
lines represent S2. (a) PDI 5%, (b) PDI 10%, and (c) PDI 15%. Here, particles are
interacting via the IPL potential, and the particle size distribution is given by P1(σ)
(constant volume fraction distribution).

is not possible to do a similar error estimation of pair excess entropy
as done for the potential energy. However, the saturation of Tcross is
an indication of the saturation of S2 with respect to M. We find that
this saturation value of Tcross is in the same range as the estimated
onset temperature using the method of inherent structure energy
(see Sec. III E and Table II). In this plot, we also mark the M0 val-
ues as obtained from the potential energy. We find that the M value
for which Tcross saturates falls in the same range as M0. The values
of Tcross at M = M0 and Tonset are given in Table II. Thus, we show
that the minimum number of pseudospecies required to describe the
potential energy of the system can also describe the two body excess
entropy of the system. Note that although with M0 pseudospecies
we can get a reasonable value of S2, this quantity is not the total
excess entropy of the system. The residual multi-particle entropy
(RMPE) defined as the difference between the total excess entropy
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FIG. 7. Tcross vs M plot for different PDIs. Initially, Tcross increases with M, but
after certain value of M, it saturates. For larger PDI, the saturation takes place at
a higher M value. The vertical lines give the value of M0 obtained from energy
criteria. Here, particles are interacting via the IPL potential, and the particle size
distribution is given by P1(σ) (constant volume fraction distribution).

and the pair excess entropy, Sex − S2, although has a small value when
compared to S2, plays an important role in describing the thermo-
dynamics of the system. For example, it has been observed that if we
ignore RMPE, then the correlation between dynamics and thermo-
dynamics expressed via the well-known Adam–Gibbs relation does
not hold.12 It has also been observed that in the supercooled liquid
regime, RMPE provides us a measure of the activated dynamics of
the system.12,17 Thus, although the pseudospecies description pro-
vides us a reasonable estimation of S2, care should be taken while
using this quantity in describing the full thermodynamics of the
system.

The details of the M0 values for the different systems are given
in Table II. We also tabulate a quantity Δσ0 = Δσ

M0
. We find that

although M0 is dependent on the PDI, the quantity Δσ0 is not. Note
that when M = M0, the maximum error in assigning a diameter to
a particle is Δσ0

2 . Thus, our study suggests that the thermodynamic
properties of the system studied here are not sensitive to a change in
the diameter by Δσ0

2 , and for a constant volume fraction, the polydis-
perse system interacting via the IPL potential when Δσ ≈ 0.036 can
be treated as a monodisperse system.

Interestingly, we find that when we plot the partial rdf for two
consecutive pseudospecies, g11(r) and g22(r) (here, these two species

TABLE II. The values of M0 and Δσ0 for different systems. We also provide the values
of Tcross at M = M0, and for comparison, we give the Tonset values obtained from fitting
the inherent structure energy to two straight lines.

Distribution Potential PDI (%) M0 Δσ0 = Δσ
M0

Tcross(M0) Tonset

P1(σ) IPL 5 5 0.036 0.42 0.43
10 10 0.036 0.33 0.36
15 15 0.036 0.26 0.31

P2(σ) IPL 5 7 0.043 0.43 0.46
10 14 0.043 0.35 0.34
15 21 0.043 0.28 0.30

P1(σ) WCA 15 20 0.027 0.58 0.7
LJ 15 12 0.045 0.67 0.81

1 and 2 have the largest and the second largest number of particles,
respectively) for different values of M, then for M = M0, the peaks
of the two rdfs almost overlap (Fig. 8). Thus, we can say that when
the size difference of the two consecutive species is such that there
is a large overlap between the radial distribution functions of two
consecutive species, they can be treated as a single species.

C. Effect of the type of distribution on M 0 and Δσ0

We next study the effect of the type of distribution on M0 and
Δσ0. In Fig. 9, we compare the M dependence of Tcross for systems
where polydispersity is described in terms of P1(σ) (constant volume
fraction) and P2(σ) (Gaussian), for three different PDIs. In the same
plot, the M0 values as obtained from the potential energy are also
marked.

FIG. 8. The partial radial distribution function for the first two species for different
values of M. (a) PDI 5%, (b) PDI 10%, and (c) PDI 15%. For M = M0, the rdf peak of
the two consecutive species almost overlaps. Here, particles are interacting via the
IPL potential, and the particle size distribution is given by P1(σ) (constant volume
fraction distribution).
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FIG. 9. The effect of the type of distribution on M0. Tcross vs M plot for different
PDIs for systems where particles are interacting via the IPL potential, and the par-
ticle size distribution is given by P1(σ) (constant volume fraction distribution) and
P2(σ) (Gaussian distribution). The vertical lines give the value of M0 obtained from
energy criteria (solid lines for P1 distribution and dashed lines for P2 distribution).
At the same value of PDI, for the Gaussian distribution, M0 is higher and Tcross

saturates at a higher M value.

At the same PDI, the nature of saturation of Tcross and also the
value of M0 are different for the two different distributions. Com-
pared to the constant volume fraction distribution, the values of M0
are higher for the Gaussian distribution. The reason behind this can
be understood by comparing Figs. 1 and 2 (also see Table I). For
the same PDI, the Gaussian distribution is wider compared to the
constant volume fraction distribution. A closer observation tells us
that the saturation of Tcross is better for the CVF distribution when
compared to the Gaussian distribution. Note that for the Gaussian
distribution, M0 is higher (more number of species), and by nature,
toward the tail of the distribution, the number of particles is less,
so the partial rdf for the largest and the smallest species is poorly
averaged. We have seen that with an increase in the system size, the
saturation improves (not shown here).

We find that when compared to CVF distribution, Δσ0 is
marginally higher for the systems with Gaussian distribution (see
Table II). Note that we divide a continuous polydisperse system into
M species in a way that the difference in the diameter of two consec-
utive species is always separated by Δσ

M . This implies that the percent-
age error in calculating the size of the smaller particles is higher than
that of the larger particles. In addition, note that in constant volume
fraction distribution, the smallest particles are the largest in num-
ber; thus, by construction, the error is maximum for the dominant
species. On the other hand, for the Gaussian distribution, the place
where the percentage error is maximum, the population of particles
is minimum. Thus, compared to the Gaussian distribution for a con-
tinuous volume fraction, we need to go to marginally smaller values
of Δσ0. A way to increase Δσ0 (decrease M0) in CVF distribution can
be to have a size dependent bin width such that the percentage error
in describing the size of a smaller particle is the same as that of a
larger particle.

D. Effect of interaction potential on M 0

Next, we study the role of interaction potential on the value of
M0 (alsoΔσ0) and the saturation ofTcross. For this, we study the P1(σ)
system, with PDI = 15%, and vary the interaction potential between
the particles (IPL, WCA, and LJ). The parameter values are given in

FIG. 10. Role of interaction potential on M0. Tcross vs M plot for 15% PDIs for
systems where particles are interacting via the IPL, WCA, and LJ potential, and the
particle size distribution is given by P1(σ) (constant volume fraction distribution).
The vertical lines give the value of M0 obtained from energy criteria. The value of
M0 is higher for the WCA potential, and Tcross also saturates at a higher value of
M.

Table II. When we compare the IPL, WCA, and LJ systems, we find
that the M0 value is higher for the WCA system and also find that
Tcross of the WCA system appears to saturate at a higher M value
(see Fig. 10). This suggests that Δσ0 for the WCA potential is smaller
than those for the LJ and the IPL systems (see Table II).

To understand the origin of this lower tolerance of the WCA
system in Fig. 11, we plot for the WCA system the partial rdfs of the
first two species for different values of M and find that compared to
the IPL system, we need to go to higher values ofM to observe a good
overlap between the two rdfs. Similar to that found for the IPL sys-
tem, at M = M0, the rdf peaks almost overlap. Note that compared to
the WCA potential, the IPL potential is softer and has a longer range.
Thus, compared to the WCA system, the IPL system has a flatter rdf
and a larger overlap of the rdfs of two consecutive species. This defi-
nitely explains why compared to the IPL system M0 is higher for the
WCA system.

In Fig. 12, we compare the rdf values for the first two species
of the IPL, WCA, and LJ systems, for M = 15. Note that for the
IPL and the LJ systems, M0 ≤ 15, and for the WCA system, M0> 15. However, compared to the WCA and IPL systems, the par-
tial rdfs for the LJ system are more sharply peaked. This does not

FIG. 11. The partial radial distribution function for the first two species for dif-
ferent values of M. The particles are interacting via the WCA potential, and the
polydispersity of the system is described by P1(σ) with 15% PDI.
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FIG. 12. The partial radial distribution functions for the first two species for IPL,
WCL, and LJ potentials for M = 15. The size distribution of the particles is given by
P1(σ) with 15% polydispersity.

explain why M0 for the LJ system is smaller than the WCA sys-
tem. Note that the structure along with the interaction potential
describes both the potential energy and also the two body entropy.
In S2, the leading term is −g(r) ln g(r) ≃ g(r)W(r), where W(r)
= −ln g(r) can be considered as the effective potential of the system.
Thus, along with the rdf, the interaction potential also plays a role
in determining these thermodynamic quantities. The range of the
LJ potential is much larger compared to the IPL and WCA poten-
tials. Moreover, the attractive part of the potential that provides a
dominant contribution also varies much more smoothly compared
to the WCA and IPL potentials. It appears that this slow variation
of the potential increases the tolerance of thermodynamic quanti-
ties with respect to the particle size, which leads to a smaller M0
value.

We would like to mention that in this work while working with
the LJ system, we only vary the size of the particles while keeping
the interaction energy constant. This choice is quite similar to that
used in earlier studies of model polydisperse systems.9,43,44 How-
ever, this choice of system is not consistent with the van der Waals
attraction dependence on particle volume. Thus, the system can have
some unusual structures like that of clustering of smaller particles
observed earlier.44

E. System size dependence

Note that for a finite number of particles (N) in the system, we
can still describe the N ∗N partial structure factors. However, in the
thermodynamic limit when N →∞, this becomes ill-defined. Thus,
for larger systems, describing the system in terms of pseudospecies
becomes even more important. In this section, we study the system
size dependence of M0. For this study, we take the system where par-
ticle size distribution is given by P1(σ) and the particles interact via
the IPL potential. We study three systems at 5%, 10%, and 15% PDI.
In Fig. 13, we plot (E2−Esim)

Esim
for systems with 1000 and 4000 particles.

We find that the relative error in energy is independent of the system
size, and so is M0. In Fig. 14, we plot the Tcross values for the two dif-
ferent system sizes. We find that for 5% and 10% PDI, they overlap,
and for 15% PDI, the bigger system size predicts a better saturation
of Tcross. This is because we now have a larger number of particles
in each species, giving rise to better averaging. Thus, we can say that
M0 is independent of system size.

FIG. 13. System size dependence of relative error calculation between Esim and
E2. (E2 − Esim)/Esim plotted as a function of M for different PDIs for N = 1000
(red open symbols) and N = 4000 (blue filled symbols). For better visualization, we
have shifted the y axis of the 10% PDI plot by 0.1% and 15% PDI plot by 0.2. The
horizontal lines signify the corresponding zero values.

F. Comparison with earlier predictions

Next, we compare our results with that of Ozawa and Berthier
(OB).27 The goal of both studies is to find an effective number
of pseudospecies that can describe a polydisperse system. How-
ever, the methodologies are quite different. We work with the par-
tial rdf of the liquid and use them to calculate the excess entropy
and total energy near the onset temperature. Ozawa and Berthier
used the information of the vibrational entropy and the inherent
structure properties, and the study was performed below the MCT
transition temperature. They divided the system into M species
and then swapped particles within a species. After N such swaps,
they minimized the system and obtained the mean square displace-
ment (MSD) between the original equilibrium configuration and
the swapped configuration. The MSD as a function of M initially
decreased with increasing M and showed saturation at high values
of M. They fitted these two regimes to two different power laws,
and the intersection point of the power laws determined the value
of M0. In their study, they have calculated the value of M0 for an
IPL potential system with the P1(σ) distribution at 23% PDI. They

FIG. 14. The system size dependence of M0. Tcross vs M plot for different PDIs
for systems where particles are interacting via the IPL potential, and the particle
size distribution is given by P1(σ). The open red symbols are for N = 1000, and
the filled blue symbols are for N = 4000. The vertical lines give the value of M0
obtained from energy criteria. M0 from energy is independent of the system size,
and for systems with higher PDI, Tcross saturates better for a higher system size.
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FIG. 15. Alternate definition of M0. Tcross vs M has two different regimes, low M
shows growth and high M shows a near saturation. The two different regimes are
fitted to two straight lines, and the M value where these lines cross is identified as
M0. The open red symbols are for N = 1000, and the filled blue symbols are for
N = 4000. The M0 values thus obtained are smaller than those obtained from
energy criteria and similar to those obtained by Ozawa and Berthier.27

then extrapolated the value of M0 for smaller PDIs. For 10% PDI,
they predicted a value of M0 = 4–5, and for 5% PDI, M0 = 2–3. We
can do a similar exercise with Tcross. In Fig. 15, we show that Tcross
also shows two different regimes. We fit the two different regimes to
two straight lines, and the point where they cross is M0 = 2–3 for 5%
PDI, M0 = 4–5 for 10% PDI, and M0 = 8–9 for 15% PDI. Interest-
ingly, these numbers are surprisingly the same as that extrapolated
by Ozawa and Berthier27 although the two methodologies are com-
pletely different. However, these values of M0 are lower than our
earlier prediction, which was made by looking at the saturation point
of Tcross. In the OB study, if they have defined M0 at the value where
their MSD becomes independent of M, then they too would have got
a higher value of M0.

We next compare our predictions with an earlier work, which
involved the study of dynamics.26 As discussed in the Introduction,
Weysser et al. studied the effect of polydispersity on dynamics.26

They studied a system with constant polydispersity where Δσ = 0.2.
According to their study, dynamics can be well explained when the
system is divided into five pseudospecies, and thus, Δσ0 = 0.04 falls
in a similar range as predicted here, and so is M0.

At this point, we cannot comment on which will be a better
choice of M0, the value at which Tcross saturates or the value at which
two different regimes intersect. When we compare our result with
the study using the dynamics,26 it appears that the former that leads
to higher values of M0 is a better choice, whereas if we compare with
the OB study, then the latter seems to be a better choice. It is possible
that the dynamics is more sensitive to the change in M0. This sug-
gests that further studies are required to narrow down the value of
M0. One such option will be to see how the configurational entropy
for different values of M0 correlates with the dynamics.

V. CONCLUSION

In this work, we attempted to develop a framework to
describe the structure of systems with continuous polydispersity.
This study involved systems where the polydispersity is described
in terms of different distributions (constant volume fraction and

Gaussian) and the degree of polydispersity is varied. We also studied
the effect of the interaction potential.

We exploited the fact that the potential energy and the pair
excess entropy can be described in terms of the partial radial distri-
bution functions. First, we described the system in terms of pseu-
dospecies. In the case of potential energy, we obtained the mini-
mum number of pseudospecies, M0, required to match the energy
obtained from the partial rdf with that obtained from the simula-
tion. For the entropy part, since the excess entropy and pair excess
entropy were never equal, we calculated the temperature where they
cross each other. Our earlier study showed that Tcross is an estimate
of the onset temperature of supercooled liquids.15 We show that for
a smaller number of species, Tcross varies with M, and as a function of
species, this temperature shows a saturation, suggesting a saturation
of the pair excess entropy with respect to M. This gave us a second
estimation of M0, which we found is similar to that obtained from
the potential energy.

Our study revealed that for a given system, it is possible to
define a parameterΔσ0, which gives the limiting width of the size dis-
tribution that can be treated as a monodisperse system. This limiting
value primarily depends on the interaction potential. The softer the
interaction potential, the larger the value of Δσ0. Depending on the
type of distribution, this limiting width Δσ0 translates into different
values of PDI.

For a 1% PDI system with constant volume fraction distribu-
tion, Δσ = 0.036, and for a 1% PDI system with Gaussian distribu-
tion, Δσ = 0.06. When we compare these values with Δσ0, we can
say that polydispersity greater than 1% when treated as an effective
monodisperse system will not provide us with the correct structure
of the liquid. This implies that when the effective one component
structure is used to study the influence of polydispersity on some
property, we have to be careful in decoupling the effect of this arti-
ficial softening of the structure from the actual effect of polydisper-
sity. Note that M0 and Δσ0 are independent of the system size. This
makes the pseudo-neighbor description of a system more useful for
larger systems.
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ABSTRACT

A recent study introduced a novel mean-field model system where each particle over and above the interaction with its regular neighbors
interacts with k extra pseudo-neighbors. Here, we present an extensive study of thermodynamics and its correlation with the dynamics of this
system. We surprisingly find that the well-known thermodynamic integration (TI) method of calculating the entropy provides unphysical
results. It predicts vanishing of the configurational entropy at temperatures close to the onset temperature of the system and negative values
of the configurational entropy at lower temperatures. Interestingly, well below the temperature at which the configurational entropy vanishes,
both the collective and the single-particle dynamics of the system show complete relaxation. Negative values of the configurational entropy
are unphysical, and complete relaxation when the configurational entropy is zero violates the prediction of the random first-order transition
theory (RFOT). However, the entropy calculated using the two-phase thermodynamics (2PT) method remains positive at all temperatures for
which we can equilibrate the system, and its values are consistent with RFOT predictions. We find that with an increase in k, the difference
in the entropy computed using the two methods increases. A similar effect is also observed for a system where a randomly selected fraction
of the particles are pinned in their positions in the equilibrated liquid. We show that the difference in entropy calculated via the 2PT and TI
methods increases with pinning density.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065668

I. INTRODUCTION

The slowing down of the dynamics in supercooled liquids
and its correlation with the thermodynamics of the system have
been topics of intense research. There are several characteristic

temperatures where both thermodynamic and dynamic properties
of the system change in a significant manner. At the onset temper-
ature (Tonset), the relaxation dynamics of the system start to differ
from those of a typical liquid because, due to the lowering of the
temperature, the system begins to explore the underlying free energy
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landscape.1 This onset temperature can also be identified as the tem-
perature where the pair part of the excess entropy becomes less than
the total excess entropy of the system.2,3 Below Tonset , the tempera-
ture dependence of the dynamics can be described reasonably well
by the so-called mode-coupling theory (MCT), which predicts a
power-law divergence of the relaxation times at a dynamic transi-
tion temperature Tc.4 However, experimental and numerical studies
found5–10 that the relaxation time does not diverge at Tc as predicted
by the MCT but instead shows a smooth crossover to weaker tem-
perature dependence. This crossover scenario is consistent with the
predictions of the so-called random first-order transition (RFOT)
theory,11,12 and it has been related to the properties of the underlying
potential energy landscape.13

According to the RFOT theory and the phenomenological
Adam–Gibbs (AG) theory,14 the low temperature dynamics of a
supercooled liquid is controlled by its configurational entropy (Sc),
which measures the number of possible distinct states accessible
to the system. The AG theory predicts the following relationship
between the α relaxation time (τ) and the configurational entropy
(Sc): τ = τ0 exp(A/TSc), where τ0 is a microscopic timescale and A
is a system-dependent constant. Thus, according to the AG theory,
the temperature T0 where the relaxation time diverges is the same as
the Kauzmann temperature TK where the configurational entropy
goes to zero.15 For a large number of systems, the AG relationship is
found to hold.14,16–25 There has been a recent study that showed that
it is the diffusion coefficient that follows the AG relationship for the
widest temperature range.26

The validity of the AG theory in the form presented above has
recently been challenged.16 It has been argued that according to the
RFOT theory, the reduction in the configurational entropy is related
to the growth of a static correlation length over which the activation
happens, giving rise to the relaxation process. This theory predicts
a generalized AG relation given by τ = τ0 exp(A/TSα

c ), where α
can be different from unity. It was further shown that the general-
ized AG relation holds16 both in experiments and in simulations.
Note that even according to the generalized AG relationship, the
relaxation timescale should diverge below T = TK when the config-
urational entropy vanishes. In addition, by definition, Sc cannot be
negative.

In a recent study, some of us have developed a novel gen-
eralization of glass-forming liquids where we can switch between
a three-dimensional liquid and a fully connected mean-field sys-
tem in a continuous manner.27 The parameter that is introduced
to achieve this is k added pseudoneighbors for each particle. The
structure, dynamics, and dynamical heterogeneity of this model have
been studied as a function of k. It was shown that the structure
given by the radial distribution function (rdf) of the usual neighbors
remains almost unchanged with k. However, the pseudoneighbors
do contribute to the total rdf that shows a weaker modulation with
distance, a typical mean-field like behavior.27,28 With an increase in
k, the dynamics also slows down and the transition temperatures
(T0, Tc, Tonset) move to higher values. The range over which a sys-
tem follows the MCT power-law behavior becomes wider with an
increase in k. The heterogeneity decreases with an increase in k.
Thus, it was shown that with an increase in k, the system becomes
more mean-field like.

The goal of the present work is to study the thermodynamic
properties of this system and its correlation with the dynamics.

In order to do so, we employ the well-known thermodynamic
integration (TI) method to calculate the total entropy and, hence,
the configurational entropy of the system.29 We find that with an
increase in k, the Kauzmann temperature becomes higher, which
is similar to that found for T0. However, for larger k systems, we
find that the configurational entropy vanishes at temperatures close
to the onset temperature. On the contrary, both the self-part and
the collective part of the dynamics show complete relaxation well
below the temperature where the configurational entropy vanishes.
Thus, we can apparently access states with negative configurational
entropy. This is an unphysical result by definition. In addition, it
also violates the RFOT prediction. Thus, in our opinion, this obser-
vation implies that the TI method of entropy calculation should be
re-examined. We discuss the possible failure points of the TI
method. However, at present, we do not know how to incorporate
the corrections.

We, thus, employ a completely different method to calculate
the entropy of the system, namely, the two-phase thermodynam-
ics (2PT) method. It is a well-known method30,31 that has pro-
vided accurate entropy values over a wide range of thermodynamic
state points for the Lennard-Jones (LJ) fluid and different water
models.30,32 We first test this method for a standard Kob–Anderson
(KA) model, which is the k = 0 system in the mean-field model. We
compare the entropy values obtained via the TI and the 2PT methods
and find them close to each other. We then employ the 2PT method
for different mean-field systems and compare the results with those
obtained by the TI method. We find that with increasing k, the differ-
ence in entropy obtained by the two methods increases. The entropy
calculated using the 2PT method does not produce any negative
configurational entropy state points. We also find that it predicts a
Kauzmann temperature, which is similar to the temperature where
the α relaxation time diverges, thus validating the RFOT prediction.
Incidentally, we find that in the range of temperature studied here,
the standard AG relation holds.

