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• HyStor is an updated experimental database for metal alloys hydrogen

storage properties as a function of absorption temperature.

• HyStor comprises of 1280 metal alloys spread across 10 di↵erent alloy

classes and represents 54 elements.

• New alloy classes of LEA, MEA, and HEA are also included in the

updated database.

• ML model HYST trained on HyStor performs better on benchmarking

di↵erent alloy classes in comparison to existing HydPark database.

• The updates to alloy classes and element representations are also dis-

cussed.
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Abstract

In this work, we introduce the HyStor database, consisting of 1280 metal alloys along with their

hydrogen storage capacities (H2wt%) as a function of absorption temperature. Given the lack of

updates in the existing open access HydPark database since 2002, we sourced compositions from

recent research articles and various patent documents, resulting in a total of 468 compositions. The

addition is reflected in the data across all existing classes of alloy compositions and low entropy alloys

(LEA), medium entropy alloys (MEA), and high entropy alloys (HEA) have been included newly. This

has broadened the scope of the database to encompass the latest materials of interest for hydrogen

storage. HyStor contains representation of 54 elements, with a temperature range of 200-800K, and

H2wt% range of 0.1-7.19. To ensure data quality, we conducted thorough checks for duplicate entries,

erroneous data, and conflicting compositions within the database. Furthermore, we conducted multiple

tests to identify potential outlier compositions by benchmarking the database against the pretrained

HYST model on HydPark data. After eliminating these potential outliers, we successfully improved

the error metrics of the HYST model, reducing the Mean Absolute Error (MAE) from 0.32 to 0.28

and increasing the R2 score from 0.78 to 0.82. We also tested individual classes and observed that the

performance of the HYST model has increased for majority of the classes.
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1. Introduction

For centuries, the discovery of new materials has relied on a combination of intuition and experi-

mentation, or sometimes sheer chance. Now, as technology advances faster than ever, there is a demand

for a more systematic and e�cient approach. This is where machine learning (ML) discoveries steps

in, a powerful statistical method combined with computation for unlocking unprecedented insights,

accelerating discovery, and guiding the design of advanced materials with targeted properties.[1] At

its core, machine learning leverages algorithms and statistical techniques to analyze datasets, identify
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patterns, and make predictions. However, the e�cacy of ML models hinges crucially on data available

for training and testing. The quality and diversity of the data directly impacts the accuracy of ML

predictions.[2] Therefore, comprehensive and well-curated datasets plays a pivotal role in determining

the success of ML applications in material research.

With the advent of powerful computing, the data available in the scientific domain is expanding

exponentially. Leveraging computational simulations, researchers have generated a wealth of ma-

terial property data and most of the data has been archived in publicly accessible computational

databases.[3, 4, 5, 6, 7, 8] This available wealth of data has helped in developing ML models for predic-

tion of material properties like, formation energy [9, 10], crystal structure [11], and catalytic activity

[12] among others. The accuracy levels achieved by these ML models are close to the ab-initio calcula-

tions, marking significant progress in computational materials science research.[13] For example, with

advances in machine learning potentials, it is possible to quickly evaluate the energies and forces in a

system with close to ab-initio accuracy with reduced computational cost.[14, 15] In our previous work,

we integrated deep learning and reinforcement learning with DFT calculations for cluster structure

prediction. This approach facilitated the accelerated search for ground state structures of gallium

clusters.[16, 17] While integrating computational methods with machine learning (ML) has demon-

strably accelerated workflows in many areas, computational calculations themselves have limitations.

Due to these limitations, accurately predicting advanced material properties, such as heat transport,

stress-strain relationships, magnetic behavior, reaction dynamics, etc remains a challenge. [18] This

necessitates the continued dependence on time-consuming and costly experimental route to measure

material properties.

When attempting to apply machine learning in conjunction with experimental data, a notable

scarcity of data arises. Few of the large open access experimental data-sets in material sciences are avail-

able for compositions, structures and phases like Inorganic Crystal Structure Database (ICSD), Crystal-

lographic Open Database (COD), and High Throughput Experimental Materials (HTEM).[19, 20, 21]

Material properties can exhibit significant variations depending on the synthesis route, temperature,

and pressure used during the experiment. This variability highlights the importance of comprehensive

data collection, including the specific experimental conditions. Unfortunately, the complete details of

these experiments are often only documented in published scientific literature, not readily accessible

in easily searchable databases. The possible solution for building large and diverse experimental mate-

rials data-sets is to extract information from these published research articles and patent documents.

Traditionally, manual extraction is used to gather information from literature by meticulously read-

ing each document to identify relevant material properties. However, this method is labor-intensive

and time-consuming. Recent advancements in natural language processing (NLP) and web scraping

o↵er faster alternatives for text mining. These techniques enable the extraction of materials synthesis
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conditions and parameters from large corpus of articles. For instance, ChemDataExtractor is an NLP

pipeline to automatically extract chemical information from scientific documents.[22] BatteryBERT, a

pre-trained language model, utilises NLP in text mining battery research articles.[23] Although these

methods automate the extraction process, they are also associated with drawbacks like handling of

linguistic nuances, manual annotations for creation of training set, and generalizability. Therefore

constructing an experimental database to train a model for targeted material property prediction is a

complex task. Ensuring the accuracy and consistency of the extracted data is crucial for e↵ective model

training. This involves rigorous measures to identify and address potential errors or inconsistencies

within the data.

