CSIR-NCL Digital Repository

Predicting the Redox Potentials of Phenazine Derivatives Using DFT-Assisted Machine Learning

Show simple item record

dc.contributor.author Ghule, Siddharth
dc.contributor.author Dash, Soumya Ranjan
dc.contributor.author Bagchi, Sayan
dc.contributor.author Joshi, Kavita
dc.contributor.author Vanka, Kumar
dc.date.accessioned 2023-10-10T06:24:00Z
dc.date.available 2023-10-10T06:24:00Z
dc.date.issued 2022-03-29
dc.identifier.other https://doi.org/10.1021/acsomega.1c06856
dc.identifier.uri https://hdl.handle.net/20.500.12252/6253
dc.description.abstract This study investigates four machine-learning (ML) models to predict the redox potentials of phenazine derivatives in dimethoxyethane using density functional theory (DFT). A small data set of 151 phenazine derivatives having only one type of functional group per molecule (20 unique groups) was used for the training. Prediction accuracy was improved by a combined strategy of feature selection and hyperparameter optimization, using the external validation set. Models were evaluated on the external test set containing new functional groups and diverse molecular structures. High prediction accuracies of R2 > 0.74 were obtained on the external test set. Despite being trained on the molecules with a single type of functional group, models were able to predict the redox potentials of derivatives containing multiple and different types of functional groups with good accuracies (R2 > 0.7). This type of performance for predicting redox potential from such a small and simple data set of phenazine derivatives has never been reported before. Redox flow batteries (RFBs) are emerging as promising candidates for energy storage systems. However, new green and efficient materials are required for their widespread usage. We believe that the hybrid DFT-ML approach demonstrated in this report would help in accelerating the virtual screening of phenazine derivatives, thus saving computational and experimental costs. Using this approach, we have identified promising phenazine derivatives for green energy storage systems such as RFBs. en
dc.format.extent 14 en
dc.language.iso en_US en
dc.publisher ACS Omega en
dc.title Predicting the Redox Potentials of Phenazine Derivatives Using DFT-Assisted Machine Learning en
dc.type Article en
local.division.division Physical and Materials Chemistry Division en
dc.description.university -- en


Files in this item

This item appears in the following Collection(s)

Show simple item record