Similar to the mean-field system, there has been some discus-
sion of the dynamics not following the entropy and the breakdown
of the AG relationship when the entropy was calculated using the TI
method in another model, namely, randomly pinned systems.33–36

Given the success of the 2PT method in describing the entropy of
the mean-field system, we further employ it to calculate the entropy
of the pinned system. We find that with the increase in the pinning
density, the difference in entropy computed by the TI and the 2PT
methods increases. We also show that in the temperature range stud-
ied, the pinned systems follow the AG relationship when the entropy
is calculated via the 2PT method.

Although our simulations provide results at relatively high tem-
peratures at which the systems can be equilibrated, they offer an
opportunity to critically test theories of the glass transition. The
TI method is an important standard method to estimate entropy
reliably and easily, both in experiments and in simulations. The
unphysical results produced by the TI method for the mean-field
model is rather surprising. Given their importance, they should be
critically examined. Thus, in the present study, our main focus is
on understanding possible issues with entropy calculation in these
models.

The rest of this paper is organized as follows: The system and
simulation details are described in Sec. II. In Sec. III, we describe
different methods for the calculation of entropy. In Secs. IV and V,
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we present the results of our analysis for the mean-field and pinned
systems, respectively. In Sec. VI, we summarize the results and
conclude.

II. DETAILS OF SYSTEM AND SIMULATIONS

We have studied two different families of models. One is a
mean-field system and the other is a pinned system. For both
the systems, we have used atomistic models, which are simulated
with two-component mixtures of classical particles (larger “A” and
smaller “B” type), where particles of type i interact with those of type
j with pair potential, u(rij), where r is the distance between the pair.
u(rij) is described by a shifted and truncated Lennard-Jones (LJ)
potential, given by

u(rij) = ⎧⎪⎪⎨⎪⎪⎩
u(LJ)(rij; σij, ϵij) − u(LJ)(r(c)ij ; σij, ϵij), r ≤ r(c)ij ,

0, r > r(c)ij ,
(1)

where u(LJ)(rij; σij, ϵij) = 4ϵij[( σij
rij
)12 − ( σij

rij
)6] and r(c)ij = 2.5σij. We

have used the Kob–Andersen model8 and performed constant
volume and constant temperature (Nosé–Hoover thermostat and
velocity rescaling) molecular dynamics (NVTMD) simulation. We
use σAA and ϵAA as the units of length and energy, respectively,
setting the Boltzmann constant kB = 1. We have used reduced time

unit in terms of
√

mAσ2
AA

ϵAA
, and masses of both types of particles are

taken to be the same (mA = mB, set equal to unity). We have used
80% of A particles and 20% of B particles with the diameter σAA = 1.0,
σAB = 0.8, and σBB = 0.88. The interaction strengths between the
particles are ϵAA = 1.0, ϵAB = 1.5, and ϵBB = 0.5.

A. Mean-field system
The mean-field system is given by N particles that interact with

each other via a standard short-range potential. In addition, each
particle also interacts with “pseudoneighbors,” i.e., particles that are
not necessarily close in space. Hence, the total interaction potential
of the system is given by

Utot(r1, ..., rN) = N∑
i=1

N∑
j>i

u(rij) + 1
2

N∑
i=1

k∑
j=1

upseudo(rij) (2)

= U +Upseudo
k . (3)

The first term on the right-hand side is the regular interaction
between particles, while the second term is the interaction each
particle has with its pseudoneighbors. Here, we consider the case in
which the regular interaction is described by using Eq. (1).

The interaction potential with the pseudoneighbors is modeled
in terms of a modified shifted and truncated LJ potential,

upseudo(rij) = u(rij − Lij) (4)

= 4ϵij

⎡⎢⎢⎢⎢⎣(
σij

rij − Lij
)12 − ( σij

rij − Lij
)6⎤⎥⎥⎥⎥⎦, (5)

where Lij is a random variable defined below. In our simulations,
we impose the restriction that any two particles interact either
via u(rij) or via upseudo(rij). This condition determines how the
pseudoneighbors and the values Lij are chosen for a given config-
uration equilibrated with the potential u: for each particle i, we
select k random numbers Lij in the range rc ≤ Lij ≤ Lmax, where
Lmax ≤ Lbox/2 − rc, with Lbox being the size of the simulation box.
[The distribution of these random variables will be denoted by
P(Lij), and in the following, we will consider the case that
the distribution is uniform.] Subsequently, we choose k distinct
particles j with rij > rc and use the Lij to permanently fix the inter-
action between particles i and j. This procedure thus makes sure that
each particle i interacts with not only the particles that are within
the cutoff distance but also k particles that can be far away. Note
that once the particle j is chosen as a pseudoneighbor of particle
i, automatically particle i becomes a pseudoneighbor of particle j.
The system, as defined here, can then be simulated using standard
simulation algorithms.

NVT molecular dynamics (MD) simulation is performed in
a cubic box using the velocity rescaling method for N = 2744
particles at ρ = 1.2 (Lbox = 13.1745) using a time integration step of
Δt = 0.005. For Lmax, we have taken 4.0, slightly below the maximum
value of 4.09. We have simulated four different systems with the
number of pseudoneighbors, k = 0, 4, 12, and 28.

B. Pinned system
We also study another conceptually different family of glass-

forming models, namely, the pinned system in which a fraction of
particles are artificially pinned at their positions in an equilibrated
liquid. For the study of the pinned system, we use the Kob–Andersen
80:20 binary Lenard-Jones mixture.8 Details of this model are given
in Sec. II. For creating the pinned system, the following pinning
protocol is used. The pinned particles are chosen randomly from
an equilibrium configuration of the system at the temperature of
interest.33,35 NVT molecular dynamics simulation is performed in
a cubic box using the Nose–Hoover thermostat where N = 1000 at
ρ = 1.2 (Lbox = 9.410 36) using a time integration step of Δt = 0.005,
at three different pinning concentration (c), i.e., 0.05, 0.10, and 0.15.
Production runs of pinned configurations are long enough to ensure
that within the simulation time, the overlap correlation function
Q(t) (defined in Sec. II C) decays to zero.

C. Dynamics
To analyze the dynamics, we consider the self-part of the

overlap function,

Q(t) = 1
N
⟨ N∑

i=1
ω(∣ri(t) − ri(0)∣)⟩, (6)

where the function ω(x) is 1 if 0 ≤ x ≤ a and ω(x) = 0 otherwise.
The parameter a is chosen to be 0.3, a value that is slightly larger
than the size of the “cage” determined from the height of the plateau
in the mean square displacement at intermediate times.8 Thus, the
quantity Q(t) measures whether or not at time t a tagged particle is
still inside the cage it occupied at t = 0.
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To analyze the collective dynamics of the systems, we have used
both the collective overlap function and the collective intermediate
scattering function.

The collective overlap function is defined as follows:

Qtot(t) = 1
N
⟨ N∑

i=1

N∑
j=1

ω(∣ri(t) − rj(0)∣)⟩. (7)

The long time saturation value of Qtot(t) is given by (using a = 0.3)37

lim
t→∞ Qtot(t) = N

V
4
3

πa3 = 0.135. (8)

We have also calculated the intermediate scattering function
F(q, t). It is the collective density–density time correlation func-
tion in momentum space which provides information about the
collective dynamics of the systems,

F(q, t) = 1
NF(q, 0)⟨

N∑
i=1

N∑
j=1

exp[−iq ⋅ (ri(t) − rj(0))]⟩. (9)

The relaxation time (τ) is calculated from the self-part of the
overlap function when it decays to 1/e. The rapid increase in relax-
ation time with decreasing temperature is a signature of glassy
dynamics. This is often fitted to the Vogel–Fulcher–Tammann
(VFT) equation,

τ(T) = τ0 exp

⎡⎢⎢⎢⎢⎢⎣
1

K( T
T0
− 1)
⎤⎥⎥⎥⎥⎥⎦

. (10)

Here, τ0 is a high-temperature relaxation time and T0 is the so-called
VFT temperature at which the relaxation time of the system is pre-
dicted to diverge. The parameter K describes the curvature of the
data in an Arrhenius plot and, hence, can be considered as a measure
for the fragility of the glass-former.

III. ENTROPY

In this work, we have used two different well-known methods
for the calculation of the total entropy (Stot) of the system. Below, we
provide brief sketches of the two methods, namely, the TI method29

and the 2PT method.30

A. Thermodynamic integration (TI) method
Below, we describe the different quantities required to calculate

the entropy in the TI method.29

1. Ideal gas entropy
Ideal gas entropy is the entropy of a set of non-interacting

particles. The ideal gas entropy per particle for a binary system at
temperature T is given by

Sideal = 5
2
− ln(ρ) + 3

2
ln(2πT

h2 ) + 1
N

ln
N!

NA!NB!
, (11)

where N = NA +NB is the total number of particles, ρ is the density
of the system, and h is the Planck constant. NA and NB are the
number of particles of types A and B. The last term contributes to
the mixing entropy.

However, if the particles are divided into M distinguishable
species such that N = ∑M

i=1Ni, then the ideal gas entropy per particle
can written as

Sd
ideal = 5

2
− ln(ρ) + 3

2
ln(2πT

h2 ) + 1
N

ln
N!

ΠM
i=1Ni!

. (12)

2. Excess entropy and total entropy
Excess entropy (Sex) estimates the loss of entropy due to inter-

actions among the particles. It is always a negative quantity. Sex is
calculated using the TI method where the integration can be done
on the temperature path,33 in the temperature range ∞ to a target
temperature (T∗),

Sex(β∗) = β∗⟨U⟩ − ∫ β∗

0
dβ⟨U⟩. (13)

Here, β = 1
T . The total entropy of the system at a particular tempera-

ture is the sum of the ideal gas entropy and the excess entropy of the
system at that particular temperature,

Stot = Sideal + Sex. (14)

B. Two-phase thermodynamics (2PT) method
The 2PT method is another conventional method to compute

the entropy of liquids.30,31 In the 2PT method, the thermodynamics
quantities can be computed using the density of states (DOS) of the
liquid. One can decompose the DOS of a liquid as a sum of solid-like
and gas-like contributions. To compute the thermodynamic quanti-
ties, the phonons in the solid-like DOS are treated as non-interacting
harmonic oscillators, as in the Debye model.38 On the other hand,
the gas-like DOS is described as a low-density hard-sphere fluid,
which can be computed analytically.38 Using the 2PT description,
Lin et al.30,31 demonstrated that the thermodynamics quantities of
the LJ fluid can be computed very accurately over a wide range of
thermodynamics state points using a very short MD trajectory. In a
later work, Lai et al.39 calculated the entropy of a binary fluid using
the 2PT method. Here, we provide a brief overview of the decom-
position of the DOS in the 2PT method. We refer the reader to the
original papers30,31 for a full description.

The density of state function, g(ν), can be computed from the
mass-weighted atomic spectral densities, defined as30,31

g(ν) = 2
T

N∑
j=1

3∑
l=1

mjsl
j(ν), (15)

where mj is the mass of the jth atom, l denotes the direction in the
Cartesian coordinates, and sl

j(ν) are the atomic spectral densities,
defined as

sl
j(ν) = lim

τ→∞
∣∫ τ−τ v

l
j(t)e−i2πνtdt∣2

2τ
, (16)
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where vl
j(t) denotes the velocity component of the jth atom in the

lth direction. The atomic spectral density, sl
j(ν), can be computed

from the Fourier transform of the velocity auto-correlation function
(VACF) cl

j(t),
sl

j(ν) = lim
τ→∞∫ τ

−τ
cl

j(t)e−i2πνtdt, (17)

where cl
j(t) is given by

cl
j(t) = lim

τ→∞
1

2τ∫
τ

−τ
vl

j(t + t′)vl
j(t′)dt′. (18)

Thus, Eq. (15) can be rewritten as

g(ν) = 2
T

lim
τ→∞∫ τ

−τ

N∑
j=1

3∑
l=1

mjcl
j(t)e−i2πνtdt. (19)

As we mentioned above, g(ν) can be decomposed into solid-
and gas-like components in the 2PT formalism. Based on the dif-
fusivity of the system compared to hard-sphere gas at the same
density, Lin et al.30 proposed a self-consistent fluidity factor, f ,
which decides the degrees of freedom shared in solid and gas compo-
nents. The relationship between f and dimensionless diffusivity, Δ,
can be derived (for the details of the derivation, readers are referred
to Ref. 30) by

2Δ−9/2 f 15/2 − 6Δ−3 f 5 − Δ−3/2 f 7/2 + 6Δ−3/2 f 5/2 + 2 f − 2 = 0. (20)

The dimensionless diffusivity constant, Δ, depends on the
material properties,

Δ(T, ρ, m, g0) = 2g0
9N
( 6

π
)2/3(πT

m
)1/2

ρ1/3, (21)

where g0 = g(0) is the DOS of the system at zero-frequency and ρ
is the number density. Using f obtained from Eqs. (20) and (21),
the DOS in the gas-like diffusive component can be obtained using
a hard-sphere diffusive model,

gg(ν) = g0

1 + [ πg0ν
6 f N ]2 . (22)

Given the DOS in the gas-like component, one can compute the
solid-like DOS, gs(ν), using the following equation:

g(ν) = gg(ν) + gs(ν). (23)

Once the decomposition of the DOS has been done, any ther-
modynamic quantity, A, can be computed using the corresponding
weight functions,

A = β−1[∫ ∞
0

gg(ν)Wg
Adν + ∫ ∞

0
gs(ν)Ws

Adν]. (24)

The weight functions for the entropy in the solid- (Ws
S) and the

gas-like (Wg
S) components are defined as

Ws
S(ν) =WHO

S (ν) = βh̵ν
exp(βh̵ν) − 1

− ln[1 − exp(−βh̵ν)], (25)

where β = 1
T and h = h

2π and h is the Planck constant,

Wg
S(ν) = 1

3
SHS

k
, (26)

where SHS denotes the entropy of the hard-sphere system. Using
Eqs. (25) and (26), the total entropy of the system can be written
as

Stot = Ss + Sg. (27)

In this work, for the calculation of the entropy using the 2PT
method, we have averaged over ten datasets where each dataset starts
with a different configuration and velocity distribution. Each dataset
contains fifty thousand frames of velocity with an interval of 0.005
time steps.

C. Configurational entropy
As discussed earlier, we can calculate the total entropy using

both the TI and the 2PT methods. Thus, Eqs. (14) and (27) provide
us with the same information although the routes of obtaining them
are different.

In the supercooled liquid regime, the configurational space can
be divided into inherent structure minima and vibrational motion
around them. The logarithm of the number of these inherent struc-
ture minima gives the configurational entropy (Sc) of the system,
which can be calculated by subtracting the vibrational entropy, Svib,
from the total entropy of the system,

Sc = Stot − Svib = Sideal + Sex − Svib. (28)

The vibrational entropy is calculated by making a harmonic
approximation about a local minimum.37,40–42 To obtain the vibra-
tional frequencies, we calculate the Hessian and then diagonalize it.
Once we obtain the vibrational frequencies, Svib is calculated using
the following equation:

Svib = 3
2

ln(2πT
h2 ) + ln(V)

N
+ 1

2N

3N−3∑
i=1

ln(2πT
ωi2 ) − 3

2N
+ 3. (29)

IV. RESULTS FOR MEAN-FIELD SYSTEM

In this section, we will discuss the entropy of the mean-field
system and its correlation with the dynamics. We will first discuss
the results obtained using the TI method and its shortcomings and
then discuss the results obtained from the 2PT method.
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A. Entropy using thermodynamic integration method
In the estimation of the entropy using the TI method, we need

to calculate the excess entropy and the vibrational entropy. The
configurational entropy is then obtained from Eq. (28).

1. Excess entropy
Note that in the calculation of the excess entropy via the TI

method, we need the information of the internal energy [Eq. (13)].
For the mean-field systems, the internal energy has two parts, one
is the contribution from the regular nearest neighbor (NN) and the
other is the contribution from the pseudo-neighbor (PN). A similar
decomposition is present for the entropy, where we can write
Sex = SNN

ex + SPN
ex . The first term on the rhs refers to the contribution

from the regular neighbors and the second term refers to that from
the pseudoneighbors. These are given by

SNN
ex (β∗, k) = β∗⟨U⟩ − ∫ β∗

0
dβ⟨U⟩ (30)

and

SPN
ex (β∗, k) = β∗⟨Upseudo

k ⟩ − ∫ β∗

0
dβ⟨Upseudo

k ⟩. (31)

In Fig. 1, we plot the temperature dependence of Sex from the
TI method for different k systems. In the TI method, we assume the
particles to be indistinguishable. We find that the excess entropy
decreases with increasing k. Our earlier study showed that with
increasing k, the structure of the system remains unchanged.27

Thus, the contribution of the regular neighbors to the entropy
does not change with k. However, with an increase in the num-
ber of pseudoneighbors and thus Upseudo

k , the total excess entropy
decreases. Thus, the decrease in excess entropy obtained via the TI
method can be attributed to the increase in the pseudoneighbor
interactions.

FIG. 1. Plot of per particle excess entropy Sex vsT for k = 0, 4, 12, and 28 systems.
Sex is estimated using the TI method. With an increase in k, the excess entropy
becomes more negative.

2. Vibrational entropy
We next calculate the vibrational density of states (VDOS) for

different k values from the Hessian. This calculation is cross-checked
by calculating the VDOS independently from the Fourier transform
of the velocity auto-correlation function, which matches the data
obtained from the Hessian (see Appendix A).

We find that with an increase in pseudoneighbors, there is a
suppression of the low-frequency modes, and the whole spectrum
moves to a higher frequency range, as shown in Fig. 2. A similar
effect was also seen in the high-temperature dynamics where it
was shown that with the increase in the pseudoneighbors, the cage
becomes stiffer and the dynamics inside the cage becomes faster.27

The temperature dependence of the vibrational entropy Svib
(obtained from the VDOS) is plotted in Fig. 3. We find that with
increasing k, as the vibrational spectrum shifts to higher frequencies,
the vibrational entropy decreases.

For a few representative systems (k = 0 and k = 28), we also
show the vibrational entropy as obtained from the anharmonic
approach43 and the Frenkel and Ladd (FL) method44 [Figs. 3(b)
and 3(c)]. For comparison, we also plot the vibrational entropy as
obtained from the harmonic approximation. The details of these
methods are given in Appendix A. As expected, the vibrational
entropy obtained from these two approaches is slightly lower than
that obtained from the harmonic approach.

3. Configurational entropy
Next, we study the configurational entropy of the system. For

all the systems, the data are plotted below their respective onset
temperatures (see Table I).27 The systems follow the expected linear
relationship between TSc and T (Fig. 4). The Kauzmann temperature
TTI

K is obtained by fitting to TSc = KT( T
TK
− 1). We find that TTI

K

increases with k. This is expected as in the earlier study, it was found
that with an increase in pseudoneighbors, the α relaxation time of
the system appears to diverge at a higher temperature.27 However,
for larger k systems (k = 12 and 28), we find negative values of the

FIG. 2. Vibrational density of states (VDOS), D(ω) vs ω, for k = 0, 4, 12, and 28
systems. With the increase in k, the low-frequency modes are suppressed and the
whole spectrum shifts to higher frequencies.
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FIG. 3. (a) The vibrational entropy Svib vsT for k = 0, 4, 12, and 28 systems. With
an increase in k, the VDOS shifts to higher frequencies, leading to a decrease
in the vibrational entropy. The vibrational entropy using the Frenkel–Ladd method
and using the anharmonic contribution for (b) k = 0 and (c) k = 28 systems. The
estimates by the two methods are closer to each other compared to the harmonic
approximation.

configurational entropy at comparatively high temperatures where
the liquid can be equilibrated in simulations. Particularly for the
k = 28 system, the temperature where the configurational entropy
vanishes is close to the onset temperature of glassy dynamics.27 This

TABLE I. Values of all characteristic temperatures for systems with different k values.
T0 is the VFT temperature where the α relaxation time diverges according to fits to
the VFT equation, Eq. (10). TTI

K is the Kauzmann temperature estimated from TI. T2PT
K

is the Kauzmann temperature estimated from the 2PT method.

k Tonset T0 TTI
K T2PT

K

0 0.74 ± 0.04 0.28 0.28 0.24
4 0.83 ± 0.08 0.36 0.46 0.31
12 1.03 ± 0.07 0.46 0.68 0.41
28 1.28 ± 0.22 0.61 1.19 0.55

is clearly unphysical. The TTI
K values are listed in Table I. In Table I,

we also list the respective T0 values. For many systems, it is found
that TK ≃ T0, which suggests that the slowing down of the dynamics
is driven by thermodynamics.14 On the contrary, in Table I, we find

FIG. 4. (a) TSc vsT for k = 0, 4, 12, and 28 systems where Sc is calculated using
the TI method. The value of the Kauzmann temperature TTI

K increases with increas-
ing k. The value of TTI

K (see Table I) for the k = 28 system is close to its onset
temperature. For k = 12, 28 systems, TTI

K values are high enough such that tem-
peratures below TTI

K are accessible in simulation. Sc becomes negative for such
temperatures. (b) TSc vsT for the k = 28 system. Here, three different vibrational
entropies have been estimated using the pure harmonic approximation, including
the anharmonic contribution to the harmonic approximation and the Frenkel–Ladd
method. All three methods predict negative Sc below a certain temperature, where
the dynamics of the system survives.
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that the difference between TTI
K and T0 increases with an increase in

k and the former is higher than the latter.
In the TI method, we need information about the ideal

gas entropy, the excess entropy, and the vibrational entropy. To
improve the estimate of the vibrational entropy, we also incor-
porate the anharmonic contribution and calculate the vibrational
entropy using the Frenkel and Ladd method (Appendix A). In
Fig. 4, we plot TSc for the k = 28 system where the vibrational
entropy is obtained from the anharmonic approximation and the
Frenkel and Ladd method. For comparison, we plot the value as
obtained from the harmonic approximation. We find that although
the configurational entropy now vanishes at a lower temperature, its
value is still negative at temperatures where we can equilibrate the
system.

We next show in Fig. 5 that for the k = 28 system at T = 0.82,
which is much below TTI

K = 1.19, both the collective overlap function
and the intermediate scattering function decay with time and
reach their respective long time values [Qtot(t →∞) = 0.135 and
F(q, t →∞) = 0]. Note that because of the introduction of the
pseudoneighbors at a distance “Lij,” the system has more than one
length scale. Thus, to make sure that the relaxation persists at length
scales that are larger and smaller than the nearest neighbor distance,
we plot the intermediate scattering function at wave numbers larger
and smaller than qmax = 2π

σmax
, where σmax is the position of the first

peak in the radial distribution function. We find that the interme-
diate scattering functions relax to zero at all length scales. The fact
that the dynamics show full relaxation where the configurational
entropy vanishes suggests a strong violation of the RFOT predic-
tion. Note that recent studies have suggested that the TI method
overestimates the configurational entropy.45,46 If we take this into
account, i.e., assume that the actual configurational entropy is lower
than that obtained via the TI method, then the results obtained here

FIG. 5. Time dependence of the intermediate scattering function and the collective
overlap function for the k = 28 system at a temperature T = 0.82, which is lower
than TTI

K (see Table I). It shows that the self-dynamics and the collective dynam-
ics relax to their asymptotic values over timescales accessible in simulations
at a temperature lower than that at which the configurational entropy vanishes.
The magenta horizontal dashed line shows the asymptotic value of the collective
overlap function, which is 0.135.