In the field of solid-state hydrogen storage in metal hydrides, machine learning has proven e↵ective

in predicting material’s crucial properties like hydrogen storage capacity[24, 25], enthalpy of hydride

formation[26, 25], equilibrium plateau pressure[26] etc. Most of these models have been trained on

HydPark database[27] and some are trained on manually extracted data from published literature[24].

Till date, HydPark is the only available database on metal hydrides, consisting of metal compositions

and their hydrogen storage properties. However, this database’s last update dates back to 2002 and

su↵ers from numerous missing entries. Most of the ML models trained on HydPark have been employed

to interpret composition – hydrogen storage property relationships.[24, 26] Recently, some models

have been utilized to construct predictive models and propose potential families of alloys for hydrogen

storage.[28, 25] Hattrick-Simpers et. al. developed an ML model and identified 6110 potential alloys

as hydrogen compressors.[28] In our previous work, we have also used HydPark data to build models

to predict hydrogen storage capacity as a function of temperature and enthalpy of hydride formation.

Our models prediction identified 6480 compositions that meet the stationary storage target properties

established by the US - Department of Energy. We also observed discrepancy between predicted and

experimentally measured H2wt% at lower temperatures for Mg-based compositions. This mismatch

likely stems from a bias in the training data. Specifically, the training set contained a dominance

of Mg-based compositions with lower temperatures that also had lower H2wt%. Consequently, the

model learned this correlation and became biased towards predicting lower H2wt% for unseen Mg-

compositions at lower temperatures.[25] Therefore, the performance of these models exhibits a strong

dependence on the available data. Thus, to expedite the search for materials suitable for hydrogen

storage, a large and diverse experimental data-set is imperative.

In this work, we present a systematically updated HydPark database, named as HyStor com-

prising metal hydrides’ hydrogen storage capacity as a function of absorption temperature, totaling

1280 data points. We utilized recent journal articles and multiple patent documents, to develop this

database. Before appending the data from these sources, we checked these compositions for duplicate

and conflicting entries. Our final dataset consists of compositions from ten di↵erent classes of metal
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alloys AB2, AB, A2B, AB5, Mg, MIC, SS, LEA, MEA, and HEA. Notably, LEA, MEA, and HEA

class of compositions were absent in the HydPark database. We benchmarked the performance of the

machine learning (ML) model trained using HyStor against our previously trained model, HYST on

HydPark[25]. Additionally, we have developed a framework to evaluate the reliability of data before

updating the database. The retraining of the HYST model on HyStor has resulted in an improved

error metrics with MAE of 0.28 and R2 score of 0.82 in comparison to the previous benchmarks of

HYST on HydPark with MAE of 0.33 and R2 score of 0.80. We also compared the performace of

HYST model trained on HydPark and HyStor database and observed a good deal of improvement in

the error metrics using HyStor on individual alloy classes.

2. Results and Discussions

2.1. HyStor database

HyStor is an experimental database which comprises of 1280 metal alloys, with their H2wt% as a

function of absorption temperature. The data recorded experimentally is spread across 10 di↵erent

classes of metal alloys: A2B, AB, AB2, AB5, MIC, SS, Mg, LEA, MEA, and HEA with a representation

of 54 elements as shown in Figure 1. The total number of compositions and the top eight frequently

occurring elements in each class of the metal alloys are also noted in the figure.

Figure 1: Represents the overall data distribution in di↵erent classes of the HyStor database. Each class is also indicated

with the first eight most frequent elements present in that class and also the number of compositions in that class.

The process of extracting data from research articles and patent documents contributed 468 com-

positions. These updates are evident across all alloy classes. Moreover, the inclusion of compositions
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from recent years into the database reflects the ongoing research on metal alloys, providing a compre-

hensive view of developments in this field. We will explore these observations and the performance of

the ML model on these alloy classes after retraining with the new data in an upcoming section of this

research article.

2.2. Data curation and pre-processing

Figure 2: Represents the HydPark database and compositions extracted from research articles and patent documents

distributed in di↵erent classes. (a) represents the overview of the compositions present in the HydPark database, (b) rep-

resents the overall distribution of extracted compositions from research articles and patents, (c) represents the extracted

compositions from research articles and (d) represents the extracted compositions from multiple patent documents. Each

class is also indicated with its absorption temperature ranges.

As a starting point, we pre-processed the HydPark database which contains 2,722 compositions

and their hydrogen storage properties. As our target is prediction of H2wt% which is a function

of absorption temperature, we require absorption temperature and corresponding H2wt% which was

available only for 856 compositions. A brief overview of the HydPark database distributed in di↵erent

classes and temperature regions is depicted in figure 2(a) Data curated from the research articles are

314 compositions and this data is spread across di↵erent alloy classes as shown in figure 2(c). The 144

compositions extracted from patent documents represents AB2, AB, and MIC classes of compositions as

illustrated in figure 2(d). As seen from figure 2 (c) and (d), the extracted compositions also contribute

to di↵erent temperature regions from 200-800K . The 20% of extracted compositions also represent

higher temperature regions of 400-800K. Considering that the HydPark database comprises 23% of
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compositions in this high-temperature range, the addition of these 20% compositions will increase the

distribution in high temperature training data and will maintain a balance across di↵erent temperature

regions. As H2wt% depends upon absorption temperature, the addition of compositions from di↵erent

temperature regions will improve the predictive accuracy in those regions. The addition of new classes

of compositions, such as LEA, MEA, and HEA, has significantly enriched the dataset with diverse

materials. These alloys exhibit remarkable properties, including exceptional mechanical strength, high

temperature stability, and show promising hydrogen storage performance at ambient conditions.

Ensuring the quality of data within a database is vital for accurate analysis and informed decision-

making, particularly when designing new experiments. On inspecting the database, we notice few

issues of data quality:

• Duplicated entries where two data points are seen with the same composition, temperature, and

hydrogen storage capacity.

• Conflicting compositions where data-points with the same composition and temperature were

recorded with a di↵erent hydrogen weight percent.

• Erroneous compositions which were recorded with the wrong hydrogen storage capacity in the

HydPark database.

Composition Temperature (K) H2wt% Cases
Mg1.5Ni 573 2.6

Duplicate composition
Mg1.5Ni 573 2.6

Ti.98Zr.02Mn1.5V.43Fe.09Cr.05 293 1.9
Conflicting composition

Ti.98Zr.02Mn1.5V.43Fe.09Cr.05 293 1.6
ZrNi1.4Mn.5V.5 303 1.6 Erroneous data
ZrNi1.4Mn.5V.5 303 1.5 Correct data

Table 1: Few representative cases of data quality checks performed on the HydPark and the extracted data points

During data quality checks, 17 pairs of duplicate compositions were identified. One of the examples

of duplicate entry of Mg1.5Ni is shown in table 1. These duplicate entries are mostly due to the presence

of same data point tagged in two di↵erent alloy classes such as in the case of Mg1.5Ni tagged in both

AB and Mg alloy classes. In such cases we retain one of these compositions in our database. We

also found three other pairs of compositions with the same temperatures but di↵erent H2wt% values.

Upon investigation, we discovered that these di↵erences were due to variations in pressure values as

recorded in the original research articles. We also found three other pairs of compositions with varied

synthesis routes, resulting in di↵erent H2wt% values. In cases where compositions exhibited di↵erences

in pressures and synthesis routes, only one composition is retained with the highest H2wt% value. Two

erroneous entries from the existing Hydpark database were identified, and corrections were made based

on information from their original research articles.
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Dataset Number of composition
Pre-processed HydPark database 856

Compositions extracted from research articles and patent documents 468
Compositions removed through dataquality tests 25
Compositions remaining in the HydPark dataset 842
Compositions remaining in the extracted dataset 457

Final data-points after data quality tests 1299

Table 2: Number of compositions in the existing database, extracted data-points and compositions identified through

data quality checks

After the data quality checks, the number of compositions that are to be eliminated are 25. Table 2

indicates the number of compositions at each stage of the data quality checks. Number of compositions

removed from the HydPark database are 14, while 11 compositions were removed from the extracted

dataset. This results in 842 compositions remaining in HydPark and 457 compositions remaining in

extracted dataset as noted in table 2. The final number of compositions after data quality tests in the

HyStor database is 1299.

Having ensured the quality of the updated data, we can now refine the ML model. To achieve this,

we will analyze how the individual data compositions a↵ect the model’s performance. This essentially

involves the evaluation of each data point to understand its impact on the model’s accuracy. Through

this exercise, we aim to identify those compositions which are consistently predicted with higher error

margins and investigate them in depth. This will allow us to take a judicious call on appending new

extracted data from literature.

3. Anomaly and outlier detections:

In this section, we will conduct several tests to identify compositions that consistently exhibit

poor performance during model predictions. Our objective is to detect anomalous compositions and

potential outlier compositions through these tests. We conduct these tests initially on the existing

HydPark database to eliminate potential outliers, and then proceed to conduct these tests on the

extracted dataset.

3.1. 90/10 random data split on HydPark database

In this test, we randomly select 10% of the existing HydPark database as a hold-out dataset and

use the remaining 90% for training the HYST model. We repeat this process 1000 times, shu✏ing the

data each time, and calculate the error bars associated with individual compositions whenever they

are present in the test set.

In figure 3, compositions are sorted based on two regions of ML predicted values. The region on the

left represents compositions that are underpredicted by the model, whereas the region on the right are

compositions that are overpredicted by the model. The accompanying table displays the frequency of

these compositions occurring in the test set generated through random shu✏ing. Some compositions,
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Figure 3: This figure illustrates the compositions that consistently performed poorly across the 1000 shu✏e runs. The

table within the figure displays the frequency of occurrence of each composition throughout the entire shu✏e run.

The compositions are distributed from left to right based on the ML model predictions. The left region represents

compositions that are underpredicted by the model, while the right side corresponds to compositions where the model

overpredicts.

such as TiBe2, CaNi5, and CaAl1.8B0.2(M), whose constituent elements Be, Ca, and B have limited

representation in our database. Without enough representative compositions with these elements in

our training data, the model has a higher probability of predicting with bigger error margins. Upon

investigating the remaining compositions, we encountered 11 compositions whose original source ma-

terial was inaccessible or not found during our search. The aim was to crosscheck their originally

recorded values in research articles, since these compositions experimental values are not representa-

tive of similar compositions in our database. For example, compositions like Mg0.85Li0.05Zn0.1 at

583K was measured with an H2wt% of 0.6. 75% of compositions where Mg has a fraction of 0.80 and

above in our database possess an H2wt% of 3 and above. Few other compositions with such irreg-

ular values are also identified, like Mg0.59Al0.36Si0.5, Mg0.59Al0.36Sn0.05, Mg0.85La0.1Al0.05, and

Mg0.85Li0.05Sn0.1, all with a significant fraction of Mg and recorded at high temperatures. Before

eliminating these compositions, we perform the next test to identify potential outliers by sampling from

classes present in our databases. This is to confirm the presence of these potential outlier compositions

through a di↵erent sampling method.