FIG. 6. Testing the Adam–Gibbs relation between the relaxation time τ and 1/TSc ,
for the k = 0, 4, and 12 systems. The AG relation is obeyed for the k = 0 system,
but is violated for non-zero k systems. The relaxation time τ is estimated from the
self-part of the overlap function.

would be even more flawed. This implies that we need to revisit the
TI method of calculating the entropy.

In Fig. 6, we also study the validity of the Adam–Gibbs relation-
ship. We find that with an increase in k, there is a breakdown of the
AG relationship, which in this case is a consequence of the violation
of RFOT predictions. The plot also suggests that the relaxation time
is smaller than that predicted by the AG relationship.

B. Possible reasons for the failure of the TI method
Let us first summarize the main observations made here when

the entropy is calculated using the TI method: (i) negative values of
Sc at low temperatures for large values of k and (ii) full relaxation
of the dynamical quantities at temperatures lower than the tempera-
ture at which Sc goes to zero. In this section, we discuss the possible
failure points of the TI method.

1. Ideal gas entropy
In the calculation of the configurational entropy [Eq. (28)], we

need the information of the ideal gas entropy. To make the entropy
an extensive quantity, we calculate the ideal gas entropy (Sec. III A 1)
by assuming the particles to be indistinguishable. However, in the
mean-field system, each particle has a different set of pseudoneigh-
bors with different L values. Thus, one might argue that the particles
are distinguishable.

If we assume all particles to be distinguishable, i.e., M = N,
then the entropy in the thermodynamic limit will diverge [Eq. (12)].
However, for finite N, we can estimate the entropy, which will
increase by a factor that is proportional to log (N) but independent
of k. From our analysis, it appears that with an increase in k, the error
in the entropy calculation increases. This implies that the correction
term should depend on k.

Apart from the distinguishability factor, there is one other issue
that can affect the ideal gas term. Here, the way the interaction
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between a particle and its pseudoneighbor is designed restricts the
particle to access a certain part of the total volume. Per pseudoneigh-
bor this volume is a spherical region of radius Lij. Thus, in the ideal
gas limit, the whole volume of the system is not accessible to a
particle. The per particle inaccessible volume should increase with k,
which will lower the entropy of the system. Thus, the distinguisha-
bility factor will increase the entropy, whereas inaccessible volume
will decrease the entropy, the former is independent of k, but the
latter depends on k. This might appear to solve the k dependence of
the correction term. However, if we combine the distinguishability
and inaccessible volume part, then we will find that for systems
with small values of k, the volume correction is really small and the
distinguishability factor which is independent of k increases the
entropy by a large amount. Thus, the dynamics for these systems
will be similar to the k = 0 system, but the entropy calculated in this
way will be much higher.

Another possibility is that the distinguishability is not a binary
function but is a function of k. Having these extra connections
with the pseudoneighbors replacing particles with another one while
keeping the identity of pseudocontacts the same can increase the
energy of the system, and the larger the number of pseudocontacts
the higher is the increase in the energy. This appears quite similar
to the case of polydisperse systems with continuous polydispersity
where depending on the size range of the two particles, the replace-
ment may or may not keep the system in the same minimum.47

It was argued that after particle swapping if the system remains in
the same inherent structure minimum, then the two particles are
indistinguishable, and if not, then they belong to different species.
Thus, to find the number of species, we need to swap particle
positions. Swapping particles while keeping the identity of the
pseudoneighbors the same is not straightforward. The swap should
make sure that in the new position of the particle, none of the
pseudoneighbors are within the interaction range rc. With the
increase in the number of pseudoneighbors, these swaps will be
mostly rejected, thus making it impossible to quantify the number
of species and, thus, the entropy.

2. Excess entropy scaling
We next test the accuracy of the excess entropy value calculated

via the TI method. Apart from the AG relationship which is valid
in the low temperature regime and connects the configurational
entropy to the dynamics, there is another phenomenological
relationship, namely, the Rosenfeld relation between the excess
entropy and the dynamics.48,49 According to the Rosenfeld relation,
any dimensionless transport property will follow the excess
entropy scaling. For the relaxation time, it can be written as
τ∗ = R exp(−KSex), where τ∗ = τρ−1/3T1/2m−1/2. For simple liquids,
it has been found that R ≃ 0.6 and K ≃ 0.8, and this relationship
is valid in the high-temperature regime, showing a data collapse
between scaled diffusion and Sex

50 and also scaled relaxation time
and Sex.51,52 A recent study has also shown that scaled viscosity and
diffusion coefficient for a large number of systems show a quasi-
universal excess entropy scaling, extending over both high and low
temperature regimes.53 In Fig. 7, we plot τ∗ vs Sex for the different
mean-field systems and do not find any data collapse. Thus, we find a
breakdown of the Rosenfeld relation and also of the quasi universal
excess entropy scaling.53 Note that similar to that observed for the

FIG. 7. Scaled relaxation time vs excess entropy. With increasing k, there is a
deviation from the quasi-universal excess entropy scaling.

AG relationship, we find that for higher k systems, the relaxation
time is smaller than that predicted by the excess entropy scaling
relation.

The deviation from the excess entropy scaling might appear
quite weak. However, note that, unlike the AG relationship where
we deal with the configurational entropy which has a very small
value, here, we deal with the excess entropy, which has a large value.
Thus, the excess entropy scaling is less sensitive to small errors in
the calculation of the entropy. In the mean-field system, we find
that the excess entropy has a strong dependence on the number
of pseudoneighbors. On the other hand, the study of the dynam-
ics of the mean-field system showed that the interaction with the
pseudoneighbors slows down the overall dynamics of the system but
has a weak effect on the structural relaxation.27 Thus, it appears that
the role of the pseudoneighbors is not the same for the TI entropy
and the dynamics.

C. Entropy using the 2PT method
Although we point out the possible sources of error in the TI

method, we do not know how to correct them at present. Thus,
in this section, we present the results of the calculation of entropy
using the 2PT method, which uses an entirely different technique. In
the 2PT method, we primarily use information about the dynamics,
namely, the velocity autocorrelation function, to determine the
entropy. We know that the TI method works well for the regular
KA model. Thus, to validate the 2PT method, we compare it with
the TI method for a regular KA system (k = 0). As shown in
Appendix A, the 2PT method works well. At temperatures close to
the mode-coupling transition temperature, the 2PT method shows
some deviation, which is identified as arising from an averaging
issue. Thus, we use the results from the 2PT method in the tem-
perature range where the upper bound is the onset temperature
and the lower bound is above the respective mode-coupling theory
transition temperature.27 In this section, we will first compare the
total entropy obtained using the 2PT method [Eq. (27)] and the TI
[Eq. (14)] method for the different mean-field systems. As shown in
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FIG. 8. Comparison of the TI and 2PT methods of calculation of the entropy for the
mean-field system: (a) Stot vsT . The filled symbols represent the results obtained
from the TI method, and the open symbols represent those from the 2PT method.
Stot computed by the 2PT method is higher than that by the TI method. (b) The
difference in total entropy, ΔStot , between 2PT and TI methods increases with
increasing k. (c) The relative difference in the total entropy, ΔStot

Stot(TI) , between 2PT

and TI methods shows similar behavior as (b).

Fig. 8, the difference in total entropy between TI and 2PT methods
increases systematically with increasing k. This suggests that for this
system, the TI method of calculating the entropy is not correct.
We next study the configurational entropy as predicted by the 2PT

FIG. 9. TSc vsT for k = 0, 4, 12, and 28 systems using the 2PT method. Values of
T2PT

K , which are close to T0, are given in Table I.

method and its correlation with the dynamics. To calculate the
configurational entropy, we need the information of the vibrational
entropy, which is the same as that used in the TI method. In Fig. 9,
we show the TSc vs T plots. We find that for all the systems,
T2PT

K is smaller than TTI
K and close to T0 (see Table I). This shows

that the entropy calculated via the 2PT method follows the RFOT
prediction. As discussed before, recent studies suggested that the
TI method overestimates the entropy.45,46 This might imply that
the higher value of entropy estimated by the 2PT method is due
to some additional vibrational degrees of freedom. Note that, for
the k = 0 system, the entropy estimated by the two methods is close
to each other. However, with the increase in k, as the error in the
entropy value calculated by the TI method increases, this difference
also increases. For the k = 28 system, when the TI method predicts

FIG. 10. Testing the AG relation, τ vs 1
TSc

, for k = 0, 4, 12, and 28 systems with Sc

computed by the 2PT method. All the systems follow the AG relation in the range
of temperatures studied here.
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negative configurational entropy and the 2PT method predicts
positive configurational entropy, the self-correlation and the
collective correlation functions decay to their respective asymptotic
values. This decay of the correlation functions is only possible
when the system can explore the configurational space. Vibrational
degrees of freedom alone cannot lead to such a decay of the corre-
lation functions. This is consistent with the prediction of the 2PT
method.

We next check the validity of the AG relationship. In Fig. 10, we
show a semi-log plot of τ against 1

TSc
. It clearly shows the validity of

the AG relation for all the systems in the temperature range studied.
Note that in the 2PT method, there is no adjustable parameter to
enforce the validity of the AG relationship.

V. RESULTS FOR PINNED SYSTEMS

Note that in the mean-field system, the breakdown of the AG
relation and also the vanishing of the configurational entropy at
a temperature where the dynamics show complete relaxation are
similar to what has been observed for another family of models,
namely, the pinned system.33–36,45 In the pinned system, the relax-
ation time obtained from single-particle dynamics remains finite at
temperatures for which the configurational entropy vanishes, and
there is some evidence54 that the relaxation time associated with the
collective dynamics also remains finite at such temperatures. It has
also been argued that the configurational entropy has a finite value
when the vibrational entropy is calculated using an anharmonic
approximation.45

We calculate the total entropy of the pinned system using the
TI method used in earlier studies33 and also given in Appendix B
of the present paper. We then calculate the configurational entropy
by subtracting the vibration entropy from the total entropy by
taking into consideration the anharmonic contribution. As
discussed in Appendix B and shown in Figs. 21 and 22 and Table II,
even after taking into consideration the anharmonic term, the
Kauzmann temperature TK appears to be high and the AG
relationship is violated.

Given the success of the 2PT method in determining the
entropy for the mean-field system, we apply it for the pinned system
and compare it with the TI method. In Fig. 11(a), we plot the total
entropy obtained using two different methods, and in Fig. 11(b),
we plot their differences for three different pinning densities, and
in Fig. 11(c), we plot the relative difference. For comparison, we
also show the KA system with no pinning, which is the same as
the KA system with k = 0. Similar to that observed in the mean-field
system, we find a difference between the entropy calculated via the

TABLE II. The values of all characteristic temperatures for pinned systems with dif-
ferent pin concentration c. TTI

K is the Kauzmann temperature estimated from TI. T2PT
K

is the Kauzmann temperature estimated from the 2PT method.

c TTI
K T2PT

K

0.00 0.28 0.24
0.05 0.31 0.30
0.10 0.41 0.32
0.15 0.57 0.41

FIG. 11. Comparison of the TI and 2PT methods of calculation of entropy for the
pinned system with different pinning concentration. (a) The total entropy Stot vsT .
The filled symbols represent the results of the TI method, and the open sym-
bols represent those of the 2PT method. (b) The difference in Stot between 2PT
and TI methods increases with increasing pinning concentration c. (c) The rel-
ative difference in the total entropy, ΔStot

Stot(TI) , between 2PT and TI shows similar

behavior as (b).

2PT and the TI methods that increases systematically with pinning.
We next calculate the configurational entropy as predicted by
the two methods and plot the temperature dependence of TSc in
Fig. 12. Both methods predict positive Kauzamnn temperatures for
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FIG. 12. TSc vsT for systems with different pinning concentrations c = 0, 0.5,
0.10, 0.15 using (a) the TI method and (b) the 2PT method. Both TTI

K and T2PT
K

increase with increasing pinning concentration, but T2PT
K < TTI

K ; see Table II.

each system, and similar to the case of mean-field systems, the
Kauzmann temperature predicted by the 2PT method is lower than
that by the TI method; see Table II. In this calculation, we have
used the harmonic approximation for the vibrational entropy. The
anharmonic approximation will equally affect both the 2PT and TI
entropy values, and the plots are given in Appendix B.

Next, we need to understand if the lowering of the TK value in
the 2PT method is sufficient to describe the dynamics. In Fig. 13,
we show semi-log plots of τ vs 1

TSc
where the entropy is calculated

using the 2PT and the TI methods. The TI method shows a strong
breakdown of the AG relation for c = 0.1 and c = 0.15, whereas the
2PT method clearly follows the AG relation for all c.

As discussed above, the unphysical feature of negative config-
urational entropy does not appear in the TI results for the pinned
system. In addition, the observation that the 2PT results for Sc
lie above the results obtained from the TI method suggests that
the 2PT results are less accurate than the TI results because, as
mentioned above, there are arguments45,46 that suggest that actual
configurational entropy is lower than the TI result. However, it
should be noted that the expectation that the TI results overestimate

FIG. 13. Testing the AG relation between τ vs 1
TSc

for c = 0, 0.5, 0.10, 0.15
systems using (a) the TI method (b) the 2PT method. In the temperature range
studied here, the AG relation is violated for c = 0.1 and c = 0.15 when Sc is
calculated using the TI method. However, the AG relation holds for all c when
Sc is calculated via the 2PT method.

the true Sc has not been verified by any calculation for the pinned
system. In addition, a difference between the value of the config-
urational entropy per particle obtained from the TI method and
its actual value would require the presence of an exponentially
large number of energy minima that differ from a particular
minimum by the movement of a small number of particles. We
are not aware of any study that establishes the presence of such a
large number (exponential in the number of particles) of nearby
minima.

Available results for the dynamics35,36,54 of the pinned system
suggest that the TI results for Sc may not be consistent with
the RFOT theory. There are arguments34,45 that suggest that the
inconsistency with the RFOT theory may disappear if the relax-
ation time associated with the collective dynamics (instead of the
timescale obtained from single-particle dynamics) is considered.
It has also been argued45 that the disagreement with the RFOT
theory may be accounted for by the overestimation of Sc in the
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TI method. However, these arguments have not been verified from
explicit calculations.

A similar observation of the mismatch between entropy and
dynamics for the pinned system has been observed in experimental
studies.55 It was found that although for unpinned systems,
the local dynamics correlate with the local pair excess entropy,
and with an increase in the pinning density, such correlation
disappears.55 Thus, for the pinned system, these traditional methods
of entropy calculation cannot explain the dynamics. On the other
hand, the 2PT method appears to explain the dynamics quite well.
For these reasons, we believe that more studies are necessary for
deciding the relative merits of the TI and 2PT methods for the
pinned system.

VI. CONCLUSION

Recently, some of us have developed a model for a glass-
forming liquid whereby changing a parameter, the system can
continuously switch from a standard three-dimensional liquid to a
fully connected mean-field-like system.27 The parameter is k, the
number of additional particle–particle interactions that are intro-
duced per particle on top of the regular interactions in the system.
With increasing k, the structure and the dynamics were studied,
which showed more mean-field-like behavior at higher k values. The
present work aims at studying the thermodynamics of the system
and understanding its correlation with the dynamics. To study ther-
modynamics, we first calculate the entropy using the well-known
TI method.29 We then study the correlation of the entropy with
the dynamics. This model shows super-Arrhenius dynamics similar
to conventional glassy liquids,27 suggesting that the RFOT descrip-
tion should apply. However, we find that configurational entropy
vanishes at a temperature that is close to the onset temperature of
the system. We also find that the relaxation times calculated from
both single-particle and collective dynamics remain finite at temper-
atures where the configurational entropy vanishes. This is different
from the prediction of RFOT and the behavior seen in conven-
tional glass-forming liquids for which the (extrapolated) values of
TK and T0 are found to be close to each other.14,16,56 This observation
also indicates that the system apparently samples state point with
negative configurational entropy, which is unphysical by definition.
We discuss the possible source of error in the TI method of
calculation of the entropy for the mean-field system. However, at
this point, we do not know how to modify the TI method to correctly
calculate the entropy of these model systems.

We, thus, use another technique, namely, the 2PT method, to
calculate the entropy. The 2PT method assumes that a liquid can be
represented as partially a gas and partially a solid, and this fraction
is a function of the thermodynamic parameters of the system and
also of the size of the particles. The 2PT method has been exten-
sively used to calculate the entropy for many systems, mostly in the
high-temperature regime.30,39 In recent work, this method was also
extended to lower temperatures.32 We find that for the KA system
at k = 0, both the 2PT method and the TI method provide similar
results. We then compare the total entropy calculated by the 2PT
method with that by the TI method for different mean-field systems.
We find that the difference between the entropy values obtained in
the two methods systematically increases with increasing k. We also
find that the entropy calculated via the 2PT method describes the
dynamics quite well and confirms the RFOT prediction.

The results of the mean-field systems appear quite similar to
that of the pinned particle system studied earlier.33 In the pinned sys-
tem, the self-part of the density correlation function decays to zero at
temperatures where Sc obtained from the TI method goes to zero.35

Given the success of the 2PT method in calculating the entropy of the
mean-field system, we apply it to calculate the entropy of the pinned
system. Interestingly, we find that similar to the mean-field system,
the difference between the entropy calculated via 2PT and TI meth-
ods systematically increases with pinning. The entropy obtained via
the 2PT method seems to explain the temperature dependence of
the relaxation time obtained from the self-overlap function well, and
the RFOT prediction remains valid. However, due to reasons men-
tioned in Sec. V, we believe that more work is needed in order to
decide whether the 2PT method yields more accurate results for the
entropy of the pinned system than the TI method.
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APPENDIX A: MEAN-FIELD SYSTEM ENTROPY

For a binary system in the 2PT method of entropy calculation,
we need to provide the information of the partial volume fraction,
which can be calculated as39

V̄i = σ3
i∑jxjσ3

j

V
N

, (A1)

where Vi = V̄iNi.
The partial volume fraction depends on the radii of the

particles. In the KA system, the diameter of the A and B particles
is 1 and 0.88, respectively. However, the potential in the KA model
is designed in such a way that it allows for interpenetration between
the A and the B particles [σAB < (σA + σB)/2]. Thus, if we assume
that the B particles are surrounded by all A particles, then the effec-
tive diameter of a B particle will be 0.6. To understand the role of
partial volume fraction on the entropy, we calculated Stot from
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the 2PT method, assuming the B particle diameter to be 0.8 and
0.6, respectively. We find that at high temperatures, the 0.6 value
provides a better result, but at low temperatures, the entropy is
almost independent of the small changes in the partial volume
fraction. Thus, for these systems, we assume the diameter of the B
particles to be 0.6.

We compare the total entropy of the system as estimated from
the TI40 and from the 2PT30 methods. Figure 14 shows that Stot
obtained from TI and 2PT methods has similar values. The error
bar for the 2PT data is estimated from a set of ten runs at each
temperature. We find some deviation in the low temperature. At low
temperatures, as the dynamics become slow, we need longer runs to
get a converged DOS. Figure 15 shows the effect the time step has on
the value of total entropy at lower temperatures. With an increase
in the time step, the entropy value approaches the value calculated
using the TI method. However, at longer times, the slope of the curve
decreases.

Configurational entropy, Sc, obtained in the two different
methods is plotted in Fig. 16. We find that the values of Kauzmann
temperature (TK ) using two different methods are close, which
validates the applicability of the 2PT method for the calculation of
the configurational entropy.

We have compared the density of states calculated from the
calculation of Hessian and the Fourier transform of the velocity
autocorrelation function. We find that both the methods show a
similar result in a density of states (see Fig. 17).

To increase the accuracy of the configurational entropy,
we incorporate the anharmonic contribution into the vibrational
entropy.43 We estimate the anharmonic contribution of the total
potential energy as

Uanh(T) = U(T) −UIS − 3
2

NT, (A2)

where U(T) is the total potential energy at temperature T, UIS is
the corresponding inherent structure energy, and the last term is
the harmonic vibrational energy of all the particles. The anharmonic
energy can be expanded around temperature T = 0 as

FIG. 14. Stot vsT for the KA model using the TI and the 2PT method. The two meth-
ods agree reasonably well. A small systematic deviation in the low temperature
regime is due to limited averaging possible for the 2PT method; see Fig. 15.

FIG. 15. The total entropy via the 2PT method as a function of the number of time
frames over which the velocity autocorrelation function is integrated to obtain the
spectral density at a low temperature T = 0.45. For comparison, we also plot the
entropy value obtained using the TI method. The difference decreases with the
increasing time interval, but the rate of convergence becomes slower at longer
times.

Uanh(T) = ∑
j=2

CjTj. (A3)

The coefficients of expansion Cjs are temperature independent. As
the system is completely harmonic in the low temperature limit,
the sum starts from j = 2. The anharmonic contribution for the
vibrational entropy (Sanh) can be written as

Sanh(T) = ∫ T

0
dT′ 1

T′
∂Uanh(T′)

∂T′ . (A4)

If we substitute Eq. (A3) into Eq. (A4), then we get the
anharmonic vibrational entropy as

FIG. 16. TSc vsT for the KA model using the TI and the 2PT methods. The values
of TK estimated by the two methods are similar (TTI

K = 0.27 and T2PT
K = 0.24).
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FIG. 17. Density of states calculated from the Hessian and the velocity autocorre-
lation function for k = 0 and k = 28 systems. Both the methods show the similar
result.

Sanh(T) = ∑
j=2

j
j − 1

CjTj−1. (A5)

In our simulation, we first estimate the anharmonic potential
energy, as shown in Fig. 18. We then fit the simulation data to a
polynomial function of T [Eq. (A3)] to obtain the coefficients. We
use these coefficients to obtain Sanh using Eq. (A5). We find that
for both k = 0 and k = 28 systems, Sanh is negative at all tempera-
tures, thus lowering the vibrational entropy (Fig. 3) and increasing
the configurational entropy (Fig. 4).

We also use the Frenkel and Ladd (FL) method to estimate the
vibrational entropy of our system.44 In the FL method, a perturbed
Hamiltonian is introduced,

βH(α) = βH(0) + α
N∑

i=1
∣r − r0i∣2, (A6)

FIG. 18. An harmonic potential energy (Uanh) vs temperature for k = 0 and 28
systems. The solid lines are the fitted line extrapolated to the zero temperature
value.