3.2. 20% class sampling test on HydPark dataset

In this test, we randomly select 20% of compositions from each class of the HydPark dataset and

assign them as an out of the bag dataset. The rest of the database will be used for training the model.

This test helps us to create a dataset representative of compositions from each class. We conduct this

test 1000 times to identify compositions which are anomalous in the training data.

The compositions seen in Figure 4 identified through this test are identical to those from previous
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Figure 4: This figure illustrates the compositions that were selected from various classes of the extracted compositions

and which consistently performed poorly across the 1000 shu✏e runs. The table within the figure displays the frequency

of occurrence of each composition throughout the entire shu✏e run. The compositions are distributed from left to right

based on the ML model predictions. The left region represents compositions that are underpredicted by the model, while

the right side corresponds to compositions where the model overpredicts.

tests as depicted in figure 3. This indicates that these same compositions are predicted with higher

errors after sampling the test set in a di↵erent manner. Since we confirm the presence of these compo-

sitions through both these tests, we proceed to eliminate the outlier compositions. Three compositions

identified with lack of representation in the database are removed. Further we proceed to remove

the 11 compositions whose original source article was inaccessible or not found during our search. In

total we remove 14 compositions which are listed in SI-Table 1. Six compositions whose H2wt% are

accurately recorded as identified from their research articles are retained in the database. These six

compositions Mg0.72Li0.28, Mg6Pd, Mg-50ZrFe1.4Cr0.6, Mg17Al11Ti, Mg.6Al.4, and Zr.2Ho.8CoFe

which mainly belong to the Mg class provide a good deal of variability to our database. Mg6Pd and

Mg.6Al.4 although comprising a high content of Mg posess a lower H2wt% value at higher temper-

atures and consequently the model over predicts their H2wt% values. The other four compositions

posess a higher H2wt% value which is underpredicted by the model. These six compositions are also

recorded with high temperature and therefore retaining them will maintain the distribution of high

temperature training data.

Dataset Number of composition MAE R2 score
HydPark database 842 0.31 0.78

Deleting outlier compositions 828 0.28 0.82

Table 3: Improvements in the error metrics on exclusion of outlier compositions

In table 3, we note the error metrics of the HYST model trained on the HydPark database and

outlier removed HydPark database. We see improvements in the error metrics with MAE decreasing

from 0.30 to 0.27 and R2 score increasing from 0.78 to 0.82. From this point, we proceed with further
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analysis by excluding the identified outlier compositions. This is to refine the database, preparing

it for subsequent testing and evaluation. Our objective is to assess the validity of newly extracted

composition and determine their suitability for inclusion in the database update process. This approach

ensures a more robust model for testing and validating new compositions.

3.3. 90/10 random data split on extracted compositions

For this test, we use the extracted compositions as a sample space and identify those compositions

which performs with higher error predictions by the HYST model. From the sample space, we ran-

domly select 10% of compositions and use the HYST model trained on the above finalized dataset

for evaluation. We run this experiment 1000 times to acquire the error metrics for the individual

composition.

Figure 5: This figure illustrates the compositions that were selected from the extracted data and which consistently

performed poorly across the 1000 shu✏e runs. The table within the figure displays the frequency of occurrence of each

composition throughout the entire shu✏e run. The compositions are distributed from left to right based on the ML

model predictions. The left region represents compositions that are underpredicted by the model, while the right side

corresponds to compositions where the model overpredicts.

As observed from Figure 5, the four compositions of the Ti1.1CrMn and one compositions of

TiMn1.5 family doped with V0.85Fe0.15 exhibit high H2wt% ranges of 3.5-4 compared to the average

value of 1.5 wt% for these families in our dataset. When analyzing the extracted data, T i1.1CrMn(V 0.85Fe0.15)x

where x= 0.2, 0.3, and 0.4 have H2wt% values of 1.4, 4.9, and 4.6 all measured at 283K. Since HYST

model utilises the compositions normalised fractions to calculate its features, a slight variation of 0.02

for V and 0.04 for Fe in the composition fraction only results in a similar feature set. The complete

feature set of these three compositions are depicted in SI-figure 1. Since our model does not take

into consideration the structural and experimental features of a composition, the changes that may

have been observed with these slight variations of V0.85Fe0.15 is not provided to the model. Thus we
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consider the Ti1.1CrMn doped with (V0.85Fe0.15) families listed with high errors as potential outliers

to models learning. We also note the CeNi5 compositions doped with Cr and Zr with a high H2wt% of

3.5 and above. Other CeNi5 and its doped compositions in our training data are limited to composi-

tions with low temperature ranges of 293-323K. The CeNi5 doped with Cr and Zr flagged as potential

outliers are all measured at very high temperature range of 566-606K. Since these compositions pro-

vide the information of CeNi5 and its dopants at high temperatures, we retain them in our database.

We further test the extracted compositions by sampling them randomly from the alloy classes in our

database.

3.4. 20% class sampling test on extracted compositions

For this test, we use the extracted compositions as a sample space and randomly select 20% from

each class and create a hold out test set. This test set is then used to benchmark the HYST model.

Figure 6: This figure illustrates the compositions that were selected from various classes of the HydPark database and

which consistently performed poorly across the 1000 shu✏e runs. The table within the figure displays the frequency of

occurrence of each composition throughout the entire shu✏e run. The compositions are distributed from left to right

based on the ML model predictions. The left region represents compositions that are underpredicted by the model, while

the right side corresponds to compositions where the model overpredicts.