FIG. 19. Mean square displacement (Δα) vs α plot for the k = 28 system at different
temperatures. The solid line gives the behavior of mean square displacement for
the Einstein solid, Δα = 3/2α.

where H(0) is the original unperturbed Hamiltonian of the system,
β = 1

kBT , α is the spring constant which determines the strength of
perturbation, and r0i is the initial position of the i-th particle of the
unperturbed system. By varying α, a series of system is obtained,
which interpolates between the original system (α = 0) and the
Einstein crystal (large α values). For each α value, we calculate the
mean square displacement (MSD) (Δα = ∑N

i=1⟨∣r − r0i∣2⟩/N) and the
vibrational entropy,

SFL = SE(αmax) + ∫ αmax

0
dαΔα. (A7)

The entropy of Einstein solid is SE(αmax) = 3
2 − 3 ln λ − 3

2 ln( αmax
π ),

where λ is the de Broglie wavelength. Figure 19 shows the mean
square displacement at different α values for different temperatures.

FIG. 20. TSc vs T plot for TI and 2PT methods of the k = 28 system. The TI
method gives negative Sc even when the vibrational entropy is calculated from the
FL method, SFL

vib. The 2PT method does not give such a unphysical entropy value.
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At a high α value, Δα = 3/2α follows the behavior of an Einstein solid.
At small values of α, the MSD is not flat, suggesting that eventually,
at long time, the particle will escape the cage. Since we are interested
in obtaining the vibrational contribution, we choose a lower limit of
α = αmin such that the particle remains inside the cage. Thus, to cal-
culate Svib, we integrate Eq. (A7) from αmin to αmax. Here, we assume
that αmin = 2 and αmax = 107. The contribution from lower values of
α (α < αmin) is assumed to be given by Δαmin αmin. The vibrational
entropy thus obtained is lower than the harmonic approximation
and closer to the entropy obtained, including the anharmonic con-
tribution (Fig. 3). Figure 20 shows the TSc vs T plot for the k = 28
system where we calculate Sc from both the TI and 2PT methods
using vibrational contribution of entropy from the harmonic and FL
method. We find that Sc becomes negative when we calculate total
entropy using the TI method and the 2PT method does not give such
negative entropy.

APPENDIX B: PINNED SYSTEM ENTROPY

In a pinned system, a fraction c of the particles is pinned. The
details about the pinned system have been discussed in simulation

FIG. 21. TSc vsT for c = 0, 0.5, 0.10, and 0.15 systems using (a) the TI method
and (b) the 2PT method. Sc is computed by including the anharmonic contribution.
TTI

K and T2PT
K increase with increasing pinning concentration, but T2PT

K < TTI
K ; see

Table III.

details (see Sec. II B). Using the TI method, the total entropy of
moving particle in the pinned system, Stot , is given by33

Stot = 3M
2
− 3M

2
ln(2πT

h2 ) +M(1 − ln
N
V
)

− 2∑
i=1

Ni ln
Ni

N
+ β∗⟨U⟩ − ∫ β∗

0
dβ⟨U⟩, (B1)

where N1 and N2 are the number of moving particles of types A
and B, respectively. V is the total volume of the system and M is the
total number of moving particles. The total potential energy of the
system is U = UMP +UMM , where UMM and UMP denote the interac-
tion energy between moving–moving particles and moving–pinned
particles, respectively.

The temperature dependence of the configurational entropy
after taking care of the anharmonic contribution is plotted in

FIG. 22. Testing the AG relation between τ and 1
TSc

for c = 0, 0.5, 0.10, and 0.15
systems using (a) the TI method and (b) the 2PT method. Sc is computed by
including the anharmonic contribution. In the temperature range studied here, the
AG relation is violated for c = 0.10 and c = 0.15 when entropy is calculated using
the TI method. However, the AG relation holds when entropy is calculated via the
2PT method.
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TABLE III. The value of all characteristic temperatures for systems with different “c”
values. TTI

K (anh) and T2PT
K (anh) are Kauzmann temperature estimated from TI and

2PT, respectively, after the addition of anharmonic contribution.

c TTI
K (anh) T2PT

K (anh)

0.00 0.22 0.18
0.05 0.24 0.22
0.10 0.34 0.26
0.15 0.47 0.33

Fig. 21(a), and the corresponding Adam–Gibbs plot is shown in
Fig. 22(a). Even after the addition of the anharmonic contribution,
the AG relationship is violated. In Fig. 21(b), we plot the temperature
dependence of the configurational entropy where the total entropy is
calculated using the 2PT method and the anharmonic contribution
is taken into consideration. We show the AG plot of the same data in
Fig. 22(b). We find that when the total entropy is calculated using the
2PT method, the AG relationship holds, and the temperature where
the entropy vanishes is also lower than that given by the TI method
(see Table III).
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ABSTRACT

In polydisperse systems, describing the structure and any structural order parameter (SOP) is not trivial as it varies with the number of species
we use to describe the system, M. Depending on the degree of polydispersity, there is an optimum value of M =M0 where we show that the
mutual information of the system increases. However, surprisingly, the correlation between a recently proposed SOP and the dynamics is
highest for M = 1. This effect increases with polydispersity. We find that the SOP at M = 1 is coupled with the particle size, σ, and this coupling
increases with polydispersity and decreases with an increase in M. Careful analysis shows that at lower polydispersities, the SOP is a good
predictor of the dynamics. However, at higher polydispersity, the dynamics is strongly dependent on σ. Since the coupling between the SOP
and σ is higher for M = 1, it appears to be a better predictor of the dynamics. We also study the Vibrality, an order parameter independent
of structural information. Compared to SOP, at high polydispersity, we find Vibrality to be a marginally better predictor of the dynamics.
However, this high predictive power of Vibrality, which is not there at lower polydispersity, appears to be due to its stronger coupling with σ.
Therefore, our study suggests that for systems with high polydispersity, the correlation of any order parameter and σ will affect the correlation
between the order parameter and dynamics and need not project a generic predictive power of the order parameter.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156794

I. INTRODUCTION

When a liquid is cooled fast enough, it enters the supercooled
liquid regime, where the properties of the liquid are very different
from those of the normal liquid regime. When the supercooled liq-
uid approaches the glass transition, its dynamics increase by orders
of magnitude,1,2 with the structure showing marginal changes. This
observation questioned the role of structure in dynamics and the
application of liquid state theories3–5 in the supercooled regime.
However, studies have shown that although the structure does not
change drastically, static properties that depend on the structure
can change enough to affect the dynamics.6–8 One of the key signa-
tures of supercooled liquids is their dynamical heterogeneity, which
increases with a decrease in temperature.9–11 There have been a large
number of studies attempting to causally connect this dynamical
heterogeneity and local order parameters, some of which are purely
structural in origin.8,12–20 In recent studies, we have defined a struc-
tural order parameter (SOP) that is connected to the depth of the

mean-field caging potential.8,20 Our study has shown that for a large
number of systems, the SOP is a good parameter to describe the
relaxation process in the systems.8 We have also shown that this
causality persists even at the local level.20 The distribution of the
particle level SOP becomes wider at lower temperatures, thus sug-
gesting an increase in local structural heterogeneity. The correlation
between the SOP and the dynamics at the particle level is observed
only below the onset of the glassy dynamics, Tonset , and increases
as the temperature is decreased. Therefore, according to this study,
the structural heterogeneity and the coupling between the SOP and
dynamics increase at lower temperatures.20

Given the good predictive power of this new structural order
parameter, it should be tested for other glass-forming liquids.
Among systems that are good glass formers, polydisperse sys-
tems with size polydispersity come high in the order.21–28 Poly-
disperse systems beyond some degree of polydispersity can be
easily supercooled,22,29–34 and most experimental colloidal systems
are polydisperse.35–41 Moreover, the swap Monte Carlo algorithm,
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which allows the system to be cooled to unprecedentedly low tem-
peratures, is best applied to polydisperse systems with continuous
size polydispersity.42–48

However, for a system with continuous size polydispersity,
describing the structure and any parameter that depends on the
structure is a challenge. For these systems, the number of species,
M, equals the total number of particles. Many a time, these sys-
tems are treated like a monodisperse system (M = 1), and the
average structure/radial distribution function (rdf) shows an arti-
ficial softening.34,49–51 Therefore, any property calculated using
the rdf does not show the correct value. Depending on the dia-
meter of the particles, we can always approximate the system in
terms of a certain number of species. However, what is the opti-
mum number of species, M =Mo, needed to describe the prop-
erties of the system? This is a question often asked.45,49,50,52 In
earlier work, we used the correlation between the total excess
entropy of the system and its two-body counterpart, which needs
the information of the rdf, to obtain the optimum number
of species, M =Mo.49 The method is quite simple and much
less computer intensive, but it provides similar results as those
obtained from the study of configurational entropy using diameter
permutation.45

Here, we first show that our method of describing the system
into multiple species increases the mutual information (MI) of the
system. We then show that the SOP and its correlation with the
dynamics depend on M. It was earlier shown that the correlation
between SOP and dynamics helps us identify Tonset .20 Since the SOP
and its correlation vary with M, so does the Tonset . Similar to our ear-
lier study,49 the Tonset first changes with M and then saturates. This
clearly suggests that for a polydisperse system, for the calculation
of the SOP, the system needs to be described in terms of multi-
ple species. However, to our surprise, we find that the correlation
between the SOP and the dynamics is at its maximum for M = 1.
Furthermore, the study reveals that at low polydispersity, the SOP is
a good predictor of the dynamics, but at high polydispersity, the size
of the particle plays a dominant role in determining the dynamics.
Moreover, the SOP and the size are also correlated, and this correla-
tion increases with an increase in polydispersity and decreases with
an increase in M. Therefore, at high polydispersity and for M = 1,
where the SOP and the particle size are strongly correlated, the SOP
appears to be strongly correlated with the dynamics. However, this
does not depict the true correlation, which is mediated by particle
size. We also study Vibrality, another order parameter independent
of the system’s structure. We find that at high polydispersity, com-
pared to the SOP, the Vibrality has an even stronger correlation with
the particle size. Therefore, it appears to be a better predictor of
dynamics. These results clearly suggest that for systems with high
polydispersity, any local order parameter correlated with the parti-
cle size might appear to be a good predictor of the dynamics, and
these results should be cautiously interpreted and not assumed to be
a generic result.

The organization of the rest of the paper is as follows: Section II
contains the simulation details. In Sec. III, we discuss mutual infor-
mation as a function of the radial distribution function. In Sec. IV,
we present the calculation of the caging potential in a polydis-
perse system. In Sec. V, we discuss the species’ dependence on the
caging potential. In Sec. VI, we discuss the species dependence of the
correlation between the SOP and the particle dynamics. In Sec. VII,

we analyze the dynamics of the particles with soft and hard SOP. In
Sec. VIII, we do a comparative analysis of the role of particle size
and SOP in the dynamics. The paper ends with a brief conclusion in
Sec. IX. This paper contains three Appendices A–C sections at the
end.

II. SIMULATION DETAILS

For this study, we have performed three-dimensional MD sim-
ulations [using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) package53] for polydisperse systems in a
canonical (NVT) ensemble. N = 4000 particles are present in a cubic
box with volume V and density ρ = N

V = 1.0. We have used peri-
odic boundary conditions for the simulation. In this simulation, a
Nosé–Hoover thermostat with an integration timestep 0.001τ and
100 timesteps as time constants is used. The study involves the Gaus-
sian type of size distribution for continuous size polydispersity. This
means each of the N particles has a different radius. The Gaussian
distribution is given by

P(σ) = 1√
2πΛ2

exp
−(σ−⟨σ⟩)2

2Λ2 , (1)

where Λ is the standard deviation. In this distribution, we consider
σmax/min = ⟨σ⟩ ± 3Λ. The degree of polydispersity is quantified by

PDI =
√⟨σ2⟩ − ⟨σ⟩2⟨σ⟩ = Λ⟨σ⟩ .

For all the polydisperse systems, the particle sizes are chosen
such that ⟨σ⟩ = ∫ P(σ)σdσ = 1.

In this study, particles i and j interact via inverse power law
(IPL) potential. The form of the potential is given by33,54

U(ri j) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϵi j(σi j

ri j
)12 +∑2

l=0 c2l( ri j

σi j
)2l

, ( ri j

σi j
) ≤ xc,

0, ( ri j

σi j
) > xc,

(2)

where c0, c2, and c4 are constants, and they are selected such that
the potential becomes continuous up to its second derivative at the
cutoff xc = 1.25σij.

The interaction strength between two particles i and j is
ϵij = 1.0. σi j = (σi+σ j)

2 , where σi is the diameter of particle i. Length,

temperature, and time are given in units of ⟨σ⟩, ϵij, and (m⟨σ⟩2

ϵi j
) 1

2 ,
respectively. For all state points, the equilibration is performed for
100τα (τα is the α-relaxation time; details are given in Appendix A).49

During the analysis, when the system is described in terms of
M species, the particles in the diameter range (σmax − σmin)/M are
treated as single species, where M = 1, 2, 3, . . .. Therefore, for M = 1,
all particles are assumed to have the same average diameter.

Since these systems are not that well known, we provide infor-
mation on the different characteristic temperatures of the systems in
Appendix A.
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III. MUTUAL INFORMATION AND RADIAL
DISTRIBUTION FUNCTION

As mentioned in Sec. I, in earlier work, we used the correla-
tion between the total excess entropy and its two body counterpart
to determine the optimum number of species required to describe
the system.49 We will now show that this method is similar in spirit
to the calculation of mutual information (MI) between species and
their structures.17

The excess entropy Sex of a system is the loss of entropy due to
correlation. This is usually calculated via the thermodynamic inte-
gration method.55,56 It can also be expressed as Sex = S2 + S3 + ⋅ ⋅ ⋅,
where Sn denotes the entropy due to the n body correlation.57 80%
of the total entropy comes from the two body excess entropy and is
given by58,59

S2 = −2πρ∫ ∞
0
{g(r) ln g(r) − g(r) + 1}r2 dr, (3)

where g(r) is the radial distribution function. For a large number
of systems, it was shown that the two body excess entropy calcu-
lated using the rdf crosses the total excess entropy, and this crossover
temperature Tcross is similar to the onset temperature of the glassy
dynamics.6,60 Above this temperature, the two-body excess entropy
is larger than the total excess entropy, and below this temperature,
the reverse happens. This concept was then used to describe systems
with continuous polydispersity in terms of an optimum number of
species, M0.49 The two body entropy for M species can be written as

S2

kB
= −2πρ

M∑
u,v=1

χuχv∫ ∞
0
{guv(r) ln guv(r) − guv(r) + 1}r2dr, (4)

where χu is the fraction of particles in u species and guv(r) is the par-
tial radial distribution function of species u and v, and it is expressed
as5 guv(r) = V

NuNv
⟨∑Nu

i=1∑Nv

j=1, j≠i δ(r − ri + r j)⟩.
The temperature dependence of S2 changes with M, and this

also changes the Tcross value (shown in Appendix A). As shown
in Fig. 1, as a function of the number of species M, Tcross first
increases and then almost saturates at a certain value. This satura-
tion value is similar to the onset temperature obtained from other
methods.49,60,61 The saturation of Tcross implies that the structure/rdf
does not change considerably when an even larger number of species
is used to describe the system. Therefore, this provides us with infor-
mation on the optimum number of species, M =M0, required to
describe the system.

Interestingly, our formalism is similar in spirit to the formal-
ism suggested recently using mutual information (MI) theory; the
difference in two body entropy when the system is expressed as a
single species and as M species can be approximately written as17

ΔS2 ≃ M∑
k=1
∫ R

0
4πr2ρχkgk(r) ln( gk(r)

g(r) )dr, (5)

where gk(r) is the rdf of the kth species and the total rdf
g(r) = ∑k χk gk(r). Coslovich et al. beautifully argued that this dif-
ference in two body entropy is similar to the MI.17 From Eq. (5), we
notice that in this formalism, the probability distribution in the MI
is replaced by the radial distribution function, which is the prob-
ability of finding a particle at a distance r from a central particle

FIG. 1. Scaled MI of ΔS2 and Tcross49 saturated at same M. Scaling is performed
by dividing the ΔS2 and Tcross value by their respective saturation values at high
M.

over and above the ideal gas prediction. Therefore, this formalism,
instead of using the bare probability of finding a particle, is based on
the probability of finding particles at certain interparticle distances.

In Fig. 1, along with Tcross, we also plot ΔS2 as a function of M
for systems with 7% and 15% polydispersities. Both quantities are
scaled by their respective saturation values at high M. We find that
both show similar M dependence. Ideally, the peak in the ΔS2 vs M
plot should describe the optimum value of M. However, there is no
such peak, but just like Tcross, the ΔS2 value increases sharply with
M and then shows saturation. Note that MI is large when the dis-
tribution between two species is well segregated. However, the rdf of
two consecutive species overlaps. This may be the reason the entropy
difference does not show a peak. Results shown in Fig. 1 clearly sug-
gest that for these systems, the structure and any quantity that needs
structure as an input must be described by dividing the particles into
a certain optimum number of species, and this division is going to
increase the MI.

IV. COMPUTING LOCAL CAGING POTENTIAL

In a recent study, we described a structural parameter that
describes the local caging potential.8,20 We have also shown that
for the KA model, the softness of this potential and the short-time
dynamics are causal.20 The computation of the local caging potential
requires information on the radial distribution function. As dis-
cussed in Sec. III, the radial distribution function of a system with
continuous polydispersity depends on the number of species we
divide the particles of the system into. Extending our earlier work,
the average depth of the mean-field caging potential for a system
with M species can be written as20

βΦav
r (Δr = 0) = −ρ∫ dr

M∑
u=1

M∑
v=1

Cuv(r)χuχvguv(r), (6)

where β = 1
kBT , kB = 1, ρ is a density, and r denotes the distance

between the central tagged particle and its neighbors. Δr is the dis-
tance of the tagged particle from its equilibrium position. Cuv(r) is
the direct correlation function and, according to the Hypernetted
chain (HNC) approximation, can be written as5

Cuv(r) = −βUuv(r) + [guv(r) − 1] − ln [guv(r)], (7)
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where Uuv is the interaction potential. It was shown that the depth
of the potential is inversely proportional to the curvature and,
therefore, the softness parameter.8,20 Please note that we consider
the depth of the caging potential as an energy barrier and, thus,
work with the absolute magnitude of the caging potential [given by
Eq. (6)].

For the microscopic analysis, we need to calculate βΦr(Δr = 0)
for every snapshot at a single particle level. This is given by Eq. (6),
where the rdf and the direct correlation function are now obtained
at the single particle level. The single particle partial rdf in a single
frame can be expressed as a sum of Gaussian, and it is calculated as62

guv
i(r) = 1

4πρr2∑
j

1√
2πδ2

exp− (r−ri j)2

2δ2 , (8)

where δ is the variance of the Gaussian distribution used to make the
discontinuous function a continuous one. In this work, we assume
δ = 0.09⟨σ⟩. The direct correlation function can also be calculated
at the single particle level using Eq. (7) but with single particle rdf.
At higher Polydispersity index (PDI), when the system is described
by one species, the rdf shows a large softening and is non-zero at
very small values of “r” compared to the interaction potential. There-
fore, any function that calculates the product of the potential and rdf
incurs a large error.49 This error is higher for repulsive potential and
increases with PDI (as shown in Appendix B). In our calculation of
the potential depth, such products lead to unphysically large positive
values of the caging potential. This implies an unstable potential and
a negative curvature/softness parameter. Note that this is an artificial
effect. To overcome this problem, we have made one approxima-
tion. We assume that the potential of mean force is the same as the
interaction potential, i.e., −βUuv(r) = ln[guv(r)] and Capprox

uv (r) ≈[guv(r) − 1]. For smaller polydispersity, where the error due to soft-
ening of the rdf is less and we can compute physically meaningful
caging potential by assuming all three terms in the direct corre-
lation function, we have compared our theoretical prediction with
total and approximate direct correlation functions. As discussed in
Appendix B, although the absolute value of the caging potential is
different, the prediction of the correlation of the dynamics and soft-
ness parameters remains the same. Therefore, in this work, we use
the approximate direct correlation function Capprox(r) at the single
particle level to avoid the unphysical results of the caging potential
at higher PDI.

The inverse of the depth of the caging potential is related to
the softness, but they are not the same.20 There are some system
dependent but temperature independent constants that are needed
for the calculation of the absolute value of softness but not its cor-
relation with dynamics.63 In this work, we will seamlessly use the
terms “inverse” of the depth of the caging potential and “softness” of
the caging potential, as they are qualitatively the same.

V. SPECIES DEPENDENCE OF THE CAGING
POTENTIAL

First, we assume the systems to be monodisperse, i.e., M = 1,
and obtain the per-particle depth of the caging potential from the
microscopic version of Eq. (6). As shown in Fig. 2, for all the systems,
with a decrease in temperature, there is a shift of the probability
distribution of βΦr(Δr = 0) to higher values. This implies that, as

expected, the cage structure is more well-defined at lower tempera-
tures and the particles sit at a deeper potential minimum. In Fig. 2,
we also plot the probability distribution of βΦr(Δr = 0) as a func-
tion of M. We find that for all the systems with an increase in M,
the probability distribution of βΦr(Δr = 0) moves to higher values
of βΦr(Δr = 0). This shift is concurrent with the fact that when a
polydisperse system is treated as a monodisperse system, the RDF
shows artificial softening.49 However, when the polydisperse system
is divided into an M number of species, the inter- and intra-species
RDFs become sharper than the RDF obtained assuming a single
species. Therefore, the cage is better defined by the multispecies sys-
tem. This gives rise to an increase in the depth of the minima. This
increase in the depth of the caging potential with an increase in M
is similar to the decrease in the two-body pair entropy obtained in
our earlier study.49 Furthermore, to understand if this shift in the
distribution of the caging potential with M is just an increase in
the depth of the particle level caging potential affecting all particles
equally, in Fig. 3, as a representative plot, we show a scatter plot of
the particle level caging potential obtained for M = 1 and M = 4.
This clearly shows that this shift in the distribution is not just a shift
in the value of the particle level caging potential and affects each par-
ticle differently. As expected, the M dependence is more at a higher
PDI.

VI. SPECIES DEPENDENCE OF THE CORRELATION
OF CAGING POTENTIAL WITH PARTICLE DYNAMICS

In Sec. V, we have shown that the distribution of the local
caging potential varies with M. Suppose this variation was just a shift
in the value of the caging potential of each particle. In that case,
we do not expect the correlation between the caging potential and
the dynamics to be affected by M. However, as shown, that is not
the case. Therefore, in this section, we study the correlation between
the dynamics and the structure obtained via the local caging poten-
tial as a function of M. To understand the correlation between the
dynamics and the structure, we follow the methodology used in ear-
lier works.13,20 We identify fast particles using a well-documented
method20,64,65 also given in Appendix C. After identifying the fast
particles, we correlate them with the local SOP. We calculate the
fraction of particles having a specific value of 1/βΦr that undergo
rearrangement, PR(1/βΦr), and plot it as a function of 1/βΦr at dif-
ferent T and M values. The plots for the system with 15% PDI, where
the effect is maximal, are shown here in Fig. 4. The results are similar
for other systems. We find that PR(1/βΦr) has a dependence on the
SOP that becomes stronger at lower temperatures. At lower temper-
atures, particles with a higher value of softness (sitting in a shallow
caging potential) have a higher probability of moving. Apparently,
the behavior appears to be M independent. Following our earlier
work, we plot the PR(1/βΦr) as a function of temperature for differ-
ent 1/βΦr values. We find that for all the cases, it can be expressed
in an Arrhenius form: PR(1/βΦr) = P0(1/βΦr) exp[ΔE(1/βΦr)/T],
where ΔE is the activation energy. These plots also appear to be sim-
ilar for all M values. It was earlier shown that the temperature at
which these PR(1/βΦr) vs T plots for different softness values inter-
cept marks the onset temperature of glassy dynamics.13,20 The origin
of this observation was explained by the microscopic mean field
theory.8,20 According to the theory, we can correlate softness and
dynamics only when the cage around the particles is well-defined. It
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FIG. 2. Distribution of caging potential. Top panel: Different temperatures for a fixed M = 1. Bottom panel: Different M values. (a1) and (b1): 3% PDI and T = 0.28; (a2) and
(b2): 7% PDI and T = 0.30; (a3) and (b3): 15% PDI and T = 0.35. As expected, the caging potential increases with decreasing T. The caging potential also increases with
increasing M. The temperatures are chosen such that the relaxation times are similar for all the systems.

FIG. 3. Scatter plot between βΦr at M = 1 and M = 4 at different PDIs: (a) 3% PDI at T = 0.28; (b) 7% PDI at T = 0.30; (c) 15% PDI at T = 0.35. The temperatures are
chosen such that the relaxation times are similar for all the systems. It clearly shows that the rank of the structural order parameter of a particle changes with M. The effect
increases with PDI.

is well known in the supercooled liquid literature that only below the
onset temperature, where there is a separation between the short and
long time dynamics, the particles in the short time feel caged by their
neighbors, and this cage becomes longer lived at lower temperatures.
Therefore, the crossing of the plots marks the highest temperature
where this theory is valid, and beyond that, due to the absence of any
well-defined cage, the theoretical formulation breaks down. In addi-
tion, at lower temperatures, where the lifetime of the cage increases,
the structure becomes a better predictor of the dynamics. We extract
the onset predicted by the crossing of the PR(1/βΦr) vs T plots. They
are plotted in Fig. 5. It clearly shows that the Tonset values have a
M dependence. The value of M, where it saturates, increases with

the percentage of polydispersity. The saturation temperature is sim-
ilar to the onset temperature obtained using other methods.49 This
result is similar in spirit to that obtained in our earlier work using
two-body excess entropy.49

VII. ANALYSIS OF DYNAMICS OF SOFT
AND HARD PARTICLES

Since we have established that, on average, the particles with
higher softness have a higher probability of moving, we can expect
that if we compare the dynamics (via the overlap function) of a few
of the hardest and softest particles, then at short times they will
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FIG. 4. Correlation between structure and dynamics as a function of M. Left panel: (a1)–(a3) The fraction of particles that underwent rearrangement PR(1/βΦr) vs the depth
of the caging potential, 1/βΦr at different T [0.4 (violet circle) - 0.2 (black star)]. Right panel: (b1)–(b3) PR(1/βΦr) as a function of 1/T at different values of the inverse of
the caging potential. The results are for a 15% PDI.

FIG. 5. (a) Tonset obtained from the crossing of PR(1/βΦr) vs 1/T plots (Fig. 4)
as a function of M. The Tonset initially decreases with M before saturating at higher
values of M. With an increase in polydispersity, the saturation increases to higher
M values.

show a large difference, and eventually due to the evolution of the
cage and its softness around the particle, they will decay at the same

time.20 The dynamics of particles via the overlap function [q(t)] can
be calculated as

q(t) = 1
N

N∑
i=1

ω(∣ri(t) − ri(0)∣), (9)

where function ω(x) = 1 when 0 ≤ x ≤ a and ω(x) = 0 otherwise.
The cutoff of the overlap parameter a = 0.5 is chosen such that par-
ticle positions separated due to small amplitude vibrational motion
are treated as the same.66 Here, we restrict our study to one tem-
perature for each system. For the 3% PDI system, we choose
T = 0.28, the lowest temperature at which we can run the system
before it undergoes crystallization. For the other two systems, we
study them at temperatures where the relaxation times are similar to
those of the 3% PDI system at T = 0.28. We pick a few (around 2)
of the hardest and softest particles, and the softness parameter is
calculated for the same system at different values of M (Fig. 6).
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FIG. 6. Dynamics of a few softest (high 1/βΦr value) (dotted line) and few hardest (low 1/βΦr value) (solid line) particles at different M values. (a) 3% PDI (T = 0.28), (b)
7% PDI (T = 0.30), and (c) 15% PDI (T = 0.35). T is chosen such that the relaxation times of each system are in the same range. The dark lines are for M = 1, and with an
increase in M, the plots shift.

We find that the difference in the overlap of the few hardest and
softest particles changes with M. However, beyond a certain value of
M, the overlap functions of the hardest and the softest particles do
not change with M. This suggests that beyond this M value, the iden-
tification of the hardest and softest particles becomes independent of
M. We consider this the optimum value of the species, M0, needed
to describe the system. For 3% PDI, M0 = 3, for 7% PDI, M0 = 4, and
for 15% PDI, M0 = 6. Note that the Tonset values for different PDIs
(Fig. 5) also show saturation at similar values of M. Therefore, the
results are consistent. The results obtained also agree with our pre-
vious study, where we showed that parameters that need structural
input are better determined when the system is described in terms
of multiple species,49 and the optimum number of species increases
with polydispersity. Therefore, we can say that the structural order
parameter of a system should be calculated by describing the system

in terms of M0 species. This structural order parameter will provide
a true description of the local caging potential and will correlate with
the dynamics.

However, although the structure of a system is not well
described for M = 1, the difference in dynamics between the hard-
est and softest particles is best determined when we treat the system
as monodisperse. This is a contradictory result, and it appears that
in these systems, apart from the structure, there can be other para-
meters that drive the dynamic heterogeneity. To understand the
result, in Fig. 7, we plot the distribution of the particle diameters
of the hardest and the softest particles for different values of M for
all three systems. We also plot the particle size distribution of the
whole system, P(σ). When M = 1, we find that the distribution of
the hardest and softest particles is skewed toward the bigger and
smaller-sized particles, respectively. This effect is more prominent

FIG. 7. Particle size distribution, D(σ), of the hardest and softest particles as a function of M (as defined in Fig. 6). Top panel: (a1)–(a3) Size distribution of all hard particles.
Bottom panel: (b1)–(b3) Size distribution of all soft particles. (a1) and (b1) are for 3% PDI, (a2) and (b2) are for 7% PDI, and (a3) and (b3) are for 15% PDI. For comparison,
we also plot the size distribution of all the particles, P(σ).
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at higher polydispersity. With an increase in M, the distribution of
the hardest particles moves toward P(σ). This clearly shows that as
we divide particles into species, the cage around smaller particles,
which, for M = 1, is loosely defined, gets better defined at higher M.
This leads to an increase in the depth of the caging potential and,
thus, a decrease in the softness of the potential. The distribution
of the diameter of the softer particles also shows some change with
M, but differently from the hard particles, it always remains skewed
toward smaller particles, which is similar to that observed for gran-
ular systems.67 This implies that the cage around the bigger particles
is mostly well-defined, and this effect is again more pronounced at
higher polydispersity.

Notice that the shift in the size distribution of the hard-
est/softest particles (Fig. 7) with M is also accompanied by a shift in
the overlap function of the hardest/softest particles with M (Fig. 6),
suggesting that these shifts are correlated. In both cases (particle
size distribution and overlap), the shift is more for the harder par-
ticles and also increases with polydispersity. This implies that size
also plays a role in the dynamics. In Fig. 8, we plot the dynamics of
the two biggest and two smallest particles and compare them with
the two hardest and softest particles for M = 1. We find that for
the 3% PDI, the difference in dynamics of the biggest and small-
est particles is less than that of the softest and hardest particles. This
implies that the heterogeneity in the dynamics is primarily deter-
mined by the local structural heterogeneity. With an increase in
polydispersity, the scenario reverses. For the 15% PDI system, the
difference in dynamics is better described by the size than the local
structural order parameter. We know from our earlier study20 that

FIG. 8. Overlap function of 2 hardest particles (red circle), 2 softest particles (black
triangle), 2 biggest particles in size (blue diamond), and 2 smallest particles in size
(green square) at different PDIs. The structural order parameter is calculated for
M = 1. (a) 3% PDI and (b) 15% PDI.

FIG. 9. Overlap function for 15% PDI at T = 0.35 (closed symbol) and T = 0.22
(open symbol). Color codes are similar, like in Fig. 8

at lower temperatures, the structure becomes a better predictor of
the dynamics. To understand the role of temperature, we choose the
15% PDI system, where size appears to be dominant, and plot the
different overlap functions at two different temperatures (Fig. 9). We
find that at lower temperatures, although the structure becomes a
better predictor of the dynamics, the size still plays a dominant role
in determining the dynamics.

VIII. COMPARATIVE STUDY OF THE ROLE
OF PARTICLE SIZE AND LOCAL STRUCTURE
ON THE DYNAMICS

The above-mentioned analysis suggests that for polydisperse
systems, both size and local structure can play a role in the dynam-
ics. To quantify the dependence of the dynamics on the structure
and particle size, we perform isoconfigurational runs (IC). IC is
a powerful technique introduced by Harrowell and co-workers to
investigate the role of structure in the dynamical heterogeneity of
the particles.12,68–70 Among other factors, a particle’s displacement
can depend on its structure and its initial momenta. This tech-
nique was proposed to remove the uninteresting variation in the
particle displacements arising from the choice of initial momenta
and extract the role of the initial configuration on the dynamics
and its heterogeneity. For each system, five different isoconfigu-
rational runs are carried out for 4000 particles. To ensure that
all configurations are different, the configurations are chosen such
that the two sets are greater than 100τα apart. We run 100 tra-
jectories for each configuration with different starting velocities
randomly assigned from the Maxwell–Boltzmann distribution for
the corresponding temperatures. Mobility, μ is the average dis-
placement of each particle over these 100 runs and is calculated as

μ j(t) = 1
NIC
∑NIC

i=1

√(r j
i (t) − r j

i (0))2. Here, μ j(t) is the mobility of
the jth particle at time t, and NIC is the number of trajectories.
We calculate the Spearman rank correlation (CR) between differ-
ent parameters as a function of time (scaled by the α relaxation time
τα). We plot CR(μ, 1/βΦr) against time for M = 1 and M =M0. We
find that CR(μ, 1/βΦr) decreases with an increase in M. This result
is similar in spirit to that observed for the difference in the overlap
functions of the hardest and softest particles (Fig. 6). In Fig. 10, we
also plot CR(μ, σ). We find that for all systems, it grows at longer
times, and for systems with higher polydispersity, the correlation
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FIG. 10. Spearman rank correlation CR between mobility and different order parameters at different PDIs: (a) 3% PDI; (b) 7% PDI; and (c) 15% PDI. Color code: CR(μ, 1/βΦr)
M = 1 (black star), M = M0 (red square), CR(μ, Ψ) (green triangle), and CR(μ, σ) (violet circle). M0 = 3, 4, and 6 for 3%, 7%, and 15% PDI, respectively.

is large, even at shorter times. This supports our earlier conclusion
that at higher PDI, the size of the particles plays a greater role in
describing the dynamic heterogeneity.

Note that apart from the softness parameter described in this
work, other parameters are often used to describe the local static
property of a supercooled liquid.16 We check if size plays any role
in an order parameter that does not include the radial distribu-
tion function. Earlier studies have shown that Vibrality, the local
Debye–Waller Factor,12,14,16 is a good predictor of dynamics. The
analysis is performed on the inherent structure. The Fast Inertial
Relaxation Engine (FIRE) algorithm is employed to obtain the inher-
ent structures (IS).71 Vibrality is written as Ψ(i) = ∑3N−3

k=1
∣vk

i ∣2
ωk

2 , where
the sum runs over the entire set of eigenmodes with frequency ωk.
vk

i is a vector that has the three components of the eigenvectorÐ→vk associated with the ith particle. Ψ (i) is the mean square vibra-
tional amplitude of the ith particle, assuming the vibrational energy
is equally distributed to all modes. In Fig. 10, we plot CR(μ, Ψ)
and find that it increases with polydispersity, which is similar to
CR(μ, σ). It appears that CR(μ, σ) affects CR(μ, Ψ) more compared
to CR(μ, 1/βΦr).

To quantify the above-mentioned observations, we now use
multiple linear regressions to model mobility in terms of Φ and
σ. To evaluate the predictive power of the model, we use the stan-
dard 5-fold cross-validation approach, where the data are randomly
split into five equal sets, and a model built on four parts is used
to predict mobility on the held-out test set. This is performed five
times, with each data point tested exactly once. The mean relative

error, MRE = 1
N∑N

j=1
∣μ j

p−μ j
t ∣

μ j
t

, and the root mean square deviation,

RMSD = √ 1
N∑N

j=1 (μ j
p − μ j

t)2, are shown along with the error bar

computed from the five test sets. Here, μ j
p and μ j

t are the pre-
dicted mobility and true mobility of the jth particle, respectively.
The mobility used here is calculated at t = 5, but the results are
independent of t.

We compare results with simple linear regression, also evalu-
ated in the same manner but using only one of the parameters, i.e.,
either Φ or σ. From the analysis of the errors plotted in Fig. 11, we
find that for lower PDI, the caging potential is a good parameter to
describe mobility. However, with an increase in PDI, size becomes
the dominant variable in prediction. We also do a similar analysis

FIG. 11. Error between predicted and true values of mobility μ. (a) Mean

relative error, MRE = 1
N∑N

j=1
∣μ j

p−μ j
t ∣

μ j
t

, and (b) root mean square deviation,

RMSD = √ 1
N∑N

j=1 (μ j
p − μ j

t)2. Color code: Independent variables are Φr and
σ (blue, dashed–dotted line), independent variable is Φr (black, solid line), inde-
pendent variable is σ (green, dashed line), independent variables are Ψ and σ
(red, dotted line), and independent variable is Ψ (indigo, dashed-double dot line).

using Ψ and σ and find that between this pair, size always plays a
dominant role for all systems. For smaller PDIs where size does not
play a strong role, it appears that among the three variables, SOP is
the best predictor of the dynamics.

Note that in the above-mentioned analysis, although we have
treated Φ and Ψ as independent variables, both have some depen-
dence on size. The dependence of Φ on size can be seen in Fig. 7,
where we find that soft particles are primarily small and hard par-
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TABLE I. Spearman rank correlation, CR between particle size, σ and local caging
potential, βΦr when the system is assumed to be monodisperse, M = 1, and when
the system is described in terms of the optimum number of species, Mo. We also
report the Spearman correlation between σ and Vibrality, Ψ. The systems are poly-
disperse with a polydispersity index of 3% at T = 0.28, 7% at T = 0.30, and 15% at
T = 0.35.

PDI (%) CR(σ, βΦr)M = 1 CR(σ, βΦr)M =M0 CR(σ, Ψ)
3 0.139 0.082 −0.111
7 0.293 0.129 −0.253
15 0.464 0.195 −0.516

ticles are primarily big in size. The figure also suggests that this
dependence increases with PDI and decreases as we increase M.
Note that in the figure, we have taken only the hardest and softest
particles. To quantify this observation for all particles, in Table I, we
report the Spearman rank correlations between the different para-
meters, and the correlation values do support the inference drawn
from Fig. 7. For all the systems, the correlation between the local
structure and size is more for M = 1. Now since dynamics is also cor-
related with the size of the particles, the local structure appears to be
better correlated with dynamics for M = 1. This effect increases with
polydispersity. We also find that at higher polydispersity, compared
to Φ, Ψ is more correlated with σ. Therefore, at higher polydispersity
and longer times, the Vibrality appears to be a better predictor of the
dynamics, as seen in Fig. 10. Therefore, for systems with a large PDI,
any order parameter that is correlated with the size of the particles
will appear to be a good predictor of the dynamics.

IX. CONCLUSION

In a recent study, we proposed a new structural order parameter
that strongly correlates with dynamics.20 This SOP is the inverse of
the depth of the local mean-field caging potential, described in terms
of the local liquid structure. We further showed that this correlation
between the SOP and dynamics is valid below the onset tempera-
ture of the glassy dynamics. Therefore, the validity of the theory can
be used to determine the onset of glassy dynamics. Since polydis-
perse systems are good model systems to study supercooled liquid
dynamics, in this work, we study the structural order parameter
and its correlation with the dynamics of a few polydisperse systems.
Note that this SOP needs information on the local structure. It is
well known that describing the structure of a polydisperse system
is tricky.49,52 Treating the system as a monodisperse system leads to
artificial softening of the structure. In an earlier study, we had shown
that for a polydisperse system, the correct structural description is
obtained only when the system is expressed in terms of multiple
species, M.49 Here, we first show that our earlier method also leads
to an increase in mutual information, thus validating the method
further.

We find that the distribution of the particle level SOP changes
with M. We also find that this change does not affect all particles
similarly. Therefore, if we rank particles in terms of the value of the
order parameter, then the rank order changes and finally appears to
saturate beyond a certain M value. We also find that the detection

of the onset temperature from the correlation of the SOP and the
dynamics depends on M. The onset temperature first changes with
M, and at higher values of M, it saturates. The saturation of the onset
temperature and the rank of the particle order parameter allow us
to estimate the optimum number of species needed to describe the
system. Like in our earlier study,49 the value of M0 increases with
polydispersity.

However, the most surprising result is that although the struc-
ture is not well defined for M = 1, the correlation between the
structure and dynamics is at its maximum when the system is
assumed to be monodisperse. Furthermore, analysis using multi-
ple linear regression shows that although at low polydispersity, the
local SOP determines the dynamics, at higher polydispersity, the
size of the particle plays a dominant role in the dynamics. We also
find that for M = 1, the bigger particles are primarily well-caged,
and the smaller particles appear loosely caged. Therefore, there is
a high correlation between the local SOP and the size of the parti-
cles. However, with an increase in M and a better description of the
structure, the cage is better defined, especially for smaller particles.
This reduces the correlation between the SOP and the particle size.
Since size plays a dominant role in determining the dynamics, this
reduction in the correlation reduces the apparent predictive power
of the SOP at higher M values. To test if order parameter-size corre-
lation is present for other order parameters where the local structural
information is not needed, we calculate the Vibrality, which is the
local Debye–Waller factor, known to be a good predictor of the
dynamics.14,16 We first show that Vibrality also correlates with size,
and this correlation increases sharply with an increase in polydis-
persity. At lower polydispersity, compared to Vibrality, the SOP is a
better predictor of the dynamics. However, at higher polydispersity,
the Vibrality performs marginally better. This increase in the pre-
dictive power of the Vibrality is due to its stronger coupling with the
size of the particle.

Therefore, our study suggests that for a polydisperse system
with a high PDI, any order parameter with a strong coupling with
the particle size will appear to be a good predictor of the dynam-
ics. However, this may not reflect the true predictive power of the
order parameter. Therefore, for a polydisperse system with reason-
ably high polydispersity, the correlation between dynamics and any
static order parameter must be interpreted cautiously, as size can
play a role in this correlation and the results may not be generic.

In this paper, we have studied the structure-dynamics
correlation at a single particle level, which is an acceptable
practice.12,13,16,18,68 However, the correlation between structure and
dynamics is weak when we use single particle information.15,19,69,70,72

On the other hand, the correlation improves when we consider
the collective dynamical property over a certain region69,70,73 or
correlate the coarse grained structural property with longtime
dynamics.15,17,19,72 In a polydisperse system, this coarse graining of
the SOP over a static length reduces the coupling between the order
parameter and particle size. It can thus be a useful way to study the
real correlation between the order parameter and the dynamics.
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its high temperature value, thus allowing us to predict the onset.
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APPENDIX A: DYNAMICS AND EXCESS ENTROPY

To elucidate the temperature range of the system, we first
obtain the onset temperature of the glassy dynamics for the systems

by analyzing the temperature dependence of their inherent struc-
tures (IS)61 (Fig. 12). The IS is obtained using the FIRE algorithm.71

For PDI 3%, 7%, and 15%, the onset temperatures are 0.64, 0.43,
and 0.37, respectively. We calculate the relaxation time τα by exam-
ining the overlap function [see Eq. (9)] decay to 1/e = 0.367. The
relaxation time vs temperature below the onset temperature is plot-
ted in Fig. 13. The temperature dependence of the relaxation time
is fitted to the well known Vogel–Fulcher–Tammann (VFT) equa-
tion,74 and the resulting VFT temperatures for the different systems
are as follows: 3% - 0.073, 7% - 0.117, and 15% - 0.154. However, as
mentioned in the main text, the system with 3% PDI crystallizes at a
reasonably high temperature (below T = 0.28) compared to its VFT
temperature.

Excess entropy, Sex, is a loss of entropy due to the interaction
between particles. Excess entropy is calculated via the temperature

FIG. 13. The temperature dependence of the α relaxation time at different PDIs.
The dashed lines are the VFT fits.
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FIG. 14. Temperature dependence of S2 changes with M, and this also changes
the Tcross values (a) 7% PDI and (b) 15% PDI.

integration (TI) method.56,75 As discussed in the main text pair
excess entropy, S2 takes into account the excess entropy due to the
two-body correlation. S2 and Sex cross each other at a temperature
Tcross, which is similar to the onset temperature.60 In Fig. 14, we
plot the temperature dependence of Sex and S2 for 7% and 15% PDI,
where S2 is calculated at different values of M. Both S2 and Tcross
change with M. Initially, they vary strongly, and then the variation is
weaker with M.