The sampling of compositions from di↵erent classes of alloys from the extracted database has also

resulted in the exact same compositions that were analyzed during the previous experiment. The error

metrics are evaluated in higher frequency during these runs but the error metrics remain relatively

same for these compositions. To proceed with the further analysis, we eliminate the Ti1.1CrMn and

TiMn1.5 doped with (V0.85Fe0.15). The list of compositions eliminated through these tests are listed in

SI-table 2. The other compositions belonging to CeNi4 doped with Cr and Zr, Mg based compositions,

AB2, and MEA are retained. Although these compositions gave high error margins, we choose to

retain them as these compositions provide variability to our data. To proceed with further analysis,
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Dataset Number of composition MAE R2 score
HyStor database 1299 0.31 0.78
Deleting outlier 1280 0.28 0.82

Table 4: Error metrics on exclusion of outlier compositions

we remove the outlier compositions from the extracted data and finalise the HyStor database.

As seen from table 4, the error metrics of the HYST model trained on HyStor has improved on

exclusion of all the potential outliers identified from the HydPark dataset and extracted compositions.

The final overall error metrics of HYST on HyStor database with 1280 compositions is MAE of 0.28

and R2 score of 0.82. To further benchmark the performance of the HyStor trained model, we sample

individual classes in the dataset and compare the performance of HYST trained on HydPark and

HyStor database.

4. Alloy class error benchmarks using HydPark and HyStor

In this section, we utilize the HYST model trained on HydPark and HyStor database and use it

to benchmark individual classes that are present in our database. To create the test set for a class,

we utilize the HyStor database and sample 20% of the data, which we keep aside as an out-of-bag

dataset. Subsequently, we train the HYST model by excluding these test set compositions from both

the HydPark and HyStor databases. Finally, we calculate the error metrics for each class over 100

iterations based on the trained model.

Figure 7: (a) represents the MAE and (b) represents the R2 score of individual classes benchmarked using the HYST

model trained on HydPark and HyStor database. In figure 7(b), the y-axis is scaled down between -1 to 0 to depict the

negative R2 score of -1.0 achieved by the HydPark model on prediction of LEA class.
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Figure7 (a) depicts the MAE of each class when predicted with HydPark trained and HyStor trained

model. The MAE for classes like AB2, A2B, AB5, AB, Mg, LEA, MEA, and HEA have reduced on

utilizing the model trained on HyStor. This signifies that the addition of compositions to individual

classes has enhanced the models performance for these classes. In figure 7 (b), we see that for these

same classes, the R2 score has also increased which also depicts the improved fitting of the model

on these test classes. Specifically the MAE and R2 score of LEA, MEA, and HEA class of alloys

have seen a significant improvement using the HyStor model. This is attributed to the fact that the

compositions of these alloy classes were missing in the HydPark database. Alloy classes of SS and MIC

have shown a similar performance in the error metrics using models trained using both HydPark and

HyStor database. The SS class has only seen an increase of 5 compositions and this can be attributed

to the similar error metrics by the model. The MIC classes although added with 26 compositions,

exhibit similar error metrics.

5. Comparative analysis of HydPark and HyStor database

In this section, we conduct a comparative analysis of the compositions, classes and elements present

in the HydPark and the HyStor database.

Figure 8: Distribution of compositions in both the Hydpark and HyStor databases. Compositions are divided according

to their H2wt% distribution. Each distribution is further divided through their absorption temperature ranges. The

initial bar in each window represents the distribution of compositions within the HydPark database whereas the second

bar represents the HyStor database representation.

Figure 8 represents the distribution of compositions in both the HydPark and HyStor databases in

di↵erent H2wt% ranges. Majority of the compositions fall within the lower H2wt% range of 0-2 wt%.

A large increase in compositions are observed across the 200-300K range. This is because the updates
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has included a significant number of compositions from the families of TiCrMn, TiFe, TiMn, and

HEA whose absorption temperature is near room temperature. The majority of these compositions

are recorded with 0-2 wt%, and they include compositions with lanthanides such as La, Pr, Nd, Gd,

Tb, Dy, Ho, Er, as well as other heavy elements like Pd and U. The combined temperature range of

400-800K exhibits the highest number of compositions with H2wt% of 4 and above, predominantly

attributed to Mg-based compositions. The number of compositions with a higher H2wt% of 3 and

above with a lower temperature range of 200-300K was negligible in the HydPark database. The

addition of new compositions has increased the representation of higher H2wt% compositions in the

lower temperature region of 200-300K.

Figure 9: This figure represents the histogram distribution of H2wt% of various classes in the HydPark and HyStor

database.

In figure 9, we can see the histogram distribution of H2wt% across di↵erent regions of the ten

material classes. A corresponding class and its number of compositions in a particular dataset are

also labeled in figure 9. There is a significant addition to the classes of AB, AB2, Mg and LEA,

MEA, and HEA are newly added classes to the database. Each of the A2B, AB, AB2, and AB5

classes represents compositions where the A part belongs to a hydriding element, and the B part

belongs to a non-hydriding element. There is an observed trend of decreasing H2wt% in these classes

with an increase in the concentration of the B part of the composition. The A2B class comprises

compositions whose hydriding part belongs to elements like Mg, Ti, and Hf. The higher H2wt%

ranges are occupied by the Mg based compositions while the lower ranges of this class belong to Hf
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and Ti based compositions. The AB class in the database mainly comprises compositions where Ti

serves as the hydriding part, while later transition metals such as Fe, Mn, Co, Ni, and Cr occupy

the non-hydriding part. These compositions exhibit an H2wt% range between 0.5 and 2, with the

majority operating in the temperature range of 300-400K. The addition comprises mainly of TiFe and

its various dopants to the database. These compositions also has increased representation in the higher

H2wt% region of this alloy class. The AB2 class belongs to compositions whose A part is occupied

by Ti, Zr or a mix of both Ti and Zr with varying fractions. The B part is occupied by elements

like V, Mn, Fe, Ni, Cr, and Si. Few notable compositions in this class have H2wt% of 2.6 - 3.6 and

these contain V in their B part. These compositions also operate at around 300-400K temperatures.

The number of compositions updated in this class of alloy is the highest. Majority of these added

compositions belong to TiCrMn family of alloys. This addition has also increased representation in

the higher regions of this class thereby improving the overall distribution in this alloy class. The

AB5 class comprises of compositions with lanthanides like La, Ce, Sm, Er, Nd, and Tb occupying

the A part and later transition metals occupying the B part. They operate at low temperatures

of 298 -310K, and their H2wt% range from 0.3-2 wt%. The Mg-based compositions are distributed

across the entire H2wt% range, spanning from 0.5 to 7 wt%. Significantly, Mg-based compositions

stand out for having H2wt% greater than 4 when compared to other compositions. Nearly all of

these compositions are also associated with elevated temperatures, specifically 550K and above. The

addition of Mg based compositions are mainly seen in the higher H2wt% regions. MIC or miscellaneous

inter-metallic compounds contain di↵erent combinations of A and B part with elements like Mg, V,

Ti, La, and Zr occupying the hydriding part. These composition basically follow di↵erent range of

temperatures and have also varied H2wt% range of 0.3-6 wt%. SS class has two major regions within

their class. The region in the range of 0.1-2 corresponds to compositions consisting of Pd as the

hydriding part whereas the region in the range of 3-4 H2wt% range belongs to compositions where

V acts as the hydriding element. LEA class of compositions exhibit an H2wt% range between 0.5

and 2, with the majority operating in the temperature range of 298-373K. These compositions mainly

comprises of three elements in an equiproportion fraction and is seen with elements like Ti, V, Cr, Fe,

Zr, and Mn. Few compositions also comprise of Mg in their mixture. MEA compositions in HyStor

database exhibit a range of H2wt% value of 1.5-2 and 2-3.4 wt%. These compositions operate at lower

ranges of temperature of 273K to 373K. HEA compositions in the database are highly occupied with

compositions whose H2wt% lie in the range of 1-2 wt%. The elements used in the HEA predominantly

belong to transition metals. Few compositions also contain Mg and Al.

Figure 10 (a) represents the frequency of the di↵erent elements present in the HydPark database

whereas figure 10(b) represents the element distribution in the HyStor database. HydPark database

reflects the elements which were studied before the year 2002 for the purpose of hydrogen storage. The

15



(a) (b)

Figure 10: (a) and (b) shows the element representation before and after addition of new points. (a) represents the

element representation in the initial dataset of 856 compositions all selected from HydPark database after preprocessing.

(b) represents the HyStor database which comprises 1280 compositions element representation.

new and updated HyStor database has included compositions post 2002 and various patent documents

and signifies the usage of elements which have been on focus in recent years. According to Figures

10 (a) and (b), a few 3d and 4d transition series elements have experienced a significant increase

in numbers following the addition of new compositions to the database. In particular, elements like

Ti, V, Cr, Mn, Fe, Ni, Y, Zr, Hf, Nb, and Mo have witnessed an almost twofold increase in their

numbers. Literature studies reveal that the early transition metals occupy the hydriding or A part of

the alloy, while the later transition metals serve as the non-hydriding or B part of the alloy. Ti, V,

and Zr are well-known for their hydriding capabilities, making them subjects of significant interest in

metal hydride research, as evidenced by both the original Hydpark and updated databases. Transition

metals are seen to form metal hydride alloys with room temperature operability, thus making them

a practical choice for the purpose of hydrogen storage. Additionally, elements like Nb, Mo, and Hf,

which were infrequently used before 2002, have also shown an increase in utilization, according to the

updated database. However, metals from other transition series, such as Cu, Pd, Sn, and Pt, exhibit

relatively limited increase in numbers, suggesting that they have not been extensively explored or

utilized in recent research, as indicated by the updated database. Furthermore, there is an observed

increase in the usage of Mg based compositions on the updated database. Conversely, other hydriding

alkali and alkaline elements like Li and Ca show little to no increase. Li and Ca metals possess higher

hydriding capacities but forms irreversible hydrides making them impractical for recharging processes.