APPENDIX B: CALCULATION OF LOCAL CAGING
POTENTIAL USING Cuv AND Cuv

approx

The potential energy depth calculation using this direct cor-
relation function is given in Eq. (6). The expression of Cuv(r)

FIG. 15. Inverse power law potential, U, and radial distribution function, g(r), for
different PDIs at M = 1.

according to the Hypernetted chain (HNC) approximation5 is
given in Eq. (7). At higher PDI, when the system is described by
one species, the rdf shows a large softening and is non-zero at
very small values of “r” compared to the interaction potential (as
shown in Fig. 15). In experimental systems where the interaction
potential is not known, it is often assumed that the potential of
mean force is the same as the interaction potential, i.e., −βUuv(r)= ln[guv(r)]. Under this assumption, the expression of the direct
correlation function, Capprox

uv (r) ≈ [guv(r) − 1]. Here, we present an
analysis that shows that using C(r) and Capprox(r) primarily shifts
the distribution of the potential energy depth but does not affect
the correlation between the structural order parameter and the
dynamics. In Fig. 16(a), we show a scatter plot of βΦ(r) calcu-
lated using Cuv(r) vs that using Cuv

approx and find that they are
strongly correlated. Averaged over 1000 frames, the Spearman rank
correlation between (Cuv , Capprox

uv ) = 0.948 and the Pearson cor-
relation is 0.955. This confirms that the use of the approximate
direct correlation function primarily shifts the distribution of βΦ(r)
as shown in Fig. 16(b). We also plot the distribution of the soft-
ness for the fast particles, and it shows that in both cases, more
than 80% of the fast particles have a softness value higher than
the average softness. In Fig. 16(c), we plot the onset temperature
obtained when βΦ(r) is calculated using C(r) and Capprox(r) (details
of onset temperature calculation are given in Sec. VI), and inter-
estingly, both results are identical. The dynamics of a of the few
hardest and a few of the softest particles are plotted in Fig. 16(d).
It clearly shows that using an approximate direct correlation func-
tion does not reduce the predictive power of the structural order
parameter.

APPENDIX C: IDENTIFICATION OF FAST PARTICLES

There are many ways of identifying fast particles.11,64,65,76,77

Here, we use the method proposed by Candelier et al.64,65 In that
method, for each particle in a certain time window W = [t1, t2],
they calculated the quantity phop(i, j). When the average position
of a particle changes rapidly, a cage jump happens. Expression
for phop(i, j) is

phop(i, t) = √⟨(ri − ⟨ri⟩U)2⟩
V
⟨(ri − ⟨ri⟩V)2⟩

U
, (10)

where Δt timescale over which the particles can rearrange,
U = [t − Δt/2, t], and V = [t, t + Δt/2]. For a time window
W, a small value of phop means the particle is within the same
cage, and a large phop means that within that time window, the
particle has moved between two distinct cages. With the help of
phop, fast particles are defined in this work. If phop is greater than
pc, then we identify that as a fast particle.18,20 pc is the value
of the mean square displacement at time tmax, where tmax is the
time at which the non-Gaussian parameter is at its maximum.
Although we are working with a polydisperse system, we have
kept the pc value fixed for all particles. For more details, refer to
Ref. 20.
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FIG. 16. Different parameters for justification of 1/βΦr can be calculated from Cuv(r) and Capprox
uv(r) both. This analysis is performed at 3% PDI. (a) Single frame scatter

plot from Cuv(r) and Capprox
uv(r) at T =0.28. (b) Distribution of the inverse of βΦr of all particles P(1/βΦr) in the system (solid line with filled symbol) and of those which

are about to rearrange (dotted line with open symbol) at T = 0.28, from C(r) (black) and Capprox(r) (magenta). (c) Onset temperature obtained from C(r) (square) and
Capprox(r) (circle). (d) Overlap function of few particles that has the highest {solid line [C(r)] or closed symbol [Capprox(r)]} and the lowest value of βΦ(r) {dotted line
[C(r)] or open symbol [Capprox(r)]} at T = 0.28.
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Effect of the presence of pinned particles on the structural parameters of a
liquid and correlation between structure and dynamics at the local level
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Pinning particles at the equilibrium configuration of the liquid is expected not to affect the structure and any
property that depends on the structure while slowing down the dynamics. This leads to a breakdown of the
structure dynamics correlation. Here, we calculate two structural quantities, the pair excess entropy, S2, and
the mean field caging potential, the inverse of which is our structural order parameter (SOP). We show that
when the pinned particles are treated the same way as the mobile particles, both S2 and SOP of the mobile
particles remain the same as that of the unpinned system, and the structure dynamics correlation decreases
with an increase in pinning density, “c”. However, when we treat the pinned particles as a different species,
even if we consider that the structure does not change, the expression of S2 and SOP changes. The microscopic
expressions show that interaction between a pinned and mobile particle affects S2 and SOP more than the
interaction between two mobile particles. We show that a similar effect is also present in the calculation of
the excess entropy and the primary reason for the well-known vanishing of the configurational entropy at
high temperatures. We further show that contrary to common belief, the pinning process does change the
structure. When these two effects are considered, both S2 and SOP decrease with an increase in “c”, and the
correlation between the structural parameters and the dynamics continues even for higher values of “c”.

I. INTRODUCTION

When a glass forming liquid is cooled fast enough,
it avoids the crystallization process, and the viscos-
ity/relaxation timescale shows a dramatic increase1,2.
There have been debates about the origin of this in-
crease in viscosity/relaxation time. There are theories
suggesting that the slowing down of the dynamics is
purely kinetic in nature3. However, phenomenological
Adam-Gibbs (AG) theory predicts a relation between
the relaxation time, τ , and configurational entropy, Sc,
τ = τ0 exp

A
TSc

where A is a system dependent constant
and τo is the high temperature relaxation time. As pre-
dicted by Kauzman many years ago, Sc vanishes at the
Kauzmann temperature, TK , which is a finite tempera-
ture below the glass transition temperature4. For many
systems, the AG relation is found to be valid, and the pre-
dicted temperature where the dynamics diverges is found
to be the same as TK

5–13. The random first-order tran-
sition theory (RFOT), suggests that the slowing down of
the dynamics is related to a growing length scale in the
system14–16 which in turn is related to the configurational
entropy, Sc of the system thus suggesting a generalized
AG relationship17,18. However, the ideal glass transition
temperature TK can be obtained only via extrapolating
the temperature dependence of Sc to low temperatures.
In order to access the ideal glass transition tempera-

ture, TK , a novel model system was proposed where some
fraction of particles in their equilibrium liquid configura-
tion are pinned19–23. It was predicted19 and also shown in
numerical simulations20,21 that as the fraction of pinned

a)Electronic mail: mb.sarika@ncl.res.in

particles increases, the TK increases, and eventually, at
high enough pinning, the ideal glass transition moves to
high enough temperature where the system can be equi-
librated. Interestingly, the pinned system can also be
experimentally realized by laser pinning some particles24

or via soft pinning25.

Studies showed that for these pinned systems, although
the configurational entropy vanishes at high tempera-
tures, the dynamics continues and there is a breakdown
of the AG relationship20,22,26. It was later shown that in
the calculation of the vibrational entropy, when anahar-
monic contributions are considered, the configurational
entropy remains positive27. However, even with this an-
harmonic contribution, the AG relationship was shown
to break down22. It was also shown that the RFOT the-
ory, which leads to a generalized AG relationship, is valid
if it is assumed that the configurational entropy of the
pinned system is related to the unpinned system by a
multiplicative factor where the factor decreases with in-
creasing pinning.21,28. All these studies showed that the
correlation between dynamics and entropy of the pinned
system differs from that of the unpinned systems.

The correlation between local pair excess entropy,
which depends on the structure and the local dynam-
ics of the pinned system, was also studied24. It was
shown that since the pinning process is expected not to
affect the structure, the local pair excess entropy remains
the same as the unpinned system, whereas the dynamics
slows down due to pinning. Thus, there is a decorrela-
tion between pair excess entropy and dynamics even at
the microscopic level.

From the above discussion, it appears that both at
macroscopic and microscopic levels, the dynamics and
the entropy are not correlated. However, at the macro-
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scopic level, pinning decreases the configurational en-
tropy more than slowing down the dynamics20, whereas,
at the microscopic level, the pinning process does not
alter the pair excess entropy but slows down the dynam-
ics. Thus, the decorrelation between entropy and dynam-
ics observed at the macroscopic and microscopic levels is
just the opposite. Note that for the unpinned system,
the macroscopic pair excess entropy, S2 contributes to
80% of the excess entropy29. The configurational entropy
Sc = Sid+Sex−Svib has a contribution from three terms:
the ideal gas entropy Sid, the excess entropy, Sex and the
vibrational entropy, Svib. Since pair excess entropy does
not change due to pinning, we can expect the excess en-
tropy, which is usually obtained using thermodynamic
integration (TI) method30,31 also not to change. In that
case, we may expect that the other terms are responsible
for the observed decrease in the configurational entropy
of the pinned systems.

In this paper, we first revisit the calculation of the
configurational entropy. We show that the decrease in
the excess entropy is primarily responsible for the de-
crease in the configurational entropy. We further show
that in the calculation of the excess entropy, the pinned
particles should be treated as a different species, and the
analytical expression shows that compared to the inter-
action with another mobile particle, the interaction with
a pinned particle contributes twice in decreasing the ex-
cess entropy of a mobile particle. We next show that
when we use a similar methodology in the calculation of
the pair excess entropy, both at macroscopic and micro-
scopic levels, it decreases with pinning. The expression
of the pair excess entropy shows that this decrease again
comes from the stronger interaction between the pinned
and mobile particles.

We then extend the recently developed theoretical for-
mulation, where we describe that each particle in a mean
field caging potential for the pinned system. Note that,
as shown before, this mean field caging potential is ob-
tained from the structure of the liquid32–34. We find that
even the mean field potential, both at microscopic and
macroscopic levels, shows that the pinned particles have
a stronger interaction with the mobile particles, thus in-
creasing the depth of the caging potential and confining
the mobile particles. We refer to the inverse depth of the
caging potential as the structural order parameter(SOP).
Interestingly, a similar confinement effect of the pinned
particles was observed in the elastically collective nonlin-
ear equation (ECNLE) theory35,36. In ECNLE theory,
the dynamics of the system was obtained using Langevin
dynamics on the dynamic free energy surface. The stud-
ies showed that with pinning, the depth of the free energy
barrier increases, and the particles are more confined. In
the ECNLE theory, while treating the system, the Au-
thors considered that the pinned particles do not change
the structure, but the pinned particles are considered to
be a different species. Thus, it appears that in any for-
mulation to obtain the stronger confinement effect by the
pinned particles, the pinned particles should be treated

as a different species.
We next show that contrary to the common belief, the

pinning process does change the structure, which can be
observed only when the partial radial distribution func-
tions are calculated, assuming the pinned particles are
a different species. Our study reveals that with an in-
crease in pinning, it is a combined effect of the change
in structure and the stronger contribution of pinned par-
ticles in decreasing the potential energy of the mobile
partciles that reduces both S2 and SOP, the latter effect
playing a more dominant role. Finally, we show that the
correlation between the local structural parameters (S2

and SOP) and local dynamics increases when the above
mentioned two effects are taken into consideration in the
calculation of S2 and SOP.
The rest of the paper is organized as follows: section

II contains the simulation details. The analysis at the
macroscopic level is presented in section III with excess
entropy, Sex, in section IIIA, pair excess entropy, S2, in
section III B, the depth of local caging potential, βΦr, in
section III C and the numerical results in section III D.
The analysis at the microscopic level is presented in sec-
tion IV with microscopic S2 in section IVA, microscopic
βΦr in section IVB and numerical results in section IVC.
In section V, we analyze the structure dynamics corre-
lation at the microscopic level. The paper ends with a
brief conclusion in section VI. This paper contains six
Appendix sections at the end.

II. SIMULATION DETAILS

In this study, we work with the well-known Kob-
Andersen37 80:20 binary Lenard-Jones mixture. The
shifted and truncated Lennard-Jones interaction poten-
tial in the KA model is given by,

u(rαγ) =

{
u(LJ)rαγ ;σαγ , ǫαγ)− u(LJ)(r

(c)
αγ ;σαγ , ǫαγ), r ≤ r

(c)
αγ

0, r > r
(c)
αγ

(1)

where u(LJ)(rαγ ;σαγ , ǫαγ) = 4ǫαγ [(
σαγ

rαγ
)12 − (

σαγ

rαγ
)6] and

r
(c)
αγ = 2.5σαγ . Where α, γ ǫ {A,B} and εAA = 1.0,
εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB = 0.80, σBB

= 0.88. Length, energy, and time scales are measured

in units of σAA, εAA and
√

σ2
AA

εAA
, respectively. We use

three-dimensional, Lammps-based molecular dynamics
simulation38. The Nosé-Hoover thermostat is used to
simulate NVT molecular dynamics in a cubic box with
N = 4000, ρ = (N/V ) = 1.2, integration time step ∆t
= 0.005. The system is equilibrated for a period longer
than 100 τα, where τα is the system’s relaxation time.
The following pinning procedure is applied to create

the pinned system. The pinned particles are chosen ran-
domly from an equilibrium configuration of the KA sys-
tem at the target temperature21,39. In this process, we
make sure that the ratio of mobile A and mobile B parti-
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cles in the pin sub-population is the same as the regular
KA system (80:20). Note that we ensure that two pin
particles are not close to each other. The simulations are
performed assuming that there is no interaction between
two pinned particles (uPP = 0). After pinning, we per-
form NVT molecular dynamics simulation with an inte-
gration time step ∆t = 0.005. We equilibrate the system
for t = 100. For this work, we generate three different
pinning concentrations “c”, i.e., 0.05, 0.10, and 0.15.
In this work, to characterize the dynamics, we consider

the self part of the overlap function, q(t), defined as;

q(t) =
1

N

N∑

i=1

ω(|ri(t)− ri(0)|) (2)

where function ω(x) = 1 when 0 ≤ x ≤ a and ω(x) = 0
otherwise. The overlap parameter cutoff (a) = 0.3 is
taken such that particle positions separated due to small
amplitude vibrational motion are treated as the same40.
We calculate the α relaxation time τα by examining the
time where the overlap function decays to 1/e = 0.367.

III. ENTROPY AND MEAN FIELD CAGING
POTENTIAL AT MACROSCOPIC LEVEL

A. Macroscopic excess entropy

The excess entropy of a system is the loss of entropy
due to the interaction between particles. The excess en-
tropy of pinned systems has been calculated before, and
it was also shown that compared to the unpinned system,
the configurational entropy of the system disappears at
a higher temperature20,22. As discussed in the Introduc-
tion, this disappearance of the configurational entropy at
a temperature where the dynamics continues has been a
topic of intense research20–22,26,41. The configurational
entropy, Sc = Sid + Sex − Svib is obtained from the ideal
gas entropy, Sid, excess entropy, Sex and the vibrational
entropy, Svib of the system. All these three terms change
due to pinning. Here, we first revisit the configurational
entropy calculation and find out which terms are primar-
ily responsible for the vanishing of the configurational en-
tropy of the pinned system at a higher temperature19,20.
As shown in Appendix II we find that as we increase the
pinning concentration, the per particle ideal gas entropy
increases. However, the per particle excess entropy and
per particle vibrational entropy decrease. The decrease
in the excess entropy appears to be stronger than the vi-
brational entropy. We make a comparative analysis of the
excess entropy of the pinned and the unpinned systems
to understand what leads to this substantial decrease in
the excess entropy.
The excess entropy per particle level is expressed

as30,31;

Sex(β
′) = β′〈U

〉
−
∫ β′

0

dβ
〈
U
〉

(3)

where
〈
U
〉
is per partial potential energy.

In the case of a regular binary system, the per par-
ticle potential energy in terms of the radial distribution
function, g(r), can be expressed as42:

〈
UB

〉
= 2πρ

∫ ∞

0

2∑

i=1

2∑

j=1

Ni

N

Nj

N
uij(r)gij(r)r

2dr

= 2πρ

∫ ∞

0

2∑

i=1

2∑

j=1

χiχjuij(r)gij(r)r
2dr

(4)

where, χi =
Ni

N is the fraction of particles in type i. N is
the total number of particles in the system.

Note that when we pin particles in a binary system,
we actually create a quaternary system of two types of
mobile particles and two types of pinned particles. We
refer to the first type of mobile particles as species 1, the
second type of mobile particles as species 2, the first type
of pinned particles as species 3, and the second type of
pinned particles as species 4. The potential energy per
particle for a regular quaternary system can be expressed
as follows:

〈
UQ

〉
= 2πρ

∫ ∞

0

4∑

i=1

4∑

j=1

N
′
i

N

N
′
j

N
uij(r)gij(r)r

2dr

= 2πρ

∫ ∞

0

4∑

i=1

4∑

j=1

χ
′
iχ

′
juij(r)gij(r)r

2dr

(5)

Now if we assume that a fraction, c of particles are
pinned then N

′
1 = (1 − c)N1, N

′
2 = (1 − c)N2, N

′
3 =

cN1, N
′
4 = cN2, χ

′
i =

N
′
i

N . The number of mobile par-
ticles can be written as M = (1 − c)N . In our model
system, the pinned particles do not interact with each
other20; thus, uPP = u33 = u34 = u43 = u44 = 0. We
also know that the interaction between pinned and mo-
bile particles is symmetric, for example, u13 = u31. These
conditions modify the quaternary expression and reduce
the first summation in Eq. 5 only over types 1 and 2.
Moreover, for a system with pinned particles, the excess
entropy, SM

ex , is calculated only for the mobile particles,
and the total potential energy is divided only between
the M mobile particles. This further modifies the qua-
ternary expression (Eq. 5), and the potential energy at
per mobile particle level for the pinned system, which
we now also refer to as the modified quaternary system,〈
UM

〉
= N

M ×
〈
UQ(uPP = 0)

〉
can be written as;
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〈
UM

〉
= 2πρ

∫ ∞

0

r2dr

2∑

i=1

N
′
i

M

[ 2∑

j=1

N
′
j

N
uij(r)gij(r)

+ 2×
4∑

j=3

N
′
j

N
uij(r)gij(r)

]

= 2πρ

∫ ∞

0

r2dr

2∑

i=1

(1− c)Ni

(1− c)N

[ 2∑

j=1

N
′
j

N
uij(r)gij(r)

+ 2×
4∑

j=3

N
′
j

N
uij(r)gij(r)

]

= 2πρ

∫ ∞

0

r2dr
2∑

i=1

χi

[ 2∑

j=1

χ
′
juij(r)gij(r)

+ 2×
4∑

j=3

χ
′
juij(r)gij(r)

]

(6)
The above expression of the potential energy, when re-
placed in Eq. 3, provides us with the excess entropy of
the mobile particles in the pinned system, SM

ex(β
′). The

first and second terms in Eq. 6 describe the potential
energy of a mobile particle due to the interaction with
other mobile particles and pinned particles, respectively.
The expression of the first and second term are identi-
cal except for the fact that the 2nd term has a factor
of 2. This implies that compared to a mobile particle,
a pinned particle has a stronger effect in decreasing the
potential energy of a mobile particle. In Appendix II, we
show that if we neglect this stronger effect of the pinned
particles on the mobile particle i.e. remove the factor
2 in the second term of < UM > (Eq. 6) then the ex-
cess entropy shows a marginal change and the per parti-
cle configurational entropy increases with an increase in
pinning density. This is because, with the increase in pin-
ning density, the increase in the ideal gas entropy is more
than the decrease in the vibrational entropy. This result
is not physical, but it clearly shows that the vanishing
of the configurational entropy at higher temperatures is
due to the stronger effect of the pinned particles in con-
fining the mobile particles and thus decreasing the excess
entropy. We will show in section III B and III C that this
effect of the pinned particles plays an important role in
the two body excess entropy and the mean field caging
potential.

B. Macroscopic pair excess entropy

The excess entropy, Sex can be written in terms
of an infinite series via the Kirkwood factorization
method43,44,

Sex = S2 + S3 + S4....

= S2 +∆S
(7)

While Sex represents the loss of entropy due to total in-
teraction, the pair excess entropy, S2 describes the loss
of entropy due to interaction described by the two-body
correlation. ∆S is the loss of entropy due to many body
correlations (beyond pair correlation). The per particle
pair excess entropy, which contributes to 80% of the total
excess entropy29 can be written as44;

SB
2

kB
= −2πρ

∫ ∞

0

2∑

i=1

2∑

j=1

χiχj

{
gij(r) ln gij(r)−(gij(r)−1)

}
r2dr

(8)

Pair excess entropy per particle level for the quaternary
system is expressed as;

SQ
2

kB
= −2πρ

∫ ∞

0

r2dr

4∑

i=1

4∑

j=1

χ
′
iχ

′
j{gij(r) ln gij(r)−(gij(r)−1)}

(9)

To obtain the pair excess entropy of the pinned system,
SM
2 , we make similar modifications to the pure quater-

nary system as is done for the calculation of the excess
entropy given in the previous system. First, we assume
that there is no structure between the pinned particles,
i.e. gPP = g33 = g44 = g34 = g44 = 1. This assump-
tion is justified as u33 = u34 = u43 = u44 = 0, and
we can also neglect any higher order correlation between
the pinned particles, thus assuming that the potential of
mean force between the pinned particles also vanishes.
We also assume that the partial rdf between mobile and
pinned particles is symmetric. Thus, the first summation
in Eq. 9 is only over the mobile particles, types 1 and
2. Next, in the modified system, we calculate the en-
tropy of only the mobile particles. The total pair excess

entropy, N ∗ SQ
2 (gPP = 1) is divided only amongst the

mobile particles, and the per particle pair excess entropy

of the mobile particles, SM
2 = N

M ∗ SQ
2 (gPP = 1). Thus,

in the first summation χ
′
i is replaced by χi like in Eq. 6.

The pair excess entropy per particle level of the mobile
particles in the pinned system, SM

2 can be written as,

SM
2

kB
=

− 2πρ

∫ ∞

0

r2dr

2∑

i=1

χi

[ 2∑

j=1

χ
′
j{gij(r) ln gij(r) − (gij(r) − 1)}

+ 2×
4∑

j=3

χ
′
j{gij(r) ln gij(r) − (gij(r) − 1)}

]

(10)

From Eq. 10, we find that similar to that discussed for
excess entropy, when we treat the pinned system as this
modified quaternary system, the effect of the pinned par-
ticles in determining the entropy of the mobile particles is
stronger (factor of 2) compared to other mobile particles.
When we pin the particles at their equilibrium posi-

tion, the structure/rdf of the system is not expected to
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change. Thus, pinning is believed to keep the equilib-
rium of the system the same24,45,46. If the structure/rdf
remains the same, then treating the system as quaternary
or binary in the calculation of the two body excess en-

tropy gives us identical results, SQ
2 = SB

2 (see Appendix
III). However, note that for the pinned system, the pair

excess entropy is not given by SQ
2 (Eq. 9) but by SM

2

(Eq. 10). In the expression of SM
2 , even if we assume

there is no change in structure due to pinning, the pair
excess entropy of the system, SM ′

2 is different from that
of a binary system and can be written as,

SM ′
2

kB
= −2πρ

∫ ∞

0

r2dr

[
χ1(χ

′
1 + 2χ

′
3){g11(r) ln g11(r) − (g11(r) − 1)}

+ χ1(χ
′
2 + 2χ

′
4){g12(r) ln g12(r)− (g12(r)− 1)}

+ χ2(χ
′
1 + 2χ

′
3){g21(r) ln g21(r)− (g21(r)− 1)}

+ χ2(χ
′
2 + 2χ

′
4){g22(r) ln g22(r)− (g22(r)− 1)}

]

=
SB
2

kB
− 2πρ

∫ ∞

0

r2dr

2∑

i=1

2∑

j=1

χiχ
′
(j+2)

{gij(r) ln gij(r)− (gij(r)− 1)}
(11)

Note that in writing the last equality, we have applied
the relation, χ1 = χ

′
1 + χ

′
3 and χ2 = χ

′
2 + χ

′
4. Thus, it

shows that even if the pinning process does not change
the structure, the pair excess entropy for mobile particles
in the pinned system is lower than that in the unpinned
system. This implies that the pinned particles have a
stronger confinement effect on the mobile particle. In
the next section, we will show that this stronger confin-
ing effect of the pinned particles is present not only in
entropy but also in other quantities.

C. Macroscopic mean field caging potential

The time evolution of the density, under mean-field
approximation, can be written in terms of a Smolu-
chowski equation in an effective mean field caging poten-
tial, which is obtained from the Ramakrishnan-Yussouff
free energy functional32,33,47. Following our earlier stud-
ies, the caging potential is calculated by assuming that
the cage is static when the particle moves by a distance
∆r32. The mean field caging potential is expressed in
terms of the static structure factor/radial distribution
function of the liquid33. In this section, we obtain a
pinned system’s mean field caging potential. Previous
work by some of us showed that the depth of caging po-
tential is coupled to the dynamics32,33. Thus, in this
study, instead of dealing with the whole potential, we
deal with the absolute magnitude of the depth of the
caging potential as we view the depth of the caging po-
tential as an energy barrier. We first start with the binary

system, where the average depth of mean field caging po-
tential can be expressed as33;

βΦB
r (∆r = 0) = −4πρ

∫
r2dr

2∑

i=1

2∑

j=1

χiχjCij(r)gij(r) (12)

Here r is the separation between the tagged particle and
its neighbors and β = 1/kBT , kB = 1, ρ is the density.
∆r is the tagged particle’s distance from its equilibrium
position. According to Hypernetted chain approxima-
tion, the direct correlation function, Cij(r), can be rep-
resented as;

Cij(r) = −βuij(r) + [gij(r)− 1]− ln[gij(r)]. (13)

For a regular quaternary system, the caging potential
can be expressed as;

βΦQ
r (∆r = 0) = −4πρ

∫
r2dr

4∑

i=1

4∑

j=1

χ
′
iχ

′
jCij(r)gij(r) (14)

Next, for the calculation of the mean field caging po-
tential for the pinned system, we apply similar conditions
as discussed before for the calculation of the excess and
pair excess entropies. Under these conditions the aver-
age depth of mean field caging potential of the mobile
particles in the pinned system, βΦM

r can be written as;

βΦM
r (∆r = 0) = −4πρ

∫
r2dr

2∑

i=1

χi

[ 2∑

j=1

χ
′
jCij(r)gij(r)

+ 2×
4∑

j=3

χ
′
jCij(r)gij(r)

]

(15)

Note that similar to excess and pair excess entropy, the
depth of the mean field caging potential of mobile parti-
cles in this modified quaternary system is affected more
by the pinned particles (factor of 2) than by other mobile
particles. Also, if the structure does not change due to
pinning, the expression of the caging potential for a qua-
ternary and binary system is identical, but that is not the
case for the modified quaternary system. The expression
for the depth of the mean field caging potential under
the assumption that the structure does not change due
to pinning can be written as,
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βΦM ′
r (∆r = 0) = −4πρ

∫
r2dr

[
χ1(χ

′
1 + 2χ

′
3)C11(r)g11(r)

+ χ1(χ
′
2 + 2χ

′
4)C12(r)g12(r)

+ χ2(χ
′
1 + 2χ

′
3)C21(r)g21(r)

+ χ2(χ
′
2 + 2χ

′
4)C22(r)g22(r)

]

= βΦB
r (∆r = 0)− 4πρ

∫
r2dr

2∑

i=1

2∑

j=1

χiχ
′
(j+2)Cij(r)gij(r)

(16)

In the last equality we have applied the relation that
χ1 = χ

′
1 + χ

′
3 and χ2 = χ

′
2 + χ

′
4. The above expression

suggests that even when we assume that the structure
does not change due to pinning, the depth of the caging
potential for the pinned system is deeper compared to the
unpinned system. This higher confinement effect comes
due to the stronger interaction with the pinned parti-
cles. Interestingly, a similar effect of the pinned particles
has been discussed while studying the nonlinear Langevin
equation on a dynamic free energy surface35,36. Note
that our mean field caging potential is obtained from the
functional derivative of the static version of this dynamic
free energy47,48. Similar to the methodology used here,
their study,35,36 on a monoatomic liquid treats the pinned
system as a binary system, thus considering the pinned
particle as a different species. They also consider the dy-
namic free energy of only the mobile particles. Under
these conditions, they show that the free energy barrier
and confinement of the mobile particles increase with pin-
ning density.

D. Numerical results for the macroscopic pair excess
entropy and mean field caging potential

Note that the two body excess entropy and the mean
field caging potential are both functions of the radial dis-
tribution function (rdf) given by,

gij(r) =
V

NiNj

〈 Ni∑

α=1

Nj∑

β=1,β 6=α

δ(r − rα + rβ)
〉

(17)

where V is the system’s volume, Ni, Nj are the number of
particles of the i and j types, respectively. rα, rβ are the
αth and βth particle’s position in the system respectively.
In Fig. 1, we plot the partial rdfs of the system where

we do not differentiate between the pinned and unpinned
particles and we find that, as expected, the rdf remains
the same as the unpinned regular KA model (c=0).
In the rest of the article when we refer to the unpinned

binary KA system, following the usual norm, we refer to
the particles as A and B types. However, as discussed in
the previous sections, when we pin particles in a binary
system, we actually create a quaternary system. We refer
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r
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1
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4
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A

(r
)
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c = 0.10
c = 0.15

(a)

0.8 0.9 1 1.1 1.2
r

0

1

2

3

4

5

g A
B
(r

)

c = 0.00
c = 0.05
c = 0.10
c = 0.15

(b)

FIG. 1: Radial distribution function, g(r) while treating
the pinned system as a binary system, at T = 0.68 (a)
gAA as a function of r (b) gAB as a function of r. Here
A and B are the bigger and smaller sizes of particles
respectively.

to the mobile A type of particles as 1, mobile B type of
particles as 2, pinned A type of particles as 3, and pinned
B type of particles as 4.

We next plot some representative partial rdfs assuming
the system to be quaternary at different pinning concen-
trations (Fig. 2). We find that with increased pinning
density, the partial rdfs start deviating from the c=0 sys-
tem. With an increase in “c”, there is a drop in the
peak value of the rdfs between two mobile particles (g11,
g12). On the other hand, the first peak height of the par-
tial rdfs between mobile and pinned particles (g13, g14)
grows with “c”. To ensure that this is not an art effect
of choosing the pinned particles as a different species, in
the c=0 system, we randomly choose 15% of the parti-
cles and treat them as a different species. In Fig. 3, we
show that in that case, g11 = g13 = gAA. A similar result
is also observed for other partial rdfs (not shown here).
This clearly shows that when we pin a certain fraction
of particles, contrary to the common belief, there is a
structural change.

We observe that this structural change happens
quickly, immediately after the pinning process. We cal-
culate g(r), averaged from t = 0−100 and t = 101−200,
where the pinning is performed at t=0. We find that
both rdfs overlap (Appendix IV, Fig. 13). In Appendix

IV, Fig. 14, we also show that χ
′
1g11 +χ

′
3g13 is the same
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as χAgAA and χ
′
2g12+χ

′
4g14 is the same as χBgBB. This

is precisely why we do not see a change in structure when
the pinned particles are not treated as a different species
(Fig. 1). Note that this change in the partial rdfs is
independent of the integration timestep and system size
(Fig. 16).
Thus, from this analysis, it is clear that the structure of

the system does change when particles are pinned. How-
ever, this change is significant at higher pinning densi-
ties only when we treat the pinned particles as a differ-
ent species. In Fig. 4, we plot the pair excess entropy,
SM ′
2 (Eq. 11) and the caging potential, βΦM ′

r (Eq. 16) of
the pinned systems where we assume that the structure
does not change due to pinning. We also plot SM

2 (Fig.
4 (a)) and βΦM

r (Fig. 4 (b)), where we consider that
the structure changes due to pinning. We find that, even
when we consider that the structure does not change,
the pair excess entropy of the pinned system differs from
that of the binary system and decreases with increasing
pinning density. This decrease in entropy is due to the
stronger effect of the pinned particles in confining the
mobile particles. When we consider that the structure
changes due to pinning, as shown in Fig. 2, then the
entropy further decreases, and like the structure, this de-
crease is significant at higher pinning densities. The plot
of the mean field caging potential shows a similar effect.
The caging potential depth increases with pinning, even
if the change in the structure due to pinning is ignored.
There is a further increase in the depth when the change
in the structure is taken into account.
Thus, we find that both the pair excess entropy and

the mean field caging potential for the pinned system dif-
fer from that of the unpinned system, and this difference
comes due to two factors. Firstly, compared to the in-
teraction between two mobile particles, the interaction
between a mobile and a pinned particle is stronger, lead-
ing to a decrease in entropy and an increase in the caging
potential. Secondly, due to pinning, the structure of the
liquid changes, and this further decreases the entropy and
increases the mean field caging potential. As seen from
Fig. 4, the first effect is stronger and plays a dominant
role.
In Appendix III, we show that the well-known

crossover49 between the excess entropy and the pair ex-
cess entropy takes place at a physically meaningful tem-
perature only when we take into consideration these two
effects in the calculation of the entropy.

IV. PAIR EXCESS ENTROPY AND MEAN FIELD
CAGING POTENTIAL AT THE MICROSCOPIC LEVEL

In the previous section, we developed the protocol for
calculating the caging potential and pair excess entropy
at the macroscopic level for the pinned system. However,
our primary goal is to understand how these two order
parameters can describe the dynamics at the local level.
We clearly demonstrate that the pinned system should be

treated as a modified quaternary system. In this section,
we make a comparative analysis of these two structural
quantities, when the pinned system is treated as a bi-
nary system and a modified quaternary system. First,
we start with the microscopic expressions, which are ob-
tained from the macroscopic expressions. The bigger “A”
particles, which are larger in number, are the ones for
which all microscopic calculations are performed. This is
done to make sure that there is no size inhomogeneity,
which we know also affects the dynamics50.

A. Microscopic pair excess entropy

Calculation of the pair excess entropy at the macro-
scopic level (S2) is given in section III.
In the binary system, the pair excess entropy of each

mobile “A” particle, which is type “1” in our notation,
can be expressed by removing the first summation in Eq.
8;

SB
2 (A)

kB
= −2πρ

∫ ∞

0

r2dr

2∑

j=1

χj{g1j(r) ln g1j(r)−(g1j(r)−1)}

(18)

Similarly, in the modified quaternary system, the pair
excess entropy of each mobile “A” particle (type 1) can
be expressed by removing the first summation in Eq. 10;

SM
2 (A)

kB
=

− 2πρ

∫ ∞

0

r2dr
[ 2∑

j=1

χ
′
j{g1j(r) ln g1j(r) − (g1j(r) − 1)}

+ 2×
4∑

j=3

χ
′
j{g1j(r) ln g1j(r) − (g1j(r) − 1)}

]

(19)

Note that the differences between the binary and mod-
ified quaternary are the following. In the binary expres-
sion, when treating the neighbors, we do not differenti-
ate between the mobile and pinned particles; however,
in the quaternary expression, we do. Thus, in the bi-
nary expression, the effect of the mobile neighbors on the
tagged particle is the same as that of the pinned neigh-
bors. However, in the quaternary expression, the effect of
the pinned neighbors on the tagged particle is twice that
of the mobile neighbors. As shown in the macroscopic
calculation (Fig. 4), it is this second effect that plays a
dominant role in differentiating between the binary and
the modified quaternary values of the entropy.

B. Microscopic mean field caging potential

The macroscopic calculation of the depth of the caging
potential (βΦr), the inverse of which we refer to as the
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FIG. 2: Radial distribution function, g(r) while treating the pinned system as a quaternary system, at T = 0.68.
(a)g11 as a function of r (b) g12 as a function of r (c) g13 as a function of r (d) g14 as a function of r. Inset: We have
zoomed onto the first peak of the respective figures, which clearly shows the difference in the radial distribution
functions. Note that color coding is similar to Fig. 1. Here, we refer to the mobile A type of particles as 1, mobile B
type of particles as 2, pinned A type of particles as 3, and pinned B type of particles as 4.
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g(
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FIG. 3: Comparison between radial distribution
functions, g(r)s by randomly picking 15% particles in
the KA system and treating them as different species
(magenta, diamond = g13, magenta solid line = g11)
and pinning 15% of particles position during the
simulation and treating the pinned particles as different
species (green, triangle = g13, green solid line = g11).
We also plot the g(r) for a regular KA (c=0) system for
comparison (blue, star). The plots are shown only for
the big particles.

structural order parameter (SOP), is given in section
III C. At the microscopic level for a binary system, the

caging potential of a mobile “A” type of particle can be
written by removing the first summation in Eq. 12;

βΦB
r (A,∆r = 0) = −4πρ

∫
r2dr

2∑

j=1

χjC1j(r)g1j(r)

(20)

The mean field caging potential for a mobile “A” type
of particle in a modified quaternary system can be writ-
ten by removing the first summation in Eq. 15,

βΦM
r (A,∆r = 0) = −4πρ

∫
r2dr

[ 2∑

j=1

χ
′
jC1j(r)g1j(r)

+ 2×
4∑

j=3

χ
′
jC1j(r)g1j(r)

]

(21)

Thus, note that similar to that discussed for the pair
excess entropy, in the modified quaternary expression,
compared to the mobile neighbors, the pinned neighbors
have a stronger effect in confining the tagged particle.
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FIG. 4: (a) Macroscopic S2 as a function of T, (b)
macroscopic βΦr as a function of T. Solid line
represents SM ′

2 ( Eq. 11) or βΦM ′
r (Eq. 16) and symbol

represents SM
2 (Eq. 10) or βΦM

r (Eq. 15).

C. Numerical results for the microscopic pair excess
entropy and mean field caging potential

To perform the microscopic investigation, we deter-
mine βΦr(∆r = 0) and S2 for every snapshot at the
single particle level that requires the partial rdfs to be
calculated at a single particle level. In this calculation,
the sum of Gaussian can be used to express the single
particle partial rdf in a single frame, and it is calculated
as follows51;

gαij(r) =
1

4πρr2

∑

β

1√
2πδ2

exp−
(r−rαβ )2

2δ2 (22)

where “α” is the particle index, ρ is the density. The
Gaussian distribution’s variance (δ) is employed to trans-
form the discontinuous function into a continuous form.
We use δ = 0.09σAA for this work. Single particle rdf is
used to derive the direct correlation function at the single
particle level from Eq. 13.
We can determine caging potential (Eq. 12, 14, 15) by

combining the direct correlation function (Eq. 13) and
particle level rdf (Eq. 22). This leads to a term that is
a product of the interaction potential and the rdf. As
shown in an earlier work33, at distances shorter than the
average rdf, the particle level rdf generated by the Gaus-
sian approximation has finite values. At small “r” due to
this finite value of the rdf, its product with the interaction

potential, which diverges at small “r”, leads to a large un-
physical contribution from this range. To get around this
problem, we use an approximate expression of the direct
correlation function, Capprox(r) = [gij(r) − 1] where we
assume that the interaction potential is equal to the po-
tential of mean force −βuij(r) = ln(gij(r)). It has also
been shown earlier that using Capporx

ij (r) marginally im-
proves the theoretical prediction of structure-dynamics
correlation34,50. In the rest of the microscopic calcula-
tion, we will use Capporx

ij (r) in place of Cij(r).
In Fig. 5, we plot the distribution of pair excess en-

tropy and local caging potential by describing the pinned
system as binary. Note that for all the cases, the quanti-
ties are calculated only for the mobile “A” particles. We
find that the distribution remains similar to the unpinned
system (KA model at c=0). This is because the expres-
sions are identical for pinned and unpinned systems, and
even for c=0.15, there are enough mobile “A” particles
to give the correct statistics. However, when we calculate
the quantities assuming the pinned system as a modified
quaternary system (Eq. 15 and 10), we observe that as
“c” increases, the depth of the caging potential increases
and the pair excess entropy decreases. Distribution of
βΦM

r , and SM
2 are shown in Fig. 5. This analysis clearly

shows that the entropy and the SOP (inverse depth of the
caging potential) are higher when the system is treated
as binary compared to when it is treated as a modified
quaternary. In the next section, we will show that the
correlation between the dynamics and structural quanti-
ties differs when we treat the pinned system as binary or
modified quarternary.

V. CORRELATION BETWEEN STRUCTURE AND
DYNAMICS AT MICROSCOPIC LEVEL

In the following section, we study the correlation be-
tween two structural order parameters, namely the S2

and SOP, with the dynamics using different techniques.
To make a comparative analysis, while calculating the
structural quantities, we treat the pinned system both as
binary and modified quaternary systems.

A. Correlation between structure and dynamics using
isoconfiguration runs

In this section, we study the correlation between struc-
ture and dynamics using isoconfiguration runs (IC). IC is
a powerful technique developed by Harrowell et al.52–55

to examine the role the structure plays in the dynamics
(details are given in Appendix V).
We calculate the Spearman rank correlation,

CR(X,Y ) = 1 − 6
∑

d2
i

m(m2−1) (where d2i = R(Xi) -

R(Yi) is the difference between the ranks, R(Xi) and
R(Yi) of the raw data Xi and Yi respectively, and m
denotes the number of data), between the mobility, µ
and the pair excess entropy (CR(µ, S2)), and between
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FIG. 5: Distribution of pair excess entropy (S2) and
depth of mean field caging potential (βΦr) in different
pinned systems at T = 0.68. (a1) - Distribution of S2

treating pinned system as binary, (a2) Distribution of
βΦr treating pinned system as binary (b1) -
Distribution of S2 treating pinned system as modified
quaternary, (b2) Distribution of βΦr treating pinned
system as modified quaternary. The distribution
remains the same for binary treatment, while for the
modified quaternary treatment, the caging potential
increases with increasing c, and pair excess entropy
decreases, with increasing c.

the mobility, µ and the SOP CR(µ, 1/βΦr). In Figs.
6(a) and 6(b), we plot CR(µ, S2) and CR(µ, 1/βΦr)
respectively, for the pinned systems as a function of
scaled time. We observe that when considering the
system as a binary system, the correlations, CR(µ, S

B
2 )

and CR(µ, 1/βΦ
B
r ) decrease as the pinning concentration

increases (Fig. 6). This observation is concurrent with
the findings of Williams et al.24. However, when the
system is treated as a modified quaternary system, we
observe an increase in CR(µ, S

M
2 ) and CR(µ, 1/βΦ

M
r )

compared to when the system is treated as binary. This
suggests that treating the system as binary does not
capture the full complexity of the structure-dynamics
relationship. In the modified quaternary treatment of
the system, the pinning decreases the pair excess entropy
and the SOP, which is commensurate with the slowing
down of the dynamics.

Between the SOP and the pair excess entropy, we
find that the SOP can predict the dynamics better and
CR(µ, 1/βΦ

M
r ) > CR(µ, S

M
2 ). This is similar to that ob-

served in an earlier study where, for attractive systems
compared to entropy, the SOP is a better predictor of
the dynamics34. Also note that for all values of “c”,
the peak height of the CR(µ, 1/βΦ

M
r ) almost remains

constant, whereas the peak height of CR(µ, S
M
2 ) drops

with an increase in “c”. Thus the difference between
CR(µ, 1/βΦ

M
r ) and CR(µ, S

M
2 ) increases with “c”. This

drop in the value of CR(µ, S
M
2 ) with an increase in “c”

may be connected to the breakdown of the AG relation-

ship at the macroscopic level. However, we cannot calcu-
late the configurational entropy at the microscopic level,
but we do find from Fig. 5 that the shift in the distri-
bution of the pair excess entropy with pinning density is
stronger than the shift in the distribution of SOP.

We also find that with increasing pinning concentra-
tion, the peak height of CR(µ, 1/βΦ

B
r ) moves to smaller

values of t/τα. A similar observation was made while
comparing the more fragile Lennard-Jones (LJ) and the
less fragile Weeks-Chandler-Anderson (WCA) models34.
Note that in the case of pinned systems, the fragility de-
creases with increasing “c”21. Thus, it appears that for
more fragile systems, the correlation between structure
and dynamics continues for longer times. However, at
this point, this is only a conjecture, and to make more
concrete statements, further investigations are needed,
which is beyond the scope of the present study.
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FIG. 6: Spearman rank correlation, CR between
different parameters, while treating the pinned system
as binary (filled symbol) and modified quaternary (open
symbol) (a) Spearman rank correlation (CR) between
mobility (µ) and pair excess entropy (S2) (b) Spearman
rank correlation (CR) between mobility (µ) and inverse
depth of caging potential (1/βΦr). Working
temperature for c = 0.05, 0.10 and 0.15 is 0.52, 0.60,
and 0.68 respectively. Note that T is chosen such that
all the pinned systems have approximately the same
τα ≈ 103.
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B. Analysis of dynamics of particles belonging to the
softest and hardest regions

Since we show that the inverse of the mean field caging
potential, SOP, is a better predictor of the dynamics, in
the next two subsections, we will present the study of
the structure-dynamics correlation using only the SOP.
At short timescales, we expect to observe a significant dif-
ference in the dynamics of the hardest (in a deep cage)
and softest (in a shallow cage) particles. The hardest par-
ticles, less likely to escape their local cages, will exhibit
slower dynamics. On the other hand, the softest par-
ticles, with a higher probability of moving, will display
faster dynamics. However, over a longer time, as the cage
evolves, the separation in dynamics between the hardest
and softest particles diminishes32,33,50. We average over a
few (approximately 2-3) hardest and softest particles and
compare their dynamics via the overlap function (Eq. 2).
Note that the identity of the soft and hard particles de-
pends on how the SOP is calculated, i.e. assuming the
system to be binary or modified quaternary.
The dynamics of the hardest and softest particle for

different concentrations of the pinning is shown in Fig.
7. When we calculate the SOP treating the system as a
modified quaternary system, the difference in dynamics
between the hard and the soft particles is wider compared
to the case where the system is treated as binary (Fig. 7).
Note that the difference is greater for the hard particles.
This is because our analysis reveals that the identity of
the softest particles does not change when we treat the
system as binary or modified quaternary. However, the
identity of the hardest particles completely changes be-
cause, in the binary treatment, we neglect the stronger
interaction between the pinned and the mobile particles,
which is present in the modified quaternary treatment.
Due to this effect in the modified quaternary treatment,
the hardest particles are the ones that have pinned par-
ticles as their neighbors. As shown in Fig. 7, the hard-
est particles, as identified by the modified quaternary
treatment, are slower than those identified by the binary
treatment. This is precisely the reason why the modified
quaternary treatment of the system shows higher value
of CR(µ, 1/βΦ

M
r ) compared to the binary treatment of

the system.