This indicates the lack of increase in these elements even after the updates to the database. Overall the

number of elements present in both the databases is 54. The representation in HyStor database has

increased the frequency of 18 elements significantly and has specifically improved the representation

of transition metals and Mg.
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6. Conclusions

In this work, we present the HyStor database, comprising 1280 data-points of metal alloys with

their hydrogen storage capacity as a function of absorption temperature. To address the lack of

updates in the existing HydPark database, we sourced data from recent research articles and patent

documents, resulting in the extraction of 468 compositions with their H2wt% as a function of absorption

temperature. Through rigorous data preprocessing and quality checks, we identified and resolved issues

such as duplication within the databases, erroneous entries, conflicting values in the database which

resulted from varying pressure and di↵erent synthesis routes as identified from the original research

article. Additionally, each composition underwent rigorous anomaly and outlier detection tests to

optimize the database for the ML model HYST, used for prediction of H2wt%. Utilizing this fully

optimized dataset, we were able to reduce the Mean Absolute Error (MAE) from 0.32 to 0.28 and

increase the R2 score from 0.78 to 0.82 for the HYST model. We also tested the HYST model’s

performance on individual alloy classes and observed improvements in the error metrics for 8 out of

the 10 classes in comparison to the existing HYST model trained on HydPark data. The rest 2 alloy

classes are seen with similar error metrics to that of existing model.

Furthermore, we discussed various updates introduced in our work specific to di↵erent regions of

H2wt% and absorption temperatures, di↵erent alloy classes, and element representation. We also

introduced new alloy classes such as LEA, MEA, and HEA to HyStor. The addition of compositions

from patent documents resulted in addition of practical and commercially tested alloy compositions

to our database.
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H.-J. Bungartz, C. Draxl, Nomad: A distributed web-based platform for managing materials

science research data, Journal of Open Source Software 8 (90) (2023) 5388. doi:10.21105/joss.

05388.

URL https://doi.org/10.21105/joss.05388

[6] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with

high-throughput density functional theory: the open quantum materials database (oqmd), Jom

65 (2013) 1501–1509.

[7] L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich, V. Granata, F. Gargiulo, M. Borelli,

M. Uhrin, S. P. Huber, S. Zoupanos, et al., Materials cloud, a platform for open computational

science, Scientific data 7 (1) (2020) 299.

[8] S. S. Borysov, R. M. Geilhufe, A. V. Balatsky, Organic materials database: An open-access online

database for data mining, PloS one 12 (2) (2017) e0171501.
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sage passing neural networks for fast and accurate force fields, Advances in Neural Information

Processing Systems 35 (2022) 11423–11436.

[16] R. Modee, S. Agarwal, A. Verma, K. Joshi, U. D. Priyakumar, Dart: deep learning enabled topo-

logical interaction model for energy prediction of metal clusters and its application in identifying

unique low energy isomers, Physical Chemistry Chemical Physics 23 (38) (2021) 21995–22003.

[17] R. Modee, A. Verma, K. Joshi, U. D. Priyakumar, Megen-generation of gallium metal clusters

using reinforcement learning, Machine Learning: Science and Technology 4 (2) (2023) 025032.

[18] K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, Error estimates for solid-state

density-functional theory predictions: an overview by means of the ground-state elemental crys-

tals, Critical reviews in solid state and materials sciences 39 (1) (2014) 1–24.

[19] M. Hellenbrandt, The inorganic crystal structure database (icsd)—present and future, Crystal-

lography Reviews 10 (1) (2004) 17–22.

[20] S. Gražulis, A. Daškevič, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N. R. Serebryanaya,

P. Moeck, R. T. Downs, A. Le Bail, Crystallography open database (cod): an open-access col-

lection of crystal structures and platform for world-wide collaboration, Nucleic Acids Research

40 (D1) (2012) D420–D427. arXiv:https://nar.oxfordjournals.org/content/40/D1/D420.

19

https://academic.oup.com/nar/article/40/D1/D420/2903497
https://academic.oup.com/nar/article/40/D1/D420/2903497
http://arxiv.org/abs/https://nar.oxfordjournals.org/content/40/D1/D420.full.pdf+html
http://arxiv.org/abs/https://nar.oxfordjournals.org/content/40/D1/D420.full.pdf+html


full.pdf+html, doi:10.1093/nar/gkr900.

URL https://academic.oup.com/nar/article/40/D1/D420/2903497

[21] K. R. Talley, R. White, N. Wunder, M. Eash, M. Schwarting, D. Evenson, J. D. Perkins, W. Tumas,

K. Munch, C. Phillips, et al., Research data infrastructure for high-throughput experimental

materials science, Patterns 2 (12) (2021).

[22] M. C. Swain, J. M. Cole, Chemdataextractor: a toolkit for automated extraction of chemical

information from the scientific literature, Journal of chemical information and modeling 56 (10)

(2016) 1894–1904.

[23] S. Huang, J. M. Cole, Batterybert: A pretrained language model for battery database enhance-

ment, Journal of chemical information and modeling 62 (24) (2022) 6365–6377.

[24] S. Suwarno, G. Dicky, A. Suyuthi, M. E↵endi, W. Witantyo, L. Noerochim, M. Ismail, Machine

learning analysis of alloying element e↵ects on hydrogen storage properties of ab2 metal hydrides,

International Journal of Hydrogen Energy 47 (23) (2022) 11938–11947.

[25] A. Verma, N. Wilson, K. Joshi, Solid state hydrogen storage: Decoding the path through machine

learning, International Journal of Hydrogen Energy 50 (2024) 1518–1528.

[26] M. Witman, S. Ling, D. M. Grant, G. S. Walker, S. Agarwal, V. Stavila, M. D. Allendorf,

Extracting an empirical intermetallic hydride design principle from limited data via interpretable

machine learning, The Journal of Physical Chemistry Letters 11 (1) (2019) 40–47.

[27] US DOE hydrogen storage database, data obtained from the Hydrogen Materials Advanced Re-

search Consortium (HyMARC) Data Hub at datahub.hymarc.org.

[28] J. R. Hattrick-Simpers, K. Choudhary, C. Corgnale, A simple constrained machine learning model

for predicting high-pressure-hydrogen-compressor materials, Molecular Systems Design & Engi-

neering 3 (3) (2018) 509–517.

20

http://arxiv.org/abs/https://nar.oxfordjournals.org/content/40/D1/D420.full.pdf+html
http://arxiv.org/abs/https://nar.oxfordjournals.org/content/40/D1/D420.full.pdf+html
http://arxiv.org/abs/https://nar.oxfordjournals.org/content/40/D1/D420.full.pdf+html
https://doi.org/10.1093/nar/gkr900
https://academic.oup.com/nar/article/40/D1/D420/2903497


Supporting Information HyStor: An Experimental Database of

Hydrogen Storage Properties for Various Metal Alloy Classes

Nikhil Wilson, Ashwini Verma, Piyush Ranjan

Maharana, Ameeya Bhusan Sahoo, and Kavita Joshi
⇤

Physical and Materials Chemistry Division,

CSIR-National Chemical Laboratory,

Dr. Homi Bhabha Road, Pashan, Pune 411008, India and

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

(Dated: April 20, 2024)

⇤ k.joshi@ncl.res.in

1

mailto:k.joshi@ncl.res.in


I. COMPOSITIONS ELIMINATED THROUGH OUTLIER ANALYSIS

Through the tests performed to identify compositions that were potential outliers to the

model, these are the compositions eliminated from the HydPark dataset.

Sl.no Composition Case H2wt% Temperature(K)

1 TiBe2 Limited representation of Be element in database 4.4 295

2 CaNi5 Limited representation of Ca element in database 0.3 295

3 CaAl1.8B.2 (M) Limited representation of B element in database 0.7 313

4 Mg5Al4 Research article not found 5.4 599

5 Mg.59Al.36Si.05 Research article not found 0.6 583

6 Mg.85Li.05Zn.1 Research article not found 0.6 583

7 Mg-10Ni Research article not found 6.2 573

8 Mg.59Al.36Sn.05 Research article not found 0.5 583

9 Mg0.85La0.10Al0.05 Research article not found 6.2 573

10 Mg.85Li.05Sn.1 Research article not found 0.8 583

11 MgAl.89Mn.19 Research article not found 5 623

12 ZrAl2 Research article not found 0.35 293

13 La2Mg17 Research article not found 2.4 373

14 Mg0.87Ni0.13 (M) Research article not found 5.7 598

TABLE I. This table represents the compositions that are eliminated from the HydPark database.

5

As seen from Table I, the first three compositions eliminated from the HydPark database

comprise compositions whose constituent elements, such as Be, Ca, and B, are lacking in

the database. This can lead to higher error margins when predicting their compositions.

From the rest of the compositions which were found with higher errors, we were unable to

cross-check the hydrogen storage properties of 11 compositions listed in Table I from their10

original research articles due to the inaccessibility of these articles.

The following compositions as seen in Table II are removed on analysis of the outlier ex-

tracted compositions. According to Table II, the compositions that are eliminated comprise

of Ti1.1CrMn family and TiMn1.5 doped with V0.85 Fe0.15 at varying fractions. As the

model is trained on features generated based on compositional fractions , a small variation15
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Sl.no Composition Case H2wt% Temperature(K)

1 Ti1.1 Cr Mn (V0.85 Fe0.15)0.3 Outlier data point with high errors 4.9 283

2 Ti1.1 Cr Mn (V0.85 Fe0.15)0.4 Outlier data point with high errors 4.6 283

3 Ti1.1 Cr Mn (V0.85 Fe0.15)0.5 Outlier data point with high errors 4 283

4 Ti1.1 Zr0.2 Cr Mn (V0.85 Fe0.15)0.4 Outlier data point with high errors 4 283

5 Ti Mn1.5 (V0.85 Fe0.15)0.3 Outlier data point with high errors 3.7 283

TABLE II. This table represents the compositions that are eliminated from the extracted compo-

sitions

in the fractions of V and Fe between the compositions results in the generation of similar

feature sets. A comparison of features generated for three Ti1.1CrMn family of compositions

is shown in figure 1

Sl.no Composition H2wt% Temperature(K)

1 Ti1.1 Cr Mn (V0.85 Fe0.15)0.2 1.4 283

2 Ti1.1 Cr Mn (V0.85 Fe0.15)0.3 4.9 283

3 Ti1.1 Cr Mn (V0.85 Fe0.15)0.4 4.6 283

TABLE III. The following compositions are shown as a representative case of similar features

generated for Ti1.1CrMn family doped with V0.85 Fe0.15.

As observed in Figure 1, the features generated for these three compositions shown in

III are similar, as they depend on the compositional fractions of the constituent elements.20

Since our model does not incorporate structural and experimental features into its training,

it cannot capture changes resulting from variations in V0.85 Fe0.15 . Therefore, we eliminate

those compositions with V0.85 Fe0.15 as a dopant and predicted with high error margins as

seen in Table II, as they would a↵ect the model’s predictions for other compositions in the

Ti1.1CrMn family.25

3



FIG. 1. Represents the features generated for the three compositions as mentioned in Table III.

The x axis labels of each figure where represents the three compositions where 0 represents Ti1.1

Cr Mn (V0.85 Fe0.15)0.2, 1 represents Ti1.1 Cr Mn (V0.85 Fe0.15)0.3, and 2 represents Ti1.1 Cr

Mn (V0.85 Fe0.15)0.4
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