C. Correlation between structure and dynamics and
prediction of onset temperature

In this section, we use the structure dynamics correla-
tion to identify the onset temperature of the glassy dy-
namics, a methodology used in earlier studies33,56.
We identify fast particles using a well-documented

method33,57,58 (details are given in Appendix VI). In
Fig. 8 we plot PR(1/βΦr) as a function of tem-
perature for different 1/βΦr values and find that it
can be expressed in an Arrhenius form, PR(1/βΦr) =
P0(1/βΦr) exp(∆E(1/βΦr)/T ), where activation energy,

∆E is a function of 1/βΦr and is higher for smaller 1/βΦr

values. The plots cross at a certain temperature, which
describes the limiting temperature where the theory is
valid33 and has been identified earlier as the onset tem-
perature of the supercooled liquid33,50,56.
In this analysis, we find that when we treat the system

as binary, the onset temperature remains similar for all
pinning concentrations. However, when we treat the sys-
tem as a modified quaternary system, the onset temper-
ature increases with increasing pinning concentration19.
As we show in Appendix I, this predicted onset temper-
ature is similar to the onset temperature predicted from
the well known inherent structure energy method (Fig.
9 and Table I)59.

VI. CONCLUSION

As discussed in the Introduction, earlier studies on the
pinned system have shown that both at macroscopic and
microscopic levels, the correlation between the dynamics
and entropy breaks down. However, the nature of the
breakdown at the microscopic and macroscopic levels is
not similar but just the opposite. At the macroscopic
level, with pinning, the configurational entropy disap-
pears, whereas the dynamics continues20,22,26. At the
microscopic level, the pair excess entropy remains high
and the same as the unpinned system, whereas the dy-
namics slows down with an increase in pinning density24.
This is possible only when the macroscopic configura-
tional entropy and the microscopic pair excess entropy
are uncorrelated. However, it is well known that for the
unpinned systems, the pair excess entropy contributes
to about 80% of the excess entropy, which in turn con-
tributes to the configurational entropy29. Thus, to un-
derstand the different results at the macroscopic and mi-
croscopic levels, we revisit the excess entropy calculation
of the pinned system.
We show that when we pin particles in a binary sys-

tem, we should treat this pinned system as a quaternary
system under the assumption that there is no interaction
between pinned particles (an assumption we use while
simulating the system) and the potential energy is only
distributed amongst the mobile particles. The excess en-
tropy of this modified quaternary system predicts that
the effect of a pinned particle in stabilizing a mobile par-
ticle by decreasing the potential energy is a factor of two
more than the effect of another mobile particle. We show
that this effect leads to the well documented vanishing of
configurational entropy at higher temperatures19 and the
breakdown of the Adam-Gibbs relationship in a pinned
system20,22.
We follow the same methodology to calculate the pair

excess entropy and the mean field caging potential at
macroscopic and microscopic levels. We first show that
the expression of S2 and SOP (inverse depth of the mean
field caging potential) differ when the system is treated as
binary and modified quaternary. In the binary treatment,
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FIG. 7: Comparison of the dynamics of a few hardest (filled symbol) and a few softest (open symbol) particles at
different pinning concentrations while treating the pinned system as binary (Black), and modified quaternary (Red)
(a)c = 0.05 (at T = 0.52), (b)c = 0.10 (at T = 0.60) (c)c = 0.15 (at T = 0.68). Note that T is chosen such that all
pinned system has approximately the same τα.
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FIG. 8: log PR(1/βΦr) as a function of 1/T at different values of the SOP (1/βΦr). Top panel - In the calculation
of the SOP, the pinned system is treated as a binary system (a1) c = 0.05, (b1) c = 0.10, and (c1) c = 0.15. Bottom
panel- In the calculation of the SOP, the pinned system is treated as a modified quaternary system (a2) 0.05, (b2) c
= 0.10, (c2) c = 0.15.

the effect of a pinned particle on the mobile particle is
identical to that of another mobile particle. However, in
modified quaternary treatment, similar to that observed
in the calculation of the excess entropy, the pinned par-
ticles have a stronger effect on the mobile particles than
other mobile particles. We next show that contrary to
the common belief that if pinned at the equilibrium posi-
tion, the properties of the system do not change, pinning
changes the structure of the liquid, which can be observed
only when we treat the pinned particles as a different
species. We then show that when we treat the system as
a modified quaternary system, the entropy and the SOP
are much lower than that obtained by treating the system
as a binary system. The analysis reveals that more than

the change in structure, the stronger effect of the pinned
particles on the mobile particles plays a dominant role in
confining the mobile particles by decreasing the entropy
and the SOP. Interestingly, a similar confinement effect
of the pinned particles was discussed in an earlier study
of a monotonic system, where it was shown that the free
energy barrier of the mobile particles increases with pin-
ning density35,36. Note that similar to the the present
study in these earlier studies35,36, the pinned particles
were treated as a different species.

We further study the correlation between structure and
dynamics using different techniques. In all cases, we show
that compared to the case where the pinned system is
treated as a binary system, there is an increased corre-
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lation between structural order parameters and the dy-
namics when the pinned system is treated as a modified
quaternary system. This is because, unlike in the binary
case, in the modified quaternary case, the pinned parti-
cles affect not only the dynamics but also the structural
properties. We also show that compared to the entropy,
the SOP can predict the dynamics better. The correla-
tion between fast particles and the SOP can only predict
the correct onset temperature when the SOP is calcu-
lated, assuming the pinned system is a modified quater-
nary system.
In Summary, our study reveals two important points.

The pinning affects not only the bulk macroscopic
quantities but also the microscopic quantities. The effect
of the pinned particles can be expressed by treating
the pinned particles as a different species, which then
shows that a pinned particle confines the mobile particle
more than another mobile particle which then alters the
microscopic expression of the quantities that depend
on the structure. Thus, pinning not only slows down
the dynamics of the mobile particle but also changes
the structural parameters. Along with this, the pinning
process also affects the structure of the liquid. In future
studies, these two effects should be considered when
calculating different properties of the pinned system.
Also, note that, like local pair excess entropy, the local
mean field caging potential depends on the local struc-
ture. This allows us to apply it to experimental colloidal
systems where, both for quiescent and sheared systems,
we find a good structure dynamics correlation60. Thus,
the mean field caging potential can be applied to study
the structure-dynamics correlation even in experimental
pinned systems24,25.

Appendix I: Onset temperatures of the pinned
systems from inherent structure energy

To estimate the temperature range of the system, we
first obtain the onset temperature of the supercooled.
In Fig. 9, we plot the inherent structure energy, eIS
as a function of T to calculate the onset temperature
(Tonset) from the inherent structure (IS)59. Tonset at
different pinning concentrations is given in Table I.
The IS is obtained using the FIRE algorithm61. From
this analysis, we observe that the onset temperature
increases with increasing pinning concentration, “c”19

(see Table I).

TABLE I: Onset temperature, Tonset at different
pinning concentrations, “c”

c Tonset

0.00 0.80
0.05 0.89
0.10 1.01
0.15 1.27

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

-7.1

e IS

c = 0.00
c = 0.05
c = 0.10
c = 0.15

FIG. 9: Inherent structure energy, eIS as a function of
temperature (T). The onset temperature is the
temperature where eIS starts to drop from its
high-temperature value. Onset temperature increases as
c increases.

Appendix II: Various forms of entropy in
pinned systems

The various forms of entropy in pinned systems are
discussed here.

• Ideal gas entropy: The ideal gas entropy in pinned
systems only comes from the moving particle. The
pinned system’s ideal gas entropy is calculated as20;

MSid =
3M

2
− 3M ln Λ +M(1− ln

M

V
)−

2∑

i=1

N
′
i ln

N
′
i

M

(23)
where M is the total number of particles that are

moving and Λ =
√

βh2

2πm is the de Broglie thermal

wavelength and h is the Planck constant. We plot
the per particle ideal gas entropy of pinned systems
at various pinning concentrations in Fig. 10. As the
pinning increases, we see an increase in ideal gas
entropy. The decrease in the density (as M < N)
and the increase in the mixing entropy contribute
to the increase in the per particle ideal gas entropy.

• Vibrational entropy: We consider a weakly vibrat-
ing system around an inherent structure (IS). If
we indicate by ri the displacement of the ith par-
ticle from its point in the IS, then the potential
energy can be approximated well by the following
formula20,

U ≈ UIS(S) +
1

2

M∑

i,j

δ2U

δriδrj
δriδrj (24)

It is important to realize that only the derivative
of the potential energy with respect to the coor-
dinates of unpinned particles should be taken into
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account, not including the ones of pinned particles.
(However, of course U will depend on the positions
of the pinned and unpinned particles). Thus, the
size of the Hessian matrix is 3M × 3M . Introduc-
ing the eigenvalues λ1, λ2....λ3M of the Hessian, the
harmonic vibrational entropy of the given inherent
structure with a given pinned particle configuration
can be written as20;

MSvib = 3M(1− ln Λ) +
1

2

3M∑

a=1

ln
2π

βmω2
i

(25)

We plot the vibrational entropy of pinned systems
at various pinning concentrations in Fig. 10. As
the pinning increases, we see a drop in vibrational
entropy.

• Excess entropy: We employ the thermodynamic in-
tegration approach to determine entropy from sim-
ulations. At the target temperature β′, the entropy
of the system with the pinned particles S can be
written as20,22,31;

SM
ex(β

′) = β′ < UM > −
∫ β′

0

dβ < UM > (26)

where < UM > is a thermal average of the poten-
tial energy. Details of excess entropy calculation
are discussed in section IIIA. We plot the excess
entropy of pinned systems at various pinning con-
centrations in Fig. 10. As the pinning increases,
we see a drop in excess entropy. We also plot the
excess entropy for the pinned system where we ig-
nore the stronger effect of the pinned particles on
the mobile particles by removing the prefactor 2 in
the second term of < UM > (Eq. 6), which we now
denote as < U I

M > and express as;

〈
U I
M

〉
= 2πρ

∫ ∞

0

r2dr
2∑

i=1

χi

[ 2∑

j=1

χ
′
juij(r)gij(r)

+

4∑

j=3

χ
′
juij(r)gij(r)

] (27)

In this case, the excess entropy can be written as;

SI
ex = β′ < U I

M > −
∫ β′

0

dβ < U I
M > . (28)

We find that the excess entropy, SI
ex, does not de-

crease with pinning. Rather, it shows a marginal
increase. This analysis clearly shows that the de-
crease in the excess entropy with pinning is due

to the higher potential energy contribution of the
pinned particles, which leads to a stronger confine-
ment of the mobile particles.
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FIG. 10: Various forms of entropy as a function of
temperature, T (a) Ideal gas entropy, Sid, (b)
Vibrational entropy Svib, (c)Excess entropy, S

M
ex (Eq.

26). (d) Excess entropy, SI
ex (Eq. 28).

In Fig. 11 we plot the configurational entropy,
SM
c = Sid + SM

ex − Svib and SI
c = Sid + SI

ex − Svib at
different pinning concentrations. We observe that the
Kauzmann temperature, TK , where the extrapolated
entropy vanishes, increases when excess entropy is
calculated using the modified quaternary expression of
the potential energy, < UM > and the Adam-Gibbs
relation between the dynamics and entropy is not valid.
However, when we ignore the stronger effect of the
pinned particles on the mobile particle, i.e. use < U I

M >
in the calculation of the excess entropy, then TK de-
creases with increasing pinning and the Adam-Gibbs
relation between the dynamics and entropy is valid.
This, as discussed in the main paper, is not a physically
correct picture, but this analysis clearly shows that
in the pinned system, the vanishing of the entropy at
higher temperatures is due to the stronger confinement
effect of the pinned particles on the mobile particles.

Appendix III: Pair excess entropy

In section III B, we show that the pair excess entropy
can have different expressions when the system is treated
as binary, quaternary, and modified quaternary. We also
show that the rdf is different when the system is treated
as binary and quaternary (section III D).

If the structure (rdf) does not change, then treating
the system as quaternary or binary in the calculation of
the S2 gives us identical results. This can be easily seen
when comparing Eq. 8 and Eq. 10. If we assume that in
the rdfs we can replace 3 by 1 and 4 by 2 then Eq. 9 can
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FIG. 11: (a) TSM
c = T (Sid + SM

ex − Svib), as a function
of T (b) TSI

c = T (Sid + SI
ex − Svib), as a function of T

(c) τ vs. 1/TSM
c . The solid lines show the Adam-Gibbs

fitting. (d) τ vs. 1/TSI
c . The solid lines show the

Adam-Gibbs fitting.

be rewritten as,

SQ
2

kB
= −2πρ

∫ ∞

0

r2dr

[
(χ

′
1χ

′
1 + 2χ

′
1χ

′
3 + χ

′
3χ

′
3){g11(r) ln g11(r) − (g11(r) − 1)}

+ (χ
′
1χ

′
2 + χ

′
1χ

′
4 + χ

′
3χ

′
2 + χ

′
3χ

′
4)

{g12(r) ln g12(r) − (g12(r) − 1)}
+ (χ

′
2χ

′
1 + χ

′
2χ

′
3 + χ

′
4χ

′
1 + χ

′
4χ

′
3)

{g21(r) ln g21(r) − (g21(r) − 1)}
+ (χ

′
2χ

′
2 + 2χ

′
2χ

′
4 + χ

′
4χ

′
4){g22(r) ln g22(r) − (g22(r) − 1)}

]

= −2πρ

∫ ∞

0

r2dr
[
(χ

′
1 + χ

′
3)

2{g11(r) ln g11(r) − (g11(r)− 1)}

+ (χ
′
1 + χ

′
3)(χ

′
2 + χ

′
4)){g12(r) ln g12(r) − (g12(r) − 1)}

+ (χ
′
2 + χ

′
4)(χ

′
1 + χ

′
3)){g21(r) ln g21(r) − (g21(r) − 1)}

+ (χ
′
2 + χ

′
4)

2{g22(r) ln g22(r) − (g22(r) − 1)}
]

= −2πρ

∫ ∞

0

r2dr

2∑

i,j=1

χiχj{gij(r) ln gij(r) − (gij(r) − 1)}

(29)

The last equality can be written because χ1 = χ
′
1 + χ

′
3

and χ2 = χ
′
2 + χ

′
4.

In Fig. 12 we plot SM
2 where the change in structure

due to the pinned particles is considered. We find that
at high temperatures SM

2 is larger than SM
ex , and at low

temperatures, the scenario is reversed.
The temperature where these two entropies cross

each other is the ∆S = 0 (Eq. 7) point. For the KA
model (c=0) and other systems, it was earlier shown

0.6 0.8 1 1.2 1.4 1.6 1.8
T
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-5.5
-5.0
-4.5
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-3.5

S

c=0.00
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c=0.10
c=0.15

Solid line - S
ex

M

Dotted line - S
2

M

FIG. 12: The crossing between pair excess entropy SM
2

(Eq. 10) and excess entropy SM
ex (Eq. 26). The S2 and

Sex crosspoint are indicated by a dotted upward arrow,
while the onset temperature from the inherent structure
(Fig. 9) is shown by a solid downward arrow.

that the temperature where these two entropies cross is
similar to the onset temperature of glassy dynamics49,62.
However, it has also been found that in systems with
mean field like characteristics, the temperature where
∆S = 0 is lower than the onset temperature63,64. The
latter scenario is similar to what we find for pinned
systems. We find that with the increase in pinning,
the difference between the onset temperature and the
temperature where the two entropies cross increases.
Interestingly, a similar difference between the freezing
point and ∆S = 0 was observed for higher dimensional
systems65 and Gaussian core model (GCM)66. Note
that if the pair excess entropy is calculated assuming
the pinned system to be a binary system, then the
cross over between the pair excess entropy and the total
entropy will take place at unphysically low temperatures.

Appendix IV: Radial distribution function

In Fig. 2 (assuming the pinned particles are of a dif-
ferent species) we find that with increased pinning den-
sity, the partial rdfs start deviating from the c=0 system.
With an increase in “c”, there is a drop in the peak value
of the rdfs between two mobile particles (g11, g12). On
the other hand, the height of the first peak of the partial
rdfs between mobile and pinned particles (g13, g14) grows
with “c”.
We observe that this structural change happens

quickly, immediately after the pinning process. In
Fig. 13, we plot g(r), averaged from t = 0 − 100 and
t = 101 − 200, where the pinning is done at t=0. We
find that both rdfs overlap. This is shown for the c=0.15
system where the difference is maximum.

We also show that χ
′
1g11+χ

′
3g13 is the same as χAgAA

and χ
′
2g12 +χ

′
4g14 is the same as χBgBB (Fig. 14). This

is precisely why we do not see a change in structure
when the pinned particles are not treated as a different
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FIG. 13: Radial distribution function, g(r) at different
time intervals for c = 0.15 system. The solid line and
symbol represent the radial distribution function at
time t = 0− 100 and t = 100− 200, respectively.

species (Fig. 1).
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FIG. 14: (a) (χ
′
1g11 + χ

′
3g13) of the pinned system and

χAgAA of the KA system as a function of r
(b)(χ

′
2g12 + χ

′
4g14) of the pinned system and χBgAB of

the KA system as a function of r.

To check the system size dependence, in Fig. 15, we
plot the rdfs for a 4000 particle and 1000 particle system.
We find that change in the rdf with pinning is almost in-
dependent of the system size, with the difference between
the rdfs of the unpinned and pinned systems increasing
marginally for larger system sizes.
We also check the dependence of the rdf on the

integration time ∆t (Fig. 16). From this plot, we ob-
serve that rdf is independent of the integration time step.

Appendix V: Isoconfiguration run (IC)
To quantify the dependence of the dynamics on the struc-
ture and particle size, we perform isoconfigurational runs
(IC). IC is a powerful technique introduced by Harrow-
ell and co-workers to investigate the role of structure in
the dynamical heterogeneity of the particles52–55. Among
other factors, a particle’s displacement can depend on its
structure and also its initial momenta. This technique
was proposed to remove the uninteresting variation in
the particle displacements arising from the choice of ini-
tial momenta and extract the role of the initial configu-
ration on the dynamics and its heterogeneity. For each
system, five different isoconfigurational runs are carried
out for 4000 particles. To ensure that all configurations
are different, the configurations are chosen such that the
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FIG. 15: System size dependence in radial distribution
function, g(r) while treating the pinned system as a
quaternary system, at T = 0.68 (a)g11 as a function of r
(b) g12 as a function of r (c) g13 as a function of r (d)
g14 as a function of r. Inset: We have zoomed onto the
first peak of the respective figures, which clearly shows
the difference in the radial distribution functions. Note
that color coding is similar to Fig. 1. Here we refer to
the mobile A type of particles as 1, mobile B type of
particles as 2, pinned A type of particles as 3, and
pinned B type of particles as 4. The solid line
represents the 4000 particle system and the symbol
represents the 1000 particle system.

two sets are greater than 100τα apart. All these five IC
has different structure as well as contain different pin par-
ticle position. Note that since we have shown in section
IIID that after pinning, the structure changes; thus after
we pin the equilibrium position of the mobile particles,
we run the system for t=100 timestep and then consider
that as our initial configuration. We run 100 trajectories
for each configuration with different starting velocities
randomly assigned from the Maxwell-Boltzmann distri-
bution for the corresponding temperatures.
Mobility, µ is the average displacement of each particle

over these 100 runs and is calculated as54,

µj(t) =
1

NIC

NIC∑

i=1

√
(rji (t)− rji (0))

2 (30)

where jth particle’s mobility at time t is represented
by the term µj(t). The position of the jth particle
in the ith trajectory at time t is denoted by the term
rji (t), and its initial position is denoted by the term

rji (0). The sum of the values is calculated over each
of the NIC trajectories that were carried out during
the isoconfiguration runs. We determine the average
displacement or mobility for the jth particle at time t
by averaging these displacements over all trajectories.

Appendix VI: Identification of fast particles
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FIG. 16: Effect of integration time step, ∆t on radial
distribution function, g(r) while treating the pinned
system as a quaternary system, at T = 0.68 (a)g11 as a
function of r (b) g12 as a function of r (c) g13 as a
function of r (d) g14 as a function of r. Inset: We have
zoomed onto the first peak of the respective figures,
which clearly shows the difference in the radial
distribution functions. Note that color coding is similar
to Fig. 1. Here we refer to the mobile A type of
particles as 1, mobile B type of particles as 2, pinned A
type of particles as 3, and pinned B type of particles as
4.

There are various methods available for identifying fast
particles in the literature57,58,67–69. In our study, we
employ the approach proposed by Candelier et al.57,58.
This method involves the calculation of a quantity called
phop(i, t) for each particle within a specified time window
W = [t1, t2].
The phop(i, t) quantity captures the rate of change in

the average position of a particle, indicating the occur-
rence of a cage jump. The expression for phop(i, t) is
given as follows56:

phop(i, t) =
√〈

(ri −
〈
ri
〉
U
)2
〉
V

〈
(ri −

〈
ri
〉
V
)2
〉
U

(31)

here, ri represents the position of particle i, and 〈·〉 de-
note the averages over the time. The time window W is
divided into two intervals, U = [t - ∆t/2, t] and V = [t,
t + ∆t/2]. By calculating phop(i, t) for each particle, we
can determine whether a particle experiences a significant
change in its average position, indicating its involvement
in cage jumps and enhanced dynamics. In our analysis,
we compare the calculated phop(i, t) values to a thresh-
old value pc, which is determined as the mean square
displacement,

〈
∆r(t)2

〉
at a specific time tmax where the

non-Gaussian parameter, α2 =
3
〈
∆r(t)4

〉

(
〈
∆r(t)2

〉
)2

− 1 is maxi-

mized. If phop(i, t) exceeds pc, we identify the particle as

a fast particle33,62,70.
It is important to note that in our study, we specif-

ically analyze the structure and dynamics of the
mobile A particles. Therefore, we calculate the Mean
Square Displacement (MSD) and the non-Gaussian
parameter specifically for the mobile A particles. For
a more comprehensive understanding of the method
and its application in our study, we refer readers to
Reference33,56,62,70.